* Fix sliding window attn mask
* Clearer test
* Apply style fixes
* If Picasso made ascii drawings he would have made this
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
* first attempt at removing
* copies
* last bits in core
* quick fixes
* tests purge
* docs and examples
* some fixes
* more
* another round of cleanups
* fix
* fix a bunch of models
* fix dummy bert
* fix
* fix new model
* fix signature change
* fix
* fix style/copies
* new models
* fix copies didnt find that damn
* test
* this shouldnt have happened during model addition
* Add num_items_in_batch computation to predict_step.
* address comments.
* Fix test cases.
* fixup
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Fix Qwen3-Omni audio_token_id serialization by overriding parent's attribute_map
- Override attribute_map in Qwen3OmniMoeThinkerConfig to prevent inheritance of incorrect mapping
- Parent class maps audio_token_id -> audio_token_index, but implementation uses audio_token_id directly
- Fixes issue where custom audio_token_id values were not preserved during save_pretrained/from_pretrained cycles
Fixes#41191
* embed timeline in docs (test web componentand Iframe)
* test scaling
* test multiple scales
* compensate scale in width
* set correct syle and scale
* remove bottom space created by scale
* add timeline as a separate page
* reformulate docs after review
* initial comment
* test
* initial conversion for outline
* intermediate commit for configuration
* chore:init files for sam2
* adding arbitary undefined config
* check
* add vision
* make style
* init sam2 base model
* Fix imports
* Linting
* chore:sam to sam2 classes
* Linting
* Add sam2 to models.__init__
* chore:match prompt encoder with sam2 code
* chore:prepare kwargs for mask decoder
* Add image/video predictors
* Add CUDA kernel
* Add output classes
* linting
* Add logging info
* tmp commit
* docs for sam2
* enable image processing
* check difference of original SAM2
- difference is the order of ToTensor()
- please see https://pytorch.org/vision/main/_modules/torchvision/transforms/functional.html#resize
* enable promptencoder of sam2
* fix promprencoder
* Confirmed that PromptEncoder is exactly same (Be aware of bfloat16 and float32 difference)
* Confirmed that ImageEncoder is exactly same (Be aware the linting of init)
* Confirmed that MaskDecoder is exactly same (TO DO: lint variable name)
* SamModel is now available (Need more chore for name)
* make fix-copies
* make style
* make CI happy
* Refactor VisionEncoder and PostioinEmbedding
* TO DO : fix the image_embeddings and sparse_embeddings part
* pure image inference done
* reusable features fix and make style
* styling
* refactor memoryattention
* tmp
* tmp
* refactor memoryencoder
TO DO : convert and inference the video pipeline
* TO DO : fix the image_encoder shape
* conversion finish
TO DO: need to check video inference
* make style
* remove video model
* lint
* change
* python utils/check_docstringspy --check_all
* python utils/check_config_attributes.py
* remove copies for sam2promptencoder due to configuration
* change __init__.py
* remove tensorflow version
* fix that to not use direct comparison
* make style
* add missing import
* fix image_embedding_size
* refactor Sam2 Attention
* add fully working video inference (refactoring todo)
* clarify _prepare_memory_conditioned_features
* simplify modeling code, remove unused paths
* use one model
* use auto_docstring
* refactor rope embeddings
* nit
* not using multimask when several points given
* add all sam2.1
* add video tmp
* add Sam2VideoSessionState + fast image proc + video proc
* remove init_states from model
* fix batch inference
* add image integration tests
* uniformize modeling code with other sam models and use modular
* pass vision tests an most model tests
* All tests passing
* add offloading inference state and video to cpu
* fix inference from image embedding and existing mask
* fix multi_boxes mask inference
* Fix batch images + batch boxes inference
* improve processing for image inference
* add support for mask generation pipeline
* add support for get_connected_components post processing in mask generation
* add fast image processor sam, image processor tests and use modular for sam2 image processor
* fix mistake in sam after #39120
* fix init weights
* refactor convert
* add integration tests for video + other improvements
* add needed missing docstrings
* Improve docstrings and
* improve inference speed by avoiding cuda sync
* add test
* skip test for vision_model
* minor fix for vision_model
* fix vision_model by adding sam2model and change the torch dependencies
* remove patch_size
* remove image_embedding_size
* fix patch_size
* fix test
* make style
* Separate hieradet and vision encoder in sam2
* fixup
* review changes part 1
* remove MemoryEncoderConfig and MemoryAttentionConfig
* pass q_stride instead of q_pool module
* add inference on streamed videos
* explicitely process streamed frames
* nit
* Improve docstrings in Sam2Model
* update sam2 modeling with better gestion of inference state and cache, and separate Sam2Model and Sam2VideoModel
* improve video inference api
* change inference_state to inference_session
* use modular for Sam2Model
* fix convert sam2 hf
* modular
* Update src/transformers/models/sam2/video_processing_sam2.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix minor config
* fix attention loading error
* update modeling tests to use hub checkpoints
* Use CI A10 runner for integration tests values + higher tolerance for video integration tests
* PR review part 1
* fix doc
* nit improvements
* enforce one input format for points, labels and boxes
* nit
* last few nits from PR review
* fix style
* fix the input type
* fix docs
* add sam2 model as conversion script
* improve sam2 doc
* add rough necessarry changes
* first working edgetam
* fix issue with object pointers
* Use modular as much as possible
* nit fixes + optimization
* refactor spatial perceiver
* cleanup after merge
* add working edgetam
* improve perceiver resampler code
* simplify/unify rope attention logic
* Improve comments in apply_rotary_pos_emb_2d
* add working tests
* fix test timmwrapper
* add docs
* make fixup
* nits
* fix modular
* fix modular
* PR review part 1
* split apply_rotary_pos_emb_2d
* add granularity to _prepare_memory_conditioned_features
* add dates to doc
* add separate mlp for memory attention
* Fix memory on wrong device
* store processed frames in dict
* update checkpoints in tests
* update dates
---------
Co-authored-by: sangbumchoi <danielsejong55@gmail.com>
Co-authored-by: RUFFY-369 <prakarshkaushik369@gmail.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: Haitham Khedr <haithamkhedr@meta.com>
Co-authored-by: sangbum choi <sangbumchoi@sangbumui-MacBookAir.local>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix param_needs_quantization
* rewrite most hqq
* clean
* fix
* comment
* remove it from exception of safetensors
* start on bnb 4bits
* post-rebase fix
* make bnb4 bit a good citizen
* remove forgotten print
* make bnb 8bits a good citizen
* better hqq
* fix
* clean
* remove state dict from signature
* switch method
* make torchao a good citizen
* fixes
* fix torchao
* add check
* typo
* Fix attention sink implementation in flex attention
* fix dim
* fix
* Remove print
* raisae error when return_lse is False yet s_aux is providewd
* Clean test files for merge
* Update src/transformers/integrations/flex_attention.py
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* force return lse
* Add to doc
---------
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* fix(trainer): Avoid moving model with device_map
When a model is loaded with `device_map="auto"` and is too large to fit on a single GPU, `accelerate` will offload some layers to the CPU or disk. The `Trainer` would previously attempt to move the entire model to the specified device, causing a `RuntimeError` because a model dispatched with `accelerate` hooks cannot be moved.
This commit fixes the issue by adding a check in `_move_model_to_device` to see if the model has an `hf_device_map` attribute. If it does, the device placement is assumed to be handled by `accelerate`, and the `model.to(device)` call is skipped.
A regression test is added to ensure the `Trainer` can be initialized with a model that has a `hf_device_map` that simulates offloading without raising an error.
* Added the logger warning for the move model
---------
Co-authored-by: google-labs-jules[bot] <161369871+google-labs-jules[bot]@users.noreply.github.com>
* fix(trainer): Fix the issue of inaccurate token count in training sessions
During the training process, the initial token count was not saved, leading to inaccurate speed calculation. Now, the initial token count is saved and the increment during the session is calculated, ensuring that the speed metric accurately reflects the performance of the current training session.
* 修复错误
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* halfway through the models
* update test checks
* refactor all
* another one
* use tuples
* more deletions
* solve bad inheritance patterns
* type
* PR ready?
* automatic model class inference from the base class
* vaultgemma
* make fixup
* make fixup
* rebase with gpt2
* make fixup :'(
* gpt2 is special
* XPU supports gpt-oss MXFP4
* Complete MXFP4 UT file and comment information
* Complete MXFP4 UT file and comment information
* Fix code style
* Fix code style
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update CI workflows to use devmi355 branch
* Add workflow trigger for AMD scheduled CI caller
* Remove unnecessary blank line in workflow YAML
* Add trigger for workflow_run on main branch
* Update workflow references from devmi355 to main
* Change runner_scale_set to runner_group in CI config
* Add FA to docker
* Fixed padding for mdernbert
* Fixed logits and hidden states extraction in ModernBertForMultipleChoice
* Added a test for ModernBertForMultipleChoice
* fixes
* More fixes and GREEN CI
* consistency
* moar consistency
* Add FA to docker
* Use caching mechanism for qwen2_5
* Fix a typo in important models list
* Partial fixes for gemma3
* Added a commit ID for FA repo
* Detailled the expectation storage format
* Rebase fix
* Apply style fixes
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
* remove unexpected keys from inputs (they have nothing to do there)
* remove input
* simplify a lot init
* fix
* fix check for non-persistent buffer
* revert because too many old and bad models...
* remove comment
* type hint
* make it a real test
* remove model_to_load -> always use the same model
* typo
* remove legacy offload_folder (we never waste that memory anymore)
* do not change prefix anymore
* change very bad function name
* create adjust method
* remove useless method
* restrict
* BC
* remove unused method
* CI
* remove unused args
* small fix
* fix
* CI
* CI
* avoid too many loops
* fix regex
* cleaner
* typo
* fix
* fix
* Adapt and test huggingface_hub v1.0.0.rc0
* forgot to bump hfh
* bump
* code quality
* code quality
* relax dependency table
* fix has_file
* install hfh 1.0.0.rc0 in circle ci jobs
* repostiryo
* push to hub now returns a commit url
* catch HfHubHTTPError
* check commit on branch
* add it back
* fix ?
* remove deprecated test
* uncomment another test
* trigger
* no proxies
* many more small changes
* fix load PIL Image from httpx
* require 1.0.0.rc0
* fix mocked tests
* fix others
* unchange
* unchange
* args
* Update .circleci/config.yml
* Bump to 1.0.0.rc1
* bump kernels version
* fix deps
* fix mismatched dims for qwen3 next
* propagate changes
* chore: renamed tot_heads to total_sequence_length
* Apply suggestion from @vasqu
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* minor fix to modular qwen3 next file
---------
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* add gguf config mapping for lfm2
* add lfm2 tensor process to unsqueeze conv weights
* adjust values from gguf config to HF config
* add test for lfm2 gguf
* ruff
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* tmp
* fix modular inheritance
* nit
* paligemma 1 doesn't have swa
* use same pattern as in models with hybrid layers
* PR comments
* helium also needs layer_typed (bc it relies on gemma)
* paligemma/gemma3: same mask creation fn in fwd and generate
* propagate changes to helium (gemma-based)
* tmp commit
* slow paligemma tests passing, let's see what breaks
* fix test_left_padding_compatibility
* tmp commit
* tmp commit
* rebase error
* docs
* reduce diff
* like this?
* t5gemma
* better comment
* shorter diff
* exception
* ffs type
* optional
* shorter modular_gemma.py
* helium model actually needs no changes -- the tester is the issue
* t5gemma modular config
* a few more modular; paligemma BC
* fix processor issues?
* rm config exception
* lift warning in gemma
* fix bug in Mamba2 docs
* correct 'because on of' issue
* link to other Mamba2 model types
* github URL is not changed
* update error message in generated files
* [i18n-bn] Add Bengali language README file and update links in existing language files
* Update Bengali README for clarity and consistency in model descriptions
* Fix typos and formatting in English docs
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
* Fix typos and formatting in Chinese docs
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
---------
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
* Add Qwen3Omni
* make fix-copies, import properly
* nit
* fix wrong setup. Why was audio_token_id renamed ?
* upds
* more processing fixes
* yup
* fix more generation tests
* down to 1?
* fix import issue
* style, update check repo
* up
* fix quality at my best
* final quality?
* fix doc building
* FINAL COMMIT: SKIP IMPORTANT BUT FAILING TESTS FOR MERGE
* SKIP THE TEMPLATE ONE
---------
Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
Co-authored-by: Arthur <arthur.zucker@gmail.com>
* fix: bug that made early stop change order of matches
* fix: applied code suggestion
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix: applied code suggestion to modular
* fix: integration tests
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
ENH Enable readline support for chat
This small change enables GNU readline support for the transformers chat
command. This includes, among others:
- advanced navigation and editing: ctrl + a ctrl + e alt + b alt + f
ctrl + k alt + d etc.
- navigate and search history: arrow up/down ctrl + p ctrl + n ctrl + r
- undo: ctrl + _
- clear screen: ctrl + l
Implementation
Although it may look strange, just importing readline is enough to
enable it in Python, see:
https://docs.python.org/3/library/functions.html#input
As readline is not available on some
platforms (https://docs.python.org/3/library/readline.html), the import
is guarded.
Readline should work on Linux, MacOS, and with WSL, I'm not sure about
Windows though. Ideally, someone can give it a try. It's possible that
Windows users would have to install
pyreadline (https://pypi.org/project/pyreadline3/).
* clean start to bert refactor
* some test fixes
* style
* fix last tests
* be strict on positional embeddings, fixup according tests
* cache support
* more cache fixes, new causal API
* simplify masks, fix tests for gen
* flex attn, static cache support, round of fixes
* ?
