Compare commits

..

64 Commits

Author SHA1 Message Date
9580359b2a update kernel name 2025-10-31 10:54:57 +00:00
90d1b67db1 fix prepare_config_and_inputs_for_common bug in llava test (#41942)
fix bug

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-31 10:02:39 +01:00
02c324f43f Fix: Gemma3TextConfig rope scaling assignments (#41934)
* Fix: Gemma3TextConfig rope scaling assignments

* Fix: type annotation for rope_parameters
2025-10-30 12:23:54 +00:00
b47b35637f Fix rope_parameters for gemma3 weights conversion script (#41922)
Fix rope_parameters for gemma3 weights conversion script.

Co-authored-by: Douglas Reid <21148125+douglas-reid@users.noreply.github.com>
2025-10-30 11:49:18 +00:00
e7e7eca06b fix some ut failures on XPU w/ torch 2.9 (#41941)
* fix some ut failures on XPU w/ torch 2.9

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-30 11:23:57 +01:00
cad7eeeb5e Minor fix in docker image build workflow (#41949)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-30 11:02:11 +01:00
76fc50a152 Cache latest pytorch amd image locally on mi325 CI runner cluster (#41926) 2025-10-29 19:45:37 +01:00
a43b36cf80 fix some ut failures on XPU w/ torch 2.9 (#41923)
* fix 6 ut failures on XPU w/ torch 2.9

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix UT failures for 4 models on XPU

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-29 16:15:33 +01:00
10d557123b Update some workflow files (#41892)
* update

* update

* final check

* final check

* final clean

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-29 14:42:05 +01:00
259d174e36 Fix Florence2 conversion script model_type KeyError (#41866)
hopefully fixed florence2_language keyerror
2025-10-29 13:07:30 +00:00
38df1e946d Allow parse_response to accept token IDs (#41849)
* Allow tokenizer.parse_response() to accept IDs/arrays directly

* Allow tokenizer.parse_response() to accept IDs/arrays directly
2025-10-29 13:04:57 +00:00
5462376a5c Fix invalid examples in QwenVL model docstrings and add Qwen3VL example (#41812) 2025-10-29 12:34:13 +00:00
e6142ad8d2 Add 6 huggingface notebooks on AMD dev cloud (#41883)
* Add 6 huggingface notebooks on AMD dev cloud

* Change all AMD huggingface notebook links to https protocol.

---------

Co-authored-by: pagezyhf <165770107+pagezyhf@users.noreply.github.com>
2025-10-29 12:31:53 +00:00
21dfd6e716 evaluate>=0.4.6 is needed (#41920)
* evaluate>=0.4.6 is needed

* update

Signed-off-by: Stas Bekman <stas.bekman@snowflake.com>

---------

Signed-off-by: Stas Bekman <stas.bekman@snowflake.com>
Co-authored-by: Stas Bekman <stas.bekman@snowflake.com>
2025-10-29 12:20:53 +00:00
b22d0d07ac speed up loading checkpoints for zero stage 3 (#41850)
* update

* update

* update

---------

Co-authored-by: Robert Irvine <robert@seamlessml.com>
2025-10-29 11:59:08 +01:00
4d0b6758b9 Fix: avoid duplicate token in maybe_load_adapters (#41903) 2025-10-28 15:07:23 +00:00
2f9e3ae7f5 make lfm2_moe integration test pass on XPU (#41796)
* make lfm2_moe integration test pass on XPU

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* xx

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update test_modeling_lfm2_moe.py

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-28 15:50:18 +01:00
1f0b490a2c revert changes in _is_package_available (#41891)
* update

* rm comment
2025-10-27 13:59:18 +01:00
8472ac6836 Fix installation cmds in docs (#41887)
* doc fixes

* Fix decorator

* up

* Revert changes
2025-10-27 11:08:05 +00:00
bf91715637 Fix torch.no_grad decorator in VLMS (#41888)
Fix decorator
2025-10-27 11:07:15 +00:00
77e8b9f8df Adds Universal Intelligence to awesome transformers documentation 2025-10-25 18:31:21 +02:00
e2e8dbed13 CI workflow for Flash Attn (#41857)
ci for flash attn

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-25 09:45:47 +02:00
7a833d1ccd 🚨 [Clip] Fix masking and enable flash attention on all model types (#41750)
* fix

* make kwargs fully passed and adjust with outputs xxx

* propogate metaclip 2

* propogate mlcd and fix test

* style

* fix repo consistency, need to add ignore rules as those are building blocks

* style

* oops

* fix mlcd
2025-10-24 20:44:10 +02:00
8bde822a86 Fix TypeError: find_adapter_config_file() got an unexpected keyword argument '_adapter_model_path' (#41604)
* Pass original dict instead of copy to maybe_load_adapters

* Revert "Pass original dict instead of copy to maybe_load_adapters"

This reverts commit 26fe1b3f35419fdc14932dfbda6bb39e4bdb9b34.

* Return cleaned version of adapter_kwargs

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-10-24 19:52:14 +02:00
9bb51b311f Share embedding modules in BART, not only weights (#41821)
* Share embedding modules in BART, not only weights

Embedding modules are now shared between encoder, decoder
and shared - it is the same module, like in the T5 implementation.

This has the benefit that it does not matter which module is returned
in `get_input_embeddings`, the caller of the latter can be sure that
modifications done to that (e.g., hooks) apply to the embeddings.

Background: While revamping the gradient checkpointing tests in PEFT via
peft#2860 we found that the gradient enable step
(`modeling_utils.enable_input_require_grads`) does not work for BART.
This leads to gradient checkpointing with `use_reentrant=True` to
fail as it will not detect any gradients. The reason for this is that
the returned value by `get_input_embeddings` (`self.shared`) is not
the module that is called in the encoder, therefore any hooks added
to `self.shared` are not run - in this case the hook set by
`enable_input_require_grads`.

Since the background is a missing hook I've added a test that tests
directly the ability to define hooks and their ability to being called.

* Add explanatory comment

* Don't initialize embeddings when not neccessary

* make fix-copies

---------

Co-authored-by: nemo <git@ningu.net>
2025-10-24 17:22:02 +02:00
090a8946c6 Fix const parsing for dict inputs in chat schemas (#41824)
* Fix const parsing for dict inputs

* make fixup
2025-10-24 15:14:06 +01:00
4faf675232 Fix Qwen2Audio flash attention mask format for generation (#41843)
* Fix Qwen2Audio flash attention mask format for generation

* use create_bidirectional_mask instead

* fix

* fix

* empty

* fix
2025-10-24 14:45:48 +02:00
bb6028cb79 Fix MXFP4 quantizer to support variable num_local_experts and hidden_size (#41795)
Fix MXFP4 quantizer to support variable num_local_experts
2025-10-24 14:18:52 +02:00
7935b869dc Remove redundant code from Qwen3VLProcessor (#41836)
* Remove redundant code from Qwen3VLProcessor

* same modification to modular_qwen3_vl.py
2025-10-24 11:08:49 +00:00
c27efe6e65 further reducing flakiness in utils/check_bad_commit.py (#41658) (#41815)
* 111

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-24 11:36:01 +02:00
8c291846f5 extend 2 blip2 and falcon_h1 test cases to xpu (#41825)
* extend 2 blip2 and falcon_h1 test cases to xpu

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* xx

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-24 11:15:15 +02:00
beb71b7575 extend 2 trainer test cases to xpu (#41829)
extend a trainer test cases to xpu

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-24 11:11:15 +02:00
82451cbb30 extend bitnet cases to xpu, all 8 cases pass (#41831)
Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-24 11:05:12 +02:00
9c20660138 unpin torch/torchcodec for CircleCI (#41839)
CirCleCI with torch 2.9

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-24 08:19:38 +02:00
e4b920b3cf [Parakeet] add output_attention_mask (#41694)
* add output_attention_mask

* style
2025-10-23 23:09:20 +00:00
81b4f9882c transformers serve quantization docs + some api fixes for bitsandbytes (#41253)
* doc

* fix api

* fix

* fix

* fix

* fix args

* minor doc fix

* fix

* style

* rm check for now

* fix

* style

* Update docs/source/en/serving.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* add log and update value

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-10-23 16:00:54 +00:00
2a3f66d9d2 Deprecate warmup_ratio (#41326)
* dep

* style

* deprecate warmup_ratio

* better

* fix

* Revert "style"

This reverts commit cf4f9e7c4f7837a88eea6eeabf8b4dfe9455f6dc.

* Revert "dep"

This reverts commit 1800beb13f407ddb881d0af936860643e84ba085.

* update version
2025-10-23 17:17:21 +02:00
ca01fe4d13 transformers cli default flag fix (#41761) 2025-10-23 13:33:55 +00:00
f780932e05 Fixed some grammar mistakes (#41802)
Added spaces between words, fixed a typo and other errors
2025-10-23 12:39:58 +00:00
e7c5a60368 Fixed grammar mistakes (#41799)
* Fixed grammar mistakes

fixed a couple grammar mistakes

* Update README.md

* Change phrasing a bit more

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-10-23 12:34:02 +00:00
91b5a680c0 [Trainer] remove env vars (#41697)
* remove env var

* style

* fix value

* update

* fix

* style

* fix

* maybe this time

* rm tests

* fix
2025-10-23 14:17:20 +02:00
d4562bb8ae Fix Qwen3Next dtype API usage (#41735)
Replace torch.get_current_dtype() with torch.get_default_dtype() to fix FLA compatibility
2025-10-23 12:02:02 +00:00
e46c2ff32e Add a safeguard around a flaky test in gemma2 (#41811)
* Fix _compile flag in flex attn integration

* Revert fix and add precaution around test
2025-10-23 12:36:50 +02:00
3b6ddbcb88 make apollo test case pass (#41805)
make apollo test cases pass

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
2025-10-23 12:07:31 +02:00
ff04520266 Bump AMD docker (#41792) 2025-10-23 10:44:20 +02:00
01f5ac70a3 flash attn pytest marker (#41781)
* flash attn marker

* 111

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-23 08:39:19 +00:00
2c5b888c95 [Onnx docs] Remove some traces (#41791)
fix
2025-10-23 10:34:25 +02:00
0eb372ba19 [quantization] fix torchao tests after 0.14.0 release (#41777)
* initial commit

* clean int4_weight_only

* make style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-10-23 08:26:44 +00:00
87be559508 Fix attention mask in mamba layers (#41790)
* not all mamba models are like LFM

* compile friendly

* adjust slow tests expectation

* naming
2025-10-22 18:15:38 +02:00
2ca506ca1d Fix chat schema tests (#41793)
* Fix chat schema tests

* make fixup
2025-10-22 15:00:49 +00:00
5426947e3a fix type annotation typo in docstring (#41788) 2025-10-22 13:58:18 +00:00
93671b4444 Swap columns and rows of the grid layout in LFM2-VL (#41755)
* swap columns and rows of the grid layout

* update integration tests

* fix the test case

* revert batched test change
2025-10-22 12:52:06 +00:00
18a3349a9f [quantization] Skip Fp8 tests when hardware capability < 8.9 (#41785)
* skipping tests

* style

* nit
2025-10-22 13:33:28 +02:00
e9f241bf89 [quantization] fix compressed_tensors tests (#41780)
fixing tests
2025-10-22 12:37:07 +02:00
7cd1d2b66c [v5] Delete legacy chat template saving (#41648)
* delete lagcy chat template saving

* fix tests

* fix qwen audio
2025-10-22 09:40:55 +00:00
48a36c96da fix: Gemma 3 weights conversion vision and multimodal projector paths (#41767)
fix: Gemma 3 vision and multimodal projector paths
2025-10-22 09:38:56 +00:00
9a27302803 Fix CUDA index out of bounds for q_idx in VLM token type masking for Gemma3, PaliGemma, and example modular (#41757)
* Fix CUDA index out of bounds for q_idx in Gemma3 token type masking

* Fix CUDA index out of bounds for q_idx in modular modeling_new_task_model

* Revert "Fix CUDA index out of bounds for q_idx in Gemma3 token type masking"

This reverts commit f8e5c2a42c305aebd00c46161bf22f520009c8fc.

* Fix CUDA index out of bounds for q_idx in PaliGemma token type masking

* Fix CUDA index out of bounds for q_idx in Gemma3 token type masking
2025-10-22 11:29:47 +02:00
4f8781f84f Remove invalid @staticmethod from module-level get_device_and_memory_breakdown (#41747)
Remove staticmethod decorator from function
2025-10-22 10:52:29 +02:00
a8cece13e2 Fix bark after #41445 (#41645)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-10-22 09:21:45 +02:00
2e67a9b602 Add LightGlue fast image processor (#41670)
* add fast image processor skel

* add working lightglue fast image processor + tests

* remove plot_keypoint_matching
2025-10-22 00:33:16 +02:00
264cce9e0a Chat response parsing (#40894)
* Initial commit

* Adding more tests, bugfixes, starting tool tests

* Add support for JSON parsers and some tool tests

* stash commit

* stash commit

* stash commit

* stash commit

* stash commit

* Fix cohere schema, fix a lot of the recursive parser code

* GPT-OSS passing too!

* Update tests

* make fixup

* Offset tracking partially done

* stash commit

* stash commit

* Assistant masking Just Works

* make fixup

* stash commit

* stash commit

* JMESPath approach

* stash commit before i rip this PR apart

* Remove broken offset code

* Remove broken offset code

* Update chat parsing code and add tests for Ernie + fix Cohere tests for new format

* Implement tokenizer method

* jmespath dependency handling

* Completed TODOs

* Add support to TextGenerationPipeline

* Update GPT-OSS schema and test cases

* make fixup

* Fix typing (??)

