* init vilt image processor fast
* Refactor image processor tests to use loop for all processors
* Add ViltImageProcessorFast with PyTorch-based optimized image processing
* Change made automatically by make fixup command
* Change made automatically by make fix-copies command
* Fix type hints in ViltImageProcessorFast for Python compatibility
* Define constants for image resizing based on COCO dataset aspect ratio
* Add missing property initializations to ViltImageProcessorFast
* Extract resize logic into dedicated method in ViltImageProcessorFast
* Extract padding logic into dedicated method
* Implement shape-based image grouping for optimized processing in Vilt
* Update test suite to verify ViltImageProcessorFast attributes
* Move variable declarations to _preprocess method parameters
* Remove unused parameters
* Rename _resize method to resize to override existing function
* Remove whitespace
* Remove unnecessary type check and conversion for stacked_images
* Remove redundant loop and apply padding directly to stacked images
* Refactor pad function to return images and mask as tuple instead of dict
* Add tests comparing padding masks in slow and fast implementations
* Update ViltImageProcessor tests to ensure compatibility between slow and fast implementations
* Replace add_start_docstrings with auto_docstring in ViltImageProcessorFast
* Move docstrings of custom args to ViltFastImageProcessorKwargs
* Use reorder_images function for both masks and images
---------
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
* fix llava processor to calculate unpad size correctly
* repo consistency
* Revert "repo consistency" & "setUp in llava family"
This reverts commit 26a50af8db5b15bb6b700db3d53342fe69579d8e.
* add edge case test for padding & unpadding
* compute unpadding size from original size
* make test config explicit
* Revert "compute unpadding size from original size"
This reverts commit 752cd27ad9710ab056c17a9986760c4651975540.
* Revert "add edge case test for padding & unpadding"
This reverts commit ccbd094d69c3f8f6a259159164284f60ba835bce.
* revert unpad logic
* remove irrelevant tests
* model test
* remove processor from model test
---------
Co-authored-by: jaycha <jaycha@ncsoft.com>
* chore(qwen2): display warning log only when sliding window attention is enabled
* Align modeling_qwen2.py and modular_qwen2.py
---------
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* draft cudagraphs addition
* nits
* styling
* update
* fix
* kinda draft of what it should look like
* fixes
* lol
* not sure why inf everywhere
* can generate but output is shit
* some fixes
* we should have a single device synch
* broken outputs but it does run
* refactor
* updates
* updates with some fixes
* fix mask causality
* another commit that casts after
* add error
* simplify example
* update
* updates
* accept arbitrary kwargs
* move user commands to a separate fn
* work with generation config files
* rm cmmt
* docs
* base generate flag doc section
* nits
* nits
* nits
* no <br>
* better basic args description
* initial design
* update all video processors
* add tests
* need to add qwen2-vl (not tested yet)
* add qwen2-vl in auto map
* fix copies
* isort
* resolve confilicts kinda
* nit:
* qwen2-vl is happy now
* qwen2-5 happy
* other models are happy
* fix copies
* fix tests
* add docs
* CI green now?
* add more tests
* even more changes + tests
* doc builder fail
* nit
* Update src/transformers/models/auto/processing_auto.py
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* small update
* imports correctly
* dump, otherwise this is getting unmanagebale T-T
* dump
* update
* another update
* update
* tests
* move
* modular
* docs
* test
* another update
* init
* remove flakiness in tests
* fixup
* clean up and remove commented lines
* docs
* skip this one!
* last fix after rebasing
* run fixup
* delete slow files
* remove unnecessary tests + clean up a bit
* small fixes
* fix tests
* more updates
* docs
* fix tests
* update
* style
* fix qwen2-5-vl
* fixup
* fixup
* unflatten batch when preparing
* dump, come back soon
* add docs and fix some tests
* how to guard this with new dummies?
* chat templates in qwen
* address some comments
* remove `Fast` suffix
* fixup
* oops should be imported from transforms
* typo in requires dummies
* new model added with video support
* fixup once more
* last fixup I hope
* revert image processor name + comments
* oh, this is why fetch test is failing
* fix tests
* fix more tests
* fixup
* add new models: internvl, smolvlm
* update docs
* imprt once
* fix failing tests
* do we need to guard it here again, why?
* new model was added, update it
* remove testcase from tester
* fix tests
* make style
* not related CI fail, lets' just fix here
* mark flaky for now, filas 15 out of 100
* style
* maybe we can do this way?
* don't download images in setup class
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Do not erase a cache_position initialization passed explicitly to generate(), if there is one.
But: Let initialization replace cache_position if it's set to None. I assume that if the value is explicitly passed but None, we should initialize anyway.
* update models
* why rename
* return attn weights when sdpa
* fixes
* fix attn implementation composite
* fix moshi
* add message
* add typings
* use explicitly all flags for each attn type
* fix some tests
* import what is needed
* kosmos on main has ew attention already, yay
* new models in main, run fixup
* won't fix kosmos yet
* fix-copies
* clean up after rebasing
* fix tests
* style
* dont cast attns to fp32
* did we update ruff? oke, let's just do what it asks
* fix pixtral after rebase
* Add ALL_ATTENTION_FUNCTIONS compatibility for Pixtral model
* Fix invalid operand type
* Allow image_sizes to be optional in forward pass to fit tests
Disallow using sdpa and output_attentions
* Disallow using sdpa with output_attentions
* Delete useless comments, use eager attention from smolvlm, use pattern from mistral
* add _supports_attention_backend
* use kwargs instead of position_ids
---------
Co-authored-by: aurelien.lac <aurelien.lac@lighton.ai>
* Add fast image processor support for Swin2SR
* Add Swin2SR tests of fast image processing
* Update docs and remove unnecessary test func
* Fix docstring formatting
* Skip fast vs slow processing test
---------
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
* i guessreverted all CdGen classes
* style
* llava onevision
* fix copies
* fix some tests
* some more tests
* dump
* skip these
* nevermind, i am dumb
* revert fix not needed
* fixup
* fixup
* another fixup
* more fixup to make ci finally happy
* fixup after rebasing
* fix qwen tests
* add internVL + typos here and there
* image token index -> id
* style
* fix init weights
* revert blip-2 not supported
* address comments
* fix copies
* revert blip2 test file as well
* as discussed internally, revert back CdGen models
* fix some tests
* fix more tests for compile
* CI red
* fix copies
* enumerate explicitly allowed models
* address comments
* fix tests
* fixup
* style again
* add tests for new model class
* another fixup ( x _ x )
* [fixup] unused attributes can be removed post-deprecation
* Enable granite speech 3.3 tests
* skip sdpa test for granite speech
* Explicitly move model to device
* Use granite speech 2b in tests
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* args keep_torch_compile=False in _save and _wwrap_method
* Fix FSDP execution on evaluation for torch_compile mode
* add test trainer FSDP + Torch Compile
* fix quality code
* make style
* Revert " make style"
This reverts commit 77e797f8829c50992cc21496be3d9a3e480e1c97.
* make style
* [fix] one pixel should be added when length is odd
* [fix] add vision_aspect_ratio args & typo
* [fix] style
* [fix] do not fix fast file directly
* [fix] convert using modular
* remove duplicate codes
* match unpad logic with pad logic
* test odd-sized images for llava & aria
* test unpad odd-sized padding for llava family
* fix style
* add kwarg to onvision modular
* move vision_aspect_ratio from image_processor to processor
(llava_onevision)
* add num_tokens_to_discard to the forward of Dinov2ForImageClassification
* redefine forward in modular file, remove change to modeling_dinov2 file
* run make fixup
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Implements last migrations for generation from `config.vocab_size` to `config.get_text_config().vocab.size`
In doing so, we enable multimodal models to fully leverage all existing generation features.
* Let notification service succeed even when artifacts and reported jobs on github have mismatch
* Use default trace msg if no trace msg available
* Add pop_default helper fn
* style
Summary:
Currently when we try to quantize input_embedding for some models, the output embedding
(lm_head) will also be quantized the same way, since they are tied, and this may not be what
we want. To break the tie, we added the option to allow people to
1. load unquantized weight
2. tie weights
3. quantize
so that the tie will be broken
Test Plan:
```
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
TorchAoConfig,
)
from torchao.quantization.quant_api import (
IntxWeightOnlyConfig,
Int8DynamicActivationIntxWeightConfig,
AOPerModuleConfig
)
from torchao.quantization.granularity import PerGroup, PerAxis
import torch
model_id = "microsoft/Phi-4-mini-instruct"
embedding_config = IntxWeightOnlyConfig(
weight_dtype=torch.int8,
granularity=PerAxis(0),
)
linear_config = Int8DynamicActivationIntxWeightConfig(
weight_dtype=torch.int4,
weight_granularity=PerGroup(32),
weight_scale_dtype=torch.bfloat16,
)
quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True, untie_embedding_weights=True)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
print(quantized_model)
print("embed_tokens.weight:", quantized_model.model.embed_tokens.weight)
print("lm head weight:", quantized_model.lm_head.weight)
from transformers.modeling_utils import find_tied_parameters
print(find_tied_parameters(quantized_model))
```
Reviewers:
Subscribers:
Tasks:
Tags:
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
* rm already deprecated padding max length
* truncate_strategy AS AN ARG is already deprecated for a few years
* fix
* rm test_padding_to_max_length
* rm pad_to_max_length=True in other tests
* rm from common
* missed fnet
* Support `AOPerModuleConfig` and include_embedding
Summary:
This PR adds support per module configuration for torchao
Also added per module quantization examples:
1. Quantizing different layers with different quantization configs
2. Skip quantization for certain layers
Test Plan:
python tests/quantization/torchao_integration/test_torchao.py -k test_include_embedding
python tests/quantization/torchao_integration/test_torchao.py -k test_per_module_config_skip
Reviewers:
Subscribers:
Tasks:
Tags:
* format
* format
* inlcude embedding remove input embedding from module not to convert
* more docs
* Update docs/source/en/quantization/torchao.md
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
* Update src/transformers/quantizers/quantizer_torchao.py
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
* Update src/transformers/quantizers/quantizer_torchao.py
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
---------
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Support FlaxPreTrainedModel to load model checkpoint from subfolder in local directory as safetensors format
Signed-off-by: Yan Zhao <zhao.y4@northeastern.edu>
* Unhardcode use_chunked_attention, fix no_rope_layers
* Go back to exhaustive list of bools
* Conversion and modeling updates
* Fix rope
* Unhardcode rope
* Fix context length
* style
* Minor updates to conversion
* Use StaticCache
* Minor simplification
* DynamicCache 🤦
* Style
* Style
* No more red flaky tests in the CI!
* Remove the CircleCI logic as well
* Revert most changes including is_flaky behaviour
* make fixup
* Move to a more sensible place
* Mark a flaky test that failed on this PR!
