mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-21 01:23:56 +08:00
Compare commits
114 Commits
v4.52.1
...
next-token
Author | SHA1 | Date | |
---|---|---|---|
ad7bc7ba0c | |||
badc71b9f6 | |||
565a0052ed | |||
defeb04299 | |||
593276fe1e | |||
3aab6e95cb | |||
fb82a98717 | |||
cea254c909 | |||
baddbdd24b | |||
a974e3b4e1 | |||
b1eae943a2 | |||
5f49e180a6 | |||
3b3ebcec40 | |||
f5307272f5 | |||
a092f6babf | |||
be7aa3210b | |||
587c1b0ed1 | |||
b73faef52f | |||
538e847c06 | |||
4f7b0ff8d1 | |||
9c50576860 | |||
0f5a8243c4 | |||
f85fd90407 | |||
b9f8f863d9 | |||
07dd6b2495 | |||
3142bd8592 | |||
10ae443ec0 | |||
80902ae9b1 | |||
008e0d87c5 | |||
c769483188 | |||
55f2333366 | |||
1a5be2f5c0 | |||
19fdb75cf0 | |||
b0735dc0c1 | |||
9e1017b479 | |||
b5ececb900 | |||
c4e71e8fff | |||
706b00928f | |||
07848a8405 | |||
cd0f3ce73b | |||
ba6d72226d | |||
701caef704 | |||
0a4e8e2855 | |||
63964b7c67 | |||
8b03c8eaf2 | |||
eb74cf977b | |||
98328fd9a1 | |||
78079abeff | |||
7a9b071bfd | |||
b5b76b5561 | |||
bff32678cc | |||
9f0402bc4d | |||
d03a3ca692 | |||
a5a0c7b888 | |||
cba279f46c | |||
6e3063422c | |||
4a03044ddb | |||
d0c9c66d1c | |||
31f8a0fe8a | |||
36f97ae15b | |||
33d23c39ed | |||
dffb118013 | |||
e0aad278fe | |||
e64ed0304c | |||
53fb245eb6 | |||
d5f992f5e6 | |||
1ed19360b1 | |||
bb567d85a4 | |||
3c289e2104 | |||
f5d45d89c4 | |||
896833c183 | |||
a63bc17416 | |||
54cd86708d | |||
135163e9c5 | |||
a6b51e7341 | |||
3e960e032d | |||
9eb0a37c9e | |||
38f9c5b15b | |||
11b670a282 | |||
b01984a51d | |||
2b585419b4 | |||
b59386dc0a | |||
211f2b0875 | |||
73286d8e29 | |||
d95c864a25 | |||
9895819514 | |||
dfbee79ca3 | |||
1234683309 | |||
03a4c024dc | |||
dcaf47dde5 | |||
163138a911 | |||
f8630c778c | |||
aa02a5d902 | |||
b26157d64c | |||
b369a65480 | |||
28d3148b07 | |||
7b7bb8df97 | |||
5c13cc0f94 | |||
71009e4b68 | |||
d6c34cdcd0 | |||
ae3e4e2d97 | |||
174684a9b6 | |||
e4decee9c0 | |||
ddf67d2d73 | |||
9a962dd9ed | |||
101b3fa4ea | |||
a21f11fca2 | |||
4542086db7 | |||
6829936ee0 | |||
e288ee00d8 | |||
711d78d104 | |||
feec294dea | |||
cb513e35f9 | |||
f4ef41c45e |
@ -43,16 +43,6 @@ jobs:
|
||||
parallelism: 1
|
||||
steps:
|
||||
- checkout
|
||||
- run: python3 utils/extract_pr_number_from_circleci.py > pr_number.txt
|
||||
- run: echo $(cat pr_number.txt)
|
||||
- run: if [[ "$(cat pr_number.txt)" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
|
||||
- run: 'curl -L -H "Accept: application/vnd.github+json" -H "X-GitHub-Api-Version: 2022-11-28" https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$(cat pr_number.txt) >> github.txt'
|
||||
- run: cat github.txt
|
||||
- run: (python3 -c 'import json; from datetime import datetime; fp = open("github.txt"); data = json.load(fp); fp.close(); f = "%Y-%m-%dT%H:%M:%SZ"; created = datetime.strptime(data["created_at"], f); updated = datetime.strptime(data["updated_at"], f); s = (updated - created).total_seconds(); print(int(s))' || true) > elapsed.txt
|
||||
- run: if [ "$(cat elapsed.txt)" == "" ]; then echo 60 > elapsed.txt; fi
|
||||
- run: cat elapsed.txt
|
||||
- run: if [ "$(cat elapsed.txt)" -lt "30" ]; then echo "PR is just opened, wait some actions from GitHub"; sleep 30; fi
|
||||
- run: 'if grep -q "\"draft\": true," github.txt; then echo "draft mode, skip test!"; circleci-agent step halt; fi'
|
||||
- run: uv pip install -U -e .
|
||||
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
|
||||
- run: mkdir -p test_preparation
|
||||
@ -122,8 +112,6 @@ jobs:
|
||||
|
||||
- run:
|
||||
name: "Retrieve Artifact Paths"
|
||||
env:
|
||||
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
|
||||
command: |
|
||||
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
|
||||
job_number=${CIRCLE_BUILD_NUM}
|
||||
|
@ -9,6 +9,18 @@ on:
|
||||
start_sha:
|
||||
required: true
|
||||
type: string
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
env:
|
||||
@ -26,7 +38,7 @@ env:
|
||||
|
||||
|
||||
jobs:
|
||||
run_models_gpu:
|
||||
check_new_failures:
|
||||
name: " "
|
||||
runs-on:
|
||||
group: aws-g4dn-4xlarge-cache
|
||||
@ -36,67 +48,118 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: ci_results_run_models_gpu
|
||||
path: /transformers/ci_results_run_models_gpu
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: /transformers/ci_results_${{ inputs.job }}
|
||||
|
||||
- name: Check file
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
|
||||
echo "process=true" >> $GITHUB_ENV
|
||||
else
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
|
||||
echo "process=false" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- uses: actions/download-artifact@v4
|
||||
if: ${{ env.process == 'true' }}
|
||||
with:
|
||||
pattern: setup_values*
|
||||
path: setup_values
|
||||
merge-multiple: true
|
||||
|
||||
- name: Prepare some setup values
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
if [ -f setup_values/prev_workflow_run_id.txt ]; then
|
||||
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
if [ -f setup_values/other_workflow_run_id.txt ]; then
|
||||
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Update clone
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Get target commit
|
||||
working-directory: /transformers/utils
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"]); print(commit)')" >> $GITHUB_ENV
|
||||
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Checkout to `start_sha`
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: git fetch && git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
- name: Environment
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
python3 utils/print_env.py
|
||||
|
||||
- name: Show installed libraries and their versions
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: pip freeze
|
||||
|
||||
- name: Check failed tests
|
||||
working-directory: /transformers
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
|
||||
|
||||
- name: Show results
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
ls -l new_model_failures_with_bad_commit.json
|
||||
cat new_model_failures_with_bad_commit.json
|
||||
ls -l new_failures_with_bad_commit.json
|
||||
cat new_failures_with_bad_commit.json
|
||||
|
||||
- name: Checkout back
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
git checkout ${{ inputs.start_sha }}
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
python3 utils/process_bad_commit_report.py
|
||||
|
||||
- name: Process report
|
||||
shell: bash
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
{
|
||||
echo 'REPORT_TEXT<<EOF'
|
||||
@ -104,17 +167,31 @@ jobs:
|
||||
echo EOF
|
||||
} >> "$GITHUB_ENV"
|
||||
|
||||
- name: Prepare Slack report title
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Send processed report
|
||||
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: '#transformers-ci-feedback-tests'
|
||||
channel-id: '#${{ inputs.slack_report_channel }}'
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"blocks": [
|
||||
{
|
||||
"type": "header",
|
||||
"text": {
|
||||
"type": "plain_text",
|
||||
"text": "${{ env.title }}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
2
.github/workflows/self-comment-ci.yml
vendored
2
.github/workflows/self-comment-ci.yml
vendored
@ -29,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
@ -1,55 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi210 scheduled CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
@ -15,10 +15,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
@ -26,10 +27,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
@ -37,10 +39,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
@ -48,8 +51,9 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
63
.github/workflows/self-scheduled-amd-mi300-caller.yml
vendored
Normal file
63
.github/workflows/self-scheduled-amd-mi300-caller.yml
vendored
Normal file
@ -0,0 +1,63 @@
|
||||
name: Self-hosted runner scale set (AMD mi300 scheduled CI caller)
|
||||
|
||||
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
|
||||
# For example, 1gpu scale set: amd-mi300-ci-1gpu
|
||||
# 2gpu scale set: amd-mi300-ci-2gpu
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
42
.github/workflows/self-scheduled-caller.yml
vendored
42
.github/workflows/self-scheduled-caller.yml
vendored
@ -8,8 +8,43 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- run_scheduled_ci*
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
prev_workflow_run_id:
|
||||
description: 'previous workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
other_workflow_run_id:
|
||||
description: 'other workflow run id to compare'
|
||||
type: string
|
||||
required: false
|
||||
default: ""
|
||||
|
||||
|
||||
# Used for `push` to easily modiffy the target workflow runs to compare against
|
||||
env:
|
||||
prev_workflow_run_id: ""
|
||||
other_workflow_run_id: ""
|
||||
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Setup
|
||||
run: |
|
||||
mkdir "setup_values"
|
||||
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
|
||||
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: setup_values
|
||||
path: setup_values
|
||||
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: ./.github/workflows/self-scheduled.yml
|
||||
@ -19,6 +54,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
@ -30,6 +66,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-pytorch-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
tf-pipeline:
|
||||
@ -41,6 +78,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-tensorflow-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
@ -52,6 +90,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
trainer-fsdp-ci:
|
||||
@ -63,6 +102,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
@ -75,6 +115,7 @@ jobs:
|
||||
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
ci_event: Daily CI
|
||||
working-directory-prefix: /workspace
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
quantization-ci:
|
||||
@ -86,4 +127,5 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-quantization-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
18
.github/workflows/self-scheduled.yml
vendored
18
.github/workflows/self-scheduled.yml
vendored
@ -28,6 +28,10 @@ on:
|
||||
default: ''
|
||||
required: false
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -584,15 +588,21 @@ jobs:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
check_new_model_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
|
||||
name: Check new model failures
|
||||
check_new_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
|
||||
name: Check new failures
|
||||
needs: send_results
|
||||
uses: ./.github/workflows/check_failed_model_tests.yml
|
||||
uses: ./.github/workflows/check_failed_tests.yml
|
||||
with:
|
||||
docker: ${{ inputs.docker }}
|
||||
start_sha: ${{ github.sha }}
|
||||
job: ${{ inputs.job }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
|
||||
secrets: inherit
|
||||
|
58
.github/workflows/slack-report.yml
vendored
58
.github/workflows/slack-report.yml
vendored
@ -21,6 +21,9 @@ on:
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
@ -39,8 +42,23 @@ jobs:
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
|
||||
- name: Prepare some setup values
|
||||
run: |
|
||||
if [ -f setup_values/prev_workflow_run_id.txt ]; then
|
||||
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
if [ -f setup_values/other_workflow_run_id.txt ]; then
|
||||
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
|
||||
else
|
||||
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
- name: Send message to Slack
|
||||
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
|
||||
shell: bash
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
@ -50,19 +68,22 @@ jobs:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
CI_EVENT: ${{ inputs.ci_event }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
|
||||
# empty string, and the called script still get one argument (which is the emtpy string).
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
|
||||
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
|
||||
else
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
fi
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
@ -70,32 +91,3 @@ jobs:
|
||||
with:
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: ci_results_${{ inputs.job }}
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack for quantization workflow
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
|
||||
CI_EVENT: ${{ inputs.ci_event }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
|
||||
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
sudo apt-get install -y curl
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: ci_results_${{ inputs.job }}
|
||||
|
@ -71,6 +71,9 @@ RUN python3 -m pip install --no-cache-dir g2p-en
|
||||
# For Some bitsandbytes tests
|
||||
RUN python3 -m pip install --no-cache-dir einops
|
||||
|
||||
# For Some tests with `@require_liger_kernel`
|
||||
RUN python3 -m pip install --no-cache-dir liger-kernel
|
||||
|
||||
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM rocm/dev-ubuntu-22.04:6.2.4
|
||||
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -11,9 +11,6 @@ RUN apt update && \
|
||||
RUN git lfs install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
|
||||
|
||||
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
|
||||
|
||||
ARG REF=main
|
||||
@ -33,3 +30,6 @@ RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Remove nvml and nvidia-ml-py as it is not compatible with ROCm. apex is not tested on NVIDIA either.
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
@ -48,3 +48,6 @@ RUN python3 -c "from deepspeed.launcher.runner import main"
|
||||
|
||||
# Remove nvml as it is not compatible with ROCm
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
@ -76,12 +76,12 @@
|
||||
title: Prompt engineering
|
||||
- local: llm_optims
|
||||
title: Optimizing inference
|
||||
- local: cache_explanation
|
||||
title: Caching
|
||||
- local: kv_cache
|
||||
title: KV cache strategies
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: cache_explanation
|
||||
title: Caching
|
||||
- local: llm_tutorial_optimization
|
||||
title: Getting the most out of LLMs
|
||||
- local: perplexity
|
||||
@ -386,7 +386,7 @@
|
||||
- local: model_doc/bert-japanese
|
||||
title: BertJapanese
|
||||
- local: model_doc/bertweet
|
||||
title: Bertweet
|
||||
title: BERTweet
|
||||
- local: model_doc/big_bird
|
||||
title: BigBird
|
||||
- local: model_doc/bigbird_pegasus
|
||||
@ -455,6 +455,8 @@
|
||||
title: Falcon
|
||||
- local: model_doc/falcon3
|
||||
title: Falcon3
|
||||
- local: model_doc/falcon_h1
|
||||
title: FalconH1
|
||||
- local: model_doc/falcon_mamba
|
||||
title: FalconMamba
|
||||
- local: model_doc/flan-t5
|
||||
@ -540,7 +542,7 @@
|
||||
- local: model_doc/mamba
|
||||
title: Mamba
|
||||
- local: model_doc/mamba2
|
||||
title: mamba2
|
||||
title: Mamba2
|
||||
- local: model_doc/marian
|
||||
title: MarianMT
|
||||
- local: model_doc/markuplm
|
||||
@ -1119,4 +1121,9 @@
|
||||
- local: internal/time_series_utils
|
||||
title: Utilities for Time Series
|
||||
title: Internal helpers
|
||||
- sections:
|
||||
- local: reference/environment_variables
|
||||
title: Environment Variables
|
||||
title: Reference
|
||||
title: API
|
||||
|
||||
|
@ -125,4 +125,44 @@ would expect from a usual Python dictionary:
|
||||
|
||||
# You can also globally `register` a new function directly on it
|
||||
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
|
||||
```
|
||||
```
|
||||
|
||||
## Attention Mask Interface
|
||||
|
||||
Having a new attention function may mean that you need a new format of attention mask to decide what key and value tokens
|
||||
the query tokens should attend to. This is now possible with the `AttentionMaskInterface`! It works in the same way as
|
||||
the `AttentionInterface`:
|
||||
|
||||
```python
|
||||
from transformers import AttentionMaskInterface
|
||||
from transformers.masking_utils import sdpa_mask
|
||||
import torch
|
||||
|
||||
def my_new_sdpa_mask(*args, **kwargs):
|
||||
print("I just entered the attention mask computation")
|
||||
return sdpa_mask(*args, **kwargs)
|
||||
|
||||
AttentionMaskInterface.register("my_new_sdpa_mask", my_new_sdpa_mask)
|
||||
```
|
||||
|
||||
The reason you have to register it is because we need to automatically correct your mask format based on the attention implementation (for example, flex attention uses a BlockMask format, while sdpa uses a 4D tensor).
|
||||
By default, if you do not register an attention mask function along with your attention function, mask creation will be skipped
|
||||
and `attention_mask=None` will be passed along to the Attention layers.
