Compare commits

...

411 Commits

Author SHA1 Message Date
b54358e4cf feat: rework widgets 2025-06-10 17:03:21 +02:00
2274ce74a7 feat: add a ContinuousBatchingVisualizer 2025-06-06 19:04:29 +02:00
5009252a05 Better CI (#38552)
better CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 17:59:14 +02:00
2e889c18e1 fix torch_dtype on awq (#38463)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-06 17:14:00 +02:00
871901cb3d fix total batch size calculation in trainer (#38286)
* fix total batch size calculation

* update

Signed-off-by: inkcherry <mingzhi.liu@intel.com>

* Update src/transformers/trainer.py

---------

Signed-off-by: inkcherry <mingzhi.liu@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-06 14:54:00 +00:00
02f946a038 Don't run AriaForConditionalGenerationModelTest on CircleCI (#38615)
git rid of this model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 11:30:31 +02:00
3d15606e64 fix: support grad clipping for TP through replicating non-sharded modules (#36132)
* feat: fix tp grad norm:

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* feat: use implicit replication

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-06 11:07:22 +02:00
fca6748246 Improve test_initialization for SwiftFormer (#38636)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:47:10 +02:00
92a87134ea update ColQwen2ModelIntegrationTest (#38583)
* update

* update

* update

* update

* 4 bit

* 8 bit

* final

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:41:17 +02:00
dbfc79c17c [generation] bring back tests on vision models (#38603)
* bring back geenration tests on VLMs

* remove head mask tests overwritten
2025-06-06 08:23:15 +00:00
90c4b90a10 Use torch 2.7.1 on CircleCI jobs (#37856)
2.7.1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:16:57 +02:00
3e35ea1782 Improve test_initialization (#38607)
* fix flaky init tests

* fix flaky init tests

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-06 10:08:05 +02:00
89542fb81c enable more test cases on xpu (#38572)
* enable glm4 integration cases on XPU, set xpu expectation for blip2

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine wording

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* refine test case names

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* run

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* add gemma2 and chameleon

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Matrix YAO <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-06-06 09:29:51 +02:00
31023b6909 Fix MiniMax (docs and integration tests checkpoint) (#38575)
* update checkpoints for integration tests

* minor fixes in docs
2025-06-06 08:43:11 +02:00
593e29c5e2 Updated Aria model card (#38472)
* Update aria.md

* Update aria.md

* Suggested Updates - aria.md
2025-06-05 14:36:54 -07:00
77cf4936fe [Nit] Add Note on SigOpt being in Public Archive Mode (#38610)
* add note on sigopt

* update

* Update docs/source/en/hpo_train.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-05 14:07:23 -07:00
c75bf2c36e Fix typo in LLaVa documentation (#38618)
* Fix typo in LLaVa documentation

In exactly one section, LlavaImageProcessor was spelt wrongly as LLavaImageProcessor, which throws off copy-pasting the section.

* Fix LlavaImageProcessor url to make it valid (and copypaste-able)

Earlier, the URL contained the entire HF prefix. This commit removes that to ensure that the code block can be copied and run as is.
2025-06-05 13:25:07 -07:00
5399c1d670 docs: fix dark mode logo display. (#38586) 2025-06-05 13:06:59 -07:00
481b953170 Fix return_dict=False giving errors in a few VLM models (#38519)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-05 21:19:07 +02:00
88912b8e95 Remove isort from dependencies (#38616)
Removed isort as a dependency
2025-06-05 16:42:49 +00:00
fa921ad854 fix spelling errors (#38608)
* fix errors test_modeling_mllama.py

* fix error test_modeling_video_llava.py

* fix errors test_processing_common.py
2025-06-05 13:57:23 +01:00
0f833528c9 Avoid overwrite existing local implementation when loading remote custom model (#38474)
* avoid overwrite existing local implementation when loading custom remote model

Signed-off-by: Isotr0py <2037008807@qq.com>

* update comments

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
2025-06-05 13:54:40 +01:00
8f630651b0 Allow mlm_probability to be set to None when mlm=False in DataCollatorForLanguageModeling (#38522) (#38537)
* mlm_probability in DataCollatorForLanguageModeling should be validated only when mlm is True (#38522)

* Change mlm_probability to Optional in DataCollatorForLanguageModeling (#38537)

---------

Co-authored-by: eak <eak@ivalua.com>
2025-06-05 13:54:12 +01:00
65f5fa71cd Bump torch from 2.6.0 to 2.7.1 in /examples/flax/vision (#38606)
Bumps [torch](https://github.com/pytorch/pytorch) from 2.6.0 to 2.7.1.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.6.0...v2.7.1)

---
updated-dependencies:
- dependency-name: torch
  dependency-version: 2.7.1
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-06-05 13:38:02 +01:00
8c59cdb3f8 pin pandas (#38605)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-05 11:33:06 +02:00
8cfcfe58c0 Remove custom pytest and pluggy (#38589)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-05 10:23:40 +02:00
0d69fa6dcd [qwen-omni] fix sliding window (#38525)
fix
2025-06-05 10:11:58 +02:00
1fed6166c0 added fast image processor for ZoeDepth and expanded tests accordingly (#38515)
* added fast image processor for ZoeDepth and expanded tests accordingly

* added fast image processor for ZoeDepth and expanded tests accordingly, hopefully fixed repo consistency issue too now

* final edits for zoedept fast image processor

* final minor edit for zoedepth fast imate procesor
2025-06-04 22:59:17 +00:00
a510be20f3 Updated deprecated typing imports with equivalents for Python 3.9+ (#38546)
* Replace deprecated typing imports with collections.abc equivalents for Python 3.9+

* Fixed code quality

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-06-04 16:57:23 +00:00
8e1266de2b New gpt neo model card (#38505)
* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Commit for new_gpt_model_card.

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/gpt_neo.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-04 09:56:47 -07:00
8046aff520 tests/roformer: fix couple roformer tests on gpus (#38570)
Fix "RuntimeError: Expected all tensors to be on the same device,
but found at least two devices, cuda:0 and cpu" error running the
following roformer tests on GPUs (CUDA or XPU):

```
tests/models/roformer/test_modeling_roformer.py::RoFormerSinusoidalPositionalEmbeddingTest::test_basic
tests/models/roformer/test_modeling_roformer.py::RoFormerSelfAttentionRotaryPositionEmbeddingTest::test_apply_rotary_position_embeddings
```

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-06-04 18:45:56 +02:00
b9c17c5dc0 [Dinov2] Enable device_map="auto" support (#38487)
* Fix: resolve import order and duplicate import (ruff I001, F811)

* Format: clean up Dinov2 test file with ruff formatter

* Add _no_split_modules = ['Dinov2Layer'] to enable device_map='auto'

* Revert dinov2_with_registers _no_split_modules to original state

* Remove redundant device_map test as suggested

* Remove unused import after deleting test

* removed import  torch and the redundant test function

* Update tests/models/dinov2/test_modeling_dinov2.py

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-06-04 15:42:40 +00:00
ae3733f06e feat: add repository field to benchmarks table (#38582)
* feat: add `repository` field to benchmarks table

* fix: remove unwanted `,`
2025-06-04 15:40:52 +02:00
1285aec4cc Docs: fix code formatting in torchao docs (#38504) 2025-06-04 12:35:21 +00:00
6c5d4b1dd2 allow custom head_dim for qwen2_moe (#37188)
allow custom head_dim

Co-authored-by: ryan.agile <ryan.agile@kakaobrain.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-06-04 12:27:30 +00:00
82fa68ca14 fix(attention_visualizer): add default value for image_seq_length (#38577) 2025-06-04 12:20:31 +00:00
1dc619e59f [FlexAttn] Fix models with unique characteristics (#38433)
* fix

* style

* check

* check 2

* add deepseek workaround
2025-06-04 13:37:28 +02:00
ff3fad61e3 Fix deepseekv3 (#38562)
* fix 1

* fix 2

* fix 3

* fix 4

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-04 11:40:14 +02:00
6085cded38 update utils/notification_service.py for AMD vs Nvidia (#38563)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-04 11:38:25 +02:00
3c995c1fdc Fix chameleon tests (#38565)
* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-04 10:13:35 +02:00
55736eea99 Add support for MiniMax's MiniMax-Text-01 (#35831)
* end-to-end architecture

* lightning-attn: refactor, clean, optimize

* put minimax_text_01 in other files

* use latest __init__ standards and auto-generate modular

* support attention_mask for lightning-attn

* Revert "use latest __init__ standards and auto-generate modular"

This reverts commit d8d3c409d89e335c98a8cd36f47304a76eac7493.

* fix modular conversion

* pass both attention masks instead of tuple

* formatting

* Updated Dynamic Cache

* created MiniMaxText01Cache

* fix hardcoded slope_rate

* update attn_type_list in config

* fix lightning when use_cache=False

* copy tests from mixtral

* (checkpoint) all tests pass for normal attention

* fix all unittests

* fix import sorting

* fix consistency and formatting tests

* fix config

* update tests, since changes in main

* fix seq_len error

* create dummy docs

* fix checkpoint

* add checkpoint in config docstring

* run modular_conversion

* update docs

* fix checkpoint path and update tests

* fix ruff

* remove repeated expected_slice

* update docs

* rename "minimax-text-01" to "minimax"

* inherit config from mixtral

* remove from docs in other languages

* undo files that should be untouched

* move minimax to end in conversation docs

* use MiniMaxForCausalLM as it is

* ruff fixes

* run modular

* fix docstring example in causallm

* refactor attention loop and decay factors

* refactor config in modular

* run modular

* refactor cache

* rename static_cache to linear_cache

* make positional embeddings necessary

* remove unnecessary layernorms declarations

* fix import in tests

* refactor attention in next tokens

* remove outdated code

* formatting and modular

* update tests

* rename layernorm alpha/beta factors

* register decay factors as buffers

* remove unused declarations of decay factors

* update config for alpha/beta factors

* run modular

* remove head_dim in tests

* remove minimax from fx.py

* remove stuff that is not really needed

* update __init__

* update qkv torch.split

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* fix qkv torch.split

* quality fixes

* remove mistakenly added dummy

* purge unused ModelTester code

* fix-copies

* run fix-copies

* fix head_dim

* write cache formatting tests

* remove postnorm

* avoid contiguous in attention current states

* update expected_slice

* add generation test for integration

* fix dtype in generation test

* update authors

* update with changes in main

* update graident checkpointing and minor fixes

* fix mutable attn_type_list

* rename: attn_type -> layer_type

* update for layer_types

* update integration tests

* update checkpoint

* clean overview in docs

---------

Co-authored-by: Shakib-IO <shakib.khan17@northsouth.edu>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-06-04 09:38:40 +02:00
037acf1d10 [janus] Fix failing tests on mi3XX (#38426)
* Fix multiple devices error on Janus

* Fix AttributeError on Janus BOI token

* Initialize lm first in Janus to get correct device map

* Added expectations for Janus test_model_generate_images

* Fixed JanusVisionEncoderLayer being split across devices

* Code formatting

* Adding modeling file

* Reverted changes out of scope for this PR
2025-06-04 09:38:10 +02:00
78d771c3c2 [docs] Format fix (#38414)
fix table
2025-06-03 09:53:23 -07:00
0f41c41a46 Fix hqq issue (#38551)
* bc

* style
2025-06-03 17:58:31 +02:00
279000bb70 Name change AOPermod -> ModuleFqn (#38456)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-06-03 15:43:31 +00:00
e8b292e35f Fix utils/notification_service.py (#38556)
* fix

* fix

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-03 13:59:31 +00:00
8cb96787a6 Explicitly setting encoding in tokenization_utils_base.py (#38553)
Update tokenization_utils_base.py

Add encoding explicitly
2025-06-03 12:08:35 +00:00
caf708da1b [TP] Change command in tests to python3 (#38555)
* Fix: change to `python3`

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-03 11:03:33 +00:00
fdf86fb440 [bugfix] [WIP] fix apply_rotary_emb error on Ascend NPU (#38491)
[bugfix] fix apply_rotary_emb error on Ascend NPU
2025-06-03 09:31:49 +00:00
ca0a682796 Update docker image to use av (#38548)
* Update

* Update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-03 11:04:41 +02:00
814432423c update emu3 test (#38543)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-06-03 11:02:01 +02:00
55ec319de6 Don't use default attn if pre-set in sub-config (#38526)
* don't use default attn if pre-set in sib-config

* style

* add a test maybe
2025-06-03 07:53:07 +00:00
bf68dd9e6e [tests] expand flex-attn test for vision models (#38434)
* expand the test for VLMs

* typo

* mark models `supports_flex` + expand test for additional kwargs

* flex attn for refactored vision models

* fix copies

* fix

* unskip

* style

* address comments
2025-06-03 07:40:44 +00:00
de4cf5a38e Fix blip2 tests (#38510)
* fix 1: not sure

* fix 2: _supports_flex_attn = False

* fix 3: embedding_output = self.layernorm(query_embeds.to(self.layernorm.weight.dtype))

* fix 4: query_embeds = query_embeds.to(self.layernorm.weight.dtype)

* fix 5: text_embeds = text_embeds.to(dtype=torch.float16)

* fix 5: question_embeds.to(dtype=torch.float16)

* fix 6: text_embeds = text_embeds.to(dtype=self.itm_head.weight.dtype)

* fix 7: image_embeds and question_embeds

* fix 8: fix other 2 fp16 tests

* fix 9: fix T5 OOM

* fix 10: fix T5 OOM

* fix 11: fix T5

* fix 11: fix T5 beam

* fix 12: _supports_sdpa=False

* fix 12: style and expect

* revert

* revert

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-02 22:46:35 +02:00
ccc859620a Fix Gemma2IntegrationTest (#38492)
* fix

* fix

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* skip-ci

* update

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-02 22:45:09 +02:00
1094dd34f7 Remove type annotation in Siglip Attention Module (#38503)
* Remove type annotation

* remove print statement
2025-06-02 17:51:07 +02:00
afb35a10ed Num parameters in model.safetensors.index.json (#38531)
Num parameters in index.json
2025-06-02 17:16:31 +02:00
cceab972ba [flax/mistral] support sliding_window: null in config (#37402)
flax/mistral: Allow sliding_window to be set to none
2025-06-02 16:45:02 +02:00
1a25fd2f6d Fix amp deprecation issue (#38100)
apex amp is deprecated
2025-06-02 16:15:41 +02:00
05ad826002 remove unhandled parameter (#38145) 2025-06-02 15:57:32 +02:00
c72ba69441 Add ColQwen2 to 🤗 transformers (#35778)
* feat: add colqwen2 (wip)

* tests: fix test_attention_outputs

* tests: reduce hidden size to accelerate tests

* tests: fix `test_attention_outputs` 🥳

* fix: fix wrong parent class for `ColQwen2ForRetrievalOutput`

* fix: minor typing and style changes

* chore: run `make style`

* feat: remove redundant `max_num_visual_tokens` attribute in `ColQwen2Processor`

* tests: tweak comments

* style: apply ruff formatter

* feat: move default values for `visual_prompt_prefix` and `query_prefix`

* docs: update ColQwen2 model card

* docs: tweak model cards

* docs: add required example config checkpoint

* tests: update expected scores in integration test

* docs: tweak quickstart snippets

* fix: address PR comments

* tests: fix colqwen2 tests + tweak comment in colpali test

* tests: unskip useful tests

* fix: fix bug when `visual_prompt_prefix` or `query_prefix` is an empty string

* fix: fix ColPali outputs when `return_dict == False`

* fix: fix issue with PaliGemma output not being a dict

* docs: set default dtype to bfloat16 in quickstart snippets

* fix: fix error when `return_dict=False` in ColPali and ColQwen2

* tests: fix special tokens not being replaced in input_ids

* style: fix lint

* fix: `ColQwen2Processor`'s `padding_side` is now set from `processor_config.json`

* fix: remove unused `padding_side` in ColQwen2 model

* docs: update ColQwen2's model doc

* fix: fix harcoded vlm backbone class in ColQwen2Config

* fix: remove `padding_side` from ColQwen2Processor as should fed from kwargs

* docs: fix typo in model docstring

* docs: add illuin mention in model docs

* fix: let `padding_size` be handled by `tokenizer_config.json`

* docs: add colpali reference url in colqwen2's model doc

* docs: add Hf mention in model docs

* docs: add late interaction mention in model docs

* docs: tweak colqwen2 model doc

* docs: update reference checkpoint for ColPali to v1.3

* docs: simplify quickstart snippets

* docs: remove redundant `.eval()`

* refactor:  use `can_return_tuple` decorator for ColPali and ColQwen2

* docs: fix copyright date

* docs: add missing copyright in tests

* fix: raise error when `initializer_range` is not in config

* docs: remove redundant `.eval()` in colpali doc

* fix: fix `get_text_config` now that Qwen2VL has a proper `text_config` attribute

See https://github.com/huggingface/transformers/pull/37268 for details about changes in Qwen2VL's config.

* fix: add missing `initializer_range` attribute in `ColQwen2Config`

* fix: use `get_text_config` in `resize_token_embeddings`

* update colwen2 with auto_docstring

* docs: fix wrong copyright year

* chore: remove `raise` as `initializer_range` has a default value in `ColQwen2Config`

* refactor: merge `inner_forward` into `forward`

* Refactor colqwen2 after refactoring of qwen2VL, use modular for modeling code

* protect torch import in modular to protect in processing

* protect torch import in modular to protect in processing

* tests: fix hf model path in ColQwen2 integration test

* docs: clarify `attn_implementation` and add comments

* docs: add fallback snippet for using offline PIL dummy images

* docs: temporarily revert attn_implementation to `None` while sdpa is not fixed

* docs: tweaks in colpali/colqwen2 quick start snippets

* fix: add missing flags to enable SDPA/Flex Attention in ColQwen2 model

* fix: add missing changes in modular file

* fix modeling tests

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-06-02 12:58:01 +00:00
beaed8ce01 [generate] move SinkCache to a custom_generate repo (#38399)
remove sink cache
2025-06-02 12:13:30 +02:00
fe5bfaa4b5 [generate] add soft deprecations on custom generation methods (#38406)
soft deprecations
2025-06-02 12:11:46 +02:00
a75b9ffb5c Update Loss Functions to Accept Tensor num_items_in_batch (#38029)
* Update Loss Functions to Accept Tensor num_items_in_batch

* Fix device mismatch by moving num_items_in_batch to loss device in fixed_cross_entropy

* fix the ruff check

* delete the unused if stat

* fix the type problem
2025-06-02 11:31:44 +02:00
493cf1554b [seamless_m4t] Skip some tests when speech is not available (#38430)
* Added the require_speech decorator

* Added require_speecj to some seamless_m4t tests

* Changed skip message
2025-06-02 09:17:28 +00:00
64d14ef28d Fix setting FLASH_ATTENTION_DETERMINISTIC after importing (#37185)
transformers.enable_full_determinism enables deterministic
flash attention using `FLASH_ATTENTION_DETERMINISTIC`
800510c67b/src/transformers/trainer_utils.py (L79)

However, current checks use a global variable `deterministic_g`,
which will do the environment variable check as soon as importing,
this will cause issues as users can call
`transformers.enable_full_determinism` after
`transformers.modeling_flash_attention_utils` is imported. This
behavior is introduced in
https://github.com/huggingface/transformers/pull/33932/files#r1806668579
to fix the graph break.

As a result, this PR implement fixes by delaying the environment variable
check to the first time when `_flash_attention_forward` is executed, so
that we can fix this issue and we won't introduce a graph break.