* this time
* style
* fix flash attention tests, flex attention requires torch 2.7.x to work with multiple classes (as recompile strats force a size call which is wrongly interpreted before)
* roberta
* fixup sdpa remains
* attention split, simplify args and kwargs, better typing
* fix encoder decoder
* fix test
* modular roberta
* albert
* data2vectext, making it modular tomorrow
* modular data2vec text
* tmp disable
* xmod + cache position fixes
* whoops
* electra + markuplm, small fixes
* remove wrong copy
* xlm_roberta + some embedding fixes
* roberta prelayernorm
* RemBert: remove copy, maybe doing it later
* ernie
* fix roberta offloading
* camembert
* copy fixes
* bert generation + fixes on eager
* xlm roberta xl
* bridgetower (text) + seamlessv2 copy fixes
* rocbert + small fixes
* whoops
* small round of fixups
* NOTE: kernels didnt load with an earlier version, some fixup (needs another look bc cross deps)
* the end of the tunnel?
* fixup nllbmoe + style
* we dont need this anymore
* megatron bert is barely used, low prio skip for now
* Modernize bert (template for others)
NOTE: trying to push this through, might be overdue if not in time possible
* check inputs for all others (if checkmarked)
* fix bridgetower
* style
* fix encoder decoder (partially but cause found and fix also, just needs to be done for everything else)
* proper fix for bert to force intermediate dict outputs
* propagate to others
* style
* xlm roberta xl investigation, its the layernorm...
* mobile bert
* revert this, might cause issues with composed models
* review
* style
* setup
* start the purge
* continue the purge
* more and more
* more
* continue the quest: remove loading tf/jax checkpoints
* style
* fix configs
* oups forgot conflict
* continue
* still grinding
* always more
* in tje zone
* never stop
* should fix doc
* fic
* fix
* fix
* fix tests
* still tests
* fix non-deterministic
* style
* remove last rebase issues
* onnx configs
* still on the grind
* always more references
* nearly the end
* could it really be the end?
* small fix
* add converters back
* post rebase
* latest qwen
* add back all converters
* explicitly add functions in converters
* re-add
* Add LFM2-VL support
* add tests
* linting, formatting, misc review changes
* add siglip2 to auto config and instantiate it in lfm2-vl configuration
* decouple image processor from processor
* remove torch import from configuration
* replace | with Optional
* remove layer truncation from modeling file
* fix copies
* update everything
* fix test case to use tiny model
* update the test cases
* fix finally the image processor and add slow tests
* fixup
* typo in docs
* fix tests
* the doc name uses underscore
* address comments from Yoni
* delete tests and unsuffling
* relative import
* do we really handle imports better now?
* fix test
* slow tests
* found a bug in ordering + slow tests
* fix copies
* dont run compile test
---------
Co-authored-by: Anna <anna@liquid.ai>
Co-authored-by: Anna Banaszak <48625325+ankke@users.noreply.github.com>
* fix(trainer): ensure final checkpoint is saved when resuming training
* add test
* make style && slight fix of test
* make style again
* move test code to test_trainer
* remove outdated test file
* Apply style fixes
---------
Co-authored-by: rangehow <rangehow@foxmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* use consistent naming for padding
* no validation on pad size
* add warnings
* fix
* fox copies
* another fix
* fix some tests
* fix more tests
* fix lasts tests
* fix copies
* better docstring
* delete print
* working draft for LongCat
* BC changes to deepseek_v3 for modular
* format
* various modularities
* better tp plan
* better init
* minor changes
* make modular better
* clean up patterns
* Revert a couple of modular commits, because we won't convert in the end
* make things explicit.
* draft test
* toctree, tests and imports
* drop
* woops
* make better things
* update test
* update
* fixes
* style and CI
* convert stuff
* up
* ah, yes, that
* enable gen tests
* fix cache shape in test (sum of 2 things)
* fix tests
* comments
* re-Identitise
* minimize changes
* better defaults
* modular betterment
* fix configuration, add documentation
* fix init
* add integration tests
* add info
* simplify
* update slow tests
* fix
* style
* some additional long tests
* cpu-only long test
* fix last tests?
* urg
* cleaner tests why not
* fix
* improve slow tests, no skip
* style
* don't upcast
* one skip
* finally fix parallelism
* Support training florence2
* update doc and testing model to florence-community
* fix florence-2 test, use head dim 16 instead of 8 for fa2
* skip test_sdpa_can_dispatch_on_flash
* Apply style fixes
---------
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
* Fix#40067 : add UMT5 support in GGUF loader (config, tokenizer, test)
* chore: fix code formatting and linting issues
* refactor: move UMT5 GGUF test to quantization directory and clean up comments
* chore: trigger CI pipeline
* refactor(tests): Move UMT5 Encoder GGUF test to GgufModelTests. This consolidates the new test into the main class for consistency.
* Add regression check to UMT5 encoder GGUF test
Verify encoder output against reference tensor values with appropriate tolerances for stability.
* Update tests/quantization/ggml/test_ggml.py
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
* Update tests/quantization/ggml/test_ggml.py
remove comments
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
---------
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
* Improve module name handling for local custom code
* Use `%lazy` in logging messages
* Revert "Use `%lazy` in logging messages"
This reverts commit 5848755d5805e67177c5218f351c0ac852df9340.
* Add notes for sanitization rule in docstring
* Remove too many underscores
* Update src/transformers/dynamic_module_utils.py
* Update src/transformers/dynamic_module_utils.py
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* move checks to validate steps where possible
* fix csm and other models that override _sample
* ops dia you again
* opsie
* joao review
* Move variable output controls to `prepare_inputs_for_generation`
* fix a bunch of models
* back to basics
* final touches
* Fix for CB attn mask and refactor
* Tests for CB (not all passing)
* Passing tests and a logger fix
* Fixed the KV metrics that were broken when we moved to hybrid alloc
* Fix circular import and style
* Added tests for FA
* Unfolded test to have device expectations
* Fixes for H100
* more fixes for h100
* H100 are good
* Style
* Adding some comments from #40831
* Rename test
* Avoid 1 letter variables
* Dictonnary is only removed during kwargs
* Test for supported sample
* Fix a unvoluntary slice
* Fixes for non-sliced inputs and small example improvments
* Slice inputs is more understandabe
* Style
* Update no split modules in T5Gemma model
* Update no_split_modules also for T5Gemma modular
* Remove model_split_percents from test cases
---------
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* Fix edge case for tokenize (#36277)
* Fix tokenizing dtype for float input cases
* add test for empty input string
* deal empty list of list like [[]]
* add tests for tokenizer for models with input that is not plain text
* created robust token counting by using existing include_num_input_tokens_seen variable and kept bool for backward compatibility and added string also to ensure everything goes well and kept default as is. also robust test cases are created
* some codebase mismatched in my local and remote, commiting to solve it and also solved code quality issue
* ci: retrigger tests
* another attemp to trigger CI for checks
* Fix DeepSpeed mixed precision precedence over Accelerate defaults
Resolves issue where Accelerate would default to bf16 mixed precision
when a DeepSpeed config specifies fp16, causing a ValueError. The fix
ensures DeepSpeed config takes precedence over TrainingArguments defaults
while preserving explicit user settings.
Changes:
- Add override_training_args_from_deepspeed() method to handle config precedence
- Reorder mixed precision environment variable setting in TrainingArguments
- Ensure DeepSpeed fp16/bf16 settings override defaults but not explicit choices
Fixes#39849
* Add tests for DeepSpeed mixed precision precedence fix
- Add TestDeepSpeedMixedPrecisionPrecedence class with 3 focused tests
- Test DeepSpeed fp16/bf16 config overriding TrainingArguments defaults
- Test user explicit settings being preserved over DeepSpeed config
- Test precedence hierarchy: user settings > DeepSpeed config > defaults
- Replace massive 934-line test bloat with concise 50-line test suite
- Tests cover core functionality of PR #39856 mixed precision precedence fix
* Fix module loading for models with dots in names
* quality check
* added test
* wrong import
* Trigger CI rerun after making test model public
* Update src/transformers/dynamic_module_utils.py
* Update tests/utils/test_dynamic_module_utils.py
* Update tests/utils/test_dynamic_module_utils.py
* Move test
* make fixup
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
* CB example: better compare feature
* Cache managers, still issue w/ effective length
* WIP -- fix for effective length
* Renames
* Wroking, need better parity checks, we mind be missing 1 token
* Small fixes
* Fixed wrong attn mask and broke cache into pieces
* Warmup is slowing down things, disabling it
* Cache was too big, fixed
* Simplified index objects
* Added a profile option to the example
* Avoid calls to memory reporing tools
* Restore full attention read indices for better latency
* Adressed some TODOS and style
* Docstrings for cache managers
* Docstrings for Schedulers
* Refactor scheudlers
* [Important] Cache fix for sliding window, check with small sw size
* Updated doc for cache memory compute and cache as a whole
* Moved a todo
* Nits and style
* Fix for when sliding window is smaller than max batch per token
* Paged interface update
* Support for FLash in new API
* Fix example CB
* Fix bug in CB for paged
* Revert example
* Style
* Review compliance
* Style
* Styleeeee
* Removed NO_SLIDING_WINDOW
* Review #2 compliance
* Better art
* Turn cum_seqlens_k in a dict
* Attn mask is now a dict
* Update examples/pytorch/continuous_batching.py
Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
* Adressed McPatate pro review
* Style and fix
---------
Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
* Add EfficientLoFTRImageProcessorFast for GPU-accelerated image processing
* Fix fast processor output format and add comprehensive tests
* Fix trailing whitespace in test file
* Apply ruff formatting to test file
* simplify pair validation logic
* add superglue tests to fast image processor
---------
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
* Fix continue_final_message parameter in apply_chat_template
* after run fixup
* Handle trim in the template
* after fixup
* Update src/transformers/utils/chat_template_utils.py
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* feat: err when unsupported attn impl is set w/ `--continuous_batching`
* refactor: move defaults and support list to CB code
* feat: add action item in error msg
* fix(serve): add default attn implementation
* feat(serve): add log when `attn_implementation` is `None`
* feat: raise Exception when attn_implementation is not supported by CB
* change |= operator to use torch logical or for friendly export to different backends
* change |= operator to use torch logical or for friendly export to different backends in grounding dino model
---------
Co-authored-by: Lewis Marshall <lewism@elderda.co.uk>
* initial commit
* initial setup
* Overiding imageGPT specific functions
* imported is_torch_available and utilized it for importing torch in imageGPT fast
* Created init and ImageGPTFastImageProcessorKwargs
* added return_tensors, data_format, and input_data_format to ImageGPTFastImageProcessorKwargs
* set up arguments and process and _preprocess definitions
* Added arguments to _preprocess
* Added additional optional arguments
* Copied logic over from base imageGPT processor
* Implemented 2nd draft of fast imageGPT preprocess using batch processing
* Implemented 3rd draft of imageGPT fast _preprocessor. Pulled logic from BaseImageProcessorFast
* modified imageGPT test file to properly run fast processor tests
* converts images to torch.float32 from torch.unit8
* fixed a typo with self.image_processor_list in the imagegpt test file
* updated more instances of image_processing = self.image_processing_class in the test file to test fast processor
* standardized normalization to not use image mean or std
* Merged changes from solution2 branch
* Merged changes from solution2 test file
* fixed testing through baseImageGPT processor file
* Fixed check_code_quality test. Removed unncessary list comprehension.
* reorganized imports in image_processing_imagegpt_fast
* formatted image_processing_imagegpt_fast.py
* Added arg documentation
* Added FastImageProcessorKwargs class + Docs for new kwargs
* Reformatted previous
* Added F to normalization
* fixed ruff linting and cleaned up fast processor file
* implemented requested changes
* fixed ruff checks
* fixed formatting issues
* fix(ruff after merging main)
* simplify logic and reuse standard equivalenec tests
---------
Co-authored-by: Ethan Ayaay <ayaayethan@gmail.com>
Co-authored-by: chris <christine05789@gmail.com>
Co-authored-by: Ethan Ayaay <98191976+ayaayethan@users.noreply.github.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
* Squashed previous branch
* unify assisted generate to common decoding method signature
* move checks to validate steps where possible
* fix csm and other models that override _sample
* ops dia you again
* opsie
* joao review
* Fix broken Llama4 accuracy in MoE part
Llama4 accuracy is broken by a bug in
https://github.com/huggingface/transformers/pull/39501 . It forgot to
transpose the router_scores before applying it to routed_in, causing
Llama4 to generate garbage output.
This PR fixes that issue by adding back the transpose() and adding some
comments explaining why the transpose() is needed.
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
* remove comment
---------
Signed-off-by: Po-Han Huang <pohanh@nvidia.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* feat: support request cancellation
* test: add cancellation test
* refactor: use exisitng fn to check req cancellation
* feat(cb): make cancellation thread safe
* refactor(serve): update test to use `requests` instead of `httpx`
* Add instance attribute to DacVectorQuantize for use in DacResidualVectorQuantize.from_latents
* add from_latent tests
* style fix
* Fix style for test_modeling_dac.py
* add seq class for gemma3 text model
* add Gemma3TextForSequenceClassification to modeling file
* After run make fixup
* let's just check
* thiis is why it was crashing, tests were just failing...
