* Fix white space Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * Revert changes Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * Fix autodoc Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> --------- Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
6.6 KiB
This model was released on 2024-06-16 and added to Hugging Face Transformers on 2025-08-20.
Florence-2
Overview
Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages the FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model.
You can find all the original Florence-2 checkpoints under the Florence-2 collection.
Tip
This model was contributed by ducviet00. Click on the Florence-2 models in the right sidebar for more examples of how to apply Florence-2 to different vision and language tasks.
The example below demonstrates how to perform object detection with [Pipeline
] or the [AutoModel
] class.
import torch
import requests
from PIL import Image
from transformers import pipeline
pipeline = pipeline(
"image-text-to-text",
model="florence-community/Florence-2-base",
device=0,
dtype=torch.bfloat16
)
pipeline(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
text="<OD>"
)
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, Florence2ForConditionalGeneration
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base", dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base")
task_prompt = "<OD>"
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device)
generated_ids = model.generate(
**inputs,
max_new_tokens=1024,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
image_size = image.size
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=image_size)
print(parsed_answer)
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes to quantize the model to 4-bit.
# pip install bitsandbytes
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, Florence2ForConditionalGeneration, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = Florence2ForConditionalGeneration.from_pretrained(
"microsoft/Florence-2-large",
dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
task_prompt = "<OD>"
inputs = processor(text=task_prompt, images=image, return_tensors="pt").to(model.device, torch.bfloat16)
generated_ids = model.generate(
**inputs,
max_new_tokens=1024,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
image_size = image.size
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=image_size)
print(parsed_answer)
Notes
- Florence-2 is a prompt-based model. You need to provide a task prompt to tell the model what to do. Supported tasks are:
<OCR>
<OCR_WITH_REGION>
<CAPTION>
<DETAILED_CAPTION>
<MORE_DETAILED_CAPTION>
<OD>
<DENSE_REGION_CAPTION>
<CAPTION_TO_PHRASE_GROUNDING>
<REFERRING_EXPRESSION_SEGMENTATION>
<REGION_TO_SEGMENTATION>
<OPEN_VOCABULARY_DETECTION>
<REGION_TO_CATEGORY>
<REGION_TO_DESCRIPTION>
<REGION_TO_OCR>
<REGION_PROPOSAL>
- The raw output of the model is a string that needs to be parsed. The [
Florence2Processor
] has a [~Florence2Processor.post_process_generation
] method that can parse the string into a more usable format, like bounding boxes and labels for object detection.
Resources
- Florence-2 technical report
- Jupyter Notebook for inference and visualization of Florence-2-large model
Florence2VisionConfig
autodoc Florence2VisionConfig
Florence2Config
autodoc Florence2Config
Florence2Processor
autodoc Florence2Processor
Florence2Model
autodoc Florence2Model - forward
Florence2ForConditionalGeneration
autodoc Florence2ForConditionalGeneration - forward
Florence2VisionBackbone
autodoc Florence2VisionBackbone - forward