Signed-off-by: Hollow Man <hollowman@opensuse.org>
2025-06-02 11:08:20 +02:00
fde1120b6c Remove deprecated use_flash_attention_2 parameter (#37131)
Signed-off-by: cyy <cyyever@outlook.com>
2025-06-02 11:06:25 +02:00
51d732709e [docs] add xpu environment variable for gpu selection (#38194)
* squash commits

* rename gpu

* rename accelerator

* change _toctree.yml

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: sdp <sdp@a4bf01943ff7.jf.intel.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-05-30 16:05:07 +00:00
c7f2b79dd8 protect dtensor import (#38496)
protect
2025-05-30 17:36:00 +02:00
051a8acc9a Align TP check (#38328)
align tp check
2025-05-30 17:15:39 +02:00
e0545ef0b8 [Tests] Reduced model size for albert-test model (#38480)
* Reduced model size for albert-test model

* Run checks

* Removed test_save_load

* Removed test skipping functions
2025-05-30 14:22:32 +00:00
f962c862ff Bump torch from 2.2.0 to 2.6.0 in /examples/flax/vision (#37618)
Bumps [torch](https://github.com/pytorch/pytorch) from 2.2.0 to 2.6.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v2.2.0...v2.6.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-version: 2.6.0
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-05-30 14:04:52 +01:00
98568d1e25 Fix incorrect bbox_embed initialization when decoder_bbox_embed_share=False in GroundingDINO (#38238)
* A shallow copy in groundingdino
Fixes #37333

* Supprimer une ligne vide dans la classe GroundingDinoForObjectDetection

* Translate comments in the GroundingDinoForObjectDetection class from French to English
2025-05-30 15:02:18 +02:00
d0fccbf7ef Fix convert_internvl_weights_to_hf.py to support local paths (#38264)
fix(internvl): add local path support to convert_internvl_weights_to_hf.py
2025-05-30 14:56:32 +02:00
858ce6879a make it go brrrr (#38409)
* make it go brrrr

* date time

* update

* fix

* up

* uppp

* up

* no number i

* udpate

* fix

* [paligemma] fix processor with suffix (#38365)

fix pg processor

* [video utils] group and reorder by number of frames (#38374)

fix

* Fix convert to original state dict for VLMs (#38385)

* fix convert to original state dict

* fix

* lint

* Update modeling_utils.py

* update

* warn

* no verbose

* fginal

* ouft

* style

---------

Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
Co-authored-by: hoshi-hiyouga <hiyouga@buaa.edu.cn>
2025-05-30 11:19:42 +02:00
ab5067e7fd fix: handle no scheduler passed by user (#38407) 2025-05-30 11:00:44 +02:00
42ef218b58 [Qwen2.5-Omni] Fix dtype of cos,sin when used with flash attention (#38453)
* Fix dtype of cos,sin when used with flash attention

* Fix dtype of cos,sin when used with flash attention
2025-05-29 18:24:40 +00:00
81cff7ad34 Fix Gemma3IntegrationTest (#38471)
* check

* check

* check

* check

* check

* check

* check

* test style bot

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-29 16:51:12 +02:00
e508965df7 Cleanup BatchFeature and BatchEncoding (#38459)
* Use dict comprehension to create dict

* Fix type annotation

Union[Any] doesn't really make any sense

* Remove methods that are already implemented in the `UserDict` parent
class
2025-05-29 14:13:43 +00:00
8e5cefcb1e Fix TypeError in save_pretrained error handling (fixes #38422) (#38449) 2025-05-29 13:58:16 +00:00
ad9dd3d17b 🔴 [VLM] modeling updates (#38317)
* updates

* fixup

* fix tests

* fix test

* fix

* let it be here for now, till monday

* two more fixes

* persimmon

* fixup

* fix

* fixup

* make sure fuyu runs now that LM has new attn API

* fixup + tests

* qwen vl uses new mask interface as well

* qwen image features format

* update

* remove image_sizes

* address comments

* i am dumb...
2025-05-29 11:08:23 +00:00
a6f7acb603 [Tests] Clean up test cases for few models (#38315)
* Update tests

* revert aria change

* too slow hence revert
2025-05-29 08:21:28 +00:00
8010f3cf61 feat: add cache retention for requests (#38446)
* feat: add cache retention for requests

* fix: propagate `manual_eviction` param & refactor `finish_request`

`finish_request` now only takes `request_id: str` as an input rather
than the full `RequestState`, which was not needed and simplifies
calling from `ContinuousBatchingManager::evict_request_from_cache`

* refactor: pop req from `active_requests`

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-28 18:15:10 +00:00
66da700145 Fix GLM4 checkpoints (#38412)
* fix

* fix

* fix

* fix

* fix

* fix

* test style bot

* Apply style fixes

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-28 16:40:08 +00:00
2872e8bac5 Merge type hints from microsoft/python-type-stubs (post dropping support for Python 3.8) (#38335)
* Merge type hints from microsoft/python-type-stubs (post Python 3.8)

* Remove mention of pylance

* Resolved conflict

* Merge type hints from microsoft/python-type-stubs (post Python 3.8)

* Remove mention of pylance

* Resolved conflict

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Avasam <samuel.06@hotmail.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-05-28 16:21:40 +00:00
942c60956f Model card for mobilenet v1 and v2 (#37948)
* doc: #36979

* doc: update hfoptions

* add model checkpoints links

* add model checkpoints links

* update example output

* update style #36979

* add pipeline tags

* improve comments

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggested changes

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-28 09:20:19 -07:00
9a8510572b Updated the model card for ViTMAE (#38302)
* Update vit_mae.md

* badge float:right

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vit_mae.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update model_doc/vit_mae.md

* fix

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-28 09:19:43 -07:00
c9fcbd5bf9 Updated the Model docs - for the ALIGN model (#38072)
* Updated the Model docs - for the ALIGN model

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated align.md

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/align.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update align.md

* fix

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-28 09:19:09 -07:00
cba94e9272 Fix handling of slow/fast image processors in image_processing_auto.py (#38161)
Fix wrong error when torchvision is not installed
2025-05-28 16:00:23 +00:00
21b10d9aa4 Fix from_args_and_dict ProcessorMixin (#38296)
* fix-from-args-and-dict-processormixin

* change used_kwargs to valid_kwargs

* remove manual valid_kwargs

* fix copies

* fix modular aria
2025-05-28 11:46:33 -04:00
f844733568 Fix MoE gradient test (#38438) 2025-05-28 16:44:20 +01:00
0ed6f7e6b4 Remove redundant test_sdpa_equivalence test (#38436)
* Remove redundant test

* make fixup
2025-05-28 17:22:25 +02:00
51e0fac29f Trigger doc-builder job after style bot (#38398)
* update

* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-28 17:15:34 +02:00
c24d18bbae Fix convert weights for InternVL (#38233)
Fix internvl convert weights
2025-05-28 11:14:56 -04:00
8850427242 Fix typo in tokenization_utils_base.py docstring (#38418)
Fix typo in tokenization_utils_base.py
2025-05-28 14:52:10 +00:00
bab40c6838 [core] support tensor-valued _extra_state values in from_pretrained (#38155)
Support tensor-valued _extra_state values

TransformerEngine uses the pytorch get/set_extra_state API to store FP8
layer config information as bytes Tensor in the _extra_state entry in
the state dict. With recent changes to from_pretrained, this
functionality has broken and loading a model that uses this API doesn't
appear to work. This PR fixes the save/load pretrained functions for
extra state entries that use a pytorch tensor, and adds a (currently
x-failing) test for a dictionary extra state.

Signed-off-by: Peter St. John <pstjohn@nvidia.com>
2025-05-28 15:38:42 +02:00
badc71b9f6 🔴[Attention] Attention refactor for Whisper-based models (#38235)
* start refactoring whisper

* revert for now

* first step

* carry over attn fixes

* check if this works

* whisper has an off by one somewhere - cutting mask in any interface

* make it based on interface

* remove some tests that were skipped but now work

* some fixes for whisper tests

* interface changes

* change the order of fix

* some attention adjustments for eager + TP

* fix scaling

* mask changes

* why does whisper contain those extra seq lens?

* fix from config for fa2 as input_ids is invalid

* fix another test

* another fix

* disable flex attn due to compile issues

* copies and refactor for qwen audio since it somewhat relies on whisper

* fix scaling and smaller things

* retrigger

* new new interface version + more fixups

* adjust qwen

* add comment

* forgot this one

* change copies as whisper cuts on the mask

* add guard

* add flex attention

* switch to new mask function + add skips for torchscript

* remove old api with cache position

* last changes?

* trigger ci
2025-05-28 13:32:38 +02:00
565a0052ed make Llama4TextMoe forward more readable (#37529)
* update forward of Llama4TextMoe

* remove redudant transpose

* fix formatting

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-28 11:54:45 +02:00
defeb04299 Fix CircleCI not triggered when PR is opened from a branch of huggingface/transformers (#38413)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-28 11:25:43 +02:00
593276fe1e Update error when using additional and/or masks (#38429)
update error
2025-05-28 11:08:49 +02:00
3aab6e95cb Disable mi210 scheduled CI (#38411) 2025-05-28 10:35:41 +02:00
fb82a98717 enable large_gpu and torchao cases on XPU (#38355)
* cohere2 done

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* enable torchao cases on XPU

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* rename

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix YAO <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: Matrix YAO <matrix.yao@intel.com>
2025-05-28 10:30:16 +02:00
cea254c909 Update CsmForConditionalGenerationIntegrationTest (#38424)
* require_read_token

* ruff

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-28 10:20:43 +02:00
baddbdd24b [qwen-vl] Look for vocab size in text config (#38372)
fix qwen
2025-05-28 09:32:26 +02:00
a974e3b4e1 Fix an error in verify_tp_plan for keys without '.' (#38420) 2025-05-28 09:30:43 +02:00
b1eae943a2 Change slack channel for mi250 CI (#38410) 2025-05-28 09:20:34 +02:00
5f49e180a6 Add mi300 to amd daily ci workflows definition (#38415) 2025-05-28 09:17:41 +02:00
3b3ebcec40 Updated model card for OLMo2 (#38394)
* Updated OLMo2 model card

* added command line

* Add suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Added suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Indented code block as per suggestions

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 16:24:36 -07:00
f5307272f5 Falcon-H1 - Fix auto_docstring and add can_return_tuple decorator (#38260)
Fix auto_docstring and add can_return_tuple
2025-05-27 16:18:05 -04:00
a092f6babf Update granite.md (#37791)
* Update granite.md

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update granite.md

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* minor fixes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 12:55:15 -07:00
be7aa3210b New bart model card (#37858)
* Modified BART documentation wrt to issue #36979.

* Modified BART documentation wrt to issue #36979.

* fixed a typo.

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bart.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* blank commit.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 11:51:41 -07:00
587c1b0ed1 Updated BERTweet model card. (#37981)
* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

* Updated BERTweet model card.

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/bertweet.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* updated toctree (EN).

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 11:51:22 -07:00
b73faef52f Updated BigBird Model card as per #36979. (#37959)
* Updated BigBird Model card as per #36979.

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/big_bird.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 11:24:28 -07:00
538e847c06 Updated Zoedepth model card (#37898)
* Edited zoedepth model card according to specifications.

* Edited Zoedepth model file

* made suggested changes.
2025-05-27 10:06:53 -07:00
4f7b0ff8d1 Update Model Card for Mamba-2 (#37951)
* update model page.

* update model page.

* Update docs/source/en/model_doc/mamba2.md

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* update the model page.

* update.

* Apply suggestions from code review

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* Apply the suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add an quantization example and update the toctree.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* remove the additional comma

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-27 10:06:39 -07:00
9c50576860 [mllama] Allow pixel_values with inputs_embeds (#38334)
* Allow pixel_values and inputs_embeds at the same time

* remove unnecessary overwritten tests
2025-05-27 16:33:56 +00:00
0f5a8243c4 [tests] remove overload for deleted test (test_offloaded_cache_implementation) (#37896)
* remove overload for deleted tests

* make fixup
2025-05-27 16:45:15 +01:00
f85fd90407 [cleanup] delete deprecated kwargs in qwen2_audio 🧹 (#38404)
delete deprecated
2025-05-27 16:08:53 +01:00
b9f8f863d9 [CSM] update model id (#38211)
* update model id

* codec_model eval

* add processor img

* use ungated repo for processor tests
2025-05-27 17:03:55 +02:00
07dd6b2495 Add report_repo_id to mi300 workflow (#38401) 2025-05-27 16:35:07 +02:00
3142bd8592 [CSM] infer codec model with no_grad + audio eos label (#38215)
* infer codec model with no_grad

* codec_model eval

* training labels: add audio eos token
2025-05-27 14:10:17 +00:00
10ae443ec0 Fix Qwen2.5-VL Video Processor (#38366)
* Update processing_qwen2_5_vl.py

* Update processing_qwen2_5_vl.py

* Update modular_qwen2_5_vl.py

* Fix CI

* Update modular_qwen2_5_vl.py

* Update processing_qwen2_5_vl.py

* Update video_processing_utils.py
2025-05-27 13:46:37 +02:00
80902ae9b1 [chat] use the checkpoint's generation_config.json as base parameterization (#38330)
* use model gen config

* unwanted diff
2025-05-27 10:35:33 +00:00
008e0d87c5 Fix convert to original state dict for VLMs (#38385)
* fix convert to original state dict

* fix

* lint

* Update modeling_utils.py
2025-05-27 10:27:59 +00:00
c769483188 [chat] improvements for thinking models and reduce default verbosity (#38322)
misc improvements
2025-05-27 10:20:58 +00:00
55f2333366 guard size mismatch check to only quantized models (#38397)
fix
2025-05-27 11:45:03 +02:00
1a5be2f5c0 [aya vision] fix processor for vLLM (#38371)
accidentally merged two PRs in one (;-_-)
2025-05-27 09:43:53 +00:00
19fdb75cf0 [video utils] group and reorder by number of frames (#38374)
fix
2025-05-27 11:32:33 +02:00
b0735dc0c1 [paligemma] fix processor with suffix (#38365)
fix pg processor
2025-05-27 11:31:56 +02:00
9e1017b479 [transformers x vLLM] standardize processors (#37915)
* standardize

* fix tests

* batch update some processors, not final yet

* oke, now I tested that everything indeed runs. Still needs prettification

* emu3

* fixup

* gemma3 but it doesn't generate anything

* fuyu

* update

* why?

* Update src/transformers/models/aya_vision/processing_aya_vision.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* address comments

* bc

* why do we need to guard import this every time?

* i hate guarded imports

* i am blind

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-27 11:30:30 +02:00
b5ececb900 Fix image token mask in Gemma3 (#38295)
fix mask
2025-05-27 11:15:52 +02:00
c4e71e8fff Add AMD MI300 CI caller leveraging self-hosted runner scale set workflow in hf-workflows (#38132) 2025-05-26 23:13:02 +02:00
706b00928f Stop autoconverting custom code checkpoints (#37751)
* Stop autoconverting custom code checkpoints

* make fixup

* Better auto class detection

* Match the kwarg ordering
2025-05-26 19:15:28 +01:00
07848a8405 update gemma tests (#38384)
* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 19:54:04 +02:00
cd0f3ce73b [cli] cli usable without torch (#38386)
cli without torch
2025-05-26 16:54:18 +00:00
ba6d72226d 🚨 🚨 Fix custom code saving (#37716)
* Firstly: Better detection of when we're a custom class

* Trigger tests

* Let's break everything

* make fixup

* fix mistaken line doubling

* Let's try to get rid of it from config classes at least

* Let's try to get rid of it from config classes at least

* Fixup image processor

* no more circular import

* Let's go back to setting `_auto_class` again

* Let's go back to setting `_auto_class` again

* stash commit

* Revert the irrelevant changes until we figure out AutoConfig

* Change tests since we're breaking expectations

* make fixup

* do the same for all custom classes

* Cleanup for feature extractor tests

* Cleanup tokenization tests too

* typo

* Fix tokenizer tests

* make fixup

* fix image processor test

* make fixup

* Remove warning from register_for_auto_class

* Stop adding model info to auto map entirely

* Remove todo

* Remove the other todo

* Let's start slapping _auto_class on models why not

* Let's start slapping _auto_class on models why not

* Make sure the tests know what's up

* Make sure the tests know what's up

* Completely remove add_model_info_to_*

* Start adding _auto_class to models

* Start adding _auto_class to models

* Add a flaky decorator

* Add a flaky decorator and import

* stash commit

* More message cleanup

* make fixup

* fix indent

* Fix trust_remote_code prompts

* make fixup

* correct indentation

* Reincorporate changes into dynamic_module_utils

* Update call to trust_remote_code

* make fixup

* Fix video processors too

* Fix video processors too

* Remove is_flaky additions

* make fixup
2025-05-26 17:37:30 +01:00
701caef704 Stop TF weight rename reDOS (#38325)
* let's try a non-regex solution

* make fixup

* Slight adjustment

* Let's just use the original code with a check

* slight tweak to conditional

* slight tweak to conditional
2025-05-26 16:58:51 +01:00
0a4e8e2855 fix typo: tokenizer -> tokenize (#38357) 2025-05-26 15:29:16 +00:00
63964b7c67 fix typos (#38336)
* Update video_processor.md

* Update deepseek_v3.md
2025-05-26 14:42:37 +00:00
8b03c8eaf2 Better check in initialize_weights (#38382)
* Update modeling_utils.py

* CIs

* CIs
2025-05-26 16:20:23 +02:00
eb74cf977b Use one utils/notification_service.py (#38379)
* step 1

* step 2

* step 3

* step 4

* step 5

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 16:15:29 +02:00
98328fd9a1 for now disable compile (#38383) 2025-05-26 15:57:11 +02:00
78079abeff Improved cache docs (#38060)
* improved cache docs

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-26 13:53:41 +00:00
7a9b071bfd [Falcon H1] Fix slow path forward pass (#38320)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

* fix typo

* make style

* fix slow path generations

* clean debug traces

* debug

* remove debug traces final confirmation

* clean debug traces final

* fix format and lineup

* make style

* debug

* Update src/transformers/models/falcon_h1/modular_falcon_h1.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* adress comments

* fix fix-copies

* fix integration test

* Merge pull request #7 from ydshieh/fix-slow-path

update

* another update (#8)

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 15:30:35 +02:00
b5b76b5561 Protect get_default_device for torch<2.3 (#38376)
* Update modeling_utils.py

* CIs
2025-05-26 15:00:09 +02:00
bff32678cc Fix incorrect batching audio index calculation for Phi-4-Multimodal (#38103)
* fix

Signed-off-by: Isotr0py <2037008807@qq.com>

* add tests

Signed-off-by: Isotr0py <2037008807@qq.com>

* code format

Signed-off-by: Isotr0py <2037008807@qq.com>

* Update src/transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-26 12:41:31 +00:00
9f0402bc4d Fix all import errors based on older torch versions (#38370)
* Update masking_utils.py

* fix

* fix

* fix

* Update masking_utils.py

* Update executorch.py

* fix
2025-05-26 12:11:54 +02:00
d03a3ca692 [OPT] Fix attention scaling (#38290)
* fix opt attention scaling

* add comment to why we do this
2025-05-26 11:02:16 +02:00
a5a0c7b888 switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00
cba279f46c [VLMs] add helpers for get/set embedding (#38144)
* add helpers in VLMs

* fix tied weight key test
2025-05-26 09:50:32 +02:00
6e3063422c Uninstall kernels for AMD docker images (#38354)
Uninstall kernels for AMD docker images

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-25 19:42:25 +02:00
4a03044ddb Hot fix for AMD CI workflow (#38349)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-25 11:15:31 +02:00
d0c9c66d1c new failure CI reports for all jobs (#38298)
* new failures

* report_repo_id

* report_repo_id

* report_repo_id

* More fixes

* More fixes

* More fixes

* ruff

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-24 19:15:02 +02:00
31f8a0fe8a [docs]: update roformer.md model card (#37946)
* Update roformer model card

* fix example purpose description

* fix model description according to the comments

* revert changes for autodoc

* remove unneeded tags

* fix review issues

* fix hfoption

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-23 16:27:56 -07:00
36f97ae15b docs(swinv2): Update SwinV2 model card to new standard format (#37942)
* docs(swinv2): Update SwinV2 model card to new standard format

* docs(swinv2): Apply review suggestions

Incorporates feedback from @stevhliu to:
- Enhance the introductory paragraph with more details about scaling and SimMIM.
- Generalize the tip from "image classification tasks" to "vision tasks".