* missing future import

* Use old typing in tokenization_utils_base.py

* put jmespath in various extras

* Remove accidental newline

* Guard tests correctly

* Remove require_jinja on the schema tests since we don't actually apply chat templates there

* make fixup

* fix some bad linter changes

* Fix docstring

* Push draft documentation

* Extend tests, more documentation

* make fixup

* docs docs docs

* Add Processor support

* Add to toctree

* Flag markdown correctly

* Remove double backslashes in docs for simplicity

* Simplify node-regex-to-dict

* Add support to ImageTextToTextPipeline

* Add support to ImageTextToTextPipeline and save/loading support in Processors

* Begin reworking docs to start fitting in response parsing

* Fix rebase

* Expand documentation further

* Expand documentation further

* Refactor x-regex-to-dict to x-regex-key-value, update the parser logic docs section

* Refactor x-regex-to-dict to x-regex-key-value, update the parser logic docs section

* More docs update

* Update TextGenerationPipeline to support tools properly

* Some rebase fixes

* Re-add is_jmespath_available

* Re-add is_jmespath_available

* Add Qwen3 parser and test, add maybe-json support

* Rollback processor changes - we'll wait for legacy saving to be deprecated

* Make fixup

* Revert ImageTextToText changes for now

* Add pipeline test

* make fixup

* Resolve a todo

* Resolve more TODOs and clean up the spec a little

* Add ref in the tools doc

* Update docs/source/en/chat_response_parsing.md

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update src/transformers/utils/chat_parsing_utils.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Add a docstring for parse_response

* Add function docstring and reference it in the docs

* Fix generate link

* Revert Processor changes for now

* Use updated GPT-OSS format

* Print the dict keys instead of the whole dict so the example doesn't become too big

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-10-21 17:26:18 +01:00
3f2db2c205 Simplify pipeline padding logic (#41667)
* Remove a lot of unnecessary pad logic

* Remove unnecessary clone() calls since we're just doing a slice assignment

* Just make the full tensor instead of adding to a zeros tensor
2025-10-21 17:01:48 +01:00
1d651c749e Modernize CLIP modeling code (#41546)
* stranded

* update modular

* modularities

* update

* fx broken

* fx stillb roken

* update

* missed this

* fix metaclip
2025-10-21 16:04:43 +02:00
f39355ec23 [v5] Remove deprecated tranformers.onnx (#41700)
* Remove deprecated tranformers.onnx

* Remove transformers.onnx related doc

* style

* shouldn't have been removed

* fix mismatch between metaclip2 modular en config file

* remove onnx config from not_doctested.txt

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-10-21 15:22:41 +02:00
272 changed files with 2933 additions and 8788 deletions

View File

@ -22,7 +22,6 @@ tests/generation/ @gante
/src/transformers/models/auto/ @ArthurZucker
/src/transformers/utils/ @ArthurZucker @Rocketknight1
/src/transformers/loss/ @ArthurZucker
/src/transformers/onnx/ @michaelbenayoun
# Specific files come after the sections/globs, so they take priority
/.circleci/config.yml @ArthurZucker @ydshieh

View File

@ -28,7 +28,7 @@ jobs:
(github.event_name == 'pull_request' && contains( github.event.pull_request.labels.*.name, 'run-benchmark') )||
(github.event_name == 'push' && github.ref == 'refs/heads/main')
container:
image: huggingface/transformers-pytorch-gpu
image: huggingface/transformers-all-latest-gpu
options: --gpus all --privileged --ipc host
steps:
- name: Get repo

View File

@ -9,7 +9,7 @@ jobs:
uses: ./.github/workflows/benchmark_v2.yml
with:
runner: aws-g5-4xlarge-cache-use1-public-80
container_image: huggingface/transformers-pytorch-gpu
container_image: huggingface/transformers-all-latest-gpu
container_options: --gpus all --privileged --ipc host --shm-size "16gb"
commit_sha: ${{ github.sha }}
run_id: ${{ github.run_id }}

View File

@ -45,26 +45,52 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
title: 🤗 Results of the transformers-all-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
flash-attn-ci-image:
name: "PyTorch with Flash Attn [dev]"
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
PYTORCH=2.8.0
TORCHCODEC=0.7.0
FLASH_ATTN=yes
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}:flash-attn
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -104,51 +130,8 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
# Can't build 2 images in a single job `latest-torch-deepspeed-docker` (for `nvcr.io/nvidia`)
latest-torch-deepspeed-docker-for-push-ci-daily-build:
name: "Latest PyTorch + DeepSpeed (Push CI - Daily Build)"
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
@ -181,44 +164,6 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-amd:
name: "Latest PyTorch (AMD) [dev]"
runs-on:
@ -245,29 +190,47 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-amd-gpu-push-ci
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
cache-latest-pytorch-amd:
name: "Cache Latest Pytorch (AMD) Image"
needs: latest-pytorch-amd
runs-on:
group: amd-mi325-1gpu
steps:
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Pull and save docker image to cache
run: |
image="huggingface/transformers-pytorch-amd-gpu"
final_path="/mnt/image-cache/transformers-pytorch-amd-gpu.tar"
tmp_path="${final_path}.tmp"
echo "Pulling image: ${image}"
docker pull "${image}"
echo "Saving to temp file: ${tmp_path}"
docker save "${image}" -o "${tmp_path}"
echo "Moving to final path: ${final_path}"
mv -f "${tmp_path}" "${final_path}"
echo "Cache populated successfully at ${final_path}"
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on:
@ -294,19 +257,6 @@ jobs:
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-pytorch-deepspeed-amd-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-amd-gpu-push-ci
- name: Post to Slack
if: always()
@ -319,8 +269,6 @@ jobs:
latest-quantization-torch-docker:
name: "Latest Pytorch + Quantization [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:

View File

@ -28,6 +28,9 @@ on:
report_repo_id:
required: false
type: string
pytest_marker:
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -137,7 +140,7 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: |
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
script -q -c "PATCH_TESTING_METHODS_TO_COLLECT_OUTPUTS=yes _PATCHED_TESTING_METHODS_OUTPUT_DIR=/transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports python3 -m pytest -rsfE -v -m '${{ inputs.pytest_marker }}' --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports tests/${{ matrix.folders }}" test_outputs.txt
ls -la
# Extract the exit code from the output file
EXIT_CODE=$(tail -1 test_outputs.txt | grep -o 'COMMAND_EXIT_CODE="[0-9]*"' | cut -d'"' -f2)

View File

@ -149,7 +149,7 @@ jobs:
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-push"
docker: huggingface/transformers-all-latest-gpu
docker: huggingface/transformers-all-latest-gpu:flash-attn
ci_event: push
report_repo_id: hf-internal-testing/transformers_ci_push
commit_sha: ${{ github.sha }}

View File

@ -1,25 +0,0 @@
name: Self-hosted runner (AMD mi210 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi210
secrets: inherit

View File

@ -1,25 +0,0 @@
name: Self-hosted runner (AMD mi250 CI caller)
on:
#workflow_run:
# workflows: ["Self-hosted runner (push-caller)"]
# branches: ["main"]
# types: [completed]
push:
branches:
- run_amd_push_ci_caller*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_push_ci_caller')))
uses: ./.github/workflows/self-push-amd.yml
with:
gpu_flavor: mi250
secrets: inherit

View File

@ -1,334 +0,0 @@
name: Self-hosted runner AMD GPU (push)
on:
workflow_call:
inputs:
gpu_flavor:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-22.04
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners amd-mi210-single-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup_gpu:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_models_gpu:
name: Model tests
needs: setup_gpu
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup_gpu.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup_gpu.outputs.matrix) }}
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports ${{ fromJson(needs.setup_gpu.outputs.test_map)[matrix.folders] }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup_gpu,
run_models_gpu,
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup_gpu.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Push CI (AMD) - ${{ inputs.gpu_flavor }}
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup_gpu.result }}
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"

View File

@ -1,54 +0,0 @@
# Used to trigger self-push CI
name: Self-hosted runner (push-caller)
on:
push:
branches:
- main
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
check-for-setup:
runs-on: ubuntu-22.04
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@1c8e6069583811afb28f97afeaf8e7da80c6be5c
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` = "setup.py" ]; then
echo "changed=1" >> $GITHUB_OUTPUT
fi
done
build-docker-containers:
needs: check-for-setup
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
uses: ./.github/workflows/build-docker-images.yml
with:
image_postfix: "-push-ci"
secrets: inherit
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-22.04
if: ${{ always() }}
needs: build-docker-containers
steps:
- name: Trigger push CI via workflow_run
run: echo "Trigger push CI via workflow_run"

View File

@ -1,652 +0,0 @@
name: Self-hosted runner (push)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- ci_*
- ci-*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
repository_dispatch:
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
CUDA_VISIBLE_DEVICES: 0,1
jobs:
setup:
name: Setup
strategy:
matrix:
machine_type: [aws-g5-4xlarge-cache, aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v4
with:
name: test_fetched
path: /transformers/test_preparation.txt
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "matrix=$keys" >> $GITHUB_OUTPUT
echo "test_map=$test_map" >> $GITHUB_OUTPUT
run_tests_single_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g5-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ env.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_torch_cuda_extensions_single_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [aws-g5-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Set `machine_type` for report and artifact names
working-directory: /workspace/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g5-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g5-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /workspace/transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /workspace/transformers
run: pip freeze
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ env.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_tests_torch_cuda_extensions_single_gpu,
run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Setup status: ${{ needs.setup.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v4
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: push
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -63,7 +63,7 @@ jobs:
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-torch"
docker: huggingface/transformers-pytorch-gpu
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
commit_sha: ${{ github.sha }}

View File

@ -0,0 +1,60 @@
name: Nvidia CI - Flash Attn
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_nvidia_ci_flash_attn*
workflow_dispatch:
inputs:
prev_workflow_run_id:
description: 'previous workflow run id to compare'
type: string
required: false
default: ""
other_workflow_run_id:
description: 'other workflow run id to compare'
type: string
required: false
default: ""
# Used for `push` to easily modify the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
jobs:
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-flash-attn"
docker: huggingface/transformers-all-latest-gpu:flash-attn
ci_event: Daily CI
runner_type: "a10"
report_repo_id: hf-internal-testing/transformers_flash_attn_ci
commit_sha: ${{ github.sha }}
pytest_marker: "flash_attn_test or flash_attn_3_test"
secrets: inherit

View File

@ -38,6 +38,10 @@ on:
default: ""
required: false
type: string
pytest_marker:
required: false
type: string
env:
HF_HOME: /mnt/cache
@ -127,6 +131,7 @@ jobs:
commit_sha: ${{ inputs.commit_sha || github.sha }}
runner_type: ${{ inputs.runner_type }}
report_repo_id: ${{ inputs.report_repo_id }}
pytest_marker: ${{ inputs.pytest_marker }}
secrets: inherit
run_trainer_and_fsdp_gpu:
@ -160,7 +165,7 @@ jobs:
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-pytorch-gpu
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone

View File

@ -14,7 +14,7 @@ This AGENTS.md file provides guidance for code agents working with this codebase
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
- Code style is enforced in the CI. You can install the style tools with `pip install -e ".[quality]"`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
@ -36,4 +36,4 @@ After making changes, you should usually run `make fixup` to ensure any copies a
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e ".[testing]"`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.

View File

@ -64,8 +64,8 @@ limitations under the License.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers_as_a_model_definition.png"/>
</h3>
Transformers acts as the model-definition framework for state-of-the-art machine learning models in text, computer
vision, audio, video, and multimodal model, for both inference and training.
Transformers acts as the model-definition framework for state-of-the-art machine learning with text, computer
vision, audio, video, and multimodal models, for both inference and training.
It centralizes the model definition so that this definition is agreed upon across the ecosystem. `transformers` is the
pivot across frameworks: if a model definition is supported, it will be compatible with the majority of training

View File

@ -9,6 +9,12 @@ In this list, we showcase incredibly impactful and novel projects that have push
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [◉ Universal Intelligence](https://github.com/blueraai/universal-intelligence)
[Universal Intelligence](https://github.com/blueraai/universal-intelligence) aims to standardize models, tools, and agents —transforming them into simple, composable, portable, interoperable, framework-agnostic, hardware-agnostic interfaces (through auto-negotiation and resource sharing); for fast and accessible development of AI applications.
Keywords: Protocol, Open-source, LLMs, Large Language Models, Agents, Low-code
## [gpt4all](https://github.com/nomic-ai/gpt4all)
[gpt4all](https://github.com/nomic-ai/gpt4all) is an ecosystem of open-source chatbots trained on massive collections of clean assistant data including code, stories and dialogue. It offers open-source, large language models such as LLaMA and GPT-J trained in an assistant-style.

