Compare commits

..

282 Commits

Author SHA1 Message Date
b54358e4cf feat: rework widgets 2025-06-10 17:03:21 +02:00
2274ce74a7 feat: add a ContinuousBatchingVisualizer 2025-06-06 19:04:29 +02:00
5009252a05 Better CI (#38552)
better CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 17:59:14 +02:00
2e889c18e1 fix torch_dtype on awq (#38463)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-06 17:14:00 +02:00
871901cb3d fix total batch size calculation in trainer (#38286)
* fix total batch size calculation

* update

Signed-off-by: inkcherry <mingzhi.liu@intel.com>

* Update src/transformers/trainer.py

---------

Signed-off-by: inkcherry <mingzhi.liu@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-06 14:54:00 +00:00
02f946a038 Don't run AriaForConditionalGenerationModelTest on CircleCI (#38615)
git rid of this model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 11:30:31 +02:00
3d15606e64 fix: support grad clipping for TP through replicating non-sharded modules (#36132)
* feat: fix tp grad norm:

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* feat: use implicit replication

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-06 11:07:22 +02:00
fca6748246 Improve test_initialization for SwiftFormer (#38636)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:47:10 +02:00
92a87134ea update ColQwen2ModelIntegrationTest (#38583)
* update

* update

* update

* update

* 4 bit

* 8 bit

* final

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:41:17 +02:00
dbfc79c17c [generation] bring back tests on vision models (#38603)
* bring back geenration tests on VLMs

* remove head mask tests overwritten
2025-06-06 08:23:15 +00:00
90c4b90a10 Use torch 2.7.1 on CircleCI jobs (#37856)
2.7.1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:16:57 +02:00
3e35ea1782 Improve test_initialization (#38607)
* fix flaky init tests

* fix flaky init tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:08:05 +02:00
89542fb81c enable more test cases on xpu (#38572)
* enable glm4 integration cases on XPU, set xpu expectation for blip2

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine wording

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine test case names

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* run

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* add gemma2 and chameleon

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Matrix YAO <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-06 09:29:51 +02:00
31023b6909 Fix MiniMax (docs and integration tests checkpoint) (#38575)
* update checkpoints for integration tests

* minor fixes in docs
2025-06-06 08:43:11 +02:00
593e29c5e2 Updated Aria model card (#38472)
* Update aria.md

* Update aria.md

* Suggested Updates - aria.md
2025-06-05 14:36:54 -07:00
77cf4936fe [Nit] Add Note on SigOpt being in Public Archive Mode (#38610)
* add note on sigopt

* update

* Update docs/source/en/hpo_train.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-05 14:07:23 -07:00
c75bf2c36e Fix typo in LLaVa documentation (#38618)
* Fix typo in LLaVa documentation

In exactly one section, LlavaImageProcessor was spelt wrongly as LLavaImageProcessor, which throws off copy-pasting the section.

* Fix LlavaImageProcessor url to make it valid (and copypaste-able)

Earlier, the URL contained the entire HF prefix. This commit removes that to ensure that the code block can be copied and run as is.
2025-06-05 13:25:07 -07:00
5399c1d670 docs: fix dark mode logo display. (#38586) 2025-06-05 13:06:59 -07:00
481b953170 Fix return_dict=False giving errors in a few VLM models (#38519)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-05 21:19:07 +02:00
88912b8e95 Remove isort from dependencies (#38616)
Removed isort as a dependency
2025-06-05 16:42:49 +00:00
fa921ad854 fix spelling errors (#38608)
* fix errors test_modeling_mllama.py

* fix error test_modeling_video_llava.py

* fix errors test_processing_common.py
2025-06-05 13:57:23 +01:00
0f833528c9 Avoid overwrite existing local implementation when loading remote custom model (#38474)
* avoid overwrite existing local implementation when loading custom remote model

Signed-off-by: Isotr0py <2037008807@qq.com>

* update comments

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-06-05 13:54:40 +01:00
8f630651b0 Allow mlm_probability to be set to None when mlm=False in DataCollatorForLanguageModeling (#38522) (#38537)
* mlm_probability in DataCollatorForLanguageModeling should be validated only when mlm is True (#38522)

* Change mlm_probability to Optional in DataCollatorForLanguageModeling (#38537)

---------

Co-authored-by: eak <eak@ivalua.com>
2025-06-05 13:54:12 +01:00
65f5fa71cd Bump torch from 2.6.0 to 2.7.1 in /examples/flax/vision (#38606)
Bumps [torch](https://github.com/pytorch/pytorch) from 2.6.0 to 2.7.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.6.0...v2.7.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-version: 2.7.1
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-06-05 13:38:02 +01:00
8c59cdb3f8 pin pandas (#38605)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-05 11:33:06 +02:00
8cfcfe58c0 Remove custom pytest and pluggy (#38589)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-05 10:23:40 +02:00
0d69fa6dcd [qwen-omni] fix sliding window (#38525)
fix
2025-06-05 10:11:58 +02:00
1fed6166c0 added fast image processor for ZoeDepth and expanded tests accordingly (#38515)
* added fast image processor for ZoeDepth and expanded tests accordingly

* added fast image processor for ZoeDepth and expanded tests accordingly, hopefully fixed repo consistency issue too now

* final edits for zoedept fast image processor

* final minor edit for zoedepth fast imate procesor
2025-06-04 22:59:17 +00:00
a510be20f3 Updated deprecated typing imports with equivalents for Python 3.9+ (#38546)
* Replace deprecated typing imports with collections.abc equivalents for Python 3.9+

* Fixed code quality

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-06-04 16:57:23 +00:00
8e1266de2b New gpt neo model card (#38505)
* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Commit for new_gpt_model_card.

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-04 09:56:47 -07:00
8046aff520 tests/roformer: fix couple roformer tests on gpus (#38570)
Fix "RuntimeError: Expected all tensors to be on the same device,
but found at least two devices, cuda:0 and cpu" error running the
following roformer tests on GPUs (CUDA or XPU):

```
tests/models/roformer/test_modeling_roformer.py::RoFormerSinusoidalPositionalEmbeddingTest::test_basic
tests/models/roformer/test_modeling_roformer.py::RoFormerSelfAttentionRotaryPositionEmbeddingTest::test_apply_rotary_position_embeddings
```

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-06-04 18:45:56 +02:00
b9c17c5dc0 [Dinov2] Enable device_map="auto" support (#38487)
* Fix: resolve import order and duplicate import (ruff I001, F811)

* Format: clean up Dinov2 test file with ruff formatter

* Add _no_split_modules = ['Dinov2Layer'] to enable device_map='auto'

* Revert dinov2_with_registers _no_split_modules to original state

* Remove redundant device_map test as suggested

* Remove unused import after deleting test

* removed import  torch and the redundant test function

* Update tests/models/dinov2/test_modeling_dinov2.py

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-04 15:42:40 +00:00
ae3733f06e feat: add repository field to benchmarks table (#38582)
* feat: add `repository` field to benchmarks table

* fix: remove unwanted `,`
2025-06-04 15:40:52 +02:00
1285aec4cc Docs: fix code formatting in torchao docs (#38504) 2025-06-04 12:35:21 +00:00
6c5d4b1dd2 allow custom head_dim for qwen2_moe (#37188)
allow custom head_dim

Co-authored-by: ryan.agile <ryan.agile@kakaobrain.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-06-04 12:27:30 +00:00
82fa68ca14 fix(attention_visualizer): add default value for image_seq_length (#38577) 2025-06-04 12:20:31 +00:00
1dc619e59f [FlexAttn] Fix models with unique characteristics (#38433)
* fix

* style

* check

* check 2

* add deepseek workaround
2025-06-04 13:37:28 +02:00
ff3fad61e3 Fix deepseekv3 (#38562)
* fix 1

* fix 2

* fix 3

* fix 4

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-04 11:40:14 +02:00
6085cded38 update utils/notification_service.py for AMD vs Nvidia (#38563)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-04 11:38:25 +02:00
3c995c1fdc Fix chameleon tests (#38565)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-04 10:13:35 +02:00
55736eea99 Add support for MiniMax's MiniMax-Text-01 (#35831)
* end-to-end architecture

* lightning-attn: refactor, clean, optimize

* put minimax_text_01 in other files

* use latest __init__ standards and auto-generate modular

* support attention_mask for lightning-attn

* Revert "use latest __init__ standards and auto-generate modular"

This reverts commit d8d3c409d89e335c98a8cd36f47304a76eac7493.

* fix modular conversion

* pass both attention masks instead of tuple

* formatting

* Updated Dynamic Cache

* created MiniMaxText01Cache

* fix hardcoded slope_rate

* update attn_type_list in config

* fix lightning when use_cache=False

* copy tests from mixtral

* (checkpoint) all tests pass for normal attention

* fix all unittests

* fix import sorting

* fix consistency and formatting tests

* fix config

* update tests, since changes in main

* fix seq_len error

* create dummy docs

* fix checkpoint

* add checkpoint in config docstring

* run modular_conversion

* update docs

* fix checkpoint path and update tests

* fix ruff

* remove repeated expected_slice

* update docs

* rename "minimax-text-01" to "minimax"

* inherit config from mixtral

* remove from docs in other languages

* undo files that should be untouched

* move minimax to end in conversation docs

* use MiniMaxForCausalLM as it is

* ruff fixes

* run modular

* fix docstring example in causallm

* refactor attention loop and decay factors

* refactor config in modular

* run modular

* refactor cache

* rename static_cache to linear_cache

* make positional embeddings necessary

* remove unnecessary layernorms declarations

* fix import in tests

* refactor attention in next tokens

* remove outdated code

* formatting and modular

* update tests

* rename layernorm alpha/beta factors

* register decay factors as buffers

* remove unused declarations of decay factors

* update config for alpha/beta factors

* run modular

* remove head_dim in tests

* remove minimax from fx.py

* remove stuff that is not really needed

* update __init__

* update qkv torch.split

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* fix qkv torch.split

* quality fixes

* remove mistakenly added dummy

* purge unused ModelTester code

* fix-copies

* run fix-copies

* fix head_dim

* write cache formatting tests

* remove postnorm

* avoid contiguous in attention current states

* update expected_slice

* add generation test for integration

* fix dtype in generation test

* update authors

* update with changes in main

* update graident checkpointing and minor fixes

* fix mutable attn_type_list

* rename: attn_type -> layer_type

* update for layer_types

* update integration tests

* update checkpoint

* clean overview in docs

---------

Co-authored-by: Shakib-IO <shakib.khan17@northsouth.edu>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-06-04 09:38:40 +02:00
037acf1d10 [janus] Fix failing tests on mi3XX (#38426)
* Fix multiple devices error on Janus

* Fix AttributeError on Janus BOI token

* Initialize lm first in Janus to get correct device map

* Added expectations for Janus test_model_generate_images

* Fixed JanusVisionEncoderLayer being split across devices

* Code formatting

* Adding modeling file

* Reverted changes out of scope for this PR
2025-06-04 09:38:10 +02:00
78d771c3c2 [docs] Format fix (#38414)
fix table
2025-06-03 09:53:23 -07:00
0f41c41a46 Fix hqq issue (#38551)
* bc

* style
2025-06-03 17:58:31 +02:00
279000bb70 Name change AOPermod -> ModuleFqn (#38456)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-06-03 15:43:31 +00:00
e8b292e35f Fix utils/notification_service.py (#38556)
* fix

* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-03 13:59:31 +00:00
8cb96787a6 Explicitly setting encoding in tokenization_utils_base.py (#38553)
Update tokenization_utils_base.py

Add encoding explicitly
2025-06-03 12:08:35 +00:00
caf708da1b [TP] Change command in tests to python3 (#38555)
* Fix: change to `python3`

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-03 11:03:33 +00:00
fdf86fb440 [bugfix] [WIP] fix apply_rotary_emb error on Ascend NPU (#38491)
[bugfix] fix apply_rotary_emb error on Ascend NPU
2025-06-03 09:31:49 +00:00
ca0a682796 Update docker image to use av (#38548)
* Update

* Update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-03 11:04:41 +02:00
814432423c update emu3 test (#38543)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-06-03 11:02:01 +02:00
55ec319de6 Don't use default attn if pre-set in sub-config (#38526)
* don't use default attn if pre-set in sib-config

* style

* add a test maybe
2025-06-03 07:53:07 +00:00
bf68dd9e6e [tests] expand flex-attn test for vision models (#38434)
* expand the test for VLMs

* typo

* mark models `supports_flex` + expand test for additional kwargs

* flex attn for refactored vision models

* fix copies

* fix

* unskip

* style

* address comments
2025-06-03 07:40:44 +00:00
de4cf5a38e Fix blip2 tests (#38510)
* fix 1: not sure

* fix 2: _supports_flex_attn = False

* fix 3: embedding_output = self.layernorm(query_embeds.to(self.layernorm.weight.dtype))

* fix 4: query_embeds = query_embeds.to(self.layernorm.weight.dtype)

* fix 5: text_embeds = text_embeds.to(dtype=torch.float16)

* fix 5: question_embeds.to(dtype=torch.float16)

* fix 6: text_embeds = text_embeds.to(dtype=self.itm_head.weight.dtype)

* fix 7: image_embeds and question_embeds

* fix 8: fix other 2 fp16 tests

* fix 9: fix T5 OOM

* fix 10: fix T5 OOM

* fix 11: fix T5

* fix 11: fix T5 beam

* fix 12: _supports_sdpa=False

* fix 12: style and expect

* revert

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-02 22:46:35 +02:00
ccc859620a Fix Gemma2IntegrationTest (#38492)
* fix

* fix

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* update

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-02 22:45:09 +02:00
1094dd34f7 Remove type annotation in Siglip Attention Module (#38503)
* Remove type annotation

* remove print statement
2025-06-02 17:51:07 +02:00
afb35a10ed Num parameters in model.safetensors.index.json (#38531)
Num parameters in index.json
2025-06-02 17:16:31 +02:00
cceab972ba [flax/mistral] support sliding_window: null in config (#37402)
flax/mistral: Allow sliding_window to be set to none
2025-06-02 16:45:02 +02:00
1a25fd2f6d Fix amp deprecation issue (#38100)
apex amp is deprecated
2025-06-02 16:15:41 +02:00
05ad826002 remove unhandled parameter (#38145) 2025-06-02 15:57:32 +02:00
c72ba69441 Add ColQwen2 to 🤗 transformers (#35778)
* feat: add colqwen2 (wip)

* tests: fix test_attention_outputs

* tests: reduce hidden size to accelerate tests

* tests: fix `test_attention_outputs` 🥳

* fix: fix wrong parent class for `ColQwen2ForRetrievalOutput`

* fix: minor typing and style changes

* chore: run `make style`

* feat: remove redundant `max_num_visual_tokens` attribute in `ColQwen2Processor`

* tests: tweak comments

* style: apply ruff formatter

* feat: move default values for `visual_prompt_prefix` and `query_prefix`

* docs: update ColQwen2 model card

* docs: tweak model cards

* docs: add required example config checkpoint

* tests: update expected scores in integration test

* docs: tweak quickstart snippets

* fix: address PR comments

* tests: fix colqwen2 tests + tweak comment in colpali test

* tests: unskip useful tests

* fix: fix bug when `visual_prompt_prefix` or `query_prefix` is an empty string

* fix: fix ColPali outputs when `return_dict == False`

* fix: fix issue with PaliGemma output not being a dict

* docs: set default dtype to bfloat16 in quickstart snippets

* fix: fix error when `return_dict=False` in ColPali and ColQwen2

* tests: fix special tokens not being replaced in input_ids

* style: fix lint

* fix: `ColQwen2Processor`'s `padding_side` is now set from `processor_config.json`

* fix: remove unused `padding_side` in ColQwen2 model

* docs: update ColQwen2's model doc

* fix: fix harcoded vlm backbone class in ColQwen2Config

* fix: remove `padding_side` from ColQwen2Processor as should fed from kwargs

* docs: fix typo in model docstring

* docs: add illuin mention in model docs

* fix: let `padding_size` be handled by `tokenizer_config.json`

* docs: add colpali reference url in colqwen2's model doc

* docs: add Hf mention in model docs

* docs: add late interaction mention in model docs

* docs: tweak colqwen2 model doc

* docs: update reference checkpoint for ColPali to v1.3

* docs: simplify quickstart snippets

* docs: remove redundant `.eval()`

* refactor:  use `can_return_tuple` decorator for ColPali and ColQwen2

* docs: fix copyright date

* docs: add missing copyright in tests

* fix: raise error when `initializer_range` is not in config

* docs: remove redundant `.eval()` in colpali doc

* fix: fix `get_text_config` now that Qwen2VL has a proper `text_config` attribute

See https://github.com/huggingface/transformers/pull/37268 for details about changes in Qwen2VL's config.

* fix: add missing `initializer_range` attribute in `ColQwen2Config`

* fix: use `get_text_config` in `resize_token_embeddings`

* update colwen2 with auto_docstring

* docs: fix wrong copyright year

* chore: remove `raise` as `initializer_range` has a default value in `ColQwen2Config`

* refactor: merge `inner_forward` into `forward`

* Refactor colqwen2 after refactoring of qwen2VL, use modular for modeling code

* protect torch import in modular to protect in processing

* protect torch import in modular to protect in processing

* tests: fix hf model path in ColQwen2 integration test

* docs: clarify `attn_implementation` and add comments

* docs: add fallback snippet for using offline PIL dummy images

* docs: temporarily revert attn_implementation to `None` while sdpa is not fixed

* docs: tweaks in colpali/colqwen2 quick start snippets

* fix: add missing flags to enable SDPA/Flex Attention in ColQwen2 model

* fix: add missing changes in modular file

* fix modeling tests

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-06-02 12:58:01 +00:00
beaed8ce01 [generate] move SinkCache to a custom_generate repo (#38399)
remove sink cache
2025-06-02 12:13:30 +02:00
fe5bfaa4b5 [generate] add soft deprecations on custom generation methods (#38406)
soft deprecations
2025-06-02 12:11:46 +02:00
a75b9ffb5c Update Loss Functions to Accept Tensor num_items_in_batch (#38029)
* Update Loss Functions to Accept Tensor num_items_in_batch

* Fix device mismatch by moving num_items_in_batch to loss device in fixed_cross_entropy

* fix the ruff check

* delete the unused if stat

* fix the type problem
2025-06-02 11:31:44 +02:00
493cf1554b [seamless_m4t] Skip some tests when speech is not available (#38430)
* Added the require_speech decorator

* Added require_speecj to some seamless_m4t tests

* Changed skip message
2025-06-02 09:17:28 +00:00
64d14ef28d Fix setting FLASH_ATTENTION_DETERMINISTIC after importing (#37185)
transformers.enable_full_determinism enables deterministic
flash attention using `FLASH_ATTENTION_DETERMINISTIC`
800510c67b/src/transformers/trainer_utils.py (L79)

However, current checks use a global variable `deterministic_g`,
which will do the environment variable check as soon as importing,
this will cause issues as users can call
`transformers.enable_full_determinism` after
`transformers.modeling_flash_attention_utils` is imported. This
behavior is introduced in
https://github.com/huggingface/transformers/pull/33932/files#r1806668579
to fix the graph break.

As a result, this PR implement fixes by delaying the environment variable
check to the first time when `_flash_attention_forward` is executed, so
that we can fix this issue and we won't introduce a graph break.

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-06-02 11:08:20 +02:00
fde1120b6c Remove deprecated use_flash_attention_2 parameter (#37131)
Signed-off-by: cyy <cyyever@outlook.com>
2025-06-02 11:06:25 +02:00
51d732709e [docs] add xpu environment variable for gpu selection (#38194)
* squash commits

* rename gpu

* rename accelerator

* change _toctree.yml

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: sdp <sdp@a4bf01943ff7.jf.intel.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-05-30 16:05:07 +00:00
c7f2b79dd8 protect dtensor import (#38496)
protect
2025-05-30 17:36:00 +02:00
051a8acc9a Align TP check (#38328)
align tp check
2025-05-30 17:15:39 +02:00
e0545ef0b8 [Tests] Reduced model size for albert-test model (#38480)
* Reduced model size for albert-test model

* Run checks

* Removed test_save_load

* Removed test skipping functions
2025-05-30 14:22:32 +00:00
f962c862ff Bump torch from 2.2.0 to 2.6.0 in /examples/flax/vision (#37618)
Bumps [torch](https://github.com/pytorch/pytorch) from 2.2.0 to 2.6.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.2.0...v2.6.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-version: 2.6.0
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-05-30 14:04:52 +01:00
98568d1e25 Fix incorrect bbox_embed initialization when decoder_bbox_embed_share=False in GroundingDINO (#38238)
* A shallow copy in groundingdino
Fixes #37333

* Supprimer une ligne vide dans la classe GroundingDinoForObjectDetection

* Translate comments in the GroundingDinoForObjectDetection class from French to English
2025-05-30 15:02:18 +02:00
d0fccbf7ef Fix convert_internvl_weights_to_hf.py to support local paths (#38264)
fix(internvl): add local path support to convert_internvl_weights_to_hf.py
2025-05-30 14:56:32 +02:00
858ce6879a make it go brrrr (#38409)
* make it go brrrr

* date time

* update

* fix

* up

* uppp

* up

* no number i

* udpate

* fix

* [paligemma] fix processor with suffix (#38365)

fix pg processor

* [video utils] group and reorder by number of frames (#38374)

fix

* Fix convert to original state dict for VLMs (#38385)

* fix convert to original state dict

* fix

* lint

* Update modeling_utils.py

* update

* warn

* no verbose

* fginal

* ouft

* style

---------

Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-05-30 11:19:42 +02:00
ab5067e7fd fix: handle no scheduler passed by user (#38407) 2025-05-30 11:00:44 +02:00
42ef218b58 [Qwen2.5-Omni] Fix dtype of cos,sin when used with flash attention (#38453)
* Fix dtype of cos,sin when used with flash attention

* Fix dtype of cos,sin when used with flash attention
2025-05-29 18:24:40 +00:00
81cff7ad34 Fix Gemma3IntegrationTest (#38471)
* check

* check

* check

* check

* check

* check

* check

* test style bot

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-29 16:51:12 +02:00
e508965df7 Cleanup BatchFeature and BatchEncoding (#38459)
* Use dict comprehension to create dict

* Fix type annotation

Union[Any] doesn't really make any sense

* Remove methods that are already implemented in the `UserDict` parent
class
2025-05-29 14:13:43 +00:00
8e5cefcb1e Fix TypeError in save_pretrained error handling (fixes #38422) (#38449) 2025-05-29 13:58:16 +00:00
ad9dd3d17b 🔴 [VLM] modeling updates (#38317)
* updates

* fixup

* fix tests

* fix test

* fix

* let it be here for now, till monday

* two more fixes

* persimmon

* fixup

* fix

* fixup

* make sure fuyu runs now that LM has new attn API

* fixup + tests

* qwen vl uses new mask interface as well

* qwen image features format

* update

* remove image_sizes

* address comments

* i am dumb...
2025-05-29 11:08:23 +00:00
a6f7acb603 [Tests] Clean up test cases for few models (#38315)
* Update tests

* revert aria change

* too slow hence revert
2025-05-29 08:21:28 +00:00
8010f3cf61 feat: add cache retention for requests (#38446)
* feat: add cache retention for requests

* fix: propagate `manual_eviction` param & refactor `finish_request`

`finish_request` now only takes `request_id: str` as an input rather
than the full `RequestState`, which was not needed and simplifies
calling from `ContinuousBatchingManager::evict_request_from_cache`

* refactor: pop req from `active_requests`

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-28 18:15:10 +00:00
66da700145 Fix GLM4 checkpoints (#38412)
* fix

* fix

* fix

* fix

* fix

* fix

* test style bot

* Apply style fixes

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-28 16:40:08 +00:00
2872e8bac5 Merge type hints from microsoft/python-type-stubs (post dropping support for Python 3.8) (#38335)
* Merge type hints from microsoft/python-type-stubs (post Python 3.8)

* Remove mention of pylance

* Resolved conflict

* Merge type hints from microsoft/python-type-stubs (post Python 3.8)

* Remove mention of pylance

* Resolved conflict

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Avasam <samuel.06@hotmail.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-05-28 16:21:40 +00:00
942c60956f Model card for mobilenet v1 and v2 (#37948)
* doc: #36979

* doc: update hfoptions

* add model checkpoints links

* add model checkpoints links

* update example output

* update style #36979

* add pipeline tags

* improve comments

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggested changes

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-28 09:20:19 -07:00
9a8510572b Updated the model card for ViTMAE (#38302)
* Update vit_mae.md

* badge float:right

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update model_doc/vit_mae.md

* fix

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-28 09:19:43 -07:00
c9fcbd5bf9 Updated the Model docs - for the ALIGN model (#38072)
* Updated the Model docs - for the ALIGN model

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated align.md

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update align.md

* fix

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-28 09:19:09 -07:00
cba94e9272 Fix handling of slow/fast image processors in image_processing_auto.py (#38161)
Fix wrong error when torchvision is not installed
2025-05-28 16:00:23 +00:00
21b10d9aa4 Fix from_args_and_dict ProcessorMixin (#38296)
* fix-from-args-and-dict-processormixin

* change used_kwargs to valid_kwargs

* remove manual valid_kwargs

* fix copies

* fix modular aria
2025-05-28 11:46:33 -04:00
f844733568 Fix MoE gradient test (#38438) 2025-05-28 16:44:20 +01:00
0ed6f7e6b4 Remove redundant test_sdpa_equivalence test (#38436)
* Remove redundant test

* make fixup
2025-05-28 17:22:25 +02:00
51e0fac29f Trigger doc-builder job after style bot (#38398)
* update

* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-28 17:15:34 +02:00
c24d18bbae Fix convert weights for InternVL (#38233)
Fix internvl convert weights
2025-05-28 11:14:56 -04:00
8850427242 Fix typo in tokenization_utils_base.py docstring (#38418)
Fix typo in tokenization_utils_base.py
2025-05-28 14:52:10 +00:00
bab40c6838 [core] support tensor-valued _extra_state values in from_pretrained (#38155)
Support tensor-valued _extra_state values

TransformerEngine uses the pytorch get/set_extra_state API to store FP8
layer config information as bytes Tensor in the _extra_state entry in
the state dict. With recent changes to from_pretrained, this
functionality has broken and loading a model that uses this API doesn't
appear to work. This PR fixes the save/load pretrained functions for
extra state entries that use a pytorch tensor, and adds a (currently
x-failing) test for a dictionary extra state.

Signed-off-by: Peter St. John <pstjohn@nvidia.com>
2025-05-28 15:38:42 +02:00
badc71b9f6 🔴[Attention] Attention refactor for Whisper-based models (#38235)
* start refactoring whisper

* revert for now

* first step

* carry over attn fixes

* check if this works

* whisper has an off by one somewhere - cutting mask in any interface

* make it based on interface

* remove some tests that were skipped but now work

* some fixes for whisper tests

* interface changes

* change the order of fix

* some attention adjustments for eager + TP

* fix scaling

* mask changes

* why does whisper contain those extra seq lens?

* fix from config for fa2 as input_ids is invalid

* fix another test

* another fix

* disable flex attn due to compile issues

* copies and refactor for qwen audio since it somewhat relies on whisper

* fix scaling and smaller things

* retrigger

* new new interface version + more fixups

* adjust qwen

* add comment

* forgot this one

* change copies as whisper cuts on the mask

* add guard

* add flex attention

* switch to new mask function + add skips for torchscript

* remove old api with cache position

* last changes?

* trigger ci
2025-05-28 13:32:38 +02:00
565a0052ed make Llama4TextMoe forward more readable (#37529)
* update forward of Llama4TextMoe

* remove redudant transpose

* fix formatting

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-28 11:54:45 +02:00
defeb04299 Fix CircleCI not triggered when PR is opened from a branch of huggingface/transformers (#38413)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-28 11:25:43 +02:00
593276fe1e Update error when using additional and/or masks (#38429)
update error
2025-05-28 11:08:49 +02:00
3aab6e95cb Disable mi210 scheduled CI (#38411) 2025-05-28 10:35:41 +02:00
fb82a98717 enable large_gpu and torchao cases on XPU (#38355)
* cohere2 done

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* enable torchao cases on XPU

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* rename

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: Matrix YAO <matrix.yao@intel.com>
2025-05-28 10:30:16 +02:00
cea254c909 Update CsmForConditionalGenerationIntegrationTest (#38424)
* require_read_token

* ruff

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-28 10:20:43 +02:00
baddbdd24b [qwen-vl] Look for vocab size in text config (#38372)
fix qwen
2025-05-28 09:32:26 +02:00
a974e3b4e1 Fix an error in verify_tp_plan for keys without '.' (#38420) 2025-05-28 09:30:43 +02:00
b1eae943a2 Change slack channel for mi250 CI (#38410) 2025-05-28 09:20:34 +02:00
5f49e180a6 Add mi300 to amd daily ci workflows definition (#38415) 2025-05-28 09:17:41 +02:00
3b3ebcec40 Updated model card for OLMo2 (#38394)
* Updated OLMo2 model card

* added command line

* Add suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Added suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Indented code block as per suggestions

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 16:24:36 -07:00
f5307272f5 Falcon-H1 - Fix auto_docstring and add can_return_tuple decorator (#38260)
Fix auto_docstring and add can_return_tuple
2025-05-27 16:18:05 -04:00
a092f6babf Update granite.md (#37791)
* Update granite.md

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update granite.md

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* minor fixes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 12:55:15 -07:00
be7aa3210b New bart model card (#37858)
* Modified BART documentation wrt to issue #36979.

* Modified BART documentation wrt to issue #36979.

* fixed a typo.

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* blank commit.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 11:51:41 -07:00
587c1b0ed1 Updated BERTweet model card. (#37981)
* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 11:51:22 -07:00
b73faef52f Updated BigBird Model card as per #36979. (#37959)
* Updated BigBird Model card as per #36979.