* correct import
* update
* update
* update
* update
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Fix check of unecessary packages (issue #37626)
* Reformat using ruff
* And a condition to avoind the risk of matching a random object in `import_utils`
* Reformat
* copy the last changes from broken PR
* small format
* some fixes and refactoring after review
* format
* add config attr for loss
* some fixes and refactoring
* fix copies
* fix style
* add test for d-fine resnet
* fix decoder layer prop
* fix dummies
* format init
* remove extra print
* refactor modeling, move resnet into separate folder
* fix resnet config
* change resnet on hgnet_v2, add clamp into decoder
* fix init
* fix config doc
* fix init
* fix dummies
* fix config docs
* fix hgnet_v2 config typo
* format modular
* add image classification for hgnet, some refactoring
* format tests
* fix dummies
* fix init
* fix style
* fix init for hgnet v2
* fix index.md, add init rnage for hgnet
* fix conversion
* add missing attr to encoder
* add loss for d-fine, add additional output for rt-detr decoder
* tests and docs fixes
* fix rt_detr v2 conversion
* some fixes for loos and decoder output
* some fixes for loss
* small fix for converted modeling
* add n model config, some todo comments for modular
* convert script adjustments and fixes, small refact
* remove extra output for rt_detr
* make some outputs optionsl, fix conversion
* some posr merge fixes
* small fix
* last field fix
* fix not split for hgnet_v2
* disable parallelism test for hgnet_v2 image classification
* skip multi gpu for d-fine
* adjust after merge init
* remove extra comment
* fix repo name references
* small fixes for tests
* Fix checkpoint path
* Fix consistency
* Fixing docs
---------
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* added fast image processor for VitMatte including updated and new tests, fixed a bug in the slow image processor that processed images incorrectly for input format ChannelDimension.FIRST in which case the trimaps were not added in the correct dimension, this bug was also reflected in the tests through incorretly shaped trimaps being passed
* final edits for fast vitmatte image processor and tests
* final edits for fast vitmatte image processor and tests
---------
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
* added the configuartion for sam_hq
* added the modeelling for sam_hq
* added the sam hq mask decoder with hq features
* added the code for the samhq
* added the code for the samhq
* added the code for the samhq
* Delete src/transformers/models/sam_hq/modelling_sam_hq.py
* added the code for the samhq
* added the code for the samhq
* added the chnages for the modeelling
* added the code for sam hq for image processing
* added code for the sam hq model
* added the required changes
* added the changes
* added the key mappings for the sam hq
* adding the working code of samhq
* added the required files
* adding the pt object
* added the push to hub account
* added the args for the sam maks decoder
* added the args for the sam hq vision config
* aded the some more documentation
* removed the unecessary spaces
* all required chnages
* removed the image processor
* added the required file
* added the changes for the checkcopies
* added the code for modular file
* added the changes for the __init file
* added the code for the interm embeds
* added the code for sam hq
* added the changes for modular file
* added the test file
* added the changes required
* added the changes required
* added the code for the
* added the cl errors
* added the changes
* added the required changes
* added the some code
* added the code for the removing image processor
* added the test dimensins
* added the code for the removing extra used variables
* added the code for modeluar file hf_mlp for a better name
* removed abbrevaation in core functionality
* removed abbrevaation in core functionality
* .contiguous() method is often used to ensure that the tensor is stored in a contiguous block of memory
* added the code which is after make fixup
* added some test for the intermediate embeddings test
* added the code for the torch support in sam hq
* added the code for the updated modular file
* added the changes for documentations as mentioned
* removed the heading
* add the changes for the code
* first mentioned issue resolved
* added the changes code to processor
* added the easy loading to init file
* added the changes to code
* added the code to changes
* added the code to work
* added the code for sam hq
* added the code for sam hq
* added the code for the point pad value
* added the small test for the image embeddings and intermediate embedding
* added the code
* added the code
* added the code for the tests
* added the code
* added ythe code for the processor file
* added the code
* added the code
* added the code
* added the code
* added the code
* added the code for tests and some checks
* added some code
* added the code
* added the code
* added some code
* added some code
* added the changes for required
* added the code
* added the code
* added the code
* added the code
* added the code
* added the code
* added the code
* added the code
* added the code
* added the code
* added some changes
* added some changes
* removed spaces and quality checks
* added some code
* added some code
* added some code
* added code quality checks
* added the checks for quality checks
* addded some code which fixes test_inference_mask_generation_no_point
* added code for the test_inference_mask_generation_one_point_one_bb
* added code for the test_inference_mask_generation_one_point_one_bb_zero
* added code for the test_inference_mask_generation_one_box
* added some code in modelling for testing
* added some code which sort maks with high score
* added some code
* added some code
* added some code for the move KEYS_TO_MODIFY_MAPPING
* added some code for the unsqueeze removal
* added some code for the unsqueeze removal
* added some code
* added some code
* add some code
* added some code
* added some code
* added some testign values changed
* added changes to code in sam hq for readbility purpose
* added pre commit checks
* added the fix samvisionmodel for compatibilty
* added the changes made on sam by cyyever
* fixed the tests for samhq
* added some the code
* added some code related to init file issue during merge conflicts
* remobved the merge conflicts
* added changes mentioned by aruther and mobap
* added changes mentioned by aruther and mobap
* solving quality checks
* added the changes for input clearly
* added the changes
* added changes in mask generation file rgearding model inputs and sam hq quargs in processor file
* added changes in processor file
* added the Setup -> setupclass conversion
* added the code mentioned for processor
* added changes for the code
* added some code
* added some code
* added some code
---------
Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Two PEFT tests are actually failing:
tests/peft_integration/test_peft_integration.py::PeftIntegrationTester::test_delete_adapter
tests/peft_integration/test_peft_integration.py::PeftIntegrationTester::test_peft_pipeline_no_warning
This must have been going on for some time but was apparently never
noticed. The cause is that the tests themselves are faulty, the PEFT
integration is correct in these cases.
test_delete_adapter
The first faulty test was introduced by #34650. AFAICT, it should never
have passed in the first place, the PEFT integration logic was not
changed in the meantime. At this point, the logs for the PR CI are gone,
so I'm not sure if the test passed back then or not.
test_peft_pipeline_no_warning
This test was introduced in #36783 and should also never have passed, as
the self.assertNoLogs context manager only returns None, thus the assert
should never have worked (mea culpa for suggesting this code snippet).
Here too, the CI logs are deleted by now, so I can't check if the test
already failed back then.
* Fix wrong position_ids shape in doc
Supported by ClvpDecoder.forward, line 1212--1215:
src/transformers/models/clvp/modeling_clvp.py:
1212 if inputs_embeds is None:
1213 inputs_embeds = self.input_embeds_layer(input_ids)
1214 position_embeds = self.position_embeds_layer(position_ids)
1215 inputs_embeds = inputs_embeds + position_embeds
* Fix possibly wrong input_ids shape in doc
Since 'input_ids_length' was mentioned immediately after the shape `(batch_size, sequence_length)`, it doesn't make sense to me for `input_ids` to have such shape---IMO it ought to have shape `(batch_size, input_ids_length)` instead.
* Fix possibly wrong inputs_embeds shape in doc
Supported by CTRLModel.forward, line 448--449:
src/transformers/models/ctrl/modeling_ctrl.py:
448 if inputs_embeds is None:
449 inputs_embeds = self.w(input_ids)
This commit is introduced due to commit 6f36b56497828642b65f54ea26aa4064186de57a.
* Fix possibly wrong token_type_ids shape in doc
Supported by CTRLModel.forward, line 441--460:
src/transformers/models/ctrl/modeling_ctrl.py:
441 if token_type_ids is not None:
442 token_type_ids = token_type_ids.view(-1, input_shape[-1])
443 token_type_embeds = self.w(token_type_ids)
444 token_type_embeds *= np.sqrt(self.d_model_size)
445 else:
446 token_type_embeds = 0
447
448 if inputs_embeds is None:
449 inputs_embeds = self.w(input_ids)
450 # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
451 seq_len = input_shape[-1]
452 mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device)
453
454 inputs_embeds *= np.sqrt(self.d_model_size)
455
456 # `self.pos_encoding` won't be sent to the correct device along the model, so we do it manually.
457 self.pos_encoding = self.pos_encoding.to(device)
458 pos_embeds = self.pos_encoding[position_ids, :]
459
460 hidden_states = inputs_embeds + pos_embeds + token_type_embeds
This commit is introduced due to commit 6f36b56497828642b65f54ea26aa4064186de57a.
* Fix possibly wrong position_ids shape in doc
Supported by CTRLModel.forward, line 448--460:
src/transformers/models/ctrl/modeling_ctrl.py:
448 if inputs_embeds is None:
449 inputs_embeds = self.w(input_ids)
450 # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
451 seq_len = input_shape[-1]
452 mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device)
453
454 inputs_embeds *= np.sqrt(self.d_model_size)
455
456 # `self.pos_encoding` won't be sent to the correct device along the model, so we do it manually.
457 self.pos_encoding = self.pos_encoding.to(device)
458 pos_embeds = self.pos_encoding[position_ids, :]
459
460 hidden_states = inputs_embeds + pos_embeds + token_type_embeds
This commit is introduced due to commit 6f36b56497828642b65f54ea26aa4064186de57a.