|
||||
|
||||
The default signature of the attention mask functions is the following:
|
||||
|
||||
```python
|
||||
def custom_attention_mask(
|
||||
batch_size: int, # required arg
|
||||
cache_position: torch.Tensor, # required arg
|
||||
kv_length: int, # required arg
|
||||
kv_offset: int = 0, # required arg
|
||||
mask_function: Callable = causal_mask_function, # required arg
|
||||
attention_mask: Optional[torch.Tensor] = None, # required arg
|
||||
**kwargs, # a few additional args may be passed as kwargs, especially the model's config is always passed
|
||||
) -> Optional[torch.Tensor]:
|
||||
```
|
||||
|
||||
It mostly works thanks to the `mask_function`, which is a `Callable` in the form of [torch's mask_mod functions](https://pytorch.org/blog/flexattention/), taking 4 indices as input and returning a boolean to indicate if this position should take part in the attention computation.
|
||||
|
||||
If you cannot use the `mask_function` to create your mask for some reason, you can try to work around it by doing something similar to our [torch export workaround](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/executorch.py).
|
@ -15,8 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Caching
|
||||
|
||||
Imagine you’re having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
|
||||
Imagine you're having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
|
||||
|
||||
You can extend this analogy to transformer models. Autoregressive model generation can be slow because it makes a prediction one token at a time. Each new prediction is dependent on all the previous context.
|
||||
|
||||
@ -29,8 +28,50 @@ A key-value (KV) cache eliminates this inefficiency by storing kv pairs derived
|
||||
> [!WARNING]
|
||||
> Caching should only be used for **inference**. It may cause unexpected errors if it's enabled during training.
|
||||
|
||||
To better understand how and why caching works, let's take a closer look at the structure of the attention matrices.
|
||||
|
||||
## Attention matrices
|
||||
|
||||
The **scaled dot-product attention** is calculated as shown below for a batch of size `b`, number of attention heads `h`, sequence length so far `T`, and dimension per attention head `d_head`.
|
||||
|
||||
$$
|
||||
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
|
||||
$$
|
||||
|
||||
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
|
||||
|
||||
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
|
||||
|
||||
$$
|
||||
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
|
||||
$$
|
||||
|
||||
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
|
||||
|
||||
$$
|
||||
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
|
||||
$$
|
||||
|
||||
Attention is calculated independently in each layer of the model, and caching is done on a per-layer basis.
|
||||
|
||||
Refer to the table below to compare how caching improves efficiency.
|
||||
|
||||
| without caching | with caching | | | |
|
||||
|---|---|---|---|---|
|
||||
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V` | | | |
|
||||
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) | | | |
|
||||
|
||||
|
||||
|
||||
## Cache class
|
||||
|
||||
A basic KV cache interface takes a key and value tensor for the current token and returns the updated `K` and `V` tensors. This is internally managed by a model's `forward` method.
|
||||
|
||||
```py
|
||||
new_K, new_V = cache.update(k_t, v_t, layer_idx)
|
||||
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
|
||||
```
|
||||
|
||||
When you use Transformers' [`Cache`] class, the self-attention module performs several critical steps to integrate past and present information.
|
||||
|
||||
1. The attention module concatenates current kv pairs with past kv pairs stored in the cache. This creates attentions weights with the shape `(new_tokens_length, past_kv_length + new_tokens_length)`. The current and past kv pairs are essentially combined to compute the attention scores, ensuring a model is aware of previous context and the current input.
|
||||
@ -39,6 +80,27 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
|
||||
|
||||
3. It is also important to be aware of the `cache_position`. This is important if you want to reuse a prefilled [`Cache`] with the `forward` method because you have to pass a valid `cache_position` value. This indicates the input positions in a sequence. `cache_position` is unaffected by padding, and it always adds one more position for each token. For example, if a kv cache contains 10 tokens - regardless of pad tokens - the cache position for the next token should be `torch.tensor([10])`.
|
||||
|
||||
## Cache storage implementation
|
||||
|
||||
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
|
||||
|
||||
|
||||
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- `key_cache`: A list of tensors, one for each layer.
|
||||
- `value_cache`: A list of tensors, one for each layer.
|
||||
|
||||
When new tokens are processed:
|
||||
|
||||
1. For each layer, the new key and value states are concatenated with the existing cache.
|
||||
```py
|
||||
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
||||
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
||||
```
|
||||
|
||||
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
|
||||
|
||||
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
|
||||
|
||||
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
|
||||
|
||||
```py
|
||||
@ -72,10 +134,14 @@ for _ in range(max_new_tokens):
|
||||
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
||||
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
|
||||
```
|
||||
|
||||
## Legacy cache format
|
||||
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format has is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
|
||||
The legacy format is essentially the same data structure but organized differently.
|
||||
- It's a tuple of tuples, where each inner tuple contains the key and value tensors for a layer.
|
||||
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- The format is less flexible and doesn't support features like quantization or offloading.
|
||||
|
||||
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
|
||||
|
@ -327,7 +327,6 @@ We enable custom decoding methods through model repositories, assuming a specifi
|
||||
|
||||
If a model repository holds a custom decoding method, the easiest way to try it out is to load the model and generate with it:
|
||||
|
||||
<!-- TODO before merging: 1) better repo name (use a `generate-community` org?) 2) prettify the repo -->
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
@ -430,7 +429,7 @@ This is the core of your decoding method. It *must* contain a method named `gene
|
||||
> [!WARNING]
|
||||
> `generate.py` must be placed in a folder named `custom_generate`, and not at the root level of the repository. The file paths for this feature are hardcoded.
|
||||
|
||||
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method.
|
||||
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method, with the exception of the arguments used to trigger the custom generation (`trust_remote_code` and `custom_generate`).
|
||||
|
||||
This means your `generate` can have a mix of original and custom arguments (as well as a different output type) as shown below.
|
||||
|
||||
|
@ -16,7 +16,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Model debugging toolboxes
|
||||
|
||||
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it provides for it.
|
||||
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it
|
||||
provides for it.
|
||||
|
||||
Most of those are only useful if you are adding new models in the library.
|
||||
|
||||
@ -26,13 +27,14 @@ Most of those are only useful if you are adding new models in the library.
|
||||
|
||||
### Model addition debugger - context manager for model adders
|
||||
|
||||
This context manager is a power user tool intended for model adders.
|
||||
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
|
||||
To note, this context manager enforces `torch.no_grad()`.
|
||||
This context manager is a power user tool intended for model adders. It tracks all forward calls within a model forward
|
||||
and logs a slice of each input and output on a nested JSON. To note, this context manager enforces `torch.no_grad()`.
|
||||
|
||||
### Rationale
|
||||
|
||||
Because when porting models to transformers, even from python to python, model adders often have to do a lot of manual operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some time.
|
||||
When porting models to transformers, even from python to python, model adders often have to do a lot of manual
|
||||
operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some
|
||||
time.
|
||||
|
||||
### Usage
|
||||
|
||||
@ -62,10 +64,10 @@ inputs = processor(text=prompt, images=random_image, return_tensors="pt")
|
||||
|
||||
# call forward method (not .generate!)
|
||||
with model_addition_debugger_context(
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False # This will output ALL the layers of a model.
|
||||
):
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False # This will output ALL the layers of a model.
|
||||
):
|
||||
output = model.forward(**inputs)
|
||||
|
||||
```
|
||||
@ -73,8 +75,8 @@ with model_addition_debugger_context(
|
||||
|
||||
### Reading results
|
||||
|
||||
The debugger generates two files from the forward call, both with the same base name,
|
||||
but ending either with `_SUMMARY.json` or with `_FULL_TENSORS.json`.
|
||||
The debugger generates two files from the forward call, both with the same base name, but ending either with
|
||||
`_SUMMARY.json` or with `_FULL_TENSORS.json`.
|
||||
|
||||
The first one will contain a summary of each module's _input_ and _output_ tensor values and shapes.
|
||||
|
||||
@ -142,8 +144,8 @@ The first one will contain a summary of each module's _input_ and _output_ tenso
|
||||
{ ... and so on
|
||||
```
|
||||
|
||||
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful
|
||||
for comparing two files.
|
||||
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful for comparing two files.
|
||||
|
||||
```json
|
||||
"pixel_values": {
|
||||
"shape": "torch.Size([1, 5, 576, 588])",
|
||||
@ -196,9 +198,38 @@ for comparing two files.
|
||||
},
|
||||
```
|
||||
|
||||
#### Saving tensors to disk
|
||||
|
||||
Some model adders may benefit from logging full tensor values to disk to support, for example, numerical analysis
|
||||
across implementations.
|
||||
|
||||
Set `use_repr=False` to write tensors to disk using [SafeTensors](https://huggingface.co/docs/safetensors/en/index).
|
||||
|
||||
```python
|
||||
with model_addition_debugger_context(
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False,
|
||||
use_repr=False, # Defaults to True
|
||||
):
|
||||
output = model.forward(**inputs)
|
||||
```
|
||||
|
||||
When using `use_repr=False`, tensors are written to the same disk location as the `_SUMMARY.json` and
|
||||
`_FULL_TENSORS.json` files. The `value` property of entries in the `_FULL_TENSORS.json` file will contain a relative
|
||||
path reference to the associated `.safetensors` file. Each tensor is written to its own file as the `data` property of
|
||||
the state dictionary. File names are constructed using the `module_path` as a prefix with a few possible postfixes that
|
||||
are built recursively.
|
||||
|
||||
* Module inputs are denoted with the `_inputs` and outputs by `_outputs`.
|
||||
* `list` and `tuple` instances, such as `args` or function return values, will be postfixed with `_{index}`.
|
||||
* `dict` instances will be postfixed with `_{key}`.
|
||||
|
||||
### Comparing between implementations
|
||||
|
||||
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
|
||||
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See
|
||||
below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly
|
||||
identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
|
||||
|
||||
|
||||

|
||||
@ -206,8 +237,13 @@ Once the forward passes of two models have been traced by the debugger, one can
|
||||
|
||||
### Limitations and scope
|
||||
|
||||
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
|
||||
This feature will only work for torch-based models, and would require more work and case-by-case approach for say
|
||||
`jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will
|
||||
probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be
|
||||
traced once instead of reran N times with breakpoints.
|
||||
|
||||
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
|
||||
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the
|
||||
first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N
|
||||
layers.
|
||||
|
||||
[[autodoc]] model_addition_debugger_context
|
||||
|
@ -29,6 +29,11 @@ Most of those are only useful if you are studying the code of the models in the
|
||||
[[autodoc]] AttentionInterface
|
||||
- register
|
||||
|
||||
## Attention Mask Functions
|
||||
|
||||
[[autodoc]] AttentionMaskInterface
|
||||
- register
|
||||
|
||||
## Rotary Position Embedding Functions
|
||||
|
||||
[[autodoc]] dynamic_rope_update
|
||||
|
@ -84,14 +84,17 @@ GenerationConfig {
|
||||
}
|
||||
```
|
||||
|
||||
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. Some of the most commonly adjusted parameters are [max_new_tokens](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.max_new_tokens), [num_beams](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_beams), [do_sample](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.do_sample), and [num_return_sequences](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_return_sequences).
|
||||
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. See [this section below](#common-options) for commonly adjusted parameters.
|
||||
|
||||
```py
|
||||
# enable beam search sampling strategy
|
||||
model.generate(**inputs, num_beams=4, do_sample=True)
|
||||
```
|
||||
|
||||
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code. The `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution. `stopping_criteria` supports custom [`StoppingCriteria`] to stop text generation. Check out the [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo) for more examples of external [`~GenerationMixin.generate`]-compatible extensions.
|
||||
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code:
|
||||
1. the `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution;
|
||||
2. the `stopping_criteria` parameters supports custom [`StoppingCriteria`] to stop text generation;
|
||||
3. other custom generation methods can be loaded through the `custom_generate` flag ([docs](generation_strategies.md/#custom-decoding-methods)).
|
||||
|
||||
Refer to the [Generation strategies](./generation_strategies) guide to learn more about search, sampling, and decoding strategies.
|
||||
|
||||
|
@ -21,7 +21,7 @@ A **Video Processor** is a utility responsible for preparing input features for
|
||||
|
||||
The video processor extends the functionality of image processors by allowing Vision Large Language Models (VLMs) to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
|
||||
|
||||
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't upadted your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
|
||||
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
|
||||
|
||||
|
||||
### Usage Example
|
||||
|
@ -389,3 +389,9 @@ The following auto classes are available for the following multimodal tasks.
|
||||
### AutoModelForImageTextToText
|
||||
|
||||
[[autodoc]] AutoModelForImageTextToText
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
@ -14,116 +14,87 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BART
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BART
|
||||
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. It’s pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
|
||||
|
||||
The Bart model was proposed in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
|
||||
Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
|
||||
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.
|
||||
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.
|
||||
|
||||
According to the abstract,
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a
|
||||
left-to-right decoder (like GPT).
|
||||
- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme,
|
||||
where spans of text are replaced with a single mask token.
|
||||
- BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It
|
||||
matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new
|
||||
state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains
|
||||
of up to 6 ROUGE.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/bart).
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
## Usage tips:
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="facebook/bart-large",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create <mask> through a process known as photosynthesis.")
|
||||
|
||||
- BART is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
- Sequence-to-sequence model with an encoder and a decoder. Encoder is fed a corrupted version of the tokens, decoder is fed the original tokens (but has a mask to hide the future words like a regular transformers decoder). A composition of the following transformations are applied on the pretraining tasks for the encoder:
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
* mask random tokens (like in BERT)
|
||||
* delete random tokens
|
||||
* mask a span of k tokens with a single mask token (a span of 0 tokens is an insertion of a mask token)
|
||||
* permute sentences
|
||||
* rotate the document to make it start at a specific token
|
||||
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
## Implementation Notes
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"facebook/bart-large",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"facebook/bart-large",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
- Bart doesn't use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or
|
||||
[`~BartTokenizer.encode`] to get the proper splitting.
|
||||
- The forward pass of [`BartModel`] will create the `decoder_input_ids` if they are not passed.
|
||||
This is different than some other modeling APIs. A typical use case of this feature is mask filling.
|
||||
- Model predictions are intended to be identical to the original implementation when
|
||||
`forced_bos_token_id=0`. This only works, however, if the string you pass to
|
||||
[`fairseq.encode`] starts with a space.
|
||||
- [`~generation.GenerationMixin.generate`] should be used for conditional generation tasks like
|
||||
summarization, see the example in that docstrings.
|
||||
- Models that load the *facebook/bart-large-cnn* weights will not have a `mask_token_id`, or be able to perform
|
||||
mask-filling tasks.
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
## Mask Filling
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
The `facebook/bart-base` and `facebook/bart-large` checkpoints can be used to fill multi-token masks.
|
||||
|
||||
```python
|
||||
from transformers import BartForConditionalGeneration, BartTokenizer
|
||||
|
||||
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
|
||||
tok = BartTokenizer.from_pretrained("facebook/bart-large")
|
||||
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
|
||||
batch = tok(example_english_phrase, return_tensors="pt")
|
||||
generated_ids = model.generate(batch["input_ids"])
|
||||
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
|
||||
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
|
||||
]
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
## Resources
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BART. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
```bash
|
||||
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/bart-large --device 0
|
||||
```
|
||||
|
||||
<PipelineTag pipeline="summarization"/>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
- A blog post on [Distributed Training: Train BART/T5 for Summarization using 🤗 Transformers and Amazon SageMaker](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq).
|
||||
- A notebook on how to [finetune BART for summarization with fastai using blurr](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb). 🌎
|
||||
- A notebook on how to [finetune BART for summarization in two languages with Trainer class](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb). 🌎
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
|
||||
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization).
|
||||
- An example of how to train [`BartForConditionalGeneration`] with a Hugging Face `datasets` object can be found in this [forum discussion](https://discuss.huggingface.co/t/train-bart-for-conditional-generation-e-g-summarization/1904)
|
||||
- [Summarization](https://huggingface.co/course/chapter7/5?fw=pt#summarization) chapter of the 🤗 Hugging Face course.
