mirror of
				https://github.com/huggingface/transformers.git
				synced 2025-10-31 17:14:56 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			774 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			774 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python
 | |
| # coding=utf-8
 | |
| # Copyright 2021 The HuggingFace Team. All rights reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| """
 | |
| Fine-tuning the library models for sequence to sequence.
 | |
| """
 | |
| # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
 | |
| 
 | |
| import logging
 | |
| import os
 | |
| import sys
 | |
| from dataclasses import dataclass, field
 | |
| from typing import Optional
 | |
| 
 | |
| import datasets
 | |
| import evaluate
 | |
| import nltk  # Here to have a nice missing dependency error message early on
 | |
| import numpy as np
 | |
| from datasets import load_dataset
 | |
| from filelock import FileLock
 | |
| 
 | |
| import transformers
 | |
| from transformers import (
 | |
|     AutoConfig,
 | |
|     AutoModelForSeq2SeqLM,
 | |
|     AutoTokenizer,
 | |
|     DataCollatorForSeq2Seq,
 | |
|     HfArgumentParser,
 | |
|     MBart50Tokenizer,
 | |
|     MBart50TokenizerFast,
 | |
|     MBartTokenizer,
 | |
|     MBartTokenizerFast,
 | |
|     Seq2SeqTrainer,
 | |
|     Seq2SeqTrainingArguments,
 | |
|     set_seed,
 | |
| )
 | |
| from transformers.trainer_utils import get_last_checkpoint
 | |
| from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
 | |
| from transformers.utils.versions import require_version
 | |
| 
 | |
| 
 | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | |
| check_min_version("4.43.0.dev0")
 | |
| 
 | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| try:
 | |
|     nltk.data.find("tokenizers/punkt")
 | |
| except (LookupError, OSError):
 | |
|     if is_offline_mode():
 | |
|         raise LookupError(
 | |
|             "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
 | |
|         )
 | |
|     with FileLock(".lock") as lock:
 | |
|         nltk.download("punkt", quiet=True)
 | |
| 
 | |
| # A list of all multilingual tokenizer which require lang attribute.
 | |
| MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class ModelArguments:
 | |
|     """
 | |
|     Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
 | |
|     """
 | |
| 
 | |
|     model_name_or_path: str = field(
 | |
|         metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
 | |
|     )
 | |
|     config_name: Optional[str] = field(
 | |
|         default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
 | |
|     )
 | |
|     tokenizer_name: Optional[str] = field(
 | |
|         default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
 | |
|     )
 | |
|     cache_dir: Optional[str] = field(
 | |
|         default=None,
 | |
|         metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
 | |
|     )
 | |
|     use_fast_tokenizer: bool = field(
 | |
|         default=True,
 | |
|         metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
 | |
|     )
 | |
|     model_revision: str = field(
 | |
|         default="main",
 | |
|         metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
 | |
|     )
 | |
|     token: str = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
 | |
|                 "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     trust_remote_code: bool = field(
 | |
|         default=False,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "Whether to trust the execution of code from datasets/models defined on the Hub."
 | |
|                 " This option should only be set to `True` for repositories you trust and in which you have read the"
 | |
|                 " code, as it will execute code present on the Hub on your local machine."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     resize_position_embeddings: Optional[bool] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
 | |
|                 "the model's position embeddings."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class DataTrainingArguments:
 | |
|     """
 | |
|     Arguments pertaining to what data we are going to input our model for training and eval.