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-23 13:04:13 -07:00
33d23c39ed Update BioGPT model card (#38214)
* Update BioGPT model card

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/biogpt.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* correction for CPU fallback

* added quantization code and method

* fixed transformers-cli call

---------

Co-authored-by: Aguedo <aguedo@fakeemail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-23 13:03:47 -07:00
dffb118013 Remove duplicate docstring: resample (#38305)
Duplicate of the line above.
2025-05-23 13:02:58 -07:00
e0aad278fe Never fallback to eager implicitly (#38327)
* remove arg everywhere

* Update warnings

* add more models

* Update sdpa_attention.py

* fix style

* fix

* readd warnings but not for flex

* Update test_modeling_common.py

* skip

* fix

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-23 19:48:01 +02:00
e64ed0304c Use Gradient Checkpointing Layer in Jamba & Blip Related Models (#38310)
* Use gradient checkpointing class in blip classes

* Use gradient checkpointing class in jamba/bamba
2025-05-23 19:35:25 +02:00
53fb245eb6 🚨 🚨 Inherited CausalLM Tests (#37590)
* stash commit

* Experiment 1: Try just Gemma

* Experiment 1: Just try Gemma

* make fixup

* Trigger tests

* stash commit

* Try adding Gemma3 as well

* make fixup

* Correct attrib names

* Correct pipeline model mapping

* Add in all_model_classes for Gemma1 again

* Move the pipeline model mapping around again

* make fixup

* Revert Gemma3 changes since it's a VLM

* Let's try Falcon

* Correct attributes

* Correct attributes

* Let's try just overriding get_config() for now

* Do Nemotron too

* And Llama!

* Do llama/persimmon

* Correctly skip tests

* Fix Persimmon

* Include Phimoe

* Fix Gemma2

* Set model_tester_class correctly

* Add GLM

* More models!

* models models models

* make fixup

* Add Qwen3 + Qwen3MoE

* Correct import

* make fixup

* Add the QuestionAnswering classes

* Add the QuestionAnswering classes

* Move pipeline mapping to the right place

* Jetmoe too

* Stop RoPE testing models with no RoPE

* Fix up JetMOE a bit

* Fix up JetMOE a bit

* Can we just force pad_token_id all the time?

* make fixup

* fix starcoder2

* Move pipeline mapping

* Fix RoPE skipping

* Fix RecurrentGemma tests

* Fix Falcon tests

* Add MoE attributes

* Fix values for RoPE testing

* Make sure we set bos_token_id and eos_token_id in an appropriate range

* make fixup

* Fix GLM4

* Add mamba attributes

* Revert bits of JetMOE

* Re-add the JetMOE skips

* Update tests/causal_lm_tester.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add licence

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-23 18:29:31 +01:00
d5f992f5e6 Enhance Model Loading By Providing Parallelism, Uses Optional Env Flag (#36835)
* Get parallel loader working. Include tests.

* Update the tests for parallel loading

* Rename env variables.

* Add docs for parallel model weight loading.

* Touch up parallel model loading docs.

* Touch up parallel model loading docs again.

* Edit comment in test_modeling_utils_parallel_loading.py

* Make sure HF_PARALLEL_LOADING_WORKERS is spelled correctly in modeling_utils.py

* Correct times for parallelized loading, previous times were for a "hot" filesystem

* Update parallel model loading so the spawn method is encapsulated. DRY up the code by leveraging get_submodule.

* Update docs on model loading parallelism so that details on setting the multiprocessing start method are removed, now that the package handles this step internally.

* Fix style on model loading parallelism changes.

* Merge latest version of master's modeling_utils.

* Removed unused variable.

* Fix argument packing for the parallel loader.

* Fix state dict being undefined in the parallel model loader.

* Rename variables used in parallel model loading for clarity. Use get_module_from_name().

* Switch to the use of threads for parallel model loading.

* Update docs for parallel loading.

* Remove the use of json.loads when evaluating HF_ENABLE_PARALLEL_LOADING. Prefer simple casting.

* Move parallelized shard loading into its own function.

* Remove use of is_true(). Favor checking env var true values for HF_ENABLE_PARALLEL_LOADING.

* Update copyright to 2025 in readme for paralell model loading.

* Remove garbage collection line in load_shard_file, implicit garbage collection already occurs.

* Run formatter on modeling_utils.py

* Apply style fixes

* Delete tests/utils/test_modeling_utils_parallel_loading.py

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-05-23 16:39:47 +00:00
1ed19360b1 [FlexAttention] Reenable flex for encoder-decoder and make the test more robust (#38321)
* reenable most flex attention test cases

* style

* trigger

* trigger
2025-05-23 18:16:43 +02:00
bb567d85a4 refactor can_save_slow_tokenizer (#37722)
* refactor to rm property can_save_slow_tokenizer, it can be done within the if of save_vocab

* move property to fast

* revert if

* check if vocab_file is attr

* fix check for sp

* fix if condition

* fix if condition

* fix if condition
2025-05-23 17:29:38 +02:00
3c289e2104 [performance_optim] reduce frequency of declaring attention_mask in Ascend NPU flash attention (#38278)
[performance_optim] reduce frequency of declaring attention_mask in ASCEND NPU flash attention
2025-05-23 17:24:51 +02:00
f5d45d89c4 🚨Early-error🚨 config will error out if output_attentions=True and the attn implementation is wrong (#38288)
* Protect ParallelInterface

* early error out on output attention setting for no wraning in modeling

* modular update

* fixup

* update model tests

* update

* oups

* set model's config

* more cases

* ??

* properly fix

* fixup

* update

* last onces

* update

* fix?

* fix wrong merge commit

* fix hub test

* nits

* wow I am tired

* updates

* fix pipeline!

---------

Co-authored-by: Lysandre <hi@lysand.re>
2025-05-23 17:17:38 +02:00
896833c183 Fix some tests (especially compile with fullgraph=True on Python<3.11) (#38319)
* fix tests

* better fix for python<3.11

* fixes

* style
2025-05-23 17:11:40 +02:00
a63bc17416 add vasqu to self-comment-ci.yml (#38324)
add vasqu

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-23 17:09:44 +02:00
54cd86708d [custom_generate] don't forward custom_generate and trust_remote_code (#38304)
* prevent infinite loops

* docs

* more links to custom generation methods
2025-05-23 14:49:39 +00:00
135163e9c5 Expose AutoModelForTimeSeriesPrediction for import (#38307)
* expose AutoModelForTimeSeriesPrediction for import

* add in docs
2025-05-23 13:09:29 +00:00
a6b51e7341 [Whisper + beam search] fix usage of beam_indices (#38259)
* tmp

* fix test_tiny_token_timestamp_batch_generation

* better comments

* test

* comments

* Apply suggestions from code review

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-05-23 10:05:44 +00:00
3e960e032d [tf/flax] handle forced_decoder_ids deletion (#38316)
fix tf/flax, attr checks
2025-05-23 09:44:58 +00:00
9eb0a37c9e Adds use_repr to model_addition_debugger_context (#37984)
* Adds use_repr to model_addition_debugger_context

* Updating docs for use_repr option
2025-05-23 09:35:13 +00:00
38f9c5b15b Fix typo: change 'env' to 'environment' in .circleci/config.yml (#38273)
* Fix typo: change 'env' to 'environment' in .circleci/config.yml

* Remove CIRCLE_TOKEN environment variable from artifact retrieval step

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-23 10:45:27 +02:00
11b670a282 Fix run_slow (#38314)
Signed-off-by: cyy <cyyever@outlook.com>
2025-05-23 10:18:30 +02:00
b01984a51d [emu3] fix conversion script (#38297)
* fix conversion script and update weights

* fixup

* remove commented line
2025-05-23 09:49:56 +02:00
2b585419b4 [Tests] Cleanup Janus Testcase (#38311)
* Cleanup janus testcase

* shift code to setup
2025-05-23 09:29:16 +02:00
b59386dc0a Oups typo for HybridChunkedCache (#38303)
typo
2025-05-22 17:52:37 +02:00
211f2b0875 Add CB (#38085)
* stash for now

* initial commit

* small updated

* up

* up

* works!

* nits and fixes

* don't loop too much

* finish working example

* update

* fix the small freeblocks issue

* feat: stream inputs to continuous batch

* fix: update attn from `eager` to `sdpa`

* refactor: fmt

* refactor: cleanup unnecessary code

* feat: add `update` fn to `PagedAttentionCache`

* feat: broken optimal block size computation

* fix: debugging invalid cache logic

* fix: attention mask

* refactor: use custom prompts for example

* feat: add streaming output

* fix: prefill split

refactor: add doc strings and unsound/redundant logic
fix: compute optimal blocks logic

* fix: send decoded tokens when `prefilling_split` -> `decoding`

* refactor: move logic to appropriate parent class

* fix: remove truncation as we split prefilling anyways

refactor: early return when we have enough selected requests

* feat: add paged attention forward

* push Ggraoh>

* add paged sdpa

* update

* btter mps defaults

* feat: add progress bar for `generate_batch`

* feat: add opentelemetry metrics (ttft + batch fill %age)

* feat: add tracing

* Add cuda graphs (#38059)

* draft cudagraphs addition

* nits

* styling

* update

* fix

* kinda draft of what it should look like

* fixes

* lol

* not sure why inf everywhere

* can generate but output is shit

* some fixes

* we should have a single device synch

* broken outputs but it does run

* refactor

* updates

* updates with some fixes

* fix mask causality

* another commit that casts after

* add error

* simplify example

* update

* updates

* revert llama changes

* fix merge conflicts

* fix: tracing and metrics

* my updates

* update script default values

* fix block allocation issue

* fix prefill split attnetion mask

* no bugs

* add paged eager

* fix

* update

* style

* feat: add pytorch traces

* fix

* fix

* refactor: remove pytorch profiler data

* style

* nits

* cleanup

* draft test file

* fix

* fix

* fix paged and graphs

* small renamings

* cleanups and push

* refactor: move tracing and metrics logic to utils

* refactor: trace more blocks of code

* nits

* nits

* update

* to profile or not to profile

* refactor: create new output object

* causal by default

* cleanup but generations are still off for IDK what reason

* simplifications but not running still

* this does work.

* small quality of life updates

* nits

* updaet

* fix the scheduler

* fix warning

* ol

* fully fixed

* nits

* different generation parameters

* nice

* just style

* feat: add cache memory usage

* feat: add kv cache free memory

* feat: add active/waiting count & req latency

* do the sampling

* fix: synchronize CUDA only if available and improve error handling in ContinuousBatchingManager

* fix on mps

* feat: add dashboard & histogram buckets

* perf: improve waiting reqs data structures

* attempt to compile, but we should only do it on mps AFAIK

* feat: decouple scheduling logic

* just a draft

* c;eanup and fixup

* optional

* style

* update

* update

* remove the draft documentation

* fix import as well

* update

* fix the test

* style doomed

---------

Co-authored-by: Luc Georges <luc.sydney.georges@gmail.com>
2025-05-22 17:43:48 +02:00
73286d8e29 Fix HybridChunedCache & Llama4 (#38299)
* Update cache_utils.py

* Update cache_utils.py
2025-05-22 17:25:51 +02:00
d95c864a25 🔴🔴🔴 [Attention] Refactor Attention Interface for Bart-based Models (#38108)
* starting attn refactor for encoder decoder models via bart (eager + sdpa)

* flash attention works, remove unnecessary code

* flex attention support for bart!, gotta check if the renaming is not too aggressive

* some comments

* skip flex grad test for standalone as done with the other test

* revert flex attn rename (for now), sdpa simplify, and todos

* more todos

* refactor mask creation for reuse

* modular attempt at biogpt

* first batch of other models

* fix attn dropout

* fix autoformer copies

* hubert

* another batch of models

* copies/style + last round of bart models --> whisper next?

* remove unnecessary _reshape function and remove copy to whisper

* add skip for decoder-only models out of enc-dec (same as in bart)

* bring back licences

* remove comment, added to pr read instead

* mostly docs

* disable sew flex attn as it's unclear attn mask for now

* oops

* test fixes for enc-dec

* torch fx fixes + try at flex attn

* skip on mbart

* some more fixes

* musicgen skip / delete old attn class logic + sdpa compose compile skip

* disable flex attn for musicgen, not worth the effort

* more fixes and style

* flex attention test for dropout and encoder decoder that dont have main input names

* informer fixes

* the weirdest thing I've encountered yet...

* style

* remove empty tensor attempt, found core root in previous commits

* disable time series due to tests being very text centric on inputs

* add speech to text to be ignoring the other attns, also due to tests

* update docs

* remaining issues resolved ?

* update docs for current state --> nllb moe and pegasus x sdpa is questionable :D

* some models have not set the is_causal flag...

* change dtype in softmax tol old behaviour + some modular fixes

* I hate it but it is what it is

* fixes from main for bart

* forgot this one

* some model fixes

* style

* current status

* marian works now

* fixing some copies

* some copy fixes + time series x informer

* last models possibly and fixes on style/copies

* some post merge fixes

* more fixes

* make attention interface callable and move warnings there

* style lol

* add comment to "unsupported"

* remove callable interface and change interface warnings + some copies

* fix

* ternary is ugly af, make it simpler

* how did that happen

* fix flex attn test

* failing the test

* no more fallback! fixing copies next

* style + attn fixed

* fixing copies and mask creation

* wrong copy

* fixup tests and disable flex attn for now

* fixup last tests?
2025-05-22 17:12:58 +02:00
9895819514 Update CI Docker base image for AMD tests (#38261)
use newer Pytorch base image for AMD CI tests
2025-05-22 16:38:40 +02:00
dfbee79ca3 refine transformers env output (#38274)
* refine `transformers env` output

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-22 15:22:18 +02:00
1234683309 More typing in src/transformers/training_args.py (#38106)
* Annotate `framework` in src/transformers/training_args.py

Signed-off-by: cyy <cyyever@outlook.com>

* Fix typing

Signed-off-by: cyy <cyyever@outlook.com>

* Revert framework change

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-05-22 13:14:33 +02:00
03a4c024dc Fix tp error when torch distributed is already initialized (#38294)
fix tp error
2025-05-22 12:34:05 +02:00
dcaf47dde5 add liger-kernel to docker file (#38292)
add

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-22 11:58:17 +02:00
163138a911 🚨🚨[core] Completely rewrite the masking logic for all attentions (#37866)
* start

* start having a clean 4d mask primitive

* Update mask_utils.py

* Update mask_utils.py

* switch name

* Update masking_utils.py

* add a new AttentionMask tensor class

* fix import

* nits

* fixes

* use full and quandrants

* general sdpa mask for all caches

* style

* start some tests

* tests with sliding, chunked

* add styling

* test hybrid

* Update masking_utils.py

* small temp fixes

* Update modeling_gemma2.py

* compile compatible

* Update masking_utils.py

* improve

* start making it more general

* Update masking_utils.py

* generate

* make it work with flex style primitives!

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* improve

* Update cache_utils.py

* Update masking_utils.py

* simplify - starting to look good!

* Update masking_utils.py

* name

* Update masking_utils.py

* style

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* small fix for flex

* flex compile

* FA2

* Update masking_utils.py

* Escape for TGI/vLLM!

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* General case without cache

* rename

* full test on llama4

* small fix for FA2 guard with chunk

* Update modeling_gemma2.py

* post rebase cleanup

* FA2 supports static cache!

* Update modeling_flash_attention_utils.py

* Update flex_attention.py

* Update masking_utils.py

* Update masking_utils.py

* Update utils.py

* override for export

* Update executorch.py

* Update executorch.py

* Update executorch.py

* Update executorch.py

* Update masking_utils.py

* Update masking_utils.py

* output attentions

* style

* Update masking_utils.py

* Update executorch.py

* Add doicstring

* Add license and put mask visualizer at the end

* Update test_modeling_common.py

* fix broken test

* Update test_modeling_gemma.py

* Update test_modeling_gemma2.py

* Use fullgraph=False with FA2

* Update utils.py

* change name

* Update masking_utils.py

* improve doc

* change name

* Update modeling_attn_mask_utils.py

* more explicit logic based on model's property

* pattern in config

* extend

* fixes

* make it better

* generalize to other test models

* fix

* Update masking_utils.py

* fix

* do not check mask equivalence if layer types are different

* executorch

* Update modeling_gemma2.py

* Update masking_utils.py

* use layer_idx instead

* adjust

* Update masking_utils.py

* test

* fix imports

* Update modeling_gemma2.py

* other test models

* Update modeling_llama4.py

* Update masking_utils.py

* improve

* simplify

* Update masking_utils.py

* typos

* typo

* fix

* Update masking_utils.py

* default DynamicCache

* remove default cache

* simplify

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* simplify

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* export

* Update executorch.py

* Update executorch.py

* Update flex_attention.py

* Update executorch.py

* upstream to modular gemma 1 & 2

* Update modular_mistral.py

* switch names

* use dict

* put it in the Layer directly

* update copy model source for mask functions

* apply so many modular (hopefully 1 shot)

* use explicite dicts for make style happy

* protect import

* check docstring

* better default in hybrid caches

* qwens

* Update modular_qwen2.py

* simplify core logic!

* Update executorch.py

* qwen3 moe

* Update masking_utils.py

* Update masking_utils.py

* simplify a lot sdpa causal skip

* Update masking_utils.py

* post-rebase

* gemma3 finally

* style

* check it before

* gemma3

* More general with newer torch

* align gemma3

* Update utils.py

* Update utils.py

* Update masking_utils.py

* Update test_modeling_common.py

* Update flex_attention.py

* Update flex_attention.py

* Update flex_attention.py

* test

* executorch

* Update test_modeling_common.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update masking_utils.py

* Update executorch.py

* Update test_modeling_common.py

* fix copies

* device

* sdpa can be used without mask -> pass the torchscript tests in this case

* Use enum for check

* revert enum and add check instead

* remove broken test

* cohere2

* some doc & reorganize the Interface

* Update tensor_parallel.py

* Update tensor_parallel.py

* doc and dummy

* Update test_modeling_paligemma2.py

* Update modeling_falcon_h1.py

* Update masking_utils.py

* executorch patch

* style

* CIs

* use register in executorch

* final comments!

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-22 11:38:26 +02:00
f8630c778c [Whisper] handle deprecation of forced_decoder_ids (#38232)
* fix

* working saved forced_decoder_ids

* docstring

* add deprecation message

* exception message ordering

* circular import comment
2025-05-22 09:16:38 +00:00
aa02a5d902 [whisper] move processor test into processor test file 🧹 (#38266)
move processor tests
2025-05-22 10:07:11 +01:00
b26157d64c add XPU info print in print_env (#38282)
Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-22 11:03:56 +02:00
b369a65480 docs(swin): Update Swin model card to standard format (#37628)
* docs(swin): Update Swin model card to standard format

* docs(swin): Refine link to Microsoft organization for Swin models

Apply suggestion from @stevhliu in PR #37628.

This change updates the link pointing to the official Microsoft Swin Transformer checkpoints on the Hugging Face Hub.

The link now directs users specifically to the Microsoft organization page, filtered for Swin models, providing a clearer and more canonical reference compared to the previous general search link.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(swin): Clarify padding description and link to backbone docs

Apply suggestion from @stevhliu in PR #37628.

This change introduces two improvements to the Swin model card:

1.  Refines the wording describing how Swin handles input padding for better clarity.
2.  Adds an internal documentation link to the general "backbones" page when discussing Swin's capability as a backbone model.

These updates enhance readability and improve navigation within the Transformers documentation.

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* docs(swin): Change Swin paper link to huggingface.co/papers as suggested

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-21 16:16:43 -07:00
28d3148b07 Update Model Card for Mamba (#37863)
* update model card.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update quantization example.

* update example.