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
## Notes
|
||||
|
||||
<PipelineTag pipeline="fill-mask"/>
|
||||
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
|
||||
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
|
||||
<PipelineTag pipeline="translation"/>
|
||||
|
||||
- A notebook on how to [finetune mBART using Seq2SeqTrainer for Hindi to English translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb). 🌎
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
|
||||
- [Translation task guide](../tasks/translation)
|
||||
|
||||
See also:
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Distilled checkpoints](https://huggingface.co/models?search=distilbart) are described in this [paper](https://arxiv.org/abs/2010.13002).
|
||||
- Inputs should be padded on the right because BERT uses absolute position embeddings.
|
||||
- The [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) checkpoint doesn't include `mask_token_id` which means it can't perform mask-filling tasks.
|
||||
- BART doesn’t use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or [`~PreTrainedTokenizerBase.encode`] to get the proper splitting.
|
||||
- The forward pass of [`BartModel`] creates the `decoder_input_ids` if they're not passed. This can be different from other model APIs, but it is a useful feature for mask-filling tasks.
|
||||
- Model predictions are intended to be identical to the original implementation when `forced_bos_token_id=0`. This only works if the text passed to `fairseq.encode` begins with a space.
|
||||
- [`~GenerationMixin.generate`] should be used for conditional generation tasks like summarization.
|
||||
|
||||
## BartConfig
|
||||
|
||||
|
@ -16,60 +16,82 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# BERTweet
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
## BERTweet
|
||||
|
||||
The BERTweet model was proposed in [BERTweet: A pre-trained language model for English Tweets](https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf) by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen.
|
||||
[BERTweet](https://huggingface.co/papers/2005.10200) shares the same architecture as [BERT-base](./bert), but it’s pretrained like [RoBERTa](./roberta) on English Tweets. It performs really well on Tweet-related tasks like part-of-speech tagging, named entity recognition, and text classification.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having
|
||||
the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et
|
||||
al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al.,
|
||||
2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks:
|
||||
Part-of-speech tagging, Named-entity recognition and text classification.*
|
||||
You can find all the original BERTweet checkpoints under the [VinAI Research](https://huggingface.co/vinai?search_models=BERTweet) organization.
|
||||
|
||||
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BERTweet).
|
||||
> [!TIP]
|
||||
> Refer to the [BERT](./bert) docs for more examples of how to apply BERTweet to different language tasks.
|
||||
|
||||
## Usage example
|
||||
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModel, AutoTokenizer
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
>>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
>>> # For transformers v4.x+:
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="vinai/bertweet-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create <mask> through a process known as photosynthesis.")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
>>> # For transformers v3.x:
|
||||
>>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
>>> # INPUT TWEET IS ALREADY NORMALIZED!
|
||||
>>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"vinai/bertweet-base",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"vinai/bertweet-base",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
>>> input_ids = torch.tensor([tokenizer.encode(line)])
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
>>> with torch.no_grad():
|
||||
... features = bertweet(input_ids) # Models outputs are now tuples
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
>>> # With TensorFlow 2.0+:
|
||||
>>> # from transformers import TFAutoModel
|
||||
>>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for
|
||||
API reference information.
|
||||
```bash
|
||||
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model vinai/bertweet-base --device 0
|
||||
```
|
||||
|
||||
</Tip>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
- Use the [`AutoTokenizer`] or [`BertweetTokenizer`] because it’s preloaded with a custom vocabulary adapted to tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Make sure to also install the [emoji](https://pypi.org/project/emoji/) library.
|
||||
- Inputs should be padded on the right (`padding="max_length"`) because BERT uses absolute position embeddings.
|
||||
|
||||
## BertweetTokenizer
|
||||
|
||||
|
@ -14,63 +14,87 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BigBird
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BigBird
|
||||
|
||||
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by
|
||||
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
|
||||
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
|
||||
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse
|
||||
attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it
|
||||
has been shown that applying sparse, global, and random attention approximates full attention, while being
|
||||
computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context,
|
||||
BigBird has shown improved performance on various long document NLP tasks, such as question answering and
|
||||
summarization, compared to BERT or RoBERTa.
|
||||
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesn’t try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP.
|
||||
Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence
|
||||
length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that
|
||||
reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and
|
||||
is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our
|
||||
theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire
|
||||
sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to
|
||||
8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
|
||||
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also
|
||||
propose novel applications to genomics data.*
|
||||
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
|
||||
|
||||
This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found
|
||||
[here](https://github.com/google-research/bigbird).
|
||||
> [!TIP]
|
||||
> Click on the BigBird models in the right sidebar for more examples of how to apply BigBird to different language tasks.
|
||||
|
||||
## Usage tips
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird).
|
||||
- BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using
|
||||
**original_full** is advised as there is no benefit in using **block_sparse** attention.
|
||||
- The code currently uses window size of 3 blocks and 2 global blocks.
|
||||
- Sequence length must be divisible by block size.
|
||||
- Current implementation supports only **ITC**.
|
||||
- Current implementation doesn't support **num_random_blocks = 0**
|
||||
- BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="google/bigbird-roberta-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create [MASK] through a process known as photosynthesis.")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/bigbird-roberta-base",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"google/bigbird-roberta-base",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
!echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google/bigbird-roberta-base --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
|
||||
- BigBird supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
|
||||
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
|
||||
- The sequence length must be divisible by the block size.
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
- Read the [BigBird](https://huggingface.co/blog/big-bird) blog post for more details about how its attention works.
|
||||
|
||||
## BigBirdConfig
|
||||
|
||||
|
@ -14,78 +14,121 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BioGPT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BioGPT
|
||||
|
||||
The BioGPT model was proposed in [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch.
|
||||
[BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization.
|
||||
|
||||
*Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.*
|
||||
> [!TIP]
|
||||
> Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks.
|
||||
|
||||
This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/BioGPT).
|
||||
The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line.
|
||||
|
||||
## Usage tips
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- BioGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left.
|
||||
- BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it can be observed in the run_generation.py example script.
|
||||
- The model can take the `past_key_values` (for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage.
|
||||
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```
|
||||
from transformers import BioGptForCausalLM
|
||||
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)
|
||||
generator = pipeline(
|
||||
task="text-generation",
|
||||
model="microsoft/biogpt",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
|
||||
print(result)
|
||||
```
|
||||
|
||||
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a CausalLM head,
|
||||
we saw the following speedups during training.
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
| num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|
||||
|--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------|
|
||||
| 100 | 1 | 128 | False | 0.038 | 0.031 | 21.301 | 1601.862 | 1601.497 | 0.023 |
|
||||
| 100 | 1 | 256 | False | 0.039 | 0.034 | 15.084 | 1624.944 | 1625.296 | -0.022 |
|
||||
| 100 | 2 | 128 | False | 0.039 | 0.033 | 16.820 | 1624.567 | 1625.296 | -0.045 |
|
||||
| 100 | 2 | 256 | False | 0.065 | 0.059 | 10.255 | 1672.164 | 1672.164 | 0.000 |
|
||||
| 100 | 4 | 128 | False | 0.062 | 0.058 | 6.998 | 1671.435 | 1672.164 | -0.044 |
|
||||
| 100 | 4 | 256 | False | 0.113 | 0.100 | 13.316 | 2350.179 | 1848.435 | 27.144 |
|
||||
| 100 | 8 | 128 | False | 0.107 | 0.098 | 9.883 | 2098.521 | 1848.435 | 13.530 |
|
||||
| 100 | 8 | 256 | False | 0.222 | 0.196 | 13.413 | 3989.980 | 2986.492 | 33.601 |
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/biogpt",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a simple AutoModel head,
|
||||
we saw the following speedups during inference.
|
||||
input_text = "Ibuprofen is best used for"
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||||
|
||||
| num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|
||||
|-------------|------------|---------|---------|---------|----------|------------------------------|-----------------------------|-------------|----------------|--------------|---------------|
|
||||
| 50 | 1 | 64 | True | True | True | 0.115 | 0.098 | 17.392 | 716.998 | 716.998 | 0.000 |
|
||||
| 50 | 1 | 128 | True | True | True | 0.115 | 0.093 | 24.640 | 730.916 | 730.916 | 0.000 |
|
||||
| 50 | 2 | 64 | True | True | True | 0.114 | 0.096 | 19.204 | 730.900 | 730.900 | 0.000 |
|
||||
| 50 | 2 | 128 | True | True | True | 0.117 | 0.095 | 23.529 | 759.262 | 759.262 | 0.000 |
|
||||
| 50 | 4 | 64 | True | True | True | 0.113 | 0.096 | 18.325 | 759.229 | 759.229 | 0.000 |
|
||||
| 50 | 4 | 128 | True | True | True | 0.186 | 0.178 | 4.289 | 816.478 | 816.478 | 0.000 |
|
||||
with torch.no_grad():
|
||||
generated_ids = model.generate(**inputs, max_length=50)
|
||||
|
||||
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
||||
print(output)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
## Resources
|
||||
```bash
|
||||
echo -e "Ibuprofen is best used for" | transformers-cli run --task text-generation --model microsoft/biogpt --device 0
|
||||
```
|
||||
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/BioGPT-Large",
|
||||
quantization_config=bnb_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
input_text = "Ibuprofen is best used for"
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||||
with torch.no_grad():
|
||||
generated_ids = model.generate(**inputs, max_length=50)
|
||||
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
||||
print(output)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Pad inputs on the right because BioGPT uses absolute position embeddings.
|
||||
- BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`].
|
||||
- The `head_mask` argument is ignored when using an attention implementation other than "eager". If you want to use `head_mask`, make sure `attn_implementation="eager"`).
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/biogpt",
|
||||
attn_implementation="eager"
|
||||
)
|
||||
|
||||
## BioGptConfig
|
||||
|
||||
@ -109,7 +152,7 @@ we saw the following speedups during inference.
|
||||
[[autodoc]] BioGptForCausalLM
|
||||
- forward
|
||||
|
||||
|
||||
|
||||
## BioGptForTokenClassification
|
||||
|
||||
[[autodoc]] BioGptForTokenClassification
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
Note that [`BlenderbotSmallModel`] and
|
||||
@ -52,7 +54,7 @@ found [here](https://github.com/facebookresearch/ParlAI).
|
||||
|
||||
## Usage tips
|
||||
|
||||
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
|
||||
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -45,7 +47,7 @@ This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The
|
||||
|
||||
## Usage tips and example
|
||||
|
||||
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
||||
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
||||
rather than the left.
|
||||
|
||||
An example:
|
||||
@ -71,7 +73,7 @@ An example:
|
||||
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
|
||||
[BlenderbotSmall](blenderbot-small).
|
||||
|
||||
|
||||
|
||||
## Resources
|
||||
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
|
@ -39,7 +39,7 @@ CSM can be used to simply generate speech from a text prompt:
|
||||
import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -74,7 +74,7 @@ import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -119,7 +119,7 @@ import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -176,7 +176,7 @@ import copy
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda"
|
||||
|
||||
# set logs to ensure no recompilation and graph breaks
|
||||
@ -308,13 +308,14 @@ CSM Transformers integration supports training!
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda"
|
||||
|
||||
# load the model and the processor
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
||||
model.train()
|
||||
model.codec_model.eval()
|
||||
|
||||
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
||||
# ensure the audio is 24kHz
|
||||
@ -355,6 +356,10 @@ The original code can be found [here](https://github.com/SesameAILabs/csm).
|
||||
|
||||
## CsmProcessor
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/fig1.jpg"/>
|
||||
</div>
|
||||
|
||||
[[autodoc]] CsmProcessor
|
||||
- __call__
|
||||
|
||||
|
@ -28,8 +28,8 @@ We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 67
|
||||
We are super happy to make this code community-powered, and would love to see how you can best optimize the following:
|
||||
|
||||
- current implementation uses the "naive" attention compution (so not really MLA)
|
||||
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `intetrations/tensor_parallel`.
|
||||
- current implementation uses the eleuther formula for ROPE, using the orginal one would be more efficient! (should still follow our API)
|
||||
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `integrations/tensor_parallel`.
|
||||
- current implementation uses the eleuther formula for ROPE, using the original one would be more efficient! (should still follow our API)
|
||||
- static cache is not supported (this should be just a generation config issue / config shape issues)
|
||||
|
||||
### Usage tips
|
||||
|
65
docs/source/en/model_doc/falcon_h1.md
Normal file
65
docs/source/en/model_doc/falcon_h1.md
Normal file
@ -0,0 +1,65 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# FalconH1
|
||||
|
||||
## Overview
|
||||
|
||||
The FalconH1 model was developed by the TII Pretraining team. A comprehensive research paper covering the architecture, pretraining dynamics, experimental results, and conclusions is forthcoming. You can read more about this series in [this website](https://github.com/tiiuae/Falcon-H1).
|
||||
|
||||
## Contributors
|
||||
|
||||
This model was contributed by [DhiyaEddine](https://huggingface.co/DhiyaEddine), [ybelkada](https://huggingface.co/ybelkada), [JingweiZuo](https://huggingface.co/JingweiZuo), [IlyasChahed](https://huggingface.co/IChahed), and [MaksimVelikanov](https://huggingface.co/yellowvm).
|
||||
The original code can be found [here](https://github.com/tiiuae/Falcon-H1).
|
||||
|
||||
|
||||
## FalconH1Config
|
||||
|
||||
| Model | Depth | Dim | Attn Heads | KV | Mamba Heads | d_head | d_state | Ctx Len |
|
||||
|-----------|--------|------|------------|----|--------------|--------------|------|-----------------|
|
||||
| H1 0.5B | 36 | 1024 | 8 | 2 | 24 | 64 / 64 | 128 | 4K, 16K-SFT |
|
||||
| H1 1.5B | 24 | 2048 | 8 | 2 | 48 | 128 / 64 | 256 | 128K |
|
||||
| H1 1.5B-d | 66 | 1280 | 6 | 2 | 24 | 128 / 64 | 256 | 128K |
|
||||
| H1 3B | 32 | 2560 | 10 | 2 | 32 | 128 / 128 | 256 | 128K |
|
||||
| H1 7B | 44 | 3072 | 12 | 2 | 24 | 128 / 128 | 256 | 256K |
|
||||
| H1 34B | 72 | 5120 | 20 | 4 | 32 | 128 / 128 | 256 | 256K |
|
||||
|
||||
|
||||
|
||||
[[autodoc]] FalconH1Config
|
||||
|
||||
<!---
|
||||
## Usage Tips
|
||||
Tips:
|
||||
- The architecture is based on Mamba-2 models.
|
||||
## FalconH1Model
|
||||
[[autodoc]] FalconH1Model
|
||||
- forward
|
||||
-->
|
||||
|
||||
## FalconH1ForCausalLM
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
|
||||
|
||||
message = ["Mamba is a snake with following properties "]
|
||||
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
|
||||
response = model.generate(**inputs, max_new_tokens=64)
|
||||
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
|
||||
```
|
||||
|
||||
[[autodoc]] FalconH1ForCausalLM
|
||||
- forward
|
||||
|
||||
This HF implementation is contributed by [younesbelkada](https://github.com/younesbelkada) and [DhiaEddineRhaiem](https://github.com/dhiaEddineRhaiem).
|
@ -9,12 +9,11 @@ Unless required by applicable law or agreed to in writing, software distributed
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Granite
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
@ -22,49 +21,94 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Granite
|
||||
|
||||
The Granite model was proposed in [Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler](https://arxiv.org/abs/2408.13359) by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda.
|
||||
[Granite](https://huggingface.co/papers/2408.13359) is a 3B parameter language model trained with the Power scheduler. Discovering a good learning rate for pretraining large language models is difficult because it depends on so many variables (batch size, number of training tokens, etc.) and it is expensive to perform a hyperparameter search. The Power scheduler is based on a power-law relationship between the variables and their transferability to larger models. Combining the Power scheduler with Maximum Update Parameterization (MUP) allows a model to be pretrained with one set of hyperparameters regardless of all the variables.
|
||||
|
||||
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a wide range of open-source and synthetic datasets with permissive licenses. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
|
||||
You can find all the original Granite checkpoints under the [IBM-Granite](https://huggingface.co/ibm-granite) organization.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
> [!TIP]
|
||||
> Click on the Granite models in the right sidebar for more examples of how to apply Granite to different language tasks.
