Files
transformers/tests/test_modeling_common.py
2025-10-17 16:25:40 +02:00

3942 lines
191 KiB
Python
Executable File

# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import copy
import inspect
import math
import os
import os.path
import random
import re
import tempfile
import warnings
from collections import defaultdict
from contextlib import contextmanager
import numpy as np
import pytest
from packaging import version
from parameterized import parameterized
from pytest import mark
from transformers import (
AutoModel,
AutoModelForSequenceClassification,
BitsAndBytesConfig,
PreTrainedConfig,
PreTrainedModel,
is_torch_available,
logging,
set_seed,
)
from transformers.integrations import HfDeepSpeedConfig
from transformers.integrations.deepspeed import (
is_deepspeed_available,
is_deepspeed_zero3_enabled,
unset_hf_deepspeed_config,
)
from transformers.modeling_utils import _get_tied_weight_keys
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import (
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
MODEL_FOR_BACKBONE_MAPPING_NAMES,
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_CTC_MAPPING_NAMES,
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
MODEL_FOR_MASKED_LM_MAPPING_NAMES,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
MODEL_FOR_PRETRAINING_MAPPING_NAMES,
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
MODEL_MAPPING_NAMES,
)
from transformers.testing_utils import (
CaptureLogger,
get_device_properties,
hub_retry,
is_flaky,
require_accelerate,
require_bitsandbytes,
require_deepspeed,
require_flash_attn,
require_flash_attn_3,
require_kernels,
require_non_hpu,
require_torch,
require_torch_accelerator,
require_torch_gpu,
require_torch_greater_or_equal,
require_torch_mps,
require_torch_multi_accelerator,
require_torch_multi_gpu,
run_first,
run_test_using_subprocess,
set_config_for_less_flaky_test,
set_model_for_less_flaky_test,
slow,
torch_device,
)
from transformers.utils import (
CONFIG_NAME,
GENERATION_CONFIG_NAME,
SAFE_WEIGHTS_NAME,
is_accelerate_available,
is_torch_bf16_available_on_device,
is_torch_fp16_available_on_device,
)
from .generation.test_utils import GenerationTesterMixin
if is_accelerate_available():
from accelerate.utils import compute_module_sizes
if is_torch_available():
import torch
from safetensors.torch import load_file as safe_load_file
from safetensors.torch import save_file as safe_save_file
from torch import nn
from transformers import MODEL_MAPPING
from transformers.modeling_utils import load_state_dict
from transformers.pytorch_utils import id_tensor_storage
if is_deepspeed_available():
import deepspeed
# used in other test files e.g. when overwriting the test
TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION = [
(
# test name for the test runner
f"{dtype}_pad_{padding_side}{'' if use_attention_mask else '_no_attn_mask'}"
f"{'_sdpa_kernels' if enable_kernels else ''}",
# parameterization
*(dtype, padding_side, use_attention_mask, False, enable_kernels),
)
for dtype in ("fp16", "fp32", "bf16")
for padding_side in ("left", "right")
for use_attention_mask in (True, False)
for enable_kernels in (True, False)
# Extra test case: `output_attentions=True` has special attention mask handling and sdpa reverts to eager
] + [("fp32_pad_left_output_attentions", "fp32", "left", True, True, False)]
def _test_eager_matches_sdpa_inference(
self,
name,
dtype,
padding_side,
use_attention_mask,
output_attentions,
enable_kernels,
atols=None,
rtols=None,
):
"""
This test is written as a regular function to be able to overload it easily with different tolerances.
Otherwise, `paramterezie.expand` prevents it as it removes the original function from the namespace.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self.all_model_classes[0]._supports_sdpa:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
# convert shorthand name to torch.dtype
if dtype == "fp16":
dtype = torch.float16
elif dtype == "bf16":
dtype = torch.bfloat16
elif dtype == "fp32":
dtype = torch.float32
if not is_torch_fp16_available_on_device(torch_device) and dtype == torch.float16:
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
if not is_torch_bf16_available_on_device(torch_device) and dtype == torch.bfloat16:
self.skipTest(
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
)
# Dictionary of tolerances for eager <> sdpa tests. Key = (device, sdpa_kernels_enabled, dtype)
if atols is None:
atols = {
("cpu", False, torch.float32): 1e-6,
("cpu", False, torch.float16): 5e-3,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-6,
("cpu", True, torch.float16): 5e-3,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-6,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-6,
("cuda", True, torch.bfloat16): 1e-2,
("cuda", True, torch.float16): 5e-3,
}
if rtols is None:
rtols = {
("cpu", False, torch.float32): 1e-4,
("cpu", False, torch.float16): 5e-3,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-4,
("cpu", True, torch.float16): 5e-3,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-4,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-4,
("cuda", True, torch.bfloat16): 3e-2, # (different from others)
("cuda", True, torch.float16): 5e-3,
}
def _can_output_attn(model):
parameters = inspect.signature(model.forward).parameters
if "output_attentions" in parameters:
return True
kwargs_param = parameters.get("kwargs")
if kwargs_param is not None:
try:
annotation = kwargs_param.annotation.__args__
return "output_attentions" in annotation[0].__annotations__
except AttributeError:
return False
return False
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
set_config_for_less_flaky_test(config)
# If it's a model with sliding window attention, let's test it with sliding window
if hasattr(config, "sliding_window"):
config.sliding_window = 2
model = model_class(config)
# TODO: standardize the interfaces for musicgen models, see other todo in this test
if model.__class__.__name__ == "MusicgenMelodyForConditionalGeneration":
is_encoder_decoder = True
else:
is_encoder_decoder = model.config.is_encoder_decoder
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_from_pretrained_kwargs = {
"pretrained_model_name_or_path": tmpdirname,
"dtype": dtype,
}
if hasattr(config, "use_mask_token") or "use_mask_token" in inspect.signature(model.__init__).parameters:
model_from_pretrained_kwargs["use_mask_token"] = True
# TODO: remove this try/except, models should have a shared API
try:
model_sdpa = model_class.from_pretrained(**model_from_pretrained_kwargs, attn_implementation="sdpa")
except ValueError:
model_sdpa = model_class.from_pretrained(**model_from_pretrained_kwargs)
model_sdpa = model_sdpa.eval().to(torch_device)
model_eager = model_class.from_pretrained(**model_from_pretrained_kwargs, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
set_model_for_less_flaky_test(model_eager)
set_model_for_less_flaky_test(model_sdpa)
can_output_attn = _can_output_attn(model_sdpa)
if not (self.has_attentions and can_output_attn) and output_attentions:
self.skipTest(reason="Model does not support output_attentions")
# TODO: if we can also check with `batch_size=1` without being flaky?
for batch_size in [7]:
# musicgen decoder models; TODO: find better abstraction
if (
model.__class__.__name__.startswith("Musicgen")
and hasattr(self.model_tester, "num_codebooks")
and not hasattr(model_eager, "text_encoder")
):
input_data_batch_size = batch_size * self.model_tester.num_codebooks
else:
input_data_batch_size = batch_size
processed_inputs = {}
processed_inputs[model.main_input_name] = inputs_dict[model.main_input_name]
for key in getattr(self, "additional_model_inputs", []):
# Some models don't have all `additional_model_inputs`, especially when we
# craft cases to test model in different settings
if key in inputs_dict:
processed_inputs[key] = inputs_dict[key]
for key, value in processed_inputs.items():
if torch.is_floating_point(value):
value = value.to(dtype)
# extend value to have at least `input_data_batch_size` elements
if value.shape[0] < input_data_batch_size:
size = (input_data_batch_size - value.shape[0], *value.shape[1:])
if torch.is_floating_point(value):
extension = torch.rand(size=size, dtype=value.dtype, device=torch_device)
else:
extension = torch.randint(high=5, size=size, dtype=value.dtype, device=torch_device)
value = torch.cat((value, extension), dim=0).to(torch_device)
processed_inputs[key] = value[:input_data_batch_size]
if not use_attention_mask:
dummy_attention_mask = None
else:
dummy_attention_mask = inputs_dict.get("attention_mask", None)
if dummy_attention_mask is None:
if is_encoder_decoder:
seqlen = inputs_dict.get("decoder_input_ids", processed_inputs[model.main_input_name]).shape[
-1
]
else:
seqlen = processed_inputs[model.main_input_name].shape[-1]
dummy_attention_mask = torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
# extend dummy_attention_mask to have at least `batch_size` elements
if dummy_attention_mask.shape[0] < batch_size:
size = (batch_size - dummy_attention_mask.shape[0], *dummy_attention_mask.shape[1:])
extension = torch.ones(size=size, dtype=dummy_attention_mask.dtype, device=torch_device)
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
dummy_attention_mask = dummy_attention_mask[:batch_size].to(torch_device)
dummy_attention_mask[:] = 1
if padding_side == "left":
dummy_attention_mask[-1, :2] = 0
dummy_attention_mask[-1, 2:] = 1
elif padding_side == "right":
dummy_attention_mask[-1, -2:] = 0
dummy_attention_mask[-1, :-2] = 1
if is_encoder_decoder:
# musicgen encoder-decoder models; TODO: find better abstraction
if model.__class__.__name__.startswith("Musicgen") and hasattr(self.model_tester, "num_codebooks"):
input_data_batch_size = batch_size * self.model_tester.num_codebooks
else:
input_data_batch_size = batch_size
decoder_input_ids = inputs_dict.get("decoder_input_ids", processed_inputs[model.main_input_name])
decoder_input_ids = decoder_input_ids[:input_data_batch_size]
if decoder_input_ids.shape[0] != input_data_batch_size:
extension = torch.ones(
input_data_batch_size - decoder_input_ids.shape[0],
*decoder_input_ids.shape[1:],
dtype=decoder_input_ids.dtype,
device=torch_device,
)
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
decoder_input_ids = decoder_input_ids.to(torch_device)
# TODO: never an `attention_mask` arg here?
processed_inputs.update(
{
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": dummy_attention_mask,
"output_hidden_states": True,
}
)
else:
processed_inputs.update(
{
"output_hidden_states": True,
}
)
# Otherwise fails for e.g. WhisperEncoderModel
if "attention_mask" in inspect.signature(model_eager.forward).parameters:
processed_inputs["attention_mask"] = dummy_attention_mask
if self.has_attentions and _can_output_attn(model_sdpa):
processed_inputs["output_attentions"] = output_attentions
if "bool_masked_pos" in inspect.signature(model_eager.forward).parameters:
dummy_mask = torch.ones((self.model_tester.num_masks,))
# In case of additional token (like class) we define a custom `mask_length`
if hasattr(self.model_tester, "mask_length"):
mask_length = self.model_tester.mask_length - dummy_mask.size(0)
else:
mask_length = self.model_tester.seq_length - dummy_mask.size(0)
dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)
if "noise" in inspect.signature(model_eager.forward).parameters:
np.random.seed(2)
num_patches = int((self.model_tester.image_size // self.model_tester.patch_size) ** 2)
noise = np.random.uniform(size=(batch_size, num_patches))
processed_inputs["noise"] = torch.from_numpy(noise)
# TODO: test gradients as well (& for FA2 as well!)
with torch.no_grad():
with sdpa_kernel(
enable_flash=enable_kernels,
enable_math=True,
enable_mem_efficient=enable_kernels,
):
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
prepared_inputs = {
k: v.to(torch_device) if isinstance(v, torch.Tensor) else v for k, v in prepared_inputs.items()
}
outputs_eager = model_eager(**prepared_inputs)
outputs_sdpa = model_sdpa(**prepared_inputs)
if "logits_per_text" in outputs_eager:
key = "logits_per_text"
elif "vision_hidden_states" in outputs_eager:
key = "vision_hidden_states"
elif "audio_values" in outputs_eager:
key = "audio_values"
elif "decoder_hidden_states" in outputs_eager:
key = "decoder_hidden_states"
elif "logits" in outputs_eager and "Classification" in model_class.__name__:
key = "logits"
elif "language_model_outputs" in outputs_eager and "blip" in model_class.__name__.lower():
outputs_eager = outputs_eager["language_model_outputs"]
outputs_sdpa = outputs_sdpa["language_model_outputs"]
key = "hidden_states" if "hidden_states" in outputs_eager else "decoder_hidden_states"
else:
key = "hidden_states"
# TODO: rename logits -> hidden_states
logits_eager = outputs_eager[key]
logits_sdpa = outputs_sdpa[key]
if key in ["vision_hidden_states", "decoder_hidden_states", "hidden_states"]:
logits_eager = logits_eager[-1]
logits_sdpa = logits_sdpa[-1]
if key == "logits_per_text":
nan_mask = torch.isnan(logits_eager)
logits_eager[nan_mask] = 0
logits_sdpa[nan_mask] = 0
if torch_device in ["cpu", "cuda"]:
atol = atols[torch_device, enable_kernels, dtype]
rtol = rtols[torch_device, enable_kernels, dtype]
elif torch_device == "hpu":
atol = atols["cuda", enable_kernels, dtype]
rtol = rtols["cuda", enable_kernels, dtype]
elif torch_device == "xpu":
# As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
# which is implemented on PyTorch level using aten operators and is
# device agnostic with respect to implementation of each aten operator.
atol = atols["cuda", False, dtype]
rtol = rtols["cuda", False, dtype]
else:
atol = 1e-7
rtol = 1e-4
# Masked tokens output slightly deviates - we don't mind that.
if use_attention_mask:
_logits_sdpa = torch.zeros_like(input=logits_sdpa)
_logits_eager = torch.zeros_like(input=logits_eager)
_logits_sdpa[:-1] = logits_sdpa[:-1]
_logits_eager[:-1] = logits_eager[:-1]
if padding_side == "left":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, 2:]
_logits_eager[-1:, 2:] = logits_eager[-1:, 2:]
elif padding_side == "right":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, :-2]
_logits_eager[-1:, 2:] = logits_eager[-1:, :-2]