* skip it, tested only for seq clf
---------
Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
* fix MetaCLIP 2 wrong link & wrong model names in the documentation and docstrings
* ruff reformatted
* update files generated by modular
* update meta_clip2 to metaclip_2 to match the original
* _supports_flash_attn = False
---------
Co-authored-by: Yung-Sung Chuang <yungsung@meta.com>
* Support MUSA (Moore Threads GPU) backend in transformers
Add accelerate version check, needs accelerate>=0.33.0
* Support TF32 flag for MUSA backend
* fix typo
* fix: continuous batching in `transformers serve`
* fix: short circuit inner gen loop when prepare_next_batch prepared nothing
* docs: add comment explaining FastAPI lifespan
* test: add CB serving tests
* refactor: remove gen cfg max new tokens override bc unnecessary
* docs: add docstring for `ServeCommand::run`
* feat: use new `DecodeStream` API
* Expectations for gemma3
* Fixes for Qwen2_5_VL tests
* Added expectation but underlying pb is still there
* Better handling of mrope section for Qwen2_5_vl
* Fixes for FA2 tests and reformat batch test for Qwen2_5_Omni
* Fix multi-device error in qwen2_5_omni
* Styel and repo-consistency
* Removed inherited test because fix in common
* slow tests fixes
* Style
* Fixes for qwen2_5_vl or omni for FA test
* update make nested image list
* fix make flat list of images
* update type anno
* fix image_processing_smolvlm
* use first image
* add verbose comment
* fix images
* rollback
* fix ut
* Update image_processing_smolvlm.py
* Update image_processing_idefics3.py
* add tests and fix some processors
* fix copies
* fix after rebase
* make the test cover chat templates
* sjip udop, no point in fixing it
* fix after rebase
* fix a few more tests
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Co-authored-by: raushan <raushan@huggingface.co>
* porting not maintained jieba to rjieba
* Fix format
* replaced the line with rjieba instead of removing it
* cut_all is not included as a parameter. cut_all is a seperate function rjieba
* rev
* jieba remove installation
* Trigger tests
* Update tokenization_cpm.py
* Update tokenization_cpm_fast.py
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Add bfloat16 support detection for MPS (Apple Silicon) in is_torch_bf16_gpu_available
bfloat16 seems to have been supported for a few years now in Metal and torch.mps.
Make sure to allow it and not throw on bf16 usage with "Your setup doesn't support bf16/gpu." from TrainingArguments.
* Check bf16 support for MPS using torch method
Actually seems method exists: 5859edf113/torch/_dynamo/device_interface.py (L519)
It simply checks if you are on MacOs 14 or higher.
* Document Metal emulation for bf16 support
Add note about Metal emulation for bf16 support on M1/M2.
* Update bf16 support check for MPS backend
is_bf16_supported() not exposed even if defined on MPSInterface, use same approach as in accelerate pr.
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* first step if flash not installed but you set to use it
* try importing
* now default to using it
* update our tests as well
* wow yesterday I was not awake
* fixup
* style
* lol the fix was very very simple
* `RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/kernels@main#egg=kernels
` for updated dockers
* push review comments
* fix
---------
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* dump ugly option to check again tomorrow
* tiny update
* do not save as nested dict yet!
* fix and add tests
* fix dia audio tokenizers
* rename the flag and fix new model Evolla
* fix style
* address comments
* broken from different PRp
* fix saving layoutLM
* delete print
* delete!
* init swissai model
* AutoModelForCausalLM
* AutoModelForCausalLM mapping
* qk norm and post ln optional
* fix wrong shape of qk norm: megatron uses head_dim
* automodel fixes
* minor fix in forward
* fix rope validation to accept llama3 scaling
* `SwissAIForTokenClassification` support
* Align `SwissAI` to v4.52.4
* Align `SwissAI` to v4.53.1
* Init CUDA xIELU
* `SwissAI*`->`Apertus*`
* ci fix
* check_docstring ignore ApertusConfig
* Licensing and placeholder tests
* Placeholder doc
* XIELU syntax
* `_xielu_python` optimization
* Fix xIELU
* [tmp] `{beta,eps}` persistent=False
until {beta,eps} saved in checkpoint
* Modular `Apertus`
* CUDA xIELU logging
* ci fix
* ci fix
* ci fix
* Update license
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* Update tests/models/apertus/test_modeling_apertus.py
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* `.utils.import_utils.is_torchdynamo_compiling`
* `Apertus` class ordering
* `past_key_value{->s}`, `make fix-copies`
* ci fix
* Remove unused configuration parameters
* `{beta,eps}` saved in checkpoint
* `{beta,eps}` Temporarily on CPU
* Suggestions
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* ci fix
* remove fx_compatible (deprecated)
* remove `rotary_embedding_layer`
As the tests are written for a config without default scaling (which is not the case in Apertus) - besides, rope scaling is tested in other models so it's all safe.
* fully removing `Mask4DTestHard` class
Not needed (for now)
* switch to `dtype` instead of `torch_dtype`
Following this:
https://github.com/huggingface/transformers/pull/39782
* remove unused imports
* remove `cache_implementation="static"`
* +Apertus to `docs/source/en/_toctree.yml` for the doc builder
---------
Co-authored-by: Alexander Hagele <alexanderhagele@gmail.com>
Co-authored-by: dhia680 <garbayad@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Dhia Garbaya <84809366+dhia680@users.noreply.github.com>
* docs(pixtral): Update Pixtral model card to new format
* docs(pixtral): Change cuda into auto for device_map
* docs(pixtral): Apply suggestions from review
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs(pixtral): Apply suggestions from review, changing mistral-community into Mistral AI
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs(pixtral): Apply suggestions from review [!TIP] part
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs(pixtral): Finalize model card with tested code examples
This commit finalizes the update for the Pixtral model card.
* Fix the hfoption by the right one
* @BryanBradfo docs(pixtral): Changing the redirection of bitsandbytes
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs(pixtral): Add of ` to highlight the tokens
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* docs(pixtral): Move image block per final review
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix in modular
* remove leftover print
* fix everything except when it's in assignment
* fix assignment as well
* more general
* better
* better
* better comment
* docstring
* cleaner
* remove base
* doc
* Rework of the CB example
* Further rework of CB example
* Refactor PA cache, slice on tokens, add debug prints -- WIP
* Slice cache -- WIP
* Added a mechanism to check batched outputs in CB script
* Less logging, debug flag for slice, !better reset! -- WIP
* QOL and safety margins
* Refactor and style
* Better saving of cb example
* Fix
* Fixes and QOL
* Mor einformations about metrics
* Further logging
* Style
* Licenses
* Removed some comments
* Add a slice input flag
* Fix in example
* Added back some open-telemetry deps
* Removed some aux function
* Added FA2 option to example script
* Fixed math (all of it)
* Added a simple example
* Renamed core to classes
* Made allocation of attention mask optionnal
* Style
* Relaxed assumptions on cache_config
* Review compliance
* Style
* Styyyle
* Removed default and added args
* Rebase mishapfix
* Propagate args to TorchExportableModuleForDecoderOnlyLM
* Fix the test I wanted fixed in this PR
* Added some AMD expectation related to cache tests
* draft update two models for now
* batch update all VLMs first
* update some more image processors
* update
* fix a few tests
* just make CI green for now
* fix copies
* update once more
* update
* unskip the test
* fix these two
* fix torchcodec audio loading
* maybe
* yay, i fixed torchcodec installation and now can actually test it
* fix copies deepseek
* make sure the metadata is returrned when users request it
* add docs
* update
* fixup
* Update src/transformers/audio_utils.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* Update src/transformers/models/glm4v/video_processing_glm4v.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* update
* what if we set some metadata attr to `None`
* fix CI
* fix one test
* fix 4 channel test
* fix glm timestemps
* rebase gone wrong
* raise warning once
* fixup
* typo
* fix copies
* ifx smolvlm test
* this is why torch's official benchmark was faster, set threads to `0`
* Apply style fixes
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
* initial context_parallel_size support in trainer
* For context parallelism, use AVG instead of SUM to avoid over-accounting tokens
* use parallelism_config.cp_enabled
* add parallelism_config to trainer state
* warn when auto-enabling FSDP
* fix some reviews
* WIP: somewhat matching loss
* Feat: add back nested_gather
* Feat: cleanup
* Fix: raise on non-sdpa attn
* remove context_parallel_size from TrainingArguments
* if we have parallelism_config, we defer to get_state_dict from accelerate
* fix form review
* Feat: add parallelism config support
* Chore: revert some unwanted formatting changes
* Fix: check None
* Check none 2
* Fix: remove duplicate import
* Update src/transformers/trainer.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update src/transformers/training_args.py
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Fin
* require accerelate 1.10.1 and higer
---------
Co-authored-by: S1ro1 <matej.sirovatka@gmail.com>
Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Add `tokenizer_kwargs` arg to text generation pipeline.
* chore: re-run CI
* Rename `tokenizer_kwargs` to `tokenizer_encode_kwargs` for text generation pipeline
* Fix `tokenizer_encode_kwargs` doc string.
* Fix note related to `tokenizer _kwargs` in text generation pipeline
---------
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
* add a test
* tempdir
* fix import issue[
* wow I am tired
* properly init
* i am not super familiar with quantizer api :|
* set to TRUE fro now
* full support
* push current changes
* will clean this later but the imports are a shitshow here
* this correctly saves the block and scales but forward seems broken
* quanitze was not correct
* fix storage
* why were bias even included
* finally!
* style
* fix style
* remove print
* lazy import
* up
* not sure what happens this works now?
* holy molly it was not so far
* okay this seems to work!
* workings!!!
* allow save_pretrained to create PR
* Apply suggestions from code review
* fixup
* add deqyabtze fakse as wek
* working new
* fix
* rm swizzle and unswizzle during saving
* rm print
* Update src/transformers/modeling_utils.py
* fix
* style
---------
Co-authored-by: Marc Sun <marc@huggingface.co>
* Fix label smoothing incompatibility with multi-label classification (#40258)
* Improve label smoothing multi-label check based on reviewer feedback
- Move check from LabelSmoother to Trainer.__init__() for better architecture
- Use model.config.problem_type instead of tensor inference for robustness
- Warn and disable smoothing instead of raising error for better UX
- Update test to verify warning behavior
Renamed wer metric variable to wer_metric to avoid naming conflict
with local variable assignment in compute_metrics function.
Co-authored-by: pranam-gf <pranam@goodfin.com>
Fixed 4 instances of the typo "seperator" → "separator" in variable names:
- 2 instances in src/transformers/models/shieldgemma2/convert_shieldgemma2_weights_orbax_to_hf.py
- 2 instances in src/transformers/models/gemma3/convert_gemma3_weights_orbax_to_hf.py
These typos were in variable names used for parsing path components in weight conversion scripts.
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-authored-by: Claude <noreply@anthropic.com>
* fix to the typings which are unmatched to FA function signature
cumulative_seqlens_q/k -> cu_seq_lens_q/k:
- in the FlashAttentionKwargs in modeling_flash_attention_utils
- in the TransformersKwargs in generic
- in the PagedAttentionArgs in continuous_batching
It is **BC**, because they are created in `ContinuousBatchProcessor.setup_static_tensors:L762`, used in `ContinuousBatchingManager._model_forward:L1233` and destroyed with `ContinuousBatchProcessor`
* format changes by ruff
* Update src/transformers/integrations/flash_paged.py
unused function arg in `PagedAttentionCache.update`
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* revert continuous_batching signiture, which is more meaningful
---------
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* simplify common get/set
* remove some noise
* change some 5 years old modeling utils
* update examples
* fix copies
* revert some changes
* fixes, gah
* format
* move to Mixin
* remove smolvlm specific require grad
* skip
* force defaults
* remodularise some stuff
* remodularise more stuff
* add safety for audio models
* style
* have a correct fallback, you daft donkey
* remove this argh
* change heuristic for audio models
* fixup
* revert
* this works
* this should be explicit
* fix Nth ESM exception
* tryout decoder
* this as well
* revert again
* 🧠
* aaah ESM has two modelings aaah
* broom broom
* format
* wrong copies
* copies
* modular cleanups
* format
* modularities
* wrong mergefix
* seriously
* align with new model
* new model
* update everywhere
* style
* pipelines
* switch it everywhere in tests
* switch it everywhere in docs
* switch in converters everywhere
* update in examples
* update in model docstrings
* style
* warnings
* style
* Update configuration_utils.py
* fix
* Update configuration_utils.py
* fixes and add first test
* add pipeline tests
* Update test_pipelines_common.py
* add config test
* Update test_modeling_common.py
* add new ones
* post rebase
* add new
* post rebase adds
* Update trainer.md
* Update trainer.md
Removed the detail about label_names argument usage from the tip/ warning section
* Update training_args.py
Added the label_names usage clarification in the docstring
* Update trainer.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* handle support for cache classes when num enc layers != num dec layers
* handle overwrites
* one more corner case
* Update src/transformers/generation/utils.py
* Update src/transformers/generation/utils.py
* Apply suggestions from code review
* handle corner case :o
* fix
* cleanup, revert aimv2 fa changes
* fix aria
* i searched a long time but the cross dependency is for the recent models so...
* this was something... evolla
* fix modernbert decoder + make fa test more robust
* nit
* Clean up xcodec addition.
* Clean up config.
* Switch to fixtures test.
* Small stuff.
* Polish XCodec and standardize across codecs.
* Update src/transformers/models/xcodec/modeling_xcodec.py
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* Format and fix test.
* Update tol.
---------
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
* make visualizer rely on create causal mask
* format
* fixup
* fixup
* read token
* read token, duh
* what is up with that token
* small tests?
* adjust
* try with flush
* normalize for ANSI
* buffer shenanigans
* Fix links in Glm4vMoe configuration classes to point to the correct Hugging Face model repository
* run fixup to update links in Glm4vMoe configuration classes to point to the correct Hugging Face model repository
* add basic type hints to import module
* run make fixup
* remove optional
* fixes
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* it was long due!
* use the official kernel
* more permissive
* update the kernel as well
* mmm should it be this?
* up pu
* fixup
* Update test_modeling_gpt_oss.py
* style
* start with 20b
* Update modeling_utils.py
* make sure we update with the module's plan
* use public api
* oups
* update
* fix failing test
* Update src/transformers/integrations/tensor_parallel.py
* Update src/transformers/integrations/tensor_parallel.py
* fix
* make the API more friendly!