View File

@ -87,6 +87,8 @@ def pytest_configure(config):
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")
config.addinivalue_line("markers", "torch_compile_test: mark test which tests torch compile functionality")
config.addinivalue_line("markers", "torch_export_test: mark test which tests torch export functionality")
config.addinivalue_line("markers", "flash_attn_test: mark test which tests flash attention functionality")
config.addinivalue_line("markers", "flash_attn_3_test: mark test which tests flash attention 3 functionality")
os.environ["DISABLE_SAFETENSORS_CONVERSION"] = "true"

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[quality,testing,torch-speech,vision]"
RUN git lfs install

View File

@ -17,7 +17,7 @@ RUN make install -j 10
WORKDIR /
RUN uv pip install --no-cache --upgrade 'torch<2.9' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec<0.8' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1 g++ tesseract-ocr git-lfs curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN uv pip install -U --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec<0.8' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git-lfs ffmpeg curl
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch<2.9' 'torchaudio' 'torchvision' 'torchcodec<0.8' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' 'torchcodec' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"

View File

@ -9,10 +9,15 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.8.0'
ARG PYTORCH='2.9.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu126'
# This needs to be compatible with the above `PYTORCH`.
ARG TORCHCODEC='0.8.0'
ARG FLASH_ATTN='false'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
@ -21,11 +26,44 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev]
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
# 3. For `torchcodec<0.8`: this is quickly added as torch 2.9.0 + torchcodec 0.8.0 fails on our CI env. Need to remove later once they work.
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio "torchcodec<0.8" --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
# 2. For `torchcodec`, use `cpu` as we don't have `libnvcuvid.so` on the host runner. See https://github.com/meta-pytorch/torchcodec/issues/912
# **Important**: We need to specify `torchcodec` version if the torch version is not the latest stable one.
# 3. `set -e` means "exit immediately if any command fails".
RUN set -e; \
# Determine torch version
if [ ${#PYTORCH} -gt 0 ] && [ "$PYTORCH" != "pre" ]; then \
VERSION="torch==${PYTORCH}.*"; \
TORCHCODEC_VERSION="torchcodec==${TORCHCODEC}.*"; \
else \
VERSION="torch"; \
TORCHCODEC_VERSION="torchcodec"; \
fi; \
\
# Log the version being installed
echo "Installing torch version: $VERSION"; \
\
# Install PyTorch packages
if [ "$PYTORCH" != "pre" ]; then \
python3 -m pip install --no-cache-dir -U \
$VERSION \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/$CUDA; \
# We need to specify the version if the torch version is not the latest stable one.
python3 -m pip install --no-cache-dir -U \
$TORCHCODEC_VERSION --extra-index-url https://download.pytorch.org/whl/cpu; \
else \
python3 -m pip install --no-cache-dir -U --pre \
torch \
torchvision \
torchaudio \
--extra-index-url https://download.pytorch.org/whl/nightly/$CUDA; \
python3 -m pip install --no-cache-dir -U --pre \
torchcodec --extra-index-url https://download.pytorch.org/whl/nightly/cpu; \
fi
RUN python3 -m pip install --no-cache-dir -U timm
@ -54,7 +92,7 @@ RUN python3 -m pip install --no-cache-dir bitsandbytes
RUN python3 -m pip install --no-cache-dir quanto
# After using A10 as CI runner, let's run FA2 tests
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
RUN [ "$FLASH_ATTN" != "false" ] && python3 -m pip uninstall -y ninja && python3 -m pip install --no-cache-dir ninja && python3 -m pip install flash-attn --no-cache-dir --no-build-isolation || echo "Don't install FA2 with nightly torch"
# TODO (ydshieh): check this again
# `quanto` will install `ninja` which leads to many `CUDA error: an illegal memory access ...` in some model tests

View File

@ -1,4 +1,4 @@
FROM rocm/pytorch:rocm6.4.1_ubuntu24.04_py3.12_pytorch_release_2.7.1
FROM rocm/pytorch:rocm7.0.2_ubuntu24.04_py3.12_pytorch_release_2.7.1
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -10,8 +10,8 @@ RUN apt update && \
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy importlib-metadata setuptools wheel ninja pytesseract "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir --no-build-isolation git+https://github.com/facebookresearch/detectron2.git
ARG REF=main
WORKDIR /
@ -39,6 +39,7 @@ RUN python3 -m pip install --no-cache-dir "torchcodec==0.5"
# Install flash attention from source. Tested with commit 6387433156558135a998d5568a9d74c1778666d8
RUN git clone https://github.com/ROCm/flash-attention/ -b tridao && \
cd flash-attention && \
GPU_ARCHS="gfx942" python setup.py install
GPU_ARCHS="gfx942;gfx950" python setup.py install
# GPU_ARCHS builds for MI300, MI325 and MI355
RUN python3 -m pip install --no-cache-dir einops

View File

@ -24,7 +24,7 @@ pip install -e ".[dev]"
```
> [!NOTE]
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to workaround it.
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to work around it.
Then you need to install our special tool that builds the documentation:
@ -38,7 +38,7 @@ pip install git+https://github.com/huggingface/doc-builder
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
Once you have set up the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
@ -295,12 +295,11 @@ Here's an example of a tuple return, comprising several objects:
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate them to this dataset.
## Styling the docstring
We have an automatic script running with the `make style` comment that will make sure that:
We have an automatic script running with the `make style` command that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library

View File

@ -258,8 +258,6 @@
# title: النماذج
# - local: main_classes/text_generation
# title: توليد النصوص
# - local: main_classes/onnx
# title: ONNX
# - local: main_classes/optimizer_schedules
# title: التحسين
# - local: main_classes/output

View File

@ -32,7 +32,7 @@
لتصدير نموذج 🤗 Transformers إلى ONNX، قم أولاً بتثبيت اعتماد إضافي:
```bash
pip install optimum[exporters]
pip install optimum-onnx
```
للاطلاع على جميع المعامﻻت المتاحة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)، أو عرض المساعدة في سطر الأوامر:
@ -111,60 +111,3 @@ optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_s
### تصدير نموذج لهندسة غير مدعومة
إذا كنت ترغب في المساهمة من خلال إضافة دعم لنموذج لا يُمكن تصديره حاليًا، فيجب عليك أولاً التحقق مما إذا كان مدعومًا في [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)، وإذا لم يكن مدعومًا، [فيمكنك المساهمة في 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute) مُباشرةً.
### تصدير نموذج باستخدام `transformers.onnx`
<Tip warning={true}>
لم يعد يتم دعم `transformers.onnx` يُرجى تصدير النماذج باستخدام 🤗 Optimum كما هو موضح أعلاه. سيتم إزالة هذا القسم في الإصدارات القادمة.
</Tip>
لتصدير نموذج 🤗 Transformers إلى ONNX باستخدام `transformers.onnx`، ثبّت التبعيات الإضافية:
```bash
pip install transformers[onnx]
```
استخدم حزمة `transformers.onnx` كنموذج Python لتصدير نقطة حفظ باستخدام تكوين جاهز:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
يُصدّر هذا رسمًا بيانيًا ONNX لنقطة الحفظ المُحددة بواسطة وسيطة `--model`. مرر أي نقطة حفظ على 🤗 Hub أو نقطة حفظ مُخزنة محليًا.
يُمكن بعد ذلك تشغيل ملف `model.onnx` الناتج على أحد المُسرعات العديدة التي تدعم معيار ONNX. على سبيل المثال، قم بتحميل وتشغيل النموذج باستخدام ONNX Runtime كما يلي:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # يتوقع ONNX Runtime مصفوفات NumPy كمدخلات
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
يُمكن الحصول على أسماء المخرجات المطلوبة (مثل `["last_hidden_state"]`) من خلال إلقاء نظرة على تكوين ONNX لكل نموذج. على سبيل المثال، بالنسبة لـ DistilBERT، لدينا:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
العمليات مُتطابقة لنقاط الحفظ TensorFlow على Hub. على سبيل المثال، صدّر نقطة حفظ TensorFlow خالصة كما يلي:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
لتصدير نموذج مُخزن محليًا، احفظ أوزان النموذج ومجزىء اللغوى في نفس الدليل (على سبيل المثال `local-pt-checkpoint`)، ثم قم بتصديره إلى ONNX عن طريق توجيه وسيط `--model` لحزمة `transformers.onnx` إلى الدليل المطلوب:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```

View File

@ -88,6 +88,8 @@
title: Tool use
- local: chat_templating_writing
title: Writing a chat template
- local: chat_response_parsing
title: Response parsing
title: Chat with models
- sections:
- local: serving

View File

@ -95,9 +95,12 @@ print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):]))
The chat model called the `get_current_temperature` tool with the correct parameters from the docstring. It inferred France as the location based on Paris, and that it should use Celsius for the units of temperature.
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history.
A model **cannot actually call the tool itself**. It requests a tool call, and it's your job to handle the call and append it and the result to the chat history. For
models that support [response parsing](./chat_response_parsing), the response parsing will be handled automatically, and you can just use
[`~PreTrainedTokenizer.parse_response] to extract the tool call. For other models, you'll need to manually translate the output
string into a tool call dict.
Hold the call in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
Regardless of the approach you use, the tool call should go in the `tool_calls` key of an `assistant` message. This is the recommended API, and should be supported by the chat template of most tool-using models.
> [!WARNING]
> Although `tool_calls` is similar to the OpenAI API, the OpenAI API uses a JSON string as its `tool_calls` format. This may cause errors or strange model behavior if used in Transformers, which expects a dict.

View File

@ -0,0 +1,233 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Response Parsing
It is increasingly common for chat models to generate structured outputs, rather than just a single reply string.
The most common uses for structured outputs are [tool calling](./chat_extras) and [reasoning models](https://huggingface.co/reasoning-course).
Tool calling models can output tool calls, containing the name of the tool to call and any arguments to be passed to it,
while reasoning models often output reasoning steps as a "chain of thought". Some recent models even use both of these,
and may output reasoning and/or one or more tool calls before their final answer.
Models with structured outputs pose a challenge for chat templating, because the output needs to be parsed before it
can be appended to the chat. For a concrete example, let's say we ask [GPT-OSS](https://huggingface.co/openai/gpt-oss-120b)
what the weather is like, and it thinks and decides to call a tool. Here's what the raw model output might look like:
```txt
<|start|>analysis<|message|>The user asks: "What is the weather like in SF?" We need to get the location of the user? The user explicitly asks about SF (San Francisco).
So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data.
So we should call get_current_weather with location "San Francisco, CA". Let's do that.
We will call function get_current_weather.<|end|><|start|>commentary to=functions.get_current_weather<|channel|>commentary <|constrain|>json<|message|>{"location":"San Francisco, CA"}<|call|>
}
```
But if you want to append this to a chat, you'll need to format it as a chat message dict, like this:
```json
{
"role": "assistant",
"thinking": "The user asks: \"What is the weather like in SF?\" We need to get the location of the user? The user explicitly asks about SF (San Francisco). So we need to get the current weather in San Francisco, CA. We need to call get_current_weather function. But we need to call function to get weather data. So we should call get_current_weather with location \"San Francisco, CA\". Let's do that.",
"tool_calls": [
{
"name": "get_current_weather",
"arguments": {
"location": "San Francisco, CA"
}
}
]
}
```
Chat **templates** give us a way to turn messages into formatted input for a model, but we need something else to
parse model output back into a standard message dict. This is what chat **parsing** is for.
## The [parse_response](~PreTrainedTokenizerBase.parse_response) method
Parsing a chat response on a model that supports it is straightforward. Simply take the raw, decoded output from
[generate](`~generation.GenerationMixin.generate`), and pass it to the tokenizer's [parse_response](~PreTrainedTokenizerBase.parse_response) method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM3-3B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, dtype="auto", device_map="auto")
messages = [
{
"role": "user",
"content": "Hey! Can you summarize the end of the Cold War as briefly as possible? Like, comically briefly. It should really leave out almost most of the relevant information."
}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(input_ids, max_new_tokens=1024)[0, input_ids.shape[1]:]
out_text = tokenizer.decode(outputs)
parsed = tokenizer.parse_response(out_text)
print(parsed.keys())
```
And you should get:
```text
dict_keys(['thinking', 'content'])
```
And that's all you need to start using response parsing! `parse_response` should return a complete message dict that is ready to be appended to the chat history.
When the tokenizer does not support response parsing, `parse_response` will throw an error. We hope to add support
to more tokenizers over time.
## Developers: Understanding a simple response schema
Under the hood, `parse_response` uses a **JSON schema** to parse the model output. A JSON schema represents
the structure of the output message dict. The schema is augmented with additional fields that indicate how the
output message string should be parsed into the expected format. Let's take a look at the schema for a SmolLM response,
excluding tool calls for now:
```python
{
"x-regex": "(?:<think>\n?(?P<thinking>.+?)\n?</think>)?\s*(?P<content>.+?)?\s*(?:<\|im_end\|>|$)",
"type": "object",
"properties": {
"role": {"const": "assistant"},
"content": {"type": "string"},
"thinking": {"type": "string"}
}
}
```
We can see that the schema describes a JSON "object" (a `dict`, in other words) with three keys: `role`, `content`, and `thinking`.
Because all assistant responses have the role "assistant", the `role` key is a `const`(ant). The other two keys are strings, extracted
from the named groups in the regex in the `x-regex` field.
Like chat templates, response schemas are set as a property of the tokenizer. To enable response parsing, all you need
to do is set `tokenizer.response_schema` to a valid schema dict, and `tokenizer.parse_response()` will work! Again, like
chat templates, this schema will be saved with the processor, so once you set it, you can use `save_pretrained()` or `push_to_hub()` to
save and share the schema.
## Developers: Complex schemas
Now, let's look at a more complex schema, which includes tool calls, to gain more of an understanding of the parser
internals. For this, we'll use the `GPT-OSS` schema. GPT-OSS emits both tool calls and thinking blocks, and it uses
an unusual format where model responses are tagged with one of three "channels": `commentary` for things like
tool calls, `analysis` for chain of thought blocks, and `final` for messages intended to be sent to the user.
A full message where the model calls a tool named `get_current_weather` might look like this, with some extra linebreaks added for clarity:
```text
<|channel|>analysis<|message|>
The user asks: "What is the weather like in SF?" So we need to get the current weather in San Francisco, CA.
We need to call get_current_weather function. So we should call get_current_weather with location "San Francisco, CA".
<|end|>
<|start|>assistant<|channel|>commentary
to=functions.get_current_weather <|constrain|>json<|message|>
{
"location": "San Francisco, CA"
}
<|call|>
```
Parsing proceeds recursively; the output of a regex (or other parser) at one level becomes the input to the nodes below it.
In other words, don't feel like you have to parse the entire output in one enormous regex! Instead, start with the schema,
and then add regexes to extract the relevant chunks as you go. Here's a schema that will parse it, with some
explanatory comments:
```python
{
"type": "object",
"properties": {
"role": {"const": "assistant"},
# "content" and "thinking" are both similar to the previous example, and just extract a single string
# However, rather than using a single regex with named groups to extract both, we use a regex in each subkey.
# When an object node has no parser/regex, the entire input string is passed to all of its children, so
# parsing can either be done with named groups at the object level, or with separate regexes at the property level.
"content": {"type": "string", "x-regex": r"<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)"},
"thinking": {"type": "string", "x-regex": r"<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>"},
"tool_calls": {
# "x-regex-iterator" uses re.findall to find multiple possible manages, and returns them as an
# array/list. You don't need to worry about array handling, though - each item in the array will be
# parsed by the `items` schema, so just write the schema for a single item.
"x-regex-iterator": r"<\|channel\|>commentary (to=functions\..*?<\|message\|>.*?)(?:<\|call\|>|$)",
"type": "array",
"items": {
"type": "object",
"properties": {
# A const property is a fixed value, and the input has no effect on it.
"type": {"const": "function"},
# Here, we wrap the entire tool call dict in a `{"function": ...}` block. The input string is passed through to it unchanged.
"function": {
"type": "object",
"properties": {
"name": {"type": "string", "x-regex": r"^to=functions\.(\w+)"},
"arguments": {
"type": "object",
"x-regex": "<\|message\|>(.*)",
# The "x-parser" field indicates that the extracted string should be parsed as JSON.
# The output is then passed to the schema nodes below and recursive parsing continues.
"x-parser": "json",
"additionalProperties": {"type": "any"},
},
},
},
},
},
},
},
}
```
## Developers: Understanding the parser logic
The parser follows a few simple rules:
1. Each level of the schema receives input from the level above, applies any regex or parser it has, and then passes the output to its children.
2. The root level receives the entire decoded model output string as input.
3. If a node has structured content after parsing (for example, if the regex has named groups and returns a dict, or if the parser returns a dict or list),
then that structured content is mapped to the node's children, and each child node receives its corresponding value as input.
4. If an `object` (dict) node has unstructured (string) output, then the entire string is passed to all of its children. This allows child nodes
to handle parsing individually rather than requiring a single parent regex to extract all keys at once.
5. If an `array` (list) node has unstructured (string) output, then this throws an error.
There is a small set of allowable `x-` keys that indicate how parsing should be done at each node:
- `x-regex`: A regex string to apply to the input. If the regex has named groups, the output is a dict of group names to values. Named groups should only be used in `object` nodes.
Otherwise, the regex must have exactly one unnamed capturing group, and the output is the value of that group as a string.
- `x-regex-iterator`: A regex string to apply to the input using `re.findall()`. The output is a list of all matches.
This should only be used in `array` nodes, and the regex must have exactly one unnamed capturing group. The output is distributed to
the node's `items` schema.
- `x-parser`: Calls a built-in parser to apply to the input. Currently, the only supported parser is `json`, which parses the input string as JSON.
The output is passed to the child nodes for further parsing. Note that the `json` parser can return deeply nested output - in this case, the output
will be progressively unwrapped as it is passed through child nodes. The child nodes do not need additional `x-parser` or `x-regex` fields in this case,
but their structure must match the structure of the parsed JSON.
- `x-parser-args`: Only allowed in conjunction with `x-parser`. This is a dict of additional arguments that control parsing. Right now, the only supported
argument is `transform`, which specifies a `jmespath` transformation to apply to the output. This is useful when the JSON parser returns a structure
that needs to be modified to match the schema.
- `x-regex-key-value`: This is rarely necessary, but it can be useful when parsing key-value pairs in non-JSON format where the names of the keys are not known
in advance, such as when a model emits XML tool calls with arbitrary argument names. The regex must have exactly two named capturing groups,
`key` and `value`, and the output is a dict mapping keys to values. This should only be used in `object` nodes.
In general, multiple regexes/parsers cannot be combined at the same level. The exception is that `x-regex`, returning a single string, can be combined with the other parsers. In this case,
`x-regex` is applied first, and then the output is passed to the other parser, either `x-regex-iterator`, `x-parser`, or `x-regex-key-value`.
Putting these ideas together, you can see that the input flows through the schema, being parsed at each level and then distributed to child nodes. Each level
only needs to extract the input content that is relevant for that part of the schema, and can then let its child nodes handle the rest. Internally, this is handled
with a parser function that receives input, applies any regexes/parsers at the current level, then maps the result to its child nodes before recursively calling itself on each of them.
Recursion terminates when it reaches leaf nodes, usually primitive types like `string` or `number`, which simply return the input they receive.