 | |
|     """
 | |
| 
 | |
|     lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
 | |
| 
 | |
|     dataset_name: Optional[str] = field(
 | |
|         default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
 | |
|     )
 | |
|     dataset_config_name: Optional[str] = field(
 | |
|         default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
 | |
|     )
 | |
|     text_column: Optional[str] = field(
 | |
|         default=None,
 | |
|         metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
 | |
|     )
 | |
|     summary_column: Optional[str] = field(
 | |
|         default=None,
 | |
|         metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
 | |
|     )
 | |
|     train_file: Optional[str] = field(
 | |
|         default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
 | |
|     )
 | |
|     validation_file: Optional[str] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     test_file: Optional[str] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
 | |
|         },
 | |
|     )
 | |
|     overwrite_cache: bool = field(
 | |
|         default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
 | |
|     )
 | |
|     preprocessing_num_workers: Optional[int] = field(
 | |
|         default=None,
 | |
|         metadata={"help": "The number of processes to use for the preprocessing."},
 | |
|     )
 | |
|     max_source_length: Optional[int] = field(
 | |
|         default=1024,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "The maximum total input sequence length after tokenization. Sequences longer "
 | |
|                 "than this will be truncated, sequences shorter will be padded."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     max_target_length: Optional[int] = field(
 | |
|         default=128,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "The maximum total sequence length for target text after tokenization. Sequences longer "
 | |
|                 "than this will be truncated, sequences shorter will be padded."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     val_max_target_length: Optional[int] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "The maximum total sequence length for validation target text after tokenization. Sequences longer "
 | |
|                 "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
 | |
|                 "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
 | |
|                 "during ``evaluate`` and ``predict``."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     pad_to_max_length: bool = field(
 | |
|         default=False,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "Whether to pad all samples to model maximum sentence length. "
 | |
|                 "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
 | |
|                 "efficient on GPU but very bad for TPU."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     max_train_samples: Optional[int] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "For debugging purposes or quicker training, truncate the number of training examples to this "
 | |
|                 "value if set."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     max_eval_samples: Optional[int] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
 | |
|                 "value if set."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     max_predict_samples: Optional[int] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "For debugging purposes or quicker training, truncate the number of prediction examples to this "
 | |
|                 "value if set."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     num_beams: Optional[int] = field(
 | |
|         default=1,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
 | |
|                 "which is used during ``evaluate`` and ``predict``."
 | |
|             )
 | |
|         },
 | |
|     )
 | |
|     ignore_pad_token_for_loss: bool = field(
 | |
|         default=True,
 | |
|         metadata={
 | |
|             "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
 | |
|         },
 | |
|     )
 | |
|     source_prefix: Optional[str] = field(
 | |
|         default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
 | |
|     )
 | |
| 
 | |
|     forced_bos_token: Optional[str] = field(
 | |
|         default=None,
 | |
|         metadata={
 | |
|             "help": (
 | |
|                 "The token to force as the first generated token after the decoder_start_token_id. "
 | |
|                 "Useful for multilingual models like mBART where the first generated token"
 | |
|                 "needs to be the target language token (Usually it is the target language token)"
 | |
|             )
 | |
|         },
 | |
|     )
 | |
| 
 | |
|     def __post_init__(self):
 | |
|         if (
 | |
|             self.dataset_name is None
 | |
|             and self.train_file is None
 | |
|             and self.validation_file is None
 | |
|             and self.test_file is None
 | |
|         ):
 | |
|             raise ValueError("Need either a dataset name or a training, validation, or test file.")
 | |
|         else:
 | |
|             if self.train_file is not None:
 | |
|                 extension = self.train_file.split(".")[-1]
 | |
|                 assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
 | |
|             if self.validation_file is not None:
 | |
|                 extension = self.validation_file.split(".")[-1]
 | |
|                 assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
 | |
|             if self.test_file is not None:
 | |
|                 extension = self.test_file.split(".")[-1]
 | |
|                 assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
 | |
|         if self.val_max_target_length is None:
 | |
|             self.val_max_target_length = self.max_target_length
 | |
| 
 | |
| 
 | |
| summarization_name_mapping = {
 | |
|     "amazon_reviews_multi": ("review_body", "review_title"),
 | |
|     "big_patent": ("description", "abstract"),
 | |
|     "cnn_dailymail": ("article", "highlights"),
 | |
|     "orange_sum": ("text", "summary"),
 | |
|     "pn_summary": ("article", "summary"),
 | |
|     "psc": ("extract_text", "summary_text"),
 | |
|     "samsum": ("dialogue", "summary"),
 | |
|     "thaisum": ("body", "summary"),
 | |
|     "xglue": ("news_body", "news_title"),
 | |
|     "xsum": ("document", "summary"),
 | |
|     "wiki_summary": ("article", "highlights"),
 | |
|     "multi_news": ("document", "summary"),
 | |
| }
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     # See all possible arguments in src/transformers/training_args.py
 | |
|     # or by passing the --help flag to this script.