* fix tests
* fix styling
---------
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
* init
* add modular
* fixup
* update configuration
* add processing file
* update auto files
* update
* update modular
* green setup_and_quality ci
* it works
* fix some tests
* commit florence2
* update test
* make test cases done - 16 left
* style
* fix few test cases
* fix some tests
* fix init test
* update florence2 vision style
* hope is green
* fix init test
* fix init
* update modular
* refactor vision module
* fix: channel attention use dynamic scale
* update modular
* update
* update attention mask
* update
* fix naming
* Update src/transformers/models/florence2/processing_florence2.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* spatial block works
* more beautiful
* more more beautiful
* merge main
* merge main and fixup
* fix typing hint
* update modeling
* fix eager matches sdpa
* fix style
* fix compile test - all green
* remove florence2 language
* remove Florence2LanguageModel things
* fix style
* update florence2 model
* override prepare encoder_decoder for generation
* add weight conversion script
* rewrite channel attention to use sdpa
* eleminate 1 tranpose op
* support fa2
* fix quality check
* chore: reformat `test_modeling_florence2.py`
* some refactor for processor
* some refactor for processor
* update naming convention and remove BC
* make it pass the test
* fix: correct Embedding Cosine
* update comments and docstring
* support input_embeds
* support input embeds ideally
* fix style
* fix style
* fix style again :D
* add test prcoessor
* refactor processor and add test for processor
* reformat test processor
* make fixup
* fix schema check
* remove image_token
* ensure image token in tokenizer and fix integration tests
* fix processor test
* add more integration tests for large model and rename test_processor to test_processing
* test_assisted_decoding_sample should pass
* update doc and make model work with image text to text pipeline
* docs: add sdpa bagde
* resolve cyril's comments
* fix import torch error
* add helper get_placeholder_mask
* inherit from llava
* florence2 may not _supports_attention_backend because of bart ...
* move florence2 model card to multimodal
* let base model always return_dict
* fix style
* tiny update doc
* set _checkpoint_conversion_mapping = {}
* fix code quality
* support flex and compile graph and move external func to internal func
* remove condition because it always true
* remove window funcs
* move post processor config out
* fix ci
* new intro to trigger test
* remove `kernel_size` argument
---------
Co-authored-by: ducviet00-h2 <viet.d.hoang@h2corporation.jp>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* fix: pass adamw optimizer parameters to StableAdamW
* add test for stable_adamw initialization with trainer arguments
* address copilot suggestion
* fix: update weight_decay handling in stable_adamw kwargs
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Update GPT-NeoX-Japanese model card
* Apply suggestions from code review
* Update gpt_neox_japanese.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Standardize RAG model card
Update rag.md to follow the new Hugging Face model card template:
- Added friendly overview in plain language
- Added pipeline and AutoModel usage examples
- Included quantization example with BitsAndBytesConfig
- Added notes and resources sections
- Removed abstract and FlashAttention badge
* Standardize RAG model card
Update rag.md to follow the new Hugging Face model card template:
- Added friendly overview in plain language
- Added AutoModel usage example
- Included quantization example with BitsAndBytesConfig
* Fix chat CLI GPU loading and request_id validation issues (#40230)
This commit addresses two critical bugs in the transformers chat CLI:
1. **GPU Loading Issue**: Changed default device from "cpu" to "auto" in ChatArguments
- Chat CLI now automatically uses GPU when available instead of defaulting to CPU
- Matches the behavior of the underlying serving infrastructure
2. **Request ID Validation Error**: Added request_id field to TransformersCompletionCreateParamsStreaming schema
- Fixes "Unexpected keys in the request: {'request_id'}" error on second message
- Allows request_id to be properly sent and validated by the server
Both fixes target the exact root causes identified in issue #40230:
- Users will now get GPU acceleration by default when available
- Chat sessions will no longer break after the second message
* Remove unrelated request_id field from TransformersCompletionCreateParamsStreaming
* Update image_processing_perception_lm_fast.py
Allow for a proper override of vision_input_type in hf fast image processor, otherwise we need to resort to manually setting the attribute.
* Update processing_perception_lm.py to match kwargs vision input type
* Update image_processing_perception_lm_fast.py kwargs to signature args
* Skipping pytree registration in case fsdp is enabled
* Beauty changes
* Beauty changes
* Moved the is_fsdp_available function to import utils
* Moved is_fsdp_available to integrations.fsdp
* Skipping pytree registration in case fsdp is enabled
* Beauty changes
* Beauty changes
* Moved the is_fsdp_available function to import utils
* Moved is_fsdp_available to integrations.fsdp
* Added pytree registration inside dynamic cache class
* Making ci/cd lords happy
* Adding a check if DynamicCache is already a leaf
* Adding try/catch for multiple initializations of DynamicCache in test suites
* Moving dynamic cache pytree registration to executorch
* Adding try catch back
* set inputs_embeds to None while generate to avoid audio encoder forward in generation process
* set input_features to none instead
---------
Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
* Add expectation to t5 for rocm 9.4
* Made EncoderDecoderCache compatible with nn.DataParallel
* Fixed t5gemma EncoderDecoderCache
* Added todos in autoformer
* Ruff
* Init is self-contained
* Review compliance
* Fixed kwargs init of EncoderDecoderCache
* add jinja2 as a dependency
* Make jinja2 a core dependency in install_requires
- Add jinja2 to install_requires list in setup.py for automatic installation
- Add jinja2 to runtime version checks in dependency_versions_check.py
- Resolves issue where pip install transformers doesn't install jinja2
🤖 Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <noreply@anthropic.com>
* Make jinja2 a core dependency in install_requires
* Make jinja2 an extra dependency instead of adding a core dep
---------
Co-authored-by: Claude <noreply@anthropic.com>
* remove transpose_for_scores call
Signed-off-by: Peter St. John <pstjohn@nvidia.com>
* fix copied evolla code
Signed-off-by: Peter St. John <pstjohn@nvidia.com>
---------
Signed-off-by: Peter St. John <pstjohn@nvidia.com>
* fix error vocab_size at Qwen2_5_VLForConditionalGeneration loss_function
Signed-off-by: luoxiaoc <xiaochuan.luo@intel.com>
* fix similar errer at qwen2_vl and do make fix-copies
Signed-off-by: luoxiaoc <xiaochuan.luo@intel.com>
* pass in kwargs for loss_func at qwen2_vl and qwen2_5_vl
Signed-off-by: luoxiaoc <xiaochuan.luo@intel.com>
* Apply style fixes
---------
Signed-off-by: luoxiaoc <xiaochuan.luo@intel.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
* Revert "Pin torch to 2.7.1 on CircleCI for now (#40174)"
This reverts commit 31b6e6e1dac0d32f74ec5cd6b3c1868534ccd7b5.
* fix
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* docs: Update LayoutLM model card with standardized format
* Apply suggestions from code review
This commit incorporates all suggestions provided in the recent review. Further changes will be committed separately to address remaining comments.
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Address remaining review comments
* Address few more review comments:
1. remove transformer-cli section
2. put resources after notes
3. change API refs to 2nd level header
* Update layoutlm.md
* Update layoutlm.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* Update check_tokenizers.py
chore(typing): add type hints to check_tokenizers script
- Annotate params/returns for helper functions
- Keep tokenizer instances as `Any` to avoid runtime coupling
- Make `check_LTR_mark` return `bool` explicitly (no behavior change)
* Update check_tokenizers.py
chore(typing): replace Any with PreTrainedTokenizerBase in check_tokenizers.py
- Use transformers.tokenization_utils_base.PreTrainedTokenizerBase for `slow` and `fast` params
- Covers both PreTrainedTokenizer and PreTrainedTokenizerFast
- Exposes required methods (encode, decode, encode_plus, tokenize)
- Removes generic Any typing while staying implementation-agnostic
* [MINOR:TYPO] Update base.py
All other occurrences in the docs use lowercase. (https://github.com/search?q=repo%3Ahuggingface%2Ftransformers%20translation_XX_to_YY&type=code)
Also, using uppercase doesn't work: tested with "translation_EN_to_FR" which doesn't work and instead returns: `ValueError: The task does not provide any default models for options ('EN', 'FR')`
It might be a good idea to allow for uppercase, but that's for another issue.
* [MINOR:TYPO] Update __init__.py
* update
* fix the test for DepthPro
* PR comments
* wait, I didn't delete this in prev commit?
* fix
* better way
---------
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* added dates to the models with a single hf papers link
* added the dates for models with multiple papers
* half of no_papers models done
* rest of no_papers models also done, only the exceptions left
* added copyright disclaimer to sam_hw, cohere, cohere2 + dates
* some more fixes, hf links + typo
* some new models + a rough script
* the script looks robust, changed all paper links to hf
* minor change to handle technical reports along with blogs
* ran make fixup to remove the white space
* refactor
* build: add TvpImageProcessorFast
- Introduced TvpImageProcessorFast to enhance image processing capabilities.
- Updated image processing auto registration to include the new fast processor.
- Modified tests to accommodate both TvpImageProcessor and TvpImageProcessorFast, ensuring comprehensive coverage for both classes.
* fix: TvpImageProcessorFast with new resize method and update processing logic
* build: add TvpImageProcessorFast
* refactor: clean up whitespace and formatting in TvpImageProcessorFast and related tests
- Removed unnecessary whitespace and ensured consistent formatting in image_processing_tvp_fast.py.
- Updated import order in test_image_processing_tvp.py for clarity.
- Minor adjustments to maintain code readability and consistency.
* fix: Enhance TvpFastImageProcessorKwargs and update documentation
- Added TvpFastImageProcessorKwargs class to define valid kwargs for TvpImageProcessorFast.
- Updated the documentation in tvp.md to include the new class and its parameters.
- Refined the image processing logic in image_processing_tvp_fast.py for better handling of padding and resizing.
- Improved test cases in test_image_processing_tvp.py to ensure compatibility with the new processing logic and tensor inputs.
* fix: tested now with python 3.9
* fix: remove tvp kwargs from docs
* simplify processing
* remove import and fix tests
---------
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
* fix: changed is_causal to be False
* fix: Added original cross attention bug
* fix: fixed the way bordel removal is computed
* fix: added missing normalization on coarse features
* test: fixed integration tests
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* initial comment
* test
* initial conversion for outline
* intermediate commit for configuration
* chore:init files for sam2
* adding arbitary undefined config
* check
* add vision
* make style
* init sam2 base model
* Fix imports
* Linting
* chore:sam to sam2 classes
* Linting
* Add sam2 to models.__init__
* chore:match prompt encoder with sam2 code
* chore:prepare kwargs for mask decoder
* Add image/video predictors
* Add CUDA kernel
* Add output classes
* linting
* Add logging info
* tmp commit
* docs for sam2
* enable image processing
* check difference of original SAM2
- difference is the order of ToTensor()
- please see https://pytorch.org/vision/main/_modules/torchvision/transforms/functional.html#resize
* enable promptencoder of sam2
* fix promprencoder
* Confirmed that PromptEncoder is exactly same (Be aware of bfloat16 and float32 difference)
* Confirmed that ImageEncoder is exactly same (Be aware the linting of init)
* Confirmed that MaskDecoder is exactly same (TO DO: lint variable name)
* SamModel is now available (Need more chore for name)
* make fix-copies
* make style
* make CI happy
* Refactor VisionEncoder and PostioinEmbedding
* TO DO : fix the image_embeddings and sparse_embeddings part
* pure image inference done
* reusable features fix and make style
* styling
* refactor memoryattention
* tmp
* tmp
* refactor memoryencoder
TO DO : convert and inference the video pipeline
* TO DO : fix the image_encoder shape
* conversion finish
TO DO: need to check video inference
* make style
* remove video model
* lint
* change
* python utils/check_docstringspy --check_all
* python utils/check_config_attributes.py
* remove copies for sam2promptencoder due to configuration
* change __init__.py
* remove tensorflow version
* fix that to not use direct comparison
* make style
* add missing import
* fix image_embedding_size
* refactor Sam2 Attention
* add fully working video inference (refactoring todo)
* clarify _prepare_memory_conditioned_features
* simplify modeling code, remove unused paths
* use one model
* use auto_docstring
* refactor rope embeddings
* nit
* not using multimask when several points given
* add all sam2.1
* add video tmp
* add Sam2VideoSessionState + fast image proc + video proc
* remove init_states from model
* fix batch inference
* add image integration tests
* uniformize modeling code with other sam models and use modular
* pass vision tests an most model tests
* All tests passing
* add offloading inference state and video to cpu
* fix inference from image embedding and existing mask
* fix multi_boxes mask inference
* Fix batch images + batch boxes inference
* improve processing for image inference
* add support for mask generation pipeline
* add support for get_connected_components post processing in mask generation
* add fast image processor sam, image processor tests and use modular for sam2 image processor
* fix mistake in sam after #39120
* fix init weights
* refactor convert
* add integration tests for video + other improvements
* add needed missing docstrings
* Improve docstrings and
* improve inference speed by avoiding cuda sync
* add test
* skip test for vision_model
* minor fix for vision_model
* fix vision_model by adding sam2model and change the torch dependencies
* remove patch_size
* remove image_embedding_size
* fix patch_size
* fix test
* make style
* Separate hieradet and vision encoder in sam2
* fixup
* review changes part 1
* remove MemoryEncoderConfig and MemoryAttentionConfig
* pass q_stride instead of q_pool module
* add inference on streamed videos
* explicitely process streamed frames
* nit
* Improve docstrings in Sam2Model
* update sam2 modeling with better gestion of inference state and cache, and separate Sam2Model and Sam2VideoModel
* improve video inference api
* change inference_state to inference_session
* use modular for Sam2Model
* fix convert sam2 hf
* modular
* Update src/transformers/models/sam2/video_processing_sam2.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* fix minor config
* fix attention loading error
* update modeling tests to use hub checkpoints
* Use CI A10 runner for integration tests values + higher tolerance for video integration tests
* PR review part 1
* fix doc
* nit improvements
* enforce one input format for points, labels and boxes
* nit
* last few nits from PR review
* fix style
* fix the input type
* fix docs
* add sam2 model as conversion script
* improve sam2 doc
* nit fixes + optimization
* split sam2 and sam2_video in two models
* PR review part 1
* fix None for default slow processor of sam2
* remove unecessary code path in sam2_video
* refactor/simplify RoPE
* replace embedding module list with embedding matrix
* fix tests
* remove kernel
* nit
* use lru_cache for sine_pos_embeddings
* reorder sam2_video methods
* simplify sam2_video
* PR review part 1
* simplify sam2 video a lot
* more simplification
* update integration tests with updated conftest
* more explicit config for hieradet
* do post_processing outside of sam2 video model
* Improve Sam2VideoVisionRotaryEmbedding
* fix tests
* update docs and fix mask2former/oneformer
* avoid unnecessary reshapes/permute
* fix device concatenating points
* small dtype fix
* PR review
* nit
* fix style and finish up doc
* fix style
* fix docstrings
* fix modular
---------
Co-authored-by: RUFFY-369 <prakarshkaushik369@gmail.com>
Co-authored-by: Haitham Khedr <haithamkhedr@meta.com>
Co-authored-by: sangbum choi <sangbumchoi@sangbumui-MacBookAir.local>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* docs: ko: main_classes/optimizer_schedules
* feat: nmt draft
* fix: improve TOC anchors and expressions in optimizer_schedules
- Add TOC anchors to all section headers
- Fix terminology and improve Korean expressions
* fix: Correct translation of 'weight decay fixed' to '가중치 감쇠가 적용된'
Changed '가중치 감쇠가 수정된' to '가중치 감쇠가 적용된' for more accurate translation of 'weight decay fixed' in the context of optimization.
