# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Run the test: CUDA_VISIBLE_DEVICES=0,1 RUN_SLOW=1 pytest -sv tests/tensor_parallel/test_tensor_parallel.py import os import tempfile import textwrap from transformers import is_torch_available from transformers.integrations.tensor_parallel import get_packed_weights, repack_weights from transformers.testing_utils import ( TestCasePlus, backend_device_count, require_huggingface_hub_greater_or_equal, require_torch_multi_accelerator, torch_device, torchrun, ) if is_torch_available(): import torch class TestTensorParallelUtils(TestCasePlus): def test_packed_unpacked_conversion(self): WORLD_SIZE = 2 PACKED_BLOCK_SIZE = 800 SHARDING_DIM = 2 NUM_BLOCKS = 2 original_packed_weights = torch.randn(4, 512, 2 * PACKED_BLOCK_SIZE) original_packed_weights.get_dtype = lambda: "F32" # get_packed_weights expects PySlice object empty_param = torch.empty(4, 512, 2 * PACKED_BLOCK_SIZE) class MockDeviceMesh: def size(self): return WORLD_SIZE mock_mesh = ( MockDeviceMesh() ) # get_packed_weights only calls `.size()`, do this to avoid doing actual distributed run packed_weights_0 = get_packed_weights(original_packed_weights, empty_param, mock_mesh, 0, SHARDING_DIM) packed_weights_1 = get_packed_weights(original_packed_weights, empty_param, mock_mesh, 1, SHARDING_DIM) # simulate all gather of sharded weights packed_weights = torch.cat([packed_weights_0, packed_weights_1], dim=SHARDING_DIM) unpacked_weights = repack_weights(packed_weights, SHARDING_DIM, WORLD_SIZE, NUM_BLOCKS) assert torch.allclose(unpacked_weights, original_packed_weights) class TestTensorParallel(TestCasePlus): nproc_per_node = 2 def test_model_forward(self): script_to_run = textwrap.dedent( """ import torch import os from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "JackFram/llama-68m" rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", tp_plan="auto") torch.distributed.barrier() has_dtensor = 0 for name, parameter in model.named_parameters(): if isinstance(parameter.data, torch.distributed.tensor.DTensor): has_dtensor = 1 break assert has_dtensor == 1, "TP model must has DTensor" tokenizer = AutoTokenizer.from_pretrained(model_id, legacy=False) prompt = "Can I help" inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) outputs = model(inputs) next_token_logits = outputs[0][:, -1, :] next_token = torch.argmax(next_token_logits, dim=-1) response = tokenizer.decode(next_token) assert response == "with" torch.distributed.barrier() torch.distributed.destroy_process_group() """ ) torchrun(script_to_run, self.nproc_per_node, env=self.get_env()) def test_model_backward_pass(self): script_to_run = textwrap.dedent( """ import torch import os from transformers import AutoModelForCausalLM from torch import nn model_id = "JackFram/llama-68m" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, tp_plan="auto") torch.distributed.barrier() # Dummy forward and backward pass # Note that loss.backward() will fail if there is a bug in the TP implementation inputs = torch.randint(0, model.config.vocab_size, (2, 10), device=model.device) labels = torch.randint(0, model.config.vocab_size, (2, 10), device=model.device) loss = model(inputs, labels=labels).loss loss.backward() torch.distributed.barrier() torch.distributed.destroy_process_group() """ ) torchrun(script_to_run, self.nproc_per_node, env=self.get_env()) def test_model_generate(self): script_to_run = textwrap.dedent( """ import torch import os from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "JackFram/llama-68m" rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", tp_plan="auto") torch.distributed.barrier() model.forward = torch.compile(model.forward) has_dtensor = 0 for name, parameter in model.named_parameters(): if isinstance(parameter.data, torch.distributed.tensor.DTensor): has_dtensor = 1 break assert has_dtensor == 1, "TP model must has DTensor" tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Can I help" inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) outputs = model.generate(inputs, max_new_tokens=10, cache_implementation="static") output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) assert output_text[0].startswith(prompt), f"Expected output to start with '{prompt}', got '{output_text[0]}'" torch.distributed.barrier() torch.distributed.destroy_process_group() """ ) torchrun(script_to_run, self.nproc_per_node, env=self.get_env()) @require_huggingface_hub_greater_or_equal("0.31.4") def test_model_save(self): from safetensors import safe_open with tempfile.TemporaryDirectory() as tmp_dir: for is_torchrun in [True, False]: script_to_run = textwrap.dedent( f""" import torch import os from transformers import AutoModelForCausalLM model_id = "JackFram/llama-68m" kwargs = dict() if os.environ.get("RANK", None) is not None: kwargs["tp_plan"] = "auto" result_dir = "{tmp_dir}/tp" else: result_dir = "{tmp_dir}/nontp" model = AutoModelForCausalLM.from_pretrained(model_id, **kwargs) model.save_pretrained(result_dir) """ ) torchrun(script_to_run, self.nproc_per_node, is_torchrun=is_torchrun, env=self.get_env()) non_tp_model_path = os.path.join(tmp_dir, "nontp") tp_model_path = os.path.join(tmp_dir, "tp") for filename in os.listdir(non_tp_model_path): if not filename.endswith(".safetensors"): continue non_tp_model = safe_open(os.path.join(non_tp_model_path, filename), device="cpu", framework="pt") tp_model = safe_open(os.path.join(tp_model_path, filename), device="cpu", framework="pt") for non_tp_key in non_tp_model.keys(): non_tp_tensor = non_tp_model.get_tensor(non_tp_key) tp_tensor = tp_model.get_tensor(non_tp_key) assert torch.allclose(non_tp_tensor, tp_tensor), f"Tensor with key: {non_tp_key} does not match" del non_tp_tensor, tp_tensor @require_torch_multi_accelerator class TestTensorParallelAccelerator(TestTensorParallel): nproc_per_node = backend_device_count(torch_device)