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 11:24:28 -07:00
538e847c06 Updated Zoedepth model card (#37898)
* Edited zoedepth model card according to specifications.

* Edited Zoedepth model file

* made suggested changes.
2025-05-27 10:06:53 -07:00
4f7b0ff8d1 Update Model Card for Mamba-2 (#37951)
* update model page.

* update model page.

* Update docs/source/en/model_doc/mamba2.md

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* update the model page.

* update.

* Apply suggestions from code review

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Apply the suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add an quantization example and update the toctree.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* remove the additional comma

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 10:06:39 -07:00
9c50576860 [mllama] Allow pixel_values with inputs_embeds (#38334)
* Allow pixel_values and inputs_embeds at the same time

* remove unnecessary overwritten tests
2025-05-27 16:33:56 +00:00
0f5a8243c4 [tests] remove overload for deleted test (test_offloaded_cache_implementation) (#37896)
* remove overload for deleted tests

* make fixup
2025-05-27 16:45:15 +01:00
f85fd90407 [cleanup] delete deprecated kwargs in qwen2_audio 🧹 (#38404)
delete deprecated
2025-05-27 16:08:53 +01:00
b9f8f863d9 [CSM] update model id (#38211)
* update model id

* codec_model eval

* add processor img

* use ungated repo for processor tests
2025-05-27 17:03:55 +02:00
07dd6b2495 Add report_repo_id to mi300 workflow (#38401) 2025-05-27 16:35:07 +02:00
3142bd8592 [CSM] infer codec model with no_grad + audio eos label (#38215)
* infer codec model with no_grad

* codec_model eval

* training labels: add audio eos token
2025-05-27 14:10:17 +00:00
10ae443ec0 Fix Qwen2.5-VL Video Processor (#38366)
* Update processing_qwen2_5_vl.py

* Update processing_qwen2_5_vl.py

* Update modular_qwen2_5_vl.py

* Fix CI

* Update modular_qwen2_5_vl.py

* Update processing_qwen2_5_vl.py

* Update video_processing_utils.py
2025-05-27 13:46:37 +02:00
80902ae9b1 [chat] use the checkpoint's generation_config.json as base parameterization (#38330)
* use model gen config

* unwanted diff
2025-05-27 10:35:33 +00:00
008e0d87c5 Fix convert to original state dict for VLMs (#38385)
* fix convert to original state dict

* fix

* lint

* Update modeling_utils.py
2025-05-27 10:27:59 +00:00
c769483188 [chat] improvements for thinking models and reduce default verbosity (#38322)
misc improvements
2025-05-27 10:20:58 +00:00
55f2333366 guard size mismatch check to only quantized models (#38397)
fix
2025-05-27 11:45:03 +02:00
1a5be2f5c0 [aya vision] fix processor for vLLM (#38371)
accidentally merged two PRs in one (;-_-)
2025-05-27 09:43:53 +00:00
19fdb75cf0 [video utils] group and reorder by number of frames (#38374)
fix
2025-05-27 11:32:33 +02:00
b0735dc0c1 [paligemma] fix processor with suffix (#38365)
fix pg processor
2025-05-27 11:31:56 +02:00
9e1017b479 [transformers x vLLM] standardize processors (#37915)
* standardize

* fix tests

* batch update some processors, not final yet

* oke, now I tested that everything indeed runs. Still needs prettification

* emu3

* fixup

* gemma3 but it doesn't generate anything

* fuyu

* update

* why?

* Update src/transformers/models/aya_vision/processing_aya_vision.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* address comments

* bc

* why do we need to guard import this every time?

* i hate guarded imports

* i am blind

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-27 11:30:30 +02:00
b5ececb900 Fix image token mask in Gemma3 (#38295)
fix mask
2025-05-27 11:15:52 +02:00
c4e71e8fff Add AMD MI300 CI caller leveraging self-hosted runner scale set workflow in hf-workflows (#38132) 2025-05-26 23:13:02 +02:00
706b00928f Stop autoconverting custom code checkpoints (#37751)
* Stop autoconverting custom code checkpoints

* make fixup

* Better auto class detection

* Match the kwarg ordering
2025-05-26 19:15:28 +01:00
07848a8405 update gemma tests (#38384)
* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 19:54:04 +02:00
cd0f3ce73b [cli] cli usable without torch (#38386)
cli without torch
2025-05-26 16:54:18 +00:00
ba6d72226d 🚨 🚨 Fix custom code saving (#37716)
* Firstly: Better detection of when we're a custom class

* Trigger tests

* Let's break everything

* make fixup

* fix mistaken line doubling

* Let's try to get rid of it from config classes at least

* Let's try to get rid of it from config classes at least

* Fixup image processor

* no more circular import

* Let's go back to setting `_auto_class` again

* Let's go back to setting `_auto_class` again

* stash commit

* Revert the irrelevant changes until we figure out AutoConfig

* Change tests since we're breaking expectations

* make fixup

* do the same for all custom classes

* Cleanup for feature extractor tests

* Cleanup tokenization tests too

* typo

* Fix tokenizer tests

* make fixup

* fix image processor test

* make fixup

* Remove warning from register_for_auto_class

* Stop adding model info to auto map entirely

* Remove todo

* Remove the other todo

* Let's start slapping _auto_class on models why not

* Let's start slapping _auto_class on models why not

* Make sure the tests know what's up

* Make sure the tests know what's up

* Completely remove add_model_info_to_*

* Start adding _auto_class to models

* Start adding _auto_class to models

* Add a flaky decorator

* Add a flaky decorator and import

* stash commit

* More message cleanup

* make fixup

* fix indent

* Fix trust_remote_code prompts

* make fixup

* correct indentation

* Reincorporate changes into dynamic_module_utils

* Update call to trust_remote_code

* make fixup

* Fix video processors too

* Fix video processors too

* Remove is_flaky additions

* make fixup
2025-05-26 17:37:30 +01:00
701caef704 Stop TF weight rename reDOS (#38325)
* let's try a non-regex solution

* make fixup

* Slight adjustment

* Let's just use the original code with a check

* slight tweak to conditional

* slight tweak to conditional
2025-05-26 16:58:51 +01:00
0a4e8e2855 fix typo: tokenizer -> tokenize (#38357) 2025-05-26 15:29:16 +00:00
63964b7c67 fix typos (#38336)
* Update video_processor.md

* Update deepseek_v3.md
2025-05-26 14:42:37 +00:00
8b03c8eaf2 Better check in initialize_weights (#38382)
* Update modeling_utils.py

* CIs

* CIs
2025-05-26 16:20:23 +02:00
eb74cf977b Use one utils/notification_service.py (#38379)
* step 1

* step 2

* step 3

* step 4

* step 5

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 16:15:29 +02:00
98328fd9a1 for now disable compile (#38383) 2025-05-26 15:57:11 +02:00
78079abeff Improved cache docs (#38060)
* improved cache docs

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-26 13:53:41 +00:00
7a9b071bfd [Falcon H1] Fix slow path forward pass (#38320)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

* fix typo

* make style

* fix slow path generations

* clean debug traces

* debug

* remove debug traces final confirmation

* clean debug traces final

* fix format and lineup

* make style

* debug

* Update src/transformers/models/falcon_h1/modular_falcon_h1.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* adress comments

* fix fix-copies

* fix integration test

* Merge pull request #7 from ydshieh/fix-slow-path

update

* another update (#8)

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 15:30:35 +02:00
b5b76b5561 Protect get_default_device for torch<2.3 (#38376)
* Update modeling_utils.py

* CIs
2025-05-26 15:00:09 +02:00
bff32678cc Fix incorrect batching audio index calculation for Phi-4-Multimodal (#38103)
* fix

Signed-off-by: Isotr0py <2037008807@qq.com>

* add tests

Signed-off-by: Isotr0py <2037008807@qq.com>

* code format

Signed-off-by: Isotr0py <2037008807@qq.com>

* Update src/transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-26 12:41:31 +00:00
9f0402bc4d Fix all import errors based on older torch versions (#38370)
* Update masking_utils.py

* fix

* fix

* fix

* Update masking_utils.py

* Update executorch.py

* fix
2025-05-26 12:11:54 +02:00
d03a3ca692 [OPT] Fix attention scaling (#38290)
* fix opt attention scaling

* add comment to why we do this
2025-05-26 11:02:16 +02:00
a5a0c7b888 switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00
cba279f46c [VLMs] add helpers for get/set embedding (#38144)
* add helpers in VLMs

* fix tied weight key test
2025-05-26 09:50:32 +02:00
6e3063422c Uninstall kernels for AMD docker images (#38354)
Uninstall kernels for AMD docker images

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-25 19:42:25 +02:00
4a03044ddb Hot fix for AMD CI workflow (#38349)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-25 11:15:31 +02:00
d0c9c66d1c new failure CI reports for all jobs (#38298)
* new failures

* report_repo_id

* report_repo_id

* report_repo_id

* More fixes

* More fixes

* More fixes

* ruff

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-24 19:15:02 +02:00
31f8a0fe8a [docs]: update roformer.md model card (#37946)
* Update roformer model card

* fix example purpose description

* fix model description according to the comments

* revert changes for autodoc

* remove unneeded tags

* fix review issues

* fix hfoption

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-23 16:27:56 -07:00
36f97ae15b docs(swinv2): Update SwinV2 model card to new standard format (#37942)
* docs(swinv2): Update SwinV2 model card to new standard format

* docs(swinv2): Apply review suggestions

Incorporates feedback from @stevhliu to:
- Enhance the introductory paragraph with more details about scaling and SimMIM.
- Generalize the tip from "image classification tasks" to "vision tasks".

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-23 13:04:13 -07:00
33d23c39ed Update BioGPT model card (#38214)
* Update BioGPT model card

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* correction for CPU fallback

* added quantization code and method

* fixed transformers-cli call

---------

Co-authored-by: Aguedo <aguedo@fakeemail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-23 13:03:47 -07:00
dffb118013 Remove duplicate docstring: resample (#38305)
Duplicate of the line above.
2025-05-23 13:02:58 -07:00
e0aad278fe Never fallback to eager implicitly (#38327)
* remove arg everywhere

* Update warnings

* add more models

* Update sdpa_attention.py

* fix style

* fix

* readd warnings but not for flex

* Update test_modeling_common.py

* skip

* fix

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-23 19:48:01 +02:00
e64ed0304c Use Gradient Checkpointing Layer in Jamba & Blip Related Models (#38310)
* Use gradient checkpointing class in blip classes

* Use gradient checkpointing class in jamba/bamba
2025-05-23 19:35:25 +02:00
53fb245eb6 🚨 🚨 Inherited CausalLM Tests (#37590)
* stash commit

* Experiment 1: Try just Gemma

* Experiment 1: Just try Gemma

* make fixup

* Trigger tests

* stash commit

* Try adding Gemma3 as well

* make fixup

* Correct attrib names

* Correct pipeline model mapping

* Add in all_model_classes for Gemma1 again

* Move the pipeline model mapping around again

* make fixup

* Revert Gemma3 changes since it's a VLM

* Let's try Falcon

* Correct attributes

* Correct attributes

* Let's try just overriding get_config() for now

* Do Nemotron too

* And Llama!

* Do llama/persimmon

* Correctly skip tests

* Fix Persimmon

* Include Phimoe

* Fix Gemma2

* Set model_tester_class correctly

* Add GLM

* More models!

* models models models

* make fixup

* Add Qwen3 + Qwen3MoE

* Correct import

* make fixup

* Add the QuestionAnswering classes

* Add the QuestionAnswering classes

* Move pipeline mapping to the right place

* Jetmoe too

* Stop RoPE testing models with no RoPE

* Fix up JetMOE a bit

* Fix up JetMOE a bit

* Can we just force pad_token_id all the time?

* make fixup

* fix starcoder2

* Move pipeline mapping

* Fix RoPE skipping

* Fix RecurrentGemma tests

* Fix Falcon tests

* Add MoE attributes

* Fix values for RoPE testing

* Make sure we set bos_token_id and eos_token_id in an appropriate range

* make fixup

* Fix GLM4

* Add mamba attributes

* Revert bits of JetMOE

* Re-add the JetMOE skips

* Update tests/causal_lm_tester.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add licence

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-23 18:29:31 +01:00
d5f992f5e6 Enhance Model Loading By Providing Parallelism, Uses Optional Env Flag (#36835)
* Get parallel loader working. Include tests.

* Update the tests for parallel loading

* Rename env variables.

* Add docs for parallel model weight loading.

* Touch up parallel model loading docs.

* Touch up parallel model loading docs again.

* Edit comment in test_modeling_utils_parallel_loading.py

* Make sure HF_PARALLEL_LOADING_WORKERS is spelled correctly in modeling_utils.py

* Correct times for parallelized loading, previous times were for a "hot" filesystem

* Update parallel model loading so the spawn method is encapsulated. DRY up the code by leveraging get_submodule.

* Update docs on model loading parallelism so that details on setting the multiprocessing start method are removed, now that the package handles this step internally.

* Fix style on model loading parallelism changes.

* Merge latest version of master's modeling_utils.

* Removed unused variable.

* Fix argument packing for the parallel loader.

* Fix state dict being undefined in the parallel model loader.

* Rename variables used in parallel model loading for clarity. Use get_module_from_name().

* Switch to the use of threads for parallel model loading.

* Update docs for parallel loading.

* Remove the use of json.loads when evaluating HF_ENABLE_PARALLEL_LOADING. Prefer simple casting.

* Move parallelized shard loading into its own function.

* Remove use of is_true(). Favor checking env var true values for HF_ENABLE_PARALLEL_LOADING.

* Update copyright to 2025 in readme for paralell model loading.

* Remove garbage collection line in load_shard_file, implicit garbage collection already occurs.

* Run formatter on modeling_utils.py

* Apply style fixes

* Delete tests/utils/test_modeling_utils_parallel_loading.py

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-05-23 16:39:47 +00:00
1ed19360b1 [FlexAttention] Reenable flex for encoder-decoder and make the test more robust (#38321)
* reenable most flex attention test cases

* style

* trigger

* trigger
2025-05-23 18:16:43 +02:00
bb567d85a4 refactor can_save_slow_tokenizer (#37722)
* refactor to rm property can_save_slow_tokenizer, it can be done within the if of save_vocab

* move property to fast

* revert if

* check if vocab_file is attr

* fix check for sp

* fix if condition

* fix if condition

* fix if condition
2025-05-23 17:29:38 +02:00
3c289e2104 [performance_optim] reduce frequency of declaring attention_mask in Ascend NPU flash attention (#38278)
[performance_optim] reduce frequency of declaring attention_mask in ASCEND NPU flash attention
2025-05-23 17:24:51 +02:00
f5d45d89c4 🚨Early-error🚨 config will error out if output_attentions=True and the attn implementation is wrong (#38288)
* Protect ParallelInterface

* early error out on output attention setting for no wraning in modeling

* modular update

* fixup

* update model tests

* update

* oups

* set model's config

* more cases

* ??

* properly fix

* fixup

* update

* last onces

* update

* fix?

* fix wrong merge commit

* fix hub test

* nits

* wow I am tired

* updates

* fix pipeline!

---------

Co-authored-by: Lysandre <hi@lysand.re>
2025-05-23 17:17:38 +02:00
896833c183 Fix some tests (especially compile with fullgraph=True on Python<3.11) (#38319)
* fix tests

* better fix for python<3.11

* fixes

* style
2025-05-23 17:11:40 +02:00
a63bc17416 add vasqu to self-comment-ci.yml (#38324)
add vasqu

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-23 17:09:44 +02:00
54cd86708d [custom_generate] don't forward custom_generate and trust_remote_code (#38304)
* prevent infinite loops

* docs

* more links to custom generation methods
2025-05-23 14:49:39 +00:00
135163e9c5 Expose AutoModelForTimeSeriesPrediction for import (#38307)
* expose AutoModelForTimeSeriesPrediction for import

* add in docs
2025-05-23 13:09:29 +00:00
a6b51e7341 [Whisper + beam search] fix usage of beam_indices (#38259)
* tmp

* fix test_tiny_token_timestamp_batch_generation

* better comments

* test

* comments

* Apply suggestions from code review

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-05-23 10:05:44 +00:00
3e960e032d [tf/flax] handle forced_decoder_ids deletion (#38316)
fix tf/flax, attr checks
2025-05-23 09:44:58 +00:00
9eb0a37c9e Adds use_repr to model_addition_debugger_context (#37984)
* Adds use_repr to model_addition_debugger_context

* Updating docs for use_repr option
2025-05-23 09:35:13 +00:00
38f9c5b15b Fix typo: change 'env' to 'environment' in .circleci/config.yml (#38273)
* Fix typo: change 'env' to 'environment' in .circleci/config.yml

* Remove CIRCLE_TOKEN environment variable from artifact retrieval step

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-23 10:45:27 +02:00
11b670a282 Fix run_slow (#38314)
Signed-off-by: cyy <cyyever@outlook.com>
2025-05-23 10:18:30 +02:00
b01984a51d [emu3] fix conversion script (#38297)
* fix conversion script and update weights

* fixup

* remove commented line
2025-05-23 09:49:56 +02:00
2b585419b4 [Tests] Cleanup Janus Testcase (#38311)
* Cleanup janus testcase

* shift code to setup
2025-05-23 09:29:16 +02:00
b59386dc0a Oups typo for HybridChunkedCache (#38303)
typo
2025-05-22 17:52:37 +02:00
211f2b0875 Add CB (#38085)
* stash for now

* initial commit

* small updated

* up

* up

* works!

* nits and fixes

* don't loop too much

* finish working example

* update

* fix the small freeblocks issue

* feat: stream inputs to continuous batch

* fix: update attn from `eager` to `sdpa`

* refactor: fmt

* refactor: cleanup unnecessary code

* feat: add `update` fn to `PagedAttentionCache`

* feat: broken optimal block size computation

* fix: debugging invalid cache logic

* fix: attention mask

* refactor: use custom prompts for example

* feat: add streaming output

* fix: prefill split

refactor: add doc strings and unsound/redundant logic
fix: compute optimal blocks logic

* fix: send decoded tokens when `prefilling_split` -> `decoding`

* refactor: move logic to appropriate parent class

* fix: remove truncation as we split prefilling anyways

refactor: early return when we have enough selected requests

* feat: add paged attention forward

* push Ggraoh>

* add paged sdpa

* update

* btter mps defaults

* feat: add progress bar for `generate_batch`

* feat: add opentelemetry metrics (ttft + batch fill %age)

* feat: add tracing

* Add cuda graphs (#38059)

* draft cudagraphs addition

* nits

* styling

* update

* fix

* kinda draft of what it should look like

* fixes

* lol

* not sure why inf everywhere

* can generate but output is shit

* some fixes

* we should have a single device synch

* broken outputs but it does run

* refactor

* updates

* updates with some fixes

* fix mask causality

* another commit that casts after

* add error

* simplify example

* update

* updates

* revert llama changes

* fix merge conflicts

* fix: tracing and metrics

* my updates

* update script default values

* fix block allocation issue

* fix prefill split attnetion mask

* no bugs

* add paged eager

* fix

* update

* style

* feat: add pytorch traces

* fix

* fix

* refactor: remove pytorch profiler data

* style

* nits

* cleanup

* draft test file

* fix

* fix

* fix paged and graphs

* small renamings

* cleanups and push

* refactor: move tracing and metrics logic to utils

* refactor: trace more blocks of code

* nits

* nits

* update

* to profile or not to profile

* refactor: create new output object

* causal by default

* cleanup but generations are still off for IDK what reason

* simplifications but not running still

* this does work.

* small quality of life updates

* nits

* updaet

* fix the scheduler

* fix warning

* ol

* fully fixed

* nits

* different generation parameters

* nice

* just style

* feat: add cache memory usage

* feat: add kv cache free memory

* feat: add active/waiting count & req latency

* do the sampling

* fix: synchronize CUDA only if available and improve error handling in ContinuousBatchingManager

* fix on mps

* feat: add dashboard & histogram buckets

* perf: improve waiting reqs data structures

* attempt to compile, but we should only do it on mps AFAIK

* feat: decouple scheduling logic

* just a draft

* c;eanup and fixup

* optional

* style

* update

* update

* remove the draft documentation

* fix import as well

* update

* fix the test

* style doomed

---------

Co-authored-by: Luc Georges <luc.sydney.georges@gmail.com>
2025-05-22 17:43:48 +02:00
73286d8e29 Fix HybridChunedCache & Llama4 (#38299)
* Update cache_utils.py

* Update cache_utils.py
2025-05-22 17:25:51 +02:00
d95c864a25 🔴🔴🔴 [Attention] Refactor Attention Interface for Bart-based Models (#38108)
* starting attn refactor for encoder decoder models via bart (eager + sdpa)

* flash attention works, remove unnecessary code

* flex attention support for bart!, gotta check if the renaming is not too aggressive

* some comments

* skip flex grad test for standalone as done with the other test

* revert flex attn rename (for now), sdpa simplify, and todos

* more todos

* refactor mask creation for reuse

* modular attempt at biogpt

* first batch of other models

* fix attn dropout

* fix autoformer copies

* hubert

* another batch of models

* copies/style + last round of bart models --> whisper next?

* remove unnecessary _reshape function and remove copy to whisper

* add skip for decoder-only models out of enc-dec (same as in bart)

* bring back licences

* remove comment, added to pr read instead

* mostly docs

* disable sew flex attn as it's unclear attn mask for now

* oops

* test fixes for enc-dec

* torch fx fixes + try at flex attn

* skip on mbart

* some more fixes

* musicgen skip / delete old attn class logic + sdpa compose compile skip

* disable flex attn for musicgen, not worth the effort

* more fixes and style

* flex attention test for dropout and encoder decoder that dont have main input names

* informer fixes

* the weirdest thing I've encountered yet...

* style

* remove empty tensor attempt, found core root in previous commits

* disable time series due to tests being very text centric on inputs

* add speech to text to be ignoring the other attns, also due to tests

* update docs

* remaining issues resolved ?

* update docs for current state --> nllb moe and pegasus x sdpa is questionable :D

* some models have not set the is_causal flag...

* change dtype in softmax tol old behaviour + some modular fixes

* I hate it but it is what it is

* fixes from main for bart

* forgot this one

* some model fixes

* style

* current status

* marian works now

* fixing some copies

* some copy fixes + time series x informer

* last models possibly and fixes on style/copies

* some post merge fixes

* more fixes

* make attention interface callable and move warnings there

* style lol

* add comment to "unsupported"

* remove callable interface and change interface warnings + some copies

* fix

* ternary is ugly af, make it simpler

* how did that happen

* fix flex attn test

* failing the test

* no more fallback! fixing copies next

* style + attn fixed

* fixing copies and mask creation

* wrong copy

* fixup tests and disable flex attn for now

* fixup last tests?
2025-05-22 17:12:58 +02:00
9895819514 Update CI Docker base image for AMD tests (#38261)
use newer Pytorch base image for AMD CI tests
2025-05-22 16:38:40 +02:00
dfbee79ca3 refine transformers env output (#38274)
* refine `transformers env` output

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-22 15:22:18 +02:00
1234683309 More typing in src/transformers/training_args.py (#38106)
* Annotate `framework` in src/transformers/training_args.py

Signed-off-by: cyy <cyyever@outlook.com>

* Fix typing

Signed-off-by: cyy <cyyever@outlook.com>

* Revert framework change

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-05-22 13:14:33 +02:00
03a4c024dc Fix tp error when torch distributed is already initialized (#38294)
fix tp error
2025-05-22 12:34:05 +02:00
dcaf47dde5 add liger-kernel to docker file (#38292)
add

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-22 11:58:17 +02:00
163138a911 🚨🚨[core] Completely rewrite the masking logic for all attentions (#37866)
* start

* start having a clean 4d mask primitive

* Update mask_utils.py

* Update mask_utils.py

* switch name

* Update masking_utils.py

* add a new AttentionMask tensor class

* fix import

* nits

* fixes

* use full and quandrants

* general sdpa mask for all caches

* style

* start some tests

* tests with sliding, chunked

* add styling

* test hybrid

* Update masking_utils.py

* small temp fixes

* Update modeling_gemma2.py

* compile compatible

* Update masking_utils.py

* improve

* start making it more general

* Update masking_utils.py

* generate

* make it work with flex style primitives!

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* improve

* Update cache_utils.py

* Update masking_utils.py

* simplify - starting to look good!

* Update masking_utils.py

* name

* Update masking_utils.py

* style

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* small fix for flex

* flex compile

* FA2

* Update masking_utils.py

* Escape for TGI/vLLM!

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* General case without cache

* rename

* full test on llama4

* small fix for FA2 guard with chunk

* Update modeling_gemma2.py

* post rebase cleanup

* FA2 supports static cache!

* Update modeling_flash_attention_utils.py

* Update flex_attention.py

* Update masking_utils.py

* Update masking_utils.py

* Update utils.py

* override for export

* Update executorch.py

* Update executorch.py

* Update executorch.py

* Update executorch.py

* Update masking_utils.py

* Update masking_utils.py

* output attentions

* style

* Update masking_utils.py

* Update executorch.py

* Add doicstring

* Add license and put mask visualizer at the end

* Update test_modeling_common.py

* fix broken test

* Update test_modeling_gemma.py

* Update test_modeling_gemma2.py

* Use fullgraph=False with FA2

* Update utils.py

* change name

* Update masking_utils.py

* improve doc

* change name

* Update modeling_attn_mask_utils.py

* more explicit logic based on model's property

* pattern in config

* extend

* fixes

* make it better

* generalize to other test models

* fix

* Update masking_utils.py

* fix

* do not check mask equivalence if layer types are different

* executorch

* Update modeling_gemma2.py

* Update masking_utils.py

* use layer_idx instead

* adjust

* Update masking_utils.py

* test

* fix imports

* Update modeling_gemma2.py

* other test models

* Update modeling_llama4.py

* Update masking_utils.py

* improve

* simplify

* Update masking_utils.py

* typos

* typo

* fix

* Update masking_utils.py

* default DynamicCache

* remove default cache

* simplify

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* simplify

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* export

* Update executorch.py

* Update executorch.py

* Update flex_attention.py

* Update executorch.py

* upstream to modular gemma 1 & 2

* Update modular_mistral.py

* switch names

* use dict

* put it in the Layer directly

* update copy model source for mask functions

* apply so many modular (hopefully 1 shot)

* use explicite dicts for make style happy

* protect import

* check docstring

* better default in hybrid caches

* qwens

* Update modular_qwen2.py

* simplify core logic!

* Update executorch.py

* qwen3 moe

* Update masking_utils.py

* Update masking_utils.py

* simplify a lot sdpa causal skip

* Update masking_utils.py

* post-rebase

* gemma3 finally

* style

* check it before

* gemma3

* More general with newer torch

* align gemma3

* Update utils.py

* Update utils.py

* Update masking_utils.py

* Update test_modeling_common.py

* Update flex_attention.py

* Update flex_attention.py

* Update flex_attention.py

* test

* executorch

* Update test_modeling_common.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update executorch.py

* Update test_modeling_common.py

* fix copies

* device

* sdpa can be used without mask -> pass the torchscript tests in this case

* Use enum for check

* revert enum and add check instead

* remove broken test

* cohere2

* some doc & reorganize the Interface

* Update tensor_parallel.py

* Update tensor_parallel.py

* doc and dummy

* Update test_modeling_paligemma2.py

* Update modeling_falcon_h1.py

* Update masking_utils.py

* executorch patch

* style

* CIs

* use register in executorch

* final comments!

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-22 11:38:26 +02:00
f8630c778c [Whisper] handle deprecation of forced_decoder_ids (#38232)
* fix

* working saved forced_decoder_ids

* docstring

* add deprecation message

* exception message ordering

* circular import comment
2025-05-22 09:16:38 +00:00
aa02a5d902 [whisper] move processor test into processor test file 🧹 (#38266)
move processor tests
2025-05-22 10:07:11 +01:00
b26157d64c add XPU info print in print_env (#38282)
Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-22 11:03:56 +02:00
b369a65480 docs(swin): Update Swin model card to standard format (#37628)
* docs(swin): Update Swin model card to standard format

* docs(swin): Refine link to Microsoft organization for Swin models

Apply suggestion from @stevhliu in PR #37628.

This change updates the link pointing to the official Microsoft Swin Transformer checkpoints on the Hugging Face Hub.

The link now directs users specifically to the Microsoft organization page, filtered for Swin models, providing a clearer and more canonical reference compared to the previous general search link.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(swin): Clarify padding description and link to backbone docs

Apply suggestion from @stevhliu in PR #37628.

This change introduces two improvements to the Swin model card:

1.  Refines the wording describing how Swin handles input padding for better clarity.
2.  Adds an internal documentation link to the general "backbones" page when discussing Swin's capability as a backbone model.

These updates enhance readability and improve navigation within the Transformers documentation.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(swin): Change Swin paper link to huggingface.co/papers as suggested

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-21 16:16:43 -07:00
28d3148b07 Update Model Card for Mamba (#37863)
* update model card.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update quantization example.

* update example.