* update

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-21 10:58:23 -07:00
7b7bb8df97 Protect ParallelInterface (#38262)
Co-authored-by: Lysandre <hi@lysand.re>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-21 17:45:38 +02:00
5c13cc0f94 Remove Japanese sequence_classification doc and update references (#38246) 2025-05-21 08:33:41 -07:00
71009e4b68 assign the correct torchao data layout for xpu (#37781)
* assign the correct data layout for xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check torch version before using torchao xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix the log

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix zero point type

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix check torch version

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-05-21 17:21:55 +02:00
d6c34cdcd0 Fix: missing else branch to handle "--load_best_model_at_end" in training_args.py (#38217)
Update training_args.py
2025-05-21 14:28:56 +00:00
ae3e4e2d97 Improve typing in TrainingArgument (#36944)
* Better error message in TrainingArgument typing checks

* Better typing

* Small fixes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-05-21 13:54:38 +00:00
174684a9b6 Simplify DTensor Check for modeling_utils.py (#38245)
Update modeling_utils.py
2025-05-21 13:35:44 +00:00
e4decee9c0 [whisper] small changes for faster tests (#38236) 2025-05-21 14:11:08 +01:00
ddf67d2d73 Clearer error on import failure (#38257)
Clearer error
2025-05-21 14:32:29 +02:00
9a962dd9ed Add tearDown method to Quark to solve OOM issues (#38234)
fix
2025-05-21 14:26:44 +02:00
101b3fa4ea fix multi-image case for llava-onevision (#38084)
* _get_padding_size module

* do not patchify images when processing multi image

* modify llava onevision image processor fast

* tensor to list of tensors

* backward compat

* reuse pad_to_square in llave & some clarification

* add to doc

* fix: consider no image cases (text only or video)

* add integration test

* style & repo_consistency
2025-05-21 11:50:46 +02:00
a21f11fca2 [compile] re-enable for Qwen-VL models (#38127)
* compile qwen models

* delete TODO comment

* fix embeds test

* fix assisted decoding

* add comments
2025-05-21 09:50:39 +00:00
4542086db7 [Falcon H1] Fix Typo in Integration Test (#38256)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

* fix typo

* make style

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Younes Belkada <younesbelkada@gmail.com>
Co-authored-by: younesbelkada <younes.belkada@tii.ae>
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-21 11:25:26 +02:00
6829936ee0 [MODEL] Add Falcon H1 (#38249)
* Create push-important-models.yml

* feat: add falcon-h1

* fixup

* address comment

* fix

* fix copies

* fix copies

* fix

* fix

* fix

* fix

* fix copies

* fix

* fix copies

* fix test import to at least trigget the cis

* yups

* update

* fix make fix copies

* fix inits?

* fix style

* skip annoying test

* add integration test for Falcon H1

* fix copies

* fix

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: dhia.rhaiem <dhia.rhaiem@tii.ae>
2025-05-21 10:43:11 +02:00
e288ee00d8 tp plan should not be NONE (#38255)
* accept custom device_mesh

* fix device_map

* assert that num_heads % tp_size == 0

* todo.

* ReplicateParallel

* handle tied weights

* handle dtensor in save_pretrained with safe_serialization

* tp test works

* doesnt work

* fix shard_and_distribute_module's rank should be local_rank

* tp=4 is correct

* dp+tp is broken

* todo allreduce with dtensors on another dim is annoying

* workaround to sync dp grads when using dtensors

* loading a checkpoint works

* wandb and compare losses with different tp/dp

* cleaning

* cleaning

* .

* .

* logs

* CP2 DP2 no mask works after commenting attn_mask and is_causal from scaled_dot_product_attention

* DP=2 TP=2 now works even with tied embeddings

* model.parameters() and model.module.parameters() are empty..

* reformat sanity_check_tensor_sync

* set atol=1e-4 for CP to pass

* try populate _parameters from named_modules

* refactors
TP2 DP2 works
CP2 DP2 works

* is_causal=True and pack sequences, no attn mask, and preshuffle dataset

* fix packing

* CP=4 doesn't work

* fix labels and position_ids for CP

* DP CP works with transformers 🥳🥳🥳

* refactor

* add example cp

* fixup

* revert sdpa changes

* example cleared

* add CP, DP to the mesh init

* nit

* clean

* use `ALL_PARALLEL_STYLES`

* style

* FSDP works

* log on 1 rank

* .

* fix?

* FSDP1 also has .parameters() bug

* reported gradnorm when using FSDP1 is wrong, but loss is correct so it's okay

* .

* style and fixup

* move stuff around

* fix tests

* style

* let's make it a check

* add missing licences

* warning should be an info

* tp plan should not be NONE

* test all

* god damn it

* test all

---------

Co-authored-by: nouamanetazi <nouamane98@gmail.com>
2025-05-21 10:22:38 +02:00
711d78d104 Revert parallelism temporarily (#38240)
* Revert "Protect ParallelInterface"

This reverts commit cb513e35f9c096d60558bd43110837cbb66611ce.

* Revert "parallelism goes brrr (#37877)"

This reverts commit 1c2f36b480e02c9027d2523746d34e27b39e01a4.

* Empty commit
2025-05-20 22:43:04 +02:00
feec294dea CI reporting improvements (#38230)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-20 19:34:58 +02:00
cb513e35f9 Protect ParallelInterface 2025-05-20 18:27:50 +02:00
f4ef41c45e v4.53.0.dev0 2025-05-20 18:12:56 +02:00
f834d368f6 [gemma3] fix bidirectional attention mask (#38080)
* fix attn mask

* attn viz doesn't show yello cubes between images

* bucketize made it hard with different number of crops

* fixup
2025-05-20 17:35:04 +02:00
2edb0e4b4d [mllama] fix loading and inference (#38223)
fix loading
2025-05-20 17:34:55 +02:00
390f153469 Add padding-free to bamba (#35861)
* add seq_idx and fa kwargs

* update tests

* docs and grad ckpt support

* fmt

* better names

* test_raise_missing_padding_free_kwarg_errs

* + seq_idx in doc strings

* padding free training docs

* add link to pr plots

* raise err on attn_mask with padding free

* rm raising missing padding free err test

* BambaFlashAttentionKwargs

* run modular util for modular_granitemoehybrid.py
2025-05-20 17:13:59 +02:00
2a79471318 Fixing Bitnet after use_rms_norm introduction (#38229)
* fix

* make style
2025-05-20 17:13:21 +02:00
9661896083 Enable Quantize KV Cache for Mistral Model (#35042)
fix #35041
2025-05-20 16:50:26 +02:00
1c2f36b480 parallelism goes brrr (#37877)
* accept custom device_mesh

* fix device_map

* assert that num_heads % tp_size == 0

* todo.

* ReplicateParallel

* handle tied weights

* handle dtensor in save_pretrained with safe_serialization

* tp test works

* doesnt work

* fix shard_and_distribute_module's rank should be local_rank

* tp=4 is correct

* dp+tp is broken

* todo allreduce with dtensors on another dim is annoying

* workaround to sync dp grads when using dtensors

* loading a checkpoint works

* wandb and compare losses with different tp/dp

* cleaning

* cleaning

* .

* .

* logs

* CP2 DP2 no mask works after commenting attn_mask and is_causal from scaled_dot_product_attention

* DP=2 TP=2 now works even with tied embeddings

* model.parameters() and model.module.parameters() are empty..

* reformat sanity_check_tensor_sync

* set atol=1e-4 for CP to pass

* try populate _parameters from named_modules

* refactors
TP2 DP2 works
CP2 DP2 works

* is_causal=True and pack sequences, no attn mask, and preshuffle dataset

* fix packing

* CP=4 doesn't work

* fix labels and position_ids for CP

* DP CP works with transformers 🥳🥳🥳

* refactor

* add example cp

* fixup

* revert sdpa changes

* example cleared

* add CP, DP to the mesh init

* nit

* clean

* use `ALL_PARALLEL_STYLES`

* style

* FSDP works

* log on 1 rank

* .

* fix?

* FSDP1 also has .parameters() bug

* reported gradnorm when using FSDP1 is wrong, but loss is correct so it's okay

* .

* style and fixup

* move stuff around

* fix tests

* style

* let's make it a check

* warning should be an info

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2025-05-20 16:22:52 +02:00
b591d925be Fix Llama4 (#38222)
Update modeling_llama4.py
2025-05-20 16:00:46 +02:00
3f0b7d0fac Mamba2 remove unecessary test parameterization (#38227) 2025-05-20 13:54:04 +00:00
9cde2f5d42 Minor llama4 fixes (#38123)
* fix wrong scaling value/default Cache init

* style

* fix various issues on integration tests

* change expected outputs

* fixup

* fix config access

* protect default scaling
2025-05-20 13:15:54 +00:00
856f034f45 fix dead flax links modeling_flax_pytorch_utils.py (#38212) 2025-05-20 13:03:41 +00:00
bb3c6426d8 Make train_dataset attribute in _get_train_sampler optional (#38226)
make it optional
2025-05-20 12:59:53 +00:00
2ad152f84c In Llama4 fix wrongly inverted causal attention mask when using SDPA implementation (#38094)
When preparing the causal attention mask at this point the mask comes
in as a float tensor with min value as a masked value.
It is not correct to convert it to bool and treat it as a bool mask as
this inverts the mask.
`torch.nn.functional.scaled_dot_product_attention` expects that a masked value is `False`.

I suspect that the `sdpa` implementation variant may not have been
thoroughly tested and that is why this error was not caught earlier.

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-20 14:47:59 +02:00
de70c8426e Disable torchscript tests for AriaForConditionalGenerationModelTest (#38225)
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-20 14:37:55 +02:00
8ea61c4530 Add support to Marimo Notebooks and Enverge.ai (#38210)
* Add support to Marimo notebooks

* Consice logic

* Simplify logic

* Ruff fixes
2025-05-20 12:26:34 +00:00
d34e21e7dd New cache tests and refactored Hybrid Cache (#37972) 2025-05-20 12:46:13 +02:00
183fb3637c Add Llama4TextModel to AutoModel mapping (#38162)
Add Llama4TextModel to AutoModel mapping

using Llama4TextConfig on AutoModel.from_config raises a ValueError when it is expected to instantiate a Llama4TextModel
2025-05-20 10:01:00 +00:00
f022bf9322 Remove trust_remote_code=True tests from bnb quantization tests (MPT now integrated) (#38206)
bnb quant tests: remove obsolete trust_remote_code test

The MPT model is now natively integrated in Transformers and no longer requires trust_remote_code=True. This removes the failing test_get_keys_to_not_convert_trust_remote_code and related usage, which depended on remote code and caused CI issues due to missing dependencies (e.g., triton_pre_mlir).
2025-05-20 11:43:11 +02:00
0a52bd2403 [fix] sliding window attention mask (#38045)
* fix sliding attn

* make style

* Update tests/test_modeling_common.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* no a second throught, should default to `True` fo BC

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-05-20 09:32:19 +00:00
555715f418 Fix broken example generation script for Llama3 (#38062)
Fix broken example generation script for llama3
2025-05-20 10:53:43 +02:00
7a611f0afd Fix: make docs work better with doc builder (#38213) 2025-05-20 08:23:03 +00:00
3bd1c20149 enable misc cases on XPU & use device agnostic APIs for cases in tests (#38192)
* use device agnostic APIs in tests

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* more

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add reset_peak_memory_stats API

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-20 10:09:01 +02:00
dbc4b91db4 Qwen2.5-Omni: Update modeling_qwen2_5_omni.py to fix error when loading quantized weights with AutoAWQ. (#38013)
* Update modular_qwen2_5_omni.py

fix the error when loading quantized model by AuotAWQ.

* Update modeling_qwen2_5_omni.py

sync code to modular_qwen2_5_omni.py
2025-05-20 09:53:51 +02:00
46a4b7c909 Feat: save_pretrained for tensor parallel (and other parallelisms) models (#37919)
* tmp: initial save pretrained with dtensors

* Feat: add correctness tests

* Refactor: version checks

* Temp: 1:1 checkpoint llama4

* refactor

* Tests

* Feat: works

* Style

* Feat: version checks + minor fixes

* Style

* Fix: version checks in tests

* Feat: move more stuff into tensor_parallel.py
2025-05-19 18:16:21 +00:00
9ecee14378 [doc] fix bugs in how_to_hack_models.md (#38198)
fix several bugs
2025-05-19 10:37:54 -07:00
f524439cc5 Translating model_doc/bert.md to Chinese (#37806)
* Translated model_doc/bert.md

* Revise grammatical errors

* Changed _toctree.yml

* Revise some errors
2025-05-19 10:14:57 -07:00
6e738411e1 Tensor parallel docs (#38178)
* Feat: initial docs

* Feat: update doc

* Final typos/changes

* Refactor: reorder top to bottom.
2025-05-19 17:05:01 +00:00
9c500015c5 🚨🚨🚨 [pipelines] update defaults in pipelines that can generate (#38129)
* pipeline generation defaults

* add max_new_tokens=20 in test pipelines

* pop all kwargs that are used to parameterize generation config

* add class attr that tell us whether a pipeline calls generate

* tmp commit

* pt text gen pipeline tests passing

* remove failing tf tests

* fix text gen pipeline mixin test corner case

* update text_to_audio pipeline tests

* trigger tests

* a few more tests

* skips

* some more audio tests

* not slow

* broken

* lower severity of generation mode errors

* fix all asr pipeline tests

* nit

* skip

* image to text pipeline tests

* text2test pipeline

* last pipelines

* fix flaky

* PR comments

* handle generate attrs more carefully in models that cant generate

* same as above
2025-05-19 18:02:06 +01:00
6f9da7649f [image-text-to-text pipeline] Accept a chat as a positional arg (#38204)
accept chat as a positional arg
2025-05-19 17:26:09 +01:00
7c9b0ca08c [SAM-HQ] Update names in the docs (#38058)
Update names
2025-05-19 09:21:14 -07:00
04282a9ef5 Remove Deprecated verbose arg in LayerWiseDummyScheduler (#38197)
Remove Deprecated args in LayerWiseDummyScheduler
2025-05-19 13:49:11 +00:00
aef12349b6 Make HF implementation match original OLMo 2 models for lower precisions (#38131)
* Make HF implementation match OLMo models for lower precisions

* Add test of 1B logits in bfloat16

* Run make fixup
2025-05-19 15:35:23 +02:00
9644acb7cb [docs] add Audio import (#38195)
add Audio import
2025-05-19 13:16:35 +00:00
7d93f93f83 [docs] minor fixes in models.md (#38193)
minor gix
2025-05-19 13:14:21 +00:00
47f8578d96 Pass eps to Mistral3RMSNorm (#38026)
Pass eps to Mistral3RMSNorm

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-19 15:09:25 +02:00
6c6302817d Resolve Python logger warnings (#38183)
* Resolve Python logger warnings

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>

* Apply style fixes

---------

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-19 12:53:07 +00:00
003deb16f1 Support for transformers explicit filename (#38152)
* Support for transformers explicit filename

* Tests

* Rerun tests
2025-05-19 14:33:47 +02:00
dbb9813dff [generation] Less verbose warnings by default (#38179)
* tmp commit (imports broken)

* working version; update tests

* remove line break

* shorter msg

* dola checks need num_beams=1; other minor PR comments

* update early trainer failing on bad gen config

* make fixup

* test msg
2025-05-19 10:03:37 +00:00
656e2eab3f Add adam_kwargs for Apollo Optimizer (#38168)
Add adam_kwargs for Apollo
2025-05-19 08:59:49 +00:00
6bb6821d93 Refactor get_XXX_dataloader from Trainer (#38090)
* Remove test_dataloader

* refactor
2025-05-19 10:43:27 +02:00
40a493c7ed [tests] remove test_sdpa_equivalence (redundant) (#37911)
* rm test_sdpa_equivalence

* make fixup

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-16 18:37:27 +01:00
ea29f61ed9 fix bug in distributed loss test (#38166)
* fix bug in distributed loss test and change some config to pass at both 2&8 gpus

* fix doc
2025-05-16 16:21:35 +00:00
a4389494c7 Fix import torchao.prototype.low_bit_optim since torchao v0.11 (#38174)
* Fix ModuleNotFoundError torchao.prototype.low_bit_optim since torchao v 0.11.0

* Fix space on blank line

* update torchao's AdamW4bit and AdamW8bit import for v0.11.0

* Apply style fixes

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-16 18:02:33 +02:00
0ba95564b7 Add args support for fast image processors (#37018)
* add args support to fast image processors

* add comment for clarity

* fix-copies

* Handle child class args passed as both args or kwargs in call and preprocess functions

* revert support args passed as kwargs in overwritten preprocess

* fix image processor errors
2025-05-16 12:01:46 -04:00
d69945e5fc [ESM] Add flash-attention-2 backend for ESM-2 (#38023)
* Add flash-attention-2 backend for ESM-2

Signed-off-by: Peter St. John <pstjohn@nvidia.com>

* update extended_attention_mask for fa2

Signed-off-by: Peter St. John <pstjohn@nvidia.com>

* add test_flash_attn_2_equivalence test

Signed-off-by: Peter St. John <pstjohn@nvidia.com>

---------

Signed-off-by: Peter St. John <pstjohn@nvidia.com>
2025-05-16 14:11:56 +01:00
7b5e327c6e Feat: add warnings for unused keys and rules in tensor parallel (#37893)
Feat: tensor parallel plan verification
2025-05-16 14:52:47 +02:00
120935234f remove some commands from fetch_tests CircleCI job (#38176)
delete

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-16 14:42:50 +02:00
91f6fa00f4 Disable convert to draft workflow (#38177)
delete

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-16 14:42:14 +02:00
5036ec8872 Disable Trigger CircleCI by ready for review (#38171)
delete

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-16 14:02:48 +02:00
7f28da2850 clean autoawq cases on xpu (#38163)
* clean autoawq cases on xpu

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-16 13:56:43 +02:00
01ad9f4b49 Bart: new cache format (#35314)
* bart compile

* add mbart

* some more models touched by fix-copies

* more

* more models

* even more models

* fix copies

* fix tests

* fix copies

* fix

* biogpt accepts position ids now (breaking?)

* fix failing non-slow tests

* fix some tests

* should not be removed

* small update

* Update src/transformers/models/bart/modeling_bart.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update for last `main`

* fix copies

* clone `update_causal_mask` from llama

* tmp

* fixup

* why? how?

* fix bart tests

* dont skip test

* address comments

* fix tests

* fix

* fixup and delete the file

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-05-16 13:26:54 +02:00
3ab47b6ce3 [VLMs] add helpers to get multimodal encodings (#37743)
* add helpers in VLMs

* fix tests and copies

* fix blip tests

* make fix-copies

* fix copies

* fixup
2025-05-16 13:20:10 +02:00
1e921a3a9c Add optional RMSNorm support to BitNet quantization (config + layers) (#38087)
* enable optional RMS in BitLinear

* Fix naming

* Import RMS from Llama using config.*

* make fix-copies

* ran CI loop

* remove default BitNetQuantConfig values

* Fix BitNetQuantConfig to be Optional

* Fix config docstrings to match Optoinal

* Edit docstrings to match standards

---------

Co-authored-by: steinmetzc <codysteinmetz7@gmail.com>
Co-authored-by: codys12 <steinmetzc@dh-mgmt4.hpc.msoe.edu>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-05-16 12:38:06 +02:00
57a79f51b2 Fix Qwen2.5 Omni SinusoidsPositionEmbedding precision (#38151)
* Fix Qwen2.5 Omni `SinusoidsPositionEmbedding` precision

fixes https://github.com/QwenLM/Qwen2.5-Omni/issues/271

* Update modular_qwen2_5_omni.py
2025-05-16 12:24:50 +02:00
44fa04ae8d Include output embedding as well with include_embedding flag (#37935)
* Include output embedding as well with `include_embedding` flag

Summary:
att

Test Plan:
python tests/quantization/torchao_integration/test_torchao.py -k test_include_embedding

Reviewers:

Subscribers:

Tasks:

Tags:

* format

* rename include_embedding to include_input_output_embeddings

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-05-16 12:06:11 +02:00
34c1e29cdd enable autoround cases on XPU (#38167)
* enable autoround cases on XPU

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-16 09:08:35 +00:00
0f77ca72ca [FIX] Save speed metrics to logs (#38136)
Previously, we calculated speed metrics and did not do anything with the result.
2025-05-15 16:58:50 +02:00
27ef46e846 Omit creation of positional IDs within ESM if applicable (#38089)
* omit pos emb creation

* rft

---------

Co-authored-by: sgottreich <sgottreich@absci.com>
2025-05-15 14:09:21 +00:00
fe9426f12d disable deepspeed when setting up fake trainer (#38101)
* disable deepspeed when setting up fake trainer

* Apply style fixes

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-05-15 15:34:04 +02:00
7caa57e85e enable trainer test cases on xpu (#38138)
* enable trainer test cases on xpu

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-15 12:17:44 +00:00
b11b28cc4e Hotfix: Flash Attention 2 support in Pixtral (#38146)
setting attention_mask to None when flash_attention_2 is selected

Co-authored-by: aurelien.lac <aurelien.lac@lighton.ai>
2025-05-15 11:45:35 +02:00
0e0e5c1044 [generate] Run custom generation code from the Hub (#36405)
* mvp

* remove trust_remote_code

* generate_from_hub

* handle requirements; docs

* english

* doc PR suggestions

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* changed remote code path to generate/generate.py

* model repo has custom generate -> override base generate

* check for proper inheritance

* some doc updates (missing: tag-related docs)