|
||||
|
||||
*Finding the optimal learning rate for language model pretraining is a challenging task.
|
||||
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored.
|
||||
In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (\mup) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models.
|
||||
We [open source](https://huggingface.co/collections/ibm/power-lm-66be64ae647ddf11b9808000) these pretrained models.*
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`, and from the command line.
|
||||
|
||||
Tips:
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipe("Explain quantum computing in simple terms ", max_new_tokens=50)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_path = "ibm/PowerLM-3b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-2b-base")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
# drop device_map if running on CPU
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
|
||||
model.eval()
|
||||
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
# change input text as desired
|
||||
prompt = "Write a code to find the maximum value in a list of numbers."
|
||||
```python
|
||||
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model ibm-granite/granite-3.3-8b-instruct --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
# tokenize the text
|
||||
input_tokens = tokenizer(prompt, return_tensors="pt")
|
||||
# generate output tokens
|
||||
output = model.generate(**input_tokens, max_new_tokens=100)
|
||||
# decode output tokens into text
|
||||
output = tokenizer.batch_decode(output)
|
||||
# loop over the batch to print, in this example the batch size is 1
|
||||
for i in output:
|
||||
print(i)
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-8b-base")
|
||||
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3.3-8b-base", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa", quantization_config=quantization_config)
|
||||
|
||||
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(""ibm-granite/granite-3.3-2b-base"")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa",
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
|
||||
input_ids = tokenizer("Explain artificial intelligence to a 10 year old", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
This model was contributed by [mayank-mishra](https://huggingface.co/mayank-mishra).
|
||||
|
||||
|
||||
|
||||
## GraniteConfig
|
||||
|
||||
[[autodoc]] GraniteConfig
|
||||
|
@ -99,7 +99,7 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True,
|
||||
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
attn_implementation="flash_attention_2",
|
||||
quantization_config=quantization_config,
|
||||
device_map=device_map)
|
||||
|
||||
|
@ -147,7 +147,7 @@ print(processor.decode(output[0], skip_special_tokens=True))
|
||||
|
||||
### Multi image inference
|
||||
|
||||
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. Here is how you can do it:
|
||||
LLaVa-OneVision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. For multi-image cases, we recommend using a **nested list of images** as input. Otherwise, every image will be patchified and consume a lot of memory. Here is how you can do it:
|
||||
|
||||
```python
|
||||
import requests
|
||||
|
@ -14,85 +14,124 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Mamba
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Mamba
|
||||
|
||||
The Mamba model was proposed in [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) by Albert Gu and Tri Dao.
|
||||
[Mamba](https://huggingface.co/papers/2312.00752) is a selective structured state space model (SSMs) designed to work around Transformers computational inefficiency when dealing with long sequences. It is a completely attention-free architecture, and comprised of a combination of H3 and gated MLP blocks (Mamba block). Mamba's "content-based reasoning" allows it to focus on specific parts of an input depending on the current token. Mamba also uses a new hardware-aware parallel algorithm to compensate for the lack of convolutional operations. As a result, Mamba has fast inference and can scale to very long sequences.
|
||||
|
||||
This model is a new paradigm architecture based on `state-space-models`. You can read more about the intuition behind these [here](https://srush.github.io/annotated-s4/).
|
||||
You can find all the original Mamba checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5× higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.*
|
||||
> [!TIP]
|
||||
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
|
||||
|
||||
Tips:
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- Mamba is a new `state space model` architecture that rivals the classic Transformers. It is based on the line of progress on structured state space models, with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
|
||||
- Mamba stacks `mixer` layers, which are the equivalent of `Attention` layers. The core logic of `mamba` is held in the `MambaMixer` class.
|
||||
- Two implementations cohabit: one is optimized and uses fast cuda kernels, while the other one is naive but can run on any device!
|
||||
- The current implementation leverages the original cuda kernels: the equivalent of flash attention for Mamba are hosted in the [`mamba-ssm`](https://github.com/state-spaces/mamba) and the [`causal_conv1d`](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports them!
|
||||
- Contributions to make the naive path faster are welcome 🤗
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [ArthurZ](https://huggingface.co/ArthurZ).
|
||||
The original code can be found [here](https://github.com/state-spaces/mamba).
|
||||
|
||||
# Usage
|
||||
|
||||
### A simple generation example:
|
||||
```python
|
||||
from transformers import MambaConfig, MambaForCausalLM, AutoTokenizer
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="state-spaces/mamba-130m-hf",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
|
||||
model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-130m-hf", torch_dtype=torch.float16, device_map="auto",)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
```
|
||||
|
||||
### Peft finetuning
|
||||
The slow version is not very stable for training, and the fast one needs `float32`!
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from peft import LoraConfig
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
||||
model_id = "state-spaces/mamba-130m-hf"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
dataset = load_dataset("Abirate/english_quotes", split="train")
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=4,
|
||||
logging_dir='./logs',
|
||||
logging_steps=10,
|
||||
learning_rate=2e-3
|
||||
)
|
||||
lora_config = LoraConfig(
|
||||
r=8,
|
||||
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
|
||||
task_type="CAUSAL_LM",
|
||||
bias="none"
|
||||
)
|
||||
trainer = SFTTrainer(
|
||||
model=model,
|
||||
processing_class=tokenizer,
|
||||
args=training_args,
|
||||
peft_config=lora_config,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="quote",
|
||||
)
|
||||
trainer.train()
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model state-spaces/mamba-130m-hf --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
from torchao.quantization import Int4WeightOnlyConfig
|
||||
|
||||
quantization_config = Int4WeightOnlyConfig(group_size=128)
|
||||
quantization_config = TorchAoConfig(quant_type=quant_config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-2.8b-hf")
|
||||
model = AutoModelForCausalLM.from_pretrained("state-spaces/mamba-2.8b-hf", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto",)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
## Notes
|
||||
|
||||
- The current implementation uses the original CUDA kernels. The FlashAttention equivalent implementation is hosted in the [mamba-ssm](https://github.com/state-spaces/mamba) and [causal_conv1d](https://github.com/Dao-AILab/causal-conv1d) repositories. Make sure to install them if your hardware supports it!
|
||||
- Mamba stacks `mixer` layers which are equivalent to `Attention` layers. You can find the main logic of Mamba in the `MambaMixer` class.
|
||||
- The example below demonstrates how to fine-tune Mamba with [PEFT](https://huggingface.co/docs/peft).
|
||||
|
||||
```py
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from peft import LoraConfig
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
|
||||
|
||||
model_id = "state-spaces/mamba-130m-hf"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
dataset = load_dataset("Abirate/english_quotes", split="train")
|
||||
training_args = TrainingArguments(
|
||||
output_dir="./results",
|
||||
num_train_epochs=3,
|
||||
per_device_train_batch_size=4,
|
||||
logging_dir='./logs',
|
||||
logging_steps=10,
|
||||
learning_rate=2e-3
|
||||
)
|
||||
lora_config = LoraConfig(
|
||||
r=8,
|
||||
target_modules=["x_proj", "embeddings", "in_proj", "out_proj"],
|
||||
task_type="CAUSAL_LM",
|
||||
bias="none"
|
||||
)
|
||||
trainer = SFTTrainer(
|
||||
model=model,
|
||||
processing_class=tokenizer,
|
||||
args=training_args,
|
||||
peft_config=lora_config,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="quote",
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
## MambaConfig
|
||||
|
||||
[[autodoc]] MambaConfig
|
||||
|
@ -14,47 +14,94 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
# Mamba 2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
[Mamba 2](https://huggingface.co/papers/2405.21060) is based on the state space duality (SSD) framework which connects structured state space models (SSMs) and attention variants. It uses a more efficient SSD algorithm that is 2-8x faster than Mamba and modifies the architecture to enable tensor parallelism and a grouped-value attention (GVA) head structure.
|
||||
|
||||
## Overview
|
||||
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
|
||||
|
||||
The Mamba2 model was proposed in [Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality](https://arxiv.org/abs/2405.21060) by Tri Dao and Albert Gu. It is a State Space Model similar to Mamba 1, with better performances in a simplified architecture.
|
||||
> [!TIP]
|
||||
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
*While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling.*
|
||||
|
||||
Tips:
|
||||
|
||||
This version should support all implementations of Mamba 2, and in particular [Mamba-2 codestral](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) from Mistral AI. In particular, mamba 2 codestral was released with a number of `groups` equal to 8, which can be thought intuitively as similar to the number of kv heads in an attention-based model.
|
||||
This model has two different forward passes, `torch_forward` or `cuda_kernels_forward`. The latter uses the original cuda kernels if they are found in your environment, and is slower on the prefill i.e. requires a "warmup run" due to high cpu overhead, see [here](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) and [also here](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457). Without compilation, the `torch_forward` implementation is faster by a factor 3 to 4. Further, there are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation, see [here](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) as well. Due to this, in addition to the reimplementation of mamba2 kernels, batched generation and cached generation are expected to have slight discrepancies. Further, the results given by the cuda kernels or the torch forward are expected to be slightly different. The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different, making the difference greater at smaller precisions.
|
||||
Another note, shutdown of hidden states corresponding to padding tokens is done in 2 places and mostly has been tested with left-padding. Right-padding will propagate noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
|
||||
|
||||
This model was contributed by [Molbap](https://huggingface.co/Molbap), with tremendous help from [Anton Vlasjuk](https://github.com/vasqu).
|
||||
The original code can be found [here](https://github.com/state-spaces/mamba).
|
||||
|
||||
|
||||
# Usage
|
||||
|
||||
### A simple generation example:
|
||||
```python
|
||||
from transformers import Mamba2Config, Mamba2ForCausalLM, AutoTokenizer
|
||||
```python
|
||||
import torch
|
||||
model_id = 'mistralai/Mamba-Codestral-7B-v0.1'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, revision='refs/pr/9', from_slow=True, legacy=False)
|
||||
model = Mamba2ForCausalLM.from_pretrained(model_id, revision='refs/pr/9')
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
from transformers import pipeline
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="mistralai/Mamba-Codestral-7B-v0.1",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
Here's a draft script for finetuning:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model mistralai/Mamba-Codestral-7B-v0.1 --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
## Notes
|
||||
|
||||
- Codestral Mamba has `groups=8` which are similar to the number of kv heads in an attention-based model.
|
||||
- Codestral Mamba has two different forward passes, `torch_forward` or `cuda_kernels_forward`, and their results are expected to be slightly different.
|
||||
- `torch_forward` without compilation is 3-4x faster than `cuda_kernels_forward`.
|
||||
- `cuda_kernels_forward` uses the original CUDA kernels if they're available in your environment. It is slower during prefill because it requires a "warmup run" due to the higher CPU overhead (see [these](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) [comments](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457) for more details).
|
||||
|
||||
- There are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation (see this [comment](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) for more details). This (and the addition of the reimplemented Mamba 2 kernels) results in a slight discrepancy between batched and cached generation.
|
||||
|
||||
- The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different. This makes the difference greater at smaller precisions.
|
||||
|
||||
- Hidden states that correspond to padding tokens is shutdown in 2 places and is mostly tested with left-padding. Right-padding propagates noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
|
||||
|
||||
- The example below demonstrates how to fine-tune Mamba 2 with [PEFT](https://huggingface.co/docs/peft).
|
||||
|
||||
```python
|
||||
from trl import SFTTrainer
|
||||
from peft import LoraConfig
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -155,7 +157,7 @@ Example of translating english to many romance languages, using old-style 2 char
|
||||
>>> model = MarianMTModel.from_pretrained(model_name)
|
||||
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
|
||||
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
'Isto deve ir para o português.',
|
||||
'Y esto al español']
|
||||
```
|
||||
|
@ -51,10 +51,10 @@ The original code can be found [here](https://github.com/facebookresearch/fairse
|
||||
|
||||
## Implementation differences with SwitchTransformers
|
||||
|
||||
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
|
||||
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
|
||||
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
|
||||
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
|
||||
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
|
||||
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
|
||||
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
|
||||
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
|
||||
|
||||
## Generating with NLLB-MoE
|
||||
|
||||
|
@ -14,27 +14,119 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# OLMo2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# OLMo2
|
||||
[OLMo2](https://huggingface.co/papers/2501.00656) improves on [OLMo](./olmo) by changing the architecture and training recipes of the original models. This includes excluding all biases to improve training stability, non-parametric layer norm, SwiGLU activation function, rotary positional embeddings, and a modified BPE-based tokenizer that masks personal identifiable information. It is pretrained on [Dolma](https://huggingface.co/datasets/allenai/dolma), a dataset of 3T tokens.
|
||||
|
||||
The OLMo2 model is the successor of the OLMo model, which was proposed in
|
||||
[OLMo: Accelerating the Science of Language Models](https://arxiv.org/abs/2402.00838).
|
||||
You can find all the original OLMo2 checkpoints under the [OLMo2](https://huggingface.co/collections/allenai/olmo-2-674117b93ab84e98afc72edc) collection.
|
||||
|
||||
The architectural changes from the original OLMo model to this model are:
|
||||
> [!TIP]
|
||||
> Click on the OLMo2 models in the right sidebar for more examples of how to apply OLMo2 to different language tasks.
|
||||
|
||||
- RMSNorm is used instead of standard layer norm.
|
||||
- Norm is applied to attention queries and keys.
|
||||
- Norm is applied after attention/feedforward layers rather than before.
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
|
||||
|
||||
This model was contributed by [shanearora](https://huggingface.co/shanearora).
|
||||
The original code can be found [here](https://github.com/allenai/OLMo/tree/main/olmo).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="allenai/OLMo-2-0425-1B",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
|
||||
result = pipe("Plants create energy through a process known as")
|
||||
print(result)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
|
||||
|
||||
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model allenai/OLMo-2-0425-1B --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bits.
|
||||
```py
|
||||
|
||||
#pip install torchao
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
torchao_config = TorchAoConfig(
|
||||
"int4_weight_only",
|
||||
group_size=128
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B",
|
||||
quantization_config=torchao_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
|
||||
|
||||
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Notes
|
||||
|
||||
- OLMo2 uses RMSNorm instead of standard layer norm. The RMSNorm is applied to attention queries and keys, and it is applied after the attention and feedforward layers rather than before.
|
||||
- OLMo2 requires Transformers v4.48 or higher.
|
||||
- Load specific intermediate checkpoints by adding the `revision` parameter to [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")
|
||||
```
|
||||
|
||||
|
||||
## Olmo2Config
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -18,6 +18,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -29,7 +31,7 @@ on Java, Python and English.
|
||||
According to the abstract
|
||||
|
||||
*Code summarization and generation empower conversion between programming language (PL) and natural language (NL),
|
||||
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
|
||||
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
|
||||
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks.
|
||||
PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding.
|
||||
Experiments on code summarization in the English language, code generation, and code translation in seven programming languages
|
||||
@ -50,7 +52,7 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
|
||||
|
||||
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
|
||||
|
||||
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
|
||||
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
|
||||
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
|
||||
it's passed with the `text_target` keyword argument.
|
||||
|
||||
|
@ -14,46 +14,78 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# RoFormer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# RoFormer
|
||||
|
||||
The RoFormer model was proposed in [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
||||
[RoFormer](https://huggingface.co/papers/2104.09864) introduces Rotary Position Embedding (RoPE) to encode token positions by rotating the inputs in 2D space. This allows a model to track absolute positions and model relative relationships. RoPE can scale to longer sequences, account for the natural decay of token dependencies, and works with the more efficient linear self-attention.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the RoFormer checkpoints on the [Hub](https://huggingface.co/models?search=roformer).
|
||||
|
||||
*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
|
||||
different positions in the sequence. We investigate various methods to encode positional information in
|
||||
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
|
||||
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
|
||||
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
|
||||
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
|
||||
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
|
||||
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
|
||||
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
|
||||
experiment for English benchmark will soon be updated.*
|
||||
> [!TIP]
|
||||
> Click on the RoFormer models in the right sidebar for more examples of how to apply RoFormer to different language tasks.
|
||||
|
||||
This model was contributed by [junnyu](https://huggingface.co/junnyu). The original code can be found [here](https://github.com/ZhuiyiTechnology/roformer).