* update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-21 10:58:23 -07:00
7b7bb8df97 Protect ParallelInterface (#38262)
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-21 17:45:38 +02:00
5c13cc0f94 Remove Japanese sequence_classification doc and update references (#38246) 2025-05-21 08:33:41 -07:00
71009e4b68 assign the correct torchao data layout for xpu (#37781)
* assign the correct data layout for xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check torch version before using torchao xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix the log

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix zero point type

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix check torch version

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-05-21 17:21:55 +02:00
d6c34cdcd0 Fix: missing else branch to handle "--load_best_model_at_end" in training_args.py (#38217)
Update training_args.py
2025-05-21 14:28:56 +00:00
ae3e4e2d97 Improve typing in TrainingArgument (#36944)
* Better error message in TrainingArgument typing checks

* Better typing

* Small fixes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-05-21 13:54:38 +00:00
174684a9b6 Simplify DTensor Check for modeling_utils.py (#38245)
Update modeling_utils.py
2025-05-21 13:35:44 +00:00
e4decee9c0 [whisper] small changes for faster tests (#38236) 2025-05-21 14:11:08 +01:00
ddf67d2d73 Clearer error on import failure (#38257)
Clearer error
2025-05-21 14:32:29 +02:00
9a962dd9ed Add tearDown method to Quark to solve OOM issues (#38234)
fix
2025-05-21 14:26:44 +02:00
101b3fa4ea fix multi-image case for llava-onevision (#38084)
* _get_padding_size module

* do not patchify images when processing multi image

* modify llava onevision image processor fast

* tensor to list of tensors

* backward compat

* reuse pad_to_square in llave & some clarification

* add to doc

* fix: consider no image cases (text only or video)

* add integration test

* style & repo_consistency
2025-05-21 11:50:46 +02:00
a21f11fca2 [compile] re-enable for Qwen-VL models (#38127)
* compile qwen models

* delete TODO comment

* fix embeds test

* fix assisted decoding

* add comments
2025-05-21 09:50:39 +00:00
4542086db7 [Falcon H1] Fix Typo in Integration Test (#38256)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

* fix typo

* make style

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-21 11:25:26 +02:00
6829936ee0 [MODEL] Add Falcon H1 (#38249)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: dhia.rhaiem <dhia.rhaiem@tii.ae>
2025-05-21 10:43:11 +02:00
e288ee00d8 tp plan should not be NONE (#38255)
* accept custom device_mesh

* fix device_map

* assert that num_heads % tp_size == 0

* todo.

* ReplicateParallel

* handle tied weights

* handle dtensor in save_pretrained with safe_serialization

* tp test works

* doesnt work

* fix shard_and_distribute_module's rank should be local_rank

* tp=4 is correct

* dp+tp is broken

* todo allreduce with dtensors on another dim is annoying

* workaround to sync dp grads when using dtensors

* loading a checkpoint works

* wandb and compare losses with different tp/dp

* cleaning

* cleaning

* .

* .

* logs

* CP2 DP2 no mask works after commenting attn_mask and is_causal from scaled_dot_product_attention

* DP=2 TP=2 now works even with tied embeddings

* model.parameters() and model.module.parameters() are empty..

* reformat sanity_check_tensor_sync

* set atol=1e-4 for CP to pass

* try populate _parameters from named_modules

* refactors
TP2 DP2 works
CP2 DP2 works

* is_causal=True and pack sequences, no attn mask, and preshuffle dataset

* fix packing

* CP=4 doesn't work

* fix labels and position_ids for CP

* DP CP works with transformers 🥳🥳🥳

* refactor

* add example cp

* fixup

* revert sdpa changes

* example cleared

* add CP, DP to the mesh init

* nit

* clean

* use `ALL_PARALLEL_STYLES`

* style

* FSDP works

* log on 1 rank

* .

* fix?

* FSDP1 also has .parameters() bug

* reported gradnorm when using FSDP1 is wrong, but loss is correct so it's okay

* .

* style and fixup

* move stuff around

* fix tests

* style

* let's make it a check

* add missing licences

* warning should be an info

* tp plan should not be NONE

* test all

* god damn it

* test all

---------

Co-authored-by: nouamanetazi <nouamane98@gmail.com>
2025-05-21 10:22:38 +02:00
711d78d104 Revert parallelism temporarily (#38240)
* Revert "Protect ParallelInterface"

This reverts commit cb513e35f9c096d60558bd43110837cbb66611ce.

* Revert "parallelism goes brrr (#37877)"

This reverts commit 1c2f36b480e02c9027d2523746d34e27b39e01a4.

* Empty commit
2025-05-20 22:43:04 +02:00
feec294dea CI reporting improvements (#38230)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-20 19:34:58 +02:00
cb513e35f9 Protect ParallelInterface 2025-05-20 18:27:50 +02:00
f4ef41c45e v4.53.0.dev0 2025-05-20 18:12:56 +02:00
f834d368f6 [gemma3] fix bidirectional attention mask (#38080)
* fix attn mask

* attn viz doesn't show yello cubes between images

* bucketize made it hard with different number of crops

* fixup
2025-05-20 17:35:04 +02:00
2edb0e4b4d [mllama] fix loading and inference (#38223)
fix loading
2025-05-20 17:34:55 +02:00
390f153469 Add padding-free to bamba (#35861)
* add seq_idx and fa kwargs

* update tests

* docs and grad ckpt support

* fmt

* better names

* test_raise_missing_padding_free_kwarg_errs

* + seq_idx in doc strings

* padding free training docs

* add link to pr plots

* raise err on attn_mask with padding free

* rm raising missing padding free err test

* BambaFlashAttentionKwargs

* run modular util for modular_granitemoehybrid.py
2025-05-20 17:13:59 +02:00
2a79471318 Fixing Bitnet after use_rms_norm introduction (#38229)
* fix

* make style
2025-05-20 17:13:21 +02:00
9661896083 Enable Quantize KV Cache for Mistral Model (#35042)
fix #35041
2025-05-20 16:50:26 +02:00
1c2f36b480 parallelism goes brrr (#37877)
* accept custom device_mesh

* fix device_map

* assert that num_heads % tp_size == 0

* todo.

* ReplicateParallel

* handle tied weights

* handle dtensor in save_pretrained with safe_serialization

* tp test works

* doesnt work

* fix shard_and_distribute_module's rank should be local_rank

* tp=4 is correct

* dp+tp is broken

* todo allreduce with dtensors on another dim is annoying

* workaround to sync dp grads when using dtensors

* loading a checkpoint works

* wandb and compare losses with different tp/dp

* cleaning

* cleaning

* .

* .

* logs

* CP2 DP2 no mask works after commenting attn_mask and is_causal from scaled_dot_product_attention

* DP=2 TP=2 now works even with tied embeddings

* model.parameters() and model.module.parameters() are empty..

* reformat sanity_check_tensor_sync

* set atol=1e-4 for CP to pass

* try populate _parameters from named_modules

* refactors
TP2 DP2 works
CP2 DP2 works

* is_causal=True and pack sequences, no attn mask, and preshuffle dataset

* fix packing

* CP=4 doesn't work

* fix labels and position_ids for CP

* DP CP works with transformers 🥳🥳🥳

* refactor

* add example cp

* fixup

* revert sdpa changes

* example cleared

* add CP, DP to the mesh init

* nit

* clean

* use `ALL_PARALLEL_STYLES`

* style

* FSDP works

* log on 1 rank

* .

* fix?

* FSDP1 also has .parameters() bug

* reported gradnorm when using FSDP1 is wrong, but loss is correct so it's okay

* .

* style and fixup

* move stuff around

* fix tests

* style

* let's make it a check

* warning should be an info

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-20 16:22:52 +02:00
b591d925be Fix Llama4 (#38222)
Update modeling_llama4.py
2025-05-20 16:00:46 +02:00
3f0b7d0fac Mamba2 remove unecessary test parameterization (#38227) 2025-05-20 13:54:04 +00:00
9cde2f5d42 Minor llama4 fixes (#38123)
* fix wrong scaling value/default Cache init

* style

* fix various issues on integration tests

* change expected outputs

* fixup

* fix config access

* protect default scaling
2025-05-20 13:15:54 +00:00
856f034f45 fix dead flax links modeling_flax_pytorch_utils.py (#38212) 2025-05-20 13:03:41 +00:00
bb3c6426d8 Make train_dataset attribute in _get_train_sampler optional (#38226)
make it optional
2025-05-20 12:59:53 +00:00
2ad152f84c In Llama4 fix wrongly inverted causal attention mask when using SDPA implementation (#38094)
When preparing the causal attention mask at this point the mask comes
in as a float tensor with min value as a masked value.
It is not correct to convert it to bool and treat it as a bool mask as
this inverts the mask.
`torch.nn.functional.scaled_dot_product_attention` expects that a masked value is `False`.

I suspect that the `sdpa` implementation variant may not have been
thoroughly tested and that is why this error was not caught earlier.

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-20 14:47:59 +02:00
de70c8426e Disable torchscript tests for AriaForConditionalGenerationModelTest (#38225)
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-20 14:37:55 +02:00
8ea61c4530 Add support to Marimo Notebooks and Enverge.ai (#38210)
* Add support to Marimo notebooks

* Consice logic

* Simplify logic

* Ruff fixes
2025-05-20 12:26:34 +00:00
d34e21e7dd New cache tests and refactored Hybrid Cache (#37972) 2025-05-20 12:46:13 +02:00
183fb3637c Add Llama4TextModel to AutoModel mapping (#38162)
Add Llama4TextModel to AutoModel mapping

using Llama4TextConfig on AutoModel.from_config raises a ValueError when it is expected to instantiate a Llama4TextModel
2025-05-20 10:01:00 +00:00
f022bf9322 Remove trust_remote_code=True tests from bnb quantization tests (MPT now integrated) (#38206)
bnb quant tests: remove obsolete trust_remote_code test

The MPT model is now natively integrated in Transformers and no longer requires trust_remote_code=True. This removes the failing test_get_keys_to_not_convert_trust_remote_code and related usage, which depended on remote code and caused CI issues due to missing dependencies (e.g., triton_pre_mlir).
2025-05-20 11:43:11 +02:00
0a52bd2403 [fix] sliding window attention mask (#38045)
* fix sliding attn

* make style

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* no a second throught, should default to `True` fo BC

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-05-20 09:32:19 +00:00
555715f418 Fix broken example generation script for Llama3 (#38062)
Fix broken example generation script for llama3
2025-05-20 10:53:43 +02:00
7a611f0afd Fix: make docs work better with doc builder (#38213) 2025-05-20 08:23:03 +00:00
3bd1c20149 enable misc cases on XPU & use device agnostic APIs for cases in tests (#38192)
* use device agnostic APIs in tests

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* more

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add reset_peak_memory_stats API

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-20 10:09:01 +02:00
dbc4b91db4 Qwen2.5-Omni: Update modeling_qwen2_5_omni.py to fix error when loading quantized weights with AutoAWQ. (#38013)
* Update modular_qwen2_5_omni.py

fix the error when loading quantized model by AuotAWQ.

* Update modeling_qwen2_5_omni.py

sync code to modular_qwen2_5_omni.py
2025-05-20 09:53:51 +02:00
46a4b7c909 Feat: save_pretrained for tensor parallel (and other parallelisms) models (#37919)
* tmp: initial save pretrained with dtensors

* Feat: add correctness tests

* Refactor: version checks

* Temp: 1:1 checkpoint llama4

* refactor

* Tests

* Feat: works

* Style

* Feat: version checks + minor fixes

* Style

* Fix: version checks in tests

* Feat: move more stuff into tensor_parallel.py
2025-05-19 18:16:21 +00:00
9ecee14378 [doc] fix bugs in how_to_hack_models.md (#38198)
fix several bugs
2025-05-19 10:37:54 -07:00
f524439cc5 Translating model_doc/bert.md to Chinese (#37806)
* Translated model_doc/bert.md

* Revise grammatical errors

* Changed _toctree.yml

* Revise some errors
2025-05-19 10:14:57 -07:00
6e738411e1 Tensor parallel docs (#38178)
* Feat: initial docs

* Feat: update doc

* Final typos/changes

* Refactor: reorder top to bottom.
2025-05-19 17:05:01 +00:00
9c500015c5 🚨🚨🚨 [pipelines] update defaults in pipelines that can generate (#38129)
* pipeline generation defaults

* add max_new_tokens=20 in test pipelines

* pop all kwargs that are used to parameterize generation config

* add class attr that tell us whether a pipeline calls generate

* tmp commit

* pt text gen pipeline tests passing

* remove failing tf tests

* fix text gen pipeline mixin test corner case

* update text_to_audio pipeline tests

* trigger tests

* a few more tests

* skips

* some more audio tests

* not slow

* broken

* lower severity of generation mode errors

* fix all asr pipeline tests

* nit

* skip

* image to text pipeline tests

* text2test pipeline

* last pipelines

* fix flaky

* PR comments

* handle generate attrs more carefully in models that cant generate

* same as above
2025-05-19 18:02:06 +01:00
6f9da7649f [image-text-to-text pipeline] Accept a chat as a positional arg (#38204)
accept chat as a positional arg
2025-05-19 17:26:09 +01:00
7c9b0ca08c [SAM-HQ] Update names in the docs (#38058)
Update names
2025-05-19 09:21:14 -07:00
04282a9ef5 Remove Deprecated verbose arg in LayerWiseDummyScheduler (#38197)
Remove Deprecated args in LayerWiseDummyScheduler
2025-05-19 13:49:11 +00:00
aef12349b6 Make HF implementation match original OLMo 2 models for lower precisions (#38131)
* Make HF implementation match OLMo models for lower precisions

* Add test of 1B logits in bfloat16

* Run make fixup
2025-05-19 15:35:23 +02:00
9644acb7cb [docs] add Audio import (#38195)
add Audio import
2025-05-19 13:16:35 +00:00
7d93f93f83 [docs] minor fixes in models.md (#38193)
minor gix
2025-05-19 13:14:21 +00:00
47f8578d96 Pass eps to Mistral3RMSNorm (#38026)
Pass eps to Mistral3RMSNorm

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-19 15:09:25 +02:00
6c6302817d Resolve Python logger warnings (#38183)
* Resolve Python logger warnings

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>

* Apply style fixes

---------

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-19 12:53:07 +00:00
003deb16f1 Support for transformers explicit filename (#38152)
* Support for transformers explicit filename

* Tests

* Rerun tests
2025-05-19 14:33:47 +02:00
dbb9813dff [generation] Less verbose warnings by default (#38179)
* tmp commit (imports broken)

* working version; update tests

* remove line break

* shorter msg

* dola checks need num_beams=1; other minor PR comments

* update early trainer failing on bad gen config

* make fixup

* test msg
2025-05-19 10:03:37 +00:00
656e2eab3f Add adam_kwargs for Apollo Optimizer (#38168)
Add adam_kwargs for Apollo
2025-05-19 08:59:49 +00:00
6bb6821d93 Refactor get_XXX_dataloader from Trainer (#38090)
* Remove test_dataloader

* refactor
2025-05-19 10:43:27 +02:00
40a493c7ed [tests] remove test_sdpa_equivalence (redundant) (#37911)
* rm test_sdpa_equivalence

* make fixup

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-16 18:37:27 +01:00
ea29f61ed9 fix bug in distributed loss test (#38166)
* fix bug in distributed loss test and change some config to pass at both 2&8 gpus

* fix doc
2025-05-16 16:21:35 +00:00
a4389494c7 Fix import torchao.prototype.low_bit_optim since torchao v0.11 (#38174)
* Fix ModuleNotFoundError torchao.prototype.low_bit_optim since torchao v 0.11.0

* Fix space on blank line

* update torchao's AdamW4bit and AdamW8bit import for v0.11.0

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-16 18:02:33 +02:00
0ba95564b7 Add args support for fast image processors (#37018)
* add args support to fast image processors

* add comment for clarity

* fix-copies

* Handle child class args passed as both args or kwargs in call and preprocess functions

* revert support args passed as kwargs in overwritten preprocess

* fix image processor errors
2025-05-16 12:01:46 -04:00
d69945e5fc [ESM] Add flash-attention-2 backend for ESM-2 (#38023)
* Add flash-attention-2 backend for ESM-2

Signed-off-by: Peter St. John <pstjohn@nvidia.com>

* update extended_attention_mask for fa2

Signed-off-by: Peter St. John <pstjohn@nvidia.com>

* add test_flash_attn_2_equivalence test

Signed-off-by: Peter St. John <pstjohn@nvidia.com>

---------

Signed-off-by: Peter St. John <pstjohn@nvidia.com>
2025-05-16 14:11:56 +01:00
7b5e327c6e Feat: add warnings for unused keys and rules in tensor parallel (#37893)
Feat: tensor parallel plan verification
2025-05-16 14:52:47 +02:00
120935234f remove some commands from fetch_tests CircleCI job (#38176)
delete

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-16 14:42:50 +02:00
91f6fa00f4 Disable convert to draft workflow (#38177)
delete

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-16 14:42:14 +02:00
5036ec8872 Disable Trigger CircleCI by ready for review (#38171)
delete

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-16 14:02:48 +02:00
7f28da2850 clean autoawq cases on xpu (#38163)
* clean autoawq cases on xpu

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-16 13:56:43 +02:00
01ad9f4b49 Bart: new cache format (#35314)
* bart compile

* add mbart

* some more models touched by fix-copies

* more

* more models

* even more models

* fix copies

* fix tests

* fix copies

* fix

* biogpt accepts position ids now (breaking?)

* fix failing non-slow tests

* fix some tests

* should not be removed

* small update

* Update src/transformers/models/bart/modeling_bart.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update for last `main`

* fix copies

* clone `update_causal_mask` from llama

* tmp

* fixup

* why? how?

* fix bart tests

* dont skip test

* address comments

* fix tests

* fix

* fixup and delete the file

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-05-16 13:26:54 +02:00
3ab47b6ce3 [VLMs] add helpers to get multimodal encodings (#37743)
* add helpers in VLMs

* fix tests and copies

* fix blip tests

* make fix-copies

* fix copies

* fixup
2025-05-16 13:20:10 +02:00
1e921a3a9c Add optional RMSNorm support to BitNet quantization (config + layers) (#38087)
* enable optional RMS in BitLinear

* Fix naming

* Import RMS from Llama using config.*

* make fix-copies

* ran CI loop

* remove default BitNetQuantConfig values

* Fix BitNetQuantConfig to be Optional

* Fix config docstrings to match Optoinal

* Edit docstrings to match standards

---------

Co-authored-by: steinmetzc <codysteinmetz7@gmail.com>
Co-authored-by: codys12 <steinmetzc@dh-mgmt4.hpc.msoe.edu>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-05-16 12:38:06 +02:00
57a79f51b2 Fix Qwen2.5 Omni SinusoidsPositionEmbedding precision (#38151)
* Fix Qwen2.5 Omni `SinusoidsPositionEmbedding` precision

fixes https://github.com/QwenLM/Qwen2.5-Omni/issues/271

* Update modular_qwen2_5_omni.py
2025-05-16 12:24:50 +02:00
44fa04ae8d Include output embedding as well with include_embedding flag (#37935)
* Include output embedding as well with `include_embedding` flag

Summary:
att

Test Plan:
python tests/quantization/torchao_integration/test_torchao.py -k test_include_embedding

Reviewers:

Subscribers:

Tasks:

Tags:

* format

* rename include_embedding to include_input_output_embeddings

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-05-16 12:06:11 +02:00
34c1e29cdd enable autoround cases on XPU (#38167)
* enable autoround cases on XPU

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-16 09:08:35 +00:00
0f77ca72ca [FIX] Save speed metrics to logs (#38136)
Previously, we calculated speed metrics and did not do anything with the result.
2025-05-15 16:58:50 +02:00
27ef46e846 Omit creation of positional IDs within ESM if applicable (#38089)
* omit pos emb creation

* rft

---------

Co-authored-by: sgottreich <sgottreich@absci.com>
2025-05-15 14:09:21 +00:00
fe9426f12d disable deepspeed when setting up fake trainer (#38101)
* disable deepspeed when setting up fake trainer

* Apply style fixes

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-15 15:34:04 +02:00
7caa57e85e enable trainer test cases on xpu (#38138)
* enable trainer test cases on xpu

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-15 12:17:44 +00:00
b11b28cc4e Hotfix: Flash Attention 2 support in Pixtral (#38146)
setting attention_mask to None when flash_attention_2 is selected

Co-authored-by: aurelien.lac <aurelien.lac@lighton.ai>
2025-05-15 11:45:35 +02:00
0e0e5c1044 [generate] Run custom generation code from the Hub (#36405)
* mvp

* remove trust_remote_code

* generate_from_hub

* handle requirements; docs

* english

* doc PR suggestions

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* changed remote code path to generate/generate.py

* model repo has custom generate -> override base generate

* check for proper inheritance

* some doc updates (missing: tag-related docs)

* update docs to model repo

* nit

* nit

* nits

* Update src/transformers/dynamic_module_utils.py

* Apply suggestions from code review

* Update docs/source/en/generation_strategies.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* trust remote code is required

* use new import utils for requirements version parsing

* use  org examples

* add tests

* Apply suggestions from code review

Co-authored-by: Manuel de Prada Corral <6536835+manueldeprada@users.noreply.github.com>

* ascii file structure; tag instructions on readme.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Manuel de Prada Corral <6536835+manueldeprada@users.noreply.github.com>
2025-05-15 10:35:54 +01:00
955e61b0da Remove head mask in generative models (#35786)
* just squash into one commit

* delete print
2025-05-15 10:44:19 +02:00
0173a99e73 enable csm integration cases on xpu, all passed (#38140)
* enable csm test cases on XPU, all passed

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-15 09:46:29 +02:00
e5a48785d9 [Qwen3] Qwen3 MoE add tp plan for expert mlps (#38135)
fix tp plan
2025-05-15 09:12:39 +02:00
4005e30c80 Fix incorrect attention mask truncate in WhisperFlashAttention2 (#36477)
* Fix incorrect attention mask truncate in whisper flash attention

* also fix incorrect attention mask truncate in qwen2 audio

* Nit attention mask truncate modeling_qwen2_audio.py

* Nit attention mask truncate modeling_whisper.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
2025-05-14 20:08:31 +00:00
aa27fa75cd enable d_fine finetuning properly (#37962)
add pre_output in the front

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-05-14 16:53:04 +01:00
e021bf6bf8 Add manueldeprada to run_slow whitelist (#38126)
Add manueldeprada to run_slow allowed users
2025-05-14 15:16:58 +02:00
ef27b2bc22 [docs] add uv installation instructions for source builds (#37968) 2025-05-14 13:09:41 +00:00
4a2decd192 Update trainer.md (#38113)
Fix typo in torch.compile method parameters
2025-05-14 12:40:00 +00:00
935bbbc711 Add config validation and style tweaks (#37589)
* Add config validation and style tweaks

* Fix style issues

* Fix style issues

* style

* Small fixes for copy/paste errors

---------

Co-authored-by: Cyrile <cyrile.delestre@arkea.com>
2025-05-14 12:22:10 +00:00
1b00966395 Fix auto batch size finder test (#38125)
Ensure --auto_find_batch_size is the last test arg so indexing is correct
2025-05-14 12:12:04 +00:00
fe918d13b9 Fix temporal padding in Qwen2VLImageProcessor when the number of frames is not divisible by temporal_patch_size (#38076)
Qwen2VL: Fix temporal padding in Qwen2VLImageProcessor when frames are not divisible by temporal_patch_size
2025-05-14 12:28:21 +02:00
aaf224d570 [video processor] fix tests (#38104)
* fix tests

* delete

* fix one more test

* fix qwen + some tests are failing irrespective of `VideoProcessor`

* delete file
2025-05-14 10:24:07 +00:00
987 changed files with 43564 additions and 30886 deletions

View File

@ -43,18 +43,6 @@ jobs:
parallelism: 1
steps:
- checkout
- run: git branch
- run: git log -n 1
- run: python3 utils/extract_pr_number_from_circleci.py > pr_number.txt
- run: echo $(cat pr_number.txt)
- run: if [[ "$(cat pr_number.txt)" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
- run: 'curl -L -H "Accept: application/vnd.github+json" -H "X-GitHub-Api-Version: 2022-11-28" https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$(cat pr_number.txt) >> github.txt'
- run: cat github.txt
- run: (python3 -c 'import json; from datetime import datetime; fp = open("github.txt"); data = json.load(fp); fp.close(); f = "%Y-%m-%dT%H:%M:%SZ"; created = datetime.strptime(data["created_at"], f); updated = datetime.strptime(data["updated_at"], f); s = (updated - created).total_seconds(); print(int(s))' || true) > elapsed.txt
- run: if [ "$(cat elapsed.txt)" == "" ]; then echo 60 > elapsed.txt; fi
- run: cat elapsed.txt
- run: if [ "$(cat elapsed.txt)" -lt "30" ]; then echo "PR is just opened, wait some actions from GitHub"; sleep 30; fi
- run: 'if grep -q "\"draft\": true," github.txt; then echo "draft mode, skip test!"; circleci-agent step halt; fi'
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
@ -124,8 +112,6 @@ jobs:
- run:
name: "Retrieve Artifact Paths"
env:
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
command: |
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
job_number=${CIRCLE_BUILD_NUM}

View File

@ -110,7 +110,6 @@ class CircleCIJob:
print(f"Using {self.docker_image} docker image")
if self.install_steps is None:
self.install_steps = ["uv venv && uv pip install ."]
self.install_steps.append("uv venv && uv pip install git+https://github.com/ydshieh/pytest.git@8.3.5-ydshieh git+https://github.com/ydshieh/pluggy.git@1.5.0-ydshieh")
if self.pytest_options is None:
self.pytest_options = {}
if isinstance(self.tests_to_run, str):
@ -214,7 +213,7 @@ generate_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
install_steps=["uv venv && uv pip install ."],
marker="generate",
parallelism=6,
)
@ -310,7 +309,7 @@ onnx_job = CircleCIJob(
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=[
"uv venv",
"uv pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
"uv pip install .[testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
@ -339,7 +338,7 @@ non_model_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
install_steps=["uv venv && uv pip install ."],
marker="not generate",
parallelism=6,
)

View File

@ -64,7 +64,7 @@ jobs:
commit_id=$GITHUB_SHA
fi
commit_msg=$(git show -s --format=%s | cut -c1-70)
python3 benchmark/benchmarks_entrypoint.py "$BRANCH_NAME" "$commit_id" "$commit_msg"
python3 benchmark/benchmarks_entrypoint.py "huggingface/transformers" "$BRANCH_NAME" "$commit_id" "$commit_msg"
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
# Enable this to see debug logs

View File

@ -19,7 +19,7 @@ concurrency:
jobs:
latest-docker:
name: "Latest PyTorch + TensorFlow [dev]"
name: "Latest PyTorch [dev]"
runs-on:
group: aws-general-8-plus
steps:
@ -267,44 +267,6 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-tensorflow-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on:

View File

@ -2,6 +2,15 @@ name: Build PR Documentation
on:
pull_request:
workflow_call:
inputs:
pr_number:
type: string
required: true
commit_sha:
type: string
required: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@ -9,9 +18,9 @@ concurrency:
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@6e2eb04a2604817c97be03786efa494fe3acae90
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
commit_sha: ${{ inputs.commit_sha || github.event.pull_request.head.sha }}
pr_number: ${{ inputs.pr_number || github.event.number }}
package: transformers
languages: en

View File

@ -1,25 +0,0 @@
name: Change PR to draft
on:
pull_request_target:
types: [opened, reopened]
jobs:
convert_pr_to_draft:
runs-on: ubuntu-22.04
name: Convert PR to draft
permissions:
pull-requests: write
contents: write
if: github.event.pull_request.draft == false
steps:
- name: Convert PR to draft
shell: bash
env:
PR_NUMBER: ${{ github.event.number }}
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
REPO: ${{ github.repository }}
run: |
echo $PR_NUMBER
gh pr ready $PR_NUMBER --repo $REPO --undo
gh pr comment $PR_NUMBER --repo $REPO --body "Hi 👋, thank you for opening this pull request! The pull request is converted to draft by default. The CI will be paused while the PR is in draft mode. When it is ready for review, please click the \`Ready for review\` button (at the bottom of the PR page). This will assign reviewers and trigger CI."