* update docs to model repo

* nit

* nit

* nits

* Update src/transformers/dynamic_module_utils.py

* Apply suggestions from code review

* Update docs/source/en/generation_strategies.md

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>

* trust remote code is required

* use new import utils for requirements version parsing

* use  org examples

* add tests

* Apply suggestions from code review

Co-authored-by: Manuel de Prada Corral <6536835+manueldeprada@users.noreply.github.com>

* ascii file structure; tag instructions on readme.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Manuel de Prada Corral <6536835+manueldeprada@users.noreply.github.com>
2025-05-15 10:35:54 +01:00
955e61b0da Remove head mask in generative models (#35786)
* just squash into one commit

* delete print
2025-05-15 10:44:19 +02:00
0173a99e73 enable csm integration cases on xpu, all passed (#38140)
* enable csm test cases on XPU, all passed

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
2025-05-15 09:46:29 +02:00
e5a48785d9 [Qwen3] Qwen3 MoE add tp plan for expert mlps (#38135)
fix tp plan
2025-05-15 09:12:39 +02:00
4005e30c80 Fix incorrect attention mask truncate in WhisperFlashAttention2 (#36477)
* Fix incorrect attention mask truncate in whisper flash attention

* also fix incorrect attention mask truncate in qwen2 audio

* Nit attention mask truncate modeling_qwen2_audio.py

* Nit attention mask truncate modeling_whisper.py

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
2025-05-14 20:08:31 +00:00
aa27fa75cd enable d_fine finetuning properly (#37962)
add pre_output in the front

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-05-14 16:53:04 +01:00
e021bf6bf8 Add manueldeprada to run_slow whitelist (#38126)
Add manueldeprada to run_slow allowed users
2025-05-14 15:16:58 +02:00
ef27b2bc22 [docs] add uv installation instructions for source builds (#37968) 2025-05-14 13:09:41 +00:00
4a2decd192 Update trainer.md (#38113)
Fix typo in torch.compile method parameters
2025-05-14 12:40:00 +00:00
935bbbc711 Add config validation and style tweaks (#37589)
* Add config validation and style tweaks

* Fix style issues

* Fix style issues

* style

* Small fixes for copy/paste errors

---------

Co-authored-by: Cyrile <cyrile.delestre@arkea.com>
2025-05-14 12:22:10 +00:00
1b00966395 Fix auto batch size finder test (#38125)
Ensure --auto_find_batch_size is the last test arg so indexing is correct
2025-05-14 12:12:04 +00:00
fe918d13b9 Fix temporal padding in Qwen2VLImageProcessor when the number of frames is not divisible by temporal_patch_size (#38076)
Qwen2VL: Fix temporal padding in Qwen2VLImageProcessor when frames are not divisible by temporal_patch_size
2025-05-14 12:28:21 +02:00
aaf224d570 [video processor] fix tests (#38104)
* fix tests

* delete

* fix one more test

* fix qwen + some tests are failing irrespective of `VideoProcessor`

* delete file
2025-05-14 10:24:07 +00:00
9b5ce556aa enable finegrained_fp8 and granite_speech cases on XPU (#38036)
* enable finegrained_fp8 cases on XPU

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* change back to auto

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* rename per comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Yao Matrix <matrix.yao@intel.com>
Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-05-14 08:58:40 +00:00
b311a3f506 Fix description and formatting errors in code docs (#38074)
* Update stopping_criteria.py

Fix description and formatting errors.

* Update stopping_criteria.py

Align formatting with existing files for consistency.
2025-05-13 17:17:15 +00:00
b499a14b17 Add style bot (#38102)
add style bot
2025-05-13 19:07:17 +02:00
e0f225cb10 [CSM] update test for t4 runners (#38110)
update test for t4 runners
2025-05-13 11:59:26 -04:00
342961f669 Add Fast Image Processor for vilt (#37304)
* init vilt image processor fast

* Refactor image processor tests to use loop for all processors

* Add ViltImageProcessorFast with PyTorch-based optimized image processing

* Change made automatically by make fixup command

* Change made automatically by make fix-copies command

* Fix type hints in ViltImageProcessorFast for Python compatibility

* Define constants for image resizing based on COCO dataset aspect ratio

* Add missing property initializations to ViltImageProcessorFast

* Extract resize logic into dedicated method in ViltImageProcessorFast

* Extract padding logic into dedicated method

* Implement shape-based image grouping for optimized processing in Vilt

* Update test suite to verify ViltImageProcessorFast attributes

* Move variable declarations to _preprocess method parameters

* Remove unused parameters

* Rename _resize method to resize to override existing function

* Remove whitespace

* Remove unnecessary type check and conversion for stacked_images

* Remove redundant loop and apply padding directly to stacked images

* Refactor pad function to return images and mask as tuple instead of dict

* Add tests comparing padding masks in slow and fast implementations

* Update ViltImageProcessor tests to ensure compatibility between slow and fast implementations

* Replace add_start_docstrings with auto_docstring in ViltImageProcessorFast

* Move docstrings of custom args to ViltFastImageProcessorKwargs

* Use reorder_images function for both masks and images

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-05-13 15:40:53 +00:00
8771766a70 Fix InternVL interpolate_pos_encoding and add to video_processing_auto (#38092)
* fix InternVL interpolate_pos_encoding

* fix modular and auto_video_processor for internvl
2025-05-13 11:18:40 -04:00
582d5e0e11 fix check_bad commit.py gives wrong results (#38107)
fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-13 16:58:22 +02:00
a5cc7a67d7 [bug] fix llava processor to calculate unpadding size correctly (#37988)
* fix llava processor to calculate unpad size correctly

* repo consistency

* Revert "repo consistency" & "setUp in llava family"

This reverts commit 26a50af8db5b15bb6b700db3d53342fe69579d8e.

* add edge case test for padding & unpadding

* compute unpadding size from original size

* make test config explicit

* Revert "compute unpadding size from original size"

This reverts commit 752cd27ad9710ab056c17a9986760c4651975540.

* Revert "add edge case test for padding & unpadding"

This reverts commit ccbd094d69c3f8f6a259159164284f60ba835bce.

* revert unpad logic

* remove irrelevant tests

* model test

* remove processor from model test

---------

Co-authored-by: jaycha <jaycha@ncsoft.com>
2025-05-13 13:49:09 +00:00
67b3d45eb6 Fix past_key_values type hint in model output types (#37953)
* F: Fix type hint.

* F: Use Cache type.

* F: Sort import.

* U: Format.

* U: Address reviews.
2025-05-13 13:36:49 +00:00
07feaad8fb Fix bug in prefill_chunk_size that ignores disable_compile flag (#38067)
Fix bug in prefill_chunk_size implementation that ignores disable_compile flag
2025-05-13 13:23:23 +00:00
e40f301f1f [smolvlm] skip the test (#38099)
skip the test
2025-05-13 12:50:43 +00:00
e27d230ddd Disable report callbacks for certain training tests (#38088)
* Disable report callbacks for certain training tests

* Disable report callbacks for test_auto_batch_size_finder
2025-05-13 14:49:55 +02:00
ab65ba47ad fix: Propagate lr_scheduler_kwargs options to create LR Scheduler when LayerWiseDummyOptimizer is used (#34559)
fix: fix get_scheduler
2025-05-13 13:56:45 +02:00
8fb60bf6be add timeout for downloading the librispeech_asr dataset (#38073)
* add timeout

* change 10 to 60
2025-05-13 11:50:12 +01:00
3ad35d0bca update require_read_token (#38093)
* update require_read_token

* new repo

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-13 12:07:07 +02:00
e3b70b0d1c Refactor image processor phi4 (#36976)
* refactor image processor phi4

* nits fast image proc

* add image tests phi4

* Fix image processing tests

* update integration tests

* remove revision and add comment in integration tests
2025-05-12 15:13:40 -04:00
4143f94d51 uninstall kernels from docker images (#38083)
uninstall kernels

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-12 18:03:47 +02:00
a63cb7578e update seed_worker to set seed based on worker_id and rank (#37980)
* update seed_worker to set seed based on worker_id and rank

* test case

* set output_dir as remove tmp dir
2025-05-12 15:59:16 +00:00
e387821a96 Fix tot update in trainer (#37923)
* fix total updates in epoch

* add test; fix max_steps

* replace with multi-gpu decorator
2025-05-12 17:45:24 +02:00
f0e975c6cf fix the inconsist docstring in apply_chat_template (#38069)
The commit (5cf11e5ab9) fixed the type hints for the parameter `tools` in apply_chat_template, but the docstring was not changed.
2025-05-12 16:32:01 +01:00
31791b16a1 chore(qwen2): display warning log only when sliding window attention … (#36316)
* chore(qwen2): display warning log only when sliding window attention is enabled

* Align modeling_qwen2.py and modular_qwen2.py

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-05-12 16:31:44 +01:00
8ea72d12a2 Fix mt5 test on AMD devices (#38081) 2025-05-12 16:59:00 +02:00
5c85018072 docs: fix md style (#38057) 2025-05-12 15:56:31 +01:00
7eaa90b87b Add AMD expectation to test_gpt2_sample (#38079) 2025-05-12 16:51:21 +02:00
4220039b29 Fix OneFormer integration test (#38016)
* Fix integration tests

* format
2025-05-12 16:02:41 +02:00
8efe3a9d77 [chat] generate parameterization powered by GenerationConfig and UX-related changes (#38047)
* accept arbitrary kwargs

* move user commands to a separate fn

* work with generation config files

* rm cmmt

* docs

* base generate flag doc section

* nits

* nits

* nits

* no <br>

* better basic args description
2025-05-12 14:04:41 +01:00
a5c6172c81 [VLM] fix loading issues (#38051)
* fix qwen2-vl loading

* fix a few nore models

* delete print

* fix copies
2025-05-12 10:14:04 +00:00
a31fa218ad 🔴 Video processors as a separate class (#35206)
* initial design

* update all video processors

* add tests

* need to add qwen2-vl (not tested yet)

* add qwen2-vl in auto map

* fix copies

* isort

* resolve confilicts kinda

* nit:

* qwen2-vl is happy now

* qwen2-5 happy

* other models are happy

* fix copies

* fix tests

* add docs

* CI green now?

* add more tests

* even more changes + tests

* doc builder fail

* nit

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* small update

* imports correctly

* dump, otherwise this is getting unmanagebale T-T

* dump

* update

* another update

* update

* tests

* move

* modular

* docs

* test

* another update

* init

* remove flakiness in tests

* fixup

* clean up and remove commented lines

* docs

* skip this one!

* last fix after rebasing

* run fixup

* delete slow files

* remove unnecessary tests + clean up a bit

* small fixes

* fix tests

* more updates

* docs

* fix tests

* update

* style

* fix qwen2-5-vl

* fixup

* fixup

* unflatten batch when preparing

* dump, come back soon

* add docs and fix some tests

* how to guard this with new dummies?

* chat templates in qwen

* address some comments

* remove `Fast` suffix

* fixup

* oops should be imported from transforms

* typo in requires dummies

* new model added with video support

* fixup once more

* last fixup I hope

* revert image processor name + comments

* oh, this is why fetch test is failing

* fix tests

* fix more tests

* fixup

* add new models: internvl, smolvlm

* update docs

* imprt once

* fix failing tests

* do we need to guard it here again, why?

* new model was added, update it

* remove testcase from tester

* fix tests

* make style

* not related CI fail, lets' just fix here

* mark flaky for now, filas 15 out of 100

* style

* maybe we can do this way?

* don't download images in setup class

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-05-12 11:55:51 +02:00
716819b830 fix(conversion): Fix size mismatch error during TF->PT model loading (#38014) 2025-05-10 11:11:07 +00:00
8f08318769 enable generation fsdp/utils cases on XPU (#38009)
* enable generation fsdp/utils test cases on XPU

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* xx

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* use backend_xx APIs

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao Matrix <matrix.yao@intel.com>
2025-05-09 20:52:41 +00:00
87e971e14d Fix linalg.norm for CovnNextV2 (#38015)
Fix norm
2025-05-09 17:44:28 +01:00
aaed2f5577 Fix cache update! (#38046)
* fix slicing

* better fix
2025-05-09 17:54:48 +02:00
7f1a97bae3 Fix reduce-labels in BEIT Fast Image Processor (#38042)
* Fixed reduce-labels

* Little doc fix

* Change docstring
2025-05-09 11:51:46 -04:00
9f9020fed3 Re-Enable Trigger CircleCI via GitHub Actions when "ready for review" (#37885) (#38041)
* check actions

* trigger CI

* check actions

* finally

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-09 16:57:54 +02:00
23d79cea75 Support for version spec in requires & arbitrary mismatching depths across folders (#37854)
* Support for version spec in requires & arbitrary mismatching depths

* Quality

* Testing
2025-05-09 15:26:27 +02:00
774dc274ac Do not erase a cache_position passed explicitly to generate(), if there is one (#37986)
Do not erase a cache_position initialization passed explicitly to generate(), if there is one.

But: Let initialization replace cache_position if it's set to None. I assume that if the value is explicitly passed but None, we should initialize anyway.
2025-05-09 10:56:21 +00:00
0010b41524 Disable Trigger CircleCI via GitHub Actions when ready for review` (#38038)
disable

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-09 12:27:53 +02:00
d498528800 Trigger CircleCI via GitHub Actions when ready for review (#37885)
* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-09 11:45:03 +02:00
66e696ee15 [Temporary] Log some information in some pytest/pluggy internal places (#37996)
log pytest info

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-09 11:06:37 +02:00
a72cb31434 enable utils test cases on XPU (#38005)
* enable utils test cases on XPU

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* Update tests/utils/test_skip_decorators.py

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>

* fix comment

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
2025-05-09 08:45:01 +02:00
1dfad4beb2 make mistral3 pass on xpu (#37882)
* enabled mistral3 test cases on XPU

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* calibrate A100 expectation

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update

* update

* update

* update

* update

* update

---------

Signed-off-by: Yao Matrix <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-09 06:41:11 +00:00
121f7037c7 fix document masking for chunked attention (#37429)
* fix document masking for chunked attention

* remove accidental debugging sum
2025-05-09 08:22:00 +02:00
5f5ccfdc54 [AutoDocstring] Based on inspect parsing of the signature (#33771)
* delete common docstring

* nit

* updates

* push

* fixup

* move stuff around fixup

* no need for dataclas

* damn nice modular

* add auto class docstring

* style

* modular update

* import autodocstring

* fixup

* maybe add original doc!

* more cleanup

* remove class do cas well

* update

* nits

* more celanup

* fix

* wups

* small check

* updatez

* some fixes

* fix doc

* update

* nits

* try?

* nit

* some updates

* a little bit better

* where ever we did not have help we are not really adding it!

* revert llama config

* small fixes and small tests

* test

* fixup

* more fix-copies

* updates

* updates

* fix doc building

* style

* small fixes

* nits

* fix-copies

* fix merge issues faster

* fix merge conf

* nits jamba

* ?

* working autodoc for model class and forward except returns and example

* support return section and unpack kwargs description

* nits and cleanup

* fix-copies

* fix-copies

* nits

* Add support for llava-like models

* fixup

* add class args subset support

* add examples inferred from automodel/pipelines

* update ruff

* autodocstring for Aria, Albert + fixups

* Fix empty return blocks

* fix copies

* fix copies

* add autodoc for all fast image processors + align, altclip

* fix copies

* add auto_doc for audio_spectrogram, auto_former, bark, bamba

* Drastically improve speed + add bart beit bert

* add autodoc to all bert-like models

* Fix broken doc

* fix copies

* fix auto_docstring after merge

* add autodoc to models

* add models

* add models

* add models and improve support for optional, and custom shape in args docstring

* update fast image processors

* refactor auto_method_docstring in args_doc

* add models and fix docstring parsing

* add models

* add models

* remove debugging

* add models

* add fix_auto_docstrings and improve args_docs

* add support for additional_info in args docstring

* refactor (almost) all models

* fix check docstring

* fix -copies

* fill in all missing docstrings

* fix copies

* fix qwen3 moe docstring

* add documentation

* add back labels

* update docs and fix can_return_tuple in modular files

* fix LongformerForMaskedLM docstring

* add auto_docstring to _toctree

* remove auto_docstring tests temporarily

* fix copyrights new files

* fix can_return_tuple granite hybrid

* fix fast beit

* Fix empty config doc

* add support for COMMON_CUSTOM_ARGS in check_docstrings and add missing models

* fix code block not closed flava

* fix can_return_tuple sam hq

* Fix Flaubert dataclass

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-05-08 17:46:07 -04:00
d231f5a7d4 update bnb tests (#38011)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-05-08 20:35:24 +00:00
b3db4ddb22 enable mamba2 integration cases on xpu (#38006)
* enable mamba2 integration cases on XPU

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao Matrix <matrix.yao@intel.com>
2025-05-08 19:48:09 +00:00
c7c2f08994 make test_speculative_decoding_non_distil device-agnostic (#38010)
* make device-agnostic

* use condition

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-08 19:19:47 +00:00
d23aae2b8c [VLMs] support attention backends (#37576)
* update models

* why rename

* return attn weights when sdpa

* fixes

* fix attn implementation composite

* fix moshi

* add message

* add typings

* use explicitly all flags for each attn type

* fix some tests

* import what is needed

* kosmos on main has ew attention already, yay

* new models in main, run fixup

* won't fix kosmos yet

* fix-copies

* clean up after rebasing

* fix tests

* style

* dont cast attns to fp32

* did we update ruff? oke, let's just do what it asks

* fix pixtral after rebase
2025-05-08 18:18:54 +02:00
e296c63cd4 Fix wording in torchscript.md (#38004)
Fix wording in torchscript.md
2025-05-08 16:47:45 +01:00
1c65aef923 Fix incorrect installation instructions (for issue #37476) (#37640)
* debugging issue 36758

* debugging issue 36758

* debugging issue 36758

* updated attn_mask type specification in _flash_attention_forward

* removed pdb

* added a blank line

* removed indentation

* update constants

* remove unnecessary files

* created installation script, modified README

* modified requirements and install.sh

* undo irrelevant changes

* removed blank line

* fixing installation guide

* modified README, python requirements, and install script

* removed tests_otuput

* modified README

* discarded installation script and python<3.13 requirement
2025-05-08 16:32:58 +01:00
f2909e024c Skip test_push_to_hub_with_saves_each_epoch for now (#38022)
* update

* trigger CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-08 16:26:24 +02:00
f2b59c6173 [caches] Raise exception on offloaded static caches + multi device (#37974)
* skip tests on >1 gpu

* add todo
2025-05-08 14:37:36 +01:00
4279057d70 [CI] remove duplicated message on GH comment to run slow tests (#37970)
duplicated msg
2025-05-08 14:35:54 +01:00
3390534f36 Print commit SHA on slack message for new model notification. (#38019)
add commit info

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-08 15:26:19 +02:00
9f8fffed3c Fix Optional typing (#38018)
* Fix

* trigger
2025-05-08 14:51:45 +02:00
06c16de3d3 Enable RUF013 to enforce optional typing (#37266)
* Enable RUF013 for Optional typing

Signed-off-by: cyy <cyyever@outlook.com>

* Add Optional to types

* Format code

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-05-08 12:39:56 +02:00
f6664ee713 Add ALL_ATTENTION_FUNCTIONS compatibility for Pixtral model (#37960)
* Add ALL_ATTENTION_FUNCTIONS compatibility for Pixtral model

* Fix invalid operand type

* Allow image_sizes to be optional in forward pass to fit tests

Disallow using sdpa and output_attentions

* Disallow using sdpa with output_attentions

* Delete useless comments, use eager attention from smolvlm, use pattern from mistral

* add _supports_attention_backend

* use kwargs instead of position_ids

---------

Co-authored-by: aurelien.lac <aurelien.lac@lighton.ai>
2025-05-08 12:13:13 +02:00
015b6dfbf8 Fix pad image transform for batched inputs (#37544)
* fix

* add batch dimension to expected output
2025-05-08 10:51:15 +01:00
5c47d08b0d Add Swin2SR ImageProcessorFast (#37169)
* Add fast image processor support for Swin2SR

* Add Swin2SR tests of fast image processing

* Update docs and remove unnecessary test func

* Fix docstring formatting

* Skip fast vs slow processing test

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-05-07 12:20:16 -04:00
17742bd9c8 🔴 [VLM] Add base model without head (#37033)
* i guessreverted all CdGen classes