* Fix wrong token_type_ids shape in doc
Supported by TFCTRLMainLayer.call, line 376--394:
src/transformers/models/ctrl/modeling_tf_ctrl.py:
376 if token_type_ids is not None:
377 token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
378 token_type_embeds = self.w(token_type_ids)
379 token_type_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, dtype=token_type_embeds.dtype))
380 else:
381 token_type_embeds = tf.constant(0.0)
382 position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
383
384 if inputs_embeds is None:
385 check_embeddings_within_bounds(input_ids, self.w.input_dim)
386 inputs_embeds = self.w(input_ids)
387 seq_len = input_shape[-1]
388 mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
389
390 inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, inputs_embeds.dtype))
391
392 pos_embeds = tf.gather(self.pos_encoding, position_ids)
393 pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype)
394 hidden_states = inputs_embeds + pos_embeds + token_type_embeds
* Fix wrong position_ids shape in doc
Supported by TFCTRLMainLayer.call, line 384--394:
src/transformers/models/ctrl/modeling_tf_ctrl.py:
384 if inputs_embeds is None:
385 check_embeddings_within_bounds(input_ids, self.w.input_dim)
386 inputs_embeds = self.w(input_ids)
387 seq_len = input_shape[-1]
388 mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
389
390 inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, inputs_embeds.dtype))
391
392 pos_embeds = tf.gather(self.pos_encoding, position_ids)
393 pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype)
394 hidden_states = inputs_embeds + pos_embeds + token_type_embeds
* Fix wrong inputs_embeds shape in doc
Supported by TFCTRLMainLayer.call, line 384--394:
src/transformers/models/ctrl/modeling_tf_ctrl.py:
384 if inputs_embeds is None:
385 check_embeddings_within_bounds(input_ids, self.w.input_dim)
386 inputs_embeds = self.w(input_ids)
387 seq_len = input_shape[-1]
388 mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
389
390 inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, inputs_embeds.dtype))
391
392 pos_embeds = tf.gather(self.pos_encoding, position_ids)
393 pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype)
394 hidden_states = inputs_embeds + pos_embeds + token_type_embeds
* Fix wrong inputs_embeds shape in doc
Supported by ClvpDecoder.forward, line 1212--1213:
src/transformers/models/clvp/modeling_clvp.py:
1212 if inputs_embeds is None:
1213 inputs_embeds = self.input_embeds_layer(input_ids)
* Fix wrong position_ids shape in doc
Supported by FlaxGemmaPreTrainedModel.__call__, line 502--508:
src/transformers/models/gemma/modeling_flax_gemma.py:
502 batch_size, sequence_length = input_ids.shape
503
504 if position_ids is None:
505 if past_key_values is not None:
506 raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
507
508 position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
* Fix wrong position_ids shape in doc
Supported by FlaxGPT2PreTrainedModel.__call__, line 482--488:
src/transformers/models/gpt2/modeling_flax_gpt2.py:
482 batch_size, sequence_length = input_ids.shape
483
484 if position_ids is None:
485 if past_key_values is not None:
486 raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
487
488 position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
* Fix wrong position_ids shape in doc
Supported by GPT2Model.forward, line 918--921:
src/transformers/models/gpt2/modeling_gpt2.py:
918 if inputs_embeds is None:
919 inputs_embeds = self.wte(input_ids)
920 position_embeds = self.wpe(position_ids)
921 hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
* Fix wrong inputs_embeds shape in doc
Supported by GPT2Model.forward, line 918--919:
src/transformers/models/gpt2/modeling_gpt2.py:
918 if inputs_embeds is None:
919 inputs_embeds = self.wte(input_ids)
* Fix wrong labels shape in doc
Supported by GPT2LMHeadModel.forward, line 1156--1157:
src/transformers/models/gpt2/modeling_gpt2.py:
1156 Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1157 `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
* Fix wrong labels shape in doc
Supported by GPT2DoubleHeadsModel.forward, line 1314--1315:
src/transformers/models/gpt2/modeling_gpt2.py:
1314 Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1315 `labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to
* Fix wrong token_type_ids shape in doc
Supported by TFGPT2MainLayer.call, line 486--500:
src/transformers/models/gpt2/modeling_tf_gpt2.py:
486 if inputs_embeds is None:
487 check_embeddings_within_bounds(input_ids, self.config.vocab_size)
488 inputs_embeds = self.wte(input_ids)
489
490 position_embeds = self.wpe(position_ids)
491
492 if token_type_ids is not None:
493 token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
494 token_type_embeds = self.wte(token_type_ids)
495 else:
496 token_type_embeds = tf.constant(0.0)
497
498 position_embeds = tf.cast(position_embeds, dtype=inputs_embeds.dtype)
499 token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
500 hidden_states = inputs_embeds + position_embeds + token_type_embeds
* Fix wrong position_ids shape in doc
Supported by TFGPT2MainLayer.call, line 486--500:
src/transformers/models/gpt2/modeling_tf_gpt2.py:
486 if inputs_embeds is None:
487 check_embeddings_within_bounds(input_ids, self.config.vocab_size)
488 inputs_embeds = self.wte(input_ids)
489
490 position_embeds = self.wpe(position_ids)
491
492 if token_type_ids is not None:
493 token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
494 token_type_embeds = self.wte(token_type_ids)
495 else:
496 token_type_embeds = tf.constant(0.0)
497
498 position_embeds = tf.cast(position_embeds, dtype=inputs_embeds.dtype)
499 token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
500 hidden_states = inputs_embeds + position_embeds + token_type_embeds
* Fix wrong inputs_embeds shape in doc
Supported by TFGPT2MainLayer.call, line 486--488:
src/transformers/models/gpt2/modeling_tf_gpt2.py:
486 if inputs_embeds is None:
487 check_embeddings_within_bounds(input_ids, self.config.vocab_size)
488 inputs_embeds = self.wte(input_ids)
* Fix wrong position_ids shape in doc
Supported by GPTBigCodeModel.forward, line 962--965:
src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py:
962 if inputs_embeds is None:
963 inputs_embeds = self.wte(input_ids)
964 position_embeds = self.wpe(position_ids)
965 hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
* Fix wrong inputs_embeds shape in doc
Supported by GPTBigCodeModel.forward, line 962--963:
src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py:
962 if inputs_embeds is None:
963 inputs_embeds = self.wte(input_ids)
* Fix wrong labels shape in doc
Supported by GPTBigCodeForCausalLM.forward, line 1158--1159:
src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py:
1158 Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1159 `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
* Fix wrong position_ids shape in doc
Supported by FlaxGPTNeoModule.__call__, line 549--552:
src/transformers/models/gpt_neo/modeling_flax_gpt_neo.py:
549 input_embeds = self.wte(input_ids.astype("i4"))
550 position_embeds = self.wpe(position_ids.astype("i4"))
551
552 hidden_states = input_embeds + position_embeds
* Fix wrong position_ids shape in doc
Supported by GPTNeoModel.forward, line 685--720:
src/transformers/models/gpt_neo/modeling_gpt_neo.py:
685 if inputs_embeds is None:
686 inputs_embeds = self.wte(input_ids)
687
688 # kept for BC (non `Cache` `past_key_values` inputs)
689 return_legacy_cache = False
690 if use_cache and not isinstance(past_key_values, Cache):
691 return_legacy_cache = True
692 if past_key_values is None:
693 past_key_values = DynamicCache()
694 else:
695 past_key_values = DynamicCache.from_legacy_cache(past_key_values)
696 logger.warning_once(
697 "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
698 "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
699 "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
700 )
701
702 seq_length = inputs_embeds.shape[1]
703 if cache_position is None:
704 past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
705 cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
706
707 if position_ids is None:
708 position_ids = cache_position.unsqueeze(0)
709
710 causal_mask = self._update_causal_mask(
711 attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
712 )
713
714 # Prepare head mask if needed
715 # 1.0 in head_mask indicate we keep the head
716 # attention_probs has shape bsz x num_heads x N x N
717 # head_mask has shape n_layer x batch x num_heads x N x N
718 head_mask = self.get_head_mask(head_mask, self.config.num_layers)
719 position_embeds = self.wpe(position_ids)
720 hidden_states = inputs_embeds + position_embeds
* Fix wrong inputs_embeds shape in doc
Supported by GPTNeoModel.forward, line 685--686:
src/transformers/models/gpt_neo/modeling_gpt_neo.py:
685 if inputs_embeds is None:
686 inputs_embeds = self.wte(input_ids)
* Fix wrong labels shape in doc
Supported by GPTNeoForCausalLM.forward, line 968--969:
src/transformers/models/gpt_neo/modeling_gpt_neo.py:
968 Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
969 `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
* Fix wrong position_ids shape in doc
Supported by FlaxGPTJPreTrainedModel.__call__, line 455--461:
src/transformers/models/gptj/modeling_flax_gptj.py:
455 batch_size, sequence_length = input_ids.shape
456
457 if position_ids is None:
458 if past_key_values is not None:
459 raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
460
461 position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
* Fix wrong token_type_ids shape in doc
Supported by TFGPTJMainLayer.call, line 482--493:
src/transformers/models/gptj/modeling_tf_gptj.py:
482 if inputs_embeds is None:
483 check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
484 inputs_embeds = self.wte(input_ids, mode="embedding")
485
486 if token_type_ids is not None:
487 token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
488 token_type_embeds = self.wte(token_type_ids, mode="embedding")
489 else:
490 token_type_embeds = tf.constant(0.0)
491
492 token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
493 hidden_states = inputs_embeds + token_type_embeds
* Fix wrong position_ids shape in doc
Supported by TFGPTJMainLayer.call, line 434--449:
src/transformers/models/gptj/modeling_tf_gptj.py:
434 elif input_ids is not None:
435 input_shape = shape_list(input_ids)
436 input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
437 elif inputs_embeds is not None:
438 input_shape = shape_list(inputs_embeds)[:-1]
439 else:
440 raise ValueError("You have to specify either input_ids or inputs_embeds")
441
442 if past_key_values is None:
443 past_length = 0
444 past_key_values = [None] * len(self.h)
445 else:
446 past_length = shape_list(past_key_values[0][0])[-2]
447
448 if position_ids is None:
449 position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)
* Fix wrong inputs_embeds shape in doc
Supported by TFGPTJMainLayer.call, line 482--484:
src/transformers/models/gptj/modeling_tf_gptj.py:
482 if inputs_embeds is None:
483 check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
484 inputs_embeds = self.wte(input_ids, mode="embedding")
* Fix wrong labels shape in doc
Supported by TFGPTJForCausalLM.call, line 812--813:
src/transformers/models/gptj/modeling_tf_gptj.py:
812 Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
813 `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
* Fix possibly wrong input_ids shape in doc
Since 'input_ids_length' was mentioned immediately after the shape `(batch_size, sequence_length)`, it doesn't make sense to me for `input_ids` to have such shape---IMO it ought to have shape `(batch_size, input_ids_length)` instead.
* Fix possibly wrong token_type_ids shape in doc
Supported by ImageGPTModel.forward, line 773--780:
src/transformers/models/imagegpt/modeling_imagegpt.py:
773 if inputs_embeds is None:
774 inputs_embeds = self.wte(input_ids)
775 position_embeds = self.wpe(position_ids)
776 hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
777
778 if token_type_ids is not None:
779 token_type_embeds = self.wte(token_type_ids)
780 hidden_states = hidden_states + token_type_embeds
This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.
* Fix possibly wrong position_ids shape in doc
Supported by ImageGPTModel.forward, line 773--776:
src/transformers/models/imagegpt/modeling_imagegpt.py:
773 if inputs_embeds is None:
774 inputs_embeds = self.wte(input_ids)
775 position_embeds = self.wpe(position_ids)
776 hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.
* Fix possibly wrong inputs_embeds shape in doc
Supported by ImageGPTModel.forward, line 773--774:
src/transformers/models/imagegpt/modeling_imagegpt.py:
773 if inputs_embeds is None:
774 inputs_embeds = self.wte(input_ids)
This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.
* Fix possibly wrong labels shape in doc
Supported by ImageGPTForCausalImageModeling.forward, line 923--924:
src/transformers/models/imagegpt/modeling_imagegpt.py:
923 Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
924 `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.
* Fix possibly wrong labels shape in doc
Supported by ImageGPTModel.forward, line 665--666:
src/transformers/models/imagegpt/modeling_imagegpt.py:
665 Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
666 `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.
* Fix wrong position_ids shape in doc
Supported by FlaxLlamaPreTrainedModel.__call__, line 484--490:
src/transformers/models/llama/modeling_flax_llama.py:
484 batch_size, sequence_length = input_ids.shape
485
486 if position_ids is None:
487 if past_key_values is not None:
488 raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
489
490 position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
* Fix wrong position_ids shape in doc
Supported by FlaxMistralPreTrainedModel.__call__, line 478--484:
src/transformers/models/mistral/modeling_flax_mistral.py:
478 batch_size, sequence_length = input_ids.shape
479
480 if position_ids is None:
481 if past_key_values is not None:
482 raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
483
484 position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
* Fix qwen2_5 get_rope_index tensor device locations
* simpler fix
* edit right file for modular model
* add a test
* try normalizing type to fix non-video
* fix some imports
* add a video forward test with dummy input
* skip compilation on cpu offload
* add test
* better logic
* docstring
* boolean logic
* add disk offload check
* warn users if compilation options are set but compilation doesn happen
* fix test
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* Init `SinusoidsPositionEmbedding` with float to avoid precision problem
* fix hidden_state for talker
* Update modular_qwen2_5_omni.py
* Move hidden processing out from thinker
* fixup
---------
Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
* fast image processor template for MobileNetV1 via transformers-cli
* Add fast image processors and unify tests for slow/fast image processor classes
* added loop over image_processor_list for all tests and removed boilerplate comments.
---------
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
* support poolformer fast image processor
* support test for crop_pct=None
* run make style
* Apply suggestions from code review
* rename test
---------
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
* tokenize inputs directly in apply_chat_template
* refactor processing
* revert changes processing llava
* Update docs
* fix issue with str being iterable
* add test chat text only
* change function name
- Since the `get_text_config` references an instance variable within
the class (`self.thinker_config`), the `get_text_config` method
should not be a classmethod.
- Before this fix, users were getting the following error:
'''
AttributeError: type object 'Qwen2_5OmniConfig' has no attribute 'thinker_config'
'''
* new card for mbart and mbart50
* removed comment BADGES
* Update mBart overview
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix typo (MBart to mBart)
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* maybe fix typo
* update typo and combine notes
* changed notes
* changed the example sentence
* fixed grammatical error and removed some lines from notes example
* missed one word
* removed documentation resources and added some lines of example code back in notes.