View File

@ -9,6 +9,18 @@ on:
start_sha:
required: true
type: string
job:
required: true
type: string
slack_report_channel:
required: true
type: string
ci_event:
required: true
type: string
report_repo_id:
required: true
type: string
env:
@ -26,7 +38,7 @@ env:
jobs:
run_models_gpu:
check_new_failures:
name: " "
runs-on:
group: aws-g4dn-4xlarge-cache
@ -36,67 +48,118 @@ jobs:
steps:
- uses: actions/download-artifact@v4
with:
name: ci_results_run_models_gpu
path: /transformers/ci_results_run_models_gpu
name: ci_results_${{ inputs.job }}
path: /transformers/ci_results_${{ inputs.job }}
- name: Check file
working-directory: /transformers
run: |
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
echo "process=true" >> $GITHUB_ENV
else
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
echo "process=false" >> $GITHUB_ENV
fi
- uses: actions/download-artifact@v4
if: ${{ env.process == 'true' }}
with:
pattern: setup_values*
path: setup_values
merge-multiple: true
- name: Prepare some setup values
if: ${{ env.process == 'true' }}
run: |
if [ -f setup_values/prev_workflow_run_id.txt ]; then
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
if [ -f setup_values/other_workflow_run_id.txt ]; then
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
- name: Update clone
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ github.sha }}
- name: Get target commit
working-directory: /transformers/utils
if: ${{ env.process == 'true' }}
run: |
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"]); print(commit)')" >> $GITHUB_ENV
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
- name: Checkout to `start_sha`
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ inputs.start_sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
if: ${{ env.process == 'true' }}
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: pip freeze
- name: Check failed tests
working-directory: /transformers
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_model_failures_with_bad_commit.json
cat new_model_failures_with_bad_commit.json
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
- name: Checkout back
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
git checkout ${{ inputs.start_sha }}
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
python3 utils/process_bad_commit_report.py
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
{
echo 'REPORT_TEXT<<EOF'
@ -104,17 +167,31 @@ jobs:
echo EOF
} >> "$GITHUB_ENV"
- name: Prepare Slack report title
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
pip install slack_sdk
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
- name: Send processed report
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: '#transformers-ci-feedback-tests'
channel-id: '#${{ inputs.slack_report_channel }}'
# For posting a rich message using Block Kit
payload: |
{
"blocks": [
{
"type": "header",
"text": {
"type": "plain_text",
"text": "${{ env.title }}"
}
},
{
"type": "section",
"text": {

View File

@ -11,9 +11,24 @@ permissions:
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@639ee721e149a281fe726a50a2cc1354b48bc463
with:
python_quality_dependencies: "[quality]"
style_command_type: "default"
secrets:
bot_token: ${{ secrets.GITHUB_TOKEN }}
check-outputs:
runs-on: ubuntu-latest
needs: style
steps:
- run: echo ${{ needs.style.outputs.pr_number }}
- run: echo ${{ needs.style.outputs.new_commit_sha }}
trigger:
needs: style
if: needs.style.outputs.new_commit_sha != ''
uses: "./.github/workflows/build_pr_documentation.yml"
with:
pr_number: ${{ needs.style.outputs.pr_number }}
commit_sha: ${{ needs.style.outputs.new_commit_sha }}

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -1,55 +0,0 @@
name: Self-hosted runner (AMD mi210 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit

View File

@ -15,10 +15,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
@ -26,10 +27,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
@ -37,10 +39,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
@ -48,8 +51,9 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -0,0 +1,63 @@
name: Self-hosted runner scale set (AMD mi300 scheduled CI caller)
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
# For example, 1gpu scale set: amd-mi300-ci-1gpu
# 2gpu scale set: amd-mi300-ci-2gpu
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -8,8 +8,43 @@ on:
push:
branches:
- run_scheduled_ci*
workflow_dispatch:
inputs:
prev_workflow_run_id:
description: 'previous workflow run id to compare'
type: string
required: false
default: ""
other_workflow_run_id:
description: 'other workflow run id to compare'
type: string
required: false
default: ""
# Used for `push` to easily modiffy the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
jobs:
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
@ -19,6 +54,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
torch-pipeline:
@ -30,17 +66,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
secrets: inherit
tf-pipeline:
name: TF pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_tf_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-tf"
runner: daily-ci
docker: huggingface/transformers-tensorflow-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
example-ci:
@ -52,6 +78,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
trainer-fsdp-ci:
@ -63,6 +90,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
deepspeed-ci:
@ -75,6 +103,7 @@ jobs:
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
quantization-ci:
@ -86,4 +115,5 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit

View File

@ -28,6 +28,10 @@ on:
default: ''
required: false
type: string
report_repo_id:
required: true
type: string
env:
HF_HOME: /mnt/cache
@ -205,75 +209,6 @@ jobs:
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
run_pipelines_tf_gpu:
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
name: Examples directory
@ -567,7 +502,6 @@ jobs:
run_models_gpu,
run_trainer_and_fsdp_gpu,
run_pipelines_torch_gpu,
run_pipelines_tf_gpu,
run_examples_gpu,
run_torch_cuda_extensions_gpu,
run_quantization_torch_gpu,
@ -584,15 +518,21 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit
check_new_model_failures:
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
name: Check new model failures
check_new_failures:
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
name: Check new failures
needs: send_results
uses: ./.github/workflows/check_failed_model_tests.yml
uses: ./.github/workflows/check_failed_tests.yml
with:
docker: ${{ inputs.docker }}
start_sha: ${{ github.sha }}
job: ${{ inputs.job }}
slack_report_channel: ${{ inputs.slack_report_channel }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit

View File

@ -21,6 +21,9 @@ on:
ci_event:
required: true
type: string
report_repo_id:
required: true
type: string
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -39,8 +42,23 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Prepare some setup values
run: |
if [ -f setup_values/prev_workflow_run_id.txt ]; then
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
if [ -f setup_values/other_workflow_run_id.txt ]; then
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
- name: Send message to Slack
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
shell: bash
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
@ -50,19 +68,22 @@ jobs:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
# empty string, and the called script still get one argument (which is the emtpy string).
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ inputs.folder_slices }}"
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
else
python utils/notification_service.py "${{ inputs.folder_slices }}"
fi
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
@ -70,32 +91,3 @@ jobs:
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack for quantization workflow
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
uses: actions/upload-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}

View File

@ -1,20 +0,0 @@
name: Trigger CircleCI
on:
pull_request_target:
types: [ready_for_review]
jobs:
trigger-circleci:
runs-on: ubuntu-22.04
steps:
- name: trigger CircleCI pipeline via GitHub Actions
uses: CircleCI-Public/trigger-circleci-pipeline-action@v1.2.0
with:
GHA_Meta: "Trigger via GitHub Actions"
target-slug: "github/huggingface/transformers"
target-branch: "pull/${{ github.event.number }}/head"
env:
CCI_TOKEN: ${{ secrets.CIRCLECI_PAT }}

View File

@ -98,7 +98,12 @@ Install Transformers from source if you want the latest changes in the library o
```shell
git clone https://github.com/huggingface/transformers.git
cd transformers
# pip
pip install .[torch]
# uv
uv pip install .[torch]
```
## Quickstart

View File

@ -2,11 +2,11 @@ import argparse
import importlib.util
import logging
import os
from typing import Dict
import sys
from typing import Dict, Tuple
from psycopg2.extras import Json
from psycopg2.extensions import register_adapter
from psycopg2.extras import Json
register_adapter(dict, Json)
@ -17,10 +17,13 @@ class ImportModuleException(Exception):
class MetricsRecorder:
def __init__(self, connection, logger: logging.Logger, branch: str, commit_id: str, commit_msg: str):
def __init__(
self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str
):
self.conn = connection
self.conn.autocommit = True
self.logger = logger
self.repository = repository
self.branch = branch
self.commit_id = commit_id
self.commit_msg = commit_msg
@ -32,8 +35,8 @@ class MetricsRecorder:
# gpu_name: str, model_id: str
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO benchmarks (branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s) RETURNING benchmark_id",
(self.branch, self.commit_id, self.commit_msg, metadata),
"INSERT INTO benchmarks (repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s) RETURNING benchmark_id",
(self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
)
benchmark_id = cur.fetchone()[0]
logger.debug(f"initialised benchmark #{benchmark_id}")
@ -82,12 +85,18 @@ handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments():
def parse_arguments() -> Tuple[str, str, str, str]:
"""
Parse command line arguments for the benchmarking CLI.
"""
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
parser.add_argument(
"repository",
type=str,
help="The repository name on which the benchmarking is performed.",
)
parser.add_argument(
"branch",
type=str,
@ -108,7 +117,7 @@ def parse_arguments():
args = parser.parse_args()
return args.branch, args.commit_id, args.commit_msg
return args.repository, args.branch, args.commit_id, args.commit_msg
def import_from_path(module_name, file_path):
@ -125,7 +134,7 @@ def import_from_path(module_name, file_path):
if __name__ == "__main__":
benchmarks_folder_path = os.path.dirname(os.path.realpath(__file__))
branch, commit_id, commit_msg = parse_arguments()
repository, branch, commit_id, commit_msg = parse_arguments()
for entry in os.scandir(benchmarks_folder_path):
try:
@ -136,7 +145,7 @@ if __name__ == "__main__":
logger.debug(f"loading: {entry.name}")
module = import_from_path(entry.name.split(".")[0], entry.path)
logger.info(f"running benchmarks in: {entry.name}")
module.run_benchmark(logger, branch, commit_id, commit_msg)
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
except ImportModuleException as e:
logger.error(e)
except Exception as e:

View File

@ -1,5 +1,6 @@
CREATE TABLE IF NOT EXISTS benchmarks (
benchmark_id SERIAL PRIMARY KEY,
repository VARCHAR(255),
branch VARCHAR(255),
commit_id VARCHAR(72),
commit_message VARCHAR(70),

View File

@ -33,11 +33,15 @@ def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
sleep(0.01)
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
def run_benchmark(
logger: Logger, repository: str, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100
):
continue_metric_collection = Event()
metrics_thread = None
model_id = "meta-llama/Llama-2-7b-hf"
metrics_recorder = MetricsRecorder(psycopg2.connect("dbname=metrics"), logger, branch, commit_id, commit_msg)
metrics_recorder = MetricsRecorder(
psycopg2.connect("dbname=metrics"), logger, repository, branch, commit_id, commit_msg
)
try:
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_name = gpu_stats[0]["name"]

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"

View File

@ -16,7 +16,7 @@ RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
RUN uv pip install --no-cache --upgrade 'torch==2.6.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN uv pip uninstall transformers

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN uv pip uninstall transformers

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
RUN uv pip uninstall transformers

View File

@ -7,7 +7,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm

View File

@ -28,7 +28,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 "tensorflow_text<2.16" "tensorflow_probability<0.22" && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
@ -45,7 +45,7 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir av==9.2.0
RUN python3 -m pip install --no-cache-dir av
# Some slow tests require bnb
RUN python3 -m pip install --no-cache-dir bitsandbytes
@ -71,6 +71,9 @@ RUN python3 -m pip install --no-cache-dir g2p-en
# For Some bitsandbytes tests
RUN python3 -m pip install --no-cache-dir einops
# For Some tests with `@require_liger_kernel`
RUN python3 -m pip install --no-cache-dir liger-kernel
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels

View File

@ -1,4 +1,4 @@
FROM rocm/dev-ubuntu-22.04:6.2.4
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -11,9 +11,6 @@ RUN apt update && \
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main
@ -33,3 +30,6 @@ RUN cd transformers && python3 setup.py develop
# Remove nvml and nvidia-ml-py as it is not compatible with ROCm. apex is not tested on NVIDIA either.
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels

View File

@ -48,3 +48,6 @@ RUN python3 -c "from deepspeed.launcher.runner import main"
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels

View File

@ -76,12 +76,12 @@
title: Prompt engineering
- local: llm_optims
title: Optimizing inference
- local: cache_explanation
title: Caching
- local: kv_cache
title: KV cache strategies
- local: serving
title: Serving
- local: cache_explanation
title: Caching
- local: llm_tutorial_optimization
title: Getting the most out of LLMs
- local: perplexity
@ -129,8 +129,8 @@
title: Hyperparameter search
title: Trainer API
- sections:
- local: gpu_selection
title: GPU selection
- local: accelerator_selection
title: Accelerator selection
- local: accelerate
title: Accelerate
- local: fsdp
@ -386,7 +386,7 @@
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/bertweet
title: Bertweet
title: BERTweet
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
@ -455,6 +455,8 @@
title: Falcon
- local: model_doc/falcon3
title: Falcon3
- local: model_doc/falcon_h1
title: FalconH1
- local: model_doc/falcon_mamba
title: FalconMamba
- local: model_doc/flan-t5
@ -540,7 +542,7 @@
- local: model_doc/mamba
title: Mamba
- local: model_doc/mamba2
title: mamba2
title: Mamba2
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
@ -553,6 +555,8 @@
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/minimax
title: MiniMax
- local: model_doc/mistral
title: Mistral
- local: model_doc/mixtral
@ -935,6 +939,8 @@
title: CLVP
- local: model_doc/colpali
title: ColPali
- local: model_doc/colqwen2
title: ColQwen2
- local: model_doc/data2vec
title: Data2Vec
- local: model_doc/deplot
@ -1119,4 +1125,9 @@
- local: internal/time_series_utils
title: Utilities for Time Series
title: Internal helpers
- sections:
- local: reference/environment_variables
title: Environment Variables
title: Reference
title: API

View File

@ -0,0 +1,126 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Accelerator selection
During distributed training, you can specify the number and order of accelerators (CUDA, XPU, MPS, HPU, etc.) to use. This can be useful when you have accelerators with different computing power and you want to use the faster accelerator first. Or you could only use a subset of the available accelerators. The selection process works for both [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) and [DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html). You don't need Accelerate or [DeepSpeed integration](./main_classes/deepspeed).
This guide will show you how to select the number of accelerators to use and the order to use them in.
## Number of accelerators
For example, if there are 4 accelerators and you only want to use the first 2, run the command below.
<hfoptions id="select-accelerator">
<hfoption id="torchrun">
Use the `--nproc_per_node` to select how many accelerators to use.
```bash
torchrun --nproc_per_node=2 trainer-program.py ...
```
</hfoption>
<hfoption id="Accelerate">
Use `--num_processes` to select how many accelerators to use.
```bash
accelerate launch --num_processes 2 trainer-program.py ...
```
</hfoption>
<hfoption id="DeepSpeed">
Use `--num_gpus` to select how many GPUs to use.
```bash
deepspeed --num_gpus 2 trainer-program.py ...
```
</hfoption>
</hfoptions>
## Order of accelerators
To select specific accelerators to use and their order, use the environment variable appropriate for your hardware. This is often set on the command line for each run, but can also be added to your `~/.bashrc` or other startup config file.
For example, if there are 4 accelerators (0, 1, 2, 3) and you only want to run accelerators 0 and 2:
<hfoptions id="accelerator-type">
<hfoption id="CUDA">
```bash
CUDA_VISIBLE_DEVICES=0,2 torchrun trainer-program.py ...
```
Only GPUs 0 and 2 are "visible" to PyTorch and are mapped to `cuda:0` and `cuda:1` respectively.
To reverse the order (use GPU 2 as `cuda:0` and GPU 0 as `cuda:1`):
```bash
CUDA_VISIBLE_DEVICES=2,0 torchrun trainer-program.py ...
```
To run without any GPUs:
```bash
CUDA_VISIBLE_DEVICES= python trainer-program.py ...
```
You can also control the order of CUDA devices using `CUDA_DEVICE_ORDER`:
- Order by PCIe bus ID (matches `nvidia-smi`):
```bash
export CUDA_DEVICE_ORDER=PCI_BUS_ID
```
- Order by compute capability (fastest first):
```bash
export CUDA_DEVICE_ORDER=FASTEST_FIRST
```
</hfoption>
<hfoption id="Intel XPU">
```bash
ZE_AFFINITY_MASK=0,2 torchrun trainer-program.py ...
```
Only XPUs 0 and 2 are "visible" to PyTorch and are mapped to `xpu:0` and `xpu:1` respectively.
To reverse the order (use XPU 2 as `xpu:0` and XPU 0 as `xpu:1`):
```bash
ZE_AFFINITY_MASK=2,0 torchrun trainer-program.py ...
```
You can also control the order of Intel XPUs with:
```bash
export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
```
For more information about device enumeration and sorting on Intel XPU, please refer to the [Level Zero](https://github.com/oneapi-src/level-zero/blob/master/README.md?plain=1#L87) documentation.
</hfoption>
</hfoptions>
> [!WARNING]
> Environment variables can be exported instead of being added to the command line. This is not recommended because it can be confusing if you forget how the environment variable was set up and you end up using the wrong accelerators. Instead, it is common practice to set the environment variable for a specific training run on the same command line.

View File

@ -125,4 +125,44 @@ would expect from a usual Python dictionary:
# You can also globally `register` a new function directly on it
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
```
```
## Attention Mask Interface
Having a new attention function may mean that you need a new format of attention mask to decide what key and value tokens
the query tokens should attend to. This is now possible with the `AttentionMaskInterface`! It works in the same way as
the `AttentionInterface`:
```python
from transformers import AttentionMaskInterface
from transformers.masking_utils import sdpa_mask
import torch
def my_new_sdpa_mask(*args, **kwargs):
print("I just entered the attention mask computation")
return sdpa_mask(*args, **kwargs)
AttentionMaskInterface.register("my_new_sdpa_mask", my_new_sdpa_mask)
```
The reason you have to register it is because we need to automatically correct your mask format based on the attention implementation (for example, flex attention uses a BlockMask format, while sdpa uses a 4D tensor).
By default, if you do not register an attention mask function along with your attention function, mask creation will be skipped
and `attention_mask=None` will be passed along to the Attention layers.
The default signature of the attention mask functions is the following:
```python
def custom_attention_mask(
batch_size: int, # required arg
cache_position: torch.Tensor, # required arg
kv_length: int, # required arg
kv_offset: int = 0, # required arg
mask_function: Callable = causal_mask_function, # required arg
attention_mask: Optional[torch.Tensor] = None, # required arg
**kwargs, # a few additional args may be passed as kwargs, especially the model's config is always passed
) -> Optional[torch.Tensor]:
```
It mostly works thanks to the `mask_function`, which is a `Callable` in the form of [torch's mask_mod functions](https://pytorch.org/blog/flexattention/), taking 4 indices as input and returning a boolean to indicate if this position should take part in the attention computation.
If you cannot use the `mask_function` to create your mask for some reason, you can try to work around it by doing something similar to our [torch export workaround](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/executorch.py).

View File

@ -15,8 +15,7 @@ rendered properly in your Markdown viewer.
-->
# Caching
Imagine youre having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
Imagine you're having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
You can extend this analogy to transformer models. Autoregressive model generation can be slow because it makes a prediction one token at a time. Each new prediction is dependent on all the previous context.
@ -29,8 +28,50 @@ A key-value (KV) cache eliminates this inefficiency by storing kv pairs derived
> [!WARNING]
> Caching should only be used for **inference**. It may cause unexpected errors if it's enabled during training.
To better understand how and why caching works, let's take a closer look at the structure of the attention matrices.
## Attention matrices
The **scaled dot-product attention** is calculated as shown below for a batch of size `b`, number of attention heads `h`, sequence length so far `T`, and dimension per attention head `d_head`.
$$
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
$$
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
$$
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
$$
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
$$
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
$$
Attention is calculated independently in each layer of the model, and caching is done on a per-layer basis.
Refer to the table below to compare how caching improves efficiency.
| without caching | with caching |
|---|---|
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V`
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) |
## Cache class
A basic KV cache interface takes a key and value tensor for the current token and returns the updated `K` and `V` tensors. This is internally managed by a model's `forward` method.
```py
new_K, new_V = cache.update(k_t, v_t, layer_idx)
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
```
When you use Transformers' [`Cache`] class, the self-attention module performs several critical steps to integrate past and present information.
1. The attention module concatenates current kv pairs with past kv pairs stored in the cache. This creates attentions weights with the shape `(new_tokens_length, past_kv_length + new_tokens_length)`. The current and past kv pairs are essentially combined to compute the attention scores, ensuring a model is aware of previous context and the current input.
@ -39,6 +80,27 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
3. It is also important to be aware of the `cache_position`. This is important if you want to reuse a prefilled [`Cache`] with the `forward` method because you have to pass a valid `cache_position` value. This indicates the input positions in a sequence. `cache_position` is unaffected by padding, and it always adds one more position for each token. For example, if a kv cache contains 10 tokens - regardless of pad tokens - the cache position for the next token should be `torch.tensor([10])`.
## Cache storage implementation
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
- `key_cache`: A list of tensors, one for each layer.
- `value_cache`: A list of tensors, one for each layer.
When new tokens are processed:
1. For each layer, the new key and value states are concatenated with the existing cache.
```py
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
```
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
```py
@ -72,10 +134,14 @@ for _ in range(max_new_tokens):
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
## Legacy cache format
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format has is dynamic because it grows as text is generated, similar to [`DynamicCache`].
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
The legacy format is essentially the same data structure but organized differently.
- It's a tuple of tuples, where each inner tuple contains the key and value tensors for a layer.
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
- The format is less flexible and doesn't support features like quantization or offloading.
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.

View File

@ -20,11 +20,15 @@ A decoding strategy informs how a model should select the next generated token.
This guide will help you understand the different decoding strategies available in Transformers and how and when to use them.
## Greedy search
## Basic decoding methods
Greedy search is the default decoding strategy. It selects the next most likely token at each step. Unless specified in [`GenerationConfig`], this strategy generates a maximum of 20 tokens.
These are well established decoding methods, and should be your starting point for text generation tasks.
Greedy search works well for tasks with relatively short outputs. However, it breaks down when generating longer sequences because it begins to repeat itself.
### Greedy search
Greedy search is the default decoding strategy. It selects the next most likely token at each step. Unless specified in [`GenerationConfig`], this strategy generates a maximum of 20 new tokens.
Greedy search works well for tasks with relatively short outputs where creativity is not a priority. However, it breaks down when generating longer sequences because it begins to repeat itself.
```py
import torch
@ -40,11 +44,11 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company that provides a suite of tools and services for building, deploying, and maintaining natural language processing'
```
## Contrastive search
### Sampling
[Contrastive search](https://huggingface.co/papers/2202.06417) is a decoding strategy that aims to reduce repetition even while generating longer sequences. This strategy compares how similar a generated token is against previous tokens, and if they're more similar, a penalty is applied.
Sampling, or multinomial sampling, randomly selects a token based on the probability distribution over the entire model's vocabulary (as opposed to the most likely token, as in greedy search). This means every token with a non-zero probability has a chance to be selected. Sampling strategies reduce repetition and can generate more creative and diverse outputs.
Enable contrastive search with the `penalty_alpha` and `top_k` parameters. The `penalty_alpha` manages the penalty applied and `top_k` is the number of most likely tokens to return.
Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
```py
import torch
@ -55,14 +59,14 @@ inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt"
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=100, penalty_alpha=0.6, top_k=4)
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=1)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company that provides a platform for building and deploying AI models.\nHugging Face is an open-source company that provides a platform for building and deploying AI models. The platform allows developers to build and deploy AI models, as well as collaborate with other developers.\nHugging Face was founded in 2019 by Thibault Wittemberg and Clément Delangue. The company is based in Paris, France.\nHugging Face has'
'Hugging Face is an open-source company 🤗\nWe are open-source and believe that open-source is the best way to build technology. Our mission is to make AI accessible to everyone, and we believe that open-source is the best way to achieve that.'
```
## Beam search
### Beam search
Beam search keeps track of several generated sequences (beams) at each time step. After a certain number of steps, it selects the sequence with the highest *overall* probability. Unlike greedy search, this strategy can "look ahead" and pick a sequence with a higher probability overall even if the initial tokens have a lower probability.
Beam search keeps track of several generated sequences (beams) at each time step. After a certain number of steps, it selects the sequence with the highest *overall* probability. Unlike greedy search, this strategy can "look ahead" and pick a sequence with a higher probability overall even if the initial tokens have a lower probability. It is best suited for input-grounded tasks, like describing an image or speech recognition. You can also use `do_sample=True` with beam search to sample at each step, but beam search will still greedily prune out low probability sequences between steps.
> [!TIP]
> Check out the [beam search visualizer](https://huggingface.co/spaces/m-ric/beam_search_visualizer) to see how beam search works.
@ -83,66 +87,11 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
"['Hugging Face is an open-source company that develops and maintains the Hugging Face platform, which is a collection of tools and libraries for building and deploying natural language processing (NLP) models. Hugging Face was founded in 2018 by Thomas Wolf']"
```
## Diverse beam search
## Advanced decoding methods
[Diverse beam search](https://hf.co/papers/1610.02424) is a variant of beam search that produces more diverse output candidates to choose from. This strategy measures the dissimilarity of sequences and a penalty is applied if sequences are too similar. To avoid high computation costs, the number of beams is divided into groups.
Advanced decoding methods aim at either tackling specific generation quality issues (e.g. repetition) or at improving the generation throughput in certain situations. These techniques are more complex, and may not work correctly with all models.
Enable diverse beam search with the `num_beams`, `num_beam_groups` and `diversity_penalty` parameters (the `num_beams` parameter should be divisible by `num_beam_groups`).
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, num_beams=6, num_beam_groups=3, diversity_penalty=1.0, do_sample=False)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company 🤗\nWe are an open-source company. Our mission is to democratize AI and make it accessible to everyone. We believe that AI should be used for the benefit of humanity, not for the benefit of a'
```
## Multinomial sampling
Search methods selects the most likely tokens. Sampling, or multinomial sampling, randomly selects a token based on the probability distribution over the entire models vocabulary. This means every token with a non-zero probability has a chance to be selected. Sampling strategies reduce repetition and can generate more creative and diverse outputs.
Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=1)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company 🤗\nWe are open-source and believe that open-source is the best way to build technology. Our mission is to make AI accessible to everyone, and we believe that open-source is the best way to achieve that.'
```
## Beam search multinomial sampling
This decoding strategy is a combination of beam search and multinomial sampling. It generates multiple beams and uses a sampling strategy for each beam.
Enable beam search multinomial sampling by setting `num_beams` to a value greater than 1 and `do_sample=True`.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=4)
'Hugging Face is an open-source company 100% dedicated to making AI more accessible. We believe that AI should be available to everyone, and were working hard to make that a reality.\nWere a team of passionate engineers, designers,'
```
## Speculative decoding
### Speculative decoding
[Speculative](https://hf.co/papers/2211.17192) or assistive decoding isn't a search or sampling strategy. Instead, speculative decoding adds a second smaller model to generate candidate tokens. The main model verifies the candidate tokens in a single `forward` pass, which speeds up the decoding process overall. This method is especially useful for LLMs where it can be more costly and slower to generate tokens. Refer to the [speculative decoding](./llm_optims#speculative-decoding) guide to learn more.
@ -203,7 +152,7 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
</hfoption>
</hfoptions>
### Prompt lookup decoding
#### Prompt lookup decoding
[Prompt lookup decoding](./llm_optims#prompt-lookup-decoding) is a variant of speculative decoding that uses overlapping n-grams as the candidate tokens. It works well for input-grounded tasks such as summarization. Refer to the [prompt lookup decoding](./llm_optims#prompt-lookup-decoding) guide to learn more.
@ -245,7 +194,7 @@ outputs = model.generate(**inputs, assistant_early_exit=4, do_sample=False, max_
tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
### Universal assisted decoding
#### Universal assisted decoding
Universal assisted decoding (UAD) enables the main and assistant models to use different tokenizers. The main models input tokens are re-encoded into assistant model tokens. Candidate tokens are generated in the assistant encoding which are re-encoded into the main model candidate tokens. The candidate tokens are verified as explained in [speculative decoding](#speculative-decoding).
@ -269,7 +218,27 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Alice and Bob are sitting in a bar. Alice is drinking a beer and Bob is drinking a']
```
## DoLa
### Contrastive search
[Contrastive search](https://huggingface.co/papers/2202.06417) is a decoding strategy that aims to reduce repetition even while generating longer sequences. This strategy compares how similar a generated token is against previous tokens, and if they're more similar, a penalty is applied.
Enable contrastive search with the `penalty_alpha` and `top_k` parameters. The `penalty_alpha` manages the penalty applied and `top_k` is the number of most likely tokens to return.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=100, penalty_alpha=0.6, top_k=4)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company that provides a platform for building and deploying AI models.\nHugging Face is an open-source company that provides a platform for building and deploying AI models. The platform allows developers to build and deploy AI models, as well as collaborate with other developers.\nHugging Face was founded in 2019 by Thibault Wittemberg and Clément Delangue. The company is based in Paris, France.\nHugging Face has'
```
### DoLa
[Decoding by Contrasting Layers (DoLa)](https://hf.co/papers/2309.03883) is a contrastive decoding strategy for improving factuality and reducing hallucination. This strategy works by contrasting the logit differences between the final and early layers. As a result, factual knowledge localized to particular layers are amplified. DoLa is not recommended for smaller models like GPT-2.
@ -325,6 +294,209 @@ tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[-1]:], skip_special_tok
</hfoption>
</hfoptions>
### Diverse beam search
[Diverse beam search](https://hf.co/papers/1610.02424) is a variant of beam search that produces more diverse output candidates to choose from. This strategy measures the dissimilarity of sequences and a penalty is applied if sequences are too similar. To avoid high computation costs, the number of beams is divided into groups.
Enable diverse beam search with the `num_beams`, `num_beam_groups` and `diversity_penalty` parameters (the `num_beams` parameter should be divisible by `num_beam_groups`).
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, num_beams=6, num_beam_groups=3, diversity_penalty=1.0, do_sample=False)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company 🤗\nWe are an open-source company. Our mission is to democratize AI and make it accessible to everyone. We believe that AI should be used for the benefit of humanity, not for the benefit of a'
```
## Custom decoding methods
Custom decoding methods enable specialized generation behavior such as the following:
- have the model continue thinking if it is uncertain;
- roll back generation if the model gets stuck;
- handle special tokens with custom logic;
- enhanced input preparation for advanced models;
We enable custom decoding methods through model repositories, assuming a specific model tag and file structure (see subsection below). This feature is an extension of [custom modeling code](./models.md#custom-models) and, like such, requires setting `trust_remote_code=True`.
If a model repository holds a custom decoding method, the easiest way to try it out is to load the model and generate with it:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
# `transformers-community/custom_generate_example` holds a copy of `Qwen/Qwen2.5-0.5B-Instruct`, but
# with custom generation code -> calling `generate` uses the custom decoding method!
tokenizer = AutoTokenizer.from_pretrained("transformers-community/custom_generate_example")
model = AutoModelForCausalLM.from_pretrained(
"transformers-community/custom_generate_example", device_map="auto", trust_remote_code=True
)
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
# The custom decoding method is a minimal greedy decoding implementation. It also prints a custom message at run time.
gen_out = model.generate(**inputs)
# you should now see its custom message, "✨ using a custom generation method ✨"
print(tokenizer.batch_decode(gen_out, skip_special_tokens=True))
'The quick brown fox jumps over a lazy dog, and the dog is a type of animal. Is'
```
Model repositories with custom decoding methods have a special property: their decoding method can be loaded from **any** model through [`~GenerationMixin.generate`]'s `custom_generate` argument. This means anyone can create and share their custom generation method to potentially work with any Transformers model, without requiring users to install additional Python packages.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", device_map="auto")
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
# `custom_generate` replaces the original `generate` by the custom decoding method defined in
# `transformers-community/custom_generate_example`
gen_out = model.generate(**inputs, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True)
print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
'The quick brown fox jumps over a lazy dog, and the dog is a type of animal. Is'
```
You should read the `README.md` file of the repository containing the custom generation strategy to see what the new arguments and output type differences are, if they exist. Otherwise, you can assume it works like the base [`~GenerationMixin.generate`] method.
> [!TIP]
> You can find all custom decoding methods by [searching for their custom tag.](https://huggingface.co/models?other=custom_generate), `custom_generate`
Consider the Hub repository [transformers-community/custom_generate_example](https://huggingface.co/transformers-community/custom_generate_example) as an example. The `README.md` states that it has an additional input argument, `left_padding`, which adds a number of padding tokens before the prompt.
```py
gen_out = model.generate(
**inputs, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True, left_padding=5
)
print(tokenizer.batch_decode(gen_out)[0])
'<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>The quick brown fox jumps over the lazy dog.\n\nThe sentence "The quick'
```
If the custom method has pinned Python requirements that your environment doesn't meet, you'll get an exception about missing requirements. For instance, [transformers-community/custom_generate_bad_requirements](https://huggingface.co/transformers-community/custom_generate_bad_requirements) has an impossible set of requirements defined in its `custom_generate/requirements.txt` file, and you'll see the error message below if you try to run it.
```
ImportError: Missing requirements in your local environment for `transformers-community/custom_generate_bad_requirements`:
foo (installed: None)
bar==0.0.0 (installed: None)
torch>=99.0 (installed: 2.6.0)
```
Updating your Python requirements accordingly will remove this error message.
### Creating a custom decoding method
To create a new decoding method, you need to create a new [**Model**](https://huggingface.co/new) repository and push a few files into it.
1. The model you've designed your decoding method with.
2. `custom_generate/generate.py`, which contains all the logic for your custom decoding method.
3. `custom_generate/requirements.txt`, used to optionally add new Python requirements and/or lock specific versions to correctly use your method.
4. `README.md`, where you should add the `custom_generate` tag and document any new arguments or output type differences of your custom method here.
After you've added all required files, your repository should look like this
```
your_repo/
├── README.md # include the 'custom_generate' tag
├── config.json
├── ...
└── custom_generate/
├── generate.py
└── requirements.txt
```
#### Adding the base model
The starting point for your custom decoding method is a model repository just like any other. The model to add to this repository should be the model you've designed your method with, and it is meant to be part of a working self-contained model-generate pair. When the model in this repository is loaded, your custom decoding method will override `generate`. Don't worry -- your decoding method can still be loaded with any other Transformers model, as explained in the section above.
If you simply want to copy an existing model, you can do
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("source/model_repo")
model = AutoModelForCausalLM.from_pretrained("source/model_repo")
tokenizer.save_pretrained("your/decoding_method", push_to_hub=True)
model.save_pretrained("your/decoding_method", push_to_hub=True)
```
#### generate.py
This is the core of your decoding method. It *must* contain a method named `generate`, and this method *must* contain a `model` argument as its first argument. `model` is the model instance, which means you have access to all attributes and methods in the model, including the ones defined in [`GenerationMixin`] (like the base `generate` method).
> [!WARNING]
> `generate.py` must be placed in a folder named `custom_generate`, and not at the root level of the repository. The file paths for this feature are hardcoded.
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method, with the exception of the arguments used to trigger the custom generation (`trust_remote_code` and `custom_generate`).
This means your `generate` can have a mix of original and custom arguments (as well as a different output type) as shown below.
```py
import torch
def generate(model, input_ids, generation_config=None, left_padding=None, **kwargs):
generation_config = generation_config or model.generation_config # default to the model generation config
cur_length = input_ids.shape[1]
max_length = generation_config.max_length or cur_length + generation_config.max_new_tokens
# Example of custom argument: add `left_padding` (integer) pad tokens before the prompt
if left_padding is not None:
if not isinstance(left_padding, int) or left_padding < 0:
raise ValueError(f"left_padding must be an integer larger than 0, but is {left_padding}")
pad_token = kwargs.pop("pad_token", None) or generation_config.pad_token_id or model.config.pad_token_id
if pad_token is None:
raise ValueError("pad_token is not defined")
batch_size = input_ids.shape[0]
pad_tensor = torch.full(size=(batch_size, left_padding), fill_value=pad_token).to(input_ids.device)
input_ids = torch.cat((pad_tensor, input_ids), dim=1)
cur_length = input_ids.shape[1]
# Simple greedy decoding loop
while cur_length < max_length:
logits = model(input_ids).logits
next_token_logits = logits[:, -1, :]
next_tokens = torch.argmax(next_token_logits, dim=-1)
input_ids = torch.cat((input_ids, next_tokens[:, None]), dim=-1)
cur_length += 1
return input_ids
```
Follow the recommended practices below to ensure your custom decoding method works as expected.
- Feel free to reuse the logic for validation and input preparation in the original [`~GenerationMixin.generate`].
- Pin the `transformers` version in the requirements if you use any private method/attribute in `model`.
- You can add other files in the `custom_generate` folder, and use relative imports.
- Consider adding model validation, input validation, or even a separate test file to help users sanity-check your code in their environment.
#### requirements.txt
You can optionally specify additional Python requirements in a `requirements.txt` file inside the `custom_generate` folder. These are checked at runtime and an exception will be thrown if they're missing, nudging users to update their environment accordingly.
#### README.md
The root level `README.md` in the model repository usually describes the model therein. However, since the focus of the repository is the custom decoding method, we highly recommend to shift its focus towards describing the custom decoding method. In addition to a description of the method, we recommend documenting any input and/or output differences to the original [`~GenerationMixin.generate`]. This way, users can focus on what's new, and rely on Transformers docs for generic implementation details.
For discoverability, we highly recommend you to add the `custom_generate` tag to your repository. To do so, the top of your `README.md` file should look like the example below. After you push the file, you should see the tag in your repository!
```
---
library_name: transformers
tags:
- custom_generate
---
(your markdown content here)
```
Recommended practices:
- Document input and output differences in [`~GenerationMixin.generate`].
- Add self-contained examples to enable quick experimentation.
- Describe soft-requirements such as if the method only works well with a certain family of models.
## Resources
Read the [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) blog post for an explanation of how common decoding strategies work.

View File

@ -1,94 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GPU selection
During distributed training, you can specify the number of GPUs to use and in what order. This can be useful when you have GPUs with different computing power and you want to use the faster GPU first. Or you could only use a subset of the available GPUs. The selection process works for both [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) and [DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html). You don't need Accelerate or [DeepSpeed integration](./main_classes/deepspeed).
This guide will show you how to select the number of GPUs to use and the order to use them in.
## Number of GPUs
For example, if there are 4 GPUs and you only want to use the first 2, run the command below.
<hfoptions id="select-gpu">
<hfoption id="torchrun">
Use the `--nproc_per_node` to select how many GPUs to use.
```bash
torchrun --nproc_per_node=2 trainer-program.py ...
```
</hfoption>
<hfoption id="Accelerate">
Use `--num_processes` to select how many GPUs to use.
```bash
accelerate launch --num_processes 2 trainer-program.py ...
```
</hfoption>
<hfoption id="DeepSpeed">
Use `--num_gpus` to select how many GPUs to use.
```bash
deepspeed --num_gpus 2 trainer-program.py ...
```
</hfoption>
</hfoptions>
### Order of GPUs
To select specific GPUs to use and their order, configure the `CUDA_VISIBLE_DEVICES` environment variable. It is easiest to set the environment variable in `~/bashrc` or another startup config file. `CUDA_VISIBLE_DEVICES` is used to map which GPUs are used. For example, if there are 4 GPUs (0, 1, 2, 3) and you only want to run GPUs 0 and 2:
```bash
CUDA_VISIBLE_DEVICES=0,2 torchrun trainer-program.py ...
```
Only the 2 physical GPUs (0 and 2) are "visible" to PyTorch and these are mapped to `cuda:0` and `cuda:1` respectively. You can also reverse the order of the GPUs to use 2 first. The mapping becomes `cuda:1` for GPU 0 and `cuda:0` for GPU 2.
```bash
CUDA_VISIBLE_DEVICES=2,0 torchrun trainer-program.py ...
```
You can also set the `CUDA_VISIBLE_DEVICES` environment variable to an empty value to create an environment without GPUs.
```bash
CUDA_VISIBLE_DEVICES= python trainer-program.py ...
```
> [!WARNING]
> As with any environment variable, they can be exported instead of being added to the command line. However, this is not recommended because it can be confusing if you forget how the environment variable was set up and you end up using the wrong GPUs. Instead, it is common practice to set the environment variable for a specific training run on the same command line.
`CUDA_DEVICE_ORDER` is an alternative environment variable you can use to control how the GPUs are ordered. You can order according to the following.
1. PCIe bus IDs that matches the order of [`nvidia-smi`](https://developer.nvidia.com/nvidia-system-management-interface) and [`rocm-smi`](https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/.doxygen/docBin/html/index.html) for NVIDIA and AMD GPUs respectively.
```bash
export CUDA_DEVICE_ORDER=PCI_BUS_ID
```
2. GPU compute ability.
```bash
export CUDA_DEVICE_ORDER=FASTEST_FIRST
```
The `CUDA_DEVICE_ORDER` is especially useful if your training setup consists of an older and newer GPU, where the older GPU appears first, but you cannot physically swap the cards to make the newer GPU appear first. In this case, set `CUDA_DEVICE_ORDER=FASTEST_FIRST` to always use the newer and faster GPU first (`nvidia-smi` or `rocm-smi` still reports the GPUs in their PCIe order). Or you could also set `export CUDA_VISIBLE_DEVICES=1,0`.

View File

@ -90,11 +90,6 @@ class SamVisionAttentionSplit(SamVisionAttention, nn.Module):
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
if self.use_rel_pos:
attn_weights = self.add_decomposed_rel_pos(
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
@ -114,13 +109,14 @@ Load the model with [`~PreTrainedModel.from_pretrained`].
```py
from transformers import SamModel
from transformers.models.sam import modeling_sam
# replace the attention class in the modeling_sam module
modeling_sam.SamVisionAttention = SamVisionAttentionSplit
# load the pretrained SAM model
model = SamModel.from_pretrained("facebook/sam-vit-base")
# replace the attention class in the vision_encoder module
for layer in model.vision_encoder.layers:
if hasattr(layer, "attn"):
layer.attn = SamVisionAttentionSplit(model.config.vision_config, model.config.vision_config.window_size)
```
## LoRA
@ -138,7 +134,7 @@ config = LoraConfig(
# apply LoRA to q and v
target_modules=["q", "v"],
lora_dropout=0.1,
task_type="mask-generation"
task_type="FEATURE_EXTRACTION"
)
```
@ -152,5 +148,5 @@ Call [print_trainable_parameters](https://huggingface.co/docs/peft/package_refer
```py
model.print_trainable_parameters()
"trainable params: 608,256 || all params: 94,343,728 || trainable%: 0.6447"
"trainable params: 589,824 || all params: 94,274,096 || trainable%: 0.6256"
```