 | |
|     # We now keep distinct sets of args, for a cleaner separation of concerns.
 | |
| 
 | |
|     parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
 | |
|     if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
 | |
|         # If we pass only one argument to the script and it's the path to a json file,
 | |
|         # let's parse it to get our arguments.
 | |
|         model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
 | |
|     else:
 | |
|         model_args, data_args, training_args = parser.parse_args_into_dataclasses()
 | |
| 
 | |
|     # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
 | |
|     # information sent is the one passed as arguments along with your Python/PyTorch versions.
 | |
|     send_example_telemetry("run_summarization", model_args, data_args)
 | |
| 
 | |
|     # Setup logging
 | |
|     logging.basicConfig(
 | |
|         format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
 | |
|         datefmt="%m/%d/%Y %H:%M:%S",
 | |
|         handlers=[logging.StreamHandler(sys.stdout)],
 | |
|     )
 | |
| 
 | |
|     if training_args.should_log:
 | |
|         # The default of training_args.log_level is passive, so we set log level at info here to have that default.
 | |
|         transformers.utils.logging.set_verbosity_info()
 | |
| 
 | |
|     log_level = training_args.get_process_log_level()
 | |
|     logger.setLevel(log_level)
 | |
|     datasets.utils.logging.set_verbosity(log_level)
 | |
|     transformers.utils.logging.set_verbosity(log_level)
 | |
|     transformers.utils.logging.enable_default_handler()
 | |
|     transformers.utils.logging.enable_explicit_format()
 | |
| 
 | |
|     # Log on each process the small summary:
 | |
|     logger.warning(
 | |
|         f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
 | |
|         + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
 | |
|     )
 | |
|     logger.info(f"Training/evaluation parameters {training_args}")
 | |
| 
 | |
|     if data_args.source_prefix is None and model_args.model_name_or_path in [
 | |
|         "google-t5/t5-small",
 | |
|         "google-t5/t5-base",
 | |
|         "google-t5/t5-large",
 | |
|         "google-t5/t5-3b",
 | |
|         "google-t5/t5-11b",
 | |
|     ]:
 | |
|         logger.warning(
 | |
|             "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
 | |
|             "`--source_prefix 'summarize: ' `"
 | |
|         )
 | |
| 
 | |
|     # Detecting last checkpoint.
 | |
|     last_checkpoint = None
 | |
|     if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
 | |
|         last_checkpoint = get_last_checkpoint(training_args.output_dir)
 | |
|         if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
 | |
|             raise ValueError(
 | |
|                 f"Output directory ({training_args.output_dir}) already exists and is not empty. "
 | |
|                 "Use --overwrite_output_dir to overcome."
 | |
|             )
 | |
|         elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
 | |
|             logger.info(
 | |
|                 f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
 | |
|                 "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
 | |
|             )
 | |
| 
 | |
|     # Set seed before initializing model.
 | |
|     set_seed(training_args.seed)
 | |
| 
 | |
|     # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
 | |
|     # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
 | |
|     # (the dataset will be downloaded automatically from the datasets Hub).
 | |
|     #
 | |
|     # For CSV/JSON files this script will use the first column for the full texts and the second column for the
 | |
|     # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
 | |
|     #
 | |
|     # In distributed training, the load_dataset function guarantee that only one local process can concurrently
 | |
|     # download the dataset.
 | |
|     if data_args.dataset_name is not None:
 | |
|         # Downloading and loading a dataset from the hub.