logits_sdpa = _logits_sdpa
logits_eager = _logits_eager
# Avoid test flakiness with bf16!
# bf16 is not good at precision when the magnitude is larger. We have some models like `SiglipVision` with
# this test passing all the time for fp32/fp16 but flaky with bf16. Furthermore, `llama` and `clip` have
# this test passing all the time for bf16: it turns out their outputs are of smaller size (0.1 and 1.0)
# while `siglip` has outputs with maximal values around 3.0/4.0.
outputs_magnitude = float(
(torch.max(logits_sdpa.abs().amax(), logits_eager.abs().amax())).detach().to("cpu")
)
# The choice of `3e-2` in `outputs_magnitude * 1e-2` might not work if a model has even more larger outputs.
# (we can try to analyze the `rtol` more closely element-wise in the future and adjust the `rtol` instead of `atol`).
computed_atol = outputs_magnitude * 3e-2
if dtype == torch.bfloat16:
atol = max(atol, computed_atol)
results = [
torch.allclose(_logits_sdpa, _logits_eager, atol=atol, rtol=rtol)
for (_logits_sdpa, _logits_eager) in zip(logits_sdpa, logits_eager)
]
# If 80% batch elements have matched results, it's fine
if np.mean(results) < 0.8:
mean_relative_diff = ((logits_sdpa - logits_eager).abs() / (logits_eager.abs() + 1e-12)).mean()
raise ValueError(
f"mean relative difference for {key}: {mean_relative_diff:.3e}, torch atol = {atol}, torch rtol = "
f"{rtol}"
)
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__:
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(configs_no_init, key, 1e-10)
if isinstance(getattr(configs_no_init, key, None), PreTrainedConfig):
no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
setattr(configs_no_init, key, no_init_subconfig)
return configs_no_init
def _mock_init_weights(self, module):
for name, param in module.named_parameters(recurse=False):
# Use the first letter of the name to get a value and go from a <> -13 to z <> 12
value = ord(name[0].lower()) - 110
param.data.fill_(value)
def _mock_all_init_weights(self):
import transformers.modeling_utils
if transformers.modeling_utils._init_weights:
for module in self.modules():
module._is_hf_initialized = False
# Initialize weights
self.apply(self._initialize_weights)
# Tie weights should be skipped when not initializing all weights
# since from_pretrained(...) calls tie weights anyways
self.tie_weights()
@contextmanager
def _deepspeed_zero3(ds_config):
dschf = HfDeepSpeedConfig(ds_config)
try:
yield dschf
finally:
unset_hf_deepspeed_config()
def sdpa_kernel(enable_flash, enable_math, enable_mem_efficient):
if version.parse(torch.__version__).release < version.parse("2.3").release:
return torch.backends.cuda.sdp_kernel(
enable_flash=enable_flash, enable_math=enable_math, enable_mem_efficient=enable_mem_efficient
)
backends = []
if enable_flash:
backends += [torch.nn.attention.SDPBackend.FLASH_ATTENTION]
if enable_math:
backends += [torch.nn.attention.SDPBackend.MATH]
if enable_mem_efficient:
backends += [torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION]
return torch.nn.attention.sdpa_kernel(backends)
@require_torch
class ModelTesterMixin:
model_tester = None
all_model_classes = ()
test_resize_embeddings = True
test_resize_position_embeddings = False
test_mismatched_shapes = True
test_missing_keys = True
test_torch_exportable = False
# Used in `check_training_gradient_checkpointing` to NOT check all params having gradient (e.g. for some MOE models)
test_all_params_have_gradient = True
is_encoder_decoder = False
has_attentions = True
_is_composite = False
model_split_percents = [0.5, 0.7, 0.9]
# Note: for all mixins that utilize the Hub in some way, we should ensure that
# they contain the `hub_retry` decorator in case of failures.
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
for attr_name in dir(cls):
if attr_name.startswith("test_"):
attr = getattr(cls, attr_name)
if callable(attr):
setattr(cls, attr_name, hub_retry()(attr))
@property
def all_generative_model_classes(self):
return tuple(model_class for model_class in self.all_model_classes if model_class.can_generate())
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
inputs_dict = {
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
if isinstance(v, torch.Tensor) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
inputs_dict.pop("attention_mask", None)
elif model_class.__name__ == MODEL_FOR_PRETRAINING_MAPPING_NAMES["hiera"]:
config = self.model_tester.get_config()
mask_spatial_shape = [
i // s // ms for i, s, ms in zip(config.image_size, config.patch_stride, config.masked_unit_size)
]
num_windows = math.prod(mask_spatial_shape)
torch.manual_seed(0)
inputs_dict["noise"] = torch.rand(self.model_tester.batch_size, num_windows)
if return_labels:
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
elif model_class.__name__ in [
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
]:
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class.__name__ in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
]:
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class.__name__ in [
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
*get_values(MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES),
*get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
*get_values(MODEL_FOR_CTC_MAPPING_NAMES),
]:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
num_patches = self.model_tester.image_size // self.model_tester.patch_size
inputs_dict["bool_masked_pos"] = torch.zeros(
(self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
)
elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
inputs_dict["labels"] = torch.zeros(
[self.model_tester.batch_size, height, width], device=torch_device
).long()
return inputs_dict
def test_num_layers_is_small(self):
# TODO (if possible): Avoid exceptional cases, especially for `OwlViT`.
# ⛔ DO NOT edit this list (unless there is really nothing to tweak in the model tester class and approved by the reviewer) ⛔!
exceptional_num_hidden_layers = {
# TODO: There might be some way to fix
"FunnelModelTest": 5,
"FunnelBaseModelTest": 4,
"GroupViTVisionModelTest": 12,
"OwlViTModelTest": 12,
"OwlViTTextModelTest": 12,
"OwlViTForObjectDetectionTest": 12,
"Owlv2ModelTest": 12,
"Owlv2TextModelTest": 12,
"Owlv2ForObjectDetectionTest": 12,
"Qwen2_5OmniThinkerForConditionalGenerationModelTest": 4,
"SamHQModelTest": 12,
"Swin2SRModelTest": 3,
"XLNetModelTest": 3,
"DPTModelTest": 4, # `test_modeling_dpt_hybrid.py`: not able to get it work after change `num_hidden_layers` and `neck_hidden_sizes`
# Nothing we can't do
"Gemma3nTextModelTest": 4, # need to test KV shared layer for both types: `full_attention` and `sliding_attention`
"BeitModelTest": 4, # BeitForSemanticSegmentation requires config.out_indices to be a list of 4 integers
"ZambaModelTest": 5, # The minimum number to test beyond the initial ["mamba", "mamba", "hybrid"] in `ZambaConfig._layers_block_type`
}
target_num_hidden_layers = exceptional_num_hidden_layers.get(type(self).__name__, 2)
if hasattr(self.model_tester, "num_hidden_layers") and isinstance(self.model_tester.num_hidden_layers, int):
assert self.model_tester.num_hidden_layers <= target_num_hidden_layers
if hasattr(self.model_tester, "vision_config") and "num_hidden_layers" in self.model_tester.vision_config:
if isinstance(self.model_tester.vision_config, dict):
assert self.model_tester.vision_config["num_hidden_layers"] <= target_num_hidden_layers
else:
assert self.model_tester.vision_config.num_hidden_layers <= target_num_hidden_layers
if hasattr(self.model_tester, "text_config") and "num_hidden_layers" in self.model_tester.text_config:
if isinstance(self.model_tester.text_config, dict):
assert self.model_tester.text_config["num_hidden_layers"] <= target_num_hidden_layers
else:
assert self.model_tester.text_config.num_hidden_layers <= target_num_hidden_layers
def test_save_load(self):
def check_save_load(out1, out2):
# make sure we don't have nans
out_2 = out2.cpu().numpy()
out_2[np.isnan(out_2)] = 0
out_2 = out_2[~np.isneginf(out_2)]
out_1 = out1.cpu().numpy()
out_1[np.isnan(out_1)] = 0
out_1 = out_1[~np.isneginf(out_1)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
# the config file (and the generation config file, if it can generate) should be saved
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
self.assertEqual(
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
# Save and load second time because `from_pretrained` adds a bunch of new config fields
# so we need to make sure those fields can be loaded back after saving
# Simply init as `model(config)` doesn't add those fields
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_save_load(tensor1, tensor2)
else:
check_save_load(first, second)
def test_from_pretrained_no_checkpoint(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(copy.deepcopy(config))
state_dict = model.state_dict()
new_model = model_class.from_pretrained(
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_keep_in_fp32_modules(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._keep_in_fp32_modules is None:
self.skipTest(reason="Model class has no _keep_in_fp32_modules attribute defined")
model = model_class(copy.deepcopy(config))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, dtype=torch.float16)
for name, param in model.named_parameters():
if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
self.assertTrue(param.dtype == torch.float32)
else:
self.assertTrue(param.dtype == torch.float16, name)
def test_save_load_keys_to_ignore_on_save(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(copy.deepcopy(config))
_keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
if _keys_to_ignore_on_save is None:
continue
# check the keys are in the original state_dict
for k in _keys_to_ignore_on_save:
self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
# check that certain keys didn't get saved with the model
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
state_dict_saved = safe_load_file(output_model_file)
for k in _keys_to_ignore_on_save:
self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
# Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
load_result = model.load_state_dict(state_dict_saved, strict=False)
keys_to_ignore = set(model._keys_to_ignore_on_save)
if hasattr(model, "_tied_weights_keys"):
keys_to_ignore.update(set(model._tied_weights_keys))
self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
self.assertTrue(len(load_result.unexpected_keys) == 0)
def test_gradient_checkpointing_backward_compatibility(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
config.gradient_checkpointing = True
model = model_class(copy.deepcopy(config))
self.assertTrue(model.is_gradient_checkpointing)
def test_gradient_checkpointing_enable_disable(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
# at init model should have gradient checkpointing disabled
model = model_class(copy.deepcopy(config))
self.assertFalse(model.is_gradient_checkpointing)
# check enable works
model.gradient_checkpointing_enable()
self.assertTrue(model.is_gradient_checkpointing)
# Loop over all modules and check that relevant modules have gradient_checkpointing set to True
for n, m in model.named_modules():
if hasattr(m, "gradient_checkpointing"):
self.assertTrue(
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
)
# check disable works
model.gradient_checkpointing_disable()
self.assertFalse(model.is_gradient_checkpointing)
# Loop over all modules and check that relevant modules have gradient_checkpointing set to False
for n, m in model.named_modules():
if hasattr(m, "gradient_checkpointing"):
self.assertFalse(
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
)
def test_peft_gradient_checkpointing_enable_disable(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
# at init model should have gradient checkpointing disabled
model = model_class(copy.deepcopy(config))
self.assertFalse(model.is_gradient_checkpointing)
# check enable works
model._hf_peft_config_loaded = True
try:
model.gradient_checkpointing_enable()
except NotImplementedError:
continue
self.assertTrue(model.is_gradient_checkpointing)
# Loop over all modules and check that relevant modules have gradient_checkpointing set to True
for n, m in model.named_modules():
if hasattr(m, "gradient_checkpointing"):
self.assertTrue(
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
)
# check disable works
model.gradient_checkpointing_disable()
self.assertFalse(model.is_gradient_checkpointing)
# Loop over all modules and check that relevant modules have gradient_checkpointing set to False
for n, m in model.named_modules():
if hasattr(m, "gradient_checkpointing"):
self.assertFalse(
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
)
def test_can_init_all_missing_weights(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# This is used to get the addition year of the model
filename = inspect.getfile(config.__class__)
# No easy way to get model addition date -> check copyright year on top of file
with open(filename) as file:
source_code = file.read()
addition_year = 0 # if we cannot find it, set it to 0 (i.e. oldest)
if match_object := re.search(r"^# Copyright (\d{4})", source_code, re.MULTILINE | re.IGNORECASE):
addition_year = int(match_object.group(1))
for model_class in self.all_model_classes:
# For now, skip everything older than 2024 and "important models" (too much models to patch otherwise)
# TODO: relax this as we patch more and more models
if addition_year < 2023:
self.skipTest(reason=f"{model_class} is not a priorited model for now.")