* style

* llava onevision

* fix copies

* fix some tests

* some more tests

* dump

* skip these

* nevermind, i am dumb

* revert fix not needed

* fixup

* fixup

* another fixup

* more fixup to make ci finally happy

* fixup after rebasing

* fix qwen tests

* add internVL + typos here and there

* image token index -> id

* style

* fix init weights

* revert blip-2 not supported

* address comments

* fix copies

* revert blip2 test file as well

* as discussed internally, revert back CdGen models

* fix some tests

* fix more tests for compile

* CI red

* fix copies

* enumerate explicitly allowed models

* address comments

* fix tests

* fixup

* style again

* add tests for new model class

* another fixup ( x _ x )

* [fixup] unused attributes can be removed post-deprecation
2025-05-07 17:47:51 +02:00
3fa8d9c20e [CSM] tiny fix on generation (#38001)
nit
2025-05-07 11:45:23 -04:00
798f948e88 Add CSM model (#36719)
* draft structure

* depth decoder with forward pre hook

* full model forward draft

* draft update

* depth decoder update

* ConversationalSpeechModelForCausalLM udpates

* add generate

* max length criteria small fix

* udpate

* updates

* generation update

* update in loss compute

* conversion script

* update for correct input embeddings

* handle interleaved rope

* update

* update

* update

* support compile

* update training

* add doc

* update doc

* correct inits

* ConversationalSpeechModel -> Csm

* conf update

* name update

* tests CsmForCausalLMTest

* convert use cached_file

* conf + modeling updates

* generate utils handle third dim shape

* integration test

* modeling + conf updates

* common test handle more than 2 dims

* add nested audio list utils

* processing handle nested audio list

* csm processing draft

* mimi util

* init updates

* modular update

* convert modular

* processing update

* csm tests update

* generate tests handle third dim

* generate utils handle third dim

* propagate _get_initial_cache_position update

* tied_weight_keys update + convert correctly

* fix inputs_embeds

* revert audio nested list

* batch inference update + return audio

* audio_utils update

* processor update

* some more integration tests

* remove old test

* porcessing output labels

* improve

* fix

* update rope values with equivalent ones

* conversion update

* udpate tests

* handle depth decoder generation config

* remove default eos_token_id

* make style

* revert modeling_mimi

* add default generation_config

* remove sdpa since handled by default

* make

* fix conflict

* fix conflicts

* correct naming

* correct imports

* make

* causal -> conditional naming

* causal -> conditional naming

* auto update

* make

* make

* add doc

* test update

* fix weight init

* audio tokens offsets as buffer

* 4d mask in conditional class

* make

* doc update

* fix causal mask

* fix causal mask

* doc update

* doc update

* add processor doc

* update doc

* fix 4d causal mask

* update make_list_of_audio

* do not default to mutable

* remove duplicates

* remove useless reset_parameters

* use GradientCheckpointingLayer

* use can_return_tuple

* formatting

* prepend placeholder in _sample

* torch compile fix

* some more fixies

* convert modular

* fix

* default max_length in convert

* handle depth decoder generation config correctly

* clearer formulation

* handle output_loading_info

* handle softmax warning

* add doc

* propagate _get_initial_cache_position changes

* generation in its own module

* add processor tests

* fix compile witu cuda graphs

* fix compile with cuda graphs

* add csm.md

* include CSM loss

* doc nit

* doc nit

* doc nit

* Update docs/source/en/model_doc/csm.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* add save_audio to processor

* Update src/transformers/models/csm/modular_csm.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* doc update

* simplify audio_codes_mask computation

* doc update

* simplify loss computation

* fix static cache test

* fix

* remove comment

* simplify encoded length computation

* use hf-internal-testing

* doc update

* cast to float before numpy

* nit

* mem efficient codebook head

* nit

* cat input values with cutoffs

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-05-07 10:20:13 -04:00
c8607a17cb Add a check to import_utils.py to allow for use of faiss_gpu installation (#37997)
Adding check to import_utils.py for faiss_gpu
2025-05-07 14:27:41 +01:00
fb1e3a4daa remove duplicate code (#37991)
Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com>
2025-05-07 13:46:45 +01:00
8a9441d26d [chat template] separate jinja logic from tokenizers (#37602)
* split oit jinja

* raise error
2025-05-07 14:18:03 +02:00
038f8fc159 make aya vision 5 integration tests pass on xpu (#37990)
* 5 aya vision integration pass on XPU

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-07 11:16:38 +02:00
a9384f849a [offload] respect max_memory argument when factoring in unused reserved memory (#37982) 2025-05-07 09:49:31 +01:00
0b037fd425 Fix Qwen models export with torch 2.7 (#37985)
Co-authored-by: Guang Yang <guangyang@fb.com>
2025-05-07 09:13:08 +02:00
3c0796aaea [Fast Processor] BEiT (#37005)
* adding fast processor for beit

* adding resample

* address review issues and add segmentation maps logic

* style

* chore: adding tests

* reduce label test

* adding batched tests

* Update src/transformers/models/beit/image_processing_beit_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* fix imports and make segmentation masks

* fix tests

* build segmentation maps

* all tests pass

* style

* style fix

* style

* chore: delete demo.py file

* review suggestions

* Update docs/source/en/model_doc/beit.md

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-05-06 17:40:28 -04:00
ebbe9b12dd Fix donut backtracking (#37788)
* Fix donut backtracking

* make fixup

* Trigger tests

* Remove old line

* Update code

* Fix reversed slice
2025-05-06 17:39:04 +01:00
06c4d05fe6 Enable granite speech 3.3 tests (#37560)
* Enable granite speech 3.3 tests

* skip sdpa test for granite speech

* Explicitly move model to device

* Use granite speech 2b in tests

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-05-06 17:56:18 +02:00
031ef8802c fix FSDP + torch.compile bug when saving pretrained model (#37725)
* args keep_torch_compile=False in _save and _wwrap_method

* Fix FSDP execution on evaluation  for torch_compile mode

* add test trainer FSDP + Torch Compile

* fix quality code

* make style

* Revert " make style"

This reverts commit 77e797f8829c50992cc21496be3d9a3e480e1c97.

* make style
2025-05-06 17:51:28 +02:00
5534b80b7f enable xpu in test_trainer (#37774)
* enable xpu in test_trainer

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* enhance _device_agnostic_dispatch to cover value

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

* add default values for torch not available case

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Signed-off-by: Yao Matrix <matrix.yao@intel.com>
2025-05-06 17:13:35 +02:00
7db5d5b9ea Fix typo (#37964) 2025-05-06 14:59:00 +01:00
af2866a8b1 [speech2text] fix init of sinusoidal embeddings (#37931)
* fix init (meta device -> bad numbers)

* fast test

* dont init sinusoidal twice

* make fixup
2025-05-06 14:49:00 +01:00
274e79b326 Fix typos (#37978)
fix typos
2025-05-06 14:45:20 +01:00
057ae00504 Small typo lines 47 and 199 perf_infer_gpu_one.md (#37938)
* Small typo line 199 perf_infer_gpu_one.md

* Typo l. 47 perf_infer_gpu_one.md
2025-05-06 14:32:55 +01:00
cc68070d41 fix docs serving typos. (#37936)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-05-06 14:32:44 +01:00
b1375177fc add job links to new model failure report (#37973)
* update for job link

* stye

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-06 15:10:29 +02:00
acded47fe7 [llava] one pixel is missing from padding when length is odd (#37819)
* [fix] one pixel should be added when length is odd

* [fix] add vision_aspect_ratio args & typo

* [fix] style

* [fix] do not fix fast file directly

* [fix] convert using modular

* remove duplicate codes

* match unpad logic with pad logic

* test odd-sized images for llava & aria

* test unpad odd-sized padding for llava family

* fix style

* add kwarg to onvision modular

* move vision_aspect_ratio from image_processor to processor
(llava_onevision)
2025-05-06 13:11:26 +02:00
9981214d32 [tests] Smaller model in slow cache tests (#37922) 2025-05-06 11:15:25 +01:00
ff5ef95db7 add xpu memory check (#37969)
add xpu check
2025-05-06 11:57:49 +02:00
7cc78804ba 🚨🚨🚨 Fix forward of Dinov2ForImageClassification for models with registers (#37836)
* add num_tokens_to_discard to the forward of Dinov2ForImageClassification

* redefine forward in modular file, remove change to modeling_dinov2 file

* run make fixup

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-05-06 11:55:53 +02:00
471958b620 Add GraniteMoeHybrid support for 4.0 (#37658)
* initial config and MLA layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at decoder

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* completion of layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* modeling class

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* adding hybrid class to imports

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix imports granitemoehybrid

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix granitehybrid imports

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix granitehybrid import

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix generated modeling file

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* add some comments

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* minor fixes in layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* add sharedMLP layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* correct layer names

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fixes in mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* change name of MLP layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix seq mizer layers

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* correct mamba config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fixes in param names

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* enable hybrid model

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* update config

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix config granite hybrid

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix attention layer

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* cleanup to re-use mamba code

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* keep layer types

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* attention bias cleanup

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* update mamba layer name

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at tests

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* first pass at tests

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* use granite attention

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* fix: self attn weights

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* pass at making pos_emb optional

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* initialize self_attn only as needed

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* overwrite forward to create HybridMambaCache

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>

* Log invalid layer types

* Add attention outputs test

* Only emit attentions/logits if not None

* Fix config test hidden size divisibility

* mark granitmoehybrid as stateful

* Initialize mamba convolutional layers

* Formatting fixes

* config docstring, removed some unused attrs

* Fix missing arg in models test

* Fix create and check decoder model test

* support logits to keep in granitemoe

* regen to pass logits_to_keep

* Allow None or rope

* Fix gradient checkpointing

* Add granitemoehybrid as special cache for generate check

* Remove unused MLA refs

* Fix mamba layer mask

* Remove logits to keep from config

* Minor docstring nits

* Update licenses

* Enable cache by default

* map layer types to layer block type

* First pass at granite moe hybrid docs

* Ignore granite moe hybrid in valid checkpoint check

* Align attention interfaces

* regenerate modular granitemoeshared attention interface

* Align granite moe hybrid attn interface

* run formatting

* Handle mamba initialization

* avoid conditional attr defs

* Move hybrid layer validation to config

* Add placeholder integration tests

* Docs nits / Update model names

* Clean up forward conditions

* Use gradient checkpointing layer

* Remove some copied bamba tests + inherit

align test init

delete more tests

Use common layer init with bamba tests

finish test consolidation

* avoid redundant intermediate std var

* use @can_return_tuple

* Remove unused moe state

* make skipped test names consistent

* Fix docstring order

* Add missing toc

* Always create the shared mlp

* Fix name in docstring

* link preview model in docs

---------

Signed-off-by: Sukriti-Sharma4 <sukriti.sharma4@ibm.com>
Co-authored-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-05-06 06:47:43 +02:00
fe29b8c487 [Ready to Merge][HFQuantizer] Squelch pydantic warnings (#37726)
replace dict with model_dump

Signed-off-by: Kyle Sayers <kylesayrs@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-05-05 20:38:49 +02:00
46c0e1ff80 Fix incorrect type annotation in get_auxiliary_logits (#37955)
Correct type annotation from Dict(str, Tensor) to Dict[str, Tensor]
2025-05-05 19:00:49 +01:00
d80f53fa50 [generate] Fix vocab_size access for multimodal models (#37937)
Implements last migrations for generation from `config.vocab_size` to `config.get_text_config().vocab.size`

In doing so, we enable multimodal models to fully leverage all existing generation features.
2025-05-05 15:56:56 +01:00
7819911b0c Use T4 single GPU runner with more CPU RAM (#37961)
larger T4 single GPU

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-05 16:17:45 +02:00
3b067a15dd [core] reuse unused reserved cuda memory when loading models (#37920) 2025-05-05 15:14:05 +01:00
afbc293e2b More fault tolerant notification service (#37924)
* Let notification service succeed even when artifacts and reported jobs on github have mismatch

* Use default trace msg if no trace msg available

* Add pop_default helper fn

* style
2025-05-05 15:19:48 +02:00
36ca58bf4f [D-FINE] Update names (#37957)
* Update names

* Fix modular

---------

Co-authored-by: qubvel <qubvel@gmail.com>
2025-05-05 13:05:46 +01:00
2932f318a2 [docs] logits docstring (#37929) 2025-05-02 16:38:35 +01:00
fa3c3f9cab Break weight tying when quantizing input embedding (#37905)
Summary:
Currently when we try to quantize input_embedding for some models, the output embedding
(lm_head) will also be quantized the same way, since they are tied, and this may not be what
we want. To break the tie, we added the option to allow people to
1. load unquantized weight
2. tie weights
3. quantize

so that the tie will be broken

Test Plan:
```
from transformers import (
  AutoModelForCausalLM,
  AutoProcessor,
  AutoTokenizer,
  TorchAoConfig,
)
from torchao.quantization.quant_api import (
    IntxWeightOnlyConfig,
    Int8DynamicActivationIntxWeightConfig,
    AOPerModuleConfig
)
from torchao.quantization.granularity import PerGroup, PerAxis
import torch

model_id = "microsoft/Phi-4-mini-instruct"

embedding_config = IntxWeightOnlyConfig(
    weight_dtype=torch.int8,
    granularity=PerAxis(0),
)
linear_config = Int8DynamicActivationIntxWeightConfig(
    weight_dtype=torch.int4,
    weight_granularity=PerGroup(32),
    weight_scale_dtype=torch.bfloat16,
)
quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True, untie_embedding_weights=True)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

print(quantized_model)
print("embed_tokens.weight:", quantized_model.model.embed_tokens.weight)
print("lm head weight:", quantized_model.lm_head.weight)
from transformers.modeling_utils import find_tied_parameters
print(find_tied_parameters(quantized_model))
```
Reviewers:

Subscribers:

Tasks:

Tags:

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-05-02 10:53:23 +02:00
8a0a508f2b Aligning modling code for GPT2 to work with vLLM (fallback) (#36934)
* aligning for vllm

* using input shape rather than attn outputs

* remove demo

* revert Conv1D

* style

* style

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix copies

* Apply suggestions from code review

Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>

* adding docs about vllm

* chore: style

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-05-02 09:55:16 +02:00
e94a4807df Add usage example for DINOv2 (#37398)
* Add usage example for DINOv2

* More explicit shape names

* More verbose text

* Moved example to Notes section

* Indentation
2025-05-01 08:54:22 -07:00
d20aa68193 🌐 [i18n-KO] Translated gpu_selection.md to Korean (#36757)
* Add _toctree.yml

* feat: serving.md draft

* Add _toctree.yml

* feat: gpu_selection.md nmt draft

* fix: TOC edit

* Update docs/source/ko/serving.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/gpu_selection.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/serving.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update _toctree.yml

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-05-01 08:44:12 -07:00
ee25d57ed1 Improve performance of load_state_dict (#37902)
Improve performance of load_state_dict
2025-05-01 16:35:17 +02:00
410aa01901 [chat] clean code and add base help (#37892) 2025-05-01 15:12:18 +01:00
5b573bebb9 Fix typos in strings and comments (#37910) 2025-05-01 14:58:58 +01:00
c80f65265b 🚨 rm already deprecated pad_to_max_length arg (#37617)
* rm already deprecated padding max length

* truncate_strategy AS AN ARG is already deprecated for a few years

* fix

* rm test_padding_to_max_length

* rm pad_to_max_length=True in other tests

* rm from common

* missed fnet
2025-05-01 15:21:55 +02:00
7a3e208892 fixed gemma3 collection path pointing to llama 2 collection. (#37899) 2025-04-30 12:50:54 -07:00
86777b5e2f Support AOPerModuleConfig and include_embedding (#37802)
* Support `AOPerModuleConfig` and include_embedding

Summary:
This PR adds support per module configuration for torchao
Also added per module quantization examples:

1. Quantizing different layers with different quantization configs
2. Skip quantization for certain layers

Test Plan:
python tests/quantization/torchao_integration/test_torchao.py -k test_include_embedding
python tests/quantization/torchao_integration/test_torchao.py -k test_per_module_config_skip

Reviewers:

Subscribers:

Tasks:

Tags:

* format

* format

* inlcude embedding remove input embedding from module not to convert

* more docs

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_torchao.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_torchao.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-30 20:16:29 +02:00
c3aeaa8060 Enhance documentation to explain chat-based few-shot prompting (#37828)
* Enhance documentation to explain chat-based few-shot prompting

Updates the documentation on few-shot prompting to illustrate how to structure examples using the chat-based format for instruction-tuned models.

* Update docs/source/en/tasks/prompting.md

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update docs/source/en/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/prompting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix typos

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-30 11:00:10 -07:00
36e2e33bbe Fix Qwen3 tp plan with FP8 (#37871)
* update for qwen 3

* fix style

* rm print
2025-04-30 18:14:10 +02:00
8e8025b384 [tests] reset logs in torch.compile test (#37894) 2025-04-30 16:04:28 +01:00
1b222903c3 [tests] Test all cache implementations (#37873) 2025-04-30 15:37:00 +01:00
2c1155519f Support FlaxPreTrainedModel to load model checkpoint from local subfolder safetensors (#37732)
Support FlaxPreTrainedModel to load model checkpoint from subfolder in local directory as safetensors format

Signed-off-by: Yan Zhao <zhao.y4@northeastern.edu>
2025-04-30 16:13:23 +02:00
5b223bbc8c update comment in image_processing_base.py to reference image_process… (#37864)
update comment in image_processing_base.py to reference image_processing_utils_fast
2025-04-30 14:31:29 +01:00
0dffcb0967 Fix: reassign in qwen3 moe model (#37848)
* Fix: reassign in qwen3 moe model

Fix: reassign in qwen3 moe model

* Remove redundant assignment to self.mlp

* make fix-copies

* Revert unwanted style change

* Revert unwanted style change

---------

Co-authored-by: li.ding <int.li.ding@enflame-tech.com>
Co-authored-by: Matt <rocketknight1@gmail.com>
2025-04-30 13:49:59 +01:00
6c5d374d56 uniformize kwargs for VisionTextDualEncoder (#34563)
* Make kwargs uniform for VisionTextDualEncoder

* Add bc for flipped args
2025-04-30 14:32:59 +02:00
4fc976779e Fix qwen2-vl-docs. (#37879)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-04-30 13:32:21 +01:00
4eb6acc896 make sure lr is not a tensor (#37881)
* make sure lr is not a tensor

* revert change from #37704

* clean up to reduce extra LoC

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-30 14:23:39 +02:00
7be92f9a94 fix error for _register_pytree_node in torch2.1.0 and fix bf16 assertion in xpu and npu (#37839)
* fix error for _register_pytree_node and bf16 assertion

* fix format

* update xpu available assert function
2025-04-30 14:22:53 +02:00
455c3a33b0 update Clean_up_tokenization_spaces typos. (#37865)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-04-30 13:04:49 +01:00
d538293f62 Transformers cli clean command (#37657)
* transformers-cli -> transformers

* Chat command works with positional argument

* update doc references to transformers-cli

* doc headers

* deepspeed

---------

Co-authored-by: Joao Gante <joao@huggingface.co>
2025-04-30 12:15:43 +01:00
63cd4c76f3 Llama Guard updates (#37872)
* Unhardcode use_chunked_attention, fix no_rope_layers

* Go back to exhaustive list of bools

* Conversion and modeling updates

* Fix rope

* Unhardcode rope

* Fix context length

* style

* Minor updates to conversion

* Use StaticCache

* Minor simplification

* DynamicCache 🤦

* Style

* Style
2025-04-30 10:34:43 +02:00
34f26e2c3e enable internvl UTs on XPU (#37779)
* enable internvl UTs on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style per comments

Signed-off-by: Yao Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Signed-off-by: Yao Matrix <matrix.yao@intel.com>
2025-04-30 10:29:40 +02:00
a57274466f Allow override inputs to export recipe (#37508)
Add option to specify dynamic shapes during export

Co-authored-by: Guang Yang <guangyang@fb.com>
2025-04-30 10:19:27 +02:00
481de7204c Skip is_flaky tests in the CI (#37723)
* No more red flaky tests in the CI!

* Remove the CircleCI logic as well

* Revert most changes including is_flaky behaviour

* make fixup

* Move to a more sensible place

* Mark a flaky test that failed on this PR!