---------
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* fix: RecurrentGemma crashes during inference for inputs longer than sliding window width
* fix recurrentgemma tests; add long test bigger than context window
* Restructure torchao quantization examples
Summary:
Mainly structured the examples by hardwares and then listed
the recommended quantization methods for each hardware H100 GPU, A100 GPU and CPU
Also added example for push_to_hub
Test Plan:
not required
Reviewers:
Subscribers:
Tasks:
Tags:
* update
* drop float8 cpu
* address comments and simplify
* small update
* link update
* minor update
* Set default value for output_attentions parameter in Gemma2 and Gemma3 models
* update
* fix
* fix
---------
Co-authored-by: chenin <wangzhichen@encosmart.com>
* [fix] make legacy bnb code work
* [fix] use get with default instead of getter
* add test for bnb 8bit optim skip embed
* [fix] style
* add require annotation of bnb
---------
Co-authored-by: jaycha <jaycha@ncsoft.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* fix: qwen2.5 omni modular get_rope_index
* test: add test for qwen2.5 omni rope index (video with audio input)
* style
* expected_position_ids readability
* fix: use spatial_merge_size = 1 in unit test
Update generation_strategies.md
The prompt text shown in the example does not match what is inside the generated output. As the generated output always include the prompt, the correct prompt should be "Hugging Face is an open-source company".
* initial commit
* add convert internvl
* add first end-to-end working internvl
* nit prompt and image proc
* add working chat template
* add conversion llama-based models
* add tests
* pass all tests
* fix isort
* fix modular after main merge
* add video processing for internvl
* add support for interlaced images and videos
* Remove processing and config from modular, add more tests
* add llama model tests
* Modify processor for compatibility with refactored got ocr image processor
* add comments in processor
* Add docs and nits
* change video processing to use custom sample_indices_fn
* rebase and fix tests
* add processor tests
* Add changes Raushan review
* Use the new attention interface for the vision model
* nits
* add support for custom video_load_backend
* remove mention to InternVLTokenizer
* refactor vision model to simplify logic
* refactor processor for better readibility
* fix copies
* fix require av processor test
* refactor internVL vision
* Update processor and fix processing tests
* fix docstring
* update convert_weights for internvl3
* change image processor to fast by default
* remove do_center_crop=True in convert_weights
* force use_cache to True
* push_to_hub before reloading
* fix internVLVision for larger models
* update convert weight for qk norm
* fix convert_weights
* fix eos_token_id in convert
* update docs and integration tests
* make modifs after review
* fix wrong k_norm and reduce modular
* change image_token_index to image_token_id
* change checkpoint to OpenGVLab org
* last nits
* explicitely del self.num_key_value_groups
* add extra special tokens
* fix issue that some example with no trainer use accelerator.end_training in a wrong way
* reformat code
---------
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
* use only `xxx_token_id` for multimodal tokens
* update modeling files as well
* fixup
* why fixup doesn't fix modular docstring first?
* janus, need to update configs in the hub still
* last fixup
* Iterative generation using input embeds
* Add Janus model
* discard changes
* Janus imports
* Refactor config and processor
* Added Vision tower of Janus
* Import Janus Image processor
* Vision tower fixes
* Refactor code
* Added VQ Model
* Complete model integration
* temp conversion script
* processor refactor
* Adding files to facilitate pulling
* Fixes after debugging
* Skip test for these models
* Add Janus Model
* discard changes
* Janus imports
* Refactor config and processor
* Added Vision tower of Janus
* Import Janus Image processor
* Vision tower fixes
* Refactor code
* Added VQ Model
* Complete model integration
* temp conversion script
* processor refactor
* Adding files to facilitate pulling
* Fixes after debugging
* Refactor to Text config
* ✨ Added generate function
* Saving intermediate convert file. Still need to read configs from the hub and convert them to our format.
* Adding version that reads from the JSON files. Still have to tweak some parameters manually.
* relative imports
* Initial tests
* Refactor image processor
* Seemingly working version of the conversion script, will need to test further.
* Adding command message
* Fixing conflicting JanusTextConfig class
* Incorporating some of the discussed changes.
* Small fix to create dir.
* Removing system from JINJA template
* Adding draft processor tests
* style fixes
* Minor fixes and enhancement
* added generation config
* Initial tests
* Small modifications, tests are now passing.
* Small changes I noticed while reading code.
* more fixes
* Added JanusModel class
* Small merge adaptations
* Small merge adaptations
* Image processing tests passing
* More tests and fixes
* Convert script updated and refactored
* Tests and cleanup
* make style
* Postprocessing for image generation
* generate refactor
* fixes
* - Passing tests that write a part of the model to cpu (e.g. test_cpu_offload)
- Passing tests of dispatching SDPA
- Only gradient checkpointing tests are left.
* Removing temporary code
* Changes
* Writing change to modular
* Added JanusVisionModel. SDPA dispatch tests pass more robustly. Gradient checkpoint tests are next
* Gradient checkpoint tests passing
* Removing debug code
* Major generate refactor 😮💨
* Temp changes for testing
* Green quality CI
* 2 out of 4 integration tests passing
* breadcrumbs
* Usage Examples
* Regenerate modeling after merge
* dirty code
* JanusIntegrationTest are passing
* breadcrumbs
* happy CI
* fixes
* Changing template
* nits
* Text generation logits matching original codebase at 100% precision
* Remove ./tmp from git tracking
* Remove ./tmp from git tracking
* Checkpointing changes after reviewing
* Fixing code in docstrings
* CHanging comments and small bug in convert file
* Fixing bug in image_token_id for 7B version
* Removing line that was added by both of us
* Pushing changes after discussion. Only one left is to change the key mapping for convert file.
* Updating module file
* New convert file using dict. Tested that it is equivalent to the old one by:
- comparing keys in a script
- comparing checksums of the output files between version generated with the current convert script and those generated with the old script. This is a more reliable test.
* revert changes
* mistake
* consistency change for CI
* make style
* doc fixes
* more fixes
* experimenting with masking out pad token
* checkpoint
* Batched generation with multi-images working for 1B models. Will test 7B next.
* Device fix.
* Writing changes to modular, previous ones were written to modeling just for quick testing.
* Using passed processor attention mask (only in modeling for now)
* Matching performance done in the non-standard way
* Working version of batched generation. Will change how some args are passed to make it more similar to language case
* More compliant version of the code
* Removed duplicated `_prepare_4d_causal_attention_mask_with_cache_position`
* Updating modular file, making masked filling with paddings more efficient
* Slightly more efficient version
* Modifying JanusVisionModel to be a wrapper
* Fixing test to comply with new names
* Modular overhaul
* More refactoring
* - Changing JanusVisionModel back
- Changing forward pass
- Adding boi token to the comparison
* - Removing whole context model_ids
- Using inherited implementation of prepare_inputs_for_generation
* Moving the way boi token is passed to the model
* Fixing sdpa test
* Minor changes
* testing changes
* Minor fix
* - Adding postprocessing test
- checking values of generated image on integration test
* changes
* Removing pooled attention vision module, fixing convert script as a consequence
* More changes
* Fixes
* Draft after merge
* Bug fixes
* More bug fix
* Fixing docs
* Nits
* Refactor return dict
* Moving image post processing test to main processor post process
* Passing guidance_scale as kwarg
* make style
* 🔥 refactor
* make style
* Update and green CI
* Nits and tests update
* up
* Added MID block
* fix
* Dead code
* update testcase
* update
* model_id change
* init_weight changes
---------
Co-authored-by: hsilva664 <metallic-silver@hotmail.com>
* Fix mamba2 grouped support in bamba torch path
* patch zamba2 and mamba2
* Add a unit test for grouped SSD
* add comment for the new unit test
* add output_size arg value to repeat_interleave calls
* Add comment
* added efficientnet image preprocessor but tests fail
* ruff checks pass
* ruff formatted
* properly pass rescale_offset through the functions
* - corrected indentation, ordering of methods
- reshape test passes when casted to float64
- equivalence test doesn't pass
* all tests now pass
- changes order of rescale, normalize acc to slow
- rescale_offset defaults to False acc to slow
- resample was causing difference in fast and slow. Changing test to bilinear resolves this difference
* ruff reformat
* F.InterpolationMode.NEAREST_EXACT gives TypeError: Object of type InterpolationMode is not JSON serializable
* fixes offset not being applied when do_rescale and do_normalization are both true
* - using nearest_exact sampling
- added tests for rescale + normalize
* resolving reviews
---------
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
* update
* apply suggestion
* fix tests for main branch
* remove unused logger
* add special tokens in tests
* nit
* fix more tests
* fix test
* pg also
Make Ignored Columns Value Error More Informative
Included forward method signature columns in the ValueError so end users will know what columns are expected to be passed to the model in addition to those which are ignored.
* initial documentation
* rename mask to attention_mask
* smaller tests
* fixup
* fix copies
* move to time series section
* sort docs
* isort fix
* batch_size is not a configuration
* rename to TimesFMModelForPrediction
* initial script
* add check_outputs
* remove dropout_rate
* works with torch.Tensor inputs
* rename script
* fix docstrings
* fix freq when window_size is given
* add loss
* fix _quantile_loss
* formatting
* fix isort
* add weight init
* add support for sdpa and flash_attention_2
* fixes for flash_attention
* formatting
* remove flash_attention
* fix tests
* fix file name
* fix quantile loss
* added initial TimesFMModelIntegrationTests
* fix formatting
* fix import order
* fix _quantile_loss
* add doc for SDPA
* use timesfm 2.0
* bug fix in timesfm decode function.
* compare mean forecasts
* refactor type hints, use CamelCase
* consolidate decode func
* more readable code for weight conversion
* fix-copies
* simpler init
* renaem TimesFmMLP
* use T5LayerNorm
* fix tests
* use initializer_range
* TimesFmModel instead of TimesFmDecoder
* TimesFmPositionalEmbedding takes config for its init
* 2.0-500m-pytorch default configs
* use TimesFmModel
* fix formatting
* ignore TimesFmModel for testing
* fix docstring
* override generate as its not needed
* add doc strings
* fix logging
* add docstrings to output data classes
* initial copy from t5
* added config and attention layers
* add TimesFMPositionalEmbedding
* calcuate scale_factor once
* add more configs and TimesFMResidualBlock
* fix input_dims
* standardize code format with black
* remove unneeded modules
* TimesFM Model
* order of imports
* copy from Google official implementation
* remove covariate forecasting
* Adapting TimesFM to HF format
* restructing in progress
* adapted to HF convention
* timesfm test
* the model runs
* fixing unit tests
* fixing unit tests in progress
* add post_init
* do not change TimesFMOutput
* fixing unit tests
* all unit tests passed
* remove timesfm_layers
* add intermediate_size and initialize with config
* initial documentation
* rename mask to attention_mask
* smaller tests
* fixup
* fix copies
* move to time series section
* sort docs
* isort fix
* batch_size is not a configuration
* rename to TimesFMModelForPrediction
* initial script
* add check_outputs
* remove dropout_rate
* works with torch.Tensor inputs
* rename script
* fix docstrings
* fix freq when window_size is given
* add loss
* fix _quantile_loss
* formatting
* fix isort
* add weight init
* add support for sdpa and flash_attention_2
* fixes for flash_attention
* formatting
* remove flash_attention
* fix tests
* fix file name
* fix quantile loss
* added initial TimesFMModelIntegrationTests
* fix formatting
* fix import order
* fix _quantile_loss
* add doc for SDPA
* use timesfm 2.0
* bug fix in timesfm decode function.