View File

@ -19,6 +19,9 @@ Hyperparameter search discovers an optimal set of hyperparameters that produces
This guide will go over how to set up a hyperparameter search for each of the backends.
> [!WARNING]
> [SigOpt](https://github.com/sigopt/sigopt-server) is in public archive mode and is no longer actively maintained. Try using Optuna, Weights & Biases or Ray Tune instead.
```bash
pip install optuna/sigopt/wandb/ray[tune]
```

View File

@ -380,11 +380,6 @@ A [`Constraint`] can be used to force the generation to include specific tokens
[[autodoc]] HQQQuantizedCache
[[autodoc]] SinkCache
- update
- get_seq_length
- reorder_cache
[[autodoc]] OffloadedCache
- update
- prefetch_layer
@ -443,4 +438,3 @@ A [`Constraint`] can be used to force the generation to include specific tokens
[[autodoc]] CompileConfig
- __call__

View File

@ -16,7 +16,8 @@ rendered properly in your Markdown viewer.
# Model debugging toolboxes
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it provides for it.
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it
provides for it.
Most of those are only useful if you are adding new models in the library.
@ -26,13 +27,14 @@ Most of those are only useful if you are adding new models in the library.
### Model addition debugger - context manager for model adders
This context manager is a power user tool intended for model adders.
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
To note, this context manager enforces `torch.no_grad()`.
This context manager is a power user tool intended for model adders. It tracks all forward calls within a model forward
and logs a slice of each input and output on a nested JSON. To note, this context manager enforces `torch.no_grad()`.
### Rationale
Because when porting models to transformers, even from python to python, model adders often have to do a lot of manual operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some time.
When porting models to transformers, even from python to python, model adders often have to do a lot of manual
operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some
time.
### Usage
@ -62,10 +64,10 @@ inputs = processor(text=prompt, images=random_image, return_tensors="pt")
# call forward method (not .generate!)
with model_addition_debugger_context(
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False # This will output ALL the layers of a model.
):
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False # This will output ALL the layers of a model.
):
output = model.forward(**inputs)
```
@ -73,8 +75,8 @@ with model_addition_debugger_context(
### Reading results
The debugger generates two files from the forward call, both with the same base name,
but ending either with `_SUMMARY.json` or with `_FULL_TENSORS.json`.
The debugger generates two files from the forward call, both with the same base name, but ending either with
`_SUMMARY.json` or with `_FULL_TENSORS.json`.
The first one will contain a summary of each module's _input_ and _output_ tensor values and shapes.
@ -142,8 +144,8 @@ The first one will contain a summary of each module's _input_ and _output_ tenso
{ ... and so on
```
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful
for comparing two files.
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful for comparing two files.
```json
"pixel_values": {
"shape": "torch.Size([1, 5, 576, 588])",
@ -196,9 +198,38 @@ for comparing two files.
},
```
#### Saving tensors to disk
Some model adders may benefit from logging full tensor values to disk to support, for example, numerical analysis
across implementations.
Set `use_repr=False` to write tensors to disk using [SafeTensors](https://huggingface.co/docs/safetensors/en/index).
```python
with model_addition_debugger_context(
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False,
use_repr=False, # Defaults to True
):
output = model.forward(**inputs)
```
When using `use_repr=False`, tensors are written to the same disk location as the `_SUMMARY.json` and
`_FULL_TENSORS.json` files. The `value` property of entries in the `_FULL_TENSORS.json` file will contain a relative
path reference to the associated `.safetensors` file. Each tensor is written to its own file as the `data` property of
the state dictionary. File names are constructed using the `module_path` as a prefix with a few possible postfixes that
are built recursively.
* Module inputs are denoted with the `_inputs` and outputs by `_outputs`.
* `list` and `tuple` instances, such as `args` or function return values, will be postfixed with `_{index}`.
* `dict` instances will be postfixed with `_{key}`.
### Comparing between implementations
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See
below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly
identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/files_difference_debugging.png)
@ -206,8 +237,13 @@ Once the forward passes of two models have been traced by the debugger, one can
### Limitations and scope
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
This feature will only work for torch-based models, and would require more work and case-by-case approach for say
`jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will
probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be
traced once instead of reran N times with breakpoints.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the
first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N
layers.
[[autodoc]] model_addition_debugger_context

View File

@ -29,6 +29,11 @@ Most of those are only useful if you are studying the code of the models in the
[[autodoc]] AttentionInterface
- register
## Attention Mask Functions
[[autodoc]] AttentionMaskInterface
- register
## Rotary Position Embedding Functions
[[autodoc]] dynamic_rope_update

View File

@ -30,7 +30,6 @@ Transformers offers several [`Cache`] classes that implement different caching m
| Offloaded Static Cache | No | Yes | Yes | High | Yes |
| Quantized Cache | Yes | No | No | Low | Yes |
| Sliding Window Cache | No | Yes | Yes | High | No |
| Sink Cache | Yes | No | Yes | Mid | Yes |
This guide introduces you to the different [`Cache`] classes and shows you how to use them for generation.
@ -174,28 +173,6 @@ I like rock music because it's loud and energetic. It's a great way to express m
</hfoption>
</hfoptions>
### Sink cache
[`SinkCache`] is capable of generating very long sequences ("infinite length" according to the paper) by only retaining a few initial tokens from the sequence. These are called the *sink tokens* because they account for a significant portion of the attention scores during generation. Subsequent tokens are discarded on a sliding windowed basis, and only the latest `window_size` tokens are kept. This means most of the previous knowledge is discarded.
The sink tokens allow a model to maintain stable performance even when it's dealing with very long text sequences.
Enable [`SinkCache`] by initializing it first with the [window_length](https://hf.co/docs/transformers/main/en/internal/generation_utils#transformers.SinkCache.window_length) and [num_sink_tokens](https://hf.co/docs/transformers/main/en/internal/generation_utils#transformers.SinkCache.num_sink_tokens) parameters before passing it to [past_key_values](https://hf.co/docs/transformers/internal/generation_utils#transformers.generation.GenerateDecoderOnlyOutput.past_key_values) in [`~GenerationMixin.generate`].
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
inputs = tokenizer("This is a long story about unicorns, fairies and magic.", return_tensors="pt").to(model.device)
past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
out = model.generate(**inputs, do_sample=False, max_new_tokens=30, past_key_values=past_key_values)
tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"This is a long story about unicorns, fairies and magic. It is a fantasy world where unicorns and fairies live together in harmony. The story follows a young girl named Lily"
```
## Speed optimized caches
The default [`DynamicCache`] prevents you from taking advantage of just-in-time (JIT) optimizations because the cache size isn't fixed. JIT optimizations enable you to maximize latency at the expense of memory usage. All of the following cache types are compatible with JIT optimizations like [torch.compile](./llm_optims#static-kv-cache-and-torchcompile) to accelerate generation.
@ -247,7 +224,7 @@ Enable [`SlidingWindowCache`] by configuring `cache_implementation="sliding_wind
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0")
@ -284,8 +261,6 @@ A cache can also work in iterative generation settings where there is back-and-f
For iterative generation with a cache, start by initializing an empty cache class and then you can feed in your new prompts. Keep track of dialogue history with a [chat template](./chat_templating).
If you're using [`SinkCache`], the inputs need to be truncated to the maximum length because [`SinkCache`] can generate text that exceeds its maximum window size. However, the first input shouldn't exceed the maximum cache length.
The example below demonstrates how to use a cache for iterative generation.
```py
@ -293,7 +268,6 @@ import torch
from transformers import AutoTokenizer,AutoModelForCausalLM
from transformers.cache_utils import (
DynamicCache,
SinkCache,
StaticCache,
SlidingWindowCache,
QuantoQuantizedCache,
@ -313,8 +287,6 @@ messages = []
for prompt in user_prompts:
messages.append({"role": "user", "content": prompt})
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
if isinstance(past_key_values, SinkCache):
inputs = {k: v[:, -max_cache_length:] for k, v in inputs.items()}
input_length = inputs["input_ids"].shape[1]
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=256, past_key_values=past_key_values)
completion = tokenizer.decode(outputs[0, input_length: ], skip_special_tokens=True)
@ -336,7 +308,7 @@ model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Init StaticCache with big enough max-length (1024 tokens for the below example)
# Init StaticCache with big enough max-length (1024 tokens for the below example)
# You can also init a DynamicCache, if that suits you better
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
@ -351,7 +323,7 @@ responses = []
for prompt in prompts:
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
response = tokenizer.batch_decode(outputs)[0]
responses.append(response)

View File

@ -84,14 +84,17 @@ GenerationConfig {
}
```
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. Some of the most commonly adjusted parameters are [max_new_tokens](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.max_new_tokens), [num_beams](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_beams), [do_sample](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.do_sample), and [num_return_sequences](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_return_sequences).
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. See [this section below](#common-options) for commonly adjusted parameters.
```py
# enable beam search sampling strategy
model.generate(**inputs, num_beams=4, do_sample=True)
```
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code. The `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution. `stopping_criteria` supports custom [`StoppingCriteria`] to stop text generation. Check out the [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo) for more examples of external [`~GenerationMixin.generate`]-compatible extensions.
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code:
1. the `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution;
2. the `stopping_criteria` parameters supports custom [`StoppingCriteria`] to stop text generation;
3. other custom generation methods can be loaded through the `custom_generate` flag ([docs](generation_strategies.md/#custom-decoding-methods)).
Refer to the [Generation strategies](./generation_strategies) guide to learn more about search, sampling, and decoding strategies.

View File

@ -21,7 +21,7 @@ A **Video Processor** is a utility responsible for preparing input features for
The video processor extends the functionality of image processors by allowing Vision Large Language Models (VLMs) to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't upadted your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
### Usage Example

View File

@ -57,6 +57,7 @@ This model was contributed by [lysandre](https://huggingface.co/lysandre). This
- Embedding size E is different from hidden size H justified because the embeddings are context independent (one embedding vector represents one token), whereas hidden states are context dependent (one hidden state represents a sequence of tokens) so it's more logical to have H >> E. Also, the embedding matrix is large since it's V x E (V being the vocab size). If E < H, it has less parameters.
- Layers are split in groups that share parameters (to save memory).
Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B (that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been swapped or not.
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
### Using Scaled Dot Product Attention (SDPA)

View File

@ -13,65 +13,141 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Transformers" src="https://img.shields.io/badge/Transformers-6B5B95?style=flat&logo=transformers&logoColor=white">
</div>
</div>
# ALIGN
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[ALIGN](https://huggingface.co/papers/2102.05918) is pretrained on a noisy 1.8 billion alttext and image pair dataset to show that scale can make up for the noise. It uses a dualencoder architecture, [EfficientNet](./efficientnet) for images and [BERT](./bert) for text, and a contrastive loss to align similar imagetext embeddings together while pushing different embeddings apart. Once trained, ALIGN can encode any image and candidate captions into a shared vector space for zeroshot retrieval or classification without requiring extra labels. This scalefirst approach reduces dataset curation costs and powers stateoftheart imagetext retrieval and zeroshot ImageNet classification.
## Overview
You can find all the original ALIGN checkpoints under the [Kakao Brain](https://huggingface.co/kakaobrain?search_models=align) organization.
The ALIGN model was proposed in [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. ALIGN is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image classification. ALIGN features a dual-encoder architecture with [EfficientNet](efficientnet) as its vision encoder and [BERT](bert) as its text encoder, and learns to align visual and text representations with contrastive learning. Unlike previous work, ALIGN leverages a massive noisy dataset and shows that the scale of the corpus can be used to achieve SOTA representations with a simple recipe.
> [!TIP]
> Click on the ALIGN models in the right sidebar for more examples of how to apply ALIGN to different vision and text related tasks.
The abstract from the paper is the following:
The example below demonstrates zero-shot image classification with [`Pipeline`] or the [`AutoModel`] class.
*Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.*
<hfoptions id="usage">
This model was contributed by [Alara Dirik](https://huggingface.co/adirik).
The original code is not released, this implementation is based on the Kakao Brain implementation based on the original paper.
<hfoption id="Pipeline">
## Usage example
ALIGN uses EfficientNet to get visual features and BERT to get the text features. Both the text and visual features are then projected to a latent space with identical dimension. The dot product between the projected image and text features is then used as a similarity score.
[`AlignProcessor`] wraps [`EfficientNetImageProcessor`] and [`BertTokenizer`] into a single instance to both encode the text and preprocess the images. The following example shows how to get the image-text similarity scores using [`AlignProcessor`] and [`AlignModel`].
```python
import requests
```py
import torch
from PIL import Image
from transformers import AlignProcessor, AlignModel
from transformers import pipeline
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
model = AlignModel.from_pretrained("kakaobrain/align-base")
pipeline = pipeline(
task="zero-shot-image-classification",
model="kakaobrain/align-base",
device=0,
torch_dtype=torch.bfloat16
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["an image of a cat", "an image of a dog"]
candidate_labels = [
"a photo of a dog",
"a photo of a cat",
"a photo of a person"
]
inputs = processor(images=image ,text=candidate_labels, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# this is the image-text similarity score
logits_per_image = outputs.logits_per_image
# we can take the softmax to get the label probabilities
probs = logits_per_image.softmax(dim=1)
print(probs)
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", candidate_labels=candidate_labels)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
model = AutoModelForZeroShotImageClassification.from_pretrained("kakaobrain/align-base").to("cuda")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = requests.get(url, stream=True)
inputs = Image.open(image.raw).convert("RGB")
image_inputs = processor(images=inputs, return_tensors="pt").to("cuda")
with torch.no_grad():
image_embeds = model.get_image_features(**image_inputs)
candidate_labels = ["a photo of a dog", "a photo of a cat", "a photo of a person"]
text_inputs = processor(text=candidate_labels, padding=True, return_tensors="pt").to("cuda")
with torch.no_grad():
text_embeds = model.get_text_features(**text_inputs)
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
logits = (image_embeds @ text_embeds.T) * 100.0
probs = logits.softmax(dim=-1).cpu().squeeze()
for label, score in zip(candidate_labels, probs):
print(f"{label:20s}{score.item():.4f}")
```
</hfoption>
</hfoptions>
## Notes
- ALIGN projects the text and visual features into latent space and the dot product between the projected image and text features is used as the similarity score. The example below demonstrates how to calculate the image-text similarity score with [`AlignProcessor`] and [`AlignModel`].
```py
# Example of using ALIGN for image-text similarity
from transformers import AlignProcessor, AlignModel
import torch
from PIL import Image
import requests
from io import BytesIO
# Load processor and model
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
model = AlignModel.from_pretrained("kakaobrain/align-base")
# Download image from URL
url = "https://huggingface.co/roschmid/dog-races/resolve/main/images/Golden_Retriever.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)) # Convert the downloaded bytes to a PIL Image
texts = ["a photo of a cat", "a photo of a dog"]
# Process image and text inputs
inputs = processor(images=image, text=texts, return_tensors="pt")
# Get the embeddings
with torch.no_grad():
outputs = model(**inputs)
image_embeds = outputs.image_embeds
text_embeds = outputs.text_embeds
# Normalize embeddings for cosine similarity
image_embeds = image_embeds / image_embeds.norm(dim=1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=1, keepdim=True)
# Calculate similarity scores
similarity_scores = torch.matmul(text_embeds, image_embeds.T)
# Print raw scores
print("Similarity scores:", similarity_scores)
# Convert to probabilities
probs = torch.nn.functional.softmax(similarity_scores, dim=0)
print("Probabilities:", probs)
# Get the most similar text
most_similar_idx = similarity_scores.argmax().item()
print(f"Most similar text: '{texts[most_similar_idx]}'")
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ALIGN.
- A blog post on [ALIGN and the COYO-700M dataset](https://huggingface.co/blog/vit-align).
- A zero-shot image classification [demo](https://huggingface.co/spaces/adirik/ALIGN-zero-shot-image-classification).
- [Model card](https://huggingface.co/kakaobrain/align-base) of `kakaobrain/align-base` model.
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it. The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Refer to the [Kakao Brains Open Source ViT, ALIGN, and the New COYO Text-Image Dataset](https://huggingface.co/blog/vit-align) blog post for more details.
## AlignConfig

View File

@ -14,60 +14,71 @@ rendered properly in your Markdown viewer.
-->
# Aria
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Aria
The Aria model was proposed in [Aria: An Open Multimodal Native Mixture-of-Experts Model](https://huggingface.co/papers/2410.05993) by Li et al. from the Rhymes.AI team.
[Aria](https://huggingface.co/papers/2410.05993) is a multimodal mixture-of-experts (MoE) model. The goal of this model is to open-source a training recipe for creating a multimodal native model from scratch. Aria has 3.9B and 3.5B activated parameters per visual and text token respectively. Text is handled by a MoE decoder and visual inputs are handled by a lightweight visual encoder. It is trained in 4 stages, language pretraining, multimodal pretraining, multimodal long-context pretraining, and multimodal post-training.
Aria is an open multimodal-native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. It has a Mixture-of-Experts architecture, with respectively 3.9B and 3.5B activated parameters per visual token and text token.
You can find all the original Aria checkpoints under the [Aria](https://huggingface.co/rhymes-ai?search_models=aria) organization.
The abstract from the paper is the following:
> [!TIP]
> Click on the Aria models in the right sidebar for more examples of how to apply Aria to different multimodal tasks.
*Information comes in diverse modalities. Multimodal native AI models are essential to integrate real-world information and deliver comprehensive understanding. While proprietary multimodal native models exist, their lack of openness imposes obstacles for adoptions, let alone adaptations. To fill this gap, we introduce Aria, an open multimodal native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. Aria is a mixture-of-expert model with 3.9B and 3.5B activated parameters per visual token and text token, respectively. It outperforms Pixtral-12B and Llama3.2-11B, and is competitive against the best proprietary models on various multimodal tasks. We pre-train Aria from scratch following a 4-stage pipeline, which progressively equips the model with strong capabilities in language understanding, multimodal understanding, long context window, and instruction following. We open-source the model weights along with a codebase that facilitates easy adoptions and adaptations of Aria in real-world applications.*
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
This model was contributed by [m-ric](https://huggingface.co/m-ric).
The original code can be found [here](https://github.com/rhymes-ai/Aria).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Usage tips
Here's how to use the model for vision tasks:
```python
import requests
import torch
from PIL import Image
from transformers import pipeline
from transformers import AriaProcessor, AriaForConditionalGeneration
pipeline = pipeline(
"image-to-text",
model="rhymes-ai/Aria",
device=0,
torch_dtype=torch.bfloat16
)
pipeline(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
text="What is shown in this image?"
)
```
model_id_or_path = "rhymes-ai/Aria"
</hfoption>
<hfoption id="AutoModel">
model = AriaForConditionalGeneration.from_pretrained(
model_id_or_path, device_map="auto"
```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
model = AutoModelForCausalLM.from_pretrained(
"rhymes-ai/Aria",
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="sdpa"
)
processor = AriaProcessor.from_pretrained(model_id_or_path)
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
processor = AutoProcessor.from_pretrained("rhymes-ai/Aria")
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"text": "what is the image?", "type": "text"},
],
}
"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs.to(model.device)
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
ipnuts = inputs.to(model.device, torch.bfloat16)
output = model.generate(
**inputs,
@ -79,6 +90,55 @@ output = model.generate(
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4 and the [rhymes-ai/Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) checkpoint. This checkpoint replaces grouped GEMM with `torch.nn.Linear` layers for easier quantization.
```py
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoProcessor
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForCausalLM.from_pretrained(
"rhymes-ai/Aria-sequential_mlp",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
processor = AutoProcessor.from_pretrained(
"rhymes-ai/Aria-sequential_mlp",
)
messages = [
{
"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
inputs = inputs.to(model.device, torch.bfloat16)
output = model.generate(
**inputs,
max_new_tokens=15,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
do_sample=True,
temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)
```

View File

@ -389,3 +389,9 @@ The following auto classes are available for the following multimodal tasks.
### AutoModelForImageTextToText
[[autodoc]] AutoModelForImageTextToText
## Time Series
### AutoModelForTimeSeriesPrediction
[[autodoc]] AutoModelForTimeSeriesPrediction

View File

@ -39,7 +39,7 @@ Checkout all Bamba-9B model checkpoints [here](https://github.com/foundation-mod
<!---
## Usage Tips
Tips:
Tips:
- The architecture is based on Mamba-2 models.
@ -63,7 +63,35 @@ response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
## Padding-Free Training
Bamba supports padding-free training in which distinct training examples can be concatenated
together while nevertheless processing the inputs as though they belonged to separate batches. When
the examples are of varying lengths, padding-free training can provide significant speed ups and
memory savings compared to batching the examples together and using padding, as the unnecessary
compute and memory due to padding is avoided entirely. The performance gains depend on factors such
as the model and the data distribution, but throughput gains up to [~2x are commonly
seen](https://github.com/huggingface/transformers/pull/35861#issue-2807873129).
Using padding-free training with Bamba requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d`
packages, and the following arguments must be passed to the model in addition to `input_ids` and
`labels`:
* `position_ids: torch.LongTensor`: the position index of each token in each sequence.
* `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
* Each of the [`FlashAttentionKwargs`]
* `cu_seq_lens_q: torch.LongTensor`: The cumulative sequence lengths of all queries.
* `cu_seq_lens_k: torch.LongTensor`: The cumulative sequence lengths of all keys.
* `max_length_q: int`: the longest query length in the batch.
* `max_length_k: int`: the longest key length in the batch.
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] can be used
to programmatically generate the above set of additional arguments using `return_seq_idx=True` and
`return_flash_attn_kwargs=True`. See [this blog post](https://huggingface.co/blog/packing-with-FA2)
for additional information.
[[autodoc]] BambaForCausalLM
- forward
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).