* correct import

* update

* update

* update

* update

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-30 09:52:21 +02:00
5f8d17268c Update modeling_llama4.py (#37841)
* Update modeling_llama4.py

* Update modeling_llama4.py

* do not pass device

---------

Co-authored-by: raushan <raushan@huggingface.co>
2025-04-30 00:36:02 +02:00
50f8caaa48 🌐 [i18n-KO] Translated electra.md to Korean (#36763)
* docs: ko: electra.md

* feat: nmt draft

* fix: manual edits

* fix: manual edits
2025-04-29 14:03:39 -07:00
91f3e9422f Add Intel Gaudi doc (#37855)
* Add Intel Gaudi doc

* Use "TIP" instead of "NOTE"

* Address comments from reviews
2025-04-29 13:28:06 -07:00
c34afa5957 Processor chat template: pass custom kwargs (#37852) 2025-04-29 21:22:10 +02:00
66ad8b2db0 docs: Details for ambigious channel dimension assignment (#37600)
* docs: Details for ambigious channel dimension inference

* Update src/transformers/image_utils.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-29 08:12:38 -07:00
096f25ae1f Fix Bitnet tokenizer in pipeline (#37861)
add tokenizer
2025-04-29 15:35:02 +02:00
da7ae467c4 Fix cache get item return type hints (#37847)
F: Fix cache return hints

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-29 14:23:52 +01:00
aa6b79db43 Fix check of unecessary packages (issue #37626) (#37825)
* Fix check of unecessary packages (issue #37626)

* Reformat using ruff

* And a condition to avoind the risk of matching a random object in `import_utils`

* Reformat
2025-04-29 14:21:05 +01:00
517367fe9a Revert change that breaks on Torch 2.1 (#37531)
* Revert change that breaks on Torch 2.1

* Add TODO

* Trigger tests

* Trigger tests
2025-04-29 13:27:09 +01:00
755b0fa2fe [tests] reorganize cache tests and clean memory between tests (#37684) 2025-04-29 12:21:14 +01:00
3a1acc36ed [tests] fix flaky pattern in test_generate_continue_from_past_key_values (#37724) 2025-04-29 12:20:42 +01:00
1386 changed files with 89416 additions and 83892 deletions

View File

@ -7,6 +7,18 @@ parameters:
nightly:
type: boolean
default: false
GHA_Actor:
type: string
default: ""
GHA_Action:
type: string
default: ""
GHA_Event:
type: string
default: ""
GHA_Meta:
type: string
default: ""
jobs:
# Ensure running with CircleCI/huggingface
@ -31,14 +43,6 @@ jobs:
parallelism: 1
steps:
- checkout
- run: if [[ "$CIRCLE_PULL_REQUEST" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
- run: 'curl -L -H "Accept: application/vnd.github+json" -H "X-GitHub-Api-Version: 2022-11-28" https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/${CIRCLE_PULL_REQUEST##*/} >> github.txt'
- run: cat github.txt
- run: (python3 -c 'import json; from datetime import datetime; fp = open("github.txt"); data = json.load(fp); fp.close(); f = "%Y-%m-%dT%H:%M:%SZ"; created = datetime.strptime(data["created_at"], f); updated = datetime.strptime(data["updated_at"], f); s = (updated - created).total_seconds(); print(int(s))' || true) > elapsed.txt
- run: if [ "$(cat elapsed.txt)" == "" ]; then echo 60 > elapsed.txt; fi
- run: cat elapsed.txt
- run: if [ "$(cat elapsed.txt)" -lt "30" ]; then echo "PR is just opened, wait some actions from GitHub"; sleep 30; fi
- run: 'if grep -q "\"draft\": true," github.txt; then echo "draft mode, skip test!"; circleci-agent step halt; fi'
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
@ -108,8 +112,6 @@ jobs:
- run:
name: "Retrieve Artifact Paths"
env:
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
command: |
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
job_number=${CIRCLE_BUILD_NUM}

View File

@ -28,6 +28,8 @@ COMMON_ENV_VARIABLES = {
"TRANSFORMERS_IS_CI": True,
"PYTEST_TIMEOUT": 120,
"RUN_PIPELINE_TESTS": False,
# will be adjust in `CircleCIJob.to_dict`.
"RUN_FLAKY": True,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "vvv": None, "rsfE":None}
@ -126,6 +128,8 @@ class CircleCIJob:
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
# Do not run tests decorated by @is_flaky on pull requests
env['RUN_FLAKY'] = os.environ.get("CIRCLE_PULL_REQUEST", "") == ""
env.update(self.additional_env)
job = {
@ -209,7 +213,7 @@ generate_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
install_steps=["uv venv && uv pip install ."],
marker="generate",
parallelism=6,
)
@ -305,7 +309,7 @@ onnx_job = CircleCIJob(
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=[
"uv venv",
"uv pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
"uv pip install .[testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
@ -334,7 +338,7 @@ non_model_job = CircleCIJob(
docker_image=[{"image": "huggingface/transformers-torch-light"}],
# networkx==3.3 (after #36957) cause some issues
# TODO: remove this once it works directly
install_steps=["uv venv && uv pip install . && uv pip install networkx==3.2.1"],
install_steps=["uv venv && uv pip install ."],
marker="not generate",
parallelism=6,
)
@ -393,7 +397,12 @@ def create_circleci_config(folder=None):
"parameters": {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": ''},
# Only used to accept the parameters from GitHub Actions trigger
"GHA_Actor": {"type": "string", "default": ""},
"GHA_Action": {"type": "string", "default": ""},
"GHA_Event": {"type": "string", "default": ""},
"GHA_Meta": {"type": "string", "default": ""},
"tests_to_run": {"type": "string", "default": ""},
**{j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs},
**{j.job_name + "_parallelism":{"type":"integer", "default":1} for j in jobs},
},

View File

@ -16,7 +16,7 @@ body:
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
description: Please share your system info with us. You can run the command `transformers env` and copy-paste its output below.
placeholder: transformers version, platform, python version, ...
validations:
required: true

View File

@ -6,7 +6,7 @@ body:
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
description: Please share your system info with us. You can run the command `transformers env` and copy-paste its output below.
render: shell
placeholder: transformers version, platform, python version, ...
validations:

View File

@ -54,7 +54,7 @@ jobs:
- name: Create model files
run: |
. ~/venv/bin/activate
transformers-cli add-new-model-like --config_file tests/fixtures/add_distilbert_like_config.json --path_to_repo .
transformers add-new-model-like --config_file tests/fixtures/add_distilbert_like_config.json --path_to_repo .
make style
make fix-copies

View File

@ -64,7 +64,7 @@ jobs:
commit_id=$GITHUB_SHA
fi
commit_msg=$(git show -s --format=%s | cut -c1-70)
python3 benchmark/benchmarks_entrypoint.py "$BRANCH_NAME" "$commit_id" "$commit_msg"
python3 benchmark/benchmarks_entrypoint.py "huggingface/transformers" "$BRANCH_NAME" "$commit_id" "$commit_msg"
env:
HF_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
# Enable this to see debug logs

View File

@ -19,7 +19,7 @@ concurrency:
jobs:
latest-docker:
name: "Latest PyTorch + TensorFlow [dev]"
name: "Latest PyTorch [dev]"
runs-on:
group: aws-general-8-plus
steps:
@ -267,44 +267,6 @@ jobs:
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on:
group: aws-general-8-plus
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Check out code
uses: actions/checkout@v4
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v5
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-tensorflow-gpu
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-pytorch-deepspeed-amd:
name: "PyTorch + DeepSpeed (AMD) [dev]"
runs-on:

View File

@ -2,6 +2,15 @@ name: Build PR Documentation
on:
pull_request:
workflow_call:
inputs:
pr_number:
type: string
required: true
commit_sha:
type: string
required: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@ -9,9 +18,9 @@ concurrency:
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@6e2eb04a2604817c97be03786efa494fe3acae90
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
commit_sha: ${{ inputs.commit_sha || github.event.pull_request.head.sha }}
pr_number: ${{ inputs.pr_number || github.event.number }}
package: transformers
languages: en

View File

@ -1,25 +0,0 @@
name: Change PR to draft
on:
pull_request_target:
types: [opened, reopened]
jobs:
convert_pr_to_draft:
runs-on: ubuntu-22.04
name: Convert PR to draft
permissions:
pull-requests: write
contents: write
if: github.event.pull_request.draft == false
steps:
- name: Convert PR to draft
shell: bash
env:
PR_NUMBER: ${{ github.event.number }}
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
REPO: ${{ github.repository }}
run: |
echo $PR_NUMBER
gh pr ready $PR_NUMBER --repo $REPO --undo
gh pr comment $PR_NUMBER --repo $REPO --body "Hi 👋, thank you for opening this pull request! The pull request is converted to draft by default. The CI will be paused while the PR is in draft mode. When it is ready for review, please click the \`Ready for review\` button (at the bottom of the PR page). This will assign reviewers and trigger CI."

View File

@ -9,6 +9,18 @@ on:
start_sha:
required: true
type: string
job:
required: true
type: string
slack_report_channel:
required: true
type: string
ci_event:
required: true
type: string
report_repo_id:
required: true
type: string
env:
@ -26,77 +38,128 @@ env:
jobs:
run_models_gpu:
check_new_failures:
name: " "
runs-on:
group: aws-g4dn-2xlarge-cache
group: aws-g4dn-4xlarge-cache
container:
image: ${{ inputs.docker }}
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/download-artifact@v4
with:
name: ci_results_run_models_gpu
path: /transformers/ci_results_run_models_gpu
name: ci_results_${{ inputs.job }}
path: /transformers/ci_results_${{ inputs.job }}
- name: Check file
working-directory: /transformers
run: |
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
echo "process=true" >> $GITHUB_ENV
else
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
echo "process=false" >> $GITHUB_ENV
fi
- uses: actions/download-artifact@v4
if: ${{ env.process == 'true' }}
with:
pattern: setup_values*
path: setup_values
merge-multiple: true
- name: Prepare some setup values
if: ${{ env.process == 'true' }}
run: |
if [ -f setup_values/prev_workflow_run_id.txt ]; then
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
if [ -f setup_values/other_workflow_run_id.txt ]; then
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
- name: Update clone
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ github.sha }}
- name: Get target commit
working-directory: /transformers/utils
if: ${{ env.process == 'true' }}
run: |
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"]); print(commit)')" >> $GITHUB_ENV
echo "END_SHA=$(TOKEN=${{ secrets.ACCESS_REPO_INFO_TOKEN }} python3 -c 'import os; from get_previous_daily_ci import get_last_daily_ci_run_commit; commit=get_last_daily_ci_run_commit(token=os.environ["TOKEN"], workflow_run_id=os.environ["PREV_WORKFLOW_RUN_ID"]); print(commit)')" >> $GITHUB_ENV
- name: Checkout to `start_sha`
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: git fetch && git checkout ${{ inputs.start_sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
if: ${{ env.process == 'true' }}
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: pip freeze
- name: Check failed tests
working-directory: /transformers
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_model_failures_with_bad_commit.json
cat new_model_failures_with_bad_commit.json
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
- name: Checkout back
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
git checkout ${{ inputs.start_sha }}
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
python3 utils/process_bad_commit_report.py
- name: Process report
shell: bash
working-directory: /transformers
if: ${{ env.process == 'true' }}
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
{
echo 'REPORT_TEXT<<EOF'
@ -104,17 +167,31 @@ jobs:
echo EOF
} >> "$GITHUB_ENV"
- name: Prepare Slack report title
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
pip install slack_sdk
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
- name: Send processed report
if: ${{ !endsWith(env.REPORT_TEXT, '{}') }}
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: '#transformers-ci-feedback-tests'
channel-id: '#${{ inputs.slack_report_channel }}'
# For posting a rich message using Block Kit
payload: |
{
"blocks": [
{
"type": "header",
"text": {
"type": "plain_text",
"text": "${{ env.title }}"
}
},
{
"type": "section",
"text": {

View File

@ -28,7 +28,7 @@ jobs:
matrix:
split_keys: ${{ fromJson(inputs.split_keys) }}
runs-on:
group: aws-g4dn-2xlarge-cache
group: aws-g4dn-4xlarge-cache
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/

View File

@ -15,7 +15,7 @@ jobs:
setup:
name: Setup
runs-on:
group: aws-g4dn-2xlarge-cache
group: aws-g4dn-4xlarge-cache
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/

View File

@ -107,7 +107,7 @@ jobs:
run: |
echo "${{ inputs.machine_type }}"
if [ "${{ inputs.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
if [ "${{ inputs.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ inputs.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu

View File

@ -59,7 +59,7 @@ jobs:
"type": "section",
"text": {
"type": "mrkdwn",
"text": "<https://github.com/huggingface/transformers/commit/${{ env.COMMIT_SHA }}|New model: ${{ env.NEW_MODEL }}> GH_ArthurZucker, GH_lysandrejik, GH_ydshieh"
"text": "<https://github.com/huggingface/transformers/commit/${{ env.COMMIT_SHA }}|New model: ${{ env.NEW_MODEL }}> GH_ArthurZucker, GH_lysandrejik, GH_ydshieh\ncommit SHA: ${{ env.COMMIT_SHA }}"
}
}
]

34
.github/workflows/pr-style-bot.yml vendored Normal file
View File

@ -0,0 +1,34 @@
# To run this bot, comment "@bot /style" on a PR
name: Style Bot
on:
issue_comment:
types: [created]
permissions:
contents: write
pull-requests: write
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@639ee721e149a281fe726a50a2cc1354b48bc463
with:
python_quality_dependencies: "[quality]"
style_command_type: "default"
secrets:
bot_token: ${{ secrets.GITHUB_TOKEN }}
check-outputs:
runs-on: ubuntu-latest
needs: style
steps:
- run: echo ${{ needs.style.outputs.pr_number }}
- run: echo ${{ needs.style.outputs.new_commit_sha }}
trigger:
needs: style
if: needs.style.outputs.new_commit_sha != ''
uses: "./.github/workflows/build_pr_documentation.yml"
with:
pr_number: ${{ needs.style.outputs.pr_number }}
commit_sha: ${{ needs.style.outputs.new_commit_sha }}

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:
@ -145,7 +145,7 @@ jobs:
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
MODELS: ${{ needs.get-tests.outputs.models }}
BODY: "This comment contains run-slow, running the specified jobs:\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}"
BODY: "\n\nmodels: ${{ needs.get-tests.outputs.models }}\nquantizations: ${{ needs.get-tests.outputs.quantizations }}"
run: |
gh api \
--method POST \
@ -185,7 +185,7 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.get-tests.outputs.models) }}
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
@ -239,7 +239,7 @@ jobs:
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
@ -292,7 +292,7 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.get-tests.outputs.quantizations) }}
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
@ -338,7 +338,7 @@ jobs:
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu

View File

@ -1,55 +0,0 @@
name: Self-hosted runner (AMD mi210 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit

View File

@ -15,10 +15,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
@ -26,10 +27,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
@ -37,10 +39,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
@ -48,8 +51,9 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -0,0 +1,63 @@
name: Self-hosted runner scale set (AMD mi300 scheduled CI caller)
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
# For example, 1gpu scale set: amd-mi300-ci-1gpu
# 2gpu scale set: amd-mi300-ci-2gpu
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -8,8 +8,43 @@ on:
push:
branches:
- run_scheduled_ci*
workflow_dispatch:
inputs:
prev_workflow_run_id:
description: 'previous workflow run id to compare'
type: string
required: false
default: ""
other_workflow_run_id:
description: 'other workflow run id to compare'
type: string
required: false
default: ""
# Used for `push` to easily modiffy the target workflow runs to compare against
env:
prev_workflow_run_id: ""
other_workflow_run_id: ""
jobs:
setup:
name: Setup
runs-on: ubuntu-22.04
steps:
- name: Setup
run: |
mkdir "setup_values"
echo "${{ inputs.prev_workflow_run_id || env.prev_workflow_run_id }}" > "setup_values/prev_workflow_run_id.txt"
echo "${{ inputs.other_workflow_run_id || env.other_workflow_run_id }}" > "setup_values/other_workflow_run_id.txt"
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: setup_values
path: setup_values
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled.yml
@ -19,6 +54,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
torch-pipeline:
@ -30,17 +66,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
secrets: inherit
tf-pipeline:
name: TF pipeline CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_pipelines_tf_gpu
slack_report_channel: "#transformers-ci-daily-pipeline-tf"
runner: daily-ci
docker: huggingface/transformers-tensorflow-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
example-ci:
@ -52,6 +78,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
trainer-fsdp-ci:
@ -63,6 +90,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
deepspeed-ci:
@ -75,6 +103,7 @@ jobs:
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
quantization-ci:
@ -86,4 +115,5 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit

View File

@ -28,6 +28,10 @@ on:
default: ''
required: false
type: string
report_repo_id:
required: true
type: string
env:
HF_HOME: /mnt/cache
@ -49,7 +53,7 @@ jobs:
name: Setup
strategy:
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
@ -107,7 +111,7 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs.yml
with:
@ -125,7 +129,7 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
slice_id: [0, 1]
uses: ./.github/workflows/model_jobs.yml
with:
@ -143,7 +147,7 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
@ -177,7 +181,7 @@ jobs:
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
@ -205,82 +209,13 @@ jobs:
name: ${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_torch_gpu_test_reports
run_pipelines_tf_gpu:
if: ${{ inputs.job == 'run_pipelines_tf_gpu' }}
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
else
machine_type=${{ matrix.machine_type }}
fi
echo "$machine_type"
echo "machine_type=$machine_type" >> $GITHUB_ENV
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_pipelines_tf_gpu_test_reports
run_examples_gpu:
if: ${{ inputs.job == 'run_examples_gpu' }}
name: Examples directory
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
@ -314,7 +249,7 @@ jobs:
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
@ -349,7 +284,7 @@ jobs:
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
@ -411,7 +346,7 @@ jobs:
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
@ -448,7 +383,7 @@ jobs:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.quantization_matrix) }}
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
machine_type: [aws-g4dn-4xlarge-cache, aws-g4dn-12xlarge-cache]
runs-on:
group: '${{ matrix.machine_type }}'
container:
@ -491,7 +426,7 @@ jobs:
run: |
echo "${{ matrix.machine_type }}"
if [ "${{ matrix.machine_type }}" = "aws-g4dn-2xlarge-cache" ]; then
if [ "${{ matrix.machine_type }}" = "aws-g4dn-4xlarge-cache" ]; then
machine_type=single-gpu
elif [ "${{ matrix.machine_type }}" = "aws-g4dn-12xlarge-cache" ]; then
machine_type=multi-gpu
@ -567,7 +502,6 @@ jobs:
run_models_gpu,
run_trainer_and_fsdp_gpu,
run_pipelines_torch_gpu,
run_pipelines_tf_gpu,
run_examples_gpu,
run_torch_cuda_extensions_gpu,
run_quantization_torch_gpu,
@ -584,15 +518,21 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit
check_new_model_failures:
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
name: Check new model failures
check_new_failures:
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
name: Check new failures
needs: send_results
uses: ./.github/workflows/check_failed_model_tests.yml
uses: ./.github/workflows/check_failed_tests.yml
with:
docker: ${{ inputs.docker }}
start_sha: ${{ github.sha }}
job: ${{ inputs.job }}
slack_report_channel: ${{ inputs.slack_report_channel }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit

View File

@ -21,6 +21,9 @@ on:
ci_event:
required: true
type: string
report_repo_id:
required: true
type: string
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -39,8 +42,23 @@ jobs:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Prepare some setup values
run: |
if [ -f setup_values/prev_workflow_run_id.txt ]; then
echo "PREV_WORKFLOW_RUN_ID=$(cat setup_values/prev_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "PREV_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
if [ -f setup_values/other_workflow_run_id.txt ]; then
echo "OTHER_WORKFLOW_RUN_ID=$(cat setup_values/other_workflow_run_id.txt)" >> $GITHUB_ENV
else
echo "OTHER_WORKFLOW_RUN_ID=" >> $GITHUB_ENV
fi
- name: Send message to Slack
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
shell: bash
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
@ -50,19 +68,22 @@ jobs:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
# empty string, and the called script still get one argument (which is the emtpy string).
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ inputs.folder_slices }}"
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
else
python utils/notification_service.py "${{ inputs.folder_slices }}"
fi
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
@ -70,32 +91,3 @@ jobs:
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack for quantization workflow
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
uses: actions/upload-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}