* compare mean forecasts
* refactor type hints, use CamelCase
* consolidate decode func
* more readable code for weight conversion
* fix-copies
* simpler init
* renaem TimesFmMLP
* use T5LayerNorm
* fix tests
* use initializer_range
* TimesFmModel instead of TimesFmDecoder
* TimesFmPositionalEmbedding takes config for its init
* 2.0-500m-pytorch default configs
* use TimesFmModel
* fix formatting
* ignore TimesFmModel for testing
* fix docstring
* override generate as its not needed
* add doc strings
* fix logging
* add docstrings to output data classes
* add _CHECKPOINT_FOR_DOC
* fix comments
* Revert "fix comments"
This reverts commit 8deeb3e191b3671bc1d74dbfe77b736a066c3d34.
* add _prepare_4d_attention_mask
* we do not have generative model classes
* use Cache
* return past_key_values
* modules initialized with config only
* update year
* Update docs/source/en/model_doc/timesfm.md
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
* add layer_idx to cache
* modular timesfm
* fix test
* unwrap sequential class
* fix toctree
* remove TimesFmOnnxConfig
* fix modular
* remove TimesFmStackedDecoder
* split qkv layer into individual layers
* rename projection layers
* use ALL_ATTENTION_FUNCTIONS
* is_causal is True
* rename config
* does not support flash_attn_2
* formatting
* fix typo in docsstring
* rename inputs
* add time series mapping
* Update src/transformers/models/olmo2/modeling_olmo2.py
* Update src/transformers/models/moonshine/modeling_moonshine.py
* use updated arguments
* fix class name
* add MODEL_FOR_TIME_SERIES_PREDICTION_MAPPING
* isort
* consolidate _preprocess into forward
* fix a typo
* fix a typo
* fix toc
* fix modular
* remove aaserts
* use self.config._attn_implementation
* move to _postprocess_output
* remove timesfm_get_large_negative_number
* use view unstead of multiple unsqueeze
* make helpers static methods of the Model
* use to_tuple
* use to_tuple if not return_dict
* remove unused intitialization block as its incorporated in nn.Linear
* remove unused num_key_value_groups
* use the same convention as the masking method
* update modular
* do not use unsqueeze
* use view instead of unsqueeze
* use buffer for inv_timescales
* formatting
* modular conversion
* remove unneeded intialization
* add missing docstrings
* remove cache
* use simple_eager_attention_forward
* support tp_plan
* support for flex and flash attention masks
* Revert "support for flex and flash attention masks"
This reverts commit def36c4fcf31599b3f4937c9334b7da1a20132c3.
* fix device
* fix tests on gpu
* remove unsued large model test
* removed unneeded comments
* add example usage
* fix style
* add import
* Update docs/source/en/model_doc/timesfm.md
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* inherit from LlamaRMSNorm
* use can_return_tuple decorator
* remvoe return_dict
* fix year
* Update docs/source/en/model_doc/timesfm.md
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
* pretrained does not inherit from GenerationMixin
* use model for integration test
---------
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Rajat Sen <rsen91@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
- run:if [[ "$CIRCLE_PULL_REQUEST" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
- run:if [[ "$(cat pr_number.txt)" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
@ -26,7 +26,7 @@ There are two main venues to receive support: [the forums](https://discuss.huggi
[The user forums](https://discuss.huggingface.co/) are supported by the wide community of the library users and backed up by developers when needed.
If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystalized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues).
If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystallized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues).
In particular all "Please explain" questions or objectively very user-specific feature requests belong to the forums. Here are some example of such questions:
@ -78,7 +78,6 @@ Create and activate a virtual environment with [venv](https://docs.python.org/3/
# venv
python-mvenv.my-env
source.my-env/bin/activate
# uv
uvvenv.my-env
source.my-env/bin/activate
@ -88,10 +87,10 @@ Install Transformers in your virtual environment.
```py
# pip
pipinstalltransformers
pipinstall"transformers[torch]"
# uv
uvpipinstalltransformers
uvpipinstall"transformers[torch]"
```
Install Transformers from source if you want the latest changes in the library or are interested in contributing. However, the *latest* version may not be stable. Feel free to open an [issue](https://github.com/huggingface/transformers/issues) if you encounter an error.
@ -99,7 +98,7 @@ Install Transformers from source if you want the latest changes in the library o
@ -161,7 +161,7 @@ The downside is that if you aren't used to them, it may take some time to get us
Run the command below to start and complete the questionnaire with some basic information about the new model. This command jumpstarts the process by automatically generating some model code that you'll need to adapt.
```bash
transformers-cli add-new-model-like
transformers add-new-model-like
```
## Create a pull request
@ -292,7 +292,7 @@ Once you're able to run the original checkpoint, you're ready to start adapting
## Adapt the model code
The `transformers-cli add-new-model-like` command should have generated a model and configuration file.
The `transformers add-new-model-like` command should have generated a model and configuration file.
@ -551,10 +551,10 @@ While this example doesn't include an image processor, you may need to implement
If you do need to implement a new image processor, refer to an existing image processor to understand the expected structure. Slow image processors ([`BaseImageProcessor`]) and fast image processors ([`BaseImageProcessorFast`]) are designed differently, so make sure you follow the correct structure based on the processor type you're implementing.
Run the following command (only if you haven't already created the fast image processor with the `transformers-cli add-new-model-like` command) to generate the necessary imports and to create a prefilled template for the fast image processor. Modify the template to fit your model.
Run the following command (only if you haven't already created the fast image processor with the `transformers add-new-model-like` command) to generate the necessary imports and to create a prefilled template for the fast image processor. Modify the template to fit your model.
This command will generate the necessary imports and provide a pre-filled template for the fast image processor. You can then modify it to fit your model's needs.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilizing the @auto_docstring Decorator
The `@auto_docstring` decorator in the Hugging Face Transformers library helps generate docstrings for model classes and their methods, which will be used to build the documentation for the library. It aims to improve consistency and reduce boilerplate by automatically including standard argument descriptions and allowing for targeted overrides and additions.
---
## 📜 How it Works
The `@auto_docstring` decorator constructs docstrings by:
1.**Signature Inspection:** It inspects the signature (arguments, types, defaults) of the decorated class's `__init__` method or the decorated function.
2.**Centralized Docstring Fetching:** It retrieves predefined docstrings for common arguments (e.g., `input_ids`, `attention_mask`) from internal library sources (like `ModelArgs` or `ImageProcessorArgs` in `utils/args_doc.py`).
3.**Overriding or Adding Arguments Descriptions:**
* **Direct Docstring Block:** It incorporates custom docstring content from an `r""" """` (or `""" """`) block below the method signature or within the `__init__` docstring. This is for documenting new arguments or overriding standard descriptions.
* **Decorator Arguments (`custom_args`):** A `custom_args` docstring block can be passed to the decorator to provide docstrings for specific arguments directly in the decorator call. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
4.**Adding Classes and Functions Introduction:**
* **`custom_intro` argument:** Allows prepending a custom introductory paragraph to a class or function docstring.
* **Automatic Introduction Generation:** For model classes with standard naming patterns (like `ModelForCausalLM`) or belonging to a pipeline, the decorator automatically generates an appropriate introductory paragraph using `ClassDocstring` in `utils/args_doc.py` as the source.
5.**Templating:** The decorator uses a templating system, allowing predefined docstrings to include dynamic information deduced from the `auto_modules` of the library, such as `{{processor_class}}` or `{{config_class}}`.
6.**Deducing Relevant Examples:** The decorator attempts to find appropriate usage examples based on the model's task or pipeline compatibility. It extracts checkpoint information from the model's configuration class to provide concrete examples with real model identifiers.
7.**Adding Return Value Documentation:** For methods like `forward`, the decorator can automatically generate the "Returns" section based on the method's return type annotation. For example, for a method returning a `ModelOutput` subclass, it will extracts field descriptions from that class's docstring to create a comprehensive return value description. A custom `Returns` section can also be manually specified in the function docstring block.
8.**Unrolling Kwargs Typed With Unpack Operator:** For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentation from the TypedDict and adds each parameter to the function's docstring. Currently, this functionality is only supported for `FastImageProcessorKwargs`.
---
## 🚀 How to Use @auto_docstring
### 1. Importing the Decorator
Import the decorator into your modeling file:
```python
from...utilsimportauto_docstring
```
### 2. Applying to Classes
Place `@auto_docstring` directly above the class definition. It uses the `__init__` method's signature and its docstring for parameter descriptions.
*`@auto_docstring` retrieves descriptions from a central source. Do not redefine these locally if their description and shape are the same as in `args_doc.py`.
2.**New or Custom Arguments:**
* **Primary Method:** Document these within an `r""" """` docstring block following the signature (for functions) or in the `__init__` method's docstring (for class parameters).
* **Format:**
```
argument_name (`type`, *optional*, defaults to `X`):
Description of the argument.
Explain its purpose, expected shape/type if complex, and default behavior.
This can span multiple lines.
```
* Include `type` in backticks.
* Add "*optional*" if the argument is not required (has a default value).
* Add "defaults to `X`" if it has a default value (no need to specify "defaults to `None`" if the default value is `None`).
3. **Overriding Standard Arguments:**
* If a standard argument behaves differently (e.g., different expected shape, model-specific behavior), provide its complete description in the local `r""" """` docstring. This local definition takes precedence.
* The `labels` argument is often customized per model and typically requires a specific docstring.
4. **Using Decorator Arguments for Overrides or New Arguments (`custom_args`):**
* New or custom arguments docstrings can also be passed to `@auto_docstring` as a `custom_args` argument. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
---
### Usage with [modular files](./modular_transformers)
When working with modular files, follow these guidelines for applying the `@auto_docstring` decorator:
- **For standalone models in modular files:**
Apply the `@auto_docstring` decorator just as you would in regular modeling files.
- **For models inheriting from other library models:**
- When inheriting from a parent model, decorators (including `@auto_docstring`) are automatically carried over to the generated modeling file without needing to add them in your modular file.
- If you need to modify the `@auto_docstring` behavior, apply the customized decorator in your modular file, making sure to *include all other decorators* that were present on the original function/class.
> **Warning**: When overriding any decorator in a modular file, you must include ALL decorators that were applied to that function/class in the parent model. If you only override some decorators, the others won't be included in the generated modeling file.
**Note**: The `check_auto_docstrings` tool doesn't check modular files directly, but it will check (and modify when using `--fix_and_overwrite`) the generated modeling files. If issues are found in the generated files, you'll need to update your modular files accordingly.
---
## ✅ Checking Your Docstrings with `check_auto_docstrings`
The library includes a utility script to validate docstrings. This check is typically run during Continuous Integration (CI).
#### What it Checks:
* **Decorator Presence:** Ensures `@auto_docstring` is applied to relevant model classes and public methods. (TODO)
* **Argument Completeness & Consistency:**
* Flags arguments in the signature that are not known standard arguments and lack a local description.
* Ensures documented arguments exist in the signature. (TODO)
* Verifies that types and default values in the docstring match the signature. (TODO)
* **Placeholder Detection:** Reminds you to complete placeholders like `<fill_type>` or `<fill_docstring>`.
* **Formatting:** Adherence to the expected docstring style.