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
## Usage tips
|
||||
RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
|
||||
improved performance on classification tasks with long texts.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
# uncomment to install rjieba which is needed for the tokenizer
|
||||
# !pip install rjieba
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
pipe = pipeline(
|
||||
task="fill-mask",
|
||||
model="junnyu/roformer_chinese_base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
output = pipe("水在零度时会[MASK]")
|
||||
print(output)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
# uncomment to install rjieba which is needed for the tokenizer
|
||||
# !pip install rjieba
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"junnyu/roformer_chinese_base", torch_dtype=torch.float16
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
|
||||
|
||||
input_ids = tokenizer("水在零度时会[MASK]", return_tensors="pt").to(model.device)
|
||||
outputs = model(**input_ids)
|
||||
decoded = tokenizer.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
|
||||
print(decoded)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "水在零度时会[MASK]" | transformers-cli run --task fill-mask --model junnyu/roformer_chinese_base --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- The current RoFormer implementation is an encoder-only model. The original code can be found in the [ZhuiyiTechnology/roformer](https://github.com/ZhuiyiTechnology/roformer) repository.
|
||||
|
||||
## RoFormerConfig
|
||||
|
||||
|
@ -14,59 +14,77 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Swin Transformer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Swin Transformer
|
||||
|
||||
The Swin Transformer was proposed in [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
|
||||
by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
[Swin Transformer](https://huggingface.co/papers/2103.14030) is a hierarchical vision transformer. Images are processed in patches and windowed self-attention is used to capture local information. These windows are shifted across the image to allow for cross-window connections, capturing global information more efficiently. This hierarchical approach with shifted windows allows the Swin Transformer to process images effectively at different scales and achieve linear computational complexity relative to image size, making it a versatile backbone for various vision tasks like image classification and object detection.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all official Swin Transformer checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swin) organization.
|
||||
|
||||
*This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone
|
||||
for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains,
|
||||
such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
|
||||
To address these differences, we propose a hierarchical Transformer whose representation is computed with \bold{S}hifted
|
||||
\bold{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping
|
||||
local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at
|
||||
various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it
|
||||
compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense
|
||||
prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation
|
||||
(53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and
|
||||
+2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones.
|
||||
The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.*
|
||||
> [!TIP]
|
||||
> Click on the Swin Transformer models in the right sidebar for more examples of how to apply Swin Transformer to different image tasks.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/swin_transformer_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
<small> Swin Transformer architecture. Taken from the <a href="https://arxiv.org/abs/2102.03334">original paper</a>.</small>
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [novice03](https://huggingface.co/novice03). The Tensorflow version of this model was contributed by [amyeroberts](https://huggingface.co/amyeroberts). The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
## Usage tips
|
||||
pipeline = pipeline(
|
||||
task="image-classification",
|
||||
model="microsoft/swin-tiny-patch4-window7-224",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
||||
```
|
||||
</hfoption>
|
||||
|
||||
- Swin pads the inputs supporting any input height and width (if divisible by `32`).
|
||||
- Swin can be used as a *backbone*. When `output_hidden_states = True`, it will output both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer.
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"microsoft/swin-tiny-patch4-window7-224",
|
||||
use_fast=True,
|
||||
)
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"microsoft/swin-tiny-patch4-window7-224",
|
||||
device_map="cuda"
|
||||
)
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
||||
|
||||
- [`SwinForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
predicted_class_id = logits.argmax(dim=-1).item()
|
||||
|
||||
Besides that:
|
||||
class_labels = model.config.id2label
|
||||
predicted_class_label = class_labels[predicted_class_id]
|
||||
print(f"The predicted class label is: {predicted_class_label}")
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
- [`SwinForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
||||
## Notes
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
- Swin can pad the inputs for any input height and width divisible by `32`.
|
||||
- Swin can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
|
||||
|
||||
## SwinConfig
|
||||
|
||||
|
@ -14,37 +14,74 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Swin Transformer V2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Swin Transformer V2
|
||||
|
||||
The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
[Swin Transformer V2](https://huggingface.co/papers/2111.09883) is a 3B parameter model that focuses on how to scale a vision model to billions of parameters. It introduces techniques like residual-post-norm combined with cosine attention for improved training stability, log-spaced continuous position bias to better handle varying image resolutions between pre-training and fine-tuning, and a new pre-training method (SimMIM) to reduce the need for large amounts of labeled data. These improvements enable efficiently training very large models (up to 3 billion parameters) capable of processing high-resolution images.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find official Swin Transformer V2 checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swinv2) organization.
|
||||
|
||||
*Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.*
|
||||
> [!TIP]
|
||||
> Click on the Swin Transformer V2 models in the right sidebar for more examples of how to apply Swin Transformer V2 to vision tasks.
|
||||
|
||||
This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik).
|
||||
The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer v2.
|
||||
pipeline = pipeline(
|
||||
task="image-classification",
|
||||
model="microsoft/swinv2-tiny-patch4-window8-256",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
||||
```
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
</hfoption>
|
||||
|
||||
- [`Swinv2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
Besides that:
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
||||
|
||||
- [`Swinv2ForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"microsoft/swinv2-tiny-patch4-window8-256",
|
||||
)
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"microsoft/swinv2-tiny-patch4-window8-256",
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
|
||||
predicted_class_id = logits.argmax(dim=-1).item()
|
||||
predicted_class_label = model.config.id2label[predicted_class_id]
|
||||
print(f"The predicted class label is: {predicted_class_label}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- Swin Transformer V2 can pad the inputs for any input height and width divisible by `32`.
|
||||
- Swin Transformer V2 can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
|
||||
|
||||
## Swinv2Config
|
||||
|
||||
|
@ -95,7 +95,7 @@ transcription[0]
|
||||
|
||||
## Notes
|
||||
|
||||
- Whisper relies on [`~GenerationMixin.generate`] for inference.
|
||||
- Whisper relies a custom [`generate`] for inference, make sure to check the docs below.
|
||||
- The [`WhisperProcessor`] can be used for preparing audio and decoding predicted ids back into text.
|
||||
|
||||
## WhisperConfig
|
||||
|
@ -14,100 +14,101 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# ZoeDepth
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# ZoeDepth
|
||||
|
||||
The ZoeDepth model was proposed in [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, Matthias Müller. ZoeDepth extends the [DPT](dpt) framework for metric (also called absolute) depth estimation. ZoeDepth is pre-trained on 12 datasets using relative depth and fine-tuned on two domains (NYU and KITTI) using metric depth. A lightweight head is used with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization performance disregarding metric scale, i.e. relative depth estimation, or state-of-the-art results on specific datasets, i.e. metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12 datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the datasets used for relative depth pre-training and metric fine-tuning. Without pre-training, we can already significantly improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative absolute error (REL). Finally, ZoeD-M12-NK is the first model that can jointly train on multiple datasets (NYU Depth v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization performance to eight unseen datasets from both indoor and outdoor domains.*
|
||||
[ZoeDepth](https://huggingface.co/papers/2302.12288) is a depth estimation model that combines the generalization performance of relative depth estimation (how far objects are from each other) and metric depth estimation (precise depth measurement on metric scale) from a single image. It is pre-trained on 12 datasets using relative depth and 2 datasets (NYU Depth v2 and KITTI) for metric accuracy. A lightweight head with a metric bin module for each domain is used, and during inference, it automatically selects the appropriate head for each input image with a latent classifier.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small>
|
||||
You can find all the original ZoeDepth checkpoints under the [Intel](https://huggingface.co/Intel?search=zoedepth) organization.
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/isl-org/ZoeDepth).
|
||||
The example below demonstrates how to estimate depth with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
## Usage tips
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- ZoeDepth is an absolute (also called metric) depth estimation model, unlike DPT which is a relative depth estimation model. This means that ZoeDepth is able to estimate depth in metric units like meters.
|
||||
```py
|
||||
import requests
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
from PIL import Image
|
||||
|
||||
The easiest to perform inference with ZoeDepth is by leveraging the [pipeline API](../main_classes/pipelines.md):
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> pipe = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
||||
>>> result = pipe(image)
|
||||
>>> depth = result["depth"]
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
pipeline = pipeline(
|
||||
task="depth-estimation",
|
||||
model="Intel/zoedepth-nyu-kitti",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
results = pipeline(image)
|
||||
results["depth"]
|
||||
```
|
||||
|
||||
Alternatively, one can also perform inference using the classes:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoImageProcessor, ZoeDepthForDepthEstimation
|
||||
>>> import torch
|
||||
>>> import numpy as np
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"Intel/zoedepth-nyu-kitti"
|
||||
)
|
||||
model = AutoModelForDepthEstimation.from_pretrained(
|
||||
"Intel/zoedepth-nyu-kitti",
|
||||
device_map="auto"
|
||||
)
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
|
||||
>>> model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti")
|
||||
with torch.no_grad():
|
||||
outputs = model(inputs)
|
||||
|
||||
>>> # prepare image for the model
|
||||
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||||
# interpolate to original size and visualize the prediction
|
||||
## ZoeDepth dynamically pads the input image, so pass the original image size as argument
|
||||
## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
|
||||
post_processed_output = image_processor.post_process_depth_estimation(
|
||||
outputs,
|
||||
source_sizes=[(image.height, image.width)],
|
||||
)
|
||||
|
||||
>>> with torch.no_grad():
|
||||
... outputs = model(inputs)
|
||||
|
||||
>>> # interpolate to original size and visualize the prediction
|
||||
>>> ## ZoeDepth dynamically pads the input image. Thus we pass the original image size as argument
|
||||
>>> ## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
|
||||
>>> post_processed_output = image_processor.post_process_depth_estimation(
|
||||
... outputs,
|
||||
... source_sizes=[(image.height, image.width)],
|
||||
... )
|
||||
|
||||
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
|
||||
>>> depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
||||
>>> depth = depth.detach().cpu().numpy() * 255
|
||||
>>> depth = Image.fromarray(depth.astype("uint8"))
|
||||
predicted_depth = post_processed_output[0]["predicted_depth"]
|
||||
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
||||
depth = depth.detach().cpu().numpy() * 255
|
||||
Image.fromarray(depth.astype("uint8"))
|
||||
```
|
||||
|
||||
<Tip>
|
||||
<p>In the <a href="https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131">original implementation</a> ZoeDepth model performs inference on both the original and flipped images and averages out the results. The <code>post_process_depth_estimation</code> function can handle this for us by passing the flipped outputs to the optional <code>outputs_flipped</code> argument:</p>
|
||||
<pre><code class="language-Python">>>> with torch.no_grad():
|
||||
... outputs = model(pixel_values)
|
||||
... outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
||||
>>> post_processed_output = image_processor.post_process_depth_estimation(
|
||||
... outputs,
|
||||
... source_sizes=[(image.height, image.width)],
|
||||
... outputs_flipped=outputs_flipped,
|
||||
... )
|
||||
</code></pre>
|
||||
</Tip>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- In the [original implementation](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131) ZoeDepth performs inference on both the original and flipped images and averages the results. The `post_process_depth_estimation` function handles this by passing the flipped outputs to the optional `outputs_flipped` argument as shown below.
|
||||
```py
|
||||
with torch.no_grad():
|
||||
outputs = model(pixel_values)
|
||||
outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
||||
post_processed_output = image_processor.post_process_depth_estimation(
|
||||
outputs,
|
||||
source_sizes=[(image.height, image.width)],
|
||||
outputs_flipped=outputs_flipped,
|
||||
)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ZoeDepth.
|
||||
|
||||
- A demo notebook regarding inference with ZoeDepth models can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth). 🌎
|
||||
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth) for an inference example.
|
||||
|
||||
## ZoeDepthConfig
|
||||
|
||||
|
@ -243,13 +243,7 @@ class Olmo2Attention(OlmoAttention):
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
|
58
docs/source/en/reference/environment_variables.md
Normal file
58
docs/source/en/reference/environment_variables.md
Normal file
@ -0,0 +1,58 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Environment Variables
|
||||
|
||||
## HF_ENABLE_PARALLEL_LOADING
|
||||
|
||||
By default this is disabled. Enables the loading of torch and safetensor based weights to be loaded in parallel. Can decrease the time to load large models significantly, often times producing speed ups around ~50%.
|
||||
|
||||
Can be set to a string equal to `"false"` or `"true"`. e.g. `os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"`.
|
||||
|
||||
e.g. `facebook/opt-30b` on an AWS EC2 g4dn.metal instance can be made to load in ~30s with this enabled vs ~55s without it.
|
||||
|
||||
Profile before committing to using this environment variable, this will not produce speed ups for smaller models.
|
||||
|
||||
```py
|
||||
import os
|
||||
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
|
||||
```
|
||||
|
||||
## HF_PARALLEL_LOADING_WORKERS
|
||||
|
||||
Determines how many threads should be used when parallel loading is enabled. Default is `8`.
|
||||
|
||||
If the number of files that are being loaded is less than the number of threads specified, the number that is actually spawned will be equal to the number of files.
|
||||
|
||||
e.g. If you specify 8 workers, and there are only 2 files, only 2 workers will be spawned.
|
||||
|
||||
Tune as you see fit.