# Monkey patch the method to add a seed (we do it on PreTrainedModel._initialize_weights, which wraps
# `_init_weights` so that it can add the seed for composite models as well)
original_initialize_weights = PreTrainedModel._initialize_weights
def seeded_initialize_weights(self, module):
set_seed(0)
original_initialize_weights(self, module)
PreTrainedModel._initialize_weights = seeded_initialize_weights
# First, initialize the model from config -> this ensure everything is correctly initialized, even if
# _init_weights() does not take all weights into account correctly
model_from_config = model_class(copy.deepcopy(config))
# Here, passing an empty state dict will force all weights to be moved from meta to cpu, then be initialized
# by _init_weights()
model_from_pretrained = model_class.from_pretrained(None, config=config, state_dict={})
# Back to original method to avoid issues if running several other tests
PreTrainedModel._initialize_weights = original_initialize_weights
# First, check if any parameters are still on meta -> this is usually an issue with tied weights
params_on_meta = []
for k, v in model_from_pretrained.named_parameters():
if v.device.type == "meta":
params_on_meta.append(k)
self.assertTrue(
len(params_on_meta) == 0,
f"The following keys are still on the meta device, it probably comes from an issue in the tied weights:\n{params_on_meta}",
)
# Everything must be exactly the same as we set the same seed for each init
different_weights = []
for (k1, v1), (k2, v2) in zip(
model_from_config.state_dict().items(), model_from_pretrained.state_dict().items()
):
self.assertEqual(k1, k2, "The keys from each model should be the same")
# In case using torch.nn.utils.parametrizations on a module, we should skip the resulting keys
if re.search(r"\.parametrizations\..*?\.original[01]", k1):
continue
# Since we added the seed, they should be exactly the same (i.e. using allclose maybe be wrong due
# to very low std in init function)
if not (v1 == v2).all():
different_weights.append(k1)
# Buffers that are initialized randomly are ignored as they are not initialized on meta device anyway
buffer_names = {name for name, _ in model_from_config.named_buffers()}
different_weights = [k for k in different_weights if k not in buffer_names]
self.assertTrue(
len(different_weights) == 0,
f"The following keys are not properly handled by `_init_weights()`:\n{different_weights}",
)
def test_torch_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if config.__class__ not in MODEL_MAPPING:
self.skipTest(reason=f"{config.__class__.__name__} not in MODEL_MAPPING")
base_class = MODEL_MAPPING[config.__class__]
if isinstance(base_class, tuple):
base_class = base_class[0]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
# make a copy of model class to not break future tests
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
class CopyClass(base_class):
pass
base_class_copy = CopyClass
# make sure that all keys are expected for test
base_class_copy._keys_to_ignore_on_load_missing = []
# make init deterministic, but make sure that
# non-initialized weights throw errors nevertheless
base_class_copy._init_weights = _mock_init_weights
base_class_copy.init_weights = _mock_all_init_weights
model = model_class(copy.deepcopy(config))
state_dict = model.state_dict()
def check_equal(loaded):
for key in state_dict:
max_diff = torch.max(
state_dict()[key] ^ loaded[key]
if isinstance(state_dict[key], torch.BoolTensor)
else torch.abs(state_dict[key] - loaded[key])
).item()
self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")
# check that certain keys didn't get saved with the model
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
check_equal(load_state_dict(pt_checkpoint_path))
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
check_equal(load_state_dict(pt_checkpoint_path))
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# Simply don't compare if both tensors only contain `nan` elements
# See: https://github.com/huggingface/transformers/pull/40661
if torch.all(torch.isnan(first)) and torch.all(torch.isnan(second)):
return
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
out_1 = out_1[~np.isneginf(out_1)]
out_2 = out_2[~np.isneginf(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(copy.deepcopy(config))
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
def test_batching_equivalence(self, atol=1e-5, rtol=1e-5):
"""
Tests that the model supports batching and that the output is the nearly the same for the same input in
different batch sizes.
(Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
"""
def recursive_check(batched_object, single_row_object, model_name, key):
if isinstance(batched_object, (list, tuple)):
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
recursive_check(batched_object_value, single_row_object_value, model_name, key)
elif isinstance(batched_object, dict):
for batched_object_value, single_row_object_value in zip(
batched_object.values(), single_row_object.values()
):
recursive_check(batched_object_value, single_row_object_value, model_name, key)
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
return
elif batched_object.dim() == 0:
return
# do not compare int or bool outputs as they are mostly computed with max/argmax/topk methods which are
# very sensitive to the inputs (e.g. tiny differences may give totally different results)
elif not torch.is_floating_point(batched_object):
return
else:
# indexing the first element does not always work
# e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
slice_ids = [slice(0, index) for index in single_row_object.shape]
batched_row = batched_object[slice_ids]
self.assertFalse(
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
)
self.assertFalse(
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
)
self.assertFalse(
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
)
self.assertFalse(
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
)
try:
torch.testing.assert_close(batched_row, single_row_object, atol=atol, rtol=rtol)
except AssertionError as e:
msg = f"Batched and Single row outputs are not equal in {model_name} for key={key}.\n\n"
msg += str(e)
raise AssertionError(msg)
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
set_config_for_less_flaky_test(config)
for model_class in self.all_model_classes:
config.output_hidden_states = True
model_name = model_class.__name__
if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
model = model_class(copy.deepcopy(config)).to(torch_device).eval()
set_model_for_less_flaky_test(model)
batch_size = self.model_tester.batch_size
single_row_input = {}
for key, value in batched_input_prepared.items():
if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
# e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
single_batch_shape = value.shape[0] // batch_size
single_row_input[key] = value[:single_batch_shape]
else:
single_row_input[key] = value
with torch.no_grad():
model_batched_output = model(**batched_input_prepared)
model_row_output = model(**single_row_input)
if isinstance(model_batched_output, torch.Tensor):
model_batched_output = {"model_output": model_batched_output}
model_row_output = {"model_output": model_row_output}
for key in model_batched_output:
# DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
model_batched_output[key] = model_batched_output[key][1:]
model_row_output[key] = model_row_output[key][1:]
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
if not self.model_tester.is_training:
self.skipTest(reason="ModelTester is not configured to run training tests")
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
if (
model_class.__name__
in [
*get_values(MODEL_MAPPING_NAMES),
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
]
or not model_class.supports_gradient_checkpointing
):
# TODO (ydshieh): use `skipTest` once pytest-dev/pytest-subtests/pull/169 is merged
# self.skipTest(reason=f"`supports_gradient_checkpointing` is False for {model_class.__name__}.")
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
model.train()
# unfreeze additional layers
for p in model.parameters():
p.requires_grad_(True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
optimizer.step()
if self.test_all_params_have_gradient:
for k, v in model.named_parameters():
if v.requires_grad and v.grad is None:
if "expert" in k:
print(
f"None for {k}, Probaby running a MOE, make sure grad is not NONE on EVERY layer. At LEAST 1 of the expert layer should have grads!"
)
else:
with self.subTest(f"{k}"):
self.assertTrue(
v.grad is not None, f"{k} in {model_class.__name__} has no gradient!"
)
def test_training(self):
if not self.model_tester.is_training:
self.skipTest(reason="ModelTester is not configured to run training tests")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
if model_class.__name__ in [
*get_values(MODEL_MAPPING_NAMES),
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
]:
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
# Scenario - 1 default behaviour
self.check_training_gradient_checkpointing()
def test_training_gradient_checkpointing_use_reentrant(self):
# Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
# torch.utils.checkpoint.checkpoint
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})
def test_training_gradient_checkpointing_use_reentrant_false(self):
# Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
# future releases: https://pytorch.org/docs/stable/checkpoint.html
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
def test_attention_outputs(self):
if not self.has_attentions:
self.skipTest(reason="Model does not output attentions")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# force eager attention to support output attentions
config._attn_implementation = "eager"
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class._from_config(config, attn_implementation="eager")
config = model.config
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
for k in config.sub_configs:
if getattr(config, k) is not None:
getattr(config, k).output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Question Answering model returns start_logits and end_logits
if model_class.__name__ in [
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
]:
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(copy.deepcopy(config))
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
if hasattr(self.model_tester, "encoder_seq_length"):
seq_length = self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
seq_length = seq_length * self.model_tester.chunk_length
else:
seq_length = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
if config.is_encoder_decoder:
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
for k in config.sub_configs:
if getattr(config, k) is not None:
getattr(config, k).output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for k in config.sub_configs:
if getattr(config, k) is not None:
getattr(config, k).output_hidden_states = True
config.output_hidden_states = True
config.output_attentions = self.has_attentions
for k in config.sub_configs:
if getattr(config, k) is not None:
getattr(config, k).output_attentions = self.has_attentions
# force eager attention to support output attentions
if self.has_attentions:
config._attn_implementation = "eager"
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class._from_config(config, attn_implementation="eager")
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
if config.is_encoder_decoder:
# Seq2Seq models
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
decoder_hidden_states = outputs.decoder_hidden_states[0]
decoder_hidden_states.retain_grad()
if self.has_attentions:
encoder_attentions = outputs.encoder_attentions[0]
encoder_attentions.retain_grad()
decoder_attentions = outputs.decoder_attentions[0]
decoder_attentions.retain_grad()
cross_attentions = outputs.cross_attentions[0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(decoder_hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(decoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
else:
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
attentions = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
def test_feed_forward_chunking(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
torch.manual_seed(0)
model = model_class(copy.deepcopy(original_config))
model.to(torch_device)
model.eval()
hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
torch.manual_seed(0)
original_config.chunk_size_feed_forward = 1
model = model_class(copy.deepcopy(original_config))
model.to(torch_device)
model.eval()
hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
torch.testing.assert_close(hidden_states_no_chunk, hidden_states_with_chunk, rtol=1e-3, atol=1e-3)
def test_resize_position_vector_embeddings(self):
if not self.test_resize_position_embeddings:
self.skipTest(reason="Model does not have position embeddings")
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
max_position_embeddings = config.max_position_embeddings
# Retrieve the embeddings and clone theme
if model.config.is_encoder_decoder:
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
encoder_cloned_embeddings = encoder_model_embed.weight.clone()
decoder_cloned_embeddings = decoder_model_embed.weight.clone()
else:
model_embed = model.get_position_embeddings()
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the position embeddings with a larger max_position_embeddings increases
# the model's position embeddings size
model.resize_position_embeddings(max_position_embeddings + 10)
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)
# Check that it actually resizes the embeddings matrix
if model.config.is_encoder_decoder:
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
else:
model_embed = model.get_position_embeddings()
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the position embeddings with a smaller max_position_embeddings decreases
# the model's max_position_embeddings
model.resize_position_embeddings(max_position_embeddings - 5)
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)
# Check that it actually resizes the embeddings matrix
if model.config.is_encoder_decoder:
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
else:
model_embed = model.get_position_embeddings()
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
if model.config.is_encoder_decoder:
for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
else:
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_resize_tokens_embeddings(self):
if not self.test_resize_embeddings:
self.skipTest(reason="test_resize_embeddings is set to `False`")
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict.pop("labels", None)
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
if is_deepspeed_zero3_enabled():
with deepspeed.zero.Init():
model = model_class(config)
else:
model = model_class(config)
model.to(torch_device)
model_embed_pre_resize = model.get_input_embeddings()
type_model_embed_pre_resize = type(model_embed_pre_resize)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.get_text_config().vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
new_model_vocab_size = model.config.get_text_config().vocab_size
self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check to make sure the type of embeddings returned post resizing is same as type of input
type_model_embed_post_resize = type(model_embed)
self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize)
# Check that added embeddings mean is close to the old embeddings mean
if is_deepspeed_zero3_enabled():
with deepspeed.zero.GatheredParameters(model_embed.weight, modifier_rank=None):
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
else:
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
if not is_deepspeed_zero3_enabled():
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
model_inputs = self._prepare_for_class(inputs_dict, model_class)
model(**model_inputs)
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
new_model_vocab_size = model.config.get_text_config().vocab_size
self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# make sure that decoder_input_ids are resized as well
if not is_deepspeed_zero3_enabled():
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model_inputs = self._prepare_for_class(inputs_dict, model_class)
model(**model_inputs)
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
del model
del config
# Copy again. config changed with embedding resizing (`vocab_size` changed)
config = copy.deepcopy(original_config)
if is_deepspeed_zero3_enabled():
with deepspeed.zero.Init():
model = model_class(config)
else:
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.get_text_config().vocab_size
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
new_model_vocab_size = model.config.get_text_config().vocab_size
self.assertTrue(new_model_vocab_size + 10, model_vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
new_model_vocab_size = model.config.get_text_config().vocab_size
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
self.assertTrue(model_embed.weight.shape[0], new_model_vocab_size)
self.assertTrue(new_model_vocab_size, model.vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
target_dimension = 128
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0], target_dimension)
with self.assertRaisesRegex(
ValueError,
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
):
