Compare commits

...

36 Commits

Author SHA1 Message Date
d6c76b64ed Test hfh v0.32.0.rc1 2025-05-23 08:08:52 +00:00
b01984a51d [emu3] fix conversion script (#38297)
* fix conversion script and update weights

* fixup

* remove commented line
2025-05-23 09:49:56 +02:00
2b585419b4 [Tests] Cleanup Janus Testcase (#38311)
* Cleanup janus testcase

* shift code to setup
2025-05-23 09:29:16 +02:00
b59386dc0a Oups typo for HybridChunkedCache (#38303)
typo
2025-05-22 17:52:37 +02:00
211f2b0875 Add CB (#38085)
* stash for now

* initial commit

* small updated

* up

* up

* works!

* nits and fixes

* don't loop too much

* finish working example

* update

* fix the small freeblocks issue

* feat: stream inputs to continuous batch

* fix: update attn from `eager` to `sdpa`

* refactor: fmt

* refactor: cleanup unnecessary code

* feat: add `update` fn to `PagedAttentionCache`

* feat: broken optimal block size computation

* fix: debugging invalid cache logic

* fix: attention mask

* refactor: use custom prompts for example

* feat: add streaming output

* fix: prefill split

refactor: add doc strings and unsound/redundant logic
fix: compute optimal blocks logic

* fix: send decoded tokens when `prefilling_split` -> `decoding`

* refactor: move logic to appropriate parent class

* fix: remove truncation as we split prefilling anyways

refactor: early return when we have enough selected requests

* feat: add paged attention forward

* push Ggraoh>

* add paged sdpa

* update

* btter mps defaults

* feat: add progress bar for `generate_batch`

* feat: add opentelemetry metrics (ttft + batch fill %age)

* feat: add tracing

* Add cuda graphs (#38059)

* draft cudagraphs addition

* nits

* styling

* update

* fix

* kinda draft of what it should look like

* fixes

* lol

* not sure why inf everywhere

* can generate but output is shit

* some fixes

* we should have a single device synch

* broken outputs but it does run

* refactor

* updates

* updates with some fixes

* fix mask causality

* another commit that casts after

* add error

* simplify example

* update

* updates

* revert llama changes

* fix merge conflicts

* fix: tracing and metrics

* my updates

* update script default values

* fix block allocation issue

* fix prefill split attnetion mask

* no bugs

* add paged eager

* fix

* update

* style

* feat: add pytorch traces

* fix

* fix

* refactor: remove pytorch profiler data

* style

* nits

* cleanup

* draft test file

* fix

* fix

* fix paged and graphs

* small renamings

* cleanups and push

* refactor: move tracing and metrics logic to utils

* refactor: trace more blocks of code

* nits

* nits

* update

* to profile or not to profile

* refactor: create new output object

* causal by default

* cleanup but generations are still off for IDK what reason

* simplifications but not running still

* this does work.

* small quality of life updates

* nits

* updaet

* fix the scheduler

* fix warning

* ol

* fully fixed

* nits

* different generation parameters

* nice

* just style

* feat: add cache memory usage

* feat: add kv cache free memory

* feat: add active/waiting count & req latency

* do the sampling

* fix: synchronize CUDA only if available and improve error handling in ContinuousBatchingManager

* fix on mps

* feat: add dashboard & histogram buckets

* perf: improve waiting reqs data structures

* attempt to compile, but we should only do it on mps AFAIK

* feat: decouple scheduling logic

* just a draft

* c;eanup and fixup

* optional

* style

* update

* update

* remove the draft documentation

* fix import as well

* update

* fix the test

* style doomed

---------

Co-authored-by: Luc Georges <luc.sydney.georges@gmail.com>
2025-05-22 17:43:48 +02:00
73286d8e29 Fix HybridChunedCache & Llama4 (#38299)
* Update cache_utils.py

* Update cache_utils.py
2025-05-22 17:25:51 +02:00
d95c864a25 🔴🔴🔴 [Attention] Refactor Attention Interface for Bart-based Models (#38108)
* starting attn refactor for encoder decoder models via bart (eager + sdpa)

* flash attention works, remove unnecessary code

* flex attention support for bart!, gotta check if the renaming is not too aggressive

* some comments

* skip flex grad test for standalone as done with the other test

* revert flex attn rename (for now), sdpa simplify, and todos

* more todos

* refactor mask creation for reuse

* modular attempt at biogpt

* first batch of other models

* fix attn dropout

* fix autoformer copies

* hubert

* another batch of models

* copies/style + last round of bart models --> whisper next?

* remove unnecessary _reshape function and remove copy to whisper

* add skip for decoder-only models out of enc-dec (same as in bart)

* bring back licences

* remove comment, added to pr read instead

* mostly docs

* disable sew flex attn as it's unclear attn mask for now

* oops

* test fixes for enc-dec

* torch fx fixes + try at flex attn

* skip on mbart

* some more fixes

* musicgen skip / delete old attn class logic + sdpa compose compile skip

* disable flex attn for musicgen, not worth the effort

* more fixes and style

* flex attention test for dropout and encoder decoder that dont have main input names

* informer fixes

* the weirdest thing I've encountered yet...

* style

* remove empty tensor attempt, found core root in previous commits

* disable time series due to tests being very text centric on inputs

* add speech to text to be ignoring the other attns, also due to tests

* update docs

* remaining issues resolved ?

* update docs for current state --> nllb moe and pegasus x sdpa is questionable :D

* some models have not set the is_causal flag...

* change dtype in softmax tol old behaviour + some modular fixes

* I hate it but it is what it is

* fixes from main for bart

* forgot this one

* some model fixes

* style

* current status

* marian works now

* fixing some copies

* some copy fixes + time series x informer

* last models possibly and fixes on style/copies

* some post merge fixes

* more fixes

* make attention interface callable and move warnings there

* style lol

* add comment to "unsupported"

* remove callable interface and change interface warnings + some copies

* fix

* ternary is ugly af, make it simpler

* how did that happen

* fix flex attn test

* failing the test

* no more fallback! fixing copies next

* style + attn fixed

* fixing copies and mask creation

* wrong copy

* fixup tests and disable flex attn for now

* fixup last tests?
2025-05-22 17:12:58 +02:00
9895819514 Update CI Docker base image for AMD tests (#38261)
use newer Pytorch base image for AMD CI tests
2025-05-22 16:38:40 +02:00
dfbee79ca3 refine transformers env output (#38274)
* refine `transformers env` output

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-22 15:22:18 +02:00
1234683309 More typing in src/transformers/training_args.py (#38106)
* Annotate `framework` in src/transformers/training_args.py

Signed-off-by: cyy <cyyever@outlook.com>

* Fix typing

Signed-off-by: cyy <cyyever@outlook.com>

* Revert framework change

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-05-22 13:14:33 +02:00
03a4c024dc Fix tp error when torch distributed is already initialized (#38294)
fix tp error
2025-05-22 12:34:05 +02:00
dcaf47dde5 add liger-kernel to docker file (#38292)
add

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-22 11:58:17 +02:00
163138a911 🚨🚨[core] Completely rewrite the masking logic for all attentions (#37866)
* start

* start having a clean 4d mask primitive

* Update mask_utils.py

* Update mask_utils.py

* switch name

* Update masking_utils.py

* add a new AttentionMask tensor class

* fix import

* nits

* fixes

* use full and quandrants

* general sdpa mask for all caches

* style

* start some tests

* tests with sliding, chunked

* add styling

* test hybrid

* Update masking_utils.py

* small temp fixes

* Update modeling_gemma2.py

* compile compatible

* Update masking_utils.py

* improve

* start making it more general

* Update masking_utils.py

* generate

* make it work with flex style primitives!

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* improve

* Update cache_utils.py

* Update masking_utils.py

* simplify - starting to look good!

* Update masking_utils.py

* name

* Update masking_utils.py

* style

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* small fix for flex

* flex compile

* FA2

* Update masking_utils.py

* Escape for TGI/vLLM!

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* General case without cache

* rename

* full test on llama4

* small fix for FA2 guard with chunk

* Update modeling_gemma2.py

* post rebase cleanup

* FA2 supports static cache!