View File

@ -88,16 +88,16 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
import torch
from PIL import Image
import requests
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
# LightGlue requires pairs of images
images = [image1, image2]
inputs = processor(images, return_tensors="pt")
with torch.inference_mode():
outputs = model(**inputs)
# Extract matching information
keypoints0 = outputs.keypoints0 # Keypoints in first image
keypoints1 = outputs.keypoints1 # Keypoints in second image
@ -112,7 +112,7 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
# Process outputs for visualization
image_sizes = [[(image.height, image.width) for image in images]]
processed_outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(processed_outputs):
print(f"For the image pair {i}")
for keypoint0, keypoint1, matching_score in zip(
@ -147,6 +147,13 @@ processed_outputs = processor.post_process_keypoint_matching(outputs, image_size
- post_process_keypoint_matching
- visualize_keypoint_matching
## LightGlueImageProcessorFast
[[autodoc]] LightGlueImageProcessorFast
- preprocess
- post_process_keypoint_matching
- visualize_keypoint_matching
## LightGlueForKeypointMatching
[[autodoc]] LightGlueForKeypointMatching

View File

@ -154,7 +154,7 @@ pip install schedulefree
[Schedule Free optimizer (SFO)](https://hf.co/papers/2405.15682) replaces the base optimizers momentum with a combination of averaging and interpolation. Unlike a traditional scheduler, SFO completely removes the need to anneal the learning rate.
SFO supports the RAdam (`schedule_free_radam`), AdamW (`schedule_free_adamw`) and SGD (`schedule_free_sgd`) optimizers. The RAdam scheduler doesn't require `warmup_steps` or `warmup_ratio`.
SFO supports the RAdam (`schedule_free_radam`), AdamW (`schedule_free_adamw`) and SGD (`schedule_free_sgd`) optimizers. The RAdam scheduler doesn't require `warmup_steps`.
By default, it is recommended to set `lr_scheduler_type="constant"`. Other `lr_scheduler_type` values may also work, but combining SFO optimizers with other learning rate schedules could affect SFOs intended behavior and performance.

View File

@ -38,7 +38,7 @@ pip install transformers[dev]
or for an editable install:
```bash
pip install -e .[dev]
pip install -e ".[dev]"
```
inside the Transformers repo. Since the number of optional dependencies of Transformers has grown a lot, it's possible you don't manage to get all of them. If the dev install fails, make sure to install PyTorch then do
@ -50,7 +50,7 @@ pip install transformers[quality]
or for an editable install:
```bash
pip install -e .[quality]
pip install -e ".[quality]"
```
## Tests

View File

@ -33,7 +33,7 @@ Export a Transformers model to ONNX with the Optimum CLI or the `optimum.onnxrun
Run the command below to install Optimum and the [exporters](https://huggingface.co/docs/optimum/exporters/overview) module.
```bash
pip install optimum[exporters]
pip install optimum-onnx
```
> [!TIP]