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
# Test when `vocab_size` is smaller than `hidden_size`.
del model
del config
# Copy again. config changed with embedding resizing (`vocab_size` changed)
config = copy.deepcopy(original_config)
config.vocab_size = 4
config.pad_token_id = 3
if is_deepspeed_zero3_enabled():
with deepspeed.zero.Init():
model = model_class(config)
else:
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.get_text_config().vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
new_model_vocab_size = model.config.get_text_config().vocab_size
self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check to make sure the type of embeddings returned post resizing is same as type of input
type_model_embed_post_resize = type(model_embed)
self.assertEqual(type_model_embed_pre_resize, type_model_embed_post_resize)
# Check that added embeddings mean is close to the old embeddings mean
if is_deepspeed_zero3_enabled():
with deepspeed.zero.GatheredParameters(model_embed.weight, modifier_rank=None):
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
else:
old_embeddings_mean = torch.mean(model_embed.weight.data[:-10, :], axis=0)
new_embeddings_mean = torch.mean(model_embed.weight.data[-10:, :], axis=0)
torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3)
@require_deepspeed
@require_torch_accelerator
def test_resize_tokens_embeddings_with_deepspeed(self):
ds_config = {
"zero_optimization": {
"stage": 3,
"offload_param": {"device": "cpu", "pin_memory": True},
},
}
with _deepspeed_zero3(ds_config):
self.test_resize_tokens_embeddings()
@require_deepspeed
@require_torch_multi_accelerator
def test_resize_tokens_embeddings_with_deepspeed_multi_gpu(self):
ds_config = {
"zero_optimization": {
"stage": 3,
},
}
with _deepspeed_zero3(ds_config):
self.test_resize_tokens_embeddings()
def test_resize_embeddings_untied(self):
if not self.test_resize_embeddings:
self.skipTest(reason="test_resize_embeddings is set to `False`")
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
original_config.tie_word_embeddings = False
inputs_dict.pop("labels", None)
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
self.skipTest(reason="Model cannot untied embeddings")
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
if is_deepspeed_zero3_enabled():
with deepspeed.zero.Init():
model = model_class(config)
else:
model = model_class(config).to(torch_device)
model.eval()
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.get_text_config().vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
new_model_vocab_size = model.config.get_text_config().vocab_size
self.assertEqual(new_model_vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
if not is_deepspeed_zero3_enabled():
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
model(**self._prepare_for_class(inputs_dict, model_class))
# Test multivariate resizing.
model.resize_token_embeddings(model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
# Check that added embeddings mean is close to the old embeddings mean
if is_deepspeed_zero3_enabled():
with deepspeed.zero.GatheredParameters(output_embeds.weight, modifier_rank=None):
old_embeddings_mean = torch.mean(output_embeds.weight.data[:-10, :], axis=0)
new_embeddings_mean = torch.mean(output_embeds.weight.data[-10:, :], axis=0)
else:
old_embeddings_mean = torch.mean(output_embeds.weight.data[:-10, :], axis=0)
new_embeddings_mean = torch.mean(output_embeds.weight.data[-10:, :], axis=0)
torch.testing.assert_close(old_embeddings_mean, new_embeddings_mean, rtol=1e-3, atol=1e-3)
# check if the old bias mean close to added bias mean.
if output_embeds.bias is not None:
if is_deepspeed_zero3_enabled():
with deepspeed.zero.GatheredParameters(output_embeds.bias, modifier_rank=None):
old_bias_mean = torch.mean(output_embeds.bias.data[:-10], axis=0)
new_bias_mean = torch.mean(output_embeds.bias.data[-10:], axis=0)
else:
old_bias_mean = torch.mean(output_embeds.bias.data[:-10], axis=0)
new_bias_mean = torch.mean(output_embeds.bias.data[-10:], axis=0)
torch.testing.assert_close(old_bias_mean, new_bias_mean, rtol=1e-5, atol=1e-5)
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
new_model_vocab_size = model.config.get_text_config().vocab_size
self.assertEqual(new_model_vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
if not is_deepspeed_zero3_enabled():
# A distriputed launcher is needed for the forward pass when deepspeed is enabled
model(**self._prepare_for_class(inputs_dict, model_class))
@require_deepspeed
@require_torch_accelerator
def test_resize_embeddings_untied_with_deepspeed(self):
ds_config = {
"zero_optimization": {
"stage": 3,
"offload_param": {"device": "cpu", "pin_memory": True},
},
}
with _deepspeed_zero3(ds_config):
self.test_resize_embeddings_untied()
@require_deepspeed
@require_torch_multi_accelerator
def test_resize_embeddings_untied_with_deepspeed_multi_gpu(self):
ds_config = {
"zero_optimization": {
"stage": 3,
},
}
with _deepspeed_zero3(ds_config):
self.test_resize_embeddings_untied()
def test_model_get_set_embeddings(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(copy.deepcopy(config))
self.assertIsInstance(model.get_input_embeddings(), nn.Embedding)
new_input_embedding_layer = nn.Embedding(10, 10)
model.set_input_embeddings(new_input_embedding_layer)
self.assertEqual(model.get_input_embeddings(), new_input_embedding_layer)
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model_main_input_name(self):
for model_class in self.all_model_classes:
model_signature = inspect.signature(getattr(model_class, "forward"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(model_class.main_input_name, observed_main_input_name)
def test_correct_missing_keys(self):
if not self.test_missing_keys:
self.skipTest(reason="test_missing_keys is set to `False`")
for model_class in self.all_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
base_model_prefix = model.base_model_prefix
if hasattr(model, base_model_prefix):
extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
# Some models define this as None
if model._keys_to_ignore_on_load_missing:
for key in model._keys_to_ignore_on_load_missing:
extra_params.pop(key, None)
if not extra_params:
# In that case, we *are* on a head model, but every single key is not actual parameters
continue
with tempfile.TemporaryDirectory() as temp_dir_name:
model.base_model.save_pretrained(temp_dir_name)
model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
def test_can_use_safetensors(self):
for model_class in self.all_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model_tied = model_class(config)
with tempfile.TemporaryDirectory() as d:
try:
model_tied.save_pretrained(d, safe_serialization=True)
except Exception as e:
raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
# Checking the state dicts are correct
reloaded_state = model_reloaded.state_dict()
for k, v in model_tied.state_dict().items():
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
torch.testing.assert_close(
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
)
# Checking there was no complain of missing weights
self.assertEqual(infos["missing_keys"], [])
# Checking the tensor sharing are correct
ptrs = defaultdict(list)
for k, v in model_tied.state_dict().items():
ptrs[v.data_ptr()].append(k)
shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}
for shared_names in shared_ptrs.values():
reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
self.assertEqual(
len(reloaded_ptrs),
1,
f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
)
def test_load_save_without_tied_weights(self):
for model_class in self.all_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
config.tie_word_embeddings = False
model = model_class(config)
with tempfile.TemporaryDirectory() as d:
model.save_pretrained(d)
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
# Checking the state dicts are correct
reloaded_state = model_reloaded.state_dict()
for k, v in model.state_dict().items():
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
torch.testing.assert_close(
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
)
# Checking there was no complain of missing weights
self.assertEqual(infos["missing_keys"], [])
def test_tied_weights_keys(self):
original_config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
copied_config = copy.deepcopy(original_config)
copied_config.get_text_config().tie_word_embeddings = True
model_tied = model_class(copied_config)
tied_weight_keys = _get_tied_weight_keys(model_tied)
# If we don't find any tied weights keys, and by default we don't tie the embeddings, it's because the model
# does not tie them
if len(tied_weight_keys) == 0 and not original_config.tie_word_embeddings:
continue
ptrs = collections.defaultdict(list)
for name, tensor in model_tied.state_dict().items():
ptrs[id_tensor_storage(tensor)].append(name)
# These are all the pointers of shared tensors.
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
# Detect we get a hit for each key
for key in tied_weight_keys:
is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
# Removed tied weights found from tied params -> there should only be one left after
for key in tied_weight_keys:
for i in range(len(tied_params)):
tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]
tied_params = [group for group in tied_params if len(group) > 1]
self.assertListEqual(
tied_params,
[],
f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
)
def test_model_weights_reload_no_missing_tied_weights(self):
for model_class in self.all_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
# We are nuking ALL weights on file, so every parameter should
# yell on load. We're going to detect if we yell too much, or too little.
placeholder_dict = {"tensor": torch.tensor([1, 2])}
safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
params = dict(model_reloaded.named_parameters())
params.update(dict(model_reloaded.named_buffers()))
param_names = set(params.keys())
missing_keys = set(infos["missing_keys"])
extra_missing = missing_keys - param_names
# Remove tied weights from extra missing: they are normally not warned as missing if their tied
# counterpart is present but here there are no weights at all so we do get the warning.
ptrs = collections.defaultdict(list)
for name, tensor in model_reloaded.state_dict().items():
ptrs[id_tensor_storage(tensor)].append(name)
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
for group in tied_params:
# We remove the group from extra_missing if not all weights from group are in it
if len(set(group) - extra_missing) > 0:
extra_missing = extra_missing - set(group)
self.assertEqual(
extra_missing,
set(),
f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
f"For debugging, tied parameters are {tied_params}",
)
missed_missing = param_names - missing_keys
# Remove nonpersistent buffers from missed_missing
buffers = [n for n, _ in model_reloaded.named_buffers()]
nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
missed_missing = missed_missing - nonpersistent_buffers
if model_reloaded._keys_to_ignore_on_load_missing is None:
expected_missing = set()
else:
expected_missing = set()
for pattern in model_reloaded._keys_to_ignore_on_load_missing:
expected_missing.update({k for k in param_names if re.search(pattern, k) is not None})
self.assertEqual(
missed_missing,
expected_missing,
f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
" parameters. If they are non persistent buffers make sure to instantiate them with"
" `persistent=False`",
)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (list, tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
# model might return non-tensors objects (e.g. Cache class)
elif isinstance(tuple_object, torch.Tensor):
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(copy.deepcopy(config))
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
if self.has_attentions:
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
model_forward_args = inspect.signature(model.forward).parameters
if "inputs_embeds" not in model_forward_args:
self.skipTest(reason="This model doesn't use `inputs_embeds`")
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class.__name__ not in get_values(MODEL_MAPPING_NAMES):
continue
model = model_class(config)
model.to(torch_device)
model.eval()
model_forward_args = inspect.signature(model.forward).parameters
if "inputs_embeds" not in model_forward_args:
self.skipTest(reason="This model doesn't use `inputs_embeds`")
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
pad_token_id = (
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 1
)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
# some models infer position ids/attn mask differently when input ids
# by check if pad_token let's make sure no padding is in input ids
not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
input_ids[input_ids == pad_token_id] = not_pad_token_id
del inputs["input_ids"]
inputs_embeds = wte(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
encoder_input_ids[encoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
decoder_input_ids[decoder_input_ids == pad_token_id] = max(0, pad_token_id + 1)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
inputs_embeds = wte(encoder_input_ids)
decoder_inputs_embeds = wte(decoder_input_ids)
with torch.no_grad():
out_ids = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids, **inputs)[0]
out_embeds = model(
inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, **inputs
)[0]
torch.testing.assert_close(out_embeds, out_ids)
@require_torch_gpu
@require_torch_multi_gpu
def test_multi_gpu_data_parallel_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# move input tensors to accelerator O
for k, v in inputs_dict.items():
if torch.is_tensor(v):
inputs_dict[k] = v.to(0)
for model_class in self.all_model_classes:
model = model_class(config=config)
model.to(0)
model.eval()
# Wrap model in nn.DataParallel
model = nn.DataParallel(model)
with torch.no_grad():
_ = model(**self._prepare_for_class(inputs_dict, model_class))
def check_device_map_is_respected(self, model, device_map):
for param_name, param in model.named_parameters():
# Find device in device_map
while len(param_name) > 0 and param_name not in device_map:
param_name = ".".join(param_name.split(".")[:-1])
if param_name not in device_map:
raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")
param_device = device_map[param_name]
if param_device in ["cpu", "disk"]:
self.assertEqual(param.device, torch.device("meta"))
elif param_device == "mps":
self.assertEqual(param.device, torch.device("mps"))
else:
# when loaded with device_map, `param_device` are integer values for cuda/xpu/hpu/npu/mlu
self.assertEqual(param.device, torch.device(f"{torch_device}:{param_device}"))
@require_accelerate
@mark.accelerate_tests
@require_torch_accelerator
def test_disk_offload_bin(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(copy.deepcopy(config)).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
with self.assertRaises(ValueError):
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
# This errors out cause it's missing an offload folder
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
max_size = int(self.model_split_percents[1] * model_size)
max_memory = {0: max_size, "cpu": max_size}
new_model = model_class.from_pretrained(
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
)
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
[
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
for a, b in zip(base_output[0], new_output[0])
]
else:
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
@require_accelerate
@mark.accelerate_tests
@require_torch_accelerator
def test_disk_offload_safetensors(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(copy.deepcopy(config)).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
max_size = int(self.model_split_percents[1] * model_size)
max_memory = {0: max_size, "cpu": max_size}
# This doesn't error out as it's in safetensors and doesn't need an offload folder
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
[
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
for a, b in zip(base_output[0], new_output[0])
]
else:
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
@require_accelerate
@mark.accelerate_tests
@require_torch_accelerator
def test_cpu_offload(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(copy.deepcopy(config)).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