 | |
|         raw_datasets = load_dataset(
 | |
|             data_args.dataset_name,
 | |
|             data_args.dataset_config_name,
 | |
|             cache_dir=model_args.cache_dir,
 | |
|             token=model_args.token,
 | |
|             trust_remote_code=model_args.trust_remote_code,
 | |
|         )
 | |
|     else:
 | |
|         data_files = {}
 | |
|         if data_args.train_file is not None:
 | |
|             data_files["train"] = data_args.train_file
 | |
|             extension = data_args.train_file.split(".")[-1]
 | |
|         if data_args.validation_file is not None:
 | |
|             data_files["validation"] = data_args.validation_file
 | |
|             extension = data_args.validation_file.split(".")[-1]
 | |
|         if data_args.test_file is not None:
 | |
|             data_files["test"] = data_args.test_file
 | |
|             extension = data_args.test_file.split(".")[-1]
 | |
|         raw_datasets = load_dataset(
 | |
|             extension,
 | |
|             data_files=data_files,
 | |
|             cache_dir=model_args.cache_dir,
 | |
|             token=model_args.token,
 | |
|         )
 | |
|     # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
 | |
|     # https://huggingface.co/docs/datasets/loading_datasets.
 | |
| 
 | |
|     # Load pretrained model and tokenizer
 | |
|     #
 | |
|     # Distributed training:
 | |
|     # The .from_pretrained methods guarantee that only one local process can concurrently
 | |
|     # download model & vocab.
 | |
|     config = AutoConfig.from_pretrained(
 | |
|         model_args.config_name if model_args.config_name else model_args.model_name_or_path,
 | |
|         cache_dir=model_args.cache_dir,
 | |
|         revision=model_args.model_revision,
 | |
|         token=model_args.token,
 | |
|         trust_remote_code=model_args.trust_remote_code,
 | |
|     )
 | |
|     tokenizer = AutoTokenizer.from_pretrained(
 | |
|         model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
 | |
|         cache_dir=model_args.cache_dir,
 | |
|         use_fast=model_args.use_fast_tokenizer,
 | |
|         revision=model_args.model_revision,
 | |
|         token=model_args.token,
 | |
|         trust_remote_code=model_args.trust_remote_code,
 | |
|     )
 | |
|     model = AutoModelForSeq2SeqLM.from_pretrained(
 | |
|         model_args.model_name_or_path,
 | |
|         from_tf=bool(".ckpt" in model_args.model_name_or_path),
 | |
|         config=config,
 | |
|         cache_dir=model_args.cache_dir,
 | |
|         revision=model_args.model_revision,
 | |
|         token=model_args.token,
 | |
|         trust_remote_code=model_args.trust_remote_code,
 | |
|     )
 | |
| 
 | |
|     # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
 | |
|     # on a small vocab and want a smaller embedding size, remove this test.
 | |
|     embedding_size = model.get_input_embeddings().weight.shape[0]
 | |
|     if len(tokenizer) > embedding_size:
 | |
|         model.resize_token_embeddings(len(tokenizer))
 | |
| 
 | |
|     if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
 | |
|         if isinstance(tokenizer, MBartTokenizer):
 | |
|             model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
 | |
|         else:
 | |
|             model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)
 | |
| 
 | |
|     if model.config.decoder_start_token_id is None:
 | |
|         raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
 | |
| 
 | |
|     if (
 | |
|         hasattr(model.config, "max_position_embeddings")
 | |
|         and model.config.max_position_embeddings < data_args.max_source_length
 | |
|     ):
 | |
|         if model_args.resize_position_embeddings is None:
 | |
|             logger.warning(
 | |
|                 "Increasing the model's number of position embedding vectors from"
 | |
|                 f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
 | |
|             )
 | |
|             model.resize_position_embeddings(data_args.max_source_length)
 | |
|         elif model_args.resize_position_embeddings:
 | |
|             model.resize_position_embeddings(data_args.max_source_length)
 | |
|         else:
 | |
|             raise ValueError(
 | |
|                 f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
 | |
|                 f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
 | |
|                 f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
 | |
|                 " model's position encodings by passing `--resize_position_embeddings`."