|
||||
|
||||
```py
|
||||
import os
|
||||
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
|
||||
os.environ["HF_PARALLEL_LOADING_WORKERS"] = "4"
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
|
||||
```
|
@ -29,8 +29,6 @@
|
||||
- sections:
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: tasks/sequence_classification
|
||||
title: テキストの分類
|
||||
- local: tasks/token_classification
|
||||
title: トークンの分類
|
||||
- local: tasks/question_answering
|
||||
|
@ -47,7 +47,7 @@ ALBERTモデルは、「[ALBERT: A Lite BERT for Self-supervised Learning of Lan
|
||||
|
||||
## 参考資料
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問応答タスクガイド](../tasks/question_answering)
|
||||
- [マスクされた言語モデルタスクガイド](../tasks/masked_language_modeling)
|
||||
|
@ -372,3 +372,10 @@ AutoModel.register(NewModelConfig, NewModel)
|
||||
### AutoModelForImageTextToText
|
||||
|
||||
[[autodoc]] AutoModelForImageTextToText
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
||||
|
@ -129,7 +129,7 @@ BART を始めるのに役立つ公式 Hugging Face およびコミュニティ
|
||||
- [翻訳タスクガイド](../tasks/translation)
|
||||
|
||||
以下も参照してください。
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
- [抽出されたチェックポイント](https://huggingface.co/models?search=distilbart) は、この [論文](https://arxiv.org/abs/2010.13002) で説明されています。
|
||||
|
@ -76,7 +76,7 @@ BERT を始めるのに役立つ公式 Hugging Face およびコミュニティ
|
||||
- [`BertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)。
|
||||
- [`TFBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)。
|
||||
- [`FlaxBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)。
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
|
||||
<PipelineTag pipeline="token-classification"/>
|
||||
|
||||
|
@ -58,7 +58,7 @@ BigBird は、質問応答や要約などのさまざまな NLP タスクのパ
|
||||
|
||||
## ドキュメント リソース
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
|
@ -58,7 +58,7 @@ BigBird は、質問応答や要約などのさまざまな NLP タスクのパ
|
||||
|
||||
## ドキュメント リソース
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
- [翻訳タスクガイド](../tasks/translation)
|
||||
|
@ -39,7 +39,7 @@ BLOOM を使い始めるのに役立つ公式 Hugging Face およびコミュニ
|
||||
|
||||
以下も参照してください。
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
|
||||
|
@ -46,7 +46,7 @@ Bi-direction Encoders for Transformers (BERT) のフランス語版である Cam
|
||||
|
||||
## Resources
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
|
@ -98,7 +98,7 @@ CANINE は生の文字で動作するため、**トークナイザーなし**で
|
||||
|
||||
## Resources
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [多肢選択タスク ガイド](../tasks/multiple_choice)
|
||||
|
@ -53,7 +53,7 @@ ConvBERT トレーニングのヒントは BERT のヒントと似ています
|
||||
|
||||
## Resources
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [マスクされた言語モデリング タスク ガイド](../tasks/masked_lang_modeling)
|
||||
|
@ -61,7 +61,7 @@ CTRL モデルは、Nitish Shirish Keskar*、Bryan McCann*、Lav R. Varshney、C
|
||||
|
||||
## Resources
|
||||
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
|
||||
## CTRLConfig
|
||||
|
@ -58,7 +58,7 @@ Data2Vec の使用を開始するのに役立つ公式 Hugging Face およびコ
|
||||
- カスタム データセットで [`TFData2VecVisionForImageClassification`] を微調整するには、[このノートブック](https://colab.research.google.com/github/sayakpaul/TF-2.0-Hacks/blob/master/data2vec_vision_image_classification.ipynb) を参照してください。 )。
|
||||
|
||||
**Data2VecText ドキュメント リソース**
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
|
||||
|
@ -61,7 +61,7 @@ v2 の新機能:
|
||||
[kamalkraj](https://huggingface.co/kamalkraj) による投稿。元のコードは [こちら](https://github.com/microsoft/DeBERTa) にあります。
|
||||
|
||||
## Resources
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
- [トークン分類タスクガイド](../tasks/token_classification)
|
||||
- [質問回答タスク ガイド](../tasks/question_answering)
|
||||
- [マスク言語モデリング タスク ガイド](../tasks/masked_language_modeling)
|
||||
|
@ -52,7 +52,7 @@ DeBERTa を使い始めるのに役立つ公式 Hugging Face およびコミュ
|
||||
- DeBERTa による [機械学習によるスーパーチャージされた顧客サービス](https://huggingface.co/blog/supercharge-customer-service-with-machine-learning) に関するブログ投稿。
|
||||
- [`DebertaForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)。
|
||||
- [`TFDebertaForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)。
|
||||
- [テキスト分類タスクガイド](../tasks/sequence_classification)
|
||||
- [テキスト分類タスクガイド(英語版)](../../en/tasks/sequence_classification)
|
||||
|
||||
<PipelineTag pipeline="token-classification" />
|
||||
|
||||
|
@ -1,604 +0,0 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Sequence classification
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
<Youtube id="dKE8SIt9C-w"/>
|
||||
|
||||
セマンティック セグメンテーションでは、画像の個々のピクセルにラベルまたはクラスを割り当てます。セグメンテーションにはいくつかのタイプがありますが、セマンティック セグメンテーションの場合、同じオブジェクトの一意のインスタンス間の区別は行われません。両方のオブジェクトに同じラベルが付けられます (たとえば、「car-1」と「car-2」の代わりに「car」)。セマンティック セグメンテーションの一般的な現実世界のアプリケーションには、歩行者や重要な交通情報を識別するための自動運転車のトレーニング、医療画像内の細胞と異常の識別、衛星画像からの環境変化の監視などが含まれます。
|
||||
|
||||
このガイドでは、次の方法を説明します。
|
||||
|
||||
1. [SceneParse150](https://huggingface.co/datasets/scene_parse_150) データセットの [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) を微調整します。
|
||||
2. 微調整したモデルを推論に使用します。
|
||||
|
||||
<Tip>
|
||||
|
||||
このタスクと互換性のあるすべてのアーキテクチャとチェックポイントを確認するには、[タスクページ](https://huggingface.co/tasks/text-classification) を確認することをお勧めします。
|
||||
|
||||
</Tip>
|
||||
|
||||
始める前に、必要なライブラリがすべてインストールされていることを確認してください。
|
||||
|
||||
```bash
|
||||
pip install -q datasets transformers evaluate
|
||||
```
|
||||
|
||||
モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。
|
||||
|
||||
```py
|
||||
>>> from huggingface_hub import notebook_login
|
||||
|
||||
>>> notebook_login()
|
||||
```
|
||||
|
||||
## Load SceneParse150 dataset
|
||||
|
||||
|
||||
まず、SceneParse150 データセットの小さいサブセットを 🤗 データセット ライブラリから読み込みます。これにより、完全なデータセットのトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認する機会が得られます。
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> ds = load_dataset("scene_parse_150", split="train[:50]")
|
||||
```
|
||||
|
||||
[`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットの `train` 分割をトレイン セットとテスト セットに分割します。
|
||||
|
||||
```py
|
||||
>>> ds = ds.train_test_split(test_size=0.2)
|
||||
>>> train_ds = ds["train"]
|
||||
>>> test_ds = ds["test"]
|
||||
```
|
||||
|
||||
次に、例を見てみましょう。
|
||||
|
||||
```py
|
||||
>>> train_ds[0]
|
||||
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
|
||||
'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
|
||||
'scene_category': 368}
|
||||
```
|
||||
|
||||
- `image`: シーンの PIL イメージ。
|
||||
- `annotation`: セグメンテーション マップの PIL イメージ。モデルのターゲットでもあります。
|
||||
- `scene_category`: 「キッチン」や「オフィス」などの画像シーンを説明するカテゴリ ID。このガイドでは、「image」と「annotation」のみが必要になります。どちらも PIL イメージです。
|
||||
|
||||
また、ラベル ID をラベル クラスにマップする辞書を作成することもできます。これは、後でモデルを設定するときに役立ちます。ハブからマッピングをダウンロードし、`id2label` および `label2id` ディクショナリを作成します。
|
||||
|
||||
```py
|
||||
>>> import json
|
||||
>>> from pathlib import Path
|
||||
>>> from huggingface_hub import hf_hub_download
|
||||
|
||||
>>> repo_id = "huggingface/label-files"
|
||||
>>> filename = "ade20k-id2label.json"
|
||||
>>> id2label = json.loads(Path(hf_hub_download(repo_id, filename, repo_type="dataset")).read_text())
|
||||
>>> id2label = {int(k): v for k, v in id2label.items()}
|
||||
>>> label2id = {v: k for k, v in id2label.items()}
|
||||
>>> num_labels = len(id2label)
|
||||
```
|
||||
|
||||
## Preprocess
|
||||
|
||||
次のステップでは、SegFormer 画像プロセッサをロードして、モデルの画像と注釈を準備します。このデータセットのような一部のデータセットは、バックグラウンド クラスとしてゼロインデックスを使用します。ただし、実際には背景クラスは 150 個のクラスに含まれていないため、`do_reduce_labels=True`を設定してすべてのラベルから 1 つを引く必要があります。ゼロインデックスは `255` に置き換えられるため、SegFormer の損失関数によって無視されます。
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoImageProcessor
|
||||
|
||||
>>> checkpoint = "nvidia/mit-b0"
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, do_reduce_labels=True)
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。このガイドでは、[torchvision](https://pytorch.org) の [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) 関数を使用します。 /vision/stable/index.html) を使用して画像の色のプロパティをランダムに変更しますが、任意の画像ライブラリを使用することもできます。
|
||||
|
||||
```py
|
||||
>>> from torchvision.transforms import ColorJitter
|
||||
|
||||
>>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
|
||||
```
|
||||
|
||||
次に、モデルの画像と注釈を準備するための 2 つの前処理関数を作成します。これらの関数は、画像を`pixel_values`に変換し、注釈を`labels`に変換します。トレーニング セットの場合、画像を画像プロセッサに提供する前に`jitter`が適用されます。テスト セットの場合、テスト中にデータ拡張が適用されないため、画像プロセッサは`images`を切り取って正規化し、`labels` のみを切り取ります。
|
||||
|
||||
```py
|
||||
>>> def train_transforms(example_batch):
|
||||
... images = [jitter(x) for x in example_batch["image"]]
|
||||
... labels = [x for x in example_batch["annotation"]]
|
||||
... inputs = image_processor(images, labels)
|
||||
... return inputs
|
||||
|
||||
|
||||
>>> def val_transforms(example_batch):
|
||||
... images = [x for x in example_batch["image"]]
|
||||
... labels = [x for x in example_batch["annotation"]]
|
||||
... inputs = image_processor(images, labels)
|
||||
... return inputs
|
||||
```
|
||||
|
||||
データセット全体に`jitter`を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。
|
||||
|
||||
```py
|
||||
>>> train_ds.set_transform(train_transforms)
|
||||
>>> test_ds.set_transform(val_transforms)
|
||||
```
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<frameworkcontent>
|
||||
<tf>
|
||||
|
||||
モデルを過学習に対してより堅牢にするために、画像データセットにいくつかのデータ拡張を適用するのが一般的です。
|
||||
このガイドでは、[`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image) を使用して画像の色のプロパティをランダムに変更しますが、任意のプロパティを使用することもできます。画像
|
||||
好きな図書館。
|
||||
2 つの別々の変換関数を定義します。
|
||||
- 画像拡張を含むトレーニング データ変換
|
||||
- 🤗 Transformers のコンピューター ビジョン モデルはチャネル優先のレイアウトを想定しているため、画像を転置するだけの検証データ変換
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
|
||||
>>> def aug_transforms(image):
|
||||
... image = tf.keras.utils.img_to_array(image)
|
||||
... image = tf.image.random_brightness(image, 0.25)
|
||||
... image = tf.image.random_contrast(image, 0.5, 2.0)
|
||||
... image = tf.image.random_saturation(image, 0.75, 1.25)
|
||||
... image = tf.image.random_hue(image, 0.1)
|
||||
... image = tf.transpose(image, (2, 0, 1))
|
||||
... return image
|
||||
|
||||
|
||||
>>> def transforms(image):
|
||||
... image = tf.keras.utils.img_to_array(image)
|
||||
... image = tf.transpose(image, (2, 0, 1))
|
||||
... return image
|
||||
```
|
||||
|
||||
次に、モデルの画像と注釈のバッチを準備する 2 つの前処理関数を作成します。これらの機能が適用されます
|
||||
画像変換を行い、以前にロードされた `image_processor` を使用して画像を `pixel_values` に変換し、
|
||||
`labels`への注釈。 `ImageProcessor` は、画像のサイズ変更と正規化も処理します。
|
||||
|
||||
```py
|
||||
>>> def train_transforms(example_batch):
|
||||
... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]]
|
||||
... labels = [x for x in example_batch["annotation"]]
|
||||
... inputs = image_processor(images, labels)
|
||||
... return inputs
|
||||
|
||||
|
||||
>>> def val_transforms(example_batch):
|
||||
... images = [transforms(x.convert("RGB")) for x in example_batch["image"]]
|
||||
... labels = [x for x in example_batch["annotation"]]
|
||||
... inputs = image_processor(images, labels)
|
||||
... return inputs
|
||||
```
|
||||
|
||||
データセット全体に前処理変換を適用するには、🤗 Datasets [`~datasets.Dataset.set_transform`] 関数を使用します。
|
||||
変換はオンザフライで適用されるため、高速で消費するディスク容量が少なくなります。
|
||||
|
||||
```py
|
||||
>>> train_ds.set_transform(train_transforms)
|
||||
>>> test_ds.set_transform(val_transforms)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Evaluate
|
||||
|
||||
トレーニング中にメトリクスを含めると、多くの場合、モデルのパフォーマンスを評価するのに役立ちます。 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) ライブラリを使用して、評価メソッドをすばやくロードできます。このタスクでは、[Mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) メトリックをロードします (🤗 Evaluate [クイック ツアー](https://huggingface.co) を参照してください) /docs/evaluate/a_quick_tour) を参照して、メトリクスをロードして計算する方法の詳細を確認してください)。
|
||||
|
||||
```py
|
||||
>>> import evaluate
|
||||
|
||||
>>> metric = evaluate.load("mean_iou")
|
||||
```
|
||||
|
||||
次に、メトリクスを [`~evaluate.EvaluationModule.compute`] する関数を作成します。予測を次のように変換する必要があります
|
||||
最初にロジットを作成し、次に [`~evaluate.EvaluationModule.compute`] を呼び出す前にラベルのサイズに一致するように再形成します。
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> import numpy as np
|
||||
>>> import torch
|
||||
>>> from torch import nn
|
||||
|
||||
>>> def compute_metrics(eval_pred):
|
||||
... with torch.no_grad():
|
||||
... logits, labels = eval_pred
|
||||
... logits_tensor = torch.from_numpy(logits)
|
||||
... logits_tensor = nn.functional.interpolate(
|
||||
... logits_tensor,
|
||||
... size=labels.shape[-2:],
|
||||
... mode="bilinear",
|
||||
... align_corners=False,
|
||||
... ).argmax(dim=1)
|
||||
|
||||
... pred_labels = logits_tensor.detach().cpu().numpy()
|
||||
... metrics = metric.compute(
|
||||
... predictions=pred_labels,
|
||||
... references=labels,
|
||||
... num_labels=num_labels,
|
||||
... ignore_index=255,
|
||||
... reduce_labels=False,
|
||||
... )
|
||||
... for key, value in metrics.items():
|
||||
... if type(value) is np.ndarray:
|
||||
... metrics[key] = value.tolist()
|
||||
... return metrics
|
||||
```
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
|
||||
<frameworkcontent>
|
||||
<tf>
|
||||
|
||||
```py
|
||||
>>> def compute_metrics(eval_pred):
|
||||
... logits, labels = eval_pred
|
||||
... logits = tf.transpose(logits, perm=[0, 2, 3, 1])
|
||||
... logits_resized = tf.image.resize(
|
||||
... logits,
|
||||
... size=tf.shape(labels)[1:],
|
||||
... method="bilinear",
|
||||
... )
|
||||
|
||||
... pred_labels = tf.argmax(logits_resized, axis=-1)
|
||||
... metrics = metric.compute(
|
||||
... predictions=pred_labels,
|
||||
... references=labels,
|
||||
... num_labels=num_labels,
|
||||
... ignore_index=-1,
|
||||
... reduce_labels=image_processor.do_reduce_labels,
|
||||
... )
|
||||
|
||||
... per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
|
||||
... per_category_iou = metrics.pop("per_category_iou").tolist()
|
||||
|
||||
... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
|
||||
... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
|
||||
... return {"val_" + k: v for k, v in metrics.items()}
|
||||
```
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
これで`compute_metrics`関数の準備が整いました。トレーニングをセットアップするときにこの関数に戻ります。
|
||||
|
||||
## Train
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Tip>
|
||||
|
||||
[`Trainer`] を使用したモデルの微調整に慣れていない場合は、[こちら](../training#finetune-with-trainer) の基本的なチュートリアルをご覧ください。
|
||||
|
||||
|
||||
</Tip>
|
||||
|
||||
これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、ラベル ID とラベル クラス間のマッピングをモデルに渡します。
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer
|
||||
|
||||
>>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id)
|
||||
```
|
||||
|
||||
この時点で残っている手順は次の 3 つだけです。
|
||||
|
||||
1. [`TrainingArguments`] でトレーニング ハイパーパラメータを定義します。 `image` 列が削除されるため、未使用の列を削除しないことが重要です。 `image` 列がないと、`pixel_values` を作成できません。この動作を防ぐには、`remove_unused_columns=False`を設定してください。他に必要なパラメータは、モデルの保存場所を指定する `output_dir` だけです。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。各エポックの終了時に、[`Trainer`] は IoU メトリックを評価し、トレーニング チェックポイントを保存します。
|
||||
2. トレーニング引数を、モデル、データセット、トークナイザー、データ照合器、および `compute_metrics` 関数とともに [`Trainer`] に渡します。
|
||||
3. [`~Trainer.train`] を呼び出してモデルを微調整します。
|
||||
|
||||
|
||||
```py
|
||||
>>> training_args = TrainingArguments(
|
||||
... output_dir="segformer-b0-scene-parse-150",
|
||||
... learning_rate=6e-5,
|
||||
... num_train_epochs=50,
|
||||
... per_device_train_batch_size=2,
|
||||
... per_device_eval_batch_size=2,
|
||||
... save_total_limit=3,
|
||||
... eval_strategy="steps",
|
||||
... save_strategy="steps",
|
||||
... save_steps=20,
|
||||
... eval_steps=20,
|
||||
... logging_steps=1,
|
||||
... eval_accumulation_steps=5,
|
||||
... remove_unused_columns=False,
|
||||
... push_to_hub=True,
|
||||
... )
|
||||
|
||||
>>> trainer = Trainer(
|
||||
... model=model,
|
||||
... args=training_args,
|
||||
... train_dataset=train_ds,
|
||||
... eval_dataset=test_ds,
|
||||
... compute_metrics=compute_metrics,
|
||||
... )
|
||||
|
||||
>>> trainer.train()
|
||||
```
|
||||
|
||||
トレーニングが完了したら、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。
|
||||
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<frameworkcontent>
|
||||
<tf>
|
||||
<Tip>
|
||||
|
||||
Keras を使用したモデルの微調整に慣れていない場合は、まず [基本チュートリアル](./training#train-a-tensorflow-model-with-keras) を確認してください。
|
||||
|
||||
</Tip>
|
||||
|
||||
TensorFlow でモデルを微調整するには、次の手順に従います。
|
||||
1. トレーニングのハイパーパラメータを定義し、オプティマイザーと学習率スケジュールを設定します。
|
||||
2. 事前トレーニングされたモデルをインスタンス化します。
|
||||
3. 🤗 データセットを `tf.data.Dataset` に変換します。
|
||||
4. モデルをコンパイルします。
|
||||
5. コールバックを追加してメトリクスを計算し、モデルを 🤗 Hub にアップロードします
|
||||
6. `fit()` メソッドを使用してトレーニングを実行します。
|
||||
|
||||
まず、ハイパーパラメーター、オプティマイザー、学習率スケジュールを定義します。
|
||||
|
||||
|
||||
```py
|
||||
>>> from transformers import create_optimizer
|
||||
|
||||
>>> batch_size = 2
|
||||
>>> num_epochs = 50
|
||||
>>> num_train_steps = len(train_ds) * num_epochs
|
||||
>>> learning_rate = 6e-5
|
||||
>>> weight_decay_rate = 0.01
|
||||
|
||||
>>> optimizer, lr_schedule = create_optimizer(
|
||||
... init_lr=learning_rate,
|
||||
... num_train_steps=num_train_steps,
|
||||
... weight_decay_rate=weight_decay_rate,
|
||||
... num_warmup_steps=0,
|
||||
... )
|
||||
```
|
||||
|
||||
次に、ラベル マッピングとともに [`TFAutoModelForSemanticSegmentation`] を使用して SegFormer をロードし、それをコンパイルします。
|
||||
オプティマイザ。 Transformers モデルにはすべてデフォルトのタスク関連の損失関数があるため、次の場合を除き、損失関数を指定する必要はないことに注意してください。
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSemanticSegmentation
|
||||
|
||||
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained(
|
||||
... checkpoint,
|
||||
... id2label=id2label,
|
||||
... label2id=label2id,
|
||||
... )
|
||||
>>> model.compile(optimizer=optimizer) # No loss argument!