# We test several splits of sizes to make sure it works.
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
for max_size in max_gpu_sizes:
max_memory = {0: max_size, "cpu": model_size * 2}
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
# Making sure part of the model will actually end up offloaded
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
[
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
for a, b in zip(base_output[0], new_output[0])
]
else:
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
@require_non_hpu
@require_accelerate
@mark.accelerate_tests
@require_torch_multi_accelerator
def test_model_parallelism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
# We test several splits of sizes to make sure it works.
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
for max_size in max_gpu_sizes:
max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
# Making sure part of the model will actually end up offloaded
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
[
torch.testing.assert_close(a, b, rtol=1e-5, atol=1e-5)
for a, b in zip(base_output[0], new_output[0])
]
else:
torch.testing.assert_close(base_output[0], new_output[0], rtol=1e-5, atol=1e-5)
def test_problem_types(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
problem_types = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if model_class.__name__ not in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
]:
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
config.problem_type = problem_type["title"]
config.num_labels = problem_type["num_labels"]
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if problem_type["num_labels"] > 1:
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=True) as warning_list:
loss = model(**inputs).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}"
)
loss.backward()
def test_load_with_mismatched_shapes(self):
if not self.test_mismatched_shapes:
self.skipTest(reason="test_mismatched_shapes is set to False")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
continue
with self.subTest(msg=f"Testing {model_class}"):
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_class(config)
model.save_pretrained(tmp_dir)
# Fails when we don't set ignore_mismatched_sizes=True
with self.assertRaises(RuntimeError):
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
with self.assertRaises(RuntimeError):
new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
new_model = AutoModelForSequenceClassification.from_pretrained(
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)
new_model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
logits = new_model(**inputs).logits
self.assertEqual(logits.shape[1], 42)
with CaptureLogger(logger) as cl:
new_model_without_prefix = AutoModel.from_pretrained(
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)
input_ids = ids_tensor((2, 8), 10)
new_model_without_prefix.to(torch_device)
if self.is_encoder_decoder:
new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
else:
new_model_without_prefix(input_ids)
def test_can_load_ignoring_mismatched_shapes(self):
if not self.test_mismatched_shapes:
self.skipTest(reason="test_mismatched_shapes is set to False")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
configs_no_init.num_labels = 3
for model_class in self.all_model_classes:
mappings = [
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
]
is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)
if not is_classication_model:
continue
with self.subTest(msg=f"Testing {model_class}"):
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_class(configs_no_init)
model.save_pretrained(tmp_dir)
# Fails when we don't set ignore_mismatched_sizes=True
with self.assertRaises(RuntimeError):
new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
self.assertIn("the shapes did not match", cl.out)
# Find the name of the module with the mismatched size
top_linear_modules = [
(name, module) for name, module in new_model.named_children() if isinstance(module, nn.Linear)
]
# Some old model have the Linear classification layer inside a ClassificationHead module or nn.Sequential
if len(top_linear_modules) == 0:
# ClassificationHead case
if any(
module.__class__.__name__.endswith("ClassificationHead") for module in new_model.children()
):
head_name, head_module = next(
(name, module)
for name, module in new_model.named_children()
if module.__class__.__name__.endswith("ClassificationHead")
)
# nn.Sequential case
elif any(isinstance(module, nn.Sequential) for module in new_model.children()):
head_name, head_module = next(
(name, module)
for name, module in new_model.named_children()
if isinstance(module, nn.Sequential)
)
# Unknown at this point -> skip (only xlm, perceiver, levit, flaubert, audio_spectrogram_transformer as of 23/09/2025)
else:
self.skipTest("Could not locate the classification Linear layer.")
top_linear_modules = [
(f"{head_name}.{name}", module)
for name, module in head_module.named_children()
if isinstance(module, nn.Linear)
]
# Usually we have only 1, but swiftformer and deit have 2 Linear layers using `num_labels`
mismatched_modules = [name for name, module in top_linear_modules if module.out_features == 42]
for (k1, v1), (k2, v2) in zip(new_model.named_parameters(), model.named_parameters()):
# Sanity check: params must have all the same name
self.assertEqual(k1, k2)
# Each param except the mismatched ones must be exactly similar
if not any(k1.startswith(mismatched_module) for mismatched_module in mismatched_modules):
self.assertTrue((v1 == v2).all())
# Check that the dims are indeed mismatched between old and new models
else:
# The old model should have `num_labels=3` (here it's the first dim of shape, as Linear layers
# are transposed)
self.assertEqual(v2.shape[0], 3)
# Make sure the mean of the new Linear layer is correctly centered around 0 (we cannot use
# a lower value for the check as some models hardcode a std of 0.02 instead of using the
# config, which we set very small with `config_no_init`)
self.assertLessEqual(v1.data.mean().item(), 1e-1, f"Issue with {k1}")
def test_model_is_small(self):
# Just a consistency check to make sure we are not running tests on 1M parameter models.
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(copy.deepcopy(config))
num_params = model.num_parameters()
assert num_params < 1000000, (
f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
)
def flash_attn_inference_equivalence(
self, attn_implementation: str, padding_side: str, atol: float = 4e-2, rtol: float = 4e-2
) -> None:
r"""
Tests the equivalence between the eager and flash attention implementations.
This test is only for inference and runs with `dtype=torch.bfloat16`.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
# This flag is used to know if the test was skipped for all `self.all_model_classes` or not
_has_run_at_least_one_model = False
for model_class in self.all_model_classes:
# Custom kernel which needs the mask interface to be properly usable on these models
if not model_class._supports_attention_backend and not attn_implementation.startswith("flash_attention"):
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# flash attention variants does not always support arbitrary headim
config = self._prepare_config_headdim(config, 16)
# forcing the prefill size to go over sliding window size to check for SWA correctness
if getattr(config, "sliding_window", None):
config.sliding_window = 2
model = model_class(config)
if not all(
submodel._supports_flash_attn for submodel in model.modules() if isinstance(submodel, PreTrainedModel)
):
continue
# If we end up here, at least one model class was not skipped
_has_run_at_least_one_model = True
with tempfile.TemporaryDirectory() as tmpdirname:
# Save the model so we can reload with correct attention
model.save_pretrained(tmpdirname)
# Create first inputs without attention mask
main_input = inputs_dict[model.main_input_name]
# Only keep first batch sequence
if isinstance(main_input, torch.Tensor):
main_input = main_input[:1]
# Fix the dtype
if torch.is_floating_point(main_input):
main_input = main_input.to(torch.bfloat16)
first_inputs = {model.main_input_name: main_input, "output_hidden_states": True}
# Some models have main input name which is different from input_ids, but require input_ids... e.g. BarkFine
if model.main_input_name != "input_ids" and "input_ids" in inputs_dict:
first_inputs["input_ids"] = inputs_dict["input_ids"][:1]
# If we have some pixel values, use them as well
if model.main_input_name != "pixel_values" and "pixel_values" in inputs_dict:
# NOTE: this fixes qwen2_5_vl/omni because test break w/ pixel values
if "image_grid_thw" in inputs_dict:
continue
first_inputs["pixel_values"] = inputs_dict["pixel_values"][:1].to(torch.bfloat16)
if model.config.is_encoder_decoder:
decoder_input_ids = inputs_dict.get("decoder_input_ids", first_inputs.get("input_ids"))
if decoder_input_ids is not None:
first_inputs["decoder_input_ids"] = decoder_input_ids[:1]
# Create attention mask with padding
dummy_attention_mask = inputs_dict.get("attention_mask", None)
if dummy_attention_mask is not None:
dummy_attention_mask = dummy_attention_mask[:1]
if padding_side == "left":
dummy_attention_mask[:, 1:] = 1
dummy_attention_mask[:, 0] = 0
else:
dummy_attention_mask[:, :-1] = 1
dummy_attention_mask[:, -1] = 0
# Create second inputs with attention mask and padding
second_inputs = copy.deepcopy(first_inputs)
if dummy_attention_mask is not None:
second_inputs["attention_mask"] = dummy_attention_mask
if model.config.is_encoder_decoder:
second_inputs["decoder_attention_mask"] = dummy_attention_mask
# Use prepare for class to account for special attributes (e.g. in QnA models)
first_inputs = self._prepare_for_class(first_inputs, model_class)
first_inputs = {
k: v.to(torch_device) if isinstance(v, torch.Tensor) else v for k, v in first_inputs.items()
}
second_inputs = self._prepare_for_class(second_inputs, model_class)
second_inputs = {
k: v.to(torch_device) if isinstance(v, torch.Tensor) else v for k, v in second_inputs.items()
}
model = model_class.from_pretrained(
tmpdirname, dtype=torch.bfloat16, attn_implementation="eager", device_map=torch_device
)
# First run without attention mask
outputs = model(**first_inputs)
logits_1_eager = (
outputs.hidden_states[-1]
if "hidden_states" in outputs
else outputs.logits_per_image
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
# Second run with attention mask and padding
outputs = model(**second_inputs)
logits_2_eager = (
outputs.hidden_states[-1]
if "hidden_states" in outputs
else outputs.logits_per_image
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
# Switch to FA
del model
model = model_class.from_pretrained(
tmpdirname, dtype=torch.bfloat16, attn_implementation=attn_implementation, device_map=torch_device
)
outputs = model(**first_inputs)
logits_1_fa = (
outputs.hidden_states[-1]
if "hidden_states" in outputs
else outputs.logits_per_image
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
# Second run with attention mask and padding
outputs = model(**second_inputs)
logits_2_fa = (
outputs.hidden_states[-1]
if "hidden_states" in outputs
else outputs.logits_per_image
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
# Check the results
torch.testing.assert_close(logits_1_eager, logits_1_fa, atol=atol, rtol=rtol)
if padding_side == "left":
torch.testing.assert_close(logits_2_eager[1:], logits_2_fa[1:], atol=atol, rtol=rtol)
else:
torch.testing.assert_close(logits_2_eager[:-1], logits_2_fa[:-1], atol=atol, rtol=rtol)
# In this case, the test should appear as skipped, not successful
if not _has_run_at_least_one_model:
self.skipTest(
f"Model architecture does not support {attn_implementation}, or setting its attention dynamically"
)
@require_kernels
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky()
def test_flash_attn_kernels_inference_equivalence(self):
self.flash_attn_inference_equivalence(attn_implementation="kernels-community/flash-attn3", padding_side="left")
@require_torch_mps
@require_kernels
@mark.flash_attn_test
@slow
@is_flaky()
def test_flash_attn_kernels_mps_inference_equivalence(self):
self.flash_attn_inference_equivalence(
attn_implementation="kernels-community/metal-flash-sdpa", padding_side="left"
)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky()
def test_flash_attn_2_inference_equivalence(self):
self.flash_attn_inference_equivalence(attn_implementation="flash_attention_2", padding_side="left")
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky()
def test_flash_attn_2_inference_equivalence_right_padding(self):
self.flash_attn_inference_equivalence(attn_implementation="flash_attention_2", padding_side="right")
@require_flash_attn_3
@require_torch_gpu
@mark.flash_attn_3_test
@slow
@is_flaky()
def test_flash_attn_3_inference_equivalence(self):
self.flash_attn_inference_equivalence(attn_implementation="flash_attention_3", padding_side="left")
@require_flash_attn_3
@require_torch_gpu
@mark.flash_attn_3_test
@slow
@is_flaky()
def test_flash_attn_3_inference_equivalence_right_padding(self):
self.flash_attn_inference_equivalence(attn_implementation="flash_attention_3", padding_side="right")
def test_attn_implementation_composite_models(self):
"""
Tests if composite models can receive a dict object as attn_implementation, where each key should be
one of the sub-configs from the model's config.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
for model_class in self.all_model_classes:
if not self._is_composite:
self.skipTest("Model is not a composite model.")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# set eager as it will be the one supported in all models
# we just need to test if passing 'attn_implementation' as a dict fails or not
attn_implementation_per_subconfig = {"": "eager"}
for key in config.sub_configs:
if getattr(config, key) is not None:
attn_implementation_per_subconfig[key] = "eager"
config._attn_implementation = attn_implementation_per_subconfig
model = model_class(config)
for key in config.sub_configs:
if getattr(config, key) is not None:
sub_config = getattr(model.config, key)
self.assertTrue(sub_config._attn_implementation == "eager")
for name, submodule in model.named_modules():
class_name = submodule.__class__.__name__
if (
class_name.endswith("Attention")
and getattr(submodule, "config", None)
and submodule.config._attn_implementation != "eager"
):
raise ValueError(
f"The eager model should not have SDPA/FA2 attention layers but got `{class_name}.config._attn_implementation={submodule.config._attn_implementation}`"
)
# Set the attention to default `None` but the text config to `eager`
# The model should load encoders in SDPA but not the text attention
config._attn_implementation = None
config.get_text_config(decoder=True)._attn_implementation = "eager"
model = model_class(config)
self.assertTrue(model.config.get_text_config(decoder=True)._attn_implementation == "eager")
# Test that using `dict` attention implementation works with `from_pretrained`
# Set all backbones to "eager" because "eager" attention is always available
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
new_model = model.from_pretrained(tmpdirname, attn_implementation=attn_implementation_per_subconfig)
self.assertTrue(new_model.config._attn_implementation == "eager")
for submodule in new_model.modules():
if (
submodule is not new_model
and isinstance(submodule, PreTrainedModel)
and submodule.config.__class__ != new_model.config.__class__
):
self.assertTrue(submodule.config._attn_implementation == "eager")
def test_sdpa_can_dispatch_non_composite_models(self):
"""
Tests if non-composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are called "SDPAAttention".