* Update modeling_flash_attention_utils.py

* Update flex_attention.py

* Update masking_utils.py

* Update masking_utils.py

* Update utils.py

* override for export

* Update executorch.py

* Update executorch.py

* Update executorch.py

* Update executorch.py

* Update masking_utils.py

* Update masking_utils.py

* output attentions

* style

* Update masking_utils.py

* Update executorch.py

* Add doicstring

* Add license and put mask visualizer at the end

* Update test_modeling_common.py

* fix broken test

* Update test_modeling_gemma.py

* Update test_modeling_gemma2.py

* Use fullgraph=False with FA2

* Update utils.py

* change name

* Update masking_utils.py

* improve doc

* change name

* Update modeling_attn_mask_utils.py

* more explicit logic based on model's property

* pattern in config

* extend

* fixes

* make it better

* generalize to other test models

* fix

* Update masking_utils.py

* fix

* do not check mask equivalence if layer types are different

* executorch

* Update modeling_gemma2.py

* Update masking_utils.py

* use layer_idx instead

* adjust

* Update masking_utils.py

* test

* fix imports

* Update modeling_gemma2.py

* other test models

* Update modeling_llama4.py

* Update masking_utils.py

* improve

* simplify

* Update masking_utils.py

* typos

* typo

* fix

* Update masking_utils.py

* default DynamicCache

* remove default cache

* simplify

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* simplify

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* export

* Update executorch.py

* Update executorch.py

* Update flex_attention.py

* Update executorch.py

* upstream to modular gemma 1 & 2

* Update modular_mistral.py

* switch names

* use dict

* put it in the Layer directly

* update copy model source for mask functions

* apply so many modular (hopefully 1 shot)

* use explicite dicts for make style happy

* protect import

* check docstring

* better default in hybrid caches

* qwens

* Update modular_qwen2.py

* simplify core logic!

* Update executorch.py

* qwen3 moe

* Update masking_utils.py

* Update masking_utils.py

* simplify a lot sdpa causal skip

* Update masking_utils.py

* post-rebase

* gemma3 finally

* style

* check it before

* gemma3

* More general with newer torch

* align gemma3

* Update utils.py

* Update utils.py

* Update masking_utils.py

* Update test_modeling_common.py

* Update flex_attention.py

* Update flex_attention.py

* Update flex_attention.py

* test

* executorch

* Update test_modeling_common.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update executorch.py

* Update test_modeling_common.py

* fix copies

* device

* sdpa can be used without mask -> pass the torchscript tests in this case

* Use enum for check

* revert enum and add check instead

* remove broken test

* cohere2

* some doc & reorganize the Interface

* Update tensor_parallel.py

* Update tensor_parallel.py

* doc and dummy

* Update test_modeling_paligemma2.py

* Update modeling_falcon_h1.py

* Update masking_utils.py

* executorch patch

* style

* CIs

* use register in executorch

* final comments!

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-22 11:38:26 +02:00
f8630c778c [Whisper] handle deprecation of forced_decoder_ids (#38232)
* fix

* working saved forced_decoder_ids

* docstring

* add deprecation message

* exception message ordering

* circular import comment
2025-05-22 09:16:38 +00:00
aa02a5d902 [whisper] move processor test into processor test file 🧹 (#38266)
move processor tests
2025-05-22 10:07:11 +01:00
b26157d64c add XPU info print in print_env (#38282)
Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-22 11:03:56 +02:00
b369a65480 docs(swin): Update Swin model card to standard format (#37628)
* docs(swin): Update Swin model card to standard format

* docs(swin): Refine link to Microsoft organization for Swin models

Apply suggestion from @stevhliu in PR #37628.

This change updates the link pointing to the official Microsoft Swin Transformer checkpoints on the Hugging Face Hub.

The link now directs users specifically to the Microsoft organization page, filtered for Swin models, providing a clearer and more canonical reference compared to the previous general search link.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(swin): Clarify padding description and link to backbone docs

Apply suggestion from @stevhliu in PR #37628.

This change introduces two improvements to the Swin model card:

1.  Refines the wording describing how Swin handles input padding for better clarity.
2.  Adds an internal documentation link to the general "backbones" page when discussing Swin's capability as a backbone model.

These updates enhance readability and improve navigation within the Transformers documentation.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(swin): Change Swin paper link to huggingface.co/papers as suggested

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-21 16:16:43 -07:00
28d3148b07 Update Model Card for Mamba (#37863)
* update model card.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update quantization example.

* update example.

* update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-21 10:58:23 -07:00
7b7bb8df97 Protect ParallelInterface (#38262)
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-21 17:45:38 +02:00
5c13cc0f94 Remove Japanese sequence_classification doc and update references (#38246) 2025-05-21 08:33:41 -07:00
71009e4b68 assign the correct torchao data layout for xpu (#37781)
* assign the correct data layout for xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check torch version before using torchao xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix the log

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix zero point type

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix check torch version

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-05-21 17:21:55 +02:00
d6c34cdcd0 Fix: missing else branch to handle "--load_best_model_at_end" in training_args.py (#38217)
Update training_args.py
2025-05-21 14:28:56 +00:00
ae3e4e2d97 Improve typing in TrainingArgument (#36944)
* Better error message in TrainingArgument typing checks

* Better typing

* Small fixes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-05-21 13:54:38 +00:00
174684a9b6 Simplify DTensor Check for modeling_utils.py (#38245)
Update modeling_utils.py
2025-05-21 13:35:44 +00:00
e4decee9c0 [whisper] small changes for faster tests (#38236) 2025-05-21 14:11:08 +01:00
ddf67d2d73 Clearer error on import failure (#38257)
Clearer error
2025-05-21 14:32:29 +02:00
9a962dd9ed Add tearDown method to Quark to solve OOM issues (#38234)
fix
2025-05-21 14:26:44 +02:00
101b3fa4ea fix multi-image case for llava-onevision (#38084)
* _get_padding_size module

* do not patchify images when processing multi image

* modify llava onevision image processor fast

* tensor to list of tensors

* backward compat

* reuse pad_to_square in llave & some clarification

* add to doc

* fix: consider no image cases (text only or video)

* add integration test

* style & repo_consistency
2025-05-21 11:50:46 +02:00
a21f11fca2 [compile] re-enable for Qwen-VL models (#38127)
* compile qwen models

* delete TODO comment

* fix embeds test

* fix assisted decoding

* add comments
2025-05-21 09:50:39 +00:00
4542086db7 [Falcon H1] Fix Typo in Integration Test (#38256)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

* fix typo

* make style

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-21 11:25:26 +02:00
6829936ee0 [MODEL] Add Falcon H1 (#38249)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: dhia.rhaiem <dhia.rhaiem@tii.ae>
2025-05-21 10:43:11 +02:00
e288ee00d8 tp plan should not be NONE (#38255)
* accept custom device_mesh

* fix device_map

* assert that num_heads % tp_size == 0

* todo.

* ReplicateParallel

* handle tied weights

* handle dtensor in save_pretrained with safe_serialization

* tp test works

* doesnt work

* fix shard_and_distribute_module's rank should be local_rank

* tp=4 is correct

* dp+tp is broken

* todo allreduce with dtensors on another dim is annoying

* workaround to sync dp grads when using dtensors

* loading a checkpoint works

* wandb and compare losses with different tp/dp

* cleaning

* cleaning

* .

* .

* logs

* CP2 DP2 no mask works after commenting attn_mask and is_causal from scaled_dot_product_attention

* DP=2 TP=2 now works even with tied embeddings

* model.parameters() and model.module.parameters() are empty..

* reformat sanity_check_tensor_sync

* set atol=1e-4 for CP to pass

* try populate _parameters from named_modules

* refactors
TP2 DP2 works
CP2 DP2 works

* is_causal=True and pack sequences, no attn mask, and preshuffle dataset

* fix packing

* CP=4 doesn't work

* fix labels and position_ids for CP

* DP CP works with transformers 🥳🥳🥳

* refactor

* add example cp

* fixup

* revert sdpa changes

* example cleared

* add CP, DP to the mesh init

* nit

* clean

* use `ALL_PARALLEL_STYLES`

* style

* FSDP works

* log on 1 rank

* .

* fix?

* FSDP1 also has .parameters() bug

* reported gradnorm when using FSDP1 is wrong, but loss is correct so it's okay

* .

* style and fixup

* move stuff around

* fix tests

* style

* let's make it a check

* add missing licences

* warning should be an info

* tp plan should not be NONE

* test all

* god damn it

* test all

---------

Co-authored-by: nouamanetazi <nouamane98@gmail.com>
2025-05-21 10:22:38 +02:00
711d78d104 Revert parallelism temporarily (#38240)
* Revert "Protect ParallelInterface"

This reverts commit cb513e35f9c096d60558bd43110837cbb66611ce.

* Revert "parallelism goes brrr (#37877)"

This reverts commit 1c2f36b480e02c9027d2523746d34e27b39e01a4.