View File

@ -383,6 +383,30 @@ transformers serve \
--attn_implementation "sdpa"
```
### Quantization
transformers serve is compatible with all [quantization methods](https://huggingface.co/docs/transformers/main/quantization/overview) supported in transformers. Quantization can significantly reduce memory usage and improve inference speed, with two main workflows: pre-quantized models and on-the-fly quantization.
#### Pre-quantized Models
For models that are already quantized (e.g., GPTQ, AWQ, bitsandbytes), simply choose a quantized model name for serving.
Make sure to install the required libraries listed in the quantization documentation.
> [!TIP]
> Pre-quantized models generally provide the best balance of performance and accuracy.
#### On the fly quantization
If you want to quantize a model at runtime, you can specify the --quantization flag in the CLI. Note that not all quantization methods support on-the-fly conversion. The full list of supported methods is available in the quantization [overview](https://huggingface.co/docs/transformers/main/quantization/overview).
Currently, with transformers serve, we only supports some methods: ["bnb-4bit", "bnb-8bit"]
For example, to enable 4-bit quantization with bitsandbytes, you need to pass add `--quantization bnb-4bit`:
```sh
transformers serve --quantization bnb-4bit
```
### Performance tips
- Use an efficient attention backend when available:
@ -397,6 +421,4 @@ transformers serve \
- `--dtype {bfloat16|float16}` typically improve throughput and memory use vs. `float32`
- `--load_in_4bit`/`--load_in_8bit` can reduce memory footprint for LoRA setups
- `--force-model <repo_id>` avoids per-request model hints and helps produce stable, repeatable runs

View File

@ -220,7 +220,7 @@ At this point, only three steps remain:
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -211,7 +211,7 @@ At this point, only three steps remain:
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -378,7 +378,7 @@ Most of the training arguments are self-explanatory, but one that is quite impor
... learning_rate=5e-5,
... per_device_train_batch_size=batch_size,
... per_device_eval_batch_size=batch_size,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -37,7 +37,7 @@ pip install transformers[dev]
o una instalación editable:
```bash
pip install -e .[dev]
pip install -e ".[dev]"
```
del repositorio de Transformers.

View File

@ -220,7 +220,7 @@ Al llegar a este punto, solo quedan tres pasos:
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -37,7 +37,7 @@ pip install transformers[dev]
o un'installazione modificabile:
```bash
pip install -e .[dev]
pip install -e ".[dev]"
```
all'interno del repo Transformers.

View File

@ -200,8 +200,6 @@
title: モデル
- local: main_classes/text_generation
title: テキストの生成
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: 最適化
- local: main_classes/output

View File

@ -1292,7 +1292,7 @@ DeepSpeed は、`LRRangeTest`、`OneCycle`、`WarmupLR`、および`WarmupDecayL
したがって、スケジューラを設定しない場合、これがデフォルトで設定されるスケジューラになります。
設定ファイルで `scheduler` エントリを設定しない場合、[`Trainer`] は
`--lr_scheduler_type`、`--learning_rate`、および `--warmup_steps` または `--warmup_ratio` の値を設定します。
`--lr_scheduler_type`、`--learning_rate`、および `--warmup_steps` の値を設定します。
🤗 それのトランスフォーマーバージョン。
以下は、`WarmupLR`の自動構成された`scheduler`エントリの例です。
@ -1316,8 +1316,7 @@ DeepSpeed は、`LRRangeTest`、`OneCycle`、`WarmupLR`、および`WarmupDecayL
- `warmup_min_lr` の値は `0` です。
- `warmup_max_lr` と `--learning_rate` の値。
- `warmup_num_steps` と `--warmup_steps` の値 (指定されている場合)。それ以外の場合は `--warmup_ratio` を使用します
トレーニング ステップの数を乗算し、切り上げます。
- `warmup_num_steps` と `--warmup_steps` の値 (指定されている場合)
- `total_num_steps` には `--max_steps` の値を指定するか、指定されていない場合は実行時に自動的に導出されます。
環境、データセットのサイズ、およびその他のコマンド ライン引数 (
`WarmupDecayLR`)。

View File

@ -1,50 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Exporting 🤗 Transformers models to ONNX
🤗 Transformers は `transformers.onnx` パッケージを提供します。
設定オブジェクトを利用することで、モデルのチェックポイントをONNXグラフに変換することができます。
詳細は[ガイド](../serialization) を参照してください。
を参照してください。
## ONNX Configurations
以下の3つの抽象クラスを提供しています。
エクスポートしたいモデルアーキテクチャのタイプに応じて、継承すべき3つの抽象クラスを提供します
* エンコーダーベースのモデルは [`~onnx.config.OnnxConfig`] を継承します。
* デコーダーベースのモデルは [`~onnx.config.OnnxConfigWithPast`] を継承します。
* エンコーダー・デコーダーモデルは [`~onnx.config.OnnxSeq2SeqConfigWithPast`] を継承しています。
### OnnxConfig
[[autodoc]] onnx.config.OnnxConfig
### OnnxConfigWithPast
[[autodoc]] onnx.config.OnnxConfigWithPast
### OnnxSeq2SeqConfigWithPast
[[autodoc]] onnx.config.OnnxSeq2SeqConfigWithPast
## ONNX Features
各 ONNX 構成は、次のことを可能にする一連の _機能_ に関連付けられています。
さまざまなタイプのトポロジまたはタスクのモデルをエクスポートします。

View File

@ -40,7 +40,7 @@ pip install transformers[dev]
```bash
pip install -e .[dev]
pip install -e ".[dev]"
```
トランスフォーマーズのリポジトリ内で作業しています。トランスフォーマーズのオプションの依存関係の数が増えたため、すべてを取得できない可能性があります。開発用インストールが失敗した場合、作業しているディープラーニングフレームワークPyTorch、TensorFlow、および/またはFlaxをインストールし、次の手順を実行してください。
@ -53,7 +53,7 @@ pip install transformers[quality]
または編集可能なインストールの場合:
```bash
pip install -e .[quality]
pip install -e ".[quality]"
```
## Tests

View File

@ -47,7 +47,7 @@ ONNX形式にエクスポートされたモデルは、以下のように使用
🤗 TransformersモデルをONNXにエクスポートするには、まず追加の依存関係をインストールしてください
```bash
pip install optimum[exporters]
pip install optimum-onnx
```
すべての利用可能な引数を確認するには、[🤗 Optimumドキュメント](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)を参照してください。または、コマンドラインでヘルプを表示することもできます:
@ -128,64 +128,3 @@ CLIの代わりに、🤗 TransformersモデルをONNXにプログラム的に
### Exporting a model for an unsupported architecture
現在エクスポートできないモデルをサポートするために貢献したい場合、まず[`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)でサポートされているかどうかを確認し、サポートされていない場合は[🤗 Optimumに貢献](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)してください。
### Exporting a model with `transformers.onnx`
<Tip warning={true}>
`transformers.onnx`はもはやメンテナンスされていないため、モデルを上記で説明したように🤗 Optimumでエクスポートしてください。このセクションは将来のバージョンで削除されます。
</Tip>
🤗 TransformersモデルをONNXにエクスポートするには、追加の依存関係をインストールしてください
```bash
pip install transformers[onnx]
```
`transformers.onnx`パッケージをPythonモジュールとして使用して、事前に用意された設定を使用してチェックポイントをエクスポートする方法は以下の通りです
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
この方法は、`--model`引数で定義されたチェックポイントのONNXグラフをエクスポートします。🤗 Hubのいずれかのチェックポイントまたはローカルに保存されたチェックポイントを渡すことができます。エクスポートされた`model.onnx`ファイルは、ONNX標準をサポートする多くのアクセラレータで実行できます。例えば、ONNX Runtimeを使用してモデルを読み込んで実行する方法は以下の通りです
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
必要な出力名(例: `["last_hidden_state"]`は、各モデルのONNX構成を確認することで取得できます。例えば、DistilBERTの場合、次のようになります
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
ハブから純粋なTensorFlowのチェックポイントをプログラム的にエクスポートするプロセスは、以下のように同様です
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
ローカルに保存されたモデルをエクスポートする場合、モデルの重みとトークナイザのファイルを同じディレクトリに保存してください(例: `local-pt-checkpoint`)。その後、`transformers.onnx`パッケージの `--model`引数を希望するディレクトリに向けて設定して、ONNXにエクスポートします
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```

View File

@ -219,7 +219,7 @@ MInDS-14 データセットのサンプリング レートは 8khz です (こ
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -216,7 +216,7 @@ Datasets、🤗 データセット ライブラリから Food-101 データセ
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -360,7 +360,7 @@ You should probably TRAIN this model on a down-stream task to be able to use it
... learning_rate=5e-5,
... per_device_train_batch_size=batch_size,
... per_device_eval_batch_size=batch_size,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -406,8 +406,6 @@
title: Models
- local: main_classes/text_generation
title: 텍스트 생성
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: 최적화
- local: main_classes/output

View File

@ -1,45 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 🤗 Transformers 모델을 ONNX로 내보내기[[exporting--transformers-models-to-onnx]]
🤗 트랜스포머는 `transformers.onnx` 패키지를 제공하며, 이 패키지는 설정 객체를 활용하여 모델 체크포인트를 ONNX 그래프로 변환할 수 있게 합니다.
🤗 Transformers에 대한 자세한 내용은 [이 가이드](../serialization)를 참조하세요.
## ONNX 설정[[onnx-configurations]]
내보내려는(export) 모델 아키텍처의 유형에 따라 상속받아야 할 세 가지 추상 클래스를 제공합니다:
* 인코더 기반 모델은 [`~onnx.config.OnnxConfig`]을 상속받습니다.
* 디코더 기반 모델은 [`~onnx.config.OnnxConfigWithPast`]을 상속받습니다.
* 인코더-디코더 기반 모델은 [`~onnx.config.OnnxSeq2SeqConfigWithPast`]을 상속받습니다.
### OnnxConfig[[transformers.onnx.OnnxConfig]]
[[autodoc]] onnx.config.OnnxConfig
### OnnxConfigWithPast[[transformers.onnx.OnnxConfigWithPast]]
[[autodoc]] onnx.config.OnnxConfigWithPast
### OnnxSeq2SeqConfigWithPast[[OnnxSeq2SeqConfigWithPast]]
[[autodoc]] onnx.config.OnnxSeq2SeqConfigWithPast
## ONNX 특징[[onnx-features]]
각 ONNX 설정은 다양한 유형의 토폴로지나 작업에 대해 모델을 내보낼 수 있게(exporting) 해주는 _features_ 세트와 연관되어 있습니다.

View File

@ -154,7 +154,7 @@ pip install schedulefree
[Schedule Free optimizer (SFO)](https://hf.co/papers/2405.15682)는 기본 옵티마이저의 모멘텀 대신 평균화(averaging)와 보간(interpolation)을 조합하여 사용합니다. 덕분에 기존의 학습률 스케줄러와 달리, SFO는 학습률을 점진적으로 낮추는 절차가 아예 필요 없습니다.
SFO는 RAdam(`schedule_free_radam`), AdamW(`schedule_free_adamw`), SGD(`schedule_free_sgd`) 옵티마이저를 지원합니다. RAdam 스케줄러는 `warmup_steps``warmup_ratio` 설정이 필요하지 않습니다.
SFO는 RAdam(`schedule_free_radam`), AdamW(`schedule_free_adamw`), SGD(`schedule_free_sgd`) 옵티마이저를 지원합니다. RAdam 스케줄러는 `warmup_steps`.
기본적으로 `lr_scheduler_type="constant"`로 설정하는 것을 권장합니다. 다른 `lr_scheduler_type` 값도 동작할 순 있으나, SFO 옵티마이저와 다른 학습률 스케줄을 함께 사용하면 SFO의 의도된 동작과 성능에 영향을 줄 수 있습니다.

View File

@ -37,7 +37,7 @@ pip install transformers[dev]
또는 Transformers 저장소 내에 편집 가능한 설치가 필요합니다:
```bash
pip install -e .[dev]
pip install -e ".[dev]"
```
Transformers의 선택적 종속성 수가 많이 늘어났기 때문에 개발 설치를 실패할 수도 있습니다. 개발 설치가 실패하는 경우, 작업 중인 Deep Learning 프레임워크 (PyTorch, TensorFlow 및/또는 Flax)를 설치하고 다음 명령을 실행하세요.
@ -49,7 +49,7 @@ pip install transformers[quality]
편집 가능한 설치의 경우는 다음 명령을 실행하세요.
```bash
pip install -e .[quality]
pip install -e ".[quality]"
```

View File

@ -47,7 +47,7 @@ ONNX 형식으로 내보낸 모델은 다음과 같이 사용할 수 있습니
🤗 Transformers 모델을 ONNX로 내보내려면 먼저 추가 종속성을 설치하세요:
```bash
pip install optimum[exporters]
pip install optimum-onnx
```
사용 가능한 모든 인수를 확인하려면 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)를 참조하거나 명령줄에서 도움말을 보세요.
@ -123,59 +123,3 @@ CLI 대신에 `optimum.onnxruntime`을 사용하여 프로그래밍 방식으로
### 지원되지 않는 아키텍처의 모델 내보내기 [[exporting-a-model-for-an-unsupported-architecture]]
현재 내보낼 수 없는 모델을 지원하기 위해 기여하려면, 먼저 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)에서 지원되는지 확인한 후 지원되지 않는 경우에는 [🤗 Optimum에 기여](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)하세요.
### `transformers.onnx`를 사용하여 모델 내보내기 [[exporting-a-model-with-transformersonnx]]
<Tip warning={true}>
`tranformers.onnx`는 더 이상 유지되지 않습니다. 위에서 설명한 대로 🤗 Optimum을 사용하여 모델을 내보내세요. 이 섹션은 향후 버전에서 제거될 예정입니다.
</Tip>
🤗 Transformers 모델을 ONNX로 내보내려면 추가 종속성을 설치하세요:
```bash
pip install transformers[onnx]
```
`transformers.onnx` 패키지를 Python 모듈로 사용하여 준비된 구성을 사용하여 체크포인트를 내보냅니다:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
이렇게 하면 `--model` 인수에 정의된 체크포인트의 ONNX 그래프가 내보내집니다. 🤗 Hub에서 제공하는 체크포인트나 로컬에 저장된 체크포인트를 전달할 수 있습니다. 결과로 생성된 `model.onnx` 파일은 ONNX 표준을 지원하는 많은 가속기 중 하나에서 실행할 수 있습니다. 예를 들어, 다음과 같이 ONNX Runtime을 사용하여 모델을 로드하고 실행할 수 있습니다:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
필요한 출력 이름(예: `["last_hidden_state"]`)은 각 모델의 ONNX 구성을 확인하여 얻을 수 있습니다. 예를 들어, DistilBERT의 경우 다음과 같습니다:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
Hub의 TensorFlow 체크포인트에 대해서도 동일한 프로세스가 적용됩니다. 예를 들어, 다음과 같이 순수한 TensorFlow 체크포인트를 내보냅니다:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
로컬에 저장된 모델을 내보내려면 모델의 가중치 파일과 토크나이저 파일을 동일한 디렉토리에 저장한 다음, transformers.onnx 패키지의 --model 인수를 원하는 디렉토리로 지정하여 ONNX로 내보냅니다:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```

View File

@ -221,7 +221,7 @@ MinDS-14 데이터 세트의 샘플링 속도는 8khz이므로(이 정보는 [
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -212,7 +212,7 @@ Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티에
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=16,
... num_train_epochs=3,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -357,7 +357,7 @@ You should probably TRAIN this model on a down-stream task to be able to use it
... learning_rate=5e-5,
... per_device_train_batch_size=batch_size,
... per_device_eval_batch_size=batch_size,
... warmup_ratio=0.1,
... warmup_steps=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",

View File

@ -107,8 +107,6 @@
title: 模型
- local: main_classes/text_generation
title: 文本生成
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: Optimization
- local: main_classes/output

View File

@ -1206,7 +1206,7 @@ DeepSpeed支持`LRRangeTest`、`OneCycle`、`WarmupLR`和`WarmupDecayLR`学习
- 通过 `--lr_scheduler_type constant_with_warmup` 实现 `WarmupLR`
- 通过 `--lr_scheduler_type linear` 实现 `WarmupDecayLR`。这也是 `--lr_scheduler_type` 的默认值,因此,如果不配置调度器,这将是默认配置的调度器。
如果在配置文件中不配置 `scheduler` 条目,[`Trainer`] 将使用 `--lr_scheduler_type`、`--learning_rate` 和 `--warmup_steps` 或 `--warmup_ratio` 的值来配置其🤗 Transformers 版本。
如果在配置文件中不配置 `scheduler` 条目,[`Trainer`] 将使用 `--lr_scheduler_type`、`--learning_rate` 和 `--warmup_steps` 的值来配置其🤗 Transformers 版本。
以下是 `WarmupLR` 的自动配置示例:
@ -1227,7 +1227,7 @@ DeepSpeed支持`LRRangeTest`、`OneCycle`、`WarmupLR`和`WarmupDecayLR`学习
- `warmup_min_lr` 的值为 `0`。
- `warmup_max_lr` 的值为 `--learning_rate`。
- `warmup_num_steps` 的值为 `--warmup_steps`(如果提供)。否则,将使用 `--warmup_ratio` 乘以训练步骤的数量,并四舍五入。
- `warmup_num_steps` 的值为 `--warmup_steps`(如果提供)。
- `total_num_steps` 的值为 `--max_steps` 或者如果没有提供,将在运行时根据环境、数据集的大小和其他命令行参数(对于 `WarmupDecayLR` 来说需要)自动推导。
当然,您可以接管任何或所有的配置值,并自行设置这些值:

View File

@ -1,45 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 导出 🤗 Transformers 模型到 ONNX
🤗 Transformers提供了一个`transformers.onnx`通过利用配置对象您可以将模型checkpoints转换为ONNX图。
有关更多详细信息,请参阅导出 🤗 Transformers 模型的[指南](../serialization)。
## ONNX Configurations
我们提供了三个抽象类,取决于您希望导出的模型架构类型:
* 基于编码器的模型继承 [`~onnx.config.OnnxConfig`]
* 基于解码器的模型继承 [`~onnx.config.OnnxConfigWithPast`]
* 编码器-解码器模型继承 [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
### OnnxConfig
[[autodoc]] onnx.config.OnnxConfig
### OnnxConfigWithPast
[[autodoc]] onnx.config.OnnxConfigWithPast
### OnnxSeq2SeqConfigWithPast
[[autodoc]] onnx.config.OnnxSeq2SeqConfigWithPast
## ONNX Features
每个ONNX配置与一组 _特性_ 相关联,使您能够为不同类型的拓扑结构或任务导出模型。

View File

@ -47,7 +47,7 @@ rendered properly in your Markdown viewer.
要将 🤗 Transformers 模型导出为 ONNX首先需要安装额外的依赖项
```bash
pip install optimum[exporters]
pip install optimum-onnx
```
请参阅 [🤗 Optimum 文档](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli) 以查看所有可用参数,或者在命令行中查看帮助:
@ -117,53 +117,3 @@ optimum-cli export onnx --model local_path --task question-answering distilbert_
### 导出尚未支持的架构的模型
如果你想要为当前无法导出的模型添加支持,请先检查 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview) 是否支持该模型,如果不支持,你可以 [直接为 🤗 Optimum 贡献代码](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)。
### 使用 `transformers.onnx` 导出模型
<Tip warning={true}>
`transformers.onnx` 不再进行维护,请如上所述,使用 🤗 Optimum 导出模型。这部分内容将在未来版本中删除。
</Tip>
要使用 `transformers.onnx` 将 🤗 Transformers 模型导出为 ONNX请安装额外的依赖项
```bash
pip install transformers[onnx]
```
`transformers.onnx` 包作为 Python 模块使用,以使用现成的配置导出检查点:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
以上代码将导出由 `--model` 参数定义的检查点的 ONNX 图。传入任何 🤗 Hub 上或者存储与本地的检查点。生成的 `model.onnx` 文件可以在支持 ONNX 标准的众多加速引擎上运行。例如,使用 ONNX Runtime 加载并运行模型,如下所示:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
可以通过查看每个模型的 ONNX 配置来获取所需的输出名(例如 `["last_hidden_state"]`)。例如,对于 DistilBERT可以用以下代码获取输出名称
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
要导出本地存储的模型,请将模型的权重和分词器文件保存在同一目录中(例如 `local-pt-checkpoint`),然后通过将 `transformers.onnx` 包的 `--model` 参数指向该目录,将其导出为 ONNX
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```

View File

@ -125,15 +125,23 @@ def token_type_ids_mask_function(
# If it's 1 for both query and key/value, we are in an image block
# NOTE: static cache shape goes beyond input seq length, while token_type_ids.shape[1] == input seq length
# Since vmap doesn't support `if statement` we workaround it with `torch.where`
safe_idx = torch.where(kv_idx < token_type_ids.shape[1], kv_idx, 0)
token_type_ids_at_kv_idx = token_type_ids[batch_idx, safe_idx]
safe_q_idx = torch.where(q_idx < token_type_ids.shape[1], q_idx, 0)
safe_kv_idx = torch.where(kv_idx < token_type_ids.shape[1], kv_idx, 0)
token_type_ids_at_q_idx = token_type_ids[batch_idx, safe_q_idx]
token_type_ids_at_q_idx = torch.where(q_idx < token_type_ids.shape[1], token_type_ids_at_q_idx, 0)
token_type_ids_at_kv_idx = token_type_ids[batch_idx, safe_kv_idx]
token_type_ids_at_kv_idx = torch.where(kv_idx < token_type_ids.shape[1], token_type_ids_at_kv_idx, 0)
image_group_ids_at_kv_idx = image_group_ids[batch_idx, safe_idx]
image_group_ids_at_q_idx = image_group_ids[batch_idx, safe_q_idx]
image_group_ids_at_q_idx = torch.where(q_idx < image_group_ids.shape[1], image_group_ids_at_q_idx, -1)
image_group_ids_at_kv_idx = image_group_ids[batch_idx, safe_kv_idx]
image_group_ids_at_kv_idx = torch.where(kv_idx < image_group_ids.shape[1], image_group_ids_at_kv_idx, -1)
is_image_block = (token_type_ids[batch_idx, q_idx] == 1) & (token_type_ids_at_kv_idx == 1)