* fix: Use more natural Korean inheritance expression
Changed '에서 상속받는' to '을 상속받는' to follow natural Korean grammar patterns for inheritance terminology.
* fix: Use consistent '미세 조정' translation for 'finetuned models'
Changed '파인튜닝된' to '미세 조정된 모델' to follow the established translation glossary for 'finetuned models' terminology.
* use pil_torch_interpolation_mapping for NEAREST/NEAREST_EXACT
* fix min torchvision version
* use InterpolationMode directly
* remove unused is_torchvision_greater_or_equal,
* nit
* Add initial collated reports script and job definition
* provide commit hash for this run. Also use hash in generated artifact name. Json formatting
* tidy
* Add option to upload collated reports to hf hub
* Add glob pattern for test report folders
* Fix glob
* Use machine_type as path filter instead of glob. Include machine_type in collated report
* fix flash attention
* i got a stroke reading that comment
* change dropout kwarg back to before
* rename _fa3... as it's used for multiple variants and should work as fallback instead
* simplify imports and support kwargs for fa
* style
* fix comments order
* small fix
* skip kernels test (causes cuda illegal memories w/o cleanup), fix fa test in general esp for models like bart
* style
* allow fullgraph by preloading on init
* make globals "private"
* ci pls be happy
* change skip conditions based on backend flag (indicating missing mask interface)
* move globals support to a function to prepare kwargs
* style
* generalize supported kwargs
* small change to doc
* fix
* add comments
* style
* revert prep during generate
* style
* revert weird style changes
* add fa kwarg prep during generate with fixes back
* how did this even happen
* how
* add comment
Currently model_debugging_utils.py would have an unguarded `import torch.distributed.tensor`. This PR ensures that the distributed module is available before including its tensor module.
* Fix PerceptionLM image preprocessing for non-tiled image input.
* Add test for single tile vanilla image processing.
* ruff format
* recover missing test skip
* Simplify test.
* minor test name fix
* Update HuBERT model card according to template
Standardized HuBERT doc, added ASR examples, Flash Attention 2 support, and quantization section.
* Address review comments and changes requested to hubert.md
* Update hubert.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* init
* update
* uupdate
* ruff
* t patch is 2 defalut not 1
* draft
* back
* back1
* update
* config update
* update using glm-41 format
* add self.rope_scaling = config.rope_scaling
* update config
* update
* remove the processor
* update
* fix tests
* update
* for test
* update
* update 2126
* self.rope_scaling is missing in GLM4MOE lets add it
* update
* update
* Update modular_glm4v_moe.py
* change config
* update apply_multimodal_rotary_pos_emb
* format
* update
* Delete 3-rollout_qas_thinking_answers.py
* use right name
* update with place holder
* update
* use right rotary
* Update image_processing_glm4v_fast.py
* rope_config_validation needs to rewrite the entire config file in modular
* update
* changed name
* update
* Update modeling_glm4v_moe.py
* _init_weights shoud be add in Glm4vMoePreTrainedModel
* remove use_qk_norm
* Update modular_glm4v_moe.py
* remove use_qk_norm as it is not use
* fix style
* deprecations are not needed on new models
* fix merge issues
---------
Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Arthur <arthur.zucker@gmail.com>
* all modulars and llama
* apply modular
* bert and gpt2 copies
* fix imports
* do it everywhere
* fix import
* finalize it
* fix
* oups set it in modular
* style
* fix
* Add 1 version to deprecation cycle
* Update modeling_layers.py
* Fix missing video inputs for PerceptionLM.
* Minor fix for vanilla input image (only C,H,W, no tiles dim).
* Revert "Minor fix for vanilla input image (only C,H,W, no tiles dim)."
This reverts commit 181d87b964e59c4118035a9fd4f530c6e551ba9f.
* Add amd expectation in internvl
* Add amd expectation to llama
* Added bnb decorator for a llava test that requires bnb
* Added amd expectation for mistral3
* Style
* Support input_embeds in torch exportable decoders
* Hybrid cache update
* Manually change some callsites
* AI changes the rest of the call sites
* Make either input_ids/inputs_embeds mandatory
* Clean up
* Ruff check --fix
* Fix test
* pr review
* Revert config/generation_config changes
* Ruff check
* chore: update Deformable_Detr model card
* fix: added pipeline, automodel examples and checkpoints link
* Update deformable_detr.md
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
# copilot-instructions.md Guide for Hugging Face Transformers
This copilot-instructions.md file provides guidance for code agents working with this codebase.
## Core Project Structure
-`/src/transformers`: This contains the core source code for the library
-`/models`: Code for individual models. Models inherit from base classes in the root `/src/transformers` directory.
-`/tests`: This contains the core test classes for the library. These are usually inherited rather than directly run.
-`/models`: Tests for individual models. Model tests inherit from common tests in the root `/tests` directory.
-`/docs`: This contains the documentation for the library, including guides, tutorials, and API references.
## Coding Conventions for Hugging Face Transformers
- PRs should be as brief as possible. Bugfix PRs in particular can often be only one or two lines long, and do not need large comments, docstrings or new functions in this case. Aim to minimize the size of the diff.
- When writing tests, they should be added to an existing file. The only exception is for PRs to add a new model, when a new test directory should be created for that model.
- Code style is enforced in the CI. You can install the style tools with `pip install -e .[quality]`. You can then run `make fixup` to apply style and consistency fixes to your code.
## Copying and inheritance
Many models in the codebase have similar code, but it is not shared by inheritance because we want each model file to be self-contained.
We use two mechanisms to keep this code in sync:
- "Copied from" syntax. Functions or entire classes can have a comment at the top like this: `# Copied from transformers.models.llama.modeling_llama.rotate_half` or `# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5`
These comments are actively checked by the style tools, and copies will automatically be updated when the base code is updated. If you need to update a copied function, you should
either update the base function and use `make fixup` to propagate the change to all copies, or simply remove the `# Copied from` comment if that is inappropriate.
- "Modular" files. These files briefly define models by composing them using inheritance from other models. They are not meant to be used directly. Instead, the style tools
automatically generate a complete modeling file, like `modeling_bert.py`, from the modular file like `modular_bert.py`. If a model has a modular file, the modeling file
should never be edited directly! Instead, changes should be made in the modular file, and then you should run `make fixup` to update the modeling file automatically.
When adding new models, you should prefer `modular` style and inherit as many classes as possible from existing models.
## Testing
After making changes, you should usually run `make fixup` to ensure any copies and modular files are updated, and then test all affected models. This includes both
the model you made the changes in and any other models that were updated by `make fixup`. Tests can be run with `pytest tests/models/[name]/test_modeling_[name].py`
If your changes affect code in other classes like tokenizers or processors, you should run those tests instead, like `test_processing_[name].py` or `test_tokenization_[name].py`.
In order to run tests, you may need to install dependencies. You can do this with `pip install -e .[testing]`. You will probably also need to `pip install torch accelerate` if your environment does not already have them.
RUN_SLOW:yes# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access. # This token is created under the bot `hf-transformers-bot`.
name:Self-hosted runner scale set (AMD mi300 scheduled CI caller)
name:Self-hosted runner scale set (AMD mi355 scheduled CI caller)
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
# For example, 1gpu scale set: amd-mi300-ci-1gpu
# 2gpu scale set: amd-mi300-ci-2gpu
# For example, 1gpu : amd-mi355-ci-1gpu
# 2gpu : amd-mi355-ci-2gpu
on:
workflow_run:
workflows:["Self-hosted runner (AMD scheduled CI caller)"]
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).
@ -38,7 +38,6 @@ In particular all "Please explain" questions or objectively very user-specific f
* "How to train T5 on De->En translation?"
## The GitHub Issues
Everything which hints at a bug should be opened as an [issue](https://github.com/huggingface/transformers/issues).
@ -247,7 +246,6 @@ You are not required to read the following guidelines before opening an issue. H
Try not use italics and bold text too much as these often make the text more difficult to read.
12. If you are cross-referencing a specific comment in a given thread or another issue, always link to that specific comment, rather than using the issue link. If you do the latter it could be quite impossible to find which specific comment you're referring to.
To get the link to the specific comment do not copy the url from the location bar of your browser, but instead, click the `...` icon in the upper right corner of the comment and then select "Copy Link".
@ -257,7 +255,6 @@ You are not required to read the following guidelines before opening an issue. H
13. If you are replying to a last comment, it's totally fine to make your reply with just your comment in it. The readers can follow the information flow here.
But if you're replying to a comment that happened some comments back it's always a good practice to quote just the relevant lines you're replying it. The `>` is used for quoting, or you can always use the menu to do so. For example your editor box will look like:
and adjacent modeling libraries (llama.cpp, mlx, ...) which leverage the model definition from `transformers`.
@ -80,7 +80,7 @@ Explore the [Hub](https://huggingface.com/) today to find a model and use Transf
## Installation
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.1+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
Transformers works with Python 3.9+, and [PyTorch](https://pytorch.org/get-started/locally/) 2.1+.
Create and activate a virtual environment with [venv](https://docs.python.org/3/library/venv.html) or [uv](https://docs.astral.sh/uv/), a fast Rust-based Python package and project manager.
@ -147,7 +147,7 @@ chat = [
{"role":"user","content":"Hey, can you tell me any fun things to do in New York?"}
@ -14,7 +14,7 @@ Models uploaded on the Hugging Face Hub come in different formats. We heavily re
models in the [`safetensors`](https://github.com/huggingface/safetensors) format (which is the default prioritized
by the transformers library), as developed specifically to prevent arbitrary code execution on your system.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetensors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
To avoid loading models from unsafe formats(e.g. [pickle](https://docs.python.org/3/library/pickle.html), you should use the `use_safetensors` parameter. If doing so, in the event that no .safetensors file is present, transformers will error when loading the model.
@ -6,7 +6,7 @@ developers, researchers, students, professors, engineers, and anyone else to bui
In this list, we showcase incredibly impactful and novel projects that have pushed the field forward. We celebrate
100 of these projects as we reach the milestone of 100k stars as a community; but we're very open to pull requests
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
adding other projects to the list. If you believe a project should be here and it's not, then please, open a PR
to add it.
## [gpt4all](https://github.com/nomic-ai/gpt4all)
@ -49,7 +49,7 @@ Keywords: LLMs, Large Language Models, Agents, Chains
[LlamaIndex](https://github.com/run-llama/llama_index) is a project that provides a central interface to connect your LLM's with external data. It provides various kinds of indices and retrieval mechanisms to perform different LLM tasks and obtain knowledge-augmented results.
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
Keywords: LLMs, Large Language Models, Data Retrieval, Indices, Knowledge Augmentation
@ -257,7 +257,7 @@ Stable-Dreamfusion is a pytorch implementation of the text-to-3D model Dreamfusi
Keywords: Text-to-3D, Stable Diffusion
## [txtai](https://github.com/neuml/txtai)
[txtai](https://github.com/neuml/txtai) is an open-source platform for semantic search and workflows powered by language models. txtai builds embeddings databases, which are a union of vector indexes and relational databases enabling similarity search with SQL. Semantic workflows connect language models together into unified applications.
Keywords: Semantic search, LLM
@ -309,8 +309,8 @@ Keywords: OCR, LaTeX, Math formula
OpenCLIP is an open source implementation of OpenAI's CLIP.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
The goal of this repository is to enable training models with contrastive image-text supervision, and to investigate their properties such as robustness to distribution shift.
The starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset.
Specifically, a ResNet-50 model trained with this codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
@ -596,7 +596,7 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications
@ -606,4 +606,3 @@ Keywords: BentoML, Framework, Deployment, AI Applications
[LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory) offers a user-friendly fine-tuning framework that incorporates PEFT. The repository includes training(fine-tuning) and inference examples for LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, and other LLMs. A ChatGLM version is also available in [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning).