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self.all_model_classes[0]._supports_sdpa or self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if (
class_name.endswith("Attention")
and getattr(submodule, "config", None)
and submodule.config._attn_implementation == "sdpa"
):
raise ValueError(
f"The eager model should not have SDPA attention layers but got `{class_name}.config._attn_implementation={submodule.config._attn_implementation}`"
)
def test_sdpa_can_dispatch_composite_models(self):
"""
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are called "SDPAAttention".
In contrast to the above test, this one checks if the "config._attn_implementation" is a dict after the model
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
See https://github.com/huggingface/transformers/pull/32238 for more info
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
that has a different set of sub-configs has to overwrite this test.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
vision_model_names = {"visual", "image_tower", "vision_tower", "vision_model"}
language_model_names = {"language_model", "model", "text_model"}
vision_model_name = [name for name in vision_model_names if hasattr(model_sdpa, name)][0]
language_model_name = [name for name in language_model_names if hasattr(model_sdpa, name)][0]
vision_model_sdpa = getattr(model_sdpa, vision_model_name)
language_model_sdpa = getattr(model_sdpa, language_model_name)
text_attn = "sdpa" if language_model_sdpa._supports_sdpa else "eager"
vision_attn = "sdpa" if vision_model_sdpa._supports_sdpa else "eager"
# `None` as it is the requested one which will be assigned to each sub-config
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
self.assertTrue(language_model_sdpa.config._attn_implementation == text_attn)
self.assertTrue(vision_model_sdpa.config._attn_implementation == vision_attn)
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(getattr(model_eager, language_model_name).config._attn_implementation == "eager")
self.assertTrue(getattr(model_eager, vision_model_name).config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if (
class_name.endswith("Attention")
and getattr(submodule, "config", None)
and submodule.config._attn_implementation == "sdpa"
):
raise ValueError("The eager model should not have SDPA attention layers")
@parameterized.expand(TEST_EAGER_MATCHES_SDPA_INFERENCE_PARAMETERIZATION)
def test_eager_matches_sdpa_inference(
self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels
):
_test_eager_matches_sdpa_inference(
self, name, dtype, padding_side, use_attention_mask, output_attentions, enable_kernels
)
@require_torch_accelerator
@slow
def test_sdpa_can_dispatch_on_flash(self):
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
device_type, major, minor = get_device_properties()
if device_type == "cuda" and major < 8:
self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
elif device_type == "rocm" and major < 9:
self.skipTest(reason="This test requires an AMD GPU with compute capability >= 9.0")
elif device_type not in ["cuda", "rocm", "xpu"]:
self.skipTest(reason="This test requires a Nvidia or AMD GPU, or an Intel XPU")
torch.compiler.reset()
for model_class in self.all_model_classes:
if not model_class._supports_sdpa:
self.skipTest(f"{model_class.__name__} does not support SDPA")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
if config.model_type == "paligemma":
self.skipTest(
"PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input"
)
if config.model_type in [
"modernbert",
"gemma3",
"t5gemma",
"diffllama",
"dpr",
"eomt",
"gpt_bigcode",
"jamba",
"kosmos-2",
"mllama",
"pixtral",
"sam",
"sam_hq",
"zamba2",
"sam_vision_model",
"sam2_vision_model",
"sam_hq_vision_model",
]:
self.skipTest(
reason=f"{config.model_type} currently (transformers==4.52.0) automatically adds an attention_mask input"
)
if config.model_type in ["idefics", "idefics2", "idefics3"]:
self.skipTest(reason="Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
if config.model_type == "sam":
self.skipTest(reason="SAM requires an attention_mask input for relative positional embeddings")
model = model_class(config)
sub_models_supporting_sdpa = [
module._supports_sdpa
for name, module in model.named_modules()
if isinstance(module, PreTrainedModel) and name != ""
]
supports_sdpa_all_modules = (
all(sub_models_supporting_sdpa) if len(sub_models_supporting_sdpa) > 0 else model._supports_sdpa
)
if not supports_sdpa_all_modules:
self.skipTest(reason="This models' submodels does not support sdpa")
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, dtype=torch.float16, attn_implementation="sdpa")
model.to(torch_device)
inputs_dict.pop("attention_mask", None)
inputs_dict.pop("decoder_attention_mask", None)
for name, inp in inputs_dict.items():
if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
inputs_dict[name] = inp.to(torch.float16)
with sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
_ = model(**inputs_dict)
@require_torch_accelerator
@pytest.mark.torch_compile_test
@slow
def test_sdpa_can_compile_dynamic(self):
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
device_type, major, minor = get_device_properties()
if device_type == "cuda" and major < 8:
self.skipTest(reason="This test requires an NVIDIA GPU with compute capability >= 8.0")
elif device_type == "rocm" and major < 9:
self.skipTest(reason="This test requires an AMD GPU with compute capability >= 9.0")
elif device_type not in ["cuda", "rocm", "xpu"]:
self.skipTest(reason="This test requires a Nvidia or AMD GPU, or an Intel XPU")
torch.compiler.reset()
for model_class in self.all_model_classes:
if not model_class._supports_sdpa:
self.skipTest(f"{model_class.__name__} does not support SDPA")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
if config.model_type == "dbrx":
self.skipTest(
"DBRX (transformers==4.40) requires a modification to support dynamic shapes with compile."
)
if getattr(config, "cache_implementation", None) == "hybrid":
self.skipTest(
"Cannot compile forward without an existing cache with Hybrid, as `torch._dynamo.mark_static_address` "
"is a forbidden call."
)
model = model_class(config)
sub_models_supporting_sdpa = [
module._supports_sdpa
for name, module in model.named_modules()
if isinstance(module, PreTrainedModel) and name != ""
]
supports_sdpa_all_modules = (
all(sub_models_supporting_sdpa) if len(sub_models_supporting_sdpa) > 0 else model._supports_sdpa
)
if not supports_sdpa_all_modules:
self.skipTest(reason="This models' submodels does not support sdpa")
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, dtype=torch.float16, attn_implementation="sdpa")
model.to(torch_device)
# For PyTorch 2.1 - 2.3.0 set `dynamic=True`. In the future setting `dynamic=None` and using `torch._dynamo.mark_dynamic()`
# on input tensors will be required. `mark_dynamic` currently raises inconsistent shape errors.
model = torch.compile(model, dynamic=True)
inputs_dict.pop("attention_mask", None)
inputs_dict.pop("decoder_attention_mask", None)
for name, inp in inputs_dict.items():
if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
inputs_dict[name] = inp.to(torch.float16)
# use no_grad to save some memory
with torch.no_grad():
_ = model(**inputs_dict)
def flash_attn_can_dispatch_composite_models(self, attn_implementation: str):
"""
Tests if composite models can dispatch on flash attention if the sub-models support it.
The tests is needed as we handle differently composite models and we cannot check them
with above tests. If any of the sub-models does not support flash attention, we'll raise an error when dispatching
that particular sub-model. Otherwise we dispatch safely in all sub-models, where "sub-models" are specific
backbone models (LM/vision/audio/etc)
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not is_torch_bf16_available_on_device(torch_device):
self.skipTest(f"bfloat16 not supported on {torch_device} (on the specific device currently used)")
dtype = torch.bfloat16
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
if not self._is_composite:
self.skipTest("This model is not a composite model!")
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, dtype=dtype)
sub_models_supporting_fa = [
module._supports_flash_attn
for name, module in model.named_modules()
if isinstance(module, PreTrainedModel) and name != ""
]
supports_fa_all_modules = (
all(sub_models_supporting_fa) if len(sub_models_supporting_fa) > 0 else model._supports_flash_attn
)
if not supports_fa_all_modules:
with self.assertRaises(ValueError):
model_fa = model_class.from_pretrained(
tmpdirname,
dtype=dtype,
attn_implementation=attn_implementation,
)
else:
model_fa = model_class.from_pretrained(
tmpdirname, dtype=dtype, attn_implementation=attn_implementation
)
for key in model_fa.config:
if isinstance(getattr(model_fa.config, key), PreTrainedConfig):
sub_config = getattr(model_fa.config, key)
self.assertTrue(sub_config._attn_implementation == attn_implementation)
has_fa = False
for name, submodule in model_fa.named_modules():
class_name = submodule.__class__.__name__
if (
"Attention" in class_name
and getattr(submodule, "config", None)
and submodule.config._attn_implementation == attn_implementation
):
has_fa = True
break
if not has_fa:
raise ValueError(f"The {attn_implementation} model should have {attn_implementation} layers")
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
def test_flash_attn_2_can_dispatch_composite_models(self):
self.flash_attn_can_dispatch_composite_models(attn_implementation="flash_attention_2")
@require_flash_attn_3
@require_torch_gpu
@mark.flash_attn_3_test
def test_flash_attn_3_can_dispatch_composite_models(self):
self.flash_attn_can_dispatch_composite_models(attn_implementation="flash_attention_3")
@require_flash_attn
@require_torch_gpu
@require_bitsandbytes
@mark.flash_attn_test
@slow
def test_flash_attn_2_fp32_ln(self):
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
for model_class in self.all_generative_model_classes: # TODO: this test should run on all classes instead
if not model_class._supports_flash_attn:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_input = inputs_dict[model.main_input_name]
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
batch_size = dummy_attention_mask.shape[0]
is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size
# To avoid errors with padding_side=="right"
if is_padding_right:
dummy_attention_mask = torch.ones_like(dummy_input)
model = model_class.from_pretrained(
tmpdirname,
dtype=torch.float16,
attn_implementation="flash_attention_2",
quantization_config=BitsAndBytesConfig(load_in_4bit=True),
)
for _, param in model.named_parameters():
# upcast only layer norms
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
param.data = param.data.to(torch.float32)
if model.config.is_encoder_decoder:
dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
_ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
# with attention mask
_ = model(
dummy_input,
attention_mask=dummy_attention_mask,
decoder_input_ids=dummy_decoder_input_ids,
decoder_attention_mask=dummy_decoder_attention_mask,
)
else:
_ = model(dummy_input)
# with attention mask
_ = model(dummy_input, attention_mask=dummy_attention_mask)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@pytest.mark.torch_compile_test
@slow
def test_flash_attn_2_can_compile_with_attention_mask_None_without_graph_break(self):
if version.parse(torch.__version__) < version.parse("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
if not hasattr(self, "_torch_compile_train_cls"):
self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_train_cls`.")