same_image_block = image_group_ids[batch_idx, q_idx] == image_group_ids_at_kv_idx
is_image_block = (token_type_ids_at_q_idx == 1) & (token_type_ids_at_kv_idx == 1)
same_image_block = image_group_ids_at_q_idx == image_group_ids_at_kv_idx
# This is bidirectional attention whenever we are dealing with image tokens
return is_image_block & same_image_block

View File

@ -41,7 +41,7 @@ python run_audio_classification.py \
--learning_rate 3e-5 \
--max_length_seconds 1 \
--attention_mask False \
--warmup_ratio 0.1 \
--warmup_steps 0.1 \
--num_train_epochs 5 \
--per_device_train_batch_size 32 \
--gradient_accumulation_steps 4 \
@ -82,7 +82,7 @@ python run_audio_classification.py \
--learning_rate 3e-4 \
--max_length_seconds 16 \
--attention_mask False \
--warmup_ratio 0.1 \
--warmup_steps 0.1 \
--num_train_epochs 10 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 4 \

View File

@ -44,7 +44,7 @@ def generate_simple(
"eager": "eager",
"paged_attention": "eager", # TODO: this does not work on AMD docker
"flash_paged": "flash_attention_2", # TODO: this does not work on AMD docker
"kernels-community/flash-attn": "eager",
"kernels-community/flash-attn2": "eager",
}[attn_impl]
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, dtype=torch.bfloat16, attn_implementation=attn_impl)
@ -187,7 +187,7 @@ if __name__ == "__main__":
parser.add_argument("--num-blocks", "-n", type=int, default=None)
parser.add_argument("--max-batch-tokens", "-b", type=int, default=None)
parser.add_argument("--attn", type=str, default="kernels-community/flash-attn", help="Attention implementation")
parser.add_argument("--attn", type=str, default="kernels-community/flash-attn2", help="Attention implementation")
parser.add_argument("--matmul-precision", "-mp", type=str, default="high") # set to "none" to disable
parser.add_argument("--cuda-graph", "-cg", help="Use cuda graphs", type=str, default=None)
parser.add_argument("--compile", action="store_true", help="Compile the model using torch.compile")

View File

@ -31,7 +31,7 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num-blocks", "-n", type=int, default=None)
parser.add_argument("--max-batch-tokens", "-b", type=int, default=None)
parser.add_argument("--attn", type=str, default="kernels-community/flash-attn", help="Attention implementation")
parser.add_argument("--attn", type=str, default="kernels-community/flash-attn2", help="Attention implementation")
parser.add_argument("--samples", type=int, default=500)
parser.add_argument("--max-new-tokens", type=int, default=32)

View File

@ -165,7 +165,7 @@ python run_mae.py \
--lr_scheduler_type cosine \
--weight_decay 0.05 \
--num_train_epochs 800 \
--warmup_ratio 0.05 \
--warmup_steps 0.05 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--logging_strategy steps \

View File

@ -33,9 +33,9 @@ You can open any page of the documentation as a notebook in Colab (there is a bu
| [Quicktour of the library](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb) | A presentation of the various APIs in Transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/quicktour.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/en/transformers_doc/quicktour.ipynb)| |
| [Summary of the tasks](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb) | How to run the models of the Transformers library task by task |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/task_summary.ipynb)| |
| [Preprocessing data](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb) | How to use a tokenizer to preprocess your data |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/preprocessing.ipynb)||
| [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb) | How to use the Trainer to fine-tune a pretrained model |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| |
| [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb) | The differences between the tokenizers algorithm |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb )|
| [Multilingual models](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb) | How to use the multilingual models of the library |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg)](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|
| [Fine-tuning a pretrained model](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb) | How to use the Trainer to fine-tune a pretrained model |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/training.ipynb)|
| [Summary of the tokenizers](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb) | The differences between the tokenizers algorithm |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/tokenizer_summary.ipynb )|
| [Multilingual models](https://github.com/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb) | How to use the multilingual models of the library |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/transformers_doc/en/multilingual.ipynb)|
### PyTorch Examples
@ -43,14 +43,14 @@ You can open any page of the documentation as a notebook in Colab (there is a bu
| Notebook | Description | | | |
|:----------|:-------------|:-------------|:-------------|------:|
| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
| [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb) | How to easily start using transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|
| [Train your tokenizer](https://github.com/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb) | How to train and use your very own tokenizer |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/tokenizer_training.ipynb)|
| [Train your language model](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb) | How to easily start using transformers |[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling_from_scratch.ipynb)|
| [How to fine-tune a model on text classification](https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on any GLUE task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)| |
| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](http://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)|
| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| |
| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| |
| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| |
| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| |
| [How to fine-tune a model on language modeling](https://github.com/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a causal or masked LM task. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)| [![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)|
| [How to fine-tune a model on token classification](https://github.com/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on a token classification task (NER, PoS). | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)|
| [How to fine-tune a model on question answering](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SQUAD. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)|
| [How to fine-tune a model on multiple choice](https://github.com/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on SWAG. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)|
| [How to fine-tune a model on translation](https://github.com/huggingface/notebooks/blob/main/examples/translation.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on WMT. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/translation.ipynb)|[![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/translation.ipynb)|
| [How to fine-tune a model on summarization](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| Show how to preprocess the data and fine-tune a pretrained model on XSUM. | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| |
| [How to train a language model from scratch](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| Highlight all the steps to effectively train Transformer model on custom data | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| |
| [How to generate text](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| How to use different decoding methods for language generation with transformers | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| |
@ -58,16 +58,16 @@ You can open any page of the documentation as a notebook in Colab (there is a bu
#### Computer Vision[[pytorch-cv]]
| Notebook | Description | | |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:|
| [How to fine-tune a model on image classification (Torchvision)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | Show how to preprocess the data using Torchvision and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)|
| [How to fine-tune a model on image classification (Albumentations)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | Show how to preprocess the data using Albumentations and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)|
| [How to fine-tune a model on image classification (Kornia)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | Show how to preprocess the data using Kornia and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)|
| [How to perform zero-shot object detection with OWL-ViT](https://github.com/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb) | Show how to perform zero-shot object detection on images with text queries | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)|
| [How to fine-tune an image captioning model](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | Show how to fine-tune BLIP for image captioning on a custom dataset | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb)|
| [How to build an image similarity system with Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | Show how to build an image similarity system | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb)|
| [How to fine-tune a SegFormer model on semantic segmentation](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | Show how to preprocess the data and fine-tune a pretrained SegFormer model on Semantic Segmentation | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb)|
| [How to fine-tune a VideoMAE model on video classification](https://github.com/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | Show how to preprocess the data and fine-tune a pretrained VideoMAE model on Video Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb)|
| Notebook | Description | | | |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------|------:|
| [How to fine-tune a model on image classification (Torchvision)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | Show how to preprocess the data using Torchvision and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)| [![Open in AMD Dev Cloud](https://oneclickamd.ai/static/amd.svg?v=2)](https://oneclickamd.ai/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)|
| [How to fine-tune a model on image classification (Albumentations)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | Show how to preprocess the data using Albumentations and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb)| |
| [How to fine-tune a model on image classification (Kornia)](https://github.com/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | Show how to preprocess the data using Kornia and fine-tune any pretrained Vision model on Image Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)| |
| [How to perform zero-shot object detection with OWL-ViT](https://github.com/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb) | Show how to perform zero-shot object detection on images with text queries | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb)| |
| [How to fine-tune an image captioning model](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | Show how to fine-tune BLIP for image captioning on a custom dataset | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb)| |
| [How to build an image similarity system with Transformers](https://github.com/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | Show how to build an image similarity system | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/image_similarity.ipynb)| |
| [How to fine-tune a SegFormer model on semantic segmentation](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | Show how to preprocess the data and fine-tune a pretrained SegFormer model on Semantic Segmentation | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/semantic_segmentation.ipynb)| |
| [How to fine-tune a VideoMAE model on video classification](https://github.com/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | Show how to preprocess the data and fine-tune a pretrained VideoMAE model on Video Classification | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/video_classification.ipynb)| |
#### Audio[[pytorch-audio]]

View File

@ -104,7 +104,7 @@ _deps = [
"deepspeed>=0.9.3",
"diffusers",
"dill<0.3.5",
"evaluate>=0.2.0",
"evaluate>=0.4.6",
"faiss-cpu",
"fastapi",
"filelock",
@ -117,6 +117,7 @@ _deps = [
"importlib_metadata",
"ipadic>=1.0.0,<2.0",
"jinja2>=3.1.0",
"jmespath>=1.0.1",
"kenlm",
"kernels>=0.10.2,<0.11",
"librosa",
@ -169,7 +170,7 @@ _deps = [
"tiktoken",
"timm<=1.0.19,!=1.0.18",
"tokenizers>=0.22.0,<=0.23.0",
"torch>=2.2,<2.9",
"torch>=2.2",
"torchaudio",
"torchvision",
"pyctcdecode>=0.4.0",
@ -294,7 +295,7 @@ extras["num2words"] = deps_list("num2words")
extras["sentencepiece"] = deps_list("sentencepiece", "protobuf")
extras["tiktoken"] = deps_list("tiktoken", "blobfile")
extras["mistral-common"] = deps_list("mistral-common[opencv]")
extras["chat_template"] = deps_list("jinja2")
extras["chat_template"] = deps_list("jinja2", "jmespath")
extras["testing"] = (
deps_list(
"pytest",

View File

@ -129,8 +129,6 @@ _import_structure = {
],
"loss": [],
"modelcard": ["ModelCard"],
# Models
"onnx": [],
"pipelines": [
"AudioClassificationPipeline",
"AutomaticSpeechRecognitionPipeline",

View File

@ -51,7 +51,7 @@ def run(
Optional[str],
typer.Option(help="Name of the column to use as input. For multi columns input use 'column1,columns2'"),
] = None,
format: Annotated[FormatEnum, typer.Option(help="Input format to read from", case_sensitive=False)] = "infer", # type: ignore
format: Annotated[FormatEnum, typer.Option(help="Input format to read from", case_sensitive=False)] = "pipe", # type: ignore
device: Annotated[
int, typer.Option(help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU.")
] = -1,

View File

@ -377,14 +377,10 @@ class Serve:
help="Which attention implementation to use; you can run --attn_implementation=flash_attention_2, in which case you must install this manually by running `pip install flash-attn --no-build-isolation`."
),
] = None,
load_in_8bit: Annotated[
bool, typer.Option(help="Whether to use 8 bit precision for the base model - works only with LoRA.")
] = False,
load_in_4bit: Annotated[
bool, typer.Option(help="Whether to use 4 bit precision for the base model - works only with LoRA.")
] = False,
bnb_4bit_quant_type: Annotated[str, typer.Option(help="Quantization type.")] = "nf4",
use_bnb_nested_quant: Annotated[bool, typer.Option(help="Whether to use nested quantization.")] = False,
quantization: Annotated[
Optional[str],
typer.Option(help="Which quantization method to use. choices: 'bnb-4bit', 'bnb-8bit'"),
] = None,
host: Annotated[str, typer.Option(help="Interface the server will listen to.")] = "localhost",
port: Annotated[int, typer.Option(help="Port the server will listen to.")] = 8000,
model_timeout: Annotated[
@ -424,10 +420,7 @@ class Serve:
self.dtype = dtype
self.trust_remote_code = trust_remote_code
self.attn_implementation = attn_implementation
self.load_in_8bit = load_in_8bit
self.load_in_4bit = load_in_4bit
self.bnb_4bit_quant_type = bnb_4bit_quant_type
self.use_bnb_nested_quant = use_bnb_nested_quant
self.quantization = quantization
self.host = host
self.port = port
self.model_timeout = model_timeout
@ -1688,22 +1681,20 @@ class Serve:
Returns:
`Optional[BitsAndBytesConfig]`: The quantization config.
"""
if self.load_in_4bit:
if self.quantization == "bnb-4bit":
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
# For consistency with model weights, we use the same value as `dtype`
bnb_4bit_compute_dtype=self.dtype,
bnb_4bit_quant_type=self.bnb_4bit_quant_type,
bnb_4bit_use_double_quant=self.use_bnb_nested_quant,
bnb_4bit_quant_storage=self.dtype,
)
elif self.load_in_8bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
elif self.quantization == "bnb-8bit":
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
else:
quantization_config = None
if quantization_config is not None:
logger.info(f"Quantization applied with the following config: {quantization_config}")
return quantization_config