#### Running the Check Locally:
Run this check locally before committing. The common command is:
```bash
make fix-copies
```
Alternatively, to only perform docstrings and auto-docstring checks, you can use:
```bash
python utils/check_docstrings.py # to only check files included in the diff without fixing them
# Or: python utils/check_docstrings.py --fix_and_overwrite # to fix and overwrite the files in the diff
# Or: python utils/check_docstrings.py --fix_and_overwrite --check_all # to fix and overwrite all files
```
#### Workflow with the Checker:
1. Add `@auto_docstring(...)` to the class or method.
2. For new, custom, or overridden arguments, add descriptions in an `r""" """` block.
3. Run `make fix-copies` (or the `check_docstrings.py` utility).
* For unrecognized arguments lacking documentation, the utility will create placeholder entries.
4. Manually edit these placeholders with accurate types and descriptions.
5. Re-run the check to ensure all issues are resolved.
---
## 🔑 Key Takeaways & Best Practices
* Use `@auto_docstring` for new PyTorch model classes (`PreTrainedModel` subclasses) and their primary for methods (e.g., `forward`, `get_text_features` etc.).
* For classes, the `__init__` method's docstring is the main source for parameter descriptions when using `@auto_docstring` on the class.
* Rely on standard docstrings; do not redefine common arguments unless their behavior is different in your specific model.
* Document new or custom arguments clearly.
* Run `check_docstrings` locally and iteratively.
By following these guidelines, you help maintain consistent and informative documentation for the Hugging Face Transformers library 🤗.
@ -25,22 +25,28 @@ Check model leaderboards like [OpenLLM](https://hf.co/spaces/HuggingFaceH4/open_
This guide shows you how to quickly start chatting with Transformers from the command line, how build and format a conversation, and how to chat using the [`TextGenerationPipeline`].
## transformers-cli
## transformers CLI
Chat with a model directly from the command line as shown below. It launches an interactive session with a model. Enter `clear` to reset the conversation, `exit` to terminate the session, and `help` to display all the command options.
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
For a full list of options, run the command below.
```bash
transformers-cli chat -h
transformers chat -h
```
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating).
@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
# Image processors
Image processors converts images into pixel values, tensors that represent image colors and size. The pixel values are inputs to a vision or video model. To ensure a pretrained model receives the correct input, an image processor can perform the following operations to make sure an image is exactly like the images a model was pretrained on.
Image processors converts images into pixel values, tensors that represent image colors and size. The pixel values are inputs to a vision model. To ensure a pretrained model receives the correct input, an image processor can perform the following operations to make sure an image is exactly like the images a model was pretrained on.
- [`~BaseImageProcessor.center_crop`] to resize an image
- [`~BaseImageProcessor.normalize`] or [`~BaseImageProcessor.rescale`] pixel values
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
The key-value (KV) vectors are used to calculate attention scores. For autoregressive models, KV scores are calculated *every* time because the model predicts one token at a time. Each prediction depends on the previous tokens, which means the model performs the same computations each time.
A KV *cache* stores these calculations so they can be reused without recomputing them. Efficient caching is crucial for optimizing model performance because it reduces computation time and improves response rates. Refer to the [Caching](./cache_explanation.md) doc for a more detailed explanation about how a cache works.
A KV *cache* stores these calculations so they can be reused without recomputing them. Efficient caching is crucial for optimizing model performance because it reduces computation time and improves response rates. Refer to the [Caching](./cache_explanation) doc for a more detailed explanation about how a cache works.
Transformers offers several [`Cache`] classes that implement different caching mechanisms. Some of these [`Cache`] classes are optimized to save memory while others are designed to maximize generation speed. Refer to the table below to compare cache types and use it to help you select the best cache for your use case.
@ -20,9 +20,13 @@ rendered properly in your Markdown viewer.
Text generation is the most popular application for large language models (LLMs). A LLM is trained to generate the next word (token) given some initial text (prompt) along with its own generated outputs up to a predefined length or when it reaches an end-of-sequence (`EOS`) token.
In Transformers, the [`~GenerationMixin.generate`] API handles text generation, and it is available for all models with generative capabilities.
In Transformers, the [`~GenerationMixin.generate`] API handles text generation, and it is available for all models with generative capabilities. This guide will show you the basics of text generation with [`~GenerationMixin.generate`] and some common pitfalls to avoid.
This guide will show you the basics of text generation with [`~GenerationMixin.generate`] and some common pitfalls to avoid.
> [!TIP]
> You can also chat with a model directly from the command line. ([reference](./conversations.md#transformers-cli))
[`~GenerationMixin.generate`] is a powerful tool that can be heavily customized. This can be daunting for a new users. This section contains a list of popular generation options that you can define in most text generation tools in Transformers: [`~GenerationMixin.generate`], [`GenerationConfig`], `pipelines`, the `chat` CLI, ...
| Option name | Type | Simplified description |
|---|---|---|
| `max_new_tokens` | `int` | Controls the maximum generation length. Be sure to define it, as it usually defaults to a small value. |
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies.md) for more information. |
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
| `eos_token_id` | `List[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
## Pitfalls
The section below covers some common issues you may encounter during text generation and how to solve them.
@ -286,4 +304,4 @@ Take a look below for some more specific and specialized text generation librari
- [SynCode](https://github.com/uiuc-focal-lab/syncode): a library for context-free grammar guided generation (JSON, SQL, Python).
- [Text Generation Inference](https://github.com/huggingface/text-generation-inference): a production-ready server for LLMs.
- [Text generation web UI](https://github.com/oobabooga/text-generation-webui): a Gradio web UI for text generation.
- [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo): additional logits processors for controlling text generation.
- [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo): additional logits processors for controlling text generation.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Video Processor
A **Video Processor** is a utility responsible for preparing input features for video models, as well as handling the post-processing of their outputs. It provides transformations such as resizing, normalization, and conversion into PyTorch.
The video processor extends the functionality of image processors by allowing Vision Large Language Models (VLMs) to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't upadted your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
### Usage Example
Here's an example of how to load a video processor with [`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) model:
Currently, if using base image processor for videos, it processes video data by treating each frame as an individual image and applying transformations frame-by-frame. While functional, this approach is not highly efficient. Using `AutoVideoProcessor` allows us to take advantage of **fast video processors**, leveraging the [torchvision](https://pytorch.org/vision/stable/index.html) library. Fast processors handle the whole batch of videos at once, without iterating over each video or frame. These updates introduce GPU acceleration and significantly enhance processing speed, especially for tasks requiring high throughput.
Fast video processors are available for all models and are loaded by default when an `AutoVideoProcessor` is initialized. When using a fast video processor, you can also set the `device` argument to specify the device on which the processing should be done. By default, the processing is done on the same device as the inputs if the inputs are tensors, or on the CPU otherwise. For even more speed improvement, we can compile the processor when using 'cuda' as device.
@ -81,10 +81,10 @@ print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoptionid="transformers-cli">
<hfoptionid="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis."| transformers-cli run --task fill-mask --model google-bert/bert-base-uncased --device 0
echo -e "Plants create [MASK] through a process known as photosynthesis."| transformers run --task fill-mask --model google-bert/bert-base-uncased --device 0
```
</hfoption>
@ -256,4 +256,4 @@ echo -e "Plants create [MASK] through a process known as photosynthesis." | tran
<!--Copyright 2025 The BitNet Team and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BitNet
## Overview
Trained on a corpus of 4 trillion tokens, this model demonstrates that native 1-bit LLMs can achieve performance comparable to leading open-weight, full-precision models of similar size, while offering substantial advantages in computational efficiency (memory, energy, latency).
Several versions of the model weights are available on Hugging Face:
* [**`microsoft/bitnet-b1.58-2B-4T`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T): Contains the packed 1.58-bit weights optimized for efficient inference. **Use this for deployment.**
* [**`microsoft/bitnet-b1.58-2B-4T-bf16`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-bf16): Contains the master weights in BF16 format. **Use this only for training or fine-tuning purposes.**
* [**`microsoft/bitnet-b1.58-2B-4T-gguf`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-gguf): Contains the model weights in GGUF format, compatible with the `bitnet.cpp` library for CPU inference.
### Model Details
* **Architecture:** Transformer-based, modified with `BitLinear` layers (BitNet framework).
* Uses Rotary Position Embeddings (RoPE).
* Uses squared ReLU (ReLU²) activation in FFN layers.
* No bias terms in linear or normalization layers.
* **Quantization:** Native 1.58-bit weights and 8-bit activations (W1.58A8).
* Weights are quantized to ternary values {-1, 0, +1} using absmean quantization during the forward pass.
* Activations are quantized to 8-bit integers using absmax quantization (per-token).
* **Crucially, the model was *trained from scratch* with this quantization scheme, not post-training quantized.**
* **Parameters:** ~2 Billion
* **Training Tokens:** 4 Trillion
***Context Length:** Maximum sequence length of **4096 tokens**.
**Recommendation:* For optimal performance on tasks requiring very long contexts (beyond the pre-training length or for specialized long-reasoning tasks), we recommend performing intermediate long-sequence adaptation/training before the final fine-tuning stage.
* **Training Stages:**
1.**Pre-training:** Large-scale training on public text/code and synthetic math data using a two-stage learning rate and weight decay schedule.
2.**Supervised Fine-tuning (SFT):** Fine-tuned on instruction-following and conversational datasets using sum loss aggregation and specific hyperparameter tuning.
3.**Direct Preference Optimization (DPO):** Aligned with human preferences using preference pairs.
> Please do NOT expect performance efficiency gains (in terms of speed, latency, or energy consumption) when using this model with the standard transformers library.
>
> The current execution paths within transformers do not contain the specialized, highly optimized computational kernels required to leverage the advantages of the BitNet architecture. Running the model via transformers will likely result in inference speeds and energy usage comparable to, or potentially worse than, standard full-precision models within this framework on both CPU and GPU.
>
> While you might observe reduced memory usage due to the quantized weights, the primary computational efficiency benefits are not accessible through this standard transformers usage path.
>
> For achieving the efficiency benefits demonstrated in the technical paper, you MUST use the dedicated C++ implementation: [bitnet.cpp](https://github.com/microsoft/BitNet).
echo -e "# Function to calculate the factorial of a number\ndef factorial(n):"| transformers-cli run --task text-generation --model meta-llama/CodeLlama-7b-hf --device 0
echo -e "# Function to calculate the factorial of a number\ndef factorial(n):"| transformers run --task text-generation --model meta-llama/CodeLlama-7b-hf --device 0
```
</hfoption>
@ -146,7 +146,7 @@ visualizer("""def func(a, b):
- Use the `<FILL_ME>` token where you want your input to be filled. The tokenizer splits this token to create a formatted input string that follows the [original training pattern](https://github.com/facebookresearch/codellama/blob/cb51c14ec761370ba2e2bc351374a79265d0465e/llama/generation.py#L402). This is more robust than preparing the pattern yourself.
```py
from transformers import LlamaForCausalLM, CodeLlamaTokenizer
[ColPali](https://huggingface.co/papers/2407.01449) is a model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColPali treats each page as an image. It uses [Paligemma-3B](./paligemma) to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed embeddings. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
## Overview
You can find all the original ColPali checkpoints under the [ColPali](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
The *ColPali* model was proposed in [ColPali: Efficient Document Retrieval with Vision Language Models](https://doi.org/10.48550/arXiv.2407.01449) by **Manuel Faysse***, **Hugues Sibille***, **Tony Wu***, Bilel Omrani, Gautier Viaud, Céline Hudelot, Pierre Colombo (* denotes equal contribution). Work lead by ILLUIN Technology.
> [!TIP]
> Click on the ColPali models in the right sidebar for more examples of how to use ColPali for image retrieval.