 | |
|             )
 | |
| 
 | |
|     prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
 | |
| 
 | |
|     # Preprocessing the datasets.
 | |
|     # We need to tokenize inputs and targets.
 | |
|     if training_args.do_train:
 | |
|         if "train" not in raw_datasets:
 | |
|             raise ValueError("--do_train requires a train dataset")
 | |
|         column_names = raw_datasets["train"].column_names
 | |
|     elif training_args.do_eval:
 | |
|         if "validation" not in raw_datasets:
 | |
|             raise ValueError("--do_eval requires a validation dataset")
 | |
|         column_names = raw_datasets["validation"].column_names
 | |
|     elif training_args.do_predict:
 | |
|         if "test" not in raw_datasets:
 | |
|             raise ValueError("--do_predict requires a test dataset")
 | |
|         column_names = raw_datasets["test"].column_names
 | |
|     else:
 | |
|         logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
 | |
|         return
 | |
| 
 | |
|     if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
 | |
|         assert (
 | |
|             data_args.lang is not None
 | |
|         ), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"
 | |
| 
 | |
|         tokenizer.src_lang = data_args.lang
 | |
|         tokenizer.tgt_lang = data_args.lang
 | |
| 
 | |
|         # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
 | |
|         # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
 | |
|         forced_bos_token_id = (
 | |
|             tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
 | |
|         )
 | |
|         model.config.forced_bos_token_id = forced_bos_token_id
 | |
| 
 | |
|     # Get the column names for input/target.
 | |
|     dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
 | |
|     if data_args.text_column is None:
 | |
|         text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
 | |
|     else:
 | |
|         text_column = data_args.text_column
 | |
|         if text_column not in column_names:
 | |
|             raise ValueError(
 | |
|                 f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
 | |
|             )
 | |
|     if data_args.summary_column is None:
 | |
|         summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
 | |
|     else:
 | |
|         summary_column = data_args.summary_column
 | |
|         if summary_column not in column_names:
 | |
|             raise ValueError(
 | |
|                 f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
 | |
|             )
 | |
| 
 | |
|     # Temporarily set max_target_length for training.
 | |
|     max_target_length = data_args.max_target_length
 | |
|     padding = "max_length" if data_args.pad_to_max_length else False
 | |
| 
 | |
|     if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
 | |
|         logger.warning(
 | |
|             "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
 | |
|             f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
 | |
|         )
 | |
| 
 | |
|     def preprocess_function(examples):
 | |
|         # remove pairs where at least one record is None
 | |
| 
 | |
|         inputs, targets = [], []
 | |
|         for i in range(len(examples[text_column])):
 | |
|             if examples[text_column][i] and examples[summary_column][i]:
 | |
|                 inputs.append(examples[text_column][i])
 | |
|                 targets.append(examples[summary_column][i])
 | |
| 
 | |
|         inputs = [prefix + inp for inp in inputs]
 | |
|         model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
 | |
| 
 | |
|         # Tokenize targets with the `text_target` keyword argument
 | |
|         labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
 | |
| 
 | |
|         # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
 | |
|         # padding in the loss.