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not is_torch_fp16_available_on_device(torch_device):
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
torch.compiler.reset()
dtype = torch.float16
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
cls = self._torch_compile_train_cls # e.g. LlamaFroCausalLM
model = cls._from_config(config, attn_implementation="flash_attention_2").to(device=torch_device, dtype=dtype)
inputs = {
"input_ids": torch.randint(low=1, high=model.config.vocab_size, size=(2, 10), device=torch_device),
"labels": torch.randint(low=1, high=model.config.vocab_size, size=(2, 10), device=torch_device),
}
model = torch.compile(model, fullgraph=True)
# forward compilation
set_seed(42)
loss = model(**inputs).loss
# backward compilation
loss.backward()
assert not loss.isnan().any()
def flash_attn_from_config(self, attn_implementation: str, test_fwd_in_train: bool = True):
r"""
Tests if the model can be loaded with `attn_implementation` from the config and if the
weights are not randomly initialized.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
for model_class in self.all_generative_model_classes: # TODO: this test should run on all classes instead
if not model_class._supports_flash_attn:
self.skipTest(f"{model_class.__name__} does not support {attn_implementation}")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# TODO: to change it in the future with other relevant auto classes
fa_model = model_class._from_config(
config, attn_implementation=attn_implementation, dtype=torch.bfloat16
).to(torch_device)
# By default, we perform the forward pass in train mode, because it's more sctrict than eval mode. If the
# forward pass is successful in train mode, it will also be successful in eval mode. But since some models
# (eg. gemma3) need different inputs in train mode we have the option to test the forward pass in eval mode.
if test_fwd_in_train:
fa_model = fa_model.train()
else:
fa_model = fa_model.eval()
dummy_input = inputs_dict[fa_model.main_input_name]
if dummy_input.dtype in [torch.float32, torch.float16]:
dummy_input = dummy_input.to(torch.bfloat16)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
if fa_model.config.is_encoder_decoder:
dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
_ = fa_model(
dummy_input,
attention_mask=dummy_attention_mask,
decoder_input_ids=dummy_decoder_input_ids,
decoder_attention_mask=dummy_decoder_attention_mask,
)
else:
_ = fa_model(dummy_input, attention_mask=dummy_attention_mask)
with tempfile.TemporaryDirectory() as tmpdirname:
fa_model.save_pretrained(tmpdirname)
model_from_pretrained = model_class.from_pretrained(tmpdirname)
self.assertTrue(model_from_pretrained.config._attn_implementation != attn_implementation)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_flash_attn_2_from_config(self):
self.flash_attn_from_config(attn_implementation="flash_attention_2")
@require_flash_attn_3
@require_torch_gpu
@mark.flash_attn_3_test
@slow
def test_flash_attn_3_from_config(self):
self.flash_attn_from_config(attn_implementation="flash_attention_3")
def test_sliding_window_mask(self):
"""Tests that we can control the sliding window attention behavior of a model."""
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
if not self.has_attentions:
self.skipTest(reason="Model does not support output_attentions")
if not (hasattr(config, "sliding_window") and hasattr(config, "use_sliding_window")):
self.skipTest(reason="Model does not support sliding window mask")
seq_len = self.model_tester.seq_length
batch_size = self.model_tester.batch_size
sliding_window = 3 # set to arbitrary small number
sliding_mask = torch.zeros((seq_len, seq_len), dtype=torch.bool)
for i in range(seq_len):
start = max(0, i - sliding_window + 1)
sliding_mask[i, start : i + 1] = True
sliding_mask = sliding_mask.to(torch_device)
config.sliding_window = sliding_window
inputs["attention_mask"] = torch.ones(batch_size, seq_len).to(torch.int64).to(torch_device)
for model_class in self.all_model_classes:
# Set sliding window to `True` and check that all tokens beyond window size are masked
config.use_sliding_window = True
config_dict = config.to_diff_dict()
config_dict.pop("layer_types", None)
config_dict.pop("rope_parameters", None)
new_config = config.__class__(**config_dict)
# We need to set eager as otherwise `output_attentions` is not supported
model = model_class._from_config(new_config, attn_implementation="eager").to(torch_device)
model.eval()
layer_types = getattr(model.config, "layer_types", ["sliding_attention"] * config.num_hidden_layers)
attentions = model(**inputs, output_attentions=True).attentions
for layer_attention, layer_type in zip(attentions, layer_types):
if layer_type == "sliding_attention":
self.assertTrue((layer_attention[:, :, ~sliding_mask] == 0).all().item())
else:
self.assertFalse((layer_attention[:, :, ~sliding_mask] == 0).all().item())
# Set sliding window to `False` while keeping `sliding_window=3`
# Check that all tokens beyond window size are not masked
config.use_sliding_window = False
config_dict = config.to_diff_dict()
config_dict.pop("layer_types", None)
config_dict.pop("rope_parameters", None)
new_config = config.__class__(**config_dict)
# We need to set eager as otherwise `output_attentions` is not supported
model = model_class._from_config(new_config, attn_implementation="eager").to(torch_device)
model.eval()
attentions_not_sliding = model(**inputs, output_attentions=True).attentions
for layer_attention in attentions_not_sliding:
self.assertFalse((layer_attention[:, :, ~sliding_mask] == 0).all().item())
@slow
@require_torch_accelerator
@pytest.mark.torch_compile_test
def test_torch_compile_for_training(self):
if version.parse(torch.__version__) < version.parse("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
if getattr(self, "_torch_compile_train_cls", None) is None:
self.skipTest(f"{self.__class__.__name__} doesn't have the attribute `_torch_compile_train_cls`.")
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
cls = self._torch_compile_train_cls
attn_implementation = getattr(self, "_torch_compile_train_attn_implementation", None)
if attn_implementation is not None:
config._attn_implementation = attn_implementation
model = cls(config).to(torch_device)
inputs = {
"input_ids": torch.randint(low=1, high=model.config.vocab_size, size=(2, 10), device=torch_device),
"attention_mask": torch.tensor(
[[1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
dtype=torch.int64,
device=torch_device,
),
"position_ids": torch.arange(0, 10, device=torch_device).unsqueeze(0),
"labels": torch.randint(low=1, high=model.config.vocab_size, size=(2, 10), device=torch_device),
"use_cache": False,
}
# eager backward
set_seed(42)
loss = model(**inputs).loss
loss.backward()
params = {name: param.grad.detach().to(device="cpu", copy=True) for name, param in model.named_parameters()}
model.zero_grad()
del loss
model = torch.compile(model, fullgraph=True, mode="reduce-overhead")
# forward compilation
set_seed(42)
loss = model(**inputs).loss
# backward compilation
loss.backward()
# check grad matches
for name, param in model._orig_mod.named_parameters():
torch.testing.assert_close(param.grad.detach().cpu(), params[name], rtol=1e-4, atol=1e-4)
@slow
@require_torch_greater_or_equal("2.5")
@pytest.mark.torch_export_test
def test_torch_export(self, config=None, inputs_dict=None, tolerance=1e-4):
"""
Test if model can be exported with torch.export.export()
Args:
config (PreTrainedConfig):
Config to use for the model, if None, use default config from model_tester
inputs_dict (dict):
Inputs to use for the model, if None, use default inputs from model_tester
tolerance (float):
`atol` for torch.allclose(), defined in signature for test overriding
"""
if not self.test_torch_exportable:
self.skipTest(reason="test_torch_exportable=False for this model.")
def recursively_check(eager_outputs, exported_outputs):
is_tested = False
if isinstance(eager_outputs, torch.Tensor):
torch.testing.assert_close(eager_outputs, exported_outputs, atol=tolerance, rtol=tolerance)
return True
elif isinstance(eager_outputs, (tuple, list)):
for eager_output, exported_output in zip(eager_outputs, exported_outputs):
is_tested = is_tested or recursively_check(eager_output, exported_output)
return is_tested
elif isinstance(eager_outputs, dict):
for key in eager_outputs:
is_tested = is_tested or recursively_check(eager_outputs[key], exported_outputs[key])
return is_tested
return is_tested
default_config, default_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config = config or default_config
inputs_dict = inputs_dict or default_inputs_dict
for model_class in self.all_model_classes:
if model_class.__name__.endswith("ForPreTraining"):
continue
with self.subTest(model_class.__name__):
model = model_class(config).eval().to(torch_device)
# Export model
exported_model = torch.export.export(
model, args=(), kwargs=inputs_dict, strict=getattr(self, "test_torch_exportable_strictly", True)
)
# Run exported model and eager model
with torch.no_grad():
# set seed in case anything is not deterministic in model (e.g. vit_mae noise)
torch.manual_seed(1234)
eager_outputs = model(**inputs_dict)
torch.manual_seed(1234)
exported_outputs = exported_model.module().forward(**inputs_dict)
# Check if outputs are close:
# is_tested is a boolean flag indicating if we compare any outputs,
# e.g. there might be a situation when outputs are empty list, then is_tested will be False.
# In case of outputs are different the error will be raised in `recursively_check` function.
is_tested = recursively_check(eager_outputs, exported_outputs)
self.assertTrue(is_tested, msg=f"No outputs were compared for {model_class.__name__}")
@staticmethod
def _prepare_config_headdim(config, requested_dim):
"""
This method allows to update the head dim for all model types including
composite models and models that do not support head dim by themselves.
Why? A lot of kernels including flex attention rely on triton for compilation.
However, triton cannot handle hidden dimensions of less than 16 for example.