* Empty commit
2025-05-20 22:43:04 +02:00
feec294dea CI reporting improvements (#38230)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-20 19:34:58 +02:00
cb513e35f9 Protect ParallelInterface 2025-05-20 18:27:50 +02:00
f4ef41c45e v4.53.0.dev0 2025-05-20 18:12:56 +02:00
333 changed files with 20935 additions and 14726 deletions

View File

@ -39,55 +39,100 @@ jobs:
name: ci_results_run_models_gpu
path: /transformers/ci_results_run_models_gpu
- name: Check file
working-directory: /transformers
run: |
if [ -f ci_results_run_models_gpu/new_model_failures.json ]; then
echo "`ci_results_run_models_gpu/new_model_failures.json` exists, continue ..."
echo "process=true" >> $GITHUB_ENV
else
echo "`ci_results_run_models_gpu/new_model_failures.json` doesn't exist, abort."
echo "process=false" >> $GITHUB_ENV
fi
- uses: actions/download-artifact@v4
if: ${{ env.process == 'true' }}
with:
pattern: setup_values*
path: setup_values
merge-multiple: true
- name: Prepare some setup values
if: ${{ env.process == 'true' }}
run: |
if [ -f setup_values/prev_workflow_run_id.txt ]; then
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
if [ -f setup_values/other_workflow_run_id.txt ]; then
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
- name: Update clone
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ github.sha }}
- name: Get target commit
working-directory: /transformers/utils
if: ${{ env.process == 'true' }}
run: |
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"]); print(commit)')" >> $GITHUB_ENV
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
- name: Checkout to `start_sha`
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ inputs.start_sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
if: ${{ env.process == 'true' }}
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: pip freeze
- name: Check failed tests
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_model_failures_with_bad_commit.json
cat new_model_failures_with_bad_commit.json
- name: Checkout back
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
git checkout ${{ inputs.start_sha }}
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
run: |
python3 utils/process_bad_commit_report.py
@ -95,7 +140,9 @@ jobs:
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
run: |
{
@ -105,7 +152,7 @@ jobs:
} >> "$GITHUB_ENV"
- name: Send processed report
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.

View File

@ -8,8 +8,43 @@ on:
push:
branches:
- run_scheduled_ci*
workflow_dispatch:
inputs:
prev_workflow_run_id:
description: 'previous workflow run id to compare'
type: string
required: false
default: ""
other_workflow_run_id:
description: 'other workflow run id to compare'
type: string
required: false
default: ""
# Used for `push` to easily modiffy the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
jobs:
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml

View File

@ -39,6 +39,21 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Prepare some setup values
run: |
if [ -f setup_values/prev_workflow_run_id.txt ]; then
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
if [ -f setup_values/other_workflow_run_id.txt ]; then
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
- name: Send message to Slack
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
env:
@ -50,7 +65,6 @@ jobs:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
@ -58,7 +72,6 @@ jobs:
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
# empty string, and the called script still get one argument (which is the emtpy string).
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
@ -86,7 +99,6 @@ jobs:
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk

View File

@ -71,6 +71,9 @@ RUN python3 -m pip install --no-cache-dir g2p-en
# For Some bitsandbytes tests
RUN python3 -m pip install --no-cache-dir einops
# For Some tests with `@require_liger_kernel`
RUN python3 -m pip install --no-cache-dir liger-kernel
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels

View File

@ -1,4 +1,4 @@
FROM rocm/dev-ubuntu-22.04:6.2.4
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -11,9 +11,6 @@ RUN apt update && \
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main

View File

@ -455,6 +455,8 @@
title: Falcon
- local: model_doc/falcon3
title: Falcon3
- local: model_doc/falcon_h1
title: FalconH1
- local: model_doc/falcon_mamba
title: FalconMamba
- local: model_doc/flan-t5

View File

@ -125,4 +125,44 @@ would expect from a usual Python dictionary:
# You can also globally `register` a new function directly on it
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
```
```
## Attention Mask Interface
Having a new attention function may mean that you need a new format of attention mask to decide what key and value tokens
the query tokens should attend to. This is now possible with the `AttentionMaskInterface`! It works in the same way as
the `AttentionInterface`:
```python
from transformers import AttentionMaskInterface
from transformers.masking_utils import sdpa_mask
import torch
def my_new_sdpa_mask(*args, **kwargs):
print("I just entered the attention mask computation")
return sdpa_mask(*args, **kwargs)
AttentionMaskInterface.register("my_new_sdpa_mask", my_new_sdpa_mask)
```
The reason you have to register it is because we need to automatically correct your mask format based on the attention implementation (for example, flex attention uses a BlockMask format, while sdpa uses a 4D tensor).
By default, if you do not register an attention mask function along with your attention function, mask creation will be skipped
and `attention_mask=None` will be passed along to the Attention layers.
The default signature of the attention mask functions is the following:
```python
def custom_attention_mask(
batch_size: int, # required arg
cache_position: torch.Tensor, # required arg
kv_length: int, # required arg
kv_offset: int = 0, # required arg
mask_function: Callable = causal_mask_function, # required arg
attention_mask: Optional[torch.Tensor] = None, # required arg
**kwargs, # a few additional args may be passed as kwargs, especially the model's config is always passed
) -> Optional[torch.Tensor]:
```
It mostly works thanks to the `mask_function`, which is a `Callable` in the form of [torch's mask_mod functions](https://pytorch.org/blog/flexattention/), taking 4 indices as input and returning a boolean to indicate if this position should take part in the attention computation.
If you cannot use the `mask_function` to create your mask for some reason, you can try to work around it by doing something similar to our [torch export workaround](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/executorch.py).

View File

@ -29,6 +29,11 @@ Most of those are only useful if you are studying the code of the models in the
[[autodoc]] AttentionInterface
- register
## Attention Mask Functions
[[autodoc]] AttentionMaskInterface
- register
## Rotary Position Embedding Functions
[[autodoc]] dynamic_rope_update

View File

@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
@ -40,13 +41,13 @@ This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
@ -109,7 +110,7 @@ we saw the following speedups during inference.
[[autodoc]] BioGptForCausalLM
- forward
## BioGptForTokenClassification
[[autodoc]] BioGptForTokenClassification

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
Note that [`BlenderbotSmallModel`] and
@ -52,7 +54,7 @@ found [here](https://github.com/facebookresearch/ParlAI).
## Usage tips
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -45,7 +47,7 @@ This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The
## Usage tips and example
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
An example:
@ -71,7 +73,7 @@ An example:
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
[BlenderbotSmall](blenderbot-small).
## Resources
- [Causal language modeling task guide](../tasks/language_modeling)

View File

@ -0,0 +1,65 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FalconH1
## Overview
The FalconH1 model was developed by the TII Pretraining team. A comprehensive research paper covering the architecture, pretraining dynamics, experimental results, and conclusions is forthcoming. You can read more about this series in [this website](https://github.com/tiiuae/Falcon-H1).
## Contributors
This model was contributed by [DhiyaEddine](https://huggingface.co/DhiyaEddine), [ybelkada](https://huggingface.co/ybelkada), [JingweiZuo](https://huggingface.co/JingweiZuo), [IlyasChahed](https://huggingface.co/IChahed), and [MaksimVelikanov](https://huggingface.co/yellowvm).
The original code can be found [here](https://github.com/tiiuae/Falcon-H1).
## FalconH1Config
| Model | Depth | Dim | Attn Heads | KV | Mamba Heads | d_head | d_state | Ctx Len |
|-----------|--------|------|------------|----|--------------|--------------|------|-----------------|
| H1 0.5B | 36 | 1024 | 8 | 2 | 24 | 64 / 64 | 128 | 4K, 16K-SFT |
| H1 1.5B | 24 | 2048 | 8 | 2 | 48 | 128 / 64 | 256 | 128K |
| H1 1.5B-d | 66 | 1280 | 6 | 2 | 24 | 128 / 64 | 256 | 128K |
| H1 3B | 32 | 2560 | 10 | 2 | 32 | 128 / 128 | 256 | 128K |
| H1 7B | 44 | 3072 | 12 | 2 | 24 | 128 / 128 | 256 | 256K |
| H1 34B | 72 | 5120 | 20 | 4 | 32 | 128 / 128 | 256 | 256K |
[[autodoc]] FalconH1Config
<!---
## Usage Tips
Tips:
- The architecture is based on Mamba-2 models.
## FalconH1Model
[[autodoc]] FalconH1Model
- forward
-->
## FalconH1ForCausalLM
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
message = ["Mamba is a snake with following properties "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
[[autodoc]] FalconH1ForCausalLM
- forward
This HF implementation is contributed by [younesbelkada](https://github.com/younesbelkada) and [DhiaEddineRhaiem](https://github.com/dhiaEddineRhaiem).

