Files
transformers/tests/pipelines/test_pipelines_image_to_text.py
Lucain 44682e7131 Adapt and test huggingface_hub v1.0.0 (#40889)
* Adapt and test huggingface_hub v1.0.0.rc0

* forgot to bump hfh

* bump

* code quality

* code quality

* relax dependency table

* fix has_file

* install hfh 1.0.0.rc0 in circle ci jobs

* repostiryo

* push to hub now returns a commit url

* catch HfHubHTTPError

* check commit on branch

* add it back

* fix ?

* remove deprecated test

* uncomment another test

* trigger

* no proxies

* many more small changes

* fix load PIL Image from httpx

* require 1.0.0.rc0

* fix mocked tests

* fix others

* unchange

* unchange

* args

* Update .circleci/config.yml

* Bump to 1.0.0.rc1

* bump kernels version

* fix deps
2025-09-25 11:13:50 +00:00

270 lines
9.8 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import unittest
import httpx
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import ImageToTextPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ImageToTextPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
dtype="float32",
):
pipe = ImageToTextPipeline(
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
image_processor=image_processor,
processor=processor,
dtype=dtype,
max_new_tokens=20,
)
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
return pipe, examples
def run_pipeline_test(self, pipe, examples):
outputs = pipe(examples)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}],
],
)
@require_torch
def test_small_model_pt(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", max_new_tokens=19)
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(
outputs,
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
},
],
)
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
],
)
@require_torch
def test_small_model_pt_conditional(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe(image, prompt=prompt)
self.assertTrue(outputs[0]["generated_text"].startswith(prompt))
@require_torch
def test_consistent_batching_behaviour(self):
pipe = pipeline(
"image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration", max_new_tokens=10
)
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe([image, image], prompt=prompt)
self.assertTrue(outputs[0][0]["generated_text"].startswith(prompt))
self.assertTrue(outputs[1][0]["generated_text"].startswith(prompt))
outputs = pipe([image, image], prompt=prompt, batch_size=2)
self.assertTrue(outputs[0][0]["generated_text"].startswith(prompt))
self.assertTrue(outputs[1][0]["generated_text"].startswith(prompt))
from torch.utils.data import Dataset
class MyDataset(Dataset):
def __len__(self):
return 5
def __getitem__(self, i):
return "./tests/fixtures/tests_samples/COCO/000000039769.png"
dataset = MyDataset()
for batch_size in (1, 2, 4):
outputs = pipe(dataset, prompt=prompt, batch_size=batch_size if batch_size > 1 else None)
self.assertTrue(list(outputs)[0][0]["generated_text"].startswith(prompt))
self.assertTrue(list(outputs)[1][0]["generated_text"].startswith(prompt))
@slow
@require_torch
def test_large_model_pt(self):
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
],
)
@slow
@require_torch
def test_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(io.BytesIO(httpx.get(url, follow_redirects=True).content))
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])
@slow
@require_torch
def test_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(io.BytesIO(httpx.get(url, follow_redirects=True).content))
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])
@slow
@require_torch
def test_conditional_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(io.BytesIO(httpx.get(url, follow_redirects=True).content))
prompt = "a photography of"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
def test_conditional_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(io.BytesIO(httpx.get(url, follow_redirects=True).content))
prompt = "a photo of a"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
def test_conditional_generation_pt_pix2struct(self):
pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(io.BytesIO(httpx.get(url, follow_redirects=True).content))
prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "ash cloud"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
@unittest.skip("TODO (joao, raushan): there is something wrong with image processing in the model/pipeline")
def test_conditional_generation_llava(self):
pipe = pipeline("image-to-text", model="llava-hf/bakLlava-v1-hf")
prompt = (
"<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT:"
)
outputs = pipe(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg",
prompt=prompt,
generate_kwargs={"max_new_tokens": 200},
)
self.assertEqual(
outputs,
[
{
"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT: Lava"
}
],
)
@slow
@require_torch
def test_nougat(self):
pipe = pipeline("image-to-text", "facebook/nougat-base", max_new_tokens=19)
outputs = pipe("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/nougat_paper.png")
self.assertEqual(
outputs,
[{"generated_text": "# Nougat: Neural Optical Understanding for Academic Documents\n\n Lukas Blec"}],
)