* Fix white space Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * Revert changes Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * Fix autodoc Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> --------- Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
4.6 KiB
This model was released on 2021-10-05 and added to Hugging Face Transformers on 2022-06-29.
MobileViT
MobileViT is a lightweight vision transformer for mobile devices that merges CNNs's efficiency and inductive biases with transformers global context modeling. It treats transformers as convolutions, enabling global information processing without the heavy computational cost of standard ViTs.
You can find all the original MobileViT checkpoints under the Apple organization.
Tip
- This model was contributed by matthijs.
Click on the MobileViT models in the right sidebar for more examples of how to apply MobileViT to different vision tasks.
The example below demonstrates how to do [Image Classification] with [Pipeline
] and the [AutoModel
] class.
import torch
from transformers import pipeline
classifier = pipeline(
task="image-classification",
model="apple/mobilevit-small",
dtype=torch.float16, device=0,
)
preds = classifier("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
print(f"Prediction: {preds}\n")
import torch
import requests
from PIL import Image
from transformers import AutoImageProcessor, MobileViTForImageClassification
image_processor = AutoImageProcessor.from_pretrained(
"apple/mobilevit-small",
use_fast=True,
)
model = MobileViTForImageClassification.from_pretrained("apple/mobilevit-small", device_map="auto")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to(model.device)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is:{predicted_class_label}")
Notes
- Does not operate on sequential data, it's purely designed for image tasks.
- Feature maps are used directly instead of token embeddings.
- Use [
MobileViTImageProcessor
] to preprocess images. - If using custom preprocessing, ensure that images are in BGR format (not RGB), as expected by the pretrained weights.
- The classification models are pretrained on ImageNet-1k.
- The segmentation models use a DeepLabV3 head and are pretrained on PASCAL VOC.
MobileViTConfig
autodoc MobileViTConfig
MobileViTFeatureExtractor
autodoc MobileViTFeatureExtractor - call - post_process_semantic_segmentation
MobileViTImageProcessor
autodoc MobileViTImageProcessor - preprocess - post_process_semantic_segmentation
MobileViTImageProcessorFast
autodoc MobileViTImageProcessorFast - preprocess - post_process_semantic_segmentation
MobileViTModel
autodoc MobileViTModel - forward
MobileViTForImageClassification
autodoc MobileViTForImageClassification - forward
MobileViTForSemanticSegmentation
autodoc MobileViTForSemanticSegmentation - forward