View File

@ -147,7 +147,7 @@ print(processor.decode(output[0], skip_special_tokens=True))
### Multi image inference
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. Here is how you can do it:
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. For multi-image cases, we recommend using a **nested list of images** as input. Otherwise, every image will be patchified and consume a lot of memory. Here is how you can do it:
```python
import requests

View File

@ -14,85 +14,124 @@ rendered properly in your Markdown viewer.
-->
# Mamba
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Mamba
The Mamba model was proposed in [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
[Mamba](https://huggingface.co/papers/2312.00752) is a selective structured state space model (SSMs) designed to work around Transformers computational inefficiency when dealing with long sequences. It is a completely attention-free architecture, and comprised of a combination of H3 and gated MLP blocks (Mamba block). Mamba's "content-based reasoning" allows it to focus on specific parts of an input depending on the current token. Mamba also uses a new hardware-aware parallel algorithm to compensate for the lack of convolutional operations. As a result, Mamba has fast inference and can scale to very long sequences.
This model is a new paradigm architecture based on `state-space-models`. You can read more about the intuition behind these [here](https://srush.github.io/annotated-s4/).
You can find all the original Mamba checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization.
The abstract from the paper is the following:
*Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.*
> [!TIP]
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
Tips:
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
- Mamba is a new `state space model` architecture that rivals the classic Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
- Mamba stacks `mixer` layers, which are the equivalent of `Attention` layers. The core logic of `mamba` is held in the `MambaMixer` class.
- Two implementations cohabit: one is optimized and uses fast cuda kernels, while the other one is naive but can run on any device!
- The current implementation leverages the original cuda kernels: the equivalent of flash attention for Mamba are hosted in the [`mamba-ssm`](https://github.com/state-spaces/mamba) and the [`causal_conv1d`](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports them!
- Contributions to make the naive path faster are welcome 🤗
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ).
The original code can be found [here](https://github.com/state-spaces/mamba).
# Usage
### A simple generation example:
```python
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="state-spaces/mamba-130m-hf",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create energy through a process known as")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float16, device_map="auto",)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True)
```
### Peft finetuning
The slow version is not very stable for training, and the fast one needs `float32`!
</hfoption>
<hfoption id="transformers CLI">
```python
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
model_id = "state-spaces/mamba-130m-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
processing_class=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()
```bash
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model state-spaces/mamba-130m-hf --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
from torchao.quantization import Int4WeightOnlyConfig
quantization_config = Int4WeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_config)
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-2.8b-hf")
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-2.8b-hf", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto",)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- The current implementation uses the original CUDA kernels. The FlashAttention equivalent implementation is hosted in the [mamba-ssm](https://github.com/state-spaces/mamba) and [causal_conv1d](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports it!
- Mamba stacks `mixer` layers which are equivalent to `Attention` layers. You can find the main logic of Mamba in the `MambaMixer` class.
- The example below demonstrates how to fine-tune Mamba with [PEFT](https://huggingface.co/docs/peft).
```py
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
model_id = "state-spaces/mamba-130m-hf"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
dataset = load_dataset("Abirate/english_quotes", split="train")
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=4,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
processing_class=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()
```
## MambaConfig
[[autodoc]] MambaConfig

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -155,7 +157,7 @@ Example of translating english to many romance languages, using old-style 2 char
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
```

View File

@ -51,10 +51,10 @@ The original code can be found [here](https://github.com/facebookresearch/fairse
## Implementation differences with SwitchTransformers
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
## Generating with NLLB-MoE

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview

View File

@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
## Overview

View File

@ -18,6 +18,8 @@ rendered properly in your Markdown viewer.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -29,7 +31,7 @@ on Java, Python and English.
According to the abstract
*Code summarization and generation empower conversion between programming language (PL) and natural language (NL),
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks.
PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding.
Experiments on code summarization in the English language, code generation, and code translation in seven programming languages
@ -50,7 +52,7 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
it's passed with the `text_target` keyword argument.