View File

@ -14,115 +14,87 @@ rendered properly in your Markdown viewer.
-->
# BART
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# BART
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. Its pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
The Bart model was proposed in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.
According to the abstract,
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a
left-to-right decoder (like GPT).
- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme,
where spans of text are replaced with a single mask token.
- BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It
matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new
state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains
of up to 6 ROUGE.
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/bart).
```py
import torch
from transformers import pipeline
## Usage tips:
pipeline = pipeline(
task="fill-mask",
model="facebook/bart-large",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
- BART is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- Sequence-to-sequence model with an encoder and a decoder. Encoder is fed a corrupted version of the tokens, decoder is fed the original tokens (but has a mask to hide the future words like a regular transformers decoder). A composition of the following transformations are applied on the pretraining tasks for the encoder:
```
</hfoption>
<hfoption id="AutoModel">
* mask random tokens (like in BERT)
* delete random tokens
* mask a span of k tokens with a single mask token (a span of 0 tokens is an insertion of a mask token)
* permute sentences
* rotate the document to make it start at a specific token
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
## Implementation Notes
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/bart-large",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
- Bart doesn't use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or
[`~BartTokenizer.encode`] to get the proper splitting.
- The forward pass of [`BartModel`] will create the `decoder_input_ids` if they are not passed.
This is different than some other modeling APIs. A typical use case of this feature is mask filling.
- Model predictions are intended to be identical to the original implementation when
`forced_bos_token_id=0`. This only works, however, if the string you pass to
[`fairseq.encode`] starts with a space.
- [`~generation.GenerationMixin.generate`] should be used for conditional generation tasks like
summarization, see the example in that docstrings.
- Models that load the *facebook/bart-large-cnn* weights will not have a `mask_token_id`, or be able to perform
mask-filling tasks.
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
## Mask Filling
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
The `facebook/bart-base` and `facebook/bart-large` checkpoints can be used to fill multi-token masks.
```python
from transformers import BartForConditionalGeneration, BartTokenizer
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
batch = tok(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"])
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
]
print(f"The predicted token is: {predicted_token}")
```
## Resources
</hfoption>
<hfoption id="transformers CLI">
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BART. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/bart-large --device 0
```
<PipelineTag pipeline="summarization"/>
</hfoption>
</hfoptions>
- A blog post on [Distributed Training: Train BART/T5 for Summarization using 🤗 Transformers and Amazon SageMaker](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq).
- A notebook on how to [finetune BART for summarization with fastai using blurr](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb). 🌎
- A notebook on how to [finetune BART for summarization in two languages with Trainer class](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb). 🌎
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization).
- An example of how to train [`BartForConditionalGeneration`] with a Hugging Face `datasets` object can be found in this [forum discussion](https://discuss.huggingface.co/t/train-bart-for-conditional-generation-e-g-summarization/1904)
- [Summarization](https://huggingface.co/course/chapter7/5?fw=pt#summarization) chapter of the 🤗 Hugging Face course.
- [Summarization task guide](../tasks/summarization)
## Notes
<PipelineTag pipeline="fill-mask"/>
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="translation"/>
- A notebook on how to [finetune mBART using Seq2SeqTrainer for Hindi to English translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb). 🌎
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
- [Translation task guide](../tasks/translation)
See also:
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Distilled checkpoints](https://huggingface.co/models?search=distilbart) are described in this [paper](https://arxiv.org/abs/2010.13002).
- Inputs should be padded on the right because BERT uses absolute position embeddings.
- The [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) checkpoint doesn't include `mask_token_id` which means it can't perform mask-filling tasks.
- BART doesnt use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or [`~PreTrainedTokenizerBase.encode`] to get the proper splitting.
- The forward pass of [`BartModel`] creates the `decoder_input_ids` if they're not passed. This can be different from other model APIs, but it is a useful feature for mask-filling tasks.
- Model predictions are intended to be identical to the original implementation when `forced_bos_token_id=0`. This only works if the text passed to `fairseq.encode` begins with a space.
- [`~GenerationMixin.generate`] should be used for conditional generation tasks like summarization.
## BartConfig

View File

@ -16,60 +16,82 @@ rendered properly in your Markdown viewer.
# BERTweet
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
## Overview
## BERTweet
The BERTweet model was proposed in [BERTweet: A pre-trained language model for English Tweets](https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf) by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen.
[BERTweet](https://huggingface.co/papers/2005.10200) shares the same architecture as [BERT-base](./bert), but its pretrained like [RoBERTa](./roberta) on English Tweets. It performs really well on Tweet-related tasks like part-of-speech tagging, named entity recognition, and text classification.
The abstract from the paper is the following:
*We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having
the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et
al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al.,
2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks:
Part-of-speech tagging, Named-entity recognition and text classification.*
You can find all the original BERTweet checkpoints under the [VinAI Research](https://huggingface.co/vinai?search_models=BERTweet) organization.
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BERTweet).
> [!TIP]
> Refer to the [BERT](./bert) docs for more examples of how to apply BERTweet to different language tasks.
## Usage example
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
<hfoptions id="usage">
<hfoption id="Pipeline">
>>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
```py
import torch
from transformers import pipeline
>>> # For transformers v4.x+:
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
pipeline = pipeline(
task="fill-mask",
model="vinai/bertweet-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
```
</hfoption>
<hfoption id="AutoModel">
>>> # For transformers v3.x:
>>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
>>> # INPUT TWEET IS ALREADY NORMALIZED!
>>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
tokenizer = AutoTokenizer.from_pretrained(
"vinai/bertweet-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"vinai/bertweet-base",
torch_dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
>>> input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
>>> with torch.no_grad():
... features = bertweet(input_ids) # Models outputs are now tuples
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
>>> # With TensorFlow 2.0+:
>>> # from transformers import TFAutoModel
>>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
print(f"The predicted token is: {predicted_token}")
```
<Tip>
</hfoption>
<hfoption id="transformers CLI">
This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for
API reference information.
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model vinai/bertweet-base --device 0
```
</Tip>
</hfoption>
</hfoptions>
## Notes
- Use the [`AutoTokenizer`] or [`BertweetTokenizer`] because its preloaded with a custom vocabulary adapted to tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Make sure to also install the [emoji](https://pypi.org/project/emoji/) library.
- Inputs should be padded on the right (`padding="max_length"`) because BERT uses absolute position embeddings.
## BertweetTokenizer

View File

@ -14,63 +14,87 @@ rendered properly in your Markdown viewer.
-->
# BigBird
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# BigBird
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse
attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it
has been shown that applying sparse, global, and random attention approximates full attention, while being
computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context,
BigBird has shown improved performance on various long document NLP tasks, such as question answering and
summarization, compared to BERT or RoBERTa.
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesnt try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
The abstract from the paper is the following:
*Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP.
Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence
length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that
reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and
is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our
theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire
sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to
8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also
propose novel applications to genomics data.*
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found
[here](https://github.com/google-research/bigbird).
> [!TIP]
> Click on the BigBird models in the right sidebar for more examples of how to apply BigBird to different language tasks.
## Usage tips
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
- For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird).
- BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using
**original_full** is advised as there is no benefit in using **block_sparse** attention.
- The code currently uses window size of 3 blocks and 2 global blocks.
- Sequence length must be divisible by block size.
- Current implementation supports only **ITC**.
- Current implementation doesn't support **num_random_blocks = 0**
- BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="google/bigbird-roberta-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"google/bigbird-roberta-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"google/bigbird-roberta-base",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
!echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google/bigbird-roberta-base --device 0
```
</hfoption>
</hfoptions>
## Notes
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
- BigBird supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
- The sequence length must be divisible by the block size.
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
- Read the [BigBird](https://huggingface.co/blog/big-bird) blog post for more details about how its attention works.
## BigBirdConfig

View File

@ -14,77 +14,121 @@ rendered properly in your Markdown viewer.
-->
# BioGPT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# BioGPT
The BioGPT model was proposed in [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch.
[BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
The abstract from the paper is the following:
You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization.
*Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.*
> [!TIP]
> Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks.
This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/BioGPT).
The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- BioGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left.
- BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it can be observed in the run_generation.py example script.
- The model can take the `past_key_values` (for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage.
```py
import torch
from transformers import pipeline
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import BioGptForCausalLM
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)
generator = pipeline(
task="text-generation",
model="microsoft/biogpt",
torch_dtype=torch.float16,
device=0,
)
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
print(result)
```
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a CausalLM head,
we saw the following speedups during training.
</hfoption>
<hfoption id="AutoModel">
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
| num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------|
| 100 | 1 | 128 | False | 0.038 | 0.031 | 21.301 | 1601.862 | 1601.497 | 0.023 |
| 100 | 1 | 256 | False | 0.039 | 0.034 | 15.084 | 1624.944 | 1625.296 | -0.022 |
| 100 | 2 | 128 | False | 0.039 | 0.033 | 16.820 | 1624.567 | 1625.296 | -0.045 |
| 100 | 2 | 256 | False | 0.065 | 0.059 | 10.255 | 1672.164 | 1672.164 | 0.000 |
| 100 | 4 | 128 | False | 0.062 | 0.058 | 6.998 | 1671.435 | 1672.164 | -0.044 |
| 100 | 4 | 256 | False | 0.113 | 0.100 | 13.316 | 2350.179 | 1848.435 | 27.144 |
| 100 | 8 | 128 | False | 0.107 | 0.098 | 9.883 | 2098.521 | 1848.435 | 13.530 |
| 100 | 8 | 256 | False | 0.222 | 0.196 | 13.413 | 3989.980 | 2986.492 | 33.601 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a simple AutoModel head,
we saw the following speedups during inference.
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
| num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|-------------|------------|---------|---------|---------|----------|------------------------------|-----------------------------|-------------|----------------|--------------|---------------|
| 50 | 1 | 64 | True | True | True | 0.115 | 0.098 | 17.392 | 716.998 | 716.998 | 0.000 |
| 50 | 1 | 128 | True | True | True | 0.115 | 0.093 | 24.640 | 730.916 | 730.916 | 0.000 |
| 50 | 2 | 64 | True | True | True | 0.114 | 0.096 | 19.204 | 730.900 | 730.900 | 0.000 |
| 50 | 2 | 128 | True | True | True | 0.117 | 0.095 | 23.529 | 759.262 | 759.262 | 0.000 |
| 50 | 4 | 64 | True | True | True | 0.113 | 0.096 | 18.325 | 759.229 | 759.229 | 0.000 |
| 50 | 4 | 128 | True | True | True | 0.186 | 0.178 | 4.289 | 816.478 | 816.478 | 0.000 |
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
</hfoption>
<hfoption id="transformers CLI">
## Resources
```bash
echo -e "Ibuprofen is best used for" | transformers-cli run --task text-generation --model microsoft/biogpt --device 0
```
- [Causal language modeling task guide](../tasks/language_modeling)
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/BioGPT-Large",
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
device_map="auto"
)
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
## Notes
- Pad inputs on the right because BioGPT uses absolute position embeddings.
- BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`].
- The `head_mask` argument is ignored when using an attention implementation other than "eager". If you want to use `head_mask`, make sure `attn_implementation="eager"`).
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
attn_implementation="eager"
)
## BioGptConfig
@ -108,7 +152,7 @@ we saw the following speedups during inference.
[[autodoc]] BioGptForCausalLM
- forward
## BioGptForTokenClassification
[[autodoc]] BioGptForTokenClassification

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
Note that [`BlenderbotSmallModel`] and
@ -52,7 +54,7 @@ found [here](https://github.com/facebookresearch/ParlAI).
## Usage tips
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -45,7 +47,7 @@ This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The
## Usage tips and example
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
An example:
@ -71,7 +73,7 @@ An example:
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
[BlenderbotSmall](blenderbot-small).
## Resources
- [Causal language modeling task guide](../tasks/language_modeling)

View File

@ -20,9 +20,11 @@ rendered properly in your Markdown viewer.
# ColPali
[ColPali](https://huggingface.co/papers/2407.01449) is a model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColPali treats each page as an image. It uses [Paligemma-3B](./paligemma) to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed embeddings. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
[ColPali](https://huggingface.co/papers/2407.01449) is a model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColPali treats each page as an image. It uses [Paligemma-3B](./paligemma) to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed multi-vector embeddings that can be used for retrieval by computing pairwise late interaction similarity scores. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
You can find all the original ColPali checkpoints under the [ColPali](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
This model was contributed by [@tonywu71](https://huggingface.co/tonywu71) (ILLUIN Technology) and [@yonigozlan](https://huggingface.co/yonigozlan) (HuggingFace).
You can find all the original ColPali checkpoints under Vidore's [Hf-native ColVision Models](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
> [!TIP]
> Click on the ColPali models in the right sidebar for more examples of how to use ColPali for image retrieval.
@ -30,21 +32,25 @@ You can find all the original ColPali checkpoints under the [ColPali](https://hu
<hfoptions id="usage">
<hfoption id="image retrieval">
```py
```python
import requests
import torch
from PIL import Image
from transformers import ColPaliForRetrieval, ColPaliProcessor
# Load model (bfloat16 support is limited; fallback to float32 if needed)
model = ColPaliForRetrieval.from_pretrained(
"vidore/colpali-v1.2-hf",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto", # "cpu", "cuda", or "mps" for Apple Silicon
).eval()
# Load the model and the processor
model_name = "vidore/colpali-v1.3-hf"
model = ColPaliForRetrieval.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto", # "cpu", "cuda", or "mps" for Apple Silicon
)
processor = ColPaliProcessor.from_pretrained(model_name)
# The document page screenshots from your corpus
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
@ -53,25 +59,37 @@ images = [
Image.open(requests.get(url2, stream=True).raw),
]
# The queries you want to retrieve documents for
queries = [
"Who printed the edition of Romeo and Juliet?",
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
inputs_images = processor(images=images, return_tensors="pt").to(model.device)
inputs_text = processor(text=queries, return_tensors="pt").to(model.device)
inputs_images = processor(images=images).to(model.device)
inputs_text = processor(text=queries).to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
If you have issue with loading the images with PIL, you can use the following code to create dummy images:
```python
images = [
Image.new("RGB", (128, 128), color="white"),
Image.new("RGB", (64, 32), color="black"),
]
```
</hfoption>
</hfoptions>
@ -79,12 +97,15 @@ Quantization reduces the memory burden of large models by representing the weigh
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
```py
```python
import requests
import torch
from PIL import Image
from transformers import ColPaliForRetrieval, ColPaliProcessor
from transformers import BitsAndBytesConfig
from transformers import BitsAndBytesConfig, ColPaliForRetrieval, ColPaliProcessor
model_name = "vidore/colpali-v1.3-hf"
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
@ -94,14 +115,11 @@ bnb_config = BitsAndBytesConfig(
bnb_4bit_compute_dtype=torch.float16,
)
model_name = "vidore/colpali-v1.2-hf"
# Load model
model = ColPaliForRetrieval.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="cuda"
).eval()
device_map="cuda",
)
processor = ColPaliProcessor.from_pretrained(model_name)
@ -114,8 +132,8 @@ images = [
]
queries = [
"Who printed the edition of Romeo and Juliet?",
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
@ -127,6 +145,7 @@ with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")

View File

@ -0,0 +1,176 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# ColQwen2
[ColQwen2](https://doi.org/10.48550/arXiv.2407.01449) is a variant of the [ColPali](./colpali) model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColQwen2 treats each page as an image. It uses the [Qwen2-VL](./qwen2_vl) backbone to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed multi-vector embeddings that can be used for retrieval by computing pairwise late interaction similarity scores. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
This model was contributed by [@tonywu71](https://huggingface.co/tonywu71) (ILLUIN Technology) and [@yonigozlan](https://huggingface.co/yonigozlan) (HuggingFace).
You can find all the original ColPali checkpoints under Vidore's [Hf-native ColVision Models](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
> [!TIP]
> Click on the ColQwen2 models in the right sidebar for more examples of how to use ColQwen2 for image retrieval.
<hfoptions id="usage">
<hfoption id="image retrieval">
```python
import requests
import torch
from PIL import Image
from transformers import ColQwen2ForRetrieval, ColQwen2Processor
from transformers.utils.import_utils import is_flash_attn_2_available
# Load the model and the processor
model_name = "vidore/colqwen2-v1.0-hf"
model = ColQwen2ForRetrieval.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto", # "cpu", "cuda", or "mps" for Apple Silicon
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "sdpa",
)
processor = ColQwen2Processor.from_pretrained(model_name)
# The document page screenshots from your corpus
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
images = [
Image.open(requests.get(url1, stream=True).raw),
Image.open(requests.get(url2, stream=True).raw),
]
# The queries you want to retrieve documents for
queries = [
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
inputs_images = processor(images=images).to(model.device)
inputs_text = processor(text=queries).to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
If you have issue with loading the images with PIL, you can use the following code to create dummy images:
```python
images = [
Image.new("RGB", (128, 128), color="white"),
Image.new("RGB", (64, 32), color="black"),
]
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
```python
import requests
import torch
from PIL import Image
from transformers import BitsAndBytesConfig, ColQwen2ForRetrieval, ColQwen2Processor
model_name = "vidore/colqwen2-v1.0-hf"
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = ColQwen2ForRetrieval.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="cuda",
).eval()
processor = ColQwen2Processor.from_pretrained(model_name)
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
images = [
Image.open(requests.get(url1, stream=True).raw),
Image.open(requests.get(url2, stream=True).raw),
]
queries = [
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
inputs_images = processor(images=images, return_tensors="pt").to(model.device)
inputs_text = processor(text=queries, return_tensors="pt").to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
## Notes
- [`~ColQwen2Processor.score_retrieval`] returns a 2D tensor where the first dimension is the number of queries and the second dimension is the number of images. A higher score indicates more similarity between the query and image.
- Unlike ColPali, ColQwen2 supports arbitrary image resolutions and aspect ratios, which means images are not resized into fixed-size squares. This preserves more of the original input signal.
- Larger input images generate longer multi-vector embeddings, allowing users to adjust image resolution to balance performance and memory usage.
## ColQwen2Config
[[autodoc]] ColQwen2Config
## ColQwen2Processor
[[autodoc]] ColQwen2Processor
## ColQwen2ForRetrieval
[[autodoc]] ColQwen2ForRetrieval
- forward

View File

@ -39,7 +39,7 @@ CSM can be used to simply generate speech from a text prompt:
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
@ -74,7 +74,7 @@ import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
@ -119,7 +119,7 @@ import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
@ -176,7 +176,7 @@ import copy
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda"
# set logs to ensure no recompilation and graph breaks
@ -308,13 +308,14 @@ CSM Transformers integration supports training!
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda"
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
model.train()
model.codec_model.eval()
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
# ensure the audio is 24kHz
@ -355,6 +356,10 @@ The original code can be found [here](https://github.com/SesameAILabs/csm).
## CsmProcessor
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/fig1.jpg"/>
</div>
[[autodoc]] CsmProcessor
- __call__

View File

@ -53,6 +53,7 @@ The original code for vision can be found [here](https://github.com/facebookrese
- For Data2VecAudio, preprocessing is identical to [`Wav2Vec2Model`], including feature extraction
- For Data2VecText, preprocessing is identical to [`RobertaModel`], including tokenization.
- For Data2VecVision, preprocessing is identical to [`BeitModel`], including feature extraction.
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
### Using Scaled Dot Product Attention (SDPA)

View File

@ -28,8 +28,8 @@ We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 67
We are super happy to make this code community-powered, and would love to see how you can best optimize the following:
- current implementation uses the "naive" attention compution (so not really MLA)
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `intetrations/tensor_parallel`.
- current implementation uses the eleuther formula for ROPE, using the orginal one would be more efficient! (should still follow our API)
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `integrations/tensor_parallel`.
- current implementation uses the eleuther formula for ROPE, using the original one would be more efficient! (should still follow our API)
- static cache is not supported (this should be just a generation config issue / config shape issues)
### Usage tips

View File

@ -0,0 +1,65 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FalconH1
## Overview
The FalconH1 model was developed by the TII Pretraining team. A comprehensive research paper covering the architecture, pretraining dynamics, experimental results, and conclusions is forthcoming. You can read more about this series in [this website](https://github.com/tiiuae/Falcon-H1).
## Contributors
This model was contributed by [DhiyaEddine](https://huggingface.co/DhiyaEddine), [ybelkada](https://huggingface.co/ybelkada), [JingweiZuo](https://huggingface.co/JingweiZuo), [IlyasChahed](https://huggingface.co/IChahed), and [MaksimVelikanov](https://huggingface.co/yellowvm).
The original code can be found [here](https://github.com/tiiuae/Falcon-H1).
## FalconH1Config
| Model | Depth | Dim | Attn Heads | KV | Mamba Heads | d_head | d_state | Ctx Len |
|-----------|--------|------|------------|----|--------------|--------------|------|-----------------|
| H1 0.5B | 36 | 1024 | 8 | 2 | 24 | 64 / 64 | 128 | 4K, 16K-SFT |
| H1 1.5B | 24 | 2048 | 8 | 2 | 48 | 128 / 64 | 256 | 128K |
| H1 1.5B-d | 66 | 1280 | 6 | 2 | 24 | 128 / 64 | 256 | 128K |
| H1 3B | 32 | 2560 | 10 | 2 | 32 | 128 / 128 | 256 | 128K |
| H1 7B | 44 | 3072 | 12 | 2 | 24 | 128 / 128 | 256 | 256K |
| H1 34B | 72 | 5120 | 20 | 4 | 32 | 128 / 128 | 256 | 256K |
[[autodoc]] FalconH1Config
<!---
## Usage Tips
Tips:
- The architecture is based on Mamba-2 models.
## FalconH1Model
[[autodoc]] FalconH1Model
- forward
-->
## FalconH1ForCausalLM
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
message = ["Mamba is a snake with following properties "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
[[autodoc]] FalconH1ForCausalLM
- forward
This HF implementation is contributed by [younesbelkada](https://github.com/younesbelkada) and [DhiaEddineRhaiem](https://github.com/dhiaEddineRhaiem).

View File

@ -46,8 +46,12 @@ The main differences compared to GPT2.
- Merge the key and value caches into one (this changes the format of layer_past/ present, does it risk creating problems?)
- Use the memory layout (self.num_heads, 3, self.head_dim) instead of `(3, self.num_heads, self.head_dim)` for the QKV tensor with MHA. (prevents an overhead with the merged key and values, but makes the checkpoints incompatible with the original openai-community/gpt2 model).
You can read more about the optimizations in the [original pull request](https://github.com/huggingface/transformers/pull/22575)
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Combining Starcoder and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.

View File

@ -14,93 +14,94 @@ rendered properly in your Markdown viewer.
-->
# GPT Neo
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
## Overview
The GPTNeo model was released in the [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) repository by Sid
Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. It is a GPT2 like causal language model trained on the
[Pile](https://pile.eleuther.ai/) dataset.
The architecture is similar to GPT2 except that GPT Neo uses local attention in every other layer with a window size of
256 tokens.
This model was contributed by [valhalla](https://huggingface.co/valhalla).
## Usage example
The `generate()` method can be used to generate text using GPT Neo model.
```python
>>> from transformers import GPTNeoForCausalLM, GPT2Tokenizer
>>> model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
```
## Combining GPT-Neo and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature, and make sure your hardware is compatible with Flash-Attention 2. More details are available [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2) concerning the installation.
Make sure as well to load your model in half-precision (e.g. `torch.float16`).
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
>>> prompt = "def hello_world():"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"def hello_world():\n >>> run_script("hello.py")\n >>> exit(0)\n<|endoftext|>"
```
### Expected speedups
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `EleutherAI/gpt-neo-2.7B` checkpoint and the Flash Attention 2 version of the model.
Note that for GPT-Neo it is not possible to train / run on very long context as the max [position embeddings](https://huggingface.co/EleutherAI/gpt-neo-2.7B/blob/main/config.json#L58 ) is limited to 2048 - but this is applicable to all gpt-neo models and not specific to FA-2
<div style="text-align: center">
<img src="https://user-images.githubusercontent.com/49240599/272241893-b1c66b75-3a48-4265-bc47-688448568b3d.png">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
## Resources
## GPT-Neo
- [Text classification task guide](../tasks/sequence_classification)
- [Causal language modeling task guide](../tasks/language_modeling)
[GPT-Neo](https://zenodo.org/records/5297715) is an open-source alternative to GPT-2 and GPT-3 models, built with Mesh TensorFlow for TPUs. GPT-Neo uses local attention in every other layer for more efficiency. It is trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), a diverse dataset consisting of 22 smaller high-quality datasets.
You can find all the original GPT-Neo checkpoints under the [EleutherAI](https://huggingface.co/EleutherAI?search_models=gpt-neo) organization.
> [!TIP]
> Click on the GPT-Neo models in the right sidebar for more examples of how to apply GPT Neo to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device=0)
pipeline("Hello, I'm a language model")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2")
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model EleutherAI/gpt-neo-1.3B --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-2.7B",
quantization_config=quantization_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
inputs = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Notes
- Pad inputs on the right because GPT-Neo uses absolute position embeddings.
## GPTNeoConfig

View File

@ -9,12 +9,11 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Granite
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
@ -22,49 +21,94 @@ rendered properly in your Markdown viewer.
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# Granite
The Granite model was proposed in [Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler](https://arxiv.org/abs/2408.13359) by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda.
[Granite](https://huggingface.co/papers/2408.13359) is a 3B parameter language model trained with the Power scheduler. Discovering a good learning rate for pretraining large language models is difficult because it depends on so many variables (batch size, number of training tokens, etc.) and it is expensive to perform a hyperparameter search. The Power scheduler is based on a power-law relationship between the variables and their transferability to larger models. Combining the Power scheduler with Maximum Update Parameterization (MUP) allows a model to be pretrained with one set of hyperparameters regardless of all the variables.
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a wide range of open-source and synthetic datasets with permissive licenses. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
You can find all the original Granite checkpoints under the [IBM-Granite](https://huggingface.co/ibm-granite) organization.
The abstract from the paper is the following:
> [!TIP]
> Click on the Granite models in the right sidebar for more examples of how to apply Granite to different language tasks.
*Finding the optimal learning rate for language model pretraining is a challenging task.
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored.
In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (\mup) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models.
We [open source](https://huggingface.co/collections/ibm/power-lm-66be64ae647ddf11b9808000) these pretrained models.*
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`, and from the command line.
Tips:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device=0
)
pipe("Explain quantum computing in simple terms ", max_new_tokens=50)
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "ibm/PowerLM-3b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-2b-base")
model = AutoModelForCausalLM.from_pretrained(
"ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
```python
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model ibm-granite/granite-3.3-8b-instruct --device 0
```
</hfoption>
</hfoptions>
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-8b-base")
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3.3-8b-base", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa", quantization_config=quantization_config)
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(""ibm-granite/granite-3.3-2b-base"")
model = AutoModelForCausalLM.from_pretrained(
"ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa",
quantization_config=quantization_config,
)
input_ids = tokenizer("Explain artificial intelligence to a 10 year old", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
This model was contributed by [mayank-mishra](https://huggingface.co/mayank-mishra).
## GraniteConfig
[[autodoc]] GraniteConfig

View File

@ -50,7 +50,7 @@ This model was contributed by [patrickvonplaten](https://huggingface.co/patrickv
- Hubert is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- Hubert model was fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded
using [`Wav2Vec2CTCTokenizer`].
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Using Flash Attention 2

View File

@ -99,7 +99,7 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True,
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
attn_implementation="flash_attention_2",
quantization_config=quantization_config,
device_map=device_map)