In our proposed *ColPali* approach, we leverage VLMs to construct efficient multi-vector embeddings directly from document images (“screenshots”) for document retrieval. We train the model to maximize the similarity between these document embeddings and the corresponding query embeddings, using the late interaction method introduced in ColBERT.
<hfoptionsid="usage">
<hfoptionid="image retrieval">
Using *ColPali* removes the need for potentially complex and brittle layout recognition and OCR pipelines with a single model that can take into account both the textual and visual content (layout, charts, etc.) of a document.
## Resources
- The *ColPali* arXiv paper can be found [here](https://doi.org/10.48550/arXiv.2407.01449). 📄
- The official blog post detailing ColPali can be found [here](https://huggingface.co/blog/manu/colpali). 📝
- The original model implementation code for the ColPali model and for the `colpali-engine` package can be found [here](https://github.com/illuin-tech/colpali). 🌎
- Cookbooks for learning to use the transformers-native version of *ColPali*, fine-tuning, and similarity maps generation can be found [here](https://github.com/tonywu71/colpali-cookbooks). 📚
This model was contributed by [@tonywu71](https://huggingface.co/tonywu71) and [@yonigozlan](https://huggingface.co/yonigozlan).
## Usage
This example demonstrates how to use *ColPali* to embed both queries and images, calculate their similarity scores, and identify the most relevant matches. For a specific query, you can retrieve the top-k most similar images by selecting the ones with the highest similarity scores.
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
- [`~ColPaliProcessor.score_retrieval`] returns a 2D tensor where the first dimension is the number of queries and the second dimension is the number of images. A higher score indicates more similarity between the query and image.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Csm
## Overview
The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio.
**Model Architecture:**
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi.md), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# D-FINE
## Overview
The D-FINE model was proposed in [D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement](https://arxiv.org/abs/2410.13842) by
*We introduce D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD).
FDR transforms the regression process from predicting fixed coordinates to iteratively refining probability distributions, providing a fine-grained intermediate representation that significantly enhances localization accuracy. GO-LSD is a bidirectional optimization strategy that transfers localization knowledge from refined distributions to shallower layers through self-distillation, while also simplifying the residual prediction tasks for deeper layers. Additionally, D-FINE incorporates lightweight optimizations in computationally intensive modules and operations, achieving a better balance between speed and accuracy. Specifically, D-FINE-L / X achieves 54.0% / 55.8% AP on the COCO dataset at 124 / 78 FPS on an NVIDIA T4 GPU. When pretrained on Objects365, D-FINE-L / X attains 57.1% / 59.3% AP, surpassing all existing real-time detectors. Furthermore, our method significantly enhances the performance of a wide range of DETR models by up to 5.3% AP with negligible extra parameters and training costs. Our code and pretrained models: this https URL.*
This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber).
The original code can be found [here](https://github.com/Peterande/D-FINE).
-Use [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html) to speedup inference. However, it will produce some mismatched elements. The difference between the original and traced model is 1e-4.
-The example below shows how to split the output tensor into:
- one embedding for the whole image, commonly referred to as a `CLS` token,
useful for classification and retrieval
- a set of local embeddings, one for each `14x14` patch of the input image,
useful for dense tasks, such as semantic segmentation
```py
import torch
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
```py
from transformers import AutoImageProcessor, AutoModel
echo -e "I love using Hugging Face Transformers!"| transformers-cli run --task text-classification --model distilbert-base-uncased-finetuned-sst-2-english
echo -e "I love using Hugging Face Transformers!"| transformers run --task text-classification --model distilbert-base-uncased-finetuned-sst-2-english
```
</hfoption>
@ -213,7 +213,3 @@ echo -e "I love using Hugging Face Transformers!" | transformers-cli run --task
echo -e "This restaurant has amazing food."| transformers-cli run --task text-classification --model bhadresh-savani/electra-base-emotion --device 0
echo -e "This restaurant has amazing food."| transformers run --task text-classification --model bhadresh-savani/electra-base-emotion --device 0
```
</hfoption>
@ -96,12 +96,12 @@ echo -e "This restaurant has amazing food." | transformers-cli run --task text-c
```py
# Example of properly handling padding with attention masks
inputs = tokenizer(["Short text", "This is a much longer text that needs padding"],
padding=True,
inputs = tokenizer(["Short text", "This is a much longer text that needs padding"],
padding=True,
return_tensors="pt")
outputs = model(**inputs) # automatically uses the attention_mask
```
- When using the discriminator for a downstream task, you can load it into any of the ELECTRA model classes ([`ElectraForSequenceClassification`], [`ElectraForTokenClassification`], etc.).
The Gemma model was proposed in [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by Gemma Team, Google.
Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b.
[Gemma](https://huggingface.co/papers/2403.08295) is a family of lightweight language models with pretrained and instruction-tuned variants, available in 2B and 7B parameters. The architecture is based on a transformer decoder-only design. It features Multi-Query Attention, rotary positional embeddings (RoPE), GeGLU activation functions, and RMSNorm layer normalization.
The abstract from the paper is the following:
The instruction-tuned variant was fine-tuned with supervised learning on instruction-following data, followed by reinforcement learning from human feedback (RLHF) to align the model outputs with human preferences.
*This work introduces Gemma, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations*
You can find all the original Gemma checkpoints under the [Gemma](https://huggingface.co/collections/google/gemma-release-65d5efbccdbb8c4202ec078b) release.
Tips:
- The original checkpoints can be converted using the conversion script `src/transformers/models/gemma/convert_gemma_weights_to_hf.py`
> [!TIP]
> Click on the Gemma models in the right sidebar for more examples of how to apply Gemma to different language tasks.
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), [Sanchit Gandhi](https://huggingface.co/sanchit-gandhi), [Pedro Cuenca](https://huggingface.co/pcuenq).
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
<hfoptionsid="usage">
<hfoptionid="Pipeline">
```py
importtorch
fromtransformersimportpipeline
pipeline=pipeline(
task="text-generation",
model="google/gemma-2b",
torch_dtype=torch.bfloat16,
device="cuda",
)
pipeline("LLMs generate text through a process known as",max_new_tokens=50)
echo -e "LLMs generate text through a process known as"| transformers run --task text-generation --model google/gemma-2b --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
- The original Gemma models support standard kv-caching used in many transformer-based language models. You can use use the default [`DynamicCache`] instance or a tuple of tensors for past key values during generation. This makes it compatible with typical autoregressive generation workflows.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
@ -118,7 +118,7 @@ Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/bl
@ -28,7 +28,7 @@ rendered properly in your Markdown viewer.
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
You can find all the original Gemma 3 checkpoints under the [Gemma 3](https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b) release.
You can find all the original Gemma 3 checkpoints under the [Gemma 3](https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d) release.
> [!TIP]
> Click on the Gemma 3 models in the right sidebar for more examples of how to apply Gemma to different vision and language tasks.
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GraniteMoeHybrid
## Overview
The `GraniteMoeHybrid` model builds on top of `GraniteMoeSharedModel` and `Bamba`. Its decoding layers consist of state space layers or MoE attention layers with shared experts. By default, the attention layers do not use positional encoding.
# loop over the batch to print, in this example the batch size is 1
foriinoutput:
print(i)
```
This HF implementation is contributed by [Sukriti Sharma](https://huggingface.co/SukritiSharma) and [Alexander Brooks](https://huggingface.co/abrooks9944).
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# HGNet-V2
## Overview
A HGNet-V2 (High Performance GPU Net) image classification model.
HGNet arhtictecture was proposed in [HGNET: A Hierarchical Feature Guided Network for Occupancy Flow Field Prediction](https://arxiv.org/abs/2407.01097) by
Zhan Chen, Chen Tang, Lu Xiong
The abstract from the HGNET paper is the following:
*Predicting the motion of multiple traffic participants has always been one of the most challenging tasks in autonomous driving. The recently proposed occupancy flow field prediction method has shown to be a more effective and scalable representation compared to general trajectory prediction methods. However, in complex multi-agent traffic scenarios, it remains difficult to model the interactions among various factors and the dependencies among prediction outputs at different time steps. In view of this, we propose a transformer-based hierarchical feature guided network (HGNET), which can efficiently extract features of agents and map information from visual and vectorized inputs, modeling multimodal interaction relationships. Second, we design the Feature-Guided Attention (FGAT) module to leverage the potential guiding effects between different prediction targets, thereby improving prediction accuracy. Additionally, to enhance the temporal consistency and causal relationships of the predictions, we propose a Time Series Memory framework to learn the conditional distribution models of the prediction outputs at future time steps from multivariate time series. The results demonstrate that our model exhibits competitive performance, which ranks 3rd in the 2024 Waymo Occupancy and Flow Prediction Challenge.*
This model was contributed by [VladOS95-cyber](https://github.com/VladOS95-cyber).
The original code can be found [here](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py).
The InternVL3 family of Visual Language Models was introduced in [InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models](https://huggingface.co/papers/2504.10479).
The abstract from the paper is the following:
*We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.*
<small> Overview of InternVL3 models architecture, which is the same as InternVL2.5. Taken from the <ahref="https://huggingface.co/OpenGVLab/InternVL3-1B">original checkpoint.</a></small>
<small> Comparison of InternVL3 performance on OpenCompass against other SOTA VLLMs. Taken from the <ahref="https://huggingface.co/OpenGVLab/InternVL3-1B">original checkpoint.</a></small>
This model was contributed by [yonigozlan](https://huggingface.co/yonigozlan).
The original code can be found [here](https://github.com/OpenGVLab/InternVL).
## Usage example
### Inference with Pipeline
Here is how you can use the `image-text-to-text` pipeline to perform inference with the `InternVL3` models in just a few lines of code:
'The image showcases a vibrant scene of nature, featuring several flowers and a bee. \n\n1. **Foreground Flowers**: \n - The primary focus is on a large, pink cosmos flower with a prominent yellow center. The petals are soft and slightly r'
```
### Inference on a single image
This example demonstrates how to perform inference on a single image with the InternVL models using chat templates.
> [!NOTE]
> Note that the model has been trained with a specific prompt format for chatting. Use `processor.apply_chat_template(my_conversation_dict)` to correctly format your prompts.
'The image shows two cats lying on a pink blanket. The cat on the left is a tabby with a mix of brown, black, and white fur, and it appears to be sleeping with its head resting on the blanket. The cat on the'
```
### Text-only generation
This example shows how to generate text using the InternVL model without providing any image input.
["user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace.",
'user\n\nDescribe this image\nassistant\nThe image shows a street scene with a traditional Chinese archway, known as a "Chinese Gate" or "Chinese Gate of']
```
### Batched multi-image input
This implementation of the InternVL models supports batched text-images inputs with different number of images for each text.
["user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace.",
'user\n\n\nThese images depict two different landmarks. Can you identify them?\nassistant\nYes, these images depict the Statue of Liberty and the Golden Gate Bridge.']
```
### Video input
InternVL models can also handle video inputs. Here is an example of how to perform inference on a video input using chat templates.
['user\n\n\nThese images depict two different landmarks. Can you identify them?\nassistant\nThe images depict the Statue of Liberty and the Golden Gate Bridge.',
'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nA forehand shot',
"user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace."]
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Janus
## Overview
The Janus Model was originally proposed in [Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation](https://arxiv.org/abs/2410.13848) by DeepSeek AI team and later refined in [Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling](https://arxiv.org/abs/2501.17811). Janus is a vision-language model that can generate both image and text output, it can also take both images and text as input.