View File

@ -14,59 +14,77 @@ rendered properly in your Markdown viewer.
-->
# Swin Transformer
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# Swin Transformer
The Swin Transformer was proposed in [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
[Swin Transformer](https://huggingface.co/papers/2103.14030) is a hierarchical vision transformer. Images are processed in patches and windowed self-attention is used to capture local information. These windows are shifted across the image to allow for cross-window connections, capturing global information more efficiently. This hierarchical approach with shifted windows allows the Swin Transformer to process images effectively at different scales and achieve linear computational complexity relative to image size, making it a versatile backbone for various vision tasks like image classification and object detection.
The abstract from the paper is the following:
You can find all official Swin Transformer checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swin) organization.
*This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone
for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains,
such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted
\bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping
local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at
various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it
compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense
prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation
(53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and
+2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones.
The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.*
> [!TIP]
> Click on the Swin Transformer models in the right sidebar for more examples of how to apply Swin Transformer to different image tasks.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png"
alt="drawing" width="600"/>
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
<small> Swin Transformer architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>.</small>
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [novice03](https://huggingface.co/novice03). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
```py
import torch
from transformers import pipeline
## Usage tips
pipeline = pipeline(
task="image-classification",
model="microsoft/swin-tiny-patch4-window7-224",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
</hfoption>
- Swin pads the inputs supporting any input height and width (if divisible by `32`).
- Swin can be used as a *backbone*. When `output_hidden_states = True`, it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
<hfoption id="AutoModel">
## Resources
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer.
image_processor = AutoImageProcessor.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224",
use_fast=True,
)
model = AutoModelForImageClassification.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224",
device_map="cuda"
)
<PipelineTag pipeline="image-classification"/>
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to("cuda")
- [`SwinForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
Besides that:
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
</hfoption>
</hfoptions>
- [`SwinForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
## Notes
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Swin can pad the inputs for any input height and width divisible by `32`.
- Swin can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
## SwinConfig

View File

@ -95,7 +95,7 @@ transcription[0]
## Notes
- Whisper relies on [`~GenerationMixin.generate`] for inference.
- Whisper relies a custom [`generate`] for inference, make sure to check the docs below.
- The [`WhisperProcessor`] can be used for preparing audio and decoding predicted ids back into text.
## WhisperConfig

View File

@ -29,8 +29,6 @@
- sections:
- isExpanded: false
sections:
- local: tasks/sequence_classification
title: テキストの分類
- local: tasks/token_classification
title: トークンの分類
- local: tasks/question_answering

View File

@ -47,7 +47,7 @@ ALBERTモデルは、「[ALBERT: A Lite BERT for Self-supervised Learning of Lan
## 参考資料
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問応答タスクガイド](../tasks/question_answering)
- [マスクされた言語モデルタスクガイド](../tasks/masked_language_modeling)

View File

@ -129,7 +129,7 @@ BART を始めるのに役立つ公式 Hugging Face およびコミュニティ
- [翻訳タスクガイド](../tasks/translation)
以下も参照してください。
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
- [抽出されたチェックポイント](https://huggingface.co/models?search=distilbart) は、この [論文](https://arxiv.org/abs/2010.13002) で説明されています。

View File

@ -76,7 +76,7 @@ BERT を始めるのに役立つ公式 Hugging Face およびコミュニティ
- [`BertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)。
- [`TFBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)。
- [`FlaxBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)。
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
<PipelineTag pipeline="token-classification"/>

View File

@ -58,7 +58,7 @@ BigBird は、質問応答や要約などのさまざまな NLP タスクのパ
## ドキュメント リソース
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)

View File

@ -58,7 +58,7 @@ BigBird は、質問応答や要約などのさまざまな NLP タスクのパ
## ドキュメント リソース
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
- [翻訳タスクガイド](../tasks/translation)

View File

@ -39,7 +39,7 @@ BLOOM を使い始めるのに役立つ公式 Hugging Face およびコミュニ
以下も参照してください。
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)

View File

@ -46,7 +46,7 @@ Bi-direction Encoders for Transformers (BERT) のフランス語版である Cam
## Resources
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)

View File

@ -98,7 +98,7 @@ CANINE は生の文字で動作するため、**トークナイザーなし**で
## Resources
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [多肢選択タスク ガイド](../tasks/multiple_choice)

View File

@ -53,7 +53,7 @@ ConvBERT トレーニングのヒントは BERT のヒントと似ています
## Resources
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [マスクされた言語モデリング タスク ガイド](../tasks/masked_lang_modeling)

View File

@ -61,7 +61,7 @@ CTRL モデルは、Nitish Shirish Keskar*、Bryan McCann*、Lav R. Varshney、C
## Resources
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
## CTRLConfig

View File

@ -58,7 +58,7 @@ Data2Vec の使用を開始するのに役立つ公式 Hugging Face およびコ
- カスタム データセットで [`TFData2VecVisionForImageClassification`] を微調整するには、[このノートブック](https://colab.research.google.com/github/sayakpaul/TF-2.0-Hacks/blob/master/data2vec_vision_image_classification.ipynb) を参照してください。 )。
**Data2VecText ドキュメント リソース**
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)

View File

@ -61,7 +61,7 @@ v2 の新機能:
[kamalkraj](https://huggingface.co/kamalkraj) による投稿。元のコードは [こちら](https://github.com/microsoft/DeBERTa) にあります。
## Resources
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [マスク言語モデリング タスク ガイド](../tasks/masked_language_modeling)

View File

@ -52,7 +52,7 @@ DeBERTa を使い始めるのに役立つ公式 Hugging Face およびコミュ
- DeBERTa による [機械学習によるスーパーチャージされた顧客サービス](https://huggingface.co/blog/supercharge-customer-service-with-machine-learning) に関するブログ投稿。
- [`DebertaForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)。
- [`TFDebertaForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)。
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
<PipelineTag pipeline="token-classification" />

View File

@ -1,604 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Sequence classification
[[open-in-colab]]
<Youtube id="dKE8SIt9C-w"/>
セマンティック セグメンテーションでは、画像の個々のピクセルにラベルまたはクラスを割り当てます。セグメンテーションにはいくつかのタイプがありますが、セマンティック セグメンテーションの場合、同じオブジェクトの一意のインスタンス間の区別は行われません。両方のオブジェクトに同じラベルが付けられます (たとえば、「car-1」と「car-2」の代わりに「car」)。セマンティック セグメンテーションの一般的な現実世界のアプリケーションには、歩行者や重要な交通情報を識別するための自動運転車のトレーニング、医療画像内の細胞と異常の識別、衛星画像からの環境変化の監視などが含まれます。
このガイドでは、次の方法を説明します。
1. [SceneParse150](https://huggingface.co/datasets/scene_parse_150) データセットの [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) を微調整します。
2. 微調整したモデルを推論に使用します。
<Tip>
このタスクと互換性のあるすべてのアーキテクチャとチェックポイントを確認するには、[タスクページ](https://huggingface.co/tasks/text-classification) を確認することをお勧めします。
</Tip>
始める前に、必要なライブラリがすべてインストールされていることを確認してください。
```bash
pip install -q datasets transformers evaluate
```
モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load SceneParse150 dataset
まず、SceneParse150 データセットの小さいサブセットを 🤗 データセット ライブラリから読み込みます。これにより、完全なデータセットのトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認する機会が得られます。
```py
>>> from datasets import load_dataset
>>> ds = load_dataset("scene_parse_150", split="train[:50]")
```
[`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットの `train` 分割をトレイン セットとテスト セットに分割します。
```py
>>> ds = ds.train_test_split(test_size=0.2)
>>> train_ds = ds["train"]
>>> test_ds = ds["test"]
```
次に、例を見てみましょう。
```py
>>> train_ds[0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
'scene_category': 368}
```
- `image`: シーンの PIL イメージ。
- `annotation`: セグメンテーション マップの PIL イメージ。モデルのターゲットでもあります。
- `scene_category`: 「キッチン」や「オフィス」などの画像シーンを説明するカテゴリ ID。このガイドでは、「image」と「annotation」のみが必要になります。どちらも PIL イメージです。
また、ラベル ID をラベル クラスにマップする辞書を作成することもできます。これは、後でモデルを設定するときに役立ちます。ハブからマッピングをダウンロードし、`id2label` および `label2id` ディクショナリを作成します。
```py
>>> import json
>>> from pathlib import Path
>>> from huggingface_hub import hf_hub_download
>>> repo_id = "huggingface/label-files"
>>> filename = "ade20k-id2label.json"
>>> id2label = json.loads(Path(hf_hub_download(repo_id, filename, repo_type="dataset")).read_text())
>>> id2label = {int(k): v for k, v in id2label.items()}
>>> label2id = {v: k for k, v in id2label.items()}
>>> num_labels = len(id2label)
```
## Preprocess
次のステップでは、SegFormer 画像プロセッサをロードして、モデルの画像と注釈を準備します。このデータセットのような一部のデータセットは、バックグラウンド クラスとしてゼロインデックスを使用します。ただし、実際には背景クラスは 150 個のクラスに含まれていないため、`do_reduce_labels=True`を設定してすべてのラベルから 1 つを引く必要があります。ゼロインデックスは `255` に置き換えられるため、SegFormer の損失関数によって無視されます。
```py
>>> from transformers import AutoImageProcessor
>>> checkpoint = "nvidia/mit-b0"
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, do_reduce_labels=True)
```
<frameworkcontent>
<pt>
モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。このガイドでは、[torchvision](https://pytorch.org) の [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) 関数を使用します。 /vision/stable/index.html) を使用して画像の色のプロパティをランダムに変更しますが、任意の画像ライブラリを使用することもできます。
```py
>>> from torchvision.transforms import ColorJitter
>>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
```
次に、モデルの画像と注釈を準備するための 2 つの前処理関数を作成します。これらの関数は、画像を`pixel_values`に変換し、注釈を`labels`に変換します。トレーニング セットの場合、画像を画像プロセッサに提供する前に`jitter`が適用されます。テスト セットの場合、テスト中にデータ拡張が適用されないため、画像プロセッサは`images`を切り取って正規化し、`labels` のみを切り取ります。
```py
>>> def train_transforms(example_batch):
... images = [jitter(x) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [x for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
データセット全体に`jitter`を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。