def process_model_name(self, model_id: str) -> str:
@ -1750,7 +1741,6 @@ class Serve:
revision=revision,
trust_remote_code=self.trust_remote_code,
)
dtype = self.dtype if self.dtype in ["auto", None] else getattr(torch, self.dtype)
quantization_config = self.get_quantization_config()
@ -1758,19 +1748,15 @@ class Serve:
"revision": revision,
"attn_implementation": self.attn_implementation,
"dtype": dtype,
"device_map": "auto",
"device_map": self.device,
"trust_remote_code": self.trust_remote_code,
"quantization_config": quantization_config,
}
if quantization_config is not None:
model_kwargs["quantization_config"] = quantization_config
config = AutoConfig.from_pretrained(model_id, **model_kwargs)
architecture = getattr(transformers, config.architectures[0])
model = architecture.from_pretrained(model_id, **model_kwargs)
if getattr(model, "hf_device_map", None) is None:
model = model.to(self.device)
has_default_max_length = (
model.generation_config.max_new_tokens is None and model.generation_config.max_length == 20
)

View File

@ -14,7 +14,7 @@ deps = {
"deepspeed": "deepspeed>=0.9.3",
"diffusers": "diffusers",
"dill": "dill<0.3.5",
"evaluate": "evaluate>=0.2.0",
"evaluate": "evaluate>=0.4.6",
"faiss-cpu": "faiss-cpu",
"fastapi": "fastapi",
"filelock": "filelock",
@ -27,6 +27,7 @@ deps = {
"importlib_metadata": "importlib_metadata",
"ipadic": "ipadic>=1.0.0,<2.0",
"jinja2": "jinja2>=3.1.0",
"jmespath": "jmespath>=1.0.1",
"kenlm": "kenlm",
"kernels": "kernels>=0.10.2,<0.11",
"librosa": "librosa",
@ -76,7 +77,7 @@ deps = {
"tiktoken": "tiktoken",
"timm": "timm<=1.0.19,!=1.0.18",
"tokenizers": "tokenizers>=0.22.0,<=0.23.0",
"torch": "torch>=2.2,<2.9",
"torch": "torch>=2.2",
"torchaudio": "torchaudio",
"torchvision": "torchvision",
"pyctcdecode": "pyctcdecode>=0.4.0",

View File

@ -27,7 +27,6 @@ from ...utils.metrics import traced
logger = logging.getLogger("ContinuousBatchingLogger")
@staticmethod
def get_device_and_memory_breakdown() -> tuple[torch.device, int, int, int]:
if torch.cuda.is_available():
device = torch.device("cuda")

View File

@ -442,75 +442,6 @@ def normalize(
return image
def unnormalize(
image: Union[np.ndarray, "torch.Tensor"],
mean: Union[float, Collection[float]],
std: Union[float, Collection[float]],
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Inverse of `normalize`:
image = image * std + mean
Args:
image (`np.ndarray` or `torch.Tensor`):
The image to unnormalize.
mean (`float` or `Collection[float]`):
The mean to use for unnormalization.
std (`float` or `Collection[float]`):
The standard deviation to use for unnormalization.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the output image. If unset, will use the inferred format from the input.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`np.ndarray`: The unnormalized image.
"""
is_torch_input = isinstance(image, torch.Tensor)
if is_torch_input:
image = image.detach().cpu().numpy()
elif not isinstance(image, np.ndarray):
raise TypeError("image must be a numpy array or a torch tensor")
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
if not np.issubdtype(image.dtype, np.floating):
image = image.astype(np.float32)
channel_axis = get_channel_dimension_axis(image, input_data_format=input_data_format)
num_channels = image.shape[channel_axis]
if isinstance(mean, Collection):
if len(mean) != num_channels:
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
else:
mean = [mean] * num_channels
mean = np.array(mean, dtype=image.dtype)
if isinstance(std, Collection):
if len(std) != num_channels:
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
else:
std = [std] * num_channels
std = np.array(std, dtype=image.dtype)
if input_data_format == ChannelDimension.LAST:
image = image * std + mean
else:
shape = [1] * image.ndim
shape[channel_axis] = num_channels
mean = mean.reshape(shape)
std = std.reshape(shape)
image = image * std + mean
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
return image
def center_crop(
image: np.ndarray,
size: tuple[int, int],

View File

@ -314,13 +314,14 @@ def _load_state_dict_into_zero3_model(model_to_load, state_dict):
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
# Parameters of module and children will start with prefix. We can exit early if there are none in this
# state_dict
if is_deepspeed_zero3_enabled() and len([key for key in state_dict if key.startswith(prefix)]) > 0:
if is_deepspeed_zero3_enabled():
import deepspeed
# In sharded models, each shard has only part of the full state_dict, so only gather
# parameters that are in the current state_dict.
named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
params_to_gather = [named_parameters[k] for k in state_dict if k in named_parameters]
params_to_gather = [named_parameters[k] for k in named_parameters if k in state_dict]
if len(params_to_gather) > 0:
# because zero3 puts placeholders in model params, this context
# manager gathers (unpartitions) the params of the current layer, then loads from

View File

@ -628,7 +628,7 @@ def maybe_load_adapters(
**adapter_kwargs,
):
if pretrained_model_name_or_path is None or not is_peft_available():
return None, pretrained_model_name_or_path
return None, pretrained_model_name_or_path, adapter_kwargs
token = download_kwargs.get("token")
@ -651,13 +651,15 @@ def maybe_load_adapters(
_adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)
token_from_adapter_kwargs = adapter_kwargs.pop("token", None)
if _adapter_model_path is None:
_adapter_model_path = find_adapter_config_file(
pretrained_model_name_or_path,
cache_dir=download_kwargs.get("cache_dir"),
force_download=bool(download_kwargs.get("force_download", False)),
proxies=download_kwargs.get("proxies"),
token=token,
token=token or token_from_adapter_kwargs,
revision=download_kwargs.get("revision"),
local_files_only=bool(download_kwargs.get("local_files_only", False)),
subfolder=download_kwargs.get("subfolder", ""),
@ -670,4 +672,4 @@ def maybe_load_adapters(
_adapter_model_path = pretrained_model_name_or_path
pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
return _adapter_model_path, pretrained_model_name_or_path
return _adapter_model_path, pretrained_model_name_or_path, adapter_kwargs

View File

@ -752,8 +752,6 @@ def extract_hyperparameters_from_trainer(trainer):
hyperparameters["optimizer"] = f"Use {optimizer_name} and the args are:\n{optimizer_args}"
hyperparameters["lr_scheduler_type"] = trainer.args.lr_scheduler_type.value
if trainer.args.warmup_ratio != 0.0:
hyperparameters["lr_scheduler_warmup_ratio"] = trainer.args.warmup_ratio
if trainer.args.warmup_steps != 0.0:
hyperparameters["lr_scheduler_warmup_steps"] = trainer.args.warmup_steps
if trainer.args.max_steps != -1:

View File

@ -97,7 +97,7 @@ def _lazy_imports(implementation: Optional[str]):
if flash_attn_varlen_func is None or flash_attn_func is None:
raise ValueError(
f"Could not find the currently requested flash attention implementation at `{implementation}`."
f"Make sure that you request a valid kernel from the hub, e.g. `kernels-community/flash-attn`."
f"Make sure that you request a valid kernel from the hub, e.g. `kernels-community/flash-attn2`."
)
return flash_attn_func, flash_attn_varlen_func, pad_input, unpad_input

View File

@ -2381,7 +2381,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
and not is_torch_npu_available()
):
if attn_implementation.endswith("2"):
applicable_attn_implementation = "kernels-community/flash-attn"
applicable_attn_implementation = "kernels-community/flash-attn2"
else:
applicable_attn_implementation = "kernels-community/vllm-flash-attn3"
@ -4353,7 +4353,7 @@ class PreTrainedModel(nn.Module, EmbeddingAccessMixin, ModuleUtilsMixin, PushToH
if adapter_kwargs is None:
adapter_kwargs = {}
_adapter_model_path, pretrained_model_name_or_path = maybe_load_adapters(
_adapter_model_path, pretrained_model_name_or_path, adapter_kwargs = maybe_load_adapters(
pretrained_model_name_or_path,
download_kwargs_with_commit,
**adapter_kwargs,

View File

@ -15,11 +15,7 @@
# limitations under the License.
"""ALBERT model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig
class AlbertConfig(PreTrainedConfig):
@ -142,21 +138,4 @@ class AlbertConfig(PreTrainedConfig):
self.classifier_dropout_prob = classifier_dropout_prob
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Roberta->Albert
class AlbertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
__all__ = ["AlbertConfig", "AlbertOnnxConfig"]
__all__ = ["AlbertConfig"]

View File

@ -121,7 +121,7 @@ else:
("layoutlmv3", ("LayoutLMv3ImageProcessor", "LayoutLMv3ImageProcessorFast")),
("levit", ("LevitImageProcessor", "LevitImageProcessorFast")),
("lfm2_vl", (None, "Lfm2VlImageProcessorFast")),
("lightglue", ("LightGlueImageProcessor", None)),
("lightglue", ("LightGlueImageProcessor", "LightGlueImageProcessorFast")),
("llama4", ("Llama4ImageProcessor", "Llama4ImageProcessorFast")),
("llava", ("LlavaImageProcessor", "LlavaImageProcessorFast")),
("llava_next", ("LlavaNextImageProcessor", "LlavaNextImageProcessorFast")),

View File

@ -486,13 +486,11 @@ def segment_sum(input_tensor):
return tensor_segsum
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
def apply_mask_to_padding_states(hidden_states, attention_mask):
"""
Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
"""
# NOTE: attention mask is a 2D boolean tensor
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
@ -500,6 +498,9 @@ def apply_mask_to_padding_states(hidden_states, attention_mask):
return hidden_states
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
# Adapted from transformers.models.mamba2.modeling_mamba2.Mamba2Mixer
class BambaMixer(nn.Module):
"""

View File

@ -36,6 +36,7 @@ from transformers.models.llama.modeling_llama import (
)
from transformers.models.mamba2.modeling_mamba2 import (
MambaRMSNormGated,
apply_mask_to_padding_states,
pad_tensor_by_size,
reshape_into_chunks,
segment_sum,
@ -203,17 +204,6 @@ class BambaRMSNormGated(MambaRMSNormGated):
pass
def apply_mask_to_padding_states(hidden_states, attention_mask):
"""
Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
"""
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
return hidden_states
# Adapted from transformers.models.mamba2.modeling_mamba2.Mamba2Mixer
class BambaMixer(nn.Module):
"""

View File

@ -1318,7 +1318,7 @@ class BarkFineModel(BarkPreTrainedModel):
output sound according to specific predefined voice.
"""
)
class BarkModel(BarkPreTrainedModel):
class BarkModel(BarkPreTrainedModel, GenerationMixin):
config: BarkConfig
def __init__(self, config):

View File

@ -15,15 +15,9 @@
"""BART model configuration"""
import warnings
from collections import OrderedDict
from collections.abc import Mapping
from typing import Any
from ... import PreTrainedTokenizer
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import is_torch_available, logging
from ...utils import logging
logger = logging.get_logger(__name__)
@ -180,223 +174,4 @@ class BartConfig(PreTrainedConfig):
)
class BartOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
# TODO: figure this case out.
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
num_encoder_layers, _ = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
]
return common_inputs
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors="pt"))
return common_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
return common_inputs
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BartConfig", "BartOnnxConfig"]
__all__ = ["BartConfig"]

View File

@ -538,12 +538,12 @@ class BartEncoder(BartPreTrainedModel):
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -682,12 +682,12 @@ class BartDecoder(BartPreTrainedModel):
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_tokens = embed_tokens
else:
self.embed_tokens = BartScaledWordEmbedding(
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,

View File

@ -15,13 +15,8 @@
"""BEiT model configuration"""
import warnings
from collections import OrderedDict
from collections.abc import Mapping
from packaging import version
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
@ -209,21 +204,4 @@ class BeitConfig(BackboneConfigMixin, PreTrainedConfig):
self.reshape_hidden_states = reshape_hidden_states
# Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig
class BeitOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
__all__ = ["BeitConfig", "BeitOnnxConfig"]
__all__ = ["BeitConfig"]

View File

@ -15,11 +15,7 @@
# limitations under the License.
"""BERT model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
@ -127,20 +123,4 @@ class BertConfig(PreTrainedConfig):
self.classifier_dropout = classifier_dropout
class BertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
]
)
__all__ = ["BertConfig", "BertOnnxConfig"]
__all__ = ["BertConfig"]

View File

@ -14,11 +14,7 @@
# limitations under the License.
"""BigBird model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
@ -158,19 +154,4 @@ class BigBirdConfig(PreTrainedConfig):
self.classifier_dropout = classifier_dropout
class BigBirdOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
__all__ = ["BigBirdConfig", "BigBirdOnnxConfig"]
__all__ = ["BigBirdConfig"]

View File

@ -14,15 +14,8 @@
# limitations under the License.
"""BigBirdPegasus model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from typing import Any
from ... import PreTrainedTokenizer
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import is_torch_available, logging
from ...utils import logging
logger = logging.get_logger(__name__)
@ -186,224 +179,4 @@ class BigBirdPegasusConfig(PreTrainedConfig):
)
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig with Bart->BigBirdPegasus
class BigBirdPegasusOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
# TODO: figure this case out.
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
num_encoder_layers, _ = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
]
return common_inputs
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors="pt"))
return common_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
return common_inputs
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BigBirdPegasusConfig", "BigBirdPegasusOnnxConfig"]
__all__ = ["BigBirdPegasusConfig"]

View File

@ -14,15 +14,7 @@
# limitations under the License.
"""Blenderbot model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from typing import Any
from ... import PreTrainedTokenizer
from ...configuration_utils import PreTrainedConfig
from ...file_utils import is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
@ -166,227 +158,4 @@ class BlenderbotConfig(PreTrainedConfig):
)
class BlenderbotOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
_, num_decoder_layers = self.num_layers
for i in range(num_decoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
_, num_decoder_layers = self.num_layers
for _ in range(num_decoder_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
past_key_values_length = seqlen
_, num_decoder_layers = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_decoder_layers)
]
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors="pt"))
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.generate_dummy_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._flatten_past_key_values_
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str):
if direction not in ["inputs", "outputs"]:
raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
name = "past_key_values" if direction == "inputs" else "present"
_, num_decoder_layers = self.num_layers
encoder_sequence = "past_encoder_sequence"
decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
for i in range(num_decoder_layers):
inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence}
inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence}
__all__ = ["BlenderbotConfig", "BlenderbotOnnxConfig"]
__all__ = ["BlenderbotConfig"]

View File

@ -14,15 +14,7 @@
# limitations under the License.
"""BlenderbotSmall model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from typing import Any
from ... import PreTrainedTokenizer
from ...configuration_utils import PreTrainedConfig
from ...file_utils import is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
@ -164,224 +156,4 @@ class BlenderbotSmallConfig(PreTrainedConfig):
)
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig with Bart->BlenderbotSmall
class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
elif self.task == "causal-lm":
# TODO: figure this case out.
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
else:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
]
)
return common_inputs
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
common_outputs = super().outputs
else:
common_outputs = super(OnnxConfigWithPast, self).outputs
if self.use_past:
num_encoder_layers, _ = self.num_layers
for i in range(num_encoder_layers):
common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair
)
decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
return common_inputs
def _generate_dummy_inputs_for_causal_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair
)
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
num_encoder_layers, _ = self.num_layers
num_encoder_attention_heads, _ = self.num_attention_heads
past_shape = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
mask_dtype = common_inputs["attention_mask"].dtype
common_inputs["attention_mask"] = torch.cat(
[common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
common_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
]
return common_inputs
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors="pt"))
return common_inputs
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
elif self.task == "causal-lm":
common_inputs = self._generate_dummy_inputs_for_causal_lm(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
else:
common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
return common_inputs
def _flatten_past_key_values_(self, flattened_output, name, idx, t):
if self.task in ["default", "seq2seq-lm"]:
flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
else:
flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
flattened_output, name, idx, t
)
__all__ = ["BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig"]
__all__ = ["BlenderbotSmallConfig"]

View File

@ -14,19 +14,8 @@
# limitations under the License.
"""Bloom configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from typing import TYPE_CHECKING, Any, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
from ...utils import logging
logger = logging.get_logger(__name__)
@ -142,99 +131,4 @@ class BloomConfig(PreTrainedConfig):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
class BloomOnnxConfig(OnnxConfigWithPast):
torch_onnx_minimum_version = version.parse("1.12")
def __init__(
self,
config: PreTrainedConfig,
task: str = "default",
patching_specs: Optional[list[PatchingSpec]] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
if not getattr(self._config, "pad_token_id", None):
# TODO: how to do that better?
self._config.pad_token_id = 0
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
@property
def atol_for_validation(self) -> float:
return 1e-3
def generate_dummy_inputs(
self,
tokenizer: "PreTrainedTokenizer",
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer,
batch_size=batch_size,
seq_length=seq_length,
is_pair=is_pair,
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
head_dim = self._config.hidden_size // self.num_attention_heads
past_key_shape = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
past_value_shape = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
__all__ = ["BloomConfig", "BloomOnnxConfig"]
__all__ = ["BloomConfig"]

View File

@ -15,11 +15,7 @@
# limitations under the License.
"""CamemBERT configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
@ -129,19 +125,4 @@ class CamembertConfig(PreTrainedConfig):
self.classifier_dropout = classifier_dropout
class CamembertOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
__all__ = ["CamembertConfig", "CamembertOnnxConfig"]
__all__ = ["CamembertConfig"]

View File

@ -14,16 +14,7 @@
# limitations under the License.
"""Chinese-CLIP model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from typing import TYPE_CHECKING, Any
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
@ -368,52 +359,4 @@ class ChineseCLIPConfig(PreTrainedConfig):
super().__init__(**kwargs)
class ChineseCLIPOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
]
)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
processor: "ProcessorMixin",
batch_size: int = -1,
seq_length: int = -1,
) -> Mapping[str, Any]:
text_input_dict = super().generate_dummy_inputs(
processor.tokenizer,
batch_size=batch_size,
seq_length=seq_length,
)
image_input_dict = super().generate_dummy_inputs(
processor.image_processor,
batch_size=batch_size,
)
return {**text_input_dict, **image_input_dict}
@property
def default_onnx_opset(self) -> int:
return 14
__all__ = ["ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig"]
__all__ = ["ChineseCLIPConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig"]

View File

@ -14,16 +14,7 @@
# limitations under the License.
"""CLIP model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from typing import TYPE_CHECKING, Any
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
@ -364,52 +355,4 @@ class CLIPConfig(PreTrainedConfig):
super().__init__(**kwargs)
class CLIPOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
]
)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
processor: "ProcessorMixin",
batch_size: int = -1,
seq_length: int = -1,
) -> Mapping[str, Any]:
text_input_dict = super().generate_dummy_inputs(
processor.tokenizer,
batch_size=batch_size,
seq_length=seq_length,
)
image_input_dict = super().generate_dummy_inputs(
processor.image_processor,
batch_size=batch_size,
)
return {**text_input_dict, **image_input_dict}
@property
def default_onnx_opset(self) -> int:
return 14
__all__ = ["CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig"]
__all__ = ["CLIPConfig", "CLIPTextConfig", "CLIPVisionConfig"]

View File

@ -22,11 +22,21 @@ import torch
from torch import nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from ...masking_utils import create_causal_mask
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...utils import ModelOutput, auto_docstring, can_return_tuple, filter_out_non_signature_kwargs, logging, torch_int
from ...processing_utils import Unpack
from ...utils import (
ModelOutput,
TransformersKwargs,
auto_docstring,
can_return_tuple,
filter_out_non_signature_kwargs,
logging,
torch_int,
)
from ...utils.generic import check_model_inputs
from .configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
@ -260,8 +270,7 @@ def eager_attention_forward(
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
output_attentions: bool = True,
**kwargs,
**kwargs: Unpack[TransformersKwargs],
):
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
if attention_mask is not None:
@ -271,8 +280,6 @@ def eager_attention_forward(
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
@ -303,8 +310,7 @@ class CLIPAttention(nn.Module):
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
**kwargs: Unpack[TransformersKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
@ -317,15 +323,6 @@ class CLIPAttention(nn.Module):
queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
# CLIP text model uses both `causal_attention_mask` and `attention_mask`
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
if self.config._attn_implementation == "flash_attention_2":
self.is_causal = causal_attention_mask is not None
else:
if attention_mask is not None and causal_attention_mask is not None:
attention_mask = attention_mask + causal_attention_mask
elif causal_attention_mask is not None:
attention_mask = causal_attention_mask
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
@ -337,17 +334,14 @@ class CLIPAttention(nn.Module):
keys,
values,
attention_mask,
is_causal=self.is_causal,
scaling=self.scale,
dropout=0.0 if not self.training else self.dropout,
output_attentions=output_attentions,
**kwargs,
)
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
@ -379,27 +373,15 @@ class CLIPEncoderLayer(GradientCheckpointingLayer):
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
**kwargs: Unpack[TransformersKwargs],
) -> torch.FloatTensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
**kwargs,
)
hidden_states = residual + hidden_states
@ -408,12 +390,7 @@ class CLIPEncoderLayer(GradientCheckpointingLayer):
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
return hidden_states
@auto_docstring
@ -426,6 +403,10 @@ class CLIPPreTrainedModel(PreTrainedModel):
_supports_flash_attn = True
_supports_flex_attn = True
_supports_attention_backend = True
_can_record_outputs = {
"hidden_states": CLIPEncoderLayer,
"attentions": CLIPAttention,
}
def _init_weights(self, module):
"""Initialize the weights"""
@ -503,9 +484,7 @@ class CLIPEncoder(nn.Module):
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutput:
r"""
Args:
@ -520,53 +499,17 @@ class CLIPEncoder(nn.Module):
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
for encoder_layer in self.layers:
hidden_states = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
**kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
@ -588,14 +531,8 @@ class CLIPTextTransformer(nn.Module):
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if input_ids is None:
raise ValueError("You have to specify input_ids")
@ -604,23 +541,20 @@ class CLIPTextTransformer(nn.Module):
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _create_4d_causal_attention_mask(
input_shape, hidden_states.dtype, device=hidden_states.device
attention_mask = create_causal_mask(
config=self.config,
input_embeds=hidden_states,
attention_mask=attention_mask,
cache_position=torch.arange(hidden_states.shape[1], device=hidden_states.device),
past_key_values=None,
)
# expand attention_mask
if attention_mask is not None and self.config._attn_implementation != "flash_attention_2":
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
kwargs.pop("is_causal", None)
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
is_causal=True,
**kwargs,
)
last_hidden_state = encoder_outputs.last_hidden_state
@ -651,8 +585,6 @@ class CLIPTextTransformer(nn.Module):
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@ -666,7 +598,6 @@ class CLIPTextModel(CLIPPreTrainedModel):
input_modalities = "text"
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
_supports_flash_attn = False # mask creation only accounts for sdpa/eager
def __init__(self, config: CLIPTextConfig):
super().__init__(config)
@ -680,15 +611,14 @@ class CLIPTextModel(CLIPPreTrainedModel):
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@can_return_tuple
@check_model_inputs(tie_last_hidden_states=False)
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
r"""
Examples:
@ -710,8 +640,7 @@ class CLIPTextModel(CLIPPreTrainedModel):
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**kwargs,
)
@ -730,15 +659,9 @@ class CLIPVisionTransformer(nn.Module):
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
@ -747,8 +670,7 @@ class CLIPVisionTransformer(nn.Module):
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**kwargs,
)
last_hidden_state = encoder_outputs.last_hidden_state
@ -758,8 +680,6 @@ class CLIPVisionTransformer(nn.Module):
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@ -783,14 +703,13 @@ class CLIPVisionModel(CLIPPreTrainedModel):
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@can_return_tuple
@check_model_inputs(tie_last_hidden_states=False)
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPooling:
r"""
Example:
@ -815,9 +734,8 @@ class CLIPVisionModel(CLIPPreTrainedModel):
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
**kwargs,
)
@ -825,7 +743,6 @@ class CLIPVisionModel(CLIPPreTrainedModel):
class CLIPModel(CLIPPreTrainedModel):
config: CLIPConfig
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer", "CLIPVisionEmbeddings"]
_supports_flash_attn = False # mask creation only accounts for sdpa/eager
def __init__(self, config: CLIPConfig):
super().__init__(config)
@ -947,9 +864,8 @@ class CLIPModel(CLIPPreTrainedModel):
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
**kwargs: Unpack[TransformersKwargs],
) -> CLIPOutput:
r"""
return_loss (`bool`, *optional*):
@ -977,25 +893,17 @@ class CLIPModel(CLIPPreTrainedModel):
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
**kwargs,
)
text_outputs: BaseModelOutputWithPooling = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**kwargs,
)
image_embeds = vision_outputs.pooler_output
@ -1034,7 +942,6 @@ class CLIPTextModelWithProjection(CLIPPreTrainedModel):
config: CLIPTextConfig
input_modalities = "text"
_supports_flash_attn = False
_no_split_modules = ["CLIPTextEmbeddings", "CLIPEncoderLayer"]
def __init__(self, config: CLIPTextConfig):
@ -1054,15 +961,14 @@ class CLIPTextModelWithProjection(CLIPPreTrainedModel):
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@can_return_tuple
@check_model_inputs(tie_last_hidden_states=False)
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> CLIPTextModelOutput:
r"""
Examples:
@ -1085,8 +991,7 @@ class CLIPTextModelWithProjection(CLIPPreTrainedModel):
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**kwargs,
)
pooled_output = text_outputs.pooler_output
text_embeds = self.text_projection(pooled_output)
@ -1094,8 +999,6 @@ class CLIPTextModelWithProjection(CLIPPreTrainedModel):
return CLIPTextModelOutput(
text_embeds=text_embeds,
last_hidden_state=text_outputs.last_hidden_state,
hidden_states=text_outputs.hidden_states,
attentions=text_outputs.attentions,
)
@ -1119,14 +1022,13 @@ class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@can_return_tuple
@check_model_inputs(tie_last_hidden_states=False)
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
**kwargs: Unpack[TransformersKwargs],
) -> CLIPVisionModelOutput:
r"""
Examples:
@ -1151,9 +1053,8 @@ class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
**kwargs,
)
pooled_output = vision_outputs.pooler_output
image_embeds = self.visual_projection(pooled_output)
@ -1161,8 +1062,6 @@ class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
return CLIPVisionModelOutput(
image_embeds=image_embeds,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
)
@ -1191,14 +1090,13 @@ class CLIPForImageClassification(CLIPPreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
@can_return_tuple
@check_model_inputs(tie_last_hidden_states=False)
@auto_docstring
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**kwargs: Unpack[TransformersKwargs],
) -> ImageClassifierOutput:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
@ -1206,22 +1104,14 @@ class CLIPForImageClassification(CLIPPreTrainedModel):
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
**kwargs,
)
sequence_output = outputs.last_hidden_state
# average pool the patch tokens
sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
# apply classifier
logits = self.classifier(sequence_output)
loss = None
@ -1231,8 +1121,6 @@ class CLIPForImageClassification(CLIPPreTrainedModel):
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -14,13 +14,7 @@
# limitations under the License.
"""CodeGen model configuration"""
from collections import OrderedDict
from collections.abc import Mapping
from typing import Any, Optional
from ... import PreTrainedTokenizer, is_torch_available
from ...configuration_utils import PreTrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
@ -146,85 +140,4 @@ class CodeGenConfig(PreTrainedConfig):
)
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig with GPT2->CodeGen
class CodeGenOnnxConfig(OnnxConfigWithPast):
def __init__(
self,
config: PreTrainedConfig,
task: str = "default",
patching_specs: Optional[list[PatchingSpec]] = None,
use_past: bool = False,
):
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
if not getattr(self._config, "pad_token_id", None):
# TODO: how to do that better?
self._config.pad_token_id = 0
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
else:
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
return common_inputs
@property
def num_layers(self) -> int:
return self._config.n_layer
@property
def num_attention_heads(self) -> int:
return self._config.n_head
def generate_dummy_inputs(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
) -> Mapping[str, Any]:
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair
)
# We need to order the input in the way they appears in the forward()
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
else:
import torch
batch, seqlen = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
past_key_values_length = seqlen + 2
past_shape = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
ordered_inputs["past_key_values"] = [
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
]
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
if self.use_past:
mask_dtype = ordered_inputs["attention_mask"].dtype
ordered_inputs["attention_mask"] = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
)
return ordered_inputs
@property
def default_onnx_opset(self) -> int:
return 13
__all__ = ["CodeGenConfig", "CodeGenOnnxConfig"]
__all__ = ["CodeGenConfig"]

Some files were not shown because too many files have changed in this diff Show More