|
||||
```
|
||||
|
||||
[`~datasets.Dataset.to_tf_dataset`] と [`DefaultDataCollator`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。
|
||||
|
||||
```py
|
||||
>>> from transformers import DefaultDataCollator
|
||||
|
||||
>>> data_collator = DefaultDataCollator(return_tensors="tf")
|
||||
|
||||
>>> tf_train_dataset = train_ds.to_tf_dataset(
|
||||
... columns=["pixel_values", "label"],
|
||||
... shuffle=True,
|
||||
... batch_size=batch_size,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
|
||||
>>> tf_eval_dataset = test_ds.to_tf_dataset(
|
||||
... columns=["pixel_values", "label"],
|
||||
... shuffle=True,
|
||||
... batch_size=batch_size,
|
||||
... collate_fn=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
予測から精度を計算し、モデルを 🤗 ハブにプッシュするには、[Keras callbacks](../main_classes/keras_callbacks) を使用します。
|
||||
`compute_metrics` 関数を [`KerasMetricCallback`] に渡します。
|
||||
そして [`PushToHubCallback`] を使用してモデルをアップロードします。
|
||||
|
||||
```py
|
||||
>>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback
|
||||
|
||||
>>> metric_callback = KerasMetricCallback(
|
||||
... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"]
|
||||
... )
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", image_processor=image_processor)
|
||||
|
||||
>>> callbacks = [metric_callback, push_to_hub_callback]
|
||||
```
|
||||
|
||||
ついに、モデルをトレーニングする準備が整いました。`fit()`トレーニングおよび検証データセット、エポック数、
|
||||
モデルを微調整するためのコールバック:
|
||||
|
||||
```py
|
||||
>>> model.fit(
|
||||
... tf_train_dataset,
|
||||
... validation_data=tf_eval_dataset,
|
||||
... callbacks=callbacks,
|
||||
... epochs=num_epochs,
|
||||
... )
|
||||
```
|
||||
|
||||
おめでとう!モデルを微調整し、🤗 Hub で共有しました。これで推論に使用できるようになりました。
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
|
||||
## Inference
|
||||
|
||||
モデルを微調整したので、それを推論に使用できるようになりました。
|
||||
|
||||
推論のために画像をロードします。
|
||||
|
||||
```py
|
||||
>>> image = ds[0]["image"]
|
||||
>>> image
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/>
|
||||
</div>
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用して画像セグメンテーション用の `pipeline` をインスタンス化し、それに画像を渡します。
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model")
|
||||
>>> segmenter(image)
|
||||
[{'score': None,
|
||||
'label': 'wall',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062690>},
|
||||
{'score': None,
|
||||
'label': 'sky',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A50>},
|
||||
{'score': None,
|
||||
'label': 'floor',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062B50>},
|
||||
{'score': None,
|
||||
'label': 'ceiling',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A10>},
|
||||
{'score': None,
|
||||
'label': 'bed ',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E90>},
|
||||
{'score': None,
|
||||
'label': 'windowpane',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062390>},
|
||||
{'score': None,
|
||||
'label': 'cabinet',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062550>},
|
||||
{'score': None,
|
||||
'label': 'chair',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062D90>},
|
||||
{'score': None,
|
||||
'label': 'armchair',
|
||||
'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E10>}]
|
||||
```
|
||||
|
||||
必要に応じて、`pipeline` の結果を手動で複製することもできます。画像プロセッサで画像を処理し、`pixel_values`を GPU に配置します。
|
||||
|
||||
```py
|
||||
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # use GPU if available, otherwise use a CPU
|
||||
>>> encoding = image_processor(image, return_tensors="pt")
|
||||
>>> pixel_values = encoding.pixel_values.to(device)
|
||||
```
|
||||
|
||||
入力をモデルに渡し、「logits」を返します。
|
||||
|
||||
```py
|
||||
>>> outputs = model(pixel_values=pixel_values)
|
||||
>>> logits = outputs.logits.cpu()
|
||||
```
|
||||
|
||||
次に、ロジットを元の画像サイズに再スケールします。
|
||||
|
||||
|
||||
```py
|
||||
>>> upsampled_logits = nn.functional.interpolate(
|
||||
... logits,
|
||||
... size=image.size[::-1],
|
||||
... mode="bilinear",
|
||||
... align_corners=False,
|
||||
... )
|
||||
|
||||
>>> pred_seg = upsampled_logits.argmax(dim=1)[0]
|
||||
```
|
||||
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<frameworkcontent>
|
||||
<tf>
|
||||
|
||||
画像プロセッサをロードして画像を前処理し、入力を TensorFlow テンソルとして返します。
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoImageProcessor
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation")
|
||||
>>> inputs = image_processor(image, return_tensors="tf")
|
||||
```
|
||||
|
||||
入力をモデルに渡し、`logits`を返します。
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSemanticSegmentation
|
||||
|
||||
>>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation")
|
||||
>>> logits = model(**inputs).logits
|
||||
```
|
||||
|
||||
次に、ロジットを元の画像サイズに再スケールし、クラス次元に argmax を適用します。
|
||||
|
||||
```py
|
||||
>>> logits = tf.transpose(logits, [0, 2, 3, 1])
|
||||
|
||||
>>> upsampled_logits = tf.image.resize(
|
||||
... logits,
|
||||
... # We reverse the shape of `image` because `image.size` returns width and height.
|
||||
... image.size[::-1],
|
||||
... )
|
||||
|
||||
>>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0]
|
||||
```
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
結果を視覚化するには、[データセット カラー パレット](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) を、それぞれをマップする `ade_palette()` としてロードします。クラスを RGB 値に変換します。次に、画像と予測されたセグメンテーション マップを組み合わせてプロットできます。
|
||||
|
||||
```py
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> import numpy as np
|
||||
|
||||
>>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8)
|
||||
>>> palette = np.array(ade_palette())
|
||||
>>> for label, color in enumerate(palette):
|
||||
... color_seg[pred_seg == label, :] = color
|
||||
>>> color_seg = color_seg[..., ::-1] # convert to BGR
|
||||
|
||||
>>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map
|
||||
>>> img = img.astype(np.uint8)
|
||||
|
||||
>>> plt.figure(figsize=(15, 10))
|
||||
>>> plt.imshow(img)
|
||||
>>> plt.show()
|
||||
```
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/>
|
||||
</div>
|
@ -221,7 +221,7 @@ Transformerは最初に機械翻訳のために設計され、それ以降、ほ
|
||||
|
||||
事前訓練済みモデルをテキスト分類に使用するには、ベースのBERTモデルの上にシーケンス分類ヘッドを追加します。シーケンス分類ヘッドは最終的な隠れた状態を受け入れ、それらをロジットに変換するための線形層です。クロスエントロピー損失は、ロジットとターゲット間で最も可能性の高いラベルを見つけるために計算されます。
|
||||
|
||||
テキスト分類を試してみる準備はできましたか?DistilBERTを微調整し、推論に使用する方法を学ぶために、完全な[テキスト分類ガイド](tasks/sequence_classification)をチェックしてみてください!
|
||||
テキスト分類を試してみる準備はできましたか?DistilBERTを微調整し、推論に使用する方法を学ぶために、完全な[テキスト分類ガイド(英語版)](../en/tasks/sequence_classification)をチェックしてみてください!
|
||||
|
||||
### Token classification
|
||||
|
||||
|
@ -373,3 +373,10 @@ AutoModel.register(NewModelConfig, NewModel)
|
||||
### FlaxAutoModelForVision2Seq[[transformers.FlaxAutoModelForVision2Seq]]
|
||||
|
||||
[[autodoc]] FlaxAutoModelForVision2Seq
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction[[transformers.AutoModelForTimeSeriesPrediction]]
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
||||
|
@ -1,3 +1,16 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""":
|
||||
This script is used to test training a model using Tensor Parallelism and Data Parallelism.
|
||||
|
||||
|
@ -60,7 +60,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/flax/speech-recognition/requirements.txt")
|
||||
|
||||
|
@ -55,7 +55,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
Array = Any
|
||||
Dataset = datasets.arrow_dataset.Dataset
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
|
||||
|
||||
|
4
examples/metrics-monitoring/README.md
Normal file
4
examples/metrics-monitoring/README.md
Normal file
@ -0,0 +1,4 @@
|
||||
# Metrics Monitoring
|
||||
|
||||
## Continuous Batching Metrics in Transformers
|
||||
|
974
examples/metrics-monitoring/continuous-batching-dashboard.json
Normal file
974
examples/metrics-monitoring/continuous-batching-dashboard.json
Normal file
@ -0,0 +1,974 @@
|
||||
{
|
||||
"annotations": {
|
||||
"list": [
|
||||
{
|
||||
"builtIn": 1,
|
||||
"datasource": {
|
||||
"type": "grafana",
|
||||
"uid": "-- Grafana --"
|
||||
},
|
||||
"enable": true,
|
||||
"hide": true,
|
||||
"iconColor": "rgba(0, 211, 255, 1)",
|
||||
"name": "Annotations & Alerts",
|
||||
"target": {
|
||||
"limit": 100,
|
||||
"matchAny": false,
|
||||
"tags": [],
|
||||
"type": "dashboard"
|
||||
},
|
||||
"type": "dashboard"
|
||||
}
|
||||
]
|
||||
},
|
||||
"editable": true,
|
||||
"fiscalYearStartMonth": 0,
|
||||
"graphTooltip": 0,
|
||||
"id": 2,
|
||||
"links": [],
|
||||
"panels": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"description": "Memory usage of the PagedAttentionCache",
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"max": 10737418240,
|
||||
"min": 0,
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "yellow",
|
||||
"value": 5368709120
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 8589934592
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "bytes"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 0,
|
||||
"y": 0
|
||||
},
|
||||
"id": 2,
|
||||
"options": {
|
||||
"minVizHeight": 75,
|
||||
"minVizWidth": 75,
|
||||
"orientation": "auto",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showThresholdLabels": false,
|
||||
"showThresholdMarkers": true,
|
||||
"sizing": "auto"
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "kv_cache_memory_bytes",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "KV Cache Memory Usage",
|
||||
"transparent": true,
|
||||
"type": "gauge"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "dark-blue"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 6,
|
||||
"y": 0
|
||||
},
|
||||
"id": 13,
|
||||
"options": {
|
||||
"colorMode": "value",
|
||||
"graphMode": "area",
|
||||
"justifyMode": "auto",
|
||||
"orientation": "auto",
|
||||
"percentChangeColorMode": "standard",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showPercentChange": false,
|
||||
"textMode": "auto",
|
||||
"wideLayout": true
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "active_requests_count",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Active Requests",
|
||||
"transparent": true,
|
||||
"type": "stat"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "dark-orange"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 12,
|
||||
"y": 0
|
||||
},
|
||||
"id": 14,
|
||||
"options": {
|
||||
"colorMode": "value",
|
||||
"graphMode": "area",
|
||||
"justifyMode": "auto",
|
||||
"orientation": "auto",
|
||||
"percentChangeColorMode": "standard",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showPercentChange": false,
|
||||
"textMode": "auto",
|
||||
"wideLayout": true
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "waiting_requests_count",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Waiting Requests",
|
||||
"transparent": true,
|
||||
"type": "stat"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"description": "Ratio of decode tokens to prefill tokens in a batch",
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "blue"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 18,
|
||||
"y": 0
|
||||
},
|
||||
"id": 6,
|
||||
"options": {
|
||||
"colorMode": "value",
|
||||
"graphMode": "none",
|
||||
"justifyMode": "auto",
|
||||
"orientation": "auto",
|
||||
"percentChangeColorMode": "standard",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showPercentChange": false,
|
||||
"textMode": "auto",
|
||||
"wideLayout": true
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "decode_prefill_ratio",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Decode/Prefill Ratio",
|
||||
"transparent": true,
|
||||
"type": "stat"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 0,
|
||||
"y": 8
|
||||
},
|
||||
"id": 10,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "rate(decode_tokens_processed_total[$__rate_interval])",
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
}
|
||||
],
|
||||
"title": "Decode tokens throupught tok/s",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 12,
|
||||
"y": 8
|
||||
},
|
||||
"id": 11,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "rate(prefill_tokens_processed_total[$__rate_interval])",
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
}
|
||||
],
|
||||
"title": "Prefill rate tok/s",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 0,
|
||||
"y": 16
|
||||
},
|
||||
"id": 9,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.95, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
|
||||
"legendFormat": "p95",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.99, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p99",
|
||||
"range": true,
|
||||
"refId": "B"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.5, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p50",
|
||||
"range": true,
|
||||
"refId": "C"
|
||||
}
|
||||
],
|
||||
"title": "Batch fill percentage percentiles",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"description": "KV Cache Memory Usage Over Time",
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 20,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 2,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "bytes"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 12,
|
||||
"y": 16
|
||||
},
|
||||
"id": 4,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "kv_cache_memory_bytes",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "Used memory",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "kv_cache_free_memory_bytes",
|
||||
"fullMetaSearch": false,
|
||||
"hide": false,
|
||||
"includeNullMetadata": true,
|
||||
"instant": false,
|
||||
"legendFormat": "free memory",
|
||||
"range": true,
|
||||
"refId": "B",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "KV Cache Memory Usage Over Time",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "ms"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 0,
|
||||
"y": 24
|
||||
},
|
||||
"id": 8,
|
||||
"options": {
|
||||
"displayMode": "gradient",
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": false
|
||||
},
|
||||
"maxVizHeight": 300,
|
||||
"minVizHeight": 10,
|
||||
"minVizWidth": 0,
|
||||
"namePlacement": "auto",
|
||||
"orientation": "auto",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showUnfilled": true,
|
||||
"sizing": "auto",
|
||||
"valueMode": "color"
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "histogram_quantile(0.95, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "p95",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "histogram_quantile(0.5, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
|
||||
"fullMetaSearch": false,
|
||||
"hide": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "p50",
|
||||
"range": true,
|
||||
"refId": "B",
|
||||
"useBackend": false
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "histogram_quantile(0.99, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
|
||||
"fullMetaSearch": false,
|
||||
"hide": false,
|
||||
"includeNullMetadata": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p99",
|
||||
"range": true,