View File

@ -216,12 +216,12 @@ processor.batch_decode(generate_ids, skip_special_tokens=True)
## Note regarding reproducing original implementation
In order to match the logits of the [original implementation](https://github.com/haotian-liu/LLaVA/tree/main), one needs to additionally specify `do_pad=True` when instantiating `LLavaImageProcessor`:
In order to match the logits of the [original implementation](https://github.com/haotian-liu/LLaVA/tree/main), one needs to additionally specify `do_pad=True` when instantiating `LlavaImageProcessor`:
```python
from transformers import LLavaImageProcessor
from transformers import LlavaImageProcessor
image_processor = LLavaImageProcessor.from_pretrained("https://huggingface.co/llava-hf/llava-1.5-7b-hf", do_pad=True)
image_processor = LlavaImageProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf", do_pad=True)
```
### Using Flash Attention 2

View File

@ -147,7 +147,7 @@ print(processor.decode(output[0], skip_special_tokens=True))
### Multi image inference
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. Here is how you can do it:
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. For multi-image cases, we recommend using a **nested list of images** as input. Otherwise, every image will be patchified and consume a lot of memory. Here is how you can do it:
```python
import requests

View File

@ -51,6 +51,9 @@ multilingual it expects the sequences in a certain format: A special language id
source and target text. The source text format is `[lang_code] X [eos]`, where `lang_code` is source language
id for source text and target language id for target text, with `X` being the source or target text.
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
The [`M2M100Tokenizer`] depends on `sentencepiece` so be sure to install it before running the
examples. To install `sentencepiece` run `pip install sentencepiece`.

View File

@ -14,85 +14,124 @@ rendered properly in your Markdown viewer.
-->
# Mamba
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Mamba
The Mamba model was proposed in [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
[Mamba](https://huggingface.co/papers/2312.00752) is a selective structured state space model (SSMs) designed to work around Transformers computational inefficiency when dealing with long sequences. It is a completely attention-free architecture, and comprised of a combination of H3 and gated MLP blocks (Mamba block). Mamba's "content-based reasoning" allows it to focus on specific parts of an input depending on the current token. Mamba also uses a new hardware-aware parallel algorithm to compensate for the lack of convolutional operations. As a result, Mamba has fast inference and can scale to very long sequences.
This model is a new paradigm architecture based on `state-space-models`. You can read more about the intuition behind these [here](https://srush.github.io/annotated-s4/).
You can find all the original Mamba checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization.
The abstract from the paper is the following:
*Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.*
> [!TIP]
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
Tips:
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
- Mamba is a new `state space model` architecture that rivals the classic Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
- Mamba stacks `mixer` layers, which are the equivalent of `Attention` layers. The core logic of `mamba` is held in the `MambaMixer` class.
- Two implementations cohabit: one is optimized and uses fast cuda kernels, while the other one is naive but can run on any device!
- The current implementation leverages the original cuda kernels: the equivalent of flash attention for Mamba are hosted in the [`mamba-ssm`](https://github.com/state-spaces/mamba) and the [`causal_conv1d`](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports them!
- Contributions to make the naive path faster are welcome 🤗
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ).
The original code can be found [here](https://github.com/state-spaces/mamba).
# Usage
### A simple generation example:
```python
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="state-spaces/mamba-130m-hf",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create energy through a process known as")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float16, device_map="auto",)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True)
```
### Peft finetuning
The slow version is not very stable for training, and the fast one needs `float32`!
</hfoption>
<hfoption id="transformers CLI">
```python
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
model_id = "state-spaces/mamba-130m-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
processing_class=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()
```bash
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model state-spaces/mamba-130m-hf --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
from torchao.quantization import Int4WeightOnlyConfig
quantization_config = Int4WeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_config)
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-2.8b-hf")
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-2.8b-hf", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto",)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- The current implementation uses the original CUDA kernels. The FlashAttention equivalent implementation is hosted in the [mamba-ssm](https://github.com/state-spaces/mamba) and [causal_conv1d](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports it!
- Mamba stacks `mixer` layers which are equivalent to `Attention` layers. You can find the main logic of Mamba in the `MambaMixer` class.
- The example below demonstrates how to fine-tune Mamba with [PEFT](https://huggingface.co/docs/peft).
```py
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
model_id = "state-spaces/mamba-130m-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
processing_class=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()
```
## MambaConfig
[[autodoc]] MambaConfig

View File

@ -14,47 +14,94 @@ rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
# Mamba 2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[Mamba 2](https://huggingface.co/papers/2405.21060) is based on the state space duality (SSD) framework which connects structured state space models (SSMs) and attention variants. It uses a more efficient SSD algorithm that is 2-8x faster than Mamba and modifies the architecture to enable tensor parallelism and a grouped-value attention (GVA) head structure.
## Overview
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
The Mamba2 model was proposed in [Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality](https://arxiv.org/abs/2405.21060) by Tri Dao and Albert Gu. It is a State Space Model similar to Mamba 1, with better performances in a simplified architecture.
> [!TIP]
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
The abstract from the paper is the following:
hfoptions id="usage">
<hfoption id="Pipeline">
*While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling.*
Tips:
This version should support all implementations of Mamba 2, and in particular [Mamba-2 codestral](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) from Mistral AI. In particular, mamba 2 codestral was released with a number of `groups` equal to 8, which can be thought intuitively as similar to the number of kv heads in an attention-based model.
This model has two different forward passes, `torch_forward` or `cuda_kernels_forward`. The latter uses the original cuda kernels if they are found in your environment, and is slower on the prefill i.e. requires a "warmup run" due to high cpu overhead, see [here](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) and [also here](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457). Without compilation, the `torch_forward` implementation is faster by a factor 3 to 4. Further, there are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation, see [here](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) as well. Due to this, in addition to the reimplementation of mamba2 kernels, batched generation and cached generation are expected to have slight discrepancies. Further, the results given by the cuda kernels or the torch forward are expected to be slightly different. The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different, making the difference greater at smaller precisions.
Another note, shutdown of hidden states corresponding to padding tokens is done in 2 places and mostly has been tested with left-padding. Right-padding will propagate noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
This model was contributed by [Molbap](https://huggingface.co/Molbap), with tremendous help from [Anton Vlasjuk](https://github.com/vasqu).
The original code can be found [here](https://github.com/state-spaces/mamba).
# Usage
### A simple generation example:
```python
from transformers import Mamba2Config, Mamba2ForCausalLM, AutoTokenizer
```python
import torch
model_id = 'mistralai/Mamba-Codestral-7B-v0.1'
tokenizer = AutoTokenizer.from_pretrained(model_id, revision='refs/pr/9', from_slow=True, legacy=False)
model = Mamba2ForCausalLM.from_pretrained(model_id, revision='refs/pr/9')
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
from transformers import pipeline
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
pipeline = pipeline(
task="text-generation",
model="mistralai/Mamba-Codestral-7B-v0.1",
torch_dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
```
Here's a draft script for finetuning:
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model mistralai/Mamba-Codestral-7B-v0.1 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- Codestral Mamba has `groups=8` which are similar to the number of kv heads in an attention-based model.
- Codestral Mamba has two different forward passes, `torch_forward` or `cuda_kernels_forward`, and their results are expected to be slightly different.
- `torch_forward` without compilation is 3-4x faster than `cuda_kernels_forward`.
- `cuda_kernels_forward` uses the original CUDA kernels if they're available in your environment. It is slower during prefill because it requires a "warmup run" due to the higher CPU overhead (see [these](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) [comments](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457) for more details).
- There are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation (see this [comment](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) for more details). This (and the addition of the reimplemented Mamba 2 kernels) results in a slight discrepancy between batched and cached generation.
- The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different. This makes the difference greater at smaller precisions.
- Hidden states that correspond to padding tokens is shutdown in 2 places and is mostly tested with left-padding. Right-padding propagates noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
- The example below demonstrates how to fine-tune Mamba 2 with [PEFT](https://huggingface.co/docs/peft).
```python
from trl import SFTTrainer
from peft import LoraConfig

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -155,7 +157,7 @@ Example of translating english to many romance languages, using old-style 2 char
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
```

View File

@ -35,6 +35,9 @@ You can find all the original mBART checkpoints under the [AI at Meta](https://h
> [!TIP]
> Click on the mBART models in the right sidebar for more examples of applying mBART to different language tasks.
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
The example below demonstrates how to translate text with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">

View File

@ -0,0 +1,189 @@
<!--Copyright 2025 MiniMaxAI and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MiniMax
## Overview
The MiniMax-Text-01 model was proposed in [MiniMax-01: Scaling Foundation Models with Lightning Attention](https://arxiv.org/abs/2501.08313) by MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu.
The abstract from the paper is the following:
*We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window.*
### Architectural details
MiniMax is a powerful language model with 456 billion total parameters, of which 45.9 billion are activated per token. To better unlock the long context capabilities of the model, MiniMax adopts a hybrid architecture that combines Lightning Attention, Softmax Attention and Mixture-of-Experts (MoE). Leveraging advanced parallel strategies and innovative compute-communication overlap methods—such as Linear Attention Sequence Parallelism Plus (LASP+), varlen ring attention, Expert Tensor Parallel (ETP), etc., MiniMax's training context length is extended to 1 million tokens, and it can handle a context of up to 4 million tokens during the inference. On various academic benchmarks, MiniMax also demonstrates the performance of a top-tier model.
The architecture of MiniMax is briefly described as follows:
- Total Parameters: 456B
- Activated Parameters per Token: 45.9B
- Number Layers: 80
- Hybrid Attention: a softmax attention is positioned after every 7 lightning attention.
- Number of attention heads: 64
- Attention head dimension: 128
- Mixture of Experts:
- Number of experts: 32
- Expert hidden dimension: 9216
- Top-2 routing strategy
- Positional Encoding: Rotary Position Embedding (RoPE) applied to half of the attention head dimension with a base frequency of 10,000,000
- Hidden Size: 6144
- Vocab Size: 200,064
For more details refer to the [release blog post](https://www.minimaxi.com/en/news/minimax-01-series-2).
### License
`MiniMax` is released under the MINIMAX MODEL LICENSE AGREEMENT.
## Usage tips
The pre-trained model can be used as follows:
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
... ]
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"Mayonnaise can be made as follows: (...)"
```
As can be seen, the instruction-tuned model requires a [chat template](../chat_templating) to be applied to make sure the inputs are prepared in the right format.
## Speeding up MiniMax by using Flash Attention
The code snippets above showcase inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). Make also sure to load your model in half-precision (e.g. `torch.float16`)
To load and run a model using Flash Attention-2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected output"
```
### Sliding window Attention
The current implementation supports the sliding window attention mechanism and memory efficient cache management.
To enable sliding window attention, just make sure to have a `flash-attn` version that is compatible with sliding window attention (`>=2.3.0`).
The Flash Attention-2 model uses also a more memory efficient cache slicing mechanism - as recommended per the official implementation of Mistral model that use rolling cache mechanism we keep the cache size fixed (`self.config.sliding_window`), support batched generation only for `padding_side="left"` and use the absolute position of the current token to compute the positional embedding.
## Shrinking down MiniMax using quantization
As the MiniMax model has 456 billion parameters, that would require about 912GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter), about 228 GB of RAM is required.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the bitsandbytes quantization library (but refer to [this page](../quantization.md) for alternative quantization methods):
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
>>> # specify how to quantize the model
>>> quantization_config = BitsAndBytesConfig(
... load_in_4bit=True,
... bnb_4bit_quant_type="nf4",
... bnb_4bit_compute_dtype="torch.float16",
... )
>>> model = AutoModelForCausalLM.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf", quantization_config=True, device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("MiniMaxAI/MiniMax-Text-01-hf")
>>> prompt = "My favourite condiment is"
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
... ]
>>> model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
>>> generated_ids = model.generate(model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"The expected output"
```
This model was contributed by [geetu040](https://github.com/geetu040) and [Shakib-IO](https://github.com/Shakib-IO).
The original code can be found [here](https://huggingface.co/MiniMaxAI/MiniMax-Text-01/blob/main/modeling_minimax_text_01.py).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MiniMax. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-generation"/>
- The [Alignment Handbook](https://github.com/huggingface/alignment-handbook) by Hugging Face includes scripts and recipes to perform supervised fine-tuning (SFT) and direct preference optimization with Mistral-7B. This includes scripts for full fine-tuning, QLoRa on a single GPU as well as multi-GPU fine-tuning.
- [Causal language modeling task guide](../tasks/language_modeling)
## MiniMaxConfig
[[autodoc]] MiniMaxConfig
## MiniMaxModel
[[autodoc]] MiniMaxModel
- forward
## MiniMaxForCausalLM
[[autodoc]] MiniMaxForCausalLM
- forward
## MiniMaxForSequenceClassification
[[autodoc]] MiniMaxForSequenceClassification
- forward
## MiniMaxForTokenClassification
[[autodoc]] MiniMaxForTokenClassification
- forward
## MiniMaxForQuestionAnswering
[[autodoc]] MiniMaxForQuestionAnswering
- forward

View File

@ -14,54 +14,92 @@ rendered properly in your Markdown viewer.
-->
# MobileNet V1
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-EE4C2C?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# MobileNet V1
The MobileNet model was proposed in [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
[MobileNet V1](https://huggingface.co/papers/1704.04861) is a family of efficient convolutional neural networks optimized for on-device or embedded vision tasks. It achieves this efficiency by using depth-wise separable convolutions instead of standard convolutions. The architecture allows for easy trade-offs between latency and accuracy using two main hyperparameters, a width multiplier (alpha) and an image resolution multiplier.
The abstract from the paper is the following:
You can all the original MobileNet checkpoints under the [Google](https://huggingface.co/google?search_models=mobilenet) organization.
*We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.*
> [!TIP]
> Click on the MobileNet V1 models in the right sidebar for more examples of how to apply MobileNet to different vision tasks.
This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here](https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md).
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
- The checkpoints are named **mobilenet\_v1\_*depth*\_*size***, for example **mobilenet\_v1\_1.0\_224**, where **1.0** is the depth multiplier (sometimes also referred to as "alpha" or the width multiplier) and **224** is the resolution of the input images the model was trained on.
<hfoptions id="usage">
<hfoption id="Pipeline">
- Even though the checkpoint is trained on images of specific size, the model will work on images of any size. The smallest supported image size is 32x32.
```python
import torch
from transformers import pipeline
- One can use [`MobileNetV1ImageProcessor`] to prepare images for the model.
pipeline = pipeline(
task="image-classification",
model="google/mobilenet_v1_1.0_224",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). However, the model predicts 1001 classes: the 1000 classes from ImageNet plus an extra “background” class (index 0).
</hfoption>
<hfoption id="AutoModel">
- The original TensorFlow checkpoints use different padding rules than PyTorch, requiring the model to determine the padding amount at inference time, since this depends on the input image size. To use native PyTorch padding behavior, create a [`MobileNetV1Config`] with `tf_padding = False`.
```python
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
Unsupported features:
image_processor = AutoImageProcessor.from_pretrained(
"google/mobilenet_v1_1.0_224",
)
model = AutoModelForImageClassification.from_pretrained(
"google/mobilenet_v1_1.0_224",
)
- The [`MobileNetV1Model`] outputs a globally pooled version of the last hidden state. In the original model it is possible to use a 7x7 average pooling layer with stride 2 instead of global pooling. For larger inputs, this gives a pooled output that is larger than 1x1 pixel. The HuggingFace implementation does not support this.
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt")
- It is currently not possible to specify an `output_stride`. For smaller output strides, the original model invokes dilated convolution to prevent the spatial resolution from being reduced further. The output stride of the HuggingFace model is always 32.
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
- The original TensorFlow checkpoints include quantized models. We do not support these models as they include additional "FakeQuantization" operations to unquantize the weights.
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
- It's common to extract the output from the pointwise layers at indices 5, 11, 12, 13 for downstream purposes. Using `output_hidden_states=True` returns the output from all intermediate layers. There is currently no way to limit this to specific layers.
</hfoption>
</hfoptions>
## Resources
<!-- Quantization - Not applicable -->
<!-- Attention Visualization - Not applicable for this model type -->
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MobileNetV1.
<PipelineTag pipeline="image-classification"/>
## Notes
- [`MobileNetV1ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
- Checkpoint names follow the pattern `mobilenet_v1_{depth_multiplier}_{resolution}`, like `mobilenet_v1_1.0_224`. `1.0` is the depth multiplier and `224` is the image resolution.
- While trained on images of a specific sizes, the model architecture works with images of different sizes (minimum 32x32). The [`MobileNetV1ImageProcessor`] handles the necessary preprocessing.
- MobileNet is pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset with 1000 classes. However, the model actually predicts 1001 classes. The additional class is an extra "background" class (index 0).
- The original TensorFlow checkpoints determines the padding amount at inference because it depends on the input image size. To use the native PyTorch padding behavior, set `tf_padding=False` in [`MobileNetV1Config`].
```python
from transformers import MobileNetV1Config
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
config = MobileNetV1Config.from_pretrained("google/mobilenet_v1_1.0_224", tf_padding=True)
```
- The Transformers implementation does not support the following features.
- Uses global average pooling instead of the optional 7x7 average pooling with stride 2. For larger inputs, this gives a pooled output that is larger than a 1x1 pixel.
- Does not support other `output_stride` values (fixed at 32). For smaller `output_strides`, the original implementation uses dilated convolution to prevent spatial resolution from being reduced further. (which would require dilated convolutions).
- `output_hidden_states=True` returns *all* intermediate hidden states. It is not possible to extract the output from specific layers for other downstream purposes.
- Does not include the quantized models from the original checkpoints because they include "FakeQuantization" operations to unquantize the weights.
## MobileNetV1Config

View File

@ -14,61 +14,91 @@ rendered properly in your Markdown viewer.
-->
# MobileNet V2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-EE4C2C?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# MobileNet V2
The MobileNet model was proposed in [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381) by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
[MobileNet V2](https://huggingface.co/papers/1801.04381) improves performance on mobile devices with a more efficient architecture. It uses inverted residual blocks and linear bottlenecks to start with a smaller representation of the data, expands it for processing, and shrinks it again to reduce the number of computations. The model also removes non-linearities to maintain accuracy despite its simplified design. Like [MobileNet V1](./mobilenet_v1), it uses depthwise separable convolutions for efficiency.
The abstract from the paper is the following:
You can all the original MobileNet checkpoints under the [Google](https://huggingface.co/google?search_models=mobilenet) organization.
*In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally, we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we call Mobile DeepLabv3.*
> [!TIP]
> Click on the MobileNet V2 models in the right sidebar for more examples of how to apply MobileNet to different vision tasks.
*The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Additionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured by multiply-adds (MAdd), as well as the number of parameters.*
This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here for the main model](https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet) and [here for DeepLabV3+](https://github.com/tensorflow/models/tree/master/research/deeplab).
The examples below demonstrate how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
- The checkpoints are named **mobilenet\_v2\_*depth*\_*size***, for example **mobilenet\_v2\_1.0\_224**, where **1.0** is the depth multiplier (sometimes also referred to as "alpha" or the width multiplier) and **224** is the resolution of the input images the model was trained on.
<hfoptions id="usage-img-class">
<hfoption id="Pipeline">
- Even though the checkpoint is trained on images of specific size, the model will work on images of any size. The smallest supported image size is 32x32.
```python
import torch
from transformers import pipeline
- One can use [`MobileNetV2ImageProcessor`] to prepare images for the model.
pipeline = pipeline(
task="image-classification",
model="google/mobilenet_v2_1.4_224",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). However, the model predicts 1001 classes: the 1000 classes from ImageNet plus an extra “background” class (index 0).
</hfoption>
<hfoption id="AutoModel">
- The segmentation model uses a [DeepLabV3+](https://arxiv.org/abs/1802.02611) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/).
```python
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
- The original TensorFlow checkpoints use different padding rules than PyTorch, requiring the model to determine the padding amount at inference time, since this depends on the input image size. To use native PyTorch padding behavior, create a [`MobileNetV2Config`] with `tf_padding = False`.
image_processor = AutoImageProcessor.from_pretrained(
"google/mobilenet_v2_1.4_224",
)
model = AutoModelForImageClassification.from_pretrained(
"google/mobilenet_v2_1.4_224",
)
Unsupported features:
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt")
- The [`MobileNetV2Model`] outputs a globally pooled version of the last hidden state. In the original model it is possible to use an average pooling layer with a fixed 7x7 window and stride 1 instead of global pooling. For inputs that are larger than the recommended image size, this gives a pooled output that is larger than 1x1. The Hugging Face implementation does not support this.
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
- The original TensorFlow checkpoints include quantized models. We do not support these models as they include additional "FakeQuantization" operations to unquantize the weights.
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
- It's common to extract the output from the expansion layers at indices 10 and 13, as well as the output from the final 1x1 convolution layer, for downstream purposes. Using `output_hidden_states=True` returns the output from all intermediate layers. There is currently no way to limit this to specific layers.
</hfoption>
</hfoptions>
- The DeepLabV3+ segmentation head does not use the final convolution layer from the backbone, but this layer gets computed anyway. There is currently no way to tell [`MobileNetV2Model`] up to which layer it should run.
## Resources
## Notes
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with MobileNetV2.
- Classification checkpoint names follow the pattern `mobilenet_v2_{depth_multiplier}_{resolution}`, like `mobilenet_v2_1.4_224`. `1.4` is the depth multiplier and `224` is the image resolution. Segmentation checkpoint names follow the pattern `deeplabv3_mobilenet_v2_{depth_multiplier}_{resolution}`.
- While trained on images of a specific sizes, the model architecture works with images of different sizes (minimum 32x32). The [`MobileNetV2ImageProcessor`] handles the necessary preprocessing.
- MobileNet is pretrained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k), a dataset with 1000 classes. However, the model actually predicts 1001 classes. The additional class is an extra "background" class (index 0).
- The segmentation models use a [DeepLabV3+](https://huggingface.co/papers/1802.02611) head which is often pretrained on datasets like [PASCAL VOC](https://huggingface.co/datasets/merve/pascal-voc).
- The original TensorFlow checkpoints determines the padding amount at inference because it depends on the input image size. To use the native PyTorch padding behavior, set `tf_padding=False` in [`MobileNetV2Config`].
```python
from transformers import MobileNetV2Config
<PipelineTag pipeline="image-classification"/>
- [`MobileNetV2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
**Semantic segmentation**
- [Semantic segmentation task guide](../tasks/semantic_segmentation)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
config = MobileNetV2Config.from_pretrained("google/mobilenet_v2_1.4_224", tf_padding=True)
```
- The Transformers implementation does not support the following features.
- Uses global average pooling instead of the optional 7x7 average pooling with stride 2. For larger inputs, this gives a pooled output that is larger than a 1x1 pixel.
- `output_hidden_states=True` returns *all* intermediate hidden states. It is not possible to extract the output from specific layers for other downstream purposes.
- Does not include the quantized models from the original checkpoints because they include "FakeQuantization" operations to unquantize the weights.
- For segmentation models, the final convolution layer of the backbone is computed even though the DeepLabV3+ head doesn't use it.
## MobileNetV2Config

View File

@ -62,6 +62,9 @@ python src/transformers/models/musicgen/convert_musicgen_transformers.py \
--checkpoint small --pytorch_dump_folder /output/path --safe_serialization
```
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Generation
MusicGen is compatible with two generation modes: greedy and sampling. In practice, sampling leads to significantly

View File

@ -44,6 +44,9 @@ There are two key differences with MusicGen:
1. The audio prompt is used here as a conditional signal for the generated audio sample, whereas it's used for audio continuation in [MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen).
2. Conditional text and audio signals are concatenated to the decoder's hidden states instead of being used as a cross-attention signal, as in MusicGen.
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Generation
MusicGen Melody is compatible with two generation modes: greedy and sampling. In practice, sampling leads to significantly better results than greedy, thus we encourage sampling mode to be used where possible. Sampling is enabled by default, and can be explicitly specified by setting `do_sample=True` in the call to [`MusicgenMelodyForConditionalGeneration.generate`], or by overriding the model's generation config (see below).

View File

@ -51,10 +51,10 @@ The original code can be found [here](https://github.com/facebookresearch/fairse
## Implementation differences with SwitchTransformers
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
## Generating with NLLB-MoE

View File

@ -14,27 +14,119 @@ rendered properly in your Markdown viewer.
-->
# OLMo2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# OLMo2
[OLMo2](https://huggingface.co/papers/2501.00656) improves on [OLMo](./olmo) by changing the architecture and training recipes of the original models. This includes excluding all biases to improve training stability, non-parametric layer norm, SwiGLU activation function, rotary positional embeddings, and a modified BPE-based tokenizer that masks personal identifiable information. It is pretrained on [Dolma](https://huggingface.co/datasets/allenai/dolma), a dataset of 3T tokens.
The OLMo2 model is the successor of the OLMo model, which was proposed in
[OLMo: Accelerating the Science of Language Models](https://arxiv.org/abs/2402.00838).
You can find all the original OLMo2 checkpoints under the [OLMo2](https://huggingface.co/collections/allenai/olmo-2-674117b93ab84e98afc72edc) collection.
The architectural changes from the original OLMo model to this model are:
> [!TIP]
> Click on the OLMo2 models in the right sidebar for more examples of how to apply OLMo2 to different language tasks.
- RMSNorm is used instead of standard layer norm.
- Norm is applied to attention queries and keys.
- Norm is applied after attention/feedforward layers rather than before.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
This model was contributed by [shanearora](https://huggingface.co/shanearora).
The original code can be found [here](https://github.com/allenai/OLMo/tree/main/olmo).
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="allenai/OLMo-2-0425-1B",
torch_dtype=torch.float16,
device=0,
)
result = pipe("Plants create energy through a process known as")
print(result)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"allenai/OLMo-2-0425-1B"
)
model = AutoModelForCausalLM.from_pretrained(
"allenai/OLMo-2-0425-1B",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model allenai/OLMo-2-0425-1B --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bits.
```py
#pip install torchao
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
torchao_config = TorchAoConfig(
"int4_weight_only",
group_size=128
)
tokenizer = AutoTokenizer.from_pretrained(
"allenai/OLMo-2-0425-1B"
)
model = AutoModelForCausalLM.from_pretrained(
"allenai/OLMo-2-0425-1B",
quantization_config=torchao_config,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- OLMo2 uses RMSNorm instead of standard layer norm. The RMSNorm is applied to attention queries and keys, and it is applied after the attention and feedforward layers rather than before.
- OLMo2 requires Transformers v4.48 or higher.
- Load specific intermediate checkpoints by adding the `revision` parameter to [`~PreTrainedModel.from_pretrained`].
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")
```
## Olmo2Config

View File

@ -41,6 +41,9 @@ Tips:
- OPT has the same architecture as [`BartDecoder`].
- Contrary to GPT2, OPT adds the EOS token `</s>` to the beginning of every prompt.
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OPT. If you're

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview

View File

@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
## Overview

View File

@ -18,6 +18,8 @@ rendered properly in your Markdown viewer.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -29,7 +31,7 @@ on Java, Python and English.
According to the abstract
*Code summarization and generation empower conversion between programming language (PL) and natural language (NL),
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks.
PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding.
Experiments on code summarization in the English language, code generation, and code translation in seven programming languages
@ -50,7 +52,7 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
it's passed with the `text_target` keyword argument.