For uploading results, you need a HuggingFace token with write permissions to the target dataset. You can provide the token in several ways (in order of precedence):
1. Command line: `--token hf_your_token_here`
3. Environment variable: `HF_TOKEN`
### Running Specific Benchmarks
```bash
# Include only specific benchmarks
python run_benchmarks.py --include llama
# Exclude specific benchmarks
python run_benchmarks.py --exclude old_benchmark
## Output Format
Results are saved as JSON files with the following structure:
```json
{
"model_name": "llama_2_7b",
"benchmark_scenarios": [
{
"scenario_name": "eager_variant",
"metadata": {
"timestamp": "2025-01-XX...",
"commit_id": "abc123...",
"hardware_info": {
"gpu_name": "NVIDIA A100",
"gpu_memory_total": 40960,
"cpu_count": 64
},
"config": {
"variant": "eager",
"warmup_iterations": 3,
"measurement_iterations": 5
}
},
"measurements": {
"latency": {
"mean": 2.45,
"median": 2.43,
"std": 0.12,
"min": 2.31,
"max": 2.67,
"p95": 2.61,
"p99": 2.65
},
"time_to_first_token": {
"mean": 0.15,
"std": 0.02
},
"tokens_per_second": {
"mean": 87.3,
"unit": "tokens/sec"
}
},
"gpu_metrics": {
"gpu_utilization_mean": 85.2,
"gpu_memory_used_mean": 12450
}
}
]
}
```
### Debug Mode
```bash
python run_benchmarks.py --log-level DEBUG
```
## Contributing
To add new benchmarks:
1. Create a new file in `benches/`
2. Implement the `ModelBenchmark` interface
3. Add a runner function (`run_<benchmark_name>` or `run_benchmark`)
@ -20,22 +20,21 @@ To generate the documentation, you first have to build it. Several packages are
you can install them with the following command, at the root of the code repository:
```bash
pip install -e ".[docs]"
pip install -e ".[dev]"
```
> [!NOTE]
> This command might fail for some OS that are missing dependencies. Check step 4 in [Create a Pull Request](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#create-a-pull-request) to workaround it.
Then you need to install our special tool that builds the documentation:
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml`& restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
> [!NOTE]
> The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
## Adding a new element to the navigation bar
@ -164,6 +159,9 @@ These classes should be added using our Markdown syntax. Usually as follows:
[[autodoc]] XXXConfig
```
> [!IMPORTANT]
> Always add a blank line after `[[autodoc]]` to ensure it passes the CI/CD checks.
This will include every public method of the configuration that is documented. If for some reason you wish for a method
not to be displayed in the documentation, you can do so by specifying which methods should be in the docs:
1. Start with the `_toctree.yml` file that corresponds to your documentation chapter. This file is essential for rendering the table of contents on the website.
- If the `_toctree.yml` file doesn’t exist for your language, create one by copying the English version and removing unrelated sections.
- If the `_toctree.yml` file doesn't exist for your language, create one by copying the English version and removing unrelated sections.
- Ensure it is placed in the `docs/source/LANG-ID/` directory.
Here’s an example structure for the `_toctree.yml` file:
تسمح لك فئات `AutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`AutoModelForSequenceClassification.from_pretrained`]:
```py
@ -143,25 +141,4 @@
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `AutoModelFor` لتحميل مثيلات مُدربة مسبقًا من النماذج. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، تعرف على كيفية استخدام المحلل اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
</pt>
<tf>
أخيرًا، تسمح لك فئات `TFAutoModelFor` بتحميل نموذج مُدرب مسبقًا لمهمة معينة (راجع [هنا](model_doc/auto) للحصول على قائمة كاملة بالمهام المتاحة). على سبيل المثال، قم بتحميل نموذج لتصنيف التسلسل باستخدام [`TFAutoModelForSequenceClassification.from_pretrained`]:
بشكل عام، نوصي باستخدام فئة `AutoTokenizer` وفئة `TFAutoModelFor` لتحميل نسخ لنماذج مُدربة مسبقًا. سيساعدك هذا في تحميل البنية الصحيحة في كل مرة. في البرنامج التعليمي التالي، ستتعرف على كيفية استخدام المُجزّئ اللغوي ومعالج الصور ومستخرج الميزات والمعالج الذي تم تحميله حديثًا لمعالجة مجموعة بيانات للضبط الدقيق.
بشكل افتراضي، تقوم فئات Hugging Face مثل [`TextGenerationPipeline`] أو [`AutoModelForCausalLM`] بتحميل النموذج في دقة "float32". وهذا يعني أنه يحتاج إلى 4 بايتات (32 بت) لكل معلمة، لذا فإن نموذج "8B" بحجم 8 مليار معلمة سيحتاج إلى ~32 جيجابايت من الذاكرة. ومع ذلك، يمكن أن يكون هذا مضيعة للموارد! يتم تدريب معظم نماذج اللغة الحديثة في دقة "bfloat16"، والتي تستخدم فقط 2 بايت لكل معلمة. إذا كان عتادك يدعم ذلك (Nvidia 30xx/Axxx أو أحدث)، فيمكنك تحميل النموذج في دقة "bfloat16"، باستخدام معامل "torch_dtype" كما فعلنا أعلاه.
بشكل افتراضي، تقوم فئات Hugging Face مثل [`TextGenerationPipeline`] أو [`AutoModelForCausalLM`] بتحميل النموذج في دقة "float32". وهذا يعني أنه يحتاج إلى 4 بايتات (32 بت) لكل معلمة، لذا فإن نموذج "8B" بحجم 8 مليار معلمة سيحتاج إلى ~32 جيجابايت من الذاكرة. ومع ذلك، يمكن أن يكون هذا مضيعة للموارد! يتم تدريب معظم نماذج اللغة الحديثة في دقة "bfloat16"، والتي تستخدم فقط 2 بايت لكل معلمة. إذا كان عتادك يدعم ذلك (Nvidia 30xx/Axxx أو أحدث)، فيمكنك تحميل النموذج في دقة "bfloat16"، باستخدام معامل "dtype" كما فعلنا أعلاه.
ومن الممكن أيضًا النزول إلى أقل من 16 بت باستخدام "التكميم"، وهي طريقة لضغط أوزان النموذج بطريقة تفقد بعض المعلومات. يسمح هذا بضغط كل معلمة إلى 8 بتات أو 4 بتات أو حتى أقل. لاحظ أنه، خاصة في 4 بتات، قد تتأثر جودة ناتج النموذج سلبًا، ولكن غالبًا ما يكون هذا مقايضة تستحق القيام بها لتناسب نموذج محادثة أكبر وأكثر قدرة في الذاكرة. دعنا كيف يمكننا تطبيق ذلك باستخدام مكتبة `bitsandbytes`:
الخطوة التالية هي إنشاء [نموذج](main_classes/models). النموذج - ويُشار إليه أحيانًا باسم البنية - يُحدد وظيفة كل طبقة والعمليات الحسابية المُنفذة. تُستخدم خصائص مثل `num_hidden_layers` من التكوين لتحديد هذه البنية. تشترك جميع النماذج في فئة أساسية واحدة هي [`PreTrainedModel`] وبعض الوظائف المُشتركة مثل غيير حجم مُدخلات الكلمات وتقليص رؤوس آلية الانتباه الذاتي. بالإضافة إلى ذلك، فإن جميع النماذج هي فئات فرعية إما من [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html)، [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) أو [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) . هذا يعني النماذج متوافقة مع كل استخدام لإطار العمل الخاص بها.
<frameworkcontent>
<pt>
قم بتحميل خصائص التكوين المخصصة الخاصة بك في النموذج:
هذا ينشئ نموذجًا بقيم عشوائية بدلاً من الأوزان المُدربة مسبقًا. لن يكون هذا النموذج مفيدًا حتى يتم تدريبه. تُعد عملية التدريب مكلفة وتستغرق وقتًا طويلاً. من الأفضل بشكل عام استخدام نموذج مُدرب مسبقًا للحصول على نتائج أفضل بشكل أسرع، مع استخدام جزء بسيط فقط من الموارد المطلوبة للتدريب.
قم بإنشاء نموذج مُدرب مسبقًا باستخدام [`~TFPreTrainedModel.from_pretrained`]:
عندما تقوم بتحميل الأوزان المُدربة مسبقًا،يتم تحميل إعدادات النموذج الافتراضي تلقائيًا إذا كان النموذج من مكتبة 🤗 Transformers. ومع ذلك، يمكنك أيضًا استبدال - بعض أو كل - إعدادات النموذج الافتراضية بإعداداتك الخاصة:
في هذه المرحلة، لديك نموذج DistilBERT الأساسي الذي يخرج *حالات الكامنة*. تُمرَّر هذه الحالات الكامنة كمدخلات لرأس النموذج لإنتاج المخرجات النهائية. توفر مكتبة 🤗 Transformers رأس نموذج مختلف لكل مهمة طالما أن النموذج يدعم المهمة (أي لا يمكنك استخدام DistilBERT لمهمة تسلسل إلى تسلسل مثل الترجمة).
<frameworkcontent>
<pt>
على سبيل المثال، [`DistilBertForSequenceClassification`] هو نموذج DistilBERT الأساس مزودًا برأس تصنيف تسلسلي. يُشكّل رأس التصنيف التسلسلي طبقة خطية فوق المخرجات المجمعة.
على سبيل المثال، [`TFDistilBertForSequenceClassification`] هو نموذج DistilBERT الأساسي برأس تصنيف تسلسل. رأس التصنيف التسلسلي هو طبقة خطية أعلى المخرجات المجمعة.
أعد استخدام هذا نقطة التحقق لمهمة أخرى عن طريق التبديل إلى رأس نموذج مختلف. لمهمة الإجابة على الأسئلة، ستستخدم رأس النموذج [`TFDistilBertForQuestionAnswering`]. رأس الإجابة على الأسئلة مشابه لرأس التصنيف التسلسلي باستثناء أنه طبقة خطية أعلى حالات الإخراج المخفية.
> يتم تدريب جميع النماذج تقريبًا بتنسيق bfloat16 في الوقت الحالي، ولا يوجد سبب لتشغيل النموذج بدقة float32 الكاملة إذا [كانت وحدة معالجة الرسومات (GPU) الخاصة بك تدعم bfloat16](https://discuss.pytorch.org/t/bfloat16-native-support/117155/5). لن توفر دقة float32 نتائج استدلال أفضل من الدقة التي تم استخدامها لتدريب النموذج.
إذا لم تكن متأكدًا من تنسيق تخزين أوزان النموذج على Hub، فيمكنك دائمًا الاطلاع على تهيئة نقطة التفتيش في `"torch_dtype"`، على سبيل المثال [هنا](https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/config.json#L21). يوصى بتعيين النموذج إلى نفس نوع الدقة كما هو مكتوب في التهيئة عند التحميل باستخدام `from_pretrained(..., torch_dtype=...)` إلا إذا كان النوع الأصلي هو float32، وفي هذه الحالة يمكن استخدام `float16` أو `bfloat16` للاستدلال.
إذا لم تكن متأكدًا من تنسيق تخزين أوزان النموذج على Hub، فيمكنك دائمًا الاطلاع على تهيئة نقطة التفتيش في `"dtype"`، على سبيل المثال [هنا](https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/6fdf2e60f86ff2481f2241aaee459f85b5b0bbb9/config.json#L21). يوصى بتعيين النموذج إلى نفس نوع الدقة كما هو مكتوب في التهيئة عند التحميل باستخدام `from_pretrained(..., dtype=...)` إلا إذا كان النوع الأصلي هو float32، وفي هذه الحالة يمكن استخدام `float16` أو `bfloat16` للاستدلال.
دعونا نحدد وظيفة `flush(...)` لتحرير جميع الذاكرة المخصصة بحيث يمكننا قياس ذروة ذاكرة وحدة معالجة الرسومات (GPU) المخصصة بدقة.
تحويل نقطة التحقق لإطار عمل آخر أمر سهل. تأكد من تثبيت PyTorch و TensorFlow (راجع [هنا](installation) لتعليمات التثبيت)، ثم ابحث عن النموذج الملائم لمهمتك في الإطار الآخر.
<frameworkcontent>
<pt>
حدد `from_tf=True` لتحويل نقطة تحقق من TensorFlow إلى PyTorch:
مشاركة نموذجك على Hub مر بسيط للغاية كل ما عليك هو إضافة معلمة أو استدعاء رد إضافي. كما تذكر من درس [التدريب الدقيق](training)، فإن فئة [`TrainingArguments`] هي المكان الذي تحدد فيه المعلمات الفائقة وخيارات التدريب الإضافية. تشمل إحدى خيارات التدريب هذه القدرة على دفع النموذج مباشرة إلى المنصة Hub. قم بتعيين `push_to_hub=True` في [`TrainingArguments`]:
@ -127,29 +99,6 @@ pip install huggingface_hub
```py
>>>trainer.push_to_hub()
```
</pt>
<tf>
شارك نموذجًا على Hub باستخدام [`PushToHubCallback`]. في دالة [`PushToHubCallback`], أضف:
- دليل إخراج لنموذجك.
- مُجزّئ اللغوي.
-`hub_model_id`، والذي هو اسم مستخدم Hub واسم النموذج الخاص بك.
* انقر فوق الزر **Edit model card** في مستودع نموذجك.
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).