(There are many more examples especially now that the `kernels` library is
supported)
"""
config = copy.deepcopy(config)
def update_config_headdim(config, requested_dim):
# Flex Attention cannot use dropout
if hasattr(config, "attention_dropout"):
config.attention_dropout = 0
if hasattr(config, "attention_probs_dropout_prob"):
config.attention_probs_dropout_prob = 0
# Update the head dim and try to update hidden size as well if present in config
# NOTE: some models may have none if the values in sub-config, thus we check for `Noneness`
head_dim = None
if hasattr(config, "head_dim") and config.head_dim is not None:
head_dim = config.head_dim
config.head_dim = max(requested_dim, config.head_dim)
cross_head_dim = None
if hasattr(config, "cross_head_dim") and config.cross_head_dim is not None:
cross_head_dim = config.cross_head_dim
config.cross_head_dim = max(requested_dim, config.cross_head_dim)
if (
getattr(config, "hidden_size", None) is not None
and getattr(config, "num_attention_heads", None) is not None
):
head_dim = head_dim if head_dim is not None else config.hidden_size // config.num_attention_heads
config.hidden_size *= max(requested_dim // head_dim, 1)
if (
getattr(config, "decoder_hidden_size", None) is not None
and getattr(config, "decoder_num_attention_heads", None) is not None
):
decoder_head_dim = config.decoder_hidden_size // config.decoder_num_attention_heads
config.decoder_hidden_size *= max(requested_dim // decoder_head_dim, 1)
if (
getattr(config, "cross_hidden_size", None) is not None
and getattr(config, "cross_num_attention_heads", None) is not None
):
cross_head_dim = (
cross_head_dim
if cross_head_dim is not None
else config.cross_hidden_size // config.cross_num_attention_heads
)
config.cross_hidden_size *= max(requested_dim // cross_head_dim, 1)
# 3d rope also depends on the head dim
# (we assume easy shapes here where we get to the requested head dim at least)
if (
getattr(config, "rope_parameters", None) is not None
and len(config.rope_parameters.get("mrope_section", [])) > 0
):
scaling_factor = max(requested_dim // (sum(config.rope_parameters["mrope_section"]) * 2), 1)
config.rope_parameters["mrope_section"] = [
section * scaling_factor for section in config.rope_parameters["mrope_section"]
]
# Update config values
update_config_headdim(config, requested_dim)
for key in config.sub_configs:
if getattr(config, key) is not None:
sub_config = getattr(config, key)
update_config_headdim(sub_config, requested_dim)
return config
@require_torch_accelerator
def test_flex_attention_with_grads(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config).to(device=torch_device)
# If not all sub-models support flex, skip the test
if not all(
submodel._supports_flex_attn for submodel in model.modules() if isinstance(submodel, PreTrainedModel)
):
self.skipTest(reason="At least some parts of this model do not support flex attention")
# Set default attention to flex and update config values
config = self._prepare_config_headdim(config, 16) # specific to triton
if model_class._can_set_attn_implementation():
model = model_class(config).to(device=torch_device)
model.set_attn_implementation("flex_attention")
self.assertTrue(model.config._attn_implementation == "flex_attention")
else:
config._attn_implementation = "flex_attention"
model = model_class(config).to(device=torch_device)
# Elaborate workaround for encoder-decoder models as some do not specify their main input
dummy_inputs = {model.main_input_name: inputs_dict[model.main_input_name].to(torch_device)}
for key in getattr(self, "additional_model_inputs", []):
# Some models don't have all `additional_model_inputs`, especially when we
# craft cases to test model in different settings
if key in inputs_dict:
dummy_inputs[key] = inputs_dict[key].to(torch_device)
if config.is_encoder_decoder:
dummy_inputs["decoder_input_ids"] = inputs_dict["decoder_input_ids"].to(torch_device)
dummy_inputs["decoder_attention_mask"] = inputs_dict["decoder_attention_mask"].to(torch_device)
# If this does not raise an error, the test passes (see https://github.com/huggingface/transformers/pull/35605)
_ = model(**dummy_inputs)
def test_generation_tester_mixin_inheritance(self):
"""
Ensures that we have the generation tester mixin if the model can generate. The test will fail otherwise,
forcing the mixin to be added -- and ensuring proper test coverage
"""
if len(self.all_generative_model_classes) > 0:
self.assertTrue(
issubclass(self.__class__, GenerationTesterMixin),
msg=(
"This model can call `generate` from `GenerationMixin`, so one of two things must happen: 1) the "
"tester must inherit from `GenerationTesterMixin` to run `generate` tests, or 2) if the model "
"doesn't fully support the original `generate` or has a custom `generate` with partial feature "
"support, the tester must overwrite `all_generative_model_classes` to skip the failing classes "
"(make sure to comment why). If `all_generative_model_classes` is overwritten as `()`, then we "
"need to remove the `GenerationTesterMixin` inheritance -- no `generate` tests are being run."
),
)
else:
self.assertFalse(
issubclass(self.__class__, GenerationTesterMixin),
msg=(
"This model can't call `generate`, so its tester can't inherit `GenerationTesterMixin`. (If you "
"think the model should be able to `generate`, the model may be missing the `GenerationMixin` "
"inheritance)"
),
)
def test_can_be_initialized_on_meta(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# If it does not raise here, the test passes
with torch.device("meta"):
_ = model_class(copy.deepcopy(config))
@require_torch_accelerator
def test_can_load_with_device_context_manager(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Need to specify index 0 here, as `torch_device` is simply the str of the type, e.g. "cuda"
device = torch.device(torch_device, index=0)
for model_class in self.all_model_classes:
# Need to deepcopy here as it is modified in-place in save_pretrained (it sets sdpa for default attn, which
# is not supported for e.g. dpt_hybrid)
model = model_class(copy.deepcopy(config))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
with device:
new_model = model_class.from_pretrained(tmpdirname)
unique_devices = {param.device for param in new_model.parameters()} | {
buffer.device for buffer in new_model.buffers()
}
self.assertEqual(
unique_devices, {device}, f"All parameters should be on {device}, but found {unique_devices}."
)
# Here we need to run with a subprocess as otherwise setting back the default device to the default value ("cpu")
# may bring unwanted consequences on other tests. See PR #37553
@run_first
@run_test_using_subprocess
@require_torch_accelerator
def test_can_load_with_global_device_set(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Need to specify index 0 here, as `torch_device` is simply the str of the type, e.g. "cuda"
device = torch.device(torch_device, index=0)
default_device = torch.get_default_device()
for model_class in self.all_model_classes:
# Need to deepcopy here as it is modified in-place in save_pretrained (it sets sdpa for default attn, which
# is not supported for e.g. dpt_hybrid)
model = model_class(copy.deepcopy(config))
# set a global gpu device
torch.set_default_device(device)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
new_model = model_class.from_pretrained(tmpdirname)
unique_devices = {param.device for param in new_model.parameters()} | {
buffer.device for buffer in new_model.buffers()
}
# set back the correct device
torch.set_default_device(default_device)
self.assertEqual(
unique_devices, {device}, f"All parameters should be on {device}, but found {unique_devices}."
)
def test_cannot_load_with_meta_device_context_manager(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Need to deepcopy here as it is modified in-place in save_pretrained (it sets sdpa for default attn, which
# is not supported for e.g. dpt_hybrid)
model = model_class(copy.deepcopy(config))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
with torch.device("meta"):
with self.assertRaisesRegex(
RuntimeError, "You are using `from_pretrained` with a meta device context manager"
):
_ = model_class.from_pretrained(tmpdirname)
def test_config_attn_implementation_setter(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
def check_attn_implementation_setter(config: PreTrainedConfig, attn_implementation: str):
if not config._attn_implementation == attn_implementation:
raise ValueError(
f"Unexpected attn_implementation for config {config.__class__.__name__}: "
f"{config._attn_implementation} != {attn_implementation}"
)
for attribute_value in config.__dict__.values():
if isinstance(attribute_value, PreTrainedConfig):
check_attn_implementation_setter(attribute_value, attn_implementation)
# Check that attention implementation can be passed with init args
config_dict = config.to_diff_dict()
config_dict.pop("_attn_implementation_internal", None)
config_dict.pop("_attn_implementation", None)
config_dict["attn_implementation"] = "eager"
config = type(config)(**config_dict)
check_attn_implementation_setter(config, "eager")
# Check that attention implementation can be set to different value
config._attn_implementation = "sdpa"
check_attn_implementation_setter(config, "sdpa")
config._attn_implementation = "eager"
check_attn_implementation_setter(config, "eager")
def test_internal_model_config_and_subconfig_are_same(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
subconfig_keys = list(config.sub_configs.keys())
for model_class in self.all_model_classes:
if len(config.sub_configs) == 0:
self.skipTest(reason="No subconfigs so the test does not make sense")
# Need to deepcopy here to avoid changing the _attn_implementation in-place
model = model_class(copy.deepcopy(config))
for submodule in model.modules():
# This is a submodel
if isinstance(submodule, PreTrainedModel) and submodule.config.__class__ != model.config.__class__:
subconfig_from_model_internal = submodule.config
matching_sub_configs = []
for subconfig_key in subconfig_keys:
# Get the subconfig from the model config
subconfig_from_model_config = getattr(model.config, subconfig_key)
if (
subconfig_from_model_config is not None
and subconfig_from_model_config.__class__ == subconfig_from_model_internal.__class__
):
# Since some composite models have different submodels parameterized by 2 of the same config
# class instances, we need to check against a list of matching classes, and check that at least
# 1 is the exact object (instead of checking immediately for similar object)
matching_sub_configs.append(subconfig_from_model_config)
# Both should be exactly the same object, that is when instantiating the submodel when should
# absolutely not copy the subconfig
if len(matching_sub_configs) > 0:
self.assertTrue(
any(
subconfig_from_model_config is subconfig_from_model_internal
for subconfig_from_model_config in matching_sub_configs
)
)
def test_can_set_attention_dynamically(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class._can_set_attn_implementation():
self.skipTest(reason="This model does not support setting its attention dynamically")
# Need to deepcopy here to avoid changing the _attn_implementation in-place
model_config = copy.deepcopy(config)
# Set eager everywhere (it sets it recursively on subconfigs)
model_config._attn_implementation = "eager"
model = model_class(model_config)
# sanity check to make sure everything is correctly eager
self.assertTrue(model.config._attn_implementation == "eager")
for subconfig_key in model.config.sub_configs:
if getattr(config, subconfig_key) is not None:
self.assertTrue(getattr(model.config, subconfig_key)._attn_implementation == "eager")
if not all(
submodule._can_set_attn_implementation()
for submodule in model.modules()
if isinstance(submodule, PreTrainedModel)
):
self.skipTest(reason="Parts of this model cannot set attention dynamically")
# Some old models technically should support switching, but don't have the flags active...
if not all(
submodule._supports_sdpa for submodule in model.modules() if isinstance(submodule, PreTrainedModel)
):
self.skipTest(reason="Parts of this model don't support sdpa")
# Now, set it to sdpa
model.set_attn_implementation("sdpa")
# Check everything was correctly changed
self.assertTrue(model.config._attn_implementation == "sdpa")
for subconfig_key in model.config.sub_configs:
if getattr(config, subconfig_key) is not None:
self.assertTrue(getattr(model.config, subconfig_key)._attn_implementation == "sdpa")
# Check we cannot set it to random values, and it raises an error
with self.assertRaisesRegex(ValueError, 'Specified `attn_implementation="foo"` is not supported'):
model.set_attn_implementation("foo")
# Should still be sdpa everywhere
self.assertTrue(model.config._attn_implementation == "sdpa")
for subconfig_key in model.config.sub_configs:
if getattr(config, subconfig_key) is not None:
self.assertTrue(getattr(model.config, subconfig_key)._attn_implementation == "sdpa")
def test_can_set_attention_dynamically_composite_model(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class._can_set_attn_implementation():
self.skipTest(reason="This model does not support setting its attention dynamically")
if not self._is_composite:
self.skipTest(reason="This model is not composite")
# Need to deepcopy here to avoid changing the _attn_implementation in-place
model_config = copy.deepcopy(config)
# Set eager everywhere (it sets it recursively on subconfigs)
model_config._attn_implementation = "eager"
model = model_class(model_config)
# sanity check to make sure everything is correctly eager
self.assertTrue(model.config._attn_implementation == "eager")
for subconfig_key in model.config.sub_configs:
if getattr(config, subconfig_key) is not None:
self.assertTrue(getattr(model.config, subconfig_key)._attn_implementation == "eager")
if not all(
submodule._can_set_attn_implementation()
for submodule in model.modules()
if isinstance(submodule, PreTrainedModel)
):
self.skipTest(reason="Parts of this model cannot set attention dynamically")
# Now, set only top-most to sdpa (should support it if it supports the dynamic switch)
model.set_attn_implementation({"": "sdpa"})
# Check only top-most was correctly changed
self.assertTrue(model.config._attn_implementation == "sdpa")
for subconfig_key in model.config.sub_configs:
if getattr(config, subconfig_key) is not None:
self.assertTrue(getattr(model.config, subconfig_key)._attn_implementation == "eager")
@require_torch
def test_bc_torch_dtype(self):
"""
Test that we can still use `torch_dtype` argument correctly, for BC.
"""
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if "TimmBackbone" in model_class.__name__:
self.skipTest("TimmBackbone should not run this test")
# First check that it works correctly
model = model_class(copy.deepcopy(config))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
# Check that it works for all dtypes
for dtype in ["float16", "bfloat16", "float32", "auto", torch.float16, torch.bfloat16, torch.float32]:
model_torch_dtype = model_class.from_pretrained(tmpdirname, torch_dtype=dtype)
model_dtype = model_class.from_pretrained(tmpdirname, dtype=dtype)
for (k1, v1), (k2, v2) in zip(
model_torch_dtype.named_parameters(), model_dtype.named_parameters()
):
self.assertEqual(k1, k2)
self.assertEqual(v1.dtype, v2.dtype)
self.assertTrue((v1 == v2).all())
global_rng = random.Random()
def ids_tensor(shape, vocab_size, rng=None, name=None):
# Creates a random int32 tensor of the shape within the vocab size
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
def random_attention_mask(shape, rng=None, name=None):
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
# make sure that at least one token is attended to for each batch
# we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
attn_mask[:, 0] = 1
return attn_mask
def floats_tensor(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()