 | |
|         if padding == "max_length" and data_args.ignore_pad_token_for_loss:
 | |
|             labels["input_ids"] = [
 | |
|                 [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
 | |
|             ]
 | |
| 
 | |
|         model_inputs["labels"] = labels["input_ids"]
 | |
|         return model_inputs
 | |
| 
 | |
|     if training_args.do_train:
 | |
|         train_dataset = raw_datasets["train"]
 | |
|         if data_args.max_train_samples is not None:
 | |
|             max_train_samples = min(len(train_dataset), data_args.max_train_samples)
 | |
|             train_dataset = train_dataset.select(range(max_train_samples))
 | |
|         with training_args.main_process_first(desc="train dataset map pre-processing"):
 | |
|             train_dataset = train_dataset.map(
 | |
|                 preprocess_function,
 | |
|                 batched=True,
 | |
|                 num_proc=data_args.preprocessing_num_workers,
 | |
|                 remove_columns=column_names,
 | |
|                 load_from_cache_file=not data_args.overwrite_cache,
 | |
|                 desc="Running tokenizer on train dataset",
 | |
|             )
 | |
| 
 | |
|     if training_args.do_eval:
 | |
|         max_target_length = data_args.val_max_target_length
 | |
|         eval_dataset = raw_datasets["validation"]
 | |
|         if data_args.max_eval_samples is not None:
 | |
|             max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
 | |
|             eval_dataset = eval_dataset.select(range(max_eval_samples))
 | |
|         with training_args.main_process_first(desc="validation dataset map pre-processing"):
 | |
|             eval_dataset = eval_dataset.map(
 | |
|                 preprocess_function,
 | |
|                 batched=True,
 | |
|                 num_proc=data_args.preprocessing_num_workers,
 | |
|                 remove_columns=column_names,
 | |
|                 load_from_cache_file=not data_args.overwrite_cache,
 | |
|                 desc="Running tokenizer on validation dataset",
 | |
|             )
 | |
| 
 | |
|     if training_args.do_predict:
 | |
|         max_target_length = data_args.val_max_target_length
 | |
|         predict_dataset = raw_datasets["test"]
 | |
|         if data_args.max_predict_samples is not None:
 | |
|             max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
 | |
|             predict_dataset = predict_dataset.select(range(max_predict_samples))
 | |
|         with training_args.main_process_first(desc="prediction dataset map pre-processing"):
 | |
|             predict_dataset = predict_dataset.map(
 | |
|                 preprocess_function,
 | |
|                 batched=True,
 | |
|                 num_proc=data_args.preprocessing_num_workers,
 | |
|                 remove_columns=column_names,
 | |
|                 load_from_cache_file=not data_args.overwrite_cache,
 | |
|                 desc="Running tokenizer on prediction dataset",
 | |
|             )
 | |
| 
 | |
|     # Data collator
 | |
|     label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
 | |
|     data_collator = DataCollatorForSeq2Seq(
 | |
|         tokenizer,
 | |
|         model=model,
 | |
|         label_pad_token_id=label_pad_token_id,
 | |
|         pad_to_multiple_of=8 if training_args.fp16 else None,
 | |
|     )
 | |
| 
 | |
|     # Metric
 | |
|     metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)
 | |
| 
 | |
|     def postprocess_text(preds, labels):
 | |
|         preds = [pred.strip() for pred in preds]
 | |
|         labels = [label.strip() for label in labels]
 | |
| 
 | |
|         # rougeLSum expects newline after each sentence
 | |
|         preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
 | |
|         labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
 | |
| 
 | |
|         return preds, labels
 | |
| 
 | |
|     def compute_metrics(eval_preds):
 | |
|         preds, labels = eval_preds
 | |
|         if isinstance(preds, tuple):
 | |
|             preds = preds[0]
 | |
|         # Replace -100s used for padding as we can't decode them
 | |
|         preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
 | |
|         decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
 | |
|         labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
 | |
|         decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
 | |
| 
 | |
|         # Some simple post-processing
 | |
|         decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
 | |
| 
 | |
|         result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
 | |
|         result = {k: round(v * 100, 4) for k, v in result.items()}
 | |
|         prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
 | |
|         result["gen_len"] = np.mean(prediction_lens)
 | |
|         return result
 | |
| 
 | |