الق نظرة على بطاقة [DistilBert](https://huggingface.co/distilbert/distilbert-base-uncased) للحصول على مثال جيد على نوع المعلومات التي يجب أن تتضمنها بطاقة النموذج. للحصول على مزيد من التفاصيل حول الخيارات الأخرى التي يمكنك التحكم فيها في ملف `README.md` مثل البصمة الكربونية للنموذج أو أمثلة الأداة، راجع الوثائق [هنا](https://huggingface.co/docs/hub/models-cards).
| [كيفية ضبط نموذج بدقة على التلخيص](https://github.com/huggingface/notebooks/blob/main/examples/summarization.ipynb)| يوضح كيفية معالجة البيانات مسبقًا وضبط نموذج مُدرَّب مسبقًا بدقة على XSUM. | [](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/notebooks/blob/main/examples/summarization.ipynb)|
| [كيفية تدريب نموذج لغة من البداية](https://github.com/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| تسليط الضوء على جميع الخطوات لتدريب نموذج Transformer بشكل فعال على بيانات مخصصة | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/01_how_to_train.ipynb)|
| [كيفية إنشاء نص](https://github.com/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| كيفية استخدام أساليب فك التشفير المختلفة لإنشاء اللغة باستخدام المحولات | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/02_how_to_generate.ipynb)|
| [كيفية إنشاء نص (مع قيود)](https://github.com/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| كيفية توجيه إنشاء اللغة باستخدام القيود التي يوفرها المستخدم | [](https://colab.research.google.com/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)| [](https://studiolab.sagemaker.aws/import/github/huggingface/blog/blob/main/notebooks/53_constrained_beam_search.ipynb)|
| [Reformer](https://github.com/huggingface/blog/blob/main/notebooks/03_reformer.ipynb)| كيف يدفع Reformer حدود النمذجة اللغوية | [](https://colab.research.google.com/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)| [](https://studiolab.sagemaker.aws/import/github/patrickvonplaten/blog/blob/main/notebooks/03_reformer.ipynb)|
إذا كان النموذج كبيرًا جدًا بالنسبة لوحدة معالجة الرسومات (GPU) واحدة، وأنت تستخدم PyTorch، فيمكنك تعيين `torch_dtype='float16'` لتمكين الاستدلال بدقة FP16. عادةً ما لا يتسبب ذلك في حدوث انخفاضات كبيرة في الأداء، ولكن تأكد من تقييمه على نماذجك!
إذا كان النموذج كبيرًا جدًا بالنسبة لوحدة معالجة الرسومات (GPU) واحدة، وأنت تستخدم PyTorch، فيمكنك تعيين `dtype='float16'` لتمكين الاستدلال بدقة FP16. عادةً ما لا يتسبب ذلك في حدوث انخفاضات كبيرة في الأداء، ولكن تأكد من تقييمه على نماذجك!
بدلاً من ذلك، يمكنك تعيين `device_map="auto"` لتحديد كيفية تحميل مخزنات النموذج وتخزينها تلقائيًا. يتطلب استخدام معامل `device_map` مكتبه 🤗 [Accelerate](https://huggingface.co/docs/accelerate):
استخدم [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `AutoClass` في القسم التالي):
```py
@ -132,18 +120,6 @@ label: NEGATIVE, with score: 0.5309
استخدم [`TFAutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `TFAutoClass` في القسم التالي):
حدد النموذج والمعالج في [`pipeline`]. الآن يمكنك تطبيق `classifier` على النص الفرنسي:
@ -192,8 +168,6 @@ label: NEGATIVE, with score: 0.5309
يمكن المجزئ أيضًا قبول قائمة من المدخلات، ويقوم بـ "حشو" و"تقصير" النص لإرجاع كدفعة بطول موحد:
<frameworkcontent>
<pt>
```py
>>>pt_batch=tokenizer(
@ -204,20 +178,6 @@ label: NEGATIVE, with score: 0.5309
...return_tensors="pt",
...)
```
</pt>
<tf>
```py
>>>tf_batch=tokenizer(
...["We are very happy to show you the 🤗 Transformers library.","We hope you don't hate it."],
...padding=True,
...truncation=True,
...max_length=512,
...return_tensors="tf",
...)
```
</tf>
</frameworkcontent>
<Tip>
@ -227,8 +187,6 @@ label: NEGATIVE, with score: 0.5309
### AutoModel
<frameworkcontent>
<pt>
تقدم مكتبة 🤗 Transformers طريقة بسيطة وموحدة لتحميل نماذج مدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`AutoModel`] كما لو كنت تقوم بتحميل [`AutoTokenizer`]. الفرق الوحيد هو اختيار فئة [`AutoModel`] المناسبة للمهمة. بالنسبة لتصنيف النص (أو التسلسل)، يجب عليك تحميل [`AutoModelForSequenceClassification`]:
```py
@ -264,39 +222,6 @@ label: NEGATIVE, with score: 0.5309
يوفر 🤗 Transformers طريقة بسيطة وموحدة لتحميل مثيلات مُدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`TFAutoModel`] مثل تحميل [`AutoTokenizer`]. والفرق الوحيد هو تحديد [`TFAutoModel`] الصحيح للمهمة. للتصنيف النصي (أو التسلسلي)، يجب تحميل [`TFAutoModelForSequenceClassification`]:
من الميزات الرائعة في 🤗 Transformers القدرة على حفظ نموذج وإعادة تحميله كنموذج PyTorch أو TensorFlow. يمكن أن يحول معامل `from_pt` أو `from_tf` النموذج من إطار عمل إلى آخر:
- يقوم النص البرمجي التوضيحي بتنزيل مجموعة بيانات ومعالجتها مسبقًا من مكتبة 🤗 [Datasets](https://huggingface.co/docs/datasets/).
- ثم يقوم النص البرمجي بضبط نموذج بيانات دقيق باستخدام Keras على بنية تدعم الملخص.
- يوضح المثال التالي كيفية ضبط نموذج [T5-small](https://huggingface.co/google-t5/t5-small) على مجموعة بيانات [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail).
- يتطلب نموذج T5 ماعمل `source_prefix` إضافية بسبب الطريقة التي تم تدريبه بها. يتيح هذا المطالبة لـ T5 معرفة أن هذه مهمة التلخيص.
## تشغيل نص برمجي على وحدة معالجة الدقة الفائقة (TPU)
<frameworkcontent>
<pt>
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. يدعم PyTorch وحدات معالجة الدقة الفائقة (TPUs) مع [XLA](https://www.tensorflow.org/xla) مجمع الدقة الفائقة للتعلم العميق (راجع [هنا](https://github.com/pytorch/xla/blob/master/README.md) لمزيد من التفاصيل). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتشغيل نص `xla_spawn.py` البرمجي واستخدم معامل `num_cores` لتعيين عدد وحدات معالجة الدقة الفائقة (TPU) التي تريد استخدامها.
تُعد وحدات معالجة الدقة الفائقة (TPUs) مصممة خصيصًا لتسريع الأداء. تستخدم نصوص TensorFlow البرمجية استراتيجية [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) للتدريب على وحدات معالجة الدقة الفائقة (TPUs). لاستخدام وحدة معالجة الدقة الفائقة (TPU)، قم بتمرير اسم مورد وحدة معالجة الدقة الفائقة (TPU) إلى حجة `tpu`.
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأفضل أن تقوم بـ *الحشو الديناميكي* للجمل إلى الطول الأطول في الدفعة أثناء التجميع، بدلاً من حشو كامل المجموعة من البيانات إلى الطول الأقصى.
<frameworkcontent>
<pt>
استخدم رمز نهاية التسلسل كرمز للحشو، وحدد `mlm_probability` لحجب الرموز بشكل عشوائي عند كل تكرار للبيانات:
حول مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>>tf_train_set=model.prepare_tf_dataset(
...lm_dataset["train"],
...shuffle=True,
...batch_size=16,
...collate_fn=data_collator,
...)
>>>tf_test_set=model.prepare_tf_dataset(
...lm_dataset["test"],
...shuffle=False,
...batch_size=16,
...collate_fn=data_collator,
...)
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة الافتراضية، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>>importtensorflowastf
>>>model.compile(optimizer=optimizer)# لا يوجد حجة للخسارة!
```
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومجمّع البيانات في [`~transformers.PushToHubCallback`]:
أخيراً، أنت جاهز لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العصور، والتعليقات الخاصة بك لتدريب النموذج:
بمجرد اكتمال التدريب، يتم تحميل نموذجك تلقائيًا إلى Hub حتى يتمكن الجميع من استخدامه!
</tf>
</frameworkcontent>
<Tip>
@ -365,8 +280,6 @@ Perplexity: 49.61
[{'generated_text':"Somatic hypermutation allows the immune system to be able to effectively reverse the damage caused by an infection.\n\n\nThe damage caused by an infection is caused by the immune system's ability to perform its own self-correcting tasks."}]
["Somatic hypermutation allows the immune system to react to drugs with the ability to adapt to a different environmental situation. In other words, a system of 'hypermutation' can help the immune system to adapt to a different environmental situation or in some cases even a single life. In contrast, researchers at the University of Massachusetts-Boston have found that 'hypermutation' is much stronger in mice than in humans but can be found in humans, and that it's not completely unknown to the immune system. A study on how the immune system"]
```
</pt>
<tf>
قم بتقسيم النص وإرجاع `input_ids` كـ TensorFlow tensors:
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء الملخص. للمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والبارامترات للتحكم في التوليد، راجع صفحة [استراتيجيات توليد النص](../generation_strategies).
['Somatic hypermutation allows the immune system to detect the presence of other viruses as they become more prevalent. Therefore, researchers have identified a high proportion of human viruses. The proportion of virus-associated viruses in our study increases with age. Therefore, we propose a simple algorithm to detect the presence of these new viruses in our samples as a sign of improved immunity. A first study based on this algorithm, which will be published in Science on Friday, aims to show that this finding could translate into the development of a better vaccine that is more effective for']
الآن، قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForLanguageModeling`]. من الأكثر كفاءة أن تقوم بـ *الحشو الديناميكي* ليصل طولها إلى أطول جملة في الدفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الطول الأقصى.
<frameworkcontent>
<pt>
استخدم رمز نهاية التسلسل كرمز الحشو وحدد `mlm_probability` لحجب الرموز عشوائياً كل مرة تكرر فيها البيانات:
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>>tf_train_set=model.prepare_tf_dataset(
...lm_dataset["train"],
...shuffle=True,
...batch_size=16,
...collate_fn=data_collator,
...)
>>>tf_test_set=model.prepare_tf_dataset(
...lm_dataset["test"],
...shuffle=False,
...batch_size=16,
...collate_fn=data_collator,
...)
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers لديها جميعها دالة خسارة افتراضية ذات صلة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة ما لم تكن تريد ذلك:
```py
>>>importtensorflowastf
>>>model.compile(optimizer=optimizer)# لا توجد حجة للخسارة!
```
يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالج الرموز في [`~transformers.PushToHubCallback`]:
أخيراً، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد العصور، والتعليقات الخاصة بك لتعديل النموذج:
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers تحتوي على دالة خسارة مناسبة للمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>>model.compile(optimizer=optimizer)# لا توجد وسيطة خسارة!
```
الخطوتان الأخيرتان قبل بدء التدريب هما: حساب دقة التنبؤات، وتوفير طريقة لرفع النموذج إلى Hub. ويمكن تحقيق ذلك باستخدام [استدعاءات Keras](../main_classes/keras_callbacks)
مرر دالتك `compute_metrics` إلى [`~transformers.KerasMetricCallback`]:
أخيرًا، أنت جاهز لبدء تدريب نموذجك! استدعِ[`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب والاستدعاءات لضبط النموذج:
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DefaultDataCollator`]. بخلاف مجمّعات البيانات الأخرى في 🤗 Transformers، لا يطبق [`DefaultDataCollator`] أي معالجة مسبقة إضافية مثل الحشو.
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>>tf_train_set=model.prepare_tf_dataset(
...tokenized_squad["train"],
...shuffle=True,
...batch_size=16,
...collate_fn=data_collator,
...)
>>>tf_validation_set=model.prepare_tf_dataset(
...tokenized_squad["test"],
...shuffle=False,
...batch_size=16,
...collate_fn=data_collator,
...)
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
```py
>>>importtensorflowastf
>>>model.compile(optimizer=optimizer)
```
آخر شيء يجب إعداده قبل بدء التدريب هو توفير طريقة لدفع نموذجك إلى Hub. يمكن القيام بذلك عن طريق تحديد مكان دفع نموذجك ومعالجك المعجمي في [`~transformers.PushToHubCallback`]:
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة، وعدد العهود، ومعاودة الاتصال الخاصة بك لضبط النموذج:
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`]. الأكثر كفاءة هو استخدام الحشو الديناميكي لجعل الجمل متساوية في الطول داخل كل دفعة، بدلًا من حشو كامل البيانات إلى الحد الأقصى للطول.
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>>tf_train_set=model.prepare_tf_dataset(
...tokenized_imdb["train"],
...shuffle=True,
...batch_size=16,
...collate_fn=data_collator,
...)
>>>tf_validation_set=model.prepare_tf_dataset(
...tokenized_imdb["test"],
...shuffle=False,
...batch_size=16,
...collate_fn=data_collator,
...)
```
قم بتهيئة النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة ما لم ترغب في ذلك:
```py
>>>importtensorflowastf
>>>model.compile(optimizer=optimizer)# No loss argument!
```
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب الدقة من التوقعات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
قم بتمرير دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
أخيرًا، أنت مستعد لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق، وعدد الحقبات، واستدعاءاتك لضبط النموذج:
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorForSeq2Seq`]. الأكثر كفاءة *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء عملية التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الحد الأقصى للطول.
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>>tf_train_set=model.prepare_tf_dataset(
...tokenized_billsum["train"],
...shuffle=True,
...batch_size=16,
...collate_fn=data_collator,
...)
>>>tf_test_set=model.prepare_tf_dataset(
...tokenized_billsum["test"],
...shuffle=False,
...batch_size=16,
...collate_fn=data_collator,
...)
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة افتراضيًا، لذلك لست بحاجة إلى تحديد واحدة ما لم تكن ترغب في ذلك:
```py
>>>importtensorflowastf
>>>model.compile(optimizer=optimizer)# No loss argument!
```
آخر شيئين يجب إعدادهما قبل بدء التدريب هما حساب درجة ROUGE من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم كلاهما باستخدام [استدعاءات Keras](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب واستدعاءاتك لضبط النموذج:
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it'sthemostaggressiveactionontacklingtheclimatecrisisinamericanhistory.itwillasktheultra-wealthyandcorporationstopaytheirfairshare.'