このガイドでは、[`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image) を使用して画像の色のプロパティをランダムに変更しますが、任意のプロパティを使用することもできます。画像
好きな図書館。
2 つの別々の変換関数を定義します。
- 画像拡張を含むトレーニング データ変換
- 🤗 Transformers のコンピューター ビジョン モデルはチャネル優先のレイアウトを想定しているため、画像を転置するだけの検証データ変換
```py
>>> import tensorflow as tf
>>> def aug_transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.image.random_brightness(image, 0.25)
... image = tf.image.random_contrast(image, 0.5, 2.0)
... image = tf.image.random_saturation(image, 0.75, 1.25)
... image = tf.image.random_hue(image, 0.1)
... image = tf.transpose(image, (2, 0, 1))
... return image
>>> def transforms(image):
... image = tf.keras.utils.img_to_array(image)
... image = tf.transpose(image, (2, 0, 1))
... return image
```
次に、モデルの画像と注釈のバッチを準備する 2 つの前処理関数を作成します。これらの機能が適用されます
画像変換を行い、以前にロードされた `image_processor` を使用して画像を `pixel_values` に変換し、
`labels`への注釈。 `ImageProcessor` は、画像のサイズ変更と正規化も処理します。
```py
>>> def train_transforms(example_batch):
... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
>>> def val_transforms(example_batch):
... images = [transforms(x.convert("RGB")) for x in example_batch["image"]]
... labels = [x for x in example_batch["annotation"]]
... inputs = image_processor(images, labels)
... return inputs
```
データセット全体に前処理変換を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。
変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。
```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```
</tf>
</frameworkcontent>
## Evaluate
トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[Mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) メトリックをロードします (🤗 Evaluate [クイック ツアー](https://huggingface.co) を参照してください) /docs/evaluate/a_quick_tour) を参照して、メトリクスをロードして計算する方法の詳細を確認してください)。
```py
>>> import evaluate
>>> metric = evaluate.load("mean_iou")
```
次に、メトリクスを [`~evaluate.EvaluationModule.compute`] する関数を作成します。予測を次のように変換する必要があります
最初にロジットを作成し、次に [`~evaluate.EvaluationModule.compute`] を呼び出す前にラベルのサイズに一致するように再形成します。
<frameworkcontent>
<pt>
```py
>>> import numpy as np
>>> import torch
>>> from torch import nn
>>> def compute_metrics(eval_pred):
... with torch.no_grad():
... logits, labels = eval_pred
... logits_tensor = torch.from_numpy(logits)
... logits_tensor = nn.functional.interpolate(
... logits_tensor,
... size=labels.shape[-2:],
... mode="bilinear",
... align_corners=False,
... ).argmax(dim=1)
... pred_labels = logits_tensor.detach().cpu().numpy()
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=255,
... reduce_labels=False,
... )
... for key, value in metrics.items():
... if type(value) is np.ndarray:
... metrics[key] = value.tolist()
... return metrics
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... logits = tf.transpose(logits, perm=[0, 2, 3, 1])
... logits_resized = tf.image.resize(
... logits,
... size=tf.shape(labels)[1:],
... method="bilinear",
... )
... pred_labels = tf.argmax(logits_resized, axis=-1)
... metrics = metric.compute(
... predictions=pred_labels,
... references=labels,
... num_labels=num_labels,
... ignore_index=-1,
... reduce_labels=image_processor.do_reduce_labels,
... )
... per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
... per_category_iou = metrics.pop("per_category_iou").tolist()
... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
... return {"val_" + k: v for k, v in metrics.items()}
```
</tf>
</frameworkcontent>
これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。
## Train
<frameworkcontent>
<pt>
<Tip>
[`Trainer`] を使用したモデルの微調整に慣れていない場合は、[こちら](../training#finetune-with-trainer) の基本的なチュートリアルをご覧ください。
</Tip>
これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、ラベル ID とラベル クラス間のマッピングをモデルに渡します。
```py
>>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer
>>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id)
```
この時点で残っている手順は次の 3 つだけです。
1. [`TrainingArguments`] でトレーニング ハイパーパラメータを定義します。 `image` 列が削除されるため、未使用の列を削除しないことが重要です。 `image` 列がないと、`pixel_values` を作成できません。この動作を防ぐには、`remove_unused_columns=False`を設定してください。他に必要なパラメータは、モデルの保存場所を指定する `output_dir` だけです。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`Trainer`] は IoU メトリックを評価し、トレーニング チェックポイントを保存します。
2. トレーニング引数を、モデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Trainer`] に渡します。
3. [`~Trainer.train`] を呼び出してモデルを微調整します。
```py
>>> training_args = TrainingArguments(
... output_dir="segformer-b0-scene-parse-150",
... learning_rate=6e-5,
... num_train_epochs=50,
... per_device_train_batch_size=2,
... per_device_eval_batch_size=2,
... save_total_limit=3,
... eval_strategy="steps",
... save_strategy="steps",
... save_steps=20,
... eval_steps=20,
... logging_steps=1,
... eval_accumulation_steps=5,
... remove_unused_columns=False,
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=train_ds,
... eval_dataset=test_ds,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
<Tip>
Keras を使用したモデルの微調整に慣れていない場合は、まず [基本チュートリアル](./training#train-a-tensorflow-model-with-keras) を確認してください。
</Tip>
TensorFlow でモデルを微調整するには、次の手順に従います。
1. トレーニングのハイパーパラメータを定義し、オプティマイザーと学習率スケジュールを設定します。
2. 事前トレーニングされたモデルをインスタンス化します。
3. 🤗 データセットを `tf.data.Dataset` に変換します。
4. モデルをコンパイルします。
5. コールバックを追加してメトリクスを計算し、モデルを 🤗 Hub にアップロードします
6. `fit()` メソッドを使用してトレーニングを実行します。
まず、ハイパーパラメーター、オプティマイザー、学習率スケジュールを定義します。
```py
>>> from transformers import create_optimizer
>>> batch_size = 2
>>> num_epochs = 50
>>> num_train_steps = len(train_ds) * num_epochs
>>> learning_rate = 6e-5
>>> weight_decay_rate = 0.01
>>> optimizer, lr_schedule = create_optimizer(
... init_lr=learning_rate,
... num_train_steps=num_train_steps,
... weight_decay_rate=weight_decay_rate,
... num_warmup_steps=0,
... )
```
次に、ラベル マッピングとともに [`TFAutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、それをコンパイルします。
オプティマイザ。 Transformers モデルにはすべてデフォルトのタスク関連の損失関数があるため、次の場合を除き、損失関数を指定する必要はないことに注意してください。
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained(
... checkpoint,
... id2label=id2label,
... label2id=label2id,
... )
>>> model.compile(optimizer=optimizer) # No loss argument!
```
[`~datasets.Dataset.to_tf_dataset`] と [`DefaultDataCollator`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。
```py
>>> from transformers import DefaultDataCollator
>>> data_collator = DefaultDataCollator(return_tensors="tf")
>>> tf_train_dataset = train_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
>>> tf_eval_dataset = test_ds.to_tf_dataset(
... columns=["pixel_values", "label"],
... shuffle=True,
... batch_size=batch_size,
... collate_fn=data_collator,
... )
```
予測から精度を計算し、モデルを 🤗 ハブにプッシュするには、[Keras callbacks](../main_classes/keras_callbacks) を使用します。
`compute_metrics` 関数を [`KerasMetricCallback`] に渡します。
そして [`PushToHubCallback`] を使用してモデルをアップロードします。
```py
>>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback
>>> metric_callback = KerasMetricCallback(
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
... )
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", image_processor=image_processor)
>>> callbacks = [metric_callback, push_to_hub_callback]
```
ついに、モデルをトレーニングする準備が整いました。`fit()`トレーニングおよび検証データセット、エポック数、
モデルを微調整するためのコールバック:
```py
>>> model.fit(
... tf_train_dataset,
... validation_data=tf_eval_dataset,
... callbacks=callbacks,
... epochs=num_epochs,
... )
```
おめでとう!モデルを微調整し、🤗 Hub で共有しました。これで推論に使用できるようになりました。
</tf>
</frameworkcontent>
## Inference
モデルを微調整したので、それを推論に使用できるようになりました。
推論のために画像をロードします。
```py
>>> image = ds[0]["image"]
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/>
</div>
<frameworkcontent>
<pt>
推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して画像セグメンテーション用の `pipeline` をインスタンス化し、それに画像を渡します。
```py
>>> from transformers import pipeline
>>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model")
>>> segmenter(image)
[{'score': None,
'label': 'wall',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062690>},
{'score': None,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A50>},
{'score': None,
'label': 'floor',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062B50>},
{'score': None,
'label': 'ceiling',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A10>},
{'score': None,
'label': 'bed ',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E90>},
{'score': None,
'label': 'windowpane',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062390>},
{'score': None,
'label': 'cabinet',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062550>},
{'score': None,
'label': 'chair',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062D90>},
{'score': None,
'label': 'armchair',
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E10>}]
```
必要に応じて、`pipeline` の結果を手動で複製することもできます。画像プロセッサで画像を処理し、`pixel_values`を GPU に配置します。
```py
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available, otherwise use a CPU
>>> encoding = image_processor(image, return_tensors="pt")
>>> pixel_values = encoding.pixel_values.to(device)
```
入力をモデルに渡し、「logits」を返します。
```py
>>> outputs = model(pixel_values=pixel_values)
>>> logits = outputs.logits.cpu()
```
次に、ロジットを元の画像サイズに再スケールします。
```py
>>> upsampled_logits = nn.functional.interpolate(
... logits,
... size=image.size[::-1],
... mode="bilinear",
... align_corners=False,
... )
>>> pred_seg = upsampled_logits.argmax(dim=1)[0]
```
</pt>
</frameworkcontent>
<frameworkcontent>
<tf>
画像プロセッサをロードして画像を前処理し、入力を TensorFlow テンソルとして返します。
```py
>>> from transformers import AutoImageProcessor
>>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation")
>>> inputs = image_processor(image, return_tensors="tf")
```
入力をモデルに渡し、`logits`を返します。
```py
>>> from transformers import TFAutoModelForSemanticSegmentation
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation")
>>> logits = model(**inputs).logits
```
次に、ロジットを元の画像サイズに再スケールし、クラス次元に argmax を適用します。
```py
>>> logits = tf.transpose(logits, [0, 2, 3, 1])
>>> upsampled_logits = tf.image.resize(
... logits,
... # We reverse the shape of `image` because `image.size` returns width and height.
... image.size[::-1],
... )
>>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0]
```
</tf>
</frameworkcontent>
結果を視覚化するには、[データセット カラー パレット](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) を、それぞれをマップする `ade_palette()` としてロードします。クラスを RGB 値に変換します。次に、画像と予測されたセグメンテーション マップを組み合わせてプロットできます。
```py
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8)
>>> palette = np.array(ade_palette())
>>> for label, color in enumerate(palette):
... color_seg[pred_seg == label, :] = color
>>> color_seg = color_seg[..., ::-1] # convert to BGR
>>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map
>>> img = img.astype(np.uint8)
>>> plt.figure(figsize=(15, 10))
>>> plt.imshow(img)
>>> plt.show()
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/>
</div>

View File

@ -221,7 +221,7 @@ Transformerは最初に機械翻訳のために設計され、それ以降、ほ
事前訓練済みモデルをテキスト分類に使用するには、ベースのBERTモデルの上にシーケンス分類ヘッドを追加します。シーケンス分類ヘッドは最終的な隠れた状態を受け入れ、それらをロジットに変換するための線形層です。クロスエントロピー損失は、ロジットとターゲット間で最も可能性の高いラベルを見つけるために計算されます。