|
||||
"refId": "C",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Time to First Token (TTFT)",
|
||||
"type": "bargauge"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "ms"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 12,
|
||||
"y": 24
|
||||
},
|
||||
"id": 12,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.5, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
|
||||
"legendFormat": "p50",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.95, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p95",
|
||||
"range": true,
|
||||
"refId": "B"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.99, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p99",
|
||||
"range": true,
|
||||
"refId": "C"
|
||||
}
|
||||
],
|
||||
"title": "Request latency percentiles",
|
||||
"type": "timeseries"
|
||||
}
|
||||
],
|
||||
"preload": false,
|
||||
"refresh": "5s",
|
||||
"schemaVersion": 41,
|
||||
"tags": [],
|
||||
"templating": {
|
||||
"list": []
|
||||
},
|
||||
"time": {
|
||||
"from": "now-15m",
|
||||
"to": "now"
|
||||
},
|
||||
"timepicker": {},
|
||||
"timezone": "",
|
||||
"title": "Transformers Continuous Batching Metrics",
|
||||
"uid": "Lw6CTvVSz",
|
||||
"version": 5
|
||||
}
|
55
examples/metrics-monitoring/docker-compose.yml
Normal file
55
examples/metrics-monitoring/docker-compose.yml
Normal file
@ -0,0 +1,55 @@
|
||||
services:
|
||||
memcached:
|
||||
image: memcached:1.6.29
|
||||
container_name: memcached
|
||||
ports:
|
||||
- "11211:11211"
|
||||
environment:
|
||||
- MEMCACHED_MAX_MEMORY=64m # Set the maximum memory usage
|
||||
- MEMCACHED_THREADS=4 # Number of threads to use
|
||||
|
||||
prometheus:
|
||||
image: prom/prometheus:latest
|
||||
command:
|
||||
- "--config.file=/etc/prometheus/prometheus.yml"
|
||||
- --web.enable-otlp-receiver # Enable OTLP receiver
|
||||
- --web.enable-remote-write-receiver
|
||||
- --enable-feature=exemplar-storage
|
||||
- --enable-feature=native-histograms
|
||||
volumes:
|
||||
- ./prometheus.yml:/etc/prometheus/prometheus.yml
|
||||
ports:
|
||||
- "9090:9090"
|
||||
|
||||
tempo:
|
||||
image: grafana/tempo:latest
|
||||
command: [ "-config.file=/etc/tempo.yaml" ]
|
||||
volumes:
|
||||
- ./tempo.yaml:/etc/tempo.yaml
|
||||
ports:
|
||||
- "14268:14268" # jaeger ingest
|
||||
- "3200:3200" # tempo
|
||||
- "9095:9095" # tempo grpc
|
||||
- "4317:4317" # otlp grpc
|
||||
- "4318:4318" # otlp http
|
||||
- "9411:9411" # zipkin
|
||||
depends_on:
|
||||
- memcached
|
||||
|
||||
grafana:
|
||||
image: grafana/grafana:latest
|
||||
volumes:
|
||||
- ./continuous-batching-dashboard.json:/etc/grafana/provisioning/dashboards/continuous-batching-dashboard.json
|
||||
- ./grafana-dashboard.yaml:/etc/grafana/provisioning/dashboards/grafana-dashboard.yaml
|
||||
- ./grafana-datasources.yaml:/etc/grafana/provisioning/datasources/datasources.yaml
|
||||
environment:
|
||||
- GF_AUTH_ANONYMOUS_ENABLED=true
|
||||
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin
|
||||
- GF_AUTH_DISABLE_LOGIN_FORM=true
|
||||
- GF_FEATURE_TOGGLES_ENABLE=traceqlEditor metricsSummary
|
||||
- GF_INSTALL_PLUGINS=https://storage.googleapis.com/integration-artifacts/grafana-exploretraces-app/grafana-exploretraces-app-latest.zip;grafana-traces-app
|
||||
ports:
|
||||
- "3000:3000"
|
||||
depends_on:
|
||||
- prometheus
|
||||
- tempo
|
11
examples/metrics-monitoring/grafana-dashboard.yaml
Normal file
11
examples/metrics-monitoring/grafana-dashboard.yaml
Normal file
@ -0,0 +1,11 @@
|
||||
apiVersion: 1
|
||||
|
||||
providers:
|
||||
- name: 'Transformers Dashboards'
|
||||
orgId: 1
|
||||
folder: 'Transformers'
|
||||
type: file
|
||||
disableDeletion: false
|
||||
editable: true
|
||||
options:
|
||||
path: /etc/grafana/provisioning/dashboards
|
14
examples/metrics-monitoring/grafana-datasources.yaml
Normal file
14
examples/metrics-monitoring/grafana-datasources.yaml
Normal file
@ -0,0 +1,14 @@
|
||||
apiVersion: 1
|
||||
|
||||
datasources:
|
||||
- name: Prometheus
|
||||
type: prometheus
|
||||
access: proxy
|
||||
url: http://prometheus:9090
|
||||
isDefault: true
|
||||
|
||||
- name: Tempo
|
||||
type: tempo
|
||||
access: proxy
|
||||
url: http://tempo:3200
|
||||
uid: tempo
|
48
examples/metrics-monitoring/metrics_example.py
Normal file
48
examples/metrics-monitoring/metrics_example.py
Normal file
@ -0,0 +1,48 @@
|
||||
# Example usage of the trace and attach_tracer decorators
|
||||
|
||||
from transformers.utils.metrics import attach_tracer, traced
|
||||
|
||||
|
||||
@attach_tracer()
|
||||
class ExampleClass:
|
||||
def __init__(self, name):
|
||||
# The attach_tracer decorator has already created self.tracer for us
|
||||
self.name = name
|
||||
|
||||
@traced # This method will use the tracer from the class instance
|
||||
def process_data(self, data):
|
||||
# This method is traced and can use self.tracer
|
||||
return f"Processed {data} with {self.name}"
|
||||
|
||||
@traced(span_name="custom_operation") # With custom span name
|
||||
def special_operation(self, value):
|
||||
# Also traced, with a custom span name
|
||||
return value * 2
|
||||
|
||||
@traced(
|
||||
additional_attributes=[
|
||||
("name", "object.name", lambda x: x.upper()), # Using a transform function
|
||||
("name", "object.fixed_value", "static_value"), # Using a fixed value
|
||||
]
|
||||
)
|
||||
def operation_with_attributes(self):
|
||||
# This will add the specified attributes to the span
|
||||
return "Operation completed"
|
||||
|
||||
|
||||
# For functions without a class, the traced decorator still works
|
||||
@traced
|
||||
def standalone_function(arg1, arg2):
|
||||
# For functions, a tracer is created based on the module name
|
||||
return arg1 + arg2
|
||||
|
||||
|
||||
# Usage:
|
||||
if __name__ == "__main__":
|
||||
# With OpenTelemetry configured, these will produce traces
|
||||
example = ExampleClass("test_object")
|
||||
example.process_data("sample")
|
||||
example.special_operation(42)
|
||||
example.operation_with_attributes()
|
||||
|
||||
result = standalone_function(1, 2)
|
3
examples/metrics-monitoring/prometheus.yml
Normal file
3
examples/metrics-monitoring/prometheus.yml
Normal file
@ -0,0 +1,3 @@
|
||||
global:
|
||||
scrape_interval: 15s
|
||||
|
90
examples/metrics-monitoring/tempo.yaml
Normal file
90
examples/metrics-monitoring/tempo.yaml
Normal file
@ -0,0 +1,90 @@
|
||||
stream_over_http_enabled: true
|
||||
server:
|
||||
http_listen_port: 3200
|
||||
log_level: info
|
||||
|
||||
|
||||
cache:
|
||||
background:
|
||||
writeback_goroutines: 5
|
||||
caches:
|
||||
- roles:
|
||||
- frontend-search
|
||||
memcached:
|
||||
addresses: dns+memcached:11211
|
||||
|
||||
query_frontend:
|
||||
search:
|
||||
duration_slo: 5s
|
||||
throughput_bytes_slo: 1.073741824e+09
|
||||
metadata_slo:
|
||||
duration_slo: 5s
|
||||
throughput_bytes_slo: 1.073741824e+09
|
||||
trace_by_id:
|
||||
duration_slo: 100ms
|
||||
metrics:
|
||||
max_duration: 200h # maximum duration of a metrics query, increase for local setups
|
||||
query_backend_after: 5m
|
||||
duration_slo: 5s
|
||||
throughput_bytes_slo: 1.073741824e+09
|
||||
|
||||
distributor:
|
||||
receivers: # this configuration will listen on all ports and protocols that tempo is capable of.
|
||||
jaeger: # the receives all come from the OpenTelemetry collector. more configuration information can
|
||||
protocols: # be found there: https://github.com/open-telemetry/opentelemetry-collector/tree/main/receiver
|
||||
thrift_http: #
|
||||
endpoint: "tempo:14268" # for a production deployment you should only enable the receivers you need!
|
||||
grpc:
|
||||
endpoint: "tempo:14250"
|
||||
thrift_binary:
|
||||
endpoint: "tempo:6832"
|
||||
thrift_compact:
|
||||
endpoint: "tempo:6831"
|
||||
zipkin:
|
||||
endpoint: "tempo:9411"
|
||||
otlp:
|
||||
protocols:
|
||||
grpc:
|
||||
endpoint: "tempo:4317"
|
||||
http:
|
||||
endpoint: "tempo:4318"
|
||||
opencensus:
|
||||
endpoint: "tempo:55678"
|
||||
|
||||
ingester:
|
||||
max_block_duration: 5m # cut the headblock when this much time passes. this is being set for demo purposes and should probably be left alone normally
|
||||
|
||||
compactor:
|
||||
compaction:
|
||||
block_retention: 720h # overall Tempo trace retention. set for demo purposes
|
||||
|
||||
metrics_generator:
|
||||
registry:
|
||||
external_labels:
|
||||
source: tempo
|
||||
cluster: docker-compose
|
||||
storage:
|
||||
path: /var/tempo/generator/wal
|
||||
remote_write:
|
||||
- url: http://prometheus:9090/api/v1/write
|
||||
send_exemplars: true
|
||||
traces_storage:
|
||||
path: /var/tempo/generator/traces
|
||||
processor:
|
||||
local_blocks:
|
||||
filter_server_spans: false
|
||||
flush_to_storage: true
|
||||
|
||||
storage:
|
||||
trace:
|
||||
backend: local # backend configuration to use
|
||||
wal:
|
||||
path: /var/tempo/wal # where to store the wal locally
|
||||
local:
|
||||
path: /var/tempo/blocks
|
||||
|
||||
overrides:
|
||||
defaults:
|
||||
metrics_generator:
|
||||
processors: [service-graphs, span-metrics, local-blocks] # enables metrics generator
|
||||
generate_native_histograms: both
|
@ -1,3 +1,16 @@
|
||||
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""":
|
||||
This script is used to test training a model using Tensor Parallelism and Data Parallelism.
|
||||
|
||||
|
@ -44,7 +44,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt")
|
||||
|
||||
|
109
examples/pytorch/continuous_batching.py
Normal file
109
examples/pytorch/continuous_batching.py
Normal file
@ -0,0 +1,109 @@
|
||||
import time
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
model_id = "meta-llama/Llama-3.2-3b-Instruct"
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
|
||||
).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=512,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
use_cache=False,
|
||||
num_blocks=2048,
|
||||
block_size=128,
|
||||
do_sample=True,
|
||||
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
|
||||
scheduler="prefill_first",
|
||||
)
|
||||
|
||||
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
|
||||
# --- Example 1: Simple Version using generate_batch ---
|
||||
print("--- Running CB Generation Example ---")
|
||||
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples["question"])
|
||||
|
||||
|
||||
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
start_time_simple = time.time()
|
||||
# model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs", fullgraph=True)
|
||||
batch_outputs = model.generate_batch(
|
||||
inputs=simple_batch_inputs,
|
||||
generation_config=generation_config,
|
||||
)
|
||||
end_time_simple = time.time()
|
||||
|
||||
for request in batch_outputs:
|
||||
input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=False)
|
||||
try:
|
||||
output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=False)
|
||||
except Exception as e:
|
||||
print(f"Decoding failed for request {request}: {e}")
|
||||
output_text = tokenizer.decode(batch_outputs[request].generated_tokens[1:], skip_special_tokens=False)
|
||||
if len(output_text) > 0:
|
||||
print("-" * 20)
|
||||
print(f"{request} Input: {input_text}")
|
||||
print(f"{request} Output: {output_text}")
|
||||
else:
|
||||
print("", end="\r\r\r\r")
|
||||
print("-" * 20)
|
||||
print("--- Finished CB Generation Example ---\n\n")
|
||||
|
||||
|
||||
print(f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds")
|
||||
|
||||
|
||||
# train_dataset = train_dataset.select(range(5)) # Use only 5 examples for the simple version
|
||||
|
||||
# tokenized_test_prompts = tokenizer(_TEST_PROMPTS, padding=True, padding_side="left", truncation=True, max_length=512)
|
||||
# simple_batch_inputs = list(tokenized_test_prompts["input_ids"])
|
||||
|
||||
# def tokenize_function(examples):
|
||||
# # Truncate to avoid overly long prompts exceeding max context length
|
||||
# return tokenizer(examples["question"], padding=True, truncation=True, max_length=512)
|
||||
|
||||
|
||||
# tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
|
||||
# simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
|
||||
# model.config.attn_implementation = "sdpa"
|
||||
# start_time_simple = time.time()
|
||||
# batch_size = 64
|
||||
# full_outputs = []
|
||||
# from tqdm import tqdm
|
||||
|
||||
# for i in tqdm(range(0, len(simple_batch_inputs)-batch_size, batch_size)):
|
||||
# outputs = model.generate(
|
||||
# torch.tensor(simple_batch_inputs[i:i+batch_size], device=model.device),
|
||||
# generation_config=GenerationConfig(
|
||||
# max_new_tokens=16, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id
|
||||
# ),
|
||||
# )
|
||||
# full_outputs.extend(outputs.tolist())
|
||||
|
||||
# end_time_simple = time.time()
|
||||
# print(f"\nSimple batch generation took: {end_time_simple - start_time_simple:.2f} seconds")
|
||||
|
||||
# print("\nResults from simple generate_batch:")
|
||||
# for i, request in enumerate(full_outputs):
|
||||
# output_text = tokenizer.decode(request, skip_special_tokens=False)
|
||||
# print("-" * 20)
|
||||
# print(f" Output: {output_text}")
|
||||
# print("-" * 20)
|
||||
# print("--- Finished Simple Batch Generation Example ---\n\n")
|
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/contrastive-image-text/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
|
||||
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -42,7 +42,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -47,7 +47,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -52,7 +52,7 @@ Any model supported by the AutoModelForMaskedImageModeling API can be used.
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
|
||||
|
||||
|
@ -52,7 +52,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
|
||||
|
||||
|
@ -54,7 +54,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -57,7 +57,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -59,7 +59,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
@ -53,7 +53,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -56,7 +56,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
@ -46,7 +46,7 @@ from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.14.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
|
@ -45,7 +45,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -53,7 +53,7 @@ from transformers.utils import check_min_version, send_example_telemetry
|
||||
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
logger = get_logger(__name__)
|
||||
# You should update this to your particular problem to have better documentation of `model_type`
|
||||
|
@ -48,7 +48,7 @@ from transformers.utils.versions import require_version
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.52.0.dev0")
|
||||
check_min_version("4.53.0.dev0")
|
||||
|
||||
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/object-detection/requirements.txt")
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user