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء التلخيص. لمزيد من التفاصيل حول استراتيجيات توليد النص المختلفة والمعلمات للتحكم في التوليد، راجع واجهة برمجة تطبيقات [توليد النص](../main_classes/text_generation).
'the inflation reduction act lowers prescription drug costs, health care costs, and energy costs. it'sthemostaggressiveactionontacklingtheclimatecrisisinamericanhistory.itwillasktheultra-wealthyandcorporationstopaytheirfairshare.'
الآن قم بإنشاء دفعة من الأمثلة باستخدام [`DataCollatorWithPadding`].من الأفضل استخدام *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بالكامل إلى الطول الأقصى.
قم بتحويل مجموعات بياناتك إلى تنسيق `tf.data.Dataset` مع [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>>tf_train_set=model.prepare_tf_dataset(
...tokenized_wnut["train"],
...shuffle=True,
...batch_size=16,
...collate_fn=data_collator,
...)
>>>tf_validation_set=model.prepare_tf_dataset(
...tokenized_wnut["validation"],
...shuffle=False,
...batch_size=16,
...collate_fn=data_collator,
...)
```
هيّئ النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن نماذج Transformers تتضمن دالة خسارة افتراضية مرتبطة بالمهمة، لذلك لا تحتاج إلى تحديد واحدة إلا إذا كنت ترغب في ذلك:
```py
>>>importtensorflowastf
>>>model.compile(optimizer=optimizer)# No loss argument!
```
آخر أمرين يجب إعدادهما قبل بدء التدريب هو حساب درجات seqeval من التنبؤات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم ذلك باستخدام [Keras callbacks](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
أخيرًا، أنت جاهز الآن لبدء تدريب نموذجك! قم باستدعاء [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع بيانات التدريب والتحقق، وعدد الحقبات، وcallbacks لتعديل النموذج:
الآن أنشئ دفعة من الأمثلة باستخدام [`DataCollatorForSeq2Seq`]. من الأكثر كفاءة *الحشو الديناميكي* للجمل إلى أطول طول في دفعة أثناء التجميع، بدلاً من حشو مجموعة البيانات بأكملها إلى الحد الأقصى للطول.
حوّل مجموعات البيانات الخاصة بك إلى تنسيق `tf.data.Dataset` باستخدام [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
```py
>>>tf_train_set=model.prepare_tf_dataset(
...tokenized_books["train"],
...shuffle=True,
...batch_size=16,
...collate_fn=data_collator,
...)
>>>tf_test_set=model.prepare_tf_dataset(
...tokenized_books["test"],
...shuffle=False,
...batch_size=16,
...collate_fn=data_collator,
...)
```
قم بتكوين النموذج للتدريب باستخدام [`compile`](https://keras.io/api/models/model_training_apis/#compile-method). لاحظ أن جميع نماذج Transformers تحتوي على دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذلك لا تحتاج إلى تحديد واحدة إلا إذا كنت ترغب في ذلك:
```py
>>>importtensorflowastf
>>>model.compile(optimizer=optimizer)# No loss argument!
```
آخر شيئين يجب إعدادهما قبل بدء التدريب هما حساب مقياس SacreBLEU من التوقعات، وتوفير طريقة لدفع نموذجك إلى Hub. يتم كلاهما باستخدام [استدعاءات Keras](../main_classes/keras_callbacks).
مرر دالة `compute_metrics` الخاصة بك إلى [`~transformers.KerasMetricCallback`]:
أخيرًا، أنت جاهز لبدء تدريب نموذجك! اتصل بـ [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) مع مجموعات بيانات التدريب والتحقق من الصحة وعدد الحقب واستدعاءاتك لضبط النموذج:
استخدم طريقة [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] لإنشاء الترجمة. لمزيد من التفاصيل حول استراتيجيات توليد النصوص المختلفة والمعلمات للتحكم في التوليد، تحقق من واجهة برمجة تطبيقات [توليد النصوص](../main_classes/text_generation).
[TensorFlow Lite](https://www.tensorflow.org/lite/guide) هو إطار عمل خفيف الوزن لنشر نماذج التعلم الآلي على الأجهزة المحدودة الموارد، مثل الهواتف المحمولة، والأنظمة المدمجة، وأجهزة إنترنت الأشياء (IoT). تم تصميم TFLite لتشغيل النماذج وتحسينها بكفاءة على هذه الأجهزة ذات الطاقة الحاسوبية والذاكرة واستهلاك الطاقة المحدودة.
يُمثَّل نموذج TensorFlow Lite بتنسيق محمول فعال خاص يُعرَّف بامتداد الملف `.tflite`.
🤗 Optimum يقدم وظيفة لتصدير نماذج 🤗 Transformers إلى TFLite من خلال الوحدة النمطية `exporters.tflite`. بالنسبة لقائمة هندسات النماذج المدعومة، يرجى الرجوع إلى [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/exporters/tflite/overview).
لتصدير نموذج إلى TFLite، قم بتثبيت متطلبات البرنامج المطلوبة:
```bash
pip install optimum[exporters-tf]
```
للاطلاع على جميع المغامﻻت المتاحة، راجع [وثائق 🤗 Optimum](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model)، أو عرض المساعدة في سطر الأوامر:
```bash
optimum-cli export tflite --help
```
لتصدير نسخة النموذج ل 🤗 Hub، على سبيل المثال، `google-bert/bert-base-uncased`، قم بتشغيل الأمر التالي:
ستظهر لك السجلات التي تُبيّن التقدم وموقع حفظ ملف `model.tflite` الناتج، كما في المثال التالي:
```bash
Validating TFLite model...
-[✓] TFLite model output names match reference model (logits)
- Validating TFLite Model output "logits":
-[✓](1, 128, 30522) matches (1, 128, 30522)
-[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05)
The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05:
- logits: max diff= 5.817413330078125e-05.
The exported model was saved at: bert_tflite
```
يُبيّن المثال أعلاه كيفية تصدير نسخة من النموذج ل 🤗 Hub. عند تصدير نموذج محلي، تأكد أولاً من حفظ ملفات أوزان النموذج المجزء اللغوى في نفس المسار (`local_path`). عند استخدام CLI، قم بتمرير `local_path` إلى معامل `model` بدلاً من اسم النسخة على 🤗 Hub.
# Tokenizer returns a BatchEncoding, but we convert that to a dict for Keras
tokenized_data=dict(tokenized_data)
labels=np.array(dataset["label"])# Label is already an array of 0 and 1
```
أخيرًا، قم بتحميل وتجميع وتناسب النموذج. لاحظ أن نماذج Transformers تحتوي جميعها على دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذا فأنت لست بحاجة إلى تحديد واحدة ما لم ترغب في ذلك:
# معدلات التعلم المنخفضة أفضل غالبًا لضبط النماذج الدقيقة
model.compile(optimizer=Adam(3e-5))# لا توجد دالة خسارة!
model.fit(tokenized_data,labels)
```
<Tip>
أنت لست مضطرًا لتمرير دالة خسارة إلى نماذجك عند تجميعها! تختار نماذج Hugging Face تلقائيًا
دالة خسارة مناسبة لمهمتها وهندسة نموذجها إذا تُركت هذه الحجة فارغة. يمكنك دائمًا
تجاوز ذلك عن طريق تحديد دالة خسارة بنفسك إذا كنت تريد ذلك!
</Tip>
يعمل هذا النهج بشكل رائع لمجموعات البيانات الصغيرة، ولكن بالنسبة لمجموعات البيانات الأكبر، فقد تجد أنه يصبح مشكلة. لماذا؟
لأن المصفوفة المرمزة والتصنيفات يجب أن يتم تحميلها بالكامل في الذاكرة، ولأن NumPy لا يتعامل مع
المصفوفات"غير المنتظمة"، لذا حشو كل عينة إلى طول أطول عينة في مجموعة البيانات بأكملها. سيؤدي ذلك إلى زيادة حجم المصفوفة لديك، وستبطئ الرموز الزائده من عملية التدريب أيضًا!
### تحميل البيانات كـ tf.data.Dataset
إذا كنت تريد تجنب إبطاء التدريب، فيمكنك تحميل بياناتك كـ `tf.data.Dataset` بدلاً من ذلك. على الرغم من أنه يمكنك كتابة خط أنابيب `tf.data` الخاص بك إذا كنت تريد، إلا أن لدينا طريقتين مختصرتين للقيام بذلك:
- [`~TFPreTrainedModel.prepare_tf_dataset`]: هذه هي الطريقة التي نوصي بها في معظم الحالات. نظرًا لأنه طريقة
واستبعاد الأعمدة الأخرى لإنشاء مجموعة بيانات أبسط وأكثر كفاءة.
- [`~datasets.Dataset.to_tf_dataset`]: هذه الطريقة أكثر أساسية، وهي مفيدة عندما تريد التحكم بدقة في كيفية
إنشاء مجموعة البيانات الخاصة بك، عن طريق تحديد أعمدة `columns` و `label_cols` المحددة التي سيتم تضمينها.
قبل أن تتمكن من استخدام [`~TFPreTrainedModel.prepare_tf_dataset`]، ستحتاج إلى إضافة مخرجات المُجزئ إلى مجموعة البيانات الخاصة بك كأعمدة، كما هو موضح في
عينة التعليمات البرمجية التالية:
```py
deftokenize_dataset(data):
# ستتم إضافة مفاتيح القاموس الذي تمت إعادته كأعمدة إلى مجموعة البيانات
returntokenizer(data["text"])
dataset=dataset.map(tokenize_dataset)
```
تذكر أن مجموعات بيانات Hugging Face يتم تخزينها على القرص بشكل افتراضي، لذا فلن يؤدي ذلك إلى تضخيم استخدام الذاكرة لديك! بمجرد إضافة الأعمدة، يمكنك بث الدفعات من مجموعة البيانات وإضافة الترميز إلى كل دفعة، مما يقلل بشكل كبير من عدد رموز الترقيم مقارنة بترميز مجموعة البيانات بأكملها.
لاحظ أنه في عينة التعليمات البرمجية أعلاه، تحتاج إلى تمرير المُجزئ اللغوي إلى `prepare_tf_dataset` حتى تتمكن من حشو الدُفعات بشكل صحيح أثناء تحميلها.
إذا كانت جميع العينات في مجموعة البيانات الخاصة بك بنفس الطول ولم يكن الترميز ضروريًا، فيمكنك تخطي هذا المعامل.
إذا كنت بحاجة إلى القيام بشيء أكثر تعقيدًا من مجرد ترميز العينات (على سبيل المثال، إفساد الرموز للنمذجة اللغوية المُقنعة)،
فيمكنك استخدام معامل `collate_fn` بدلاً من ذلك لتمرير دالة يتم استدعاؤها لتحويل
قائمة العينات إلى دفعة وتطبيق أي معالجة مسبقة تريدها. راجع أمثلةنا [examples](https://github.com/huggingface/transformers/tree/main/examples) أو
[دفاتر الملاحظات](https://huggingface.co/docs/transformers/notebooks) لرؤية هذا النهج في العمل.
بمجرد إنشاء `tf.data.Dataset`، يمكنك تجميع النموذج وتناسبه كما هو الحال من قبل:
```py
model.compile(optimizer=Adam(3e-5))# No loss argument!
model.fit(tf_dataset)
```
</tf>
</frameworkcontent>
<aid='pytorch_native'></a>
## تدريب في PyTorch الأصلي
<frameworkcontent>
<pt>
<Youtubeid="Dh9CL8fyG80"/>
[`Trainer`] يهتم بحلقة التدريب ويسمح لك بضبط نموذج في سطر واحد من التعليمات البرمجية. بالنسبة للمستخدمين الذين يفضلون كتابة حلقة التدريب الخاصة بهم، يمكنك أيضًا ضبط نموذج 🤗 Transformers في PyTorch الأصلي.
@ -397,8 +281,6 @@ torch.cuda.empty_cache()
>>> metric.compute()
```
</pt>
</frameworkcontent>
<aid='additional-resources'></a>
@ -409,4 +291,4 @@ torch.cuda.empty_cache()
- [🤗 أمثلة المحولات](https://github.com/huggingface/transformers/tree/main/examples) تتضمن
النصوص البرمجية لتدريب مهام NLP الشائعة في PyTorch وTensorFlow.
- [🤗 دفاتر ملاحظات المحولات](notebooks) يحتوي على دفاتر ملاحظات مختلفة حول كيفية ضبط نموذج لمهمة محددة في PyTorch وTensorFlow.
- [🤗 دفاتر ملاحظات المحولات](notebooks) يحتوي على دفاتر ملاحظات مختلفة حول كيفية ضبط نموذج لمهمة محددة في PyTorch وTensorFlow.
@ -81,8 +81,6 @@ Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]:
## AutoModel
<frameworkcontent>
<pt>
Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]:
```py
@ -108,24 +106,3 @@ TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Arc
</Tip>
Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
</pt>
<tf>
Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]:
Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
@ -79,43 +79,15 @@ Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit
Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework.
<frameworkcontent>
<pt>
Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren:
Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]:
@ -141,29 +113,6 @@ Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_
```py
>>>trainer.push_to_hub()
```
</pt>
<tf>
Geben Sie ein Modell mit [`PushToHubCallback`] an den Hub weiter. In der [`PushToHubCallback`] Funktion, fügen Sie hinzu:
- Ein Ausgabeverzeichnis für Ihr Modell.
- Einen Tokenizer.
- Die `hub_model_id`, die Ihr Hub-Benutzername und Modellname ist.
Fügen Sie den Callback zu [`fit`](https://keras.io/api/models/model_training_apis/) hinzu, und 🤗 Transformers wird das trainierte Modell an den Hub weiterleiten:
@ -229,4 +178,4 @@ Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verz
* Manuelles Erstellen und Hochladen einer "README.md"-Datei.
* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository.
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.