> [!NOTE]
> The model doesn't generate both images and text in an interleaved format. The user has to pass a parameter indicating whether to generate text or image.
The abstract from the original paper is the following:
*In this paper, we introduce Janus, an autoregressive framework that unifies multimodal understanding and generation. Prior research often relies on a single visual encoder for both tasks, such as Chameleon. However, due to the differing levels of information granularity required by multimodal understanding and generation, this approach can lead to suboptimal performance, particularly in multimodal understanding. To address this issue, we decouple visual encoding into separate pathways, while still leveraging a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder's roles in understanding and generation, but also enhances the framework's flexibility. For instance, both the multimodal understanding and generation components can independently select their most suitable encoding methods. Experiments show that Janus surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus make it a strong candidate for next-generation unified multimodal models.*
The abstract from the aforementioned `Janus-Pro` paper, released afterwards, is the following:
*In this work, we introduce Janus-Pro, an advanced version of the previous work Janus. Specifically, Janus-Pro incorporates (1) an optimized training strate (2) expanded training data, and (3) scaling to larger model size. With these improvements, Janus-Pro achieves significant advancements in both multimodal understanding and text-to-image instruction-following capabilities, while also enhancing the stability of text-to-image generation. We hope this work will inspire further exploration in the field. Code and models are publicly available.*
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali) and [Hugo Silva](https://huggingface.co/hugosilva664).
The original code can be found [here](https://github.com/deepseek-ai/Janus).
## Usage Example
### Single image inference
Here is the example of visual understanding with a single image.
> [!NOTE]
> Note that the model has been trained with a specific prompt format for chatting. Use `processor.apply_chat_template(my_conversation_dict)` to correctly format your prompts.
Janus can perform inference with multiple images as input, where images can belong to the same prompt or different prompts in batched inference, where the model processes many conversations in parallel. Here is how you can do it:
[Longformer](https://huggingface.co/papers/2004.05150) is a transformer model designed for processing long documents. The self-attention operation usually scales quadratically with sequence length, preventing transformers from processing longer sequences. The Longformer attention mechanism overcomes this by scaling linearly with sequence length. It combines local windowed attention with task-specific global attention, enabling efficient processing of documents with thousands of tokens.
## Overview
You can find all the original Longformer checkpoints under the [Ai2](https://huggingface.co/allenai?search_models=longformer) organization.
The Longformer model was presented in [Longformer: The Long-Document Transformer](https://arxiv.org/pdf/2004.05150.pdf) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
> [!TIP]
> Click on the Longformer models in the right sidebar for more examples of how to apply Longformer to different language tasks.
The abstract from the paper is the following:
The example below demonstrates how to fill the `<mask>` token with [`Pipeline`], [`AutoModel`] and from the command line.
*Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In
contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on
WikiHop and TriviaQA.*
This model was contributed by [beltagy](https://huggingface.co/beltagy). The Authors' code can be found [here](https://github.com/allenai/longformer).
## Usage tips
- Since the Longformer is based on RoBERTa, it doesn't have `token_type_ids`. You don't need to indicate which
token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or
`</s>`).
- A transformer model replacing the attention matrices by sparse matrices to go faster. Often, the local context (e.g., what are the two tokens left and right?) is enough to take action for a given token. Some preselected input tokens are still given global attention, but the attention matrix has way less parameters, resulting in a speed-up. See the local attention section for more information.
## Longformer Self Attention
Longformer self attention employs self attention on both a "local" context and a "global" context. Most tokens only
attend "locally" to each other meaning that each token attends to its \\(\frac{1}{2} w\\) previous tokens and
\\(\frac{1}{2} w\\) succeeding tokens with \\(w\\) being the window length as defined in
`config.attention_window`. Note that `config.attention_window` can be of type `List` to define a
different \\(w\\) for each layer. A selected few tokens attend "globally" to all other tokens, as it is
conventionally done for all tokens in `BertSelfAttention`.
Note that "locally" and "globally" attending tokens are projected by different query, key and value matrices. Also note
that every "locally" attending token not only attends to tokens within its window \\(w\\), but also to all "globally"
attending tokens so that global attention is *symmetric*.
The user can define which tokens attend "locally" and which tokens attend "globally" by setting the tensor
`global_attention_mask` at run-time appropriately. All Longformer models employ the following logic for
`global_attention_mask`:
- 0: the token attends "locally",
- 1: the token attends "globally".
For more information please also refer to [`~LongformerModel.forward`] method.
Using Longformer self attention, the memory and time complexity of the query-key matmul operation, which usually
represents the memory and time bottleneck, can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to
\\(\mathcal{O}(n_s \times w)\\), with \\(n_s\\) being the sequence length and \\(w\\) being the average window
size. It is assumed that the number of "globally" attending tokens is insignificant as compared to the number of
"locally" attending tokens.
For more information, please refer to the official [paper](https://arxiv.org/pdf/2004.05150.pdf).
## Training
[`LongformerForMaskedLM`] is trained the exact same way [`RobertaForMaskedLM`] is
trained and should be used as follows:
<hfoptionsid="usage">
<hfoptionid="Pipeline">
```python
input_ids=tokenizer.encode("This is a sentence from [MASK] training data",return_tensors="pt")
mlm_labels=tokenizer.encode("This is a sentence from the training data",return_tensors="pt")
pipeline("""San Francisco 49ers cornerback Shawntae Spencer will miss the rest of the <mask> with a torn ligament in his left knee.
Spencer, a fifth-year pro, will be placed on injured reserve soon after undergoing surgery Wednesday to repair the ligament. He injured his knee late in the 49ers’ road victory at Seattle on Sept. 14, and missed last week’s victory over Detroit.
Tarell Brown and Donald Strickland will compete to replace Spencer with the 49ers, who kept 12 defensive backs on their 53-man roster to start the season. Brown, a second-year pro, got his first career interception last weekend while filling in for Strickland, who also sat out with a knee injury.""")
San Francisco 49ers cornerback Shawntae Spencer will miss the rest of the <mask> with a torn ligament in his left knee.
Spencer, a fifth-year pro, will be placed on injured reserve soon after undergoing surgery Wednesday to repair the ligament. He injured his knee late in the 49ers’ road victory at Seattle on Sept. 14, and missed last week’s victory over Detroit.
Tarell Brown and Donald Strickland will compete to replace Spencer with the 49ers, who kept 12 defensive backs on their 53-man roster to start the season. Brown, a second-year pro, got his first career interception last weekend while filling in for Strickland, who also sat out with a knee injury.
echo -e "San Francisco 49ers cornerback Shawntae Spencer will miss the rest of the <mask> with a torn ligament in his left knee."| transformers run --task fill-mask --model allenai/longformer-base-4096 --device 0
```
</hfoption>
</hfoptions
## Notes
- Longformer is based on [RoBERTa](https://huggingface.co/docs/transformers/en/model_doc/roberta) and doesn't have `token_type_ids`. You don't need to indicate which token belongs to which segment. You only need to separate the segments with the separation token `</s>` or `tokenizer.sep_token`.
- You can set which tokens can attend locally and which tokens attend globally with the `global_attention_mask` at inference (see this [example](https://huggingface.co/docs/transformers/en/model_doc/longformer#transformers.LongformerModel.forward.example) for more details). A value of `0` means a token attends locally and a value of `1` means a token attends globally.
- [`LongformerForMaskedLM`] is trained like [`RobertaForMaskedLM`] and should be used as shown below.
```py
input_ids = tokenizer.encode("This is a sentence from [MASK] training data", return_tensors="pt")
mlm_labels = tokenizer.encode("This is a sentence from the training data", return_tensors="pt")
loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
```
## LongformerConfig
@ -139,9 +140,6 @@ loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
[mBART](https://huggingface.co/papers/2001.08210) is a multilingual machine translation model that pretrains the entire translation model (encoder-decoder) unlike previous methods that only focused on parts of the model. The model is trained on a denoising objective which reconstructs the corrupted text. This allows mBART to handle the source language and the target text to translate to.
The MBart model was presented in [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan
Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
[mBART-50](https://huggingface.co/paper/2008.00401) is pretrained on an additional 25 languages.
According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual
corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a complete
sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only
on the encoder, decoder, or reconstructing parts of the text.
You can find all the original mBART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=mbart) organization.
This model was contributed by [valhalla](https://huggingface.co/valhalla). The Authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/mbart)
> [!TIP]
> Click on the mBART models in the right sidebar for more examples of applying mBART to different language tasks.
### Training of MBart
The example below demonstrates how to translate text with [`Pipeline`] or the [`AutoModel`] class.
MBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for translation task. As the
model is multilingual it expects the sequences in a different format. A special language id token is added in both the
source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The
target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
<hfoptionsid="usage">
<hfoptionid="Pipeline">
The regular [`~MBartTokenizer.__call__`] will encode source text format passed as first argument or with the `text`
keyword, and target text format passed with the `text_label` keyword argument.
MBart-50 was introduced in the [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extending
its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50
languages.
## Notes
According to the abstract
- You can check the full list of language codes via `tokenizer.lang_code_to_id.keys()`.
- mBART requires a special language id token in the source and target text during training. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The target text format is `[tgt_lang_code] X [eos]`. The `bos` token is never used. The [`~PreTrainedTokenizerBase._call_`] encodes the source text format passed as the first argument or with the `text` keyword. The target text format is passed with the `text_label` keyword.
- Set the `decoder_start_token_id` to the target language id for mBART.
*Multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one
direction, a pretrained model is finetuned on many directions at the same time. It demonstrates that pretrained models
can be extended to incorporate additional languages without loss of performance. Multilingual finetuning improves on
average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while
improving 9.3 BLEU on average over bilingual baselines from scratch.*
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-en-ro", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
- mBART-50 has a different text format. The language id token is used as the prefix for the source and target text. The text format is `[lang_code] X [eos]` where `lang_code` is the source language id for the source text and target language id for the target text. `X` is the source or target text respectively.
- Set the `eos_token_id` as the `decoder_start_token_id` for mBART-50. The target language id is used as the first generated token by passing `forced_bos_token_id` to [`~GenerationMixin.generate`].
MBart-50 has its own tokenizer [`MBart50Tokenizer`].
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
- Supervised training
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
@ -27,7 +27,7 @@ rendered properly in your Markdown viewer.
# Mistral
[Mistral](https://huggingface.co/papers/2310.06825) is a 7B parameter language model, available as a pretrained and instruction-tuned variant, focused on balancing
[Mistral](https://huggingface.co/papers/2310.06825) is a 7B parameter language model, available as a pretrained and instruction-tuned variant, focused on balancing
the scaling costs of large models with performance and efficient inference. This model uses sliding window attention (SWA) trained with a 8K context length and a fixed cache size to handle longer sequences more effectively. Grouped-query attention (GQA) speeds up inference and reduces memory requirements. Mistral also features a byte-fallback BPE tokenizer to improve token handling and efficiency by ensuring characters are never mapped to out-of-vocabulary tokens.
You can find all the original Mistral checkpoints under the [Mistral AI_](https://huggingface.co/mistralai) organization.
@ -78,10 +78,10 @@ The example below demonstrates how to chat with [`Pipeline`] or the [`AutoModel`
@ -79,10 +79,10 @@ print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoptionid="transformers-cli">
<hfoptionid="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis."| transformers-cli run --task fill-mask --model answerdotai/ModernBERT-base --device 0
echo -e "Plants create [MASK] through a process known as photosynthesis."| transformers run --task fill-mask --model answerdotai/ModernBERT-base --device 0
```
</hfoption>
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.