View File

@ -40,6 +40,9 @@ The abstract from the paper is the following:
`Qwen2-Audio-7B` and `Qwen2-Audio-7B-Instruct` can be found on the [Huggingface Hub](https://huggingface.co/Qwen)
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
### Inference
```python

View File

@ -14,46 +14,78 @@ rendered properly in your Markdown viewer.
-->
# RoFormer
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# RoFormer
The RoFormer model was proposed in [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
[RoFormer](https://huggingface.co/papers/2104.09864) introduces Rotary Position Embedding (RoPE) to encode token positions by rotating the inputs in 2D space. This allows a model to track absolute positions and model relative relationships. RoPE can scale to longer sequences, account for the natural decay of token dependencies, and works with the more efficient linear self-attention.
The abstract from the paper is the following:
You can find all the RoFormer checkpoints on the [Hub](https://huggingface.co/models?search=roformer).
*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
different positions in the sequence. We investigate various methods to encode positional information in
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
experiment for English benchmark will soon be updated.*
> [!TIP]
> Click on the RoFormer models in the right sidebar for more examples of how to apply RoFormer to different language tasks.
This model was contributed by [junnyu](https://huggingface.co/junnyu). The original code can be found [here](https://github.com/ZhuiyiTechnology/roformer).
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
improved performance on classification tasks with long texts.
<hfoptions id="usage">
<hfoption id="Pipeline">
## Resources
```py
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import pipeline
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
pipe = pipeline(
task="fill-mask",
model="junnyu/roformer_chinese_base",
torch_dtype=torch.float16,
device=0
)
output = pipe("水在零度时会[MASK]")
print(output)
```
</hfoption>
<hfoption id="AutoModel">
```py
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained(
"junnyu/roformer_chinese_base", torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
input_ids = tokenizer("水在零度时会[MASK]", return_tensors="pt").to(model.device)
outputs = model(**input_ids)
decoded = tokenizer.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
print(decoded)
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "水在零度时会[MASK]" | transformers-cli run --task fill-mask --model junnyu/roformer_chinese_base --device 0
```
</hfoption>
</hfoptions>
## Notes
- The current RoFormer implementation is an encoder-only model. The original code can be found in the [ZhuiyiTechnology/roformer](https://github.com/ZhuiyiTechnology/roformer) repository.
## RoFormerConfig

View File

@ -43,8 +43,8 @@ import requests
from transformers import SamHQModel, SamHQProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SamHQModel.from_pretrained("sushmanth/sam_hq_vit_b").to(device)
processor = SamHQProcessor.from_pretrained("sushmanth/sam_hq_vit_b")
model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base").to(device)
processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
@ -69,8 +69,8 @@ import requests
from transformers import SamHQModel, SamHQProcessor
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SamHQModel.from_pretrained("sushmanth/sam_hq_vit_b").to(device)
processor = SamHQProcessor.from_pretrained("sushmanth/sam_hq_vit_b")
model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base").to(device)
processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")

View File

@ -46,6 +46,9 @@ This model was contributed by [anton-l](https://huggingface.co/anton-l).
- SEWForCTC is fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using
[`Wav2Vec2CTCTokenizer`].
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Resources
- [Audio classification task guide](../tasks/audio_classification)

View File

@ -14,59 +14,77 @@ rendered properly in your Markdown viewer.
-->
# Swin Transformer
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# Swin Transformer
The Swin Transformer was proposed in [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
[Swin Transformer](https://huggingface.co/papers/2103.14030) is a hierarchical vision transformer. Images are processed in patches and windowed self-attention is used to capture local information. These windows are shifted across the image to allow for cross-window connections, capturing global information more efficiently. This hierarchical approach with shifted windows allows the Swin Transformer to process images effectively at different scales and achieve linear computational complexity relative to image size, making it a versatile backbone for various vision tasks like image classification and object detection.
The abstract from the paper is the following:
You can find all official Swin Transformer checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swin) organization.
*This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone
for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains,
such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted
\bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping
local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at
various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it
compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense
prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation
(53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and
+2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones.
The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.*
> [!TIP]
> Click on the Swin Transformer models in the right sidebar for more examples of how to apply Swin Transformer to different image tasks.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png"
alt="drawing" width="600"/>
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
<small> Swin Transformer architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>.</small>
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [novice03](https://huggingface.co/novice03). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
```py
import torch
from transformers import pipeline
## Usage tips
pipeline = pipeline(
task="image-classification",
model="microsoft/swin-tiny-patch4-window7-224",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
</hfoption>
- Swin pads the inputs supporting any input height and width (if divisible by `32`).
- Swin can be used as a *backbone*. When `output_hidden_states = True`, it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
<hfoption id="AutoModel">
## Resources
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer.
image_processor = AutoImageProcessor.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224",
use_fast=True,
)
model = AutoModelForImageClassification.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224",
device_map="cuda"
)
<PipelineTag pipeline="image-classification"/>
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to("cuda")
- [`SwinForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
Besides that:
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
</hfoption>
</hfoptions>
- [`SwinForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
## Notes
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Swin can pad the inputs for any input height and width divisible by `32`.
- Swin can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
## SwinConfig

View File

@ -14,37 +14,74 @@ rendered properly in your Markdown viewer.
-->
# Swin Transformer V2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Swin Transformer V2
The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
[Swin Transformer V2](https://huggingface.co/papers/2111.09883) is a 3B parameter model that focuses on how to scale a vision model to billions of parameters. It introduces techniques like residual-post-norm combined with cosine attention for improved training stability, log-spaced continuous position bias to better handle varying image resolutions between pre-training and fine-tuning, and a new pre-training method (SimMIM) to reduce the need for large amounts of labeled data. These improvements enable efficiently training very large models (up to 3 billion parameters) capable of processing high-resolution images.
The abstract from the paper is the following:
You can find official Swin Transformer V2 checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swinv2) organization.
*Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.*
> [!TIP]
> Click on the Swin Transformer V2 models in the right sidebar for more examples of how to apply Swin Transformer V2 to vision tasks.
This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik).
The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Resources
```py
import torch
from transformers import pipeline
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer v2.
pipeline = pipeline(
task="image-classification",
model="microsoft/swinv2-tiny-patch4-window8-256",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
<PipelineTag pipeline="image-classification"/>
</hfoption>
- [`Swinv2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
<hfoption id="AutoModel">
Besides that:
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
- [`Swinv2ForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
image_processor = AutoImageProcessor.from_pretrained(
"microsoft/swinv2-tiny-patch4-window8-256",
)
model = AutoModelForImageClassification.from_pretrained(
"microsoft/swinv2-tiny-patch4-window8-256",
device_map="auto"
)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to(model.device)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
predicted_class_label = model.config.id2label[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
</hfoption>
</hfoptions>
## Notes
- Swin Transformer V2 can pad the inputs for any input height and width divisible by `32`.
- Swin Transformer V2 can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
## Swinv2Config

View File

@ -54,6 +54,9 @@ found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT).
decoded using [`Wav2Vec2CTCTokenizer`].
- UniSpeechSat performs especially well on speaker verification, speaker identification, and speaker diarization tasks.
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Resources
- [Audio classification task guide](../tasks/audio_classification)

View File

@ -49,6 +49,9 @@ found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech).
- UniSpeech model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be
decoded using [`Wav2Vec2CTCTokenizer`].
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Resources
- [Audio classification task guide](../tasks/audio_classification)

View File

@ -14,87 +14,63 @@ rendered properly in your Markdown viewer.
-->
# ViTMAE
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# ViTMAE
The ViTMAE model was proposed in [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377v2) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, Ross Girshick. The paper shows that, by pre-training a Vision Transformer (ViT) to reconstruct pixel values for masked patches, one can get results after
fine-tuning that outperform supervised pre-training.
The abstract from the paper is the following:
*This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates
only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs
enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity
models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream
tasks outperforms supervised pre-training and shows promising scaling behavior.*
[ViTMAE](https://huggingface.co/papers/2111.06377) is a self-supervised vision model that is pretrained by masking large portions of an image (~75%). An encoder processes the visible image patches and a decoder reconstructs the missing pixels from the encoded patches and mask tokens. After pretraining, the encoder can be reused for downstream tasks like image classification or object detection — often outperforming models trained with supervised learning.
<img src="https://user-images.githubusercontent.com/11435359/146857310-f258c86c-fde6-48e8-9cee-badd2b21bd2c.png"
alt="drawing" width="600"/>
<small> MAE architecture. Taken from the <a href="https://arxiv.org/abs/2111.06377">original paper.</a> </small>
You can find all the original ViTMAE checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=vit-mae) organization.
This model was contributed by [nielsr](https://huggingface.co/nielsr). TensorFlow version of the model was contributed by [sayakpaul](https://github.com/sayakpaul) and
[ariG23498](https://github.com/ariG23498) (equal contribution). The original code can be found [here](https://github.com/facebookresearch/mae).
> [!TIP]
> Click on the ViTMAE models in the right sidebar for more examples of how to apply ViTMAE to vision tasks.
## Usage tips
The example below demonstrates how to reconstruct the missing pixels with the [`ViTMAEForPreTraining`] class.
- MAE (masked auto encoding) is a method for self-supervised pre-training of Vision Transformers (ViTs). The pre-training objective is relatively simple:
by masking a large portion (75%) of the image patches, the model must reconstruct raw pixel values. One can use [`ViTMAEForPreTraining`] for this purpose.
- After pre-training, one "throws away" the decoder used to reconstruct pixels, and one uses the encoder for fine-tuning/linear probing. This means that after
fine-tuning, one can directly plug in the weights into a [`ViTForImageClassification`].
- One can use [`ViTImageProcessor`] to prepare images for the model. See the code examples for more info.
- Note that the encoder of MAE is only used to encode the visual patches. The encoded patches are then concatenated with mask tokens, which the decoder (which also
consists of Transformer blocks) takes as input. Each mask token is a shared, learned vector that indicates the presence of a missing patch to be predicted. Fixed
sin/cos position embeddings are added both to the input of the encoder and the decoder.
- For a visual understanding of how MAEs work you can check out this [post](https://keras.io/examples/vision/masked_image_modeling/).
<hfoptions id="usage">
<hfoption id="AutoModel">
### Using Scaled Dot Product Attention (SDPA)
```python
import torch
import requests
from PIL import Image
from transformers import ViTImageProcessor, ViTMAEForPreTraining
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
processor = ViTImageProcessor.from_pretrained("facebook/vit-mae-base")
inputs = processor(image, return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}
```
from transformers import ViTMAEModel
model = ViTMAEModel.from_pretrained("facebook/vit-mae-base", attn_implementation="sdpa", torch_dtype=torch.float16)
...
model = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base", attn_implementation="sdpa").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
reconstruction = outputs.logits
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
</hfoption>
</hfoptions>
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with `float32` and `facebook/vit-mae-base` model, we saw the following speedups during inference.
| Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) |
|--------------|-------------------------------------------|-------------------------------------------|------------------------------|
| 1 | 11 | 6 | 1.83 |
| 2 | 8 | 6 | 1.33 |
| 4 | 8 | 6 | 1.33 |
| 8 | 8 | 6 | 1.33 |
## Notes
- ViTMAE is typically used in two stages. Self-supervised pretraining with [`ViTMAEForPreTraining`], and then discarding the decoder and fine-tuning the encoder. After fine-tuning, the weights can be plugged into a model like [`ViTForImageClassification`].
- Use [`ViTImageProcessor`] for input preparation.
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViTMAE.
- [`ViTMAEForPreTraining`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining), allowing you to pre-train the model from scratch/further pre-train the model on custom data.
- A notebook that illustrates how to visualize reconstructed pixel values with [`ViTMAEForPreTraining`] can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/ViTMAE/ViT_MAE_visualization_demo.ipynb).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/ViTMAE/ViT_MAE_visualization_demo.ipynb) to learn how to visualize the reconstructed pixels from [`ViTMAEForPreTraining`].
## ViTMAEConfig

View File

@ -50,6 +50,9 @@ Note: Meta (FAIR) released a new version of [Wav2Vec2-BERT 2.0](https://huggingf
- Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded
using [`Wav2Vec2CTCTokenizer`].
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Using Flash Attention 2
Flash Attention 2 is an faster, optimized version of the model.

View File

@ -32,6 +32,9 @@ rendered properly in your Markdown viewer.
You can find all the original Whisper checkpoints under the [Whisper](https://huggingface.co/collections/openai/whisper-release-6501bba2cf999715fd953013) collection.
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
> [!TIP]
> Click on the Whisper models in the right sidebar for more examples of how to apply Whisper to different audio tasks.
@ -92,7 +95,7 @@ transcription[0]
## Notes
- Whisper relies on [`~GenerationMixin.generate`] for inference.
- Whisper relies a custom [`generate`] for inference, make sure to check the docs below.
- The [`WhisperProcessor`] can be used for preparing audio and decoding predicted ids back into text.
## WhisperConfig

View File

@ -14,100 +14,101 @@ rendered properly in your Markdown viewer.
-->
# ZoeDepth
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# ZoeDepth
The ZoeDepth model was proposed in [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, Matthias Müller. ZoeDepth extends the [DPT](dpt) framework for metric (also called absolute) depth estimation. ZoeDepth is pre-trained on 12 datasets using relative depth and fine-tuned on two domains (NYU and KITTI) using metric depth. A lightweight head is used with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier.
The abstract from the paper is the following:
*This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization performance disregarding metric scale, i.e. relative depth estimation, or state-of-the-art results on specific datasets, i.e. metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12 datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the datasets used for relative depth pre-training and metric fine-tuning. Without pre-training, we can already significantly improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative absolute error (REL). Finally, ZoeD-M12-NK is the first model that can jointly train on multiple datasets (NYU Depth v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization performance to eight unseen datasets from both indoor and outdoor domains.*
[ZoeDepth](https://huggingface.co/papers/2302.12288) is a depth estimation model that combines the generalization performance of relative depth estimation (how far objects are from each other) and metric depth estimation (precise depth measurement on metric scale) from a single image. It is pre-trained on 12 datasets using relative depth and 2 datasets (NYU Depth v2 and KITTI) for metric accuracy. A lightweight head with a metric bin module for each domain is used, and during inference, it automatically selects the appropriate head for each input image with a latent classifier.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png"
alt="drawing" width="600"/>
<small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small>
You can find all the original ZoeDepth checkpoints under the [Intel](https://huggingface.co/Intel?search=zoedepth) organization.
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/isl-org/ZoeDepth).
The example below demonstrates how to estimate depth with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- ZoeDepth is an absolute (also called metric) depth estimation model, unlike DPT which is a relative depth estimation model. This means that ZoeDepth is able to estimate depth in metric units like meters.
```py
import requests
import torch
from transformers import pipeline
from PIL import Image
The easiest to perform inference with ZoeDepth is by leveraging the [pipeline API](../main_classes/pipelines.md):
```python
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> pipe = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu-kitti")
>>> result = pipe(image)
>>> depth = result["depth"]
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
pipeline = pipeline(
task="depth-estimation",
model="Intel/zoedepth-nyu-kitti",
torch_dtype=torch.float16,
device=0
)
results = pipeline(image)
results["depth"]
```
Alternatively, one can also perform inference using the classes:
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import AutoImageProcessor, ZoeDepthForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained(
"Intel/zoedepth-nyu-kitti"
)
model = AutoModelForDepthEstimation.from_pretrained(
"Intel/zoedepth-nyu-kitti",
device_map="auto"
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to("cuda")
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
>>> model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti")
with torch.no_grad():
outputs = model(inputs)
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
# interpolate to original size and visualize the prediction
## ZoeDepth dynamically pads the input image, so pass the original image size as argument
## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
source_sizes=[(image.height, image.width)],
)
>>> with torch.no_grad():
... outputs = model(inputs)
>>> # interpolate to original size and visualize the prediction
>>> ## ZoeDepth dynamically pads the input image. Thus we pass the original image size as argument
>>> ## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... source_sizes=[(image.height, image.width)],
... )
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
>>> depth = depth.detach().cpu().numpy() * 255
>>> depth = Image.fromarray(depth.astype("uint8"))
predicted_depth = post_processed_output[0]["predicted_depth"]
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
depth = depth.detach().cpu().numpy() * 255
Image.fromarray(depth.astype("uint8"))
```
<Tip>
<p>In the <a href="https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131">original implementation</a> ZoeDepth model performs inference on both the original and flipped images and averages out the results. The <code>post_process_depth_estimation</code> function can handle this for us by passing the flipped outputs to the optional <code>outputs_flipped</code> argument:</p>
<pre><code class="language-Python">&gt;&gt;&gt; with torch.no_grad():
... outputs = model(pixel_values)
... outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
&gt;&gt;&gt; post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... source_sizes=[(image.height, image.width)],
... outputs_flipped=outputs_flipped,
... )
</code></pre>
</Tip>
</hfoption>
</hfoptions>
## Notes
- In the [original implementation](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131) ZoeDepth performs inference on both the original and flipped images and averages the results. The `post_process_depth_estimation` function handles this by passing the flipped outputs to the optional `outputs_flipped` argument as shown below.
```py
with torch.no_grad():
outputs = model(pixel_values)
outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
source_sizes=[(image.height, image.width)],
outputs_flipped=outputs_flipped,
)
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ZoeDepth.
- A demo notebook regarding inference with ZoeDepth models can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth). 🌎
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth) for an inference example.
## ZoeDepthConfig
@ -118,6 +119,11 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
[[autodoc]] ZoeDepthImageProcessor
- preprocess
## ZoeDepthImageProcessorFast
[[autodoc]] ZoeDepthImageProcessorFast
- preprocess
## ZoeDepthForDepthEstimation
[[autodoc]] ZoeDepthForDepthEstimation

View File

@ -54,8 +54,8 @@ For each model type, there is a separate class for each machine learning framewo
from transformers import AutoModelForCausalLM, MistralForCausalLM
# load with AutoClass or model-specific class
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", , torch_dtype="auto", device_map="auto")
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", , torch_dtype="auto", device_map="auto")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype="auto", device_map="auto")
model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype="auto", device_map="auto")
```
</hfoption>
@ -272,6 +272,7 @@ Explicitly set the [torch_dtype](https://pytorch.org/docs/stable/tensor_attribut
<hfoption id="specific dtype">
```py
import torch
from transformers import AutoModelForCausalLM
gemma = AutoModelForCausalLM.from_pretrained("google/gemma-7b", torch_dtype=torch.float16)

View File

@ -243,13 +243,7 @@ class Olmo2Attention(OlmoAttention):
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,

View File

@ -13,9 +13,15 @@ rendered properly in your Markdown viewer.
-->
# Distributed GPU inference
# Tensor parallelism in transformers
[Tensor parallelism](./perf_train_gpu_many#tensor-parallelism) shards a model onto multiple GPUs and parallelizes computations such as matrix multiplication. It enables fitting larger model sizes into memory and is faster because each GPU can process a tensor slice.
This document assumes that you are already familiar with the basics of tensor parallelism. If you are not, please refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) section on tensor parallelism.
> [!TIP]
> Tensor parallelism is very communication intensive, therefore it is reccomended to use it on a single machine with multiple GPUs, utilizing fast intra-node communication. For multi-node training, methods as pipeline or data parallelism are more efficient (depending on your use case).
Tensor parallelism requires slight changes to the model parameters, therefore in transformers, we support some of the popular models out of the box.
> [!TIP]
> Expand the list below to see which models support tensor parallelism. Open a GitHub issue or pull request to add support for a model not currently below.
@ -37,9 +43,218 @@ rendered properly in your Markdown viewer.
</details>
Set `tp_plan="auto"` in [`~AutoModel.from_pretrained`] to enable tensor parallelism for inference.
## Using 🤗 transformers
```py
Transformers provides a simple interface to use for tensor parallelism. We provide multiple classes implementing different partitioning
strategies and a simple entrypoint to parallelize `nn.Module` instance. You won't have to interact with this interface directly, everything is done in `PretrainedModel.from_pretrained` method for you. This section will first talk about the partitioning strategies
we support, then the user interface you will be interacting with, and finally it will teach you how to extend it with your own partitioning
strategies.
### Partitioning strategies
In transformers, partitioning strategies reside in a class `ParallelInterface` which works like a mapping from string to the strategy implementation.
```python
class ParallelInterface(MutableMapping):
"""
Dict-like object keeping track of allowed attention functions. You can easily add a new attention function
with a call to `register()`. If a model needs to locally overwrite an existing attention function, say `sdpa`,
it needs to declare a new instance of this class inside the `modeling_<model>.py`, and declare it on that instance.
"""
_global_mapping = {
"colwise": ColwiseParallel(),
"rowwise": RowwiseParallel(),
"colwise_rep": ColwiseParallel(output_layouts=Replicate()),
"rowwise_rep": RowwiseParallel(input_layouts=Replicate()),
"local_colwise": ColwiseParallel(use_dtensor=False),
"local_rowwise": RowwiseParallel(use_dtensor=False),
"local": IsolatedParallel(),
"gather": GatherParallel(),
"local_packed_rowwise": PackedRowwiseParallel(use_dtensor=False),
"sequence_parallel": SequenceParallel(),
"replicate": ReplicateParallel(),
}
```
We support the following strategies:
- `ColwiseParallel` - A simple column-wise partitioning, being able to handle both weights and biases, does exactly what we've discussed before.
- `RowwiseParallel` - Again, row-wise partitioning as dicussed before, supports weights and biases, on top of that it also supports `nn.Embedding` modules.
- `SequenceParallel` - Sequence parallel implementation, for support of `LayerNorm` and `Dropout` layers. Also supports Python implementation of `RMSNorm` (see [this](https://github.com/facebookresearch/llama/blob/main/llama/model.py#L34))
- `PackedColwiseParallel` - A variant of column-wise partitioning, however it works on packed weights (i.e. `up_proj` and `gate_proj` being packed together). For more details, see [this comment](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108)
- `PackedRowwiseParallel` - A variant of row-wise partitioning, works on packed weights, for more details check the comment linked above.
- `GatherParallel` - A very simple class, that only makes the outputs of the module to be gathered across devices.
- `IsolatedParallel` - This is a special case, where we want to *isolate* the module from the rest of the devices (world). This is used for Experts in MoE layers, basically creating Expert parallelism of sorts.
- `ReplicateParallel` - Many `torch.distributed` APIs break if model is partially sharded, so this class is used to replicate the module across all devices.
### Sharding a model
We provide two ways to shard a model, first one is to use `auto` tensor parallelism plan, which will automatically shard the model based on our predefined configuration. This requires the model to have predefined tensor parallel plan in transformers.
```python
from transformers import AutoModelForCausalLM
# model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # better for smaller number of GPUs
model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" # better to visualize all the possible strategies
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan="auto")
print(model._tp_plan)
```
> [!TIP]
> For a list of models that support tensor parallelism, see the [Supported models](#supported-models) section above.
The second way is to manually specify your own partitioning plan.
```python
from transformers import AutoModelForCausalLM
tp_plan = {
"model.layers.*.self_attn.q_proj": "colwise",
"model.layers.*.self_attn.k_proj": "colwise",
"model.layers.*.self_attn.v_proj": "colwise",
"model.layers.*.self_attn.o_proj": "rowwise",
...
}
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
print(model._tp_plan)
```
You might have noticed that there are some special cases in the `ParallelInterface` mapping, let's now talk about them. This will help you understand their purpose and help with extending to other strategies.
### PackedRowwiseParallel
This class is a special case of `RowwiseParallel`, it's used to shard packed weights. Weight packing is a common technique used in models. It's a technique where we pack multiple linear layers into a single, bigger one.
For example in `Llama4` model, we pack `up_proj` and `gate_proj` into a single `gate_up_proj` module.
```python
class Llama4TextExperts(nn.Module):
...
self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim))
```
Then in forward, we can use batch matrix multiplication to compute the output of the `gate_up_proj` module.
```python
def forward(self, hidden_states):
...
gate_up = torch.bmm(hidden_states, self.gate_up_proj) # Compute the output of the gate_up_proj module
gate, up = gate_up.chunk(2, dim=-1) # Split the output into gate and up
```
In this case, we need to use the `PackedRowwiseParallel` strategy to shard the `gate_up_proj` module, as using a simple `RowwiseParallel` will shard the layers wrongly.
> [!TIP]
> If this is a bit difficult to wrap your head around, check out [this comment](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py#L79-#L108) for an amazing visual representation of why `Packed*` needs to be used.
### `local*` strategies
You could have noticed that there are `local*` strategies, which use the same layers as `*` strategy, but don't use `DTensor` at all.
This is because `DTensor` is not supported for some of the operations: such as `torch.chunk`. Therefore, sometimes we need to use the `local*` strategies, which use vanilla `torch.Tensor` and do some of the distributed logic manually.
<!---
Readd this when I get the exact error message
> [!TIP]
> If you are using a custom partitioning strategy, and it's not working with `... is not supported` error, try using the `local*` strategies to see if they work better.
-->
> [!WARNING]
> Manually specifying your own partitiong plan requires a good understanding of the model architecture and how the partitioning strategies interact together. If you are not sure about this, the resulting model can be very slow, even failing or incorrect. Again, refer to the [Ultra-Scale Playbook](https://huggingface.co/spaces/nanotron/ultrascale-playbook?section=tensor_parallelism) which can teach you everything required.
### Extending the interface with your own partitioning strategies
This is a very advanced topic, which requires a good understanding of distributed collectives and the model architecture.
Your custom partitioning strategy should inherit from `TensorParallelLayer` defined in [integrations/tensor_parallel.py](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/tensor_parallel.py) and implement: `partition_tensor`, `_prepare_input_fn` and `_prepare_output_fn`. Then it should be registered in the `ParallelInterface` mapping, so our dispatching logic can find it when specified in the `tp_plan`.
Let's go through this workflow step by step, on an already existing example: `ColwiseParallel`.
1. Inherit from `TensorParallelLayer` and initialization
```python
class ColwiseParallel(TensorParallelLayer):
def __init__(
self,
*,
input_layouts: Optional[Placement] = None, # The input layout coming from the previous layer
output_layouts: Optional[Placement] = None, # The output layout we want to achieve
use_local_output: bool = True, # Whether to use local output or not
use_dtensor=True, # Whether to use DTensor or not
):
self.input_layouts = (input_layouts or Replicate(),) # The input sharding coming from the previous layer
self.output_layouts = (output_layouts or Shard(-1),) # Desired output sharding
self.desired_input_layouts = (Replicate(),) # Desired input sharding, inputs should be replicated across GPUs
self.use_local_output = use_local_output
self.use_dtensor = use_dtensor
```
In the `__init__` method, we define these attributes, where `input_layouts` and `output_layouts` describing, how the input and output tensors should be placed on the devices. `desired_input_layouts` is used to specify, how the input *SHOULD* be placed on the devices.
2a. Implement `partition_tensor` method
```python
def partition_tensor(
self,
param, # Full tensor of the parameter
empty_param, # Empty tensor of the parameter, will be filled with the partitioned tensor
param_type, # Type of the parameter, `bias` or `weight`
param_casting_dtype, # The type to cast the parameter to
to_contiguous, # Whether to convert the tensor to a contiguous memory layout
rank, # The rank of the current device
device_mesh, # The device mesh
) -> nn.Parameter: # Return the partitioned parameter
...
```
This method is used to partition the tensor, and fill the `empty_param` with the partitioned tensor.
We provide some utility functions to help you with this, such as `get_tensor_shard` which will get you the correct shard of the original parameter for this rank or `get_packed_weights` to help with packed weights.
2b. Implement `_prepare_input_fn` and `_prepare_output_fn` methods
These methods are used as [`pre-forward`](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html) and [`forward`](https://docs.pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_hook.html) hooks respectively. Their purpose is to re-distribute the inputs and outputs to the desired layout, passed in the `__init__` method.
```python
def _prepare_input_fn(input_layouts, desired_input_layouts, mod, inputs, device_mesh):
...
# Do some custom logic, cast to DTensor etc.
...
return inputs.redistribute(placements=desired_input_layouts, device_mesh=device_mesh)
def _prepare_output_fn(output_layouts, use_local_output, mod, outputs, device_mesh):
...
# Do some custom logic, cast to DTensor etc.
...
return outputs.redistribute(placements=output_layouts, device_mesh=device_mesh)
```
3. Register the strategy
Congratulations! You've implemented your own partitioning strategy. Now, to use it with your own `tp_plan`, you need to register it in the `ParallelInterface` mapping.
```python
from transformers.integrations.tensor_parallel import ParallelInterface
ParallelInterface.register_strategy("colwise_custom", ColwiseParallel)
```
And now you can use it in your `tp_plan` as such:
```python
tp_plan = {
"model.layers.*.self_attn.q_proj": "colwise_custom",
...
}
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, tp_plan=tp_plan)
```
## Full example
Let's go through a full example of inference with tensor parallelism.
```python
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
@ -66,17 +281,49 @@ Launch the inference script above on [torchrun](https://pytorch.org/docs/stable/
torchrun --nproc-per-node 4 demo.py
```
For CPU, please binding different socket on each rank. For example, if you are using Intel 4th Gen Xeon:
```bash
export OMP_NUM_THREADS=56
numactl -C 0-55 -m 0 torchrun --nnodes=2 --node_rank=0 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & numactl -C 56-111 -m 1 torchrun --nnodes=2 --node_rank=1 --master_addr="127.0.0.1" --master_port=29500 --nproc-per-node 1 demo.py & wait
```
The CPU benchmark data will be released soon.
You can benefit from considerable speed ups for inference, especially for inputs with large batch size or long sequences.
For a single forward pass on [Llama](./model_doc/llama) with a sequence length of 512 and various batch sizes, you can expect the following speed ups.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Meta-Llama-3-8B-Instruct%2C%20seqlen%20%3D%20512%2C%20python%2C%20w_%20compile.png">
</div>
## Tensor parallelism in-depth
Our implementation of tensor parallelism is framework-agnostic in design, but the specific implementations we've developed rely on the torch.distributed package. We heavily utilize abstractions such as `DeviceMesh` or `DTensor` to provide a simple and extensible interface to the user.
### DeviceMesh
Imagine `DeviceMesh` as a multi-dimensional grid of devices that communicate together. Different parallelization strategies require different types of communication patterns, therefore we can create a `DeviceMesh` with multiple submeshes:
```python
from torch.distributed.device_mesh import init_device_mesh
# Create a 1D mesh of 4 GPUs
device_mesh = init_device_mesh("cuda", (4,), mesh_dim_names=["tp"])
```
Then, most of the `torch.distributed` defined parallelization strategies can be applied to a mesh itself, or its submesh, automatically handling the communication patterns.
### DTensor
Abbreviation for Distributed Tensor, `DTensor` is a tensor subclass that handles the distributed logic on-top of the usual tensor operations. Most of the model weights in case of tensor parallelism are stored as `DTensor`s (with some exceptions, more on that later).
The most important part of DTensor, that is crucial to understand, is the `placement` attribute. It's an attribute that tells PyTorch how is the tensor placed on the devices of the `DeviceMesh`.
It can have the following values:
- `Shard(dimension)` - Annotates that this `DTensor` is sharded across a given dimension, over the `DeviceMesh` it was constructed under. For example, if we would like to shard weights for column-wise partitioning, we would do:
```python
weight = ...
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(0)]) # Shard across the 1st (column-wise) dimension
bias = ...
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Shard(-1)]) # Shard across the ONLY dimension
```
To give another example, for row-wise partitioning, we would do:
```python
weight = ...
weight = DTensor.from_local(weight, device_mesh["tp"], placements=[Shard(1)]) # Shard across the 2nd (row-wise) dimension
bias = ...
bias = DTensor.from_local(bias, device_mesh["tp"], placements=[Replicate()]) # Replicate bias across all GPUs
```
- `Replicate()` - Annotates that this `DTensor` is replicated across the `DeviceMesh`. Very straight-forward, only creates a full copy of the tensor on each device.
- `Partial()` - This placement is mostly of no interest to us, it's used to annotate that this tensor is pending a reduction operation.

View File

@ -106,6 +106,8 @@ dataset[0]["text"]
Remember to resample the sampling rate to match the pretrained models required sampling rate.
```py
from datasets import Audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
```

Some files were not shown because too many files have changed in this diff Show More