|     # Override the decoding parameters of Seq2SeqTrainer
 | |
|     training_args.generation_max_length = (
 | |
|         training_args.generation_max_length
 | |
|         if training_args.generation_max_length is not None
 | |
|         else data_args.val_max_target_length
 | |
|     )
 | |
|     training_args.generation_num_beams = (
 | |
|         data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
 | |
|     )
 | |
| 
 | |
|     # Initialize our Trainer
 | |
|     trainer = Seq2SeqTrainer(
 | |
|         model=model,
 | |
|         args=training_args,
 | |
|         train_dataset=train_dataset if training_args.do_train else None,
 | |
|         eval_dataset=eval_dataset if training_args.do_eval else None,
 | |
|         tokenizer=tokenizer,
 | |
|         data_collator=data_collator,
 | |
|         compute_metrics=compute_metrics if training_args.predict_with_generate else None,
 | |
|     )
 | |
| 
 | |
|     # Training
 | |
|     if training_args.do_train:
 | |
|         checkpoint = None
 | |
|         if training_args.resume_from_checkpoint is not None:
 | |
|             checkpoint = training_args.resume_from_checkpoint
 | |
|         elif last_checkpoint is not None:
 | |
|             checkpoint = last_checkpoint
 | |
|         train_result = trainer.train(resume_from_checkpoint=checkpoint)
 | |
|         trainer.save_model()  # Saves the tokenizer too for easy upload
 | |
| 
 | |
|         metrics = train_result.metrics
 | |
|         max_train_samples = (
 | |
|             data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
 | |
|         )
 | |
|         metrics["train_samples"] = min(max_train_samples, len(train_dataset))
 | |
| 
 | |
|         trainer.log_metrics("train", metrics)
 | |
|         trainer.save_metrics("train", metrics)
 | |
|         trainer.save_state()
 | |
| 
 | |
|     # Evaluation
 | |
|     results = {}
 | |
|     if training_args.do_eval:
 | |
|         logger.info("*** Evaluate ***")
 | |
|         if isinstance(eval_dataset, dict):
 | |
|             metrics = {}
 | |
|             for eval_ds_name, eval_ds in eval_dataset.items():
 | |
|                 dataset_metrics = trainer.evaluate(eval_dataset=eval_ds, metric_key_prefix=f"eval_{eval_ds_name}")
 | |
|                 metrics.update(dataset_metrics)
 | |
|         else:
 | |
|             metrics = trainer.evaluate(metric_key_prefix="eval")
 | |
|         max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
 | |
|         metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
 | |
| 
 | |
|         trainer.log_metrics("eval", metrics)
 | |
|         trainer.save_metrics("eval", metrics)
 | |
| 
 | |
|     if training_args.do_predict:
 | |
|         logger.info("*** Predict ***")
 | |
| 
 | |
|         predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict")
 | |
|         metrics = predict_results.metrics
 | |
|         max_predict_samples = (
 | |
|             data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
 | |
|         )
 | |
|         metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
 | |
| 
 | |
|         trainer.log_metrics("predict", metrics)
 | |
|         trainer.save_metrics("predict", metrics)
 | |
| 
 | |
|         if trainer.is_world_process_zero():
 | |
|             if training_args.predict_with_generate:
 | |
|                 predictions = predict_results.predictions
 | |
|                 predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
 | |
|                 predictions = tokenizer.batch_decode(
 | |
|                     predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
 | |
|                 )
 | |
|                 predictions = [pred.strip() for pred in predictions]
 | |
|                 output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
 | |
|                 with open(output_prediction_file, "w") as writer:
 | |
|                     writer.write("\n".join(predictions))
 | |
| 
 | |
|     kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
 | |
|     if data_args.dataset_name is not None:
 | |
|         kwargs["dataset_tags"] = data_args.dataset_name
 | |
|         if data_args.dataset_config_name is not None:
 | |
|             kwargs["dataset_args"] = data_args.dataset_config_name
 | |
|             kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
 | |
|         else:
 | |
|             kwargs["dataset"] = data_args.dataset_name
 | |
| 
 | |
|     if data_args.lang is not None:
 | |
|         kwargs["language"] = data_args.lang
 | |
| 
 | |
|     if training_args.push_to_hub:
 | |
|         trainer.push_to_hub(**kwargs)
 | |
|     else:
 | |
|         trainer.create_model_card(**kwargs)
 | |
| 
 | |
|     return results
 | |
| 
 | |
| 
 | |
| def _mp_fn(index):
 | |
|     # For xla_spawn (TPUs)
 | |
|     main()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 |