テキスト分類を試してみる準備はできましたかDistilBERTを微調整し、推論に使用する方法を学ぶために、完全な[テキスト分類ガイド](tasks/sequence_classification)をチェックしてみてください!
テキスト分類を試してみる準備はできましたかDistilBERTを微調整し、推論に使用する方法を学ぶために、完全な[テキスト分類ガイド(英語版)](../en/tasks/sequence_classification)をチェックしてみてください!
### Token classification

View File

@ -1,3 +1,16 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""":
This script is used to test training a model using Tensor Parallelism and Data Parallelism.

View File

@ -60,7 +60,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset

View File

@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")

View File

@ -55,7 +55,7 @@ from transformers.utils import check_min_version, send_example_telemetry
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
Array = Any
Dataset = datasets.arrow_dataset.Dataset

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

View File

@ -0,0 +1,4 @@
# Metrics Monitoring
## Continuous Batching Metrics in Transformers

View File

@ -0,0 +1,974 @@
{
"annotations": {
"list": [
{
"builtIn": 1,
"datasource": {
"type": "grafana",
"uid": "-- Grafana --"
},
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"target": {
"limit": 100,
"matchAny": false,
"tags": [],
"type": "dashboard"
},
"type": "dashboard"
}
]
},
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": 2,
"links": [],
"panels": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"description": "Memory usage of the PagedAttentionCache",
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"max": 10737418240,
"min": 0,
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "yellow",
"value": 5368709120
},
{
"color": "red",
"value": 8589934592
}
]
},
"unit": "bytes"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 0,
"y": 0
},
"id": 2,
"options": {
"minVizHeight": 75,
"minVizWidth": 75,
"orientation": "auto",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showThresholdLabels": false,
"showThresholdMarkers": true,
"sizing": "auto"
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "kv_cache_memory_bytes",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "KV Cache Memory Usage",
"transparent": true,
"type": "gauge"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "dark-blue"
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 6,
"y": 0
},
"id": 13,
"options": {
"colorMode": "value",
"graphMode": "area",
"justifyMode": "auto",
"orientation": "auto",
"percentChangeColorMode": "standard",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "12.0.0",
"targets": [
{
"disableTextWrap": false,
"editorMode": "builder",
"expr": "active_requests_count",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Active Requests",
"transparent": true,
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "dark-orange"
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 12,
"y": 0
},
"id": 14,
"options": {
"colorMode": "value",
"graphMode": "area",
"justifyMode": "auto",
"orientation": "auto",
"percentChangeColorMode": "standard",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "12.0.0",
"targets": [
{
"disableTextWrap": false,
"editorMode": "builder",
"expr": "waiting_requests_count",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Waiting Requests",
"transparent": true,
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"description": "Ratio of decode tokens to prefill tokens in a batch",
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "blue"
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 18,
"y": 0
},
"id": 6,
"options": {
"colorMode": "value",
"graphMode": "none",
"justifyMode": "auto",
"orientation": "auto",
"percentChangeColorMode": "standard",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "decode_prefill_ratio",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Decode/Prefill Ratio",
"transparent": true,
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
},
"id": 10,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "rate(decode_tokens_processed_total[$__rate_interval])",
"legendFormat": "__auto",
"range": true,
"refId": "A"
}
],
"title": "Decode tokens throupught tok/s",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 8
},
"id": 11,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "rate(prefill_tokens_processed_total[$__rate_interval])",
"legendFormat": "__auto",
"range": true,
"refId": "A"
}
],
"title": "Prefill rate tok/s",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 16
},
"id": 9,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "histogram_quantile(0.95, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
"legendFormat": "p95",
"range": true,
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.99, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p99",
"range": true,
"refId": "B"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.5, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p50",
"range": true,
"refId": "C"
}
],
"title": "Batch fill percentage percentiles",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"description": "KV Cache Memory Usage Over Time",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 20,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 2,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
},
"unit": "bytes"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 16
},
"id": 4,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "kv_cache_memory_bytes",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "Used memory",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "kv_cache_free_memory_bytes",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "free memory",
"range": true,
"refId": "B",
"useBackend": false
}
],
"title": "KV Cache Memory Usage Over Time",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
},
"unit": "ms"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 24
},
"id": 8,
"options": {
"displayMode": "gradient",
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": false
},
"maxVizHeight": 300,
"minVizHeight": 10,
"minVizWidth": 0,
"namePlacement": "auto",
"orientation": "auto",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showUnfilled": true,
"sizing": "auto",
"valueMode": "color"
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "p95",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"legendFormat": "p50",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "p99",
"range": true,
"refId": "C",
"useBackend": false
}
],
"title": "Time to First Token (TTFT)",
"type": "bargauge"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
},
"unit": "ms"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 24
},
"id": 12,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "histogram_quantile(0.5, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
"legendFormat": "p50",
"range": true,
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.95, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p95",
"range": true,
"refId": "B"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.99, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p99",
"range": true,
"refId": "C"
}
],
"title": "Request latency percentiles",
"type": "timeseries"
}
],
"preload": false,
"refresh": "5s",
"schemaVersion": 41,
"tags": [],
"templating": {
"list": []
},
"time": {
"from": "now-15m",
"to": "now"
},
"timepicker": {},
"timezone": "",
"title": "Transformers Continuous Batching Metrics",
"uid": "Lw6CTvVSz",
"version": 5
}

View File

@ -0,0 +1,55 @@
services:
memcached:
image: memcached:1.6.29
container_name: memcached
ports:
- "11211:11211"
environment:
- MEMCACHED_MAX_MEMORY=64m # Set the maximum memory usage
- MEMCACHED_THREADS=4 # Number of threads to use
prometheus:
image: prom/prometheus:latest
command:
- "--config.file=/etc/prometheus/prometheus.yml"
- --web.enable-otlp-receiver # Enable OTLP receiver
- --web.enable-remote-write-receiver
- --enable-feature=exemplar-storage
- --enable-feature=native-histograms
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
ports:
- "9090:9090"
tempo:
image: grafana/tempo:latest
command: [ "-config.file=/etc/tempo.yaml" ]
volumes:
- ./tempo.yaml:/etc/tempo.yaml
ports:
- "14268:14268" # jaeger ingest
- "3200:3200" # tempo
- "9095:9095" # tempo grpc
- "4317:4317" # otlp grpc
- "4318:4318" # otlp http
- "9411:9411" # zipkin
depends_on:
- memcached
grafana:
image: grafana/grafana:latest
volumes:
- ./continuous-batching-dashboard.json:/etc/grafana/provisioning/dashboards/continuous-batching-dashboard.json
- ./grafana-dashboard.yaml:/etc/grafana/provisioning/dashboards/grafana-dashboard.yaml
- ./grafana-datasources.yaml:/etc/grafana/provisioning/datasources/datasources.yaml
environment:
- GF_AUTH_ANONYMOUS_ENABLED=true
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin
- GF_AUTH_DISABLE_LOGIN_FORM=true
- GF_FEATURE_TOGGLES_ENABLE=traceqlEditor metricsSummary
- GF_INSTALL_PLUGINS=https://storage.googleapis.com/integration-artifacts/grafana-exploretraces-app/grafana-exploretraces-app-latest.zip;grafana-traces-app
ports:
- "3000:3000"
depends_on:
- prometheus
- tempo

View File

@ -0,0 +1,11 @@
apiVersion: 1
providers:
- name: 'Transformers Dashboards'
orgId: 1
folder: 'Transformers'
type: file
disableDeletion: false
editable: true
options:
path: /etc/grafana/provisioning/dashboards

View File

@ -0,0 +1,14 @@
apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
access: proxy
url: http://prometheus:9090
isDefault: true
- name: Tempo
type: tempo
access: proxy
url: http://tempo:3200
uid: tempo

View File

@ -0,0 +1,48 @@
# Example usage of the trace and attach_tracer decorators
from transformers.utils.metrics import attach_tracer, traced
@attach_tracer()
class ExampleClass:
def __init__(self, name):
# The attach_tracer decorator has already created self.tracer for us
self.name = name
@traced # This method will use the tracer from the class instance
def process_data(self, data):
# This method is traced and can use self.tracer
return f"Processed {data} with {self.name}"
@traced(span_name="custom_operation") # With custom span name
def special_operation(self, value):
# Also traced, with a custom span name
return value * 2
@traced(
additional_attributes=[
("name", "object.name", lambda x: x.upper()), # Using a transform function
("name", "object.fixed_value", "static_value"), # Using a fixed value
]
)
def operation_with_attributes(self):
# This will add the specified attributes to the span
return "Operation completed"
# For functions without a class, the traced decorator still works
@traced
def standalone_function(arg1, arg2):
# For functions, a tracer is created based on the module name
return arg1 + arg2
# Usage:
if __name__ == "__main__":
# With OpenTelemetry configured, these will produce traces
example = ExampleClass("test_object")
example.process_data("sample")
example.special_operation(42)
example.operation_with_attributes()
result = standalone_function(1, 2)

View File

@ -0,0 +1,3 @@
global:
scrape_interval: 15s

View File

@ -0,0 +1,90 @@
stream_over_http_enabled: true
server:
http_listen_port: 3200
log_level: info
cache:
background:
writeback_goroutines: 5
caches:
- roles:
- frontend-search
memcached:
addresses: dns+memcached:11211
query_frontend:
search:
duration_slo: 5s
throughput_bytes_slo: 1.073741824e+09
metadata_slo:
duration_slo: 5s
throughput_bytes_slo: 1.073741824e+09
trace_by_id:
duration_slo: 100ms
metrics:
max_duration: 200h # maximum duration of a metrics query, increase for local setups
query_backend_after: 5m
duration_slo: 5s
throughput_bytes_slo: 1.073741824e+09
distributor:
receivers: # this configuration will listen on all ports and protocols that tempo is capable of.
jaeger: # the receives all come from the OpenTelemetry collector. more configuration information can
protocols: # be found there: https://github.com/open-telemetry/opentelemetry-collector/tree/main/receiver
thrift_http: #
endpoint: "tempo:14268" # for a production deployment you should only enable the receivers you need!
grpc:
endpoint: "tempo:14250"
thrift_binary:
endpoint: "tempo:6832"
thrift_compact:
endpoint: "tempo:6831"
zipkin:
endpoint: "tempo:9411"
otlp:
protocols:
grpc:
endpoint: "tempo:4317"
http:
endpoint: "tempo:4318"
opencensus:
endpoint: "tempo:55678"
ingester:
max_block_duration: 5m # cut the headblock when this much time passes. this is being set for demo purposes and should probably be left alone normally
compactor:
compaction:
block_retention: 720h # overall Tempo trace retention. set for demo purposes
metrics_generator:
registry:
external_labels:
source: tempo
cluster: docker-compose
storage:
path: /var/tempo/generator/wal
remote_write:
- url: http://prometheus:9090/api/v1/write
send_exemplars: true
traces_storage:
path: /var/tempo/generator/traces
processor:
local_blocks:
filter_server_spans: false
flush_to_storage: true
storage:
trace:
backend: local # backend configuration to use
wal:
path: /var/tempo/wal # where to store the wal locally
local:
path: /var/tempo/blocks
overrides:
defaults:
metrics_generator:
processors: [service-graphs, span-metrics, local-blocks] # enables metrics generator
generate_native_histograms: both

View File

@ -1,3 +1,16 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""":
This script is used to test training a model using Tensor Parallelism and Data Parallelism.

View File

@ -44,7 +44,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")

View File

@ -0,0 +1,109 @@
import time
import datasets
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
torch.set_float32_matmul_precision("high")
model_id = "meta-llama/Llama-3.2-3b-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
generation_config = GenerationConfig(
max_new_tokens=512,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
use_cache=False,
num_blocks=2048,
block_size=128,
do_sample=True,
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
scheduler="prefill_first",
)
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
# --- Example 1: Simple Version using generate_batch ---
print("--- Running CB Generation Example ---")
def tokenize_function(examples):
return tokenizer(examples["question"])
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
start_time_simple = time.time()
# model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs", fullgraph=True)
batch_outputs = model.generate_batch(
inputs=simple_batch_inputs,
generation_config=generation_config,
)
end_time_simple = time.time()
for request in batch_outputs:
input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=False)
try:
output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=False)
except Exception as e:
print(f"Decoding failed for request {request}: {e}")
output_text = tokenizer.decode(batch_outputs[request].generated_tokens[1:], skip_special_tokens=False)
if len(output_text) > 0:
print("-" * 20)
print(f"{request} Input: {input_text}")
print(f"{request} Output: {output_text}")
else:
print("", end="\r\r\r\r")
print("-" * 20)
print("--- Finished CB Generation Example ---\n\n")
print(f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds")
# train_dataset = train_dataset.select(range(5)) # Use only 5 examples for the simple version
# tokenized_test_prompts = tokenizer(_TEST_PROMPTS, padding=True, padding_side="left", truncation=True, max_length=512)
# simple_batch_inputs = list(tokenized_test_prompts["input_ids"])
# def tokenize_function(examples):
# # Truncate to avoid overly long prompts exceeding max context length
# return tokenizer(examples["question"], padding=True, truncation=True, max_length=512)
# tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
# simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
# model.config.attn_implementation = "sdpa"
# start_time_simple = time.time()
# batch_size = 64
# full_outputs = []
# from tqdm import tqdm
# for i in tqdm(range(0, len(simple_batch_inputs)-batch_size, batch_size)):
# outputs = model.generate(
# torch.tensor(simple_batch_inputs[i:i+batch_size], device=model.device),
# generation_config=GenerationConfig(
# max_new_tokens=16, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id
# ),
# )
# full_outputs.extend(outputs.tolist())
# end_time_simple = time.time()
# print(f"\nSimple batch generation took: {end_time_simple - start_time_simple:.2f} seconds")
# print("\nResults from simple generate_batch:")
# for i, request in enumerate(full_outputs):
# output_text = tokenizer.decode(request, skip_special_tokens=False)
# print("-" * 20)
# print(f" Output: {output_text}")
# print("-" * 20)
# print("--- Finished Simple Batch Generation Example ---\n\n")

View File

@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)

View File

@ -42,7 +42,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -47,7 +47,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -52,7 +52,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")

View File

@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")

View File

@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")

View File

@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)

View File

@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)

View File

@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

View File

@ -45,7 +45,7 @@ from transformers.utils import check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -53,7 +53,7 @@ from transformers.utils import check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)
# You should update this to your particular problem to have better documentation of `model_type`

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/object-detection/requirements.txt")

View File

@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logging.basicConfig(level=logging.INFO)
logger = get_logger(__name__)

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -45,7 +45,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")

View File

@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)

View File

@ -49,7 +49,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")

View File

@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

View File

@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

View File

@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)

View File

@ -47,7 +47,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")

View File

@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

View File

@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")

View File

@ -51,7 +51,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")

View File

@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt")

View File

@ -50,7 +50,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version(
"datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/contrastive-image-text/requirements.txt"

View File

@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")

View File

@ -49,7 +49,7 @@ from transformers.utils import check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -61,7 +61,7 @@ except (ModuleNotFoundError, ImportError):
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
logger = logging.getLogger(__name__)

View File

@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
# region Checking dependencies
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

View File

@ -46,7 +46,7 @@ from transformers.utils import check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
task_to_keys = {
"cola": ("sentence", None),

View File

@ -55,7 +55,7 @@ from transformers.utils.versions import require_version
# region Dependencies and constants
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.52.0.dev0")
check_min_version("4.53.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")

View File

@ -117,7 +117,7 @@ _deps = [
"GitPython<3.1.19",
"hf-doc-builder>=0.3.0",
"hf_xet",
"huggingface-hub>=0.30.0,<1.0",
"huggingface-hub==v0.32.0.rc1",
"importlib_metadata",
"ipadic>=1.0.0,<2.0",
"isort>=5.5.4",
@ -125,7 +125,7 @@ _deps = [
"jaxlib>=0.4.1,<=0.4.13",
"jieba",
"jinja2>=3.1.0",
"kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5",
"kenlm",
# Keras pin - this is to make sure Keras 3 doesn't destroy us. Remove or change when we have proper support.
"keras>2.9,<2.16",
"keras-nlp>=0.3.1,<0.14.0", # keras-nlp 0.14 doesn't support keras 2, see pin on keras.
@ -201,6 +201,9 @@ _deps = [
"pytest-rich",
"libcst",
"rich",
"opentelemetry-api",
"opentelemetry-exporter-otlp",
"opentelemetry-sdk",
]
@ -315,7 +318,7 @@ extras["audio"] = deps_list(
"librosa",
"pyctcdecode",
"phonemizer",
"kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5",
"kenlm",
)
# `pip install ".[speech]"` is deprecated and `pip install ".[torch-speech]"` should be used instead
extras["speech"] = deps_list("torchaudio") + extras["audio"]
@ -435,6 +438,9 @@ extras["torchhub"] = deps_list(
extras["benchmark"] = deps_list("optimum-benchmark")
# OpenTelemetry dependencies for metrics collection in continuous batching
extras["open-telemetry"] = deps_list("opentelemetry-api", "opentelemetry-exporter-otlp", "opentelemetry-sdk")
# when modifying the following list, make sure to update src/transformers/dependency_versions_check.py
install_requires = [
deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads
@ -451,7 +457,7 @@ install_requires = [
setup(
name="transformers",
version="4.52.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
version="4.53.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
author="The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)",
author_email="transformers@huggingface.co",
description="State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow",

Some files were not shown because too many files have changed in this diff Show More