View File

@ -35,7 +35,7 @@ jobs:
shell: bash
run: |
if [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
echo "RUNNER=aws-g4dn-2xlarge-cache" >> $GITHUB_ENV
echo "RUNNER=aws-g4dn-4xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "multi" && "${{ github.event.inputs.runner_type }}" == "t4" ]]; then
echo "RUNNER=aws-g4dn-12xlarge-cache" >> $GITHUB_ENV
elif [[ "${{ github.event.inputs.num_gpus }}" == "single" && "${{ github.event.inputs.runner_type }}" == "a10" ]]; then

View File

@ -78,7 +78,7 @@ Once you've confirmed the bug hasn't already been reported, please include the f
To get the OS and software versions automatically, run the following command:
```bash
transformers-cli env
transformers env
```
You can also run the same command from the root of the repository:

View File

@ -79,7 +79,7 @@ fixup: modified_only_fixup extra_style_checks autogenerate_code repo-consistency
fix-copies:
python utils/check_copies.py --fix_and_overwrite
python utils/check_modular_conversion.py --fix_and_overwrite
python utils/check_modular_conversion.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_doctest_list.py --fix_and_overwrite
python utils/check_docstrings.py --fix_and_overwrite

View File

@ -78,7 +78,6 @@ Create and activate a virtual environment with [venv](https://docs.python.org/3/
# venv
python -m venv .my-env
source .my-env/bin/activate
# uv
uv venv .my-env
source .my-env/bin/activate
@ -88,10 +87,10 @@ Install Transformers in your virtual environment.
```py
# pip
pip install transformers
pip install "transformers[torch]"
# uv
uv pip install transformers
uv pip install "transformers[torch]"
```
Install Transformers from source if you want the latest changes in the library or are interested in contributing. However, the *latest* version may not be stable. Feel free to open an [issue](https://github.com/huggingface/transformers/issues) if you encounter an error.
@ -99,7 +98,12 @@ Install Transformers from source if you want the latest changes in the library o
```shell
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install .
# pip
pip install .[torch]
# uv
uv pip install .[torch]
```
## Quickstart
@ -121,7 +125,7 @@ To chat with a model, the usage pattern is the same. The only difference is you
> [!TIP]
> You can also chat with a model directly from the command line.
> ```shell
> transformers-cli chat --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct
> transformers chat Qwen/Qwen2.5-0.5B-Instruct
> ```
```py

View File

@ -2,11 +2,11 @@ import argparse
import importlib.util
import logging
import os
from typing import Dict
import sys
from typing import Dict, Tuple
from psycopg2.extras import Json
from psycopg2.extensions import register_adapter
from psycopg2.extras import Json
register_adapter(dict, Json)
@ -17,10 +17,13 @@ class ImportModuleException(Exception):
class MetricsRecorder:
def __init__(self, connection, logger: logging.Logger, branch: str, commit_id: str, commit_msg: str):
def __init__(
self, connection, logger: logging.Logger, repository: str, branch: str, commit_id: str, commit_msg: str
):
self.conn = connection
self.conn.autocommit = True
self.logger = logger
self.repository = repository
self.branch = branch
self.commit_id = commit_id
self.commit_msg = commit_msg
@ -32,8 +35,8 @@ class MetricsRecorder:
# gpu_name: str, model_id: str
with self.conn.cursor() as cur:
cur.execute(
"INSERT INTO benchmarks (branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s) RETURNING benchmark_id",
(self.branch, self.commit_id, self.commit_msg, metadata),
"INSERT INTO benchmarks (repository, branch, commit_id, commit_message, metadata) VALUES (%s, %s, %s, %s, %s) RETURNING benchmark_id",
(self.repository, self.branch, self.commit_id, self.commit_msg, metadata),
)
benchmark_id = cur.fetchone()[0]
logger.debug(f"initialised benchmark #{benchmark_id}")
@ -82,12 +85,18 @@ handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments():
def parse_arguments() -> Tuple[str, str, str, str]:
"""
Parse command line arguments for the benchmarking CLI.
"""
parser = argparse.ArgumentParser(description="CLI for benchmarking the huggingface/transformers.")
parser.add_argument(
"repository",
type=str,
help="The repository name on which the benchmarking is performed.",
)
parser.add_argument(
"branch",
type=str,
@ -108,7 +117,7 @@ def parse_arguments():
args = parser.parse_args()
return args.branch, args.commit_id, args.commit_msg
return args.repository, args.branch, args.commit_id, args.commit_msg
def import_from_path(module_name, file_path):
@ -125,7 +134,7 @@ def import_from_path(module_name, file_path):
if __name__ == "__main__":
benchmarks_folder_path = os.path.dirname(os.path.realpath(__file__))
branch, commit_id, commit_msg = parse_arguments()
repository, branch, commit_id, commit_msg = parse_arguments()
for entry in os.scandir(benchmarks_folder_path):
try:
@ -136,7 +145,7 @@ if __name__ == "__main__":
logger.debug(f"loading: {entry.name}")
module = import_from_path(entry.name.split(".")[0], entry.path)
logger.info(f"running benchmarks in: {entry.name}")
module.run_benchmark(logger, branch, commit_id, commit_msg)
module.run_benchmark(logger, repository, branch, commit_id, commit_msg)
except ImportModuleException as e:
logger.error(e)
except Exception as e:

View File

@ -1,5 +1,6 @@
CREATE TABLE IF NOT EXISTS benchmarks (
benchmark_id SERIAL PRIMARY KEY,
repository VARCHAR(255),
branch VARCHAR(255),
commit_id VARCHAR(72),
commit_message VARCHAR(70),

View File

@ -33,11 +33,15 @@ def collect_metrics(benchmark_id, continue_metric_collection, metrics_recorder):
sleep(0.01)
def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100):
def run_benchmark(
logger: Logger, repository: str, branch: str, commit_id: str, commit_msg: str, num_tokens_to_generate=100
):
continue_metric_collection = Event()
metrics_thread = None
model_id = "meta-llama/Llama-2-7b-hf"
metrics_recorder = MetricsRecorder(psycopg2.connect("dbname=metrics"), logger, branch, commit_id, commit_msg)
metrics_recorder = MetricsRecorder(
psycopg2.connect("dbname=metrics"), logger, repository, branch, commit_id, commit_msg
)
try:
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_name = gpu_stats[0]["name"]

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"

View File

@ -16,7 +16,7 @@ RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
RUN uv pip install --no-cache --upgrade 'torch==2.6.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN uv pip uninstall transformers

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN uv pip uninstall transformers

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
RUN uv pip uninstall transformers

View File

@ -7,7 +7,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm

View File

@ -28,7 +28,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
# 1. Put several commands in a single `RUN` to avoid image/layer exporting issue. Could be revised in the future.
# 2. Regarding `torch` part, We might need to specify proper versions for `torchvision` and `torchaudio`.
# Currently, let's not bother to specify their versions explicitly (so installed with their latest release versions).
RUN python3 -m pip install --no-cache-dir -U tensorflow==2.13 protobuf==3.20.3 "tensorflow_text<2.16" "tensorflow_probability<0.22" && python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime] && [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile && echo torch=$VERSION && [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA && python3 -m pip uninstall -y tensorflow tensorflow_text tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
@ -45,7 +45,7 @@ RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/pef
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/optimum@main#egg=optimum
# For video model testing
RUN python3 -m pip install --no-cache-dir av==9.2.0
RUN python3 -m pip install --no-cache-dir av
# Some slow tests require bnb
RUN python3 -m pip install --no-cache-dir bitsandbytes
@ -71,6 +71,12 @@ RUN python3 -m pip install --no-cache-dir g2p-en
# For Some bitsandbytes tests
RUN python3 -m pip install --no-cache-dir einops
# For Some tests with `@require_liger_kernel`
RUN python3 -m pip install --no-cache-dir liger-kernel
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,4 +1,4 @@
FROM rocm/dev-ubuntu-22.04:6.2.4
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -11,9 +11,6 @@ RUN apt update && \
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main
@ -33,3 +30,6 @@ RUN cd transformers && python3 setup.py develop
# Remove nvml and nvidia-ml-py as it is not compatible with ROCm. apex is not tested on NVIDIA either.
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels

View File

@ -48,3 +48,6 @@ RUN python3 -c "from deepspeed.launcher.runner import main"
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels

View File

@ -45,6 +45,9 @@ RUN python3 -m pip uninstall -y deepspeed
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -57,6 +57,9 @@ RUN python3 -m pip uninstall -y deepspeed
#RUN git clone https://github.com/pytorch/TensorRT.git
#RUN cd TensorRT/py && python3 setup.py install --fx-only
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -28,6 +28,9 @@ RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -90,6 +90,9 @@ RUN python3 -m pip install --no-cache-dir "auto-round>=0.5.0"
# Add transformers in editable mode
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]
# `kernels` may give different outputs (within 1e-5 range) even with the same model (weights) and the same inputs
RUN python3 -m pip uninstall -y kernels
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -95,7 +95,7 @@ wie der Code geschrieben werden sollte :-)
1. Der Vorwärtsdurchlauf Ihres Modells sollte vollständig in die Modellierungsdatei geschrieben werden und dabei völlig unabhängig von anderen
Modellen in der Bibliothek. Wenn Sie einen Block aus einem anderen Modell wiederverwenden möchten, kopieren Sie den Code und fügen ihn mit einem
`# Kopiert von` ein (siehe [hier](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
für ein gutes Beispiel und [hier](pr_checks#check-copies) für weitere Dokumentation zu Copied from).
für ein gutes Beispiel und [hier](pr_checks#check-copies) für weitere Dokumentation zu Copied from).
2. Der Code sollte vollständig verständlich sein, auch für einen Nicht-Muttersprachler. Das heißt, Sie sollten
beschreibende Variablennamen wählen und Abkürzungen vermeiden. Ein Beispiel: `activation` ist `act` vorzuziehen.
Von Variablennamen mit nur einem Buchstaben wird dringend abgeraten, es sei denn, es handelt sich um einen Index in einer for-Schleife.
@ -402,7 +402,7 @@ Andernfalls beginnen wir mit der Erstellung eines neuen Modells. Wir empfehlen d
ein bestehendes Modell:
```bash
transformers-cli add-new-model-like
transformers add-new-model-like
```
Sie werden mit einem Fragebogen aufgefordert, die grundlegenden Informationen Ihres Modells einzugeben.

View File

@ -63,7 +63,7 @@ Wenn Sie sich vergewissert haben, dass der Fehler noch nicht gemeldet wurde, geb
Um das Betriebssystem und die Softwareversionen automatisch auszugeben, führen Sie den folgenden Befehl aus:
```bash
transformers-cli env
transformers env
```
Sie können denselben Befehl auch im Hauptverzeichnis des Repositorys ausführen:

View File

@ -21,6 +21,8 @@
title: Adding a new model to Transformers
- local: modular_transformers
title: Modular Transformers
- local: auto_docstring
title: Document your models
- local: task_summary
title: What 🤗 Transformers can do
- local: tasks_explained
@ -37,6 +39,8 @@
title: Tokenizers
- local: image_processors
title: Image processors
- local: video_processors
title: Video processors
- local: backbones
title: Backbones
- local: feature_extractors
@ -72,12 +76,12 @@
title: Prompt engineering
- local: llm_optims
title: Optimizing inference
- local: cache_explanation
title: Caching
- local: kv_cache
title: KV cache strategies
- local: serving
title: Serving
- local: cache_explanation
title: Caching
- local: llm_tutorial_optimization
title: Getting the most out of LLMs
- local: perplexity
@ -125,8 +129,8 @@
title: Hyperparameter search
title: Trainer API
- sections:
- local: gpu_selection
title: GPU selection
- local: accelerator_selection
title: Accelerator selection
- local: accelerate
title: Accelerate
- local: fsdp
@ -149,6 +153,8 @@
title: TPU
- local: perf_train_special
title: Apple Silicon
- local: perf_train_gaudi
title: Intel Gaudi
- local: perf_hardware
title: Build your own machine
title: Hardware
@ -358,7 +364,9 @@
title: Feature Extractor
- local: main_classes/image_processor
title: Image Processor
title: Main classes
- local: main_classes/video_processor
title: Video Processor
title: Main Classes
- sections:
- sections:
- local: model_doc/albert
@ -378,7 +386,7 @@
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/bertweet
title: Bertweet
title: BERTweet
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
@ -447,6 +455,8 @@
title: Falcon
- local: model_doc/falcon3
title: Falcon3
- local: model_doc/falcon_h1
title: FalconH1
- local: model_doc/falcon_mamba
title: FalconMamba
- local: model_doc/flan-t5
@ -493,6 +503,8 @@
title: Granite
- local: model_doc/granitemoe
title: GraniteMoe
- local: model_doc/granitemoehybrid
title: GraniteMoeHybrid
- local: model_doc/granitemoeshared
title: GraniteMoeShared
- local: model_doc/helium
@ -530,7 +542,7 @@
- local: model_doc/mamba
title: Mamba
- local: model_doc/mamba2
title: mamba2
title: Mamba2
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
@ -543,6 +555,8 @@
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/minimax
title: MiniMax
- local: model_doc/mistral
title: Mistral
- local: model_doc/mixtral
@ -821,6 +835,8 @@
title: Bark
- local: model_doc/clap
title: CLAP
- local: model_doc/csm
title: CSM
- local: model_doc/dac
title: dac
- local: model_doc/encodec
@ -923,6 +939,8 @@
title: CLVP
- local: model_doc/colpali
title: ColPali
- local: model_doc/colqwen2
title: ColQwen2
- local: model_doc/data2vec
title: Data2Vec
- local: model_doc/deplot
@ -1107,4 +1125,9 @@
- local: internal/time_series_utils
title: Utilities for Time Series
title: Internal helpers
- sections:
- local: reference/environment_variables
title: Environment Variables
title: Reference
title: API

View File

@ -0,0 +1,126 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Accelerator selection
During distributed training, you can specify the number and order of accelerators (CUDA, XPU, MPS, HPU, etc.) to use. This can be useful when you have accelerators with different computing power and you want to use the faster accelerator first. Or you could only use a subset of the available accelerators. The selection process works for both [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) and [DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html). You don't need Accelerate or [DeepSpeed integration](./main_classes/deepspeed).
This guide will show you how to select the number of accelerators to use and the order to use them in.
## Number of accelerators
For example, if there are 4 accelerators and you only want to use the first 2, run the command below.
<hfoptions id="select-accelerator">
<hfoption id="torchrun">
Use the `--nproc_per_node` to select how many accelerators to use.
```bash
torchrun --nproc_per_node=2 trainer-program.py ...
```
</hfoption>
<hfoption id="Accelerate">
Use `--num_processes` to select how many accelerators to use.
```bash
accelerate launch --num_processes 2 trainer-program.py ...
```
</hfoption>
<hfoption id="DeepSpeed">
Use `--num_gpus` to select how many GPUs to use.
```bash
deepspeed --num_gpus 2 trainer-program.py ...
```
</hfoption>
</hfoptions>
## Order of accelerators
To select specific accelerators to use and their order, use the environment variable appropriate for your hardware. This is often set on the command line for each run, but can also be added to your `~/.bashrc` or other startup config file.
For example, if there are 4 accelerators (0, 1, 2, 3) and you only want to run accelerators 0 and 2:
<hfoptions id="accelerator-type">
<hfoption id="CUDA">
```bash
CUDA_VISIBLE_DEVICES=0,2 torchrun trainer-program.py ...
```
Only GPUs 0 and 2 are "visible" to PyTorch and are mapped to `cuda:0` and `cuda:1` respectively.
To reverse the order (use GPU 2 as `cuda:0` and GPU 0 as `cuda:1`):
```bash
CUDA_VISIBLE_DEVICES=2,0 torchrun trainer-program.py ...
```
To run without any GPUs:
```bash
CUDA_VISIBLE_DEVICES= python trainer-program.py ...
```
You can also control the order of CUDA devices using `CUDA_DEVICE_ORDER`:
- Order by PCIe bus ID (matches `nvidia-smi`):
```bash
export CUDA_DEVICE_ORDER=PCI_BUS_ID
```
- Order by compute capability (fastest first):
```bash
export CUDA_DEVICE_ORDER=FASTEST_FIRST
```
</hfoption>
<hfoption id="Intel XPU">
```bash
ZE_AFFINITY_MASK=0,2 torchrun trainer-program.py ...
```
Only XPUs 0 and 2 are "visible" to PyTorch and are mapped to `xpu:0` and `xpu:1` respectively.
To reverse the order (use XPU 2 as `xpu:0` and XPU 0 as `xpu:1`):
```bash
ZE_AFFINITY_MASK=2,0 torchrun trainer-program.py ...
```
You can also control the order of Intel XPUs with:
```bash
export ZE_ENABLE_PCI_ID_DEVICE_ORDER=1
```
For more information about device enumeration and sorting on Intel XPU, please refer to the [Level Zero](https://github.com/oneapi-src/level-zero/blob/master/README.md?plain=1#L87) documentation.
</hfoption>
</hfoptions>
> [!WARNING]
> Environment variables can be exported instead of being added to the command line. This is not recommended because it can be confusing if you forget how the environment variable was set up and you end up using the wrong accelerators. Instead, it is common practice to set the environment variable for a specific training run on the same command line.

View File

@ -161,7 +161,7 @@ The downside is that if you aren't used to them, it may take some time to get us
Run the command below to start and complete the questionnaire with some basic information about the new model. This command jumpstarts the process by automatically generating some model code that you'll need to adapt.
```bash
transformers-cli add-new-model-like
transformers add-new-model-like
```
## Create a pull request
@ -292,7 +292,7 @@ Once you're able to run the original checkpoint, you're ready to start adapting
## Adapt the model code
The `transformers-cli add-new-model-like` command should have generated a model and configuration file.
The `transformers add-new-model-like` command should have generated a model and configuration file.
- `src/transformers/models/brand_new_llama/modeling_brand_new_llama.py`
- `src/transformers/models/brand_new_llama/configuration_brand_new_llama.py`
@ -551,10 +551,10 @@ While this example doesn't include an image processor, you may need to implement
If you do need to implement a new image processor, refer to an existing image processor to understand the expected structure. Slow image processors ([`BaseImageProcessor`]) and fast image processors ([`BaseImageProcessorFast`]) are designed differently, so make sure you follow the correct structure based on the processor type you're implementing.
Run the following command (only if you haven't already created the fast image processor with the `transformers-cli add-new-model-like` command) to generate the necessary imports and to create a prefilled template for the fast image processor. Modify the template to fit your model.
Run the following command (only if you haven't already created the fast image processor with the `transformers add-new-model-like` command) to generate the necessary imports and to create a prefilled template for the fast image processor. Modify the template to fit your model.
```bash
transformers-cli add-fast-image-processor --model-name your_model_name
transformers add-fast-image-processor --model-name your_model_name
```
This command will generate the necessary imports and provide a pre-filled template for the fast image processor. You can then modify it to fit your model's needs.

View File

@ -108,7 +108,7 @@ If in doubt about what args/kwargs a given model sends to the attention function
## Accessing current available implementations
Most of the time, you will simply need to `register` a new function. If, however, you need to access an existing one,
and/or perform a few checks, the prefered way is to use the global `ALL_ATTENTION_FUNCTIONS`. It behaves the same way you
and/or perform a few checks, the preferred way is to use the global `ALL_ATTENTION_FUNCTIONS`. It behaves the same way you
would expect from a usual Python dictionary:
```python
@ -125,4 +125,44 @@ would expect from a usual Python dictionary:
# You can also globally `register` a new function directly on it
>>> ALL_ATTENTION_FUNCTIONS.register("new_func", new_func)
```
```
## Attention Mask Interface
Having a new attention function may mean that you need a new format of attention mask to decide what key and value tokens
the query tokens should attend to. This is now possible with the `AttentionMaskInterface`! It works in the same way as
the `AttentionInterface`:
```python
from transformers import AttentionMaskInterface
from transformers.masking_utils import sdpa_mask
import torch
def my_new_sdpa_mask(*args, **kwargs):
print("I just entered the attention mask computation")
return sdpa_mask(*args, **kwargs)
AttentionMaskInterface.register("my_new_sdpa_mask", my_new_sdpa_mask)
```
The reason you have to register it is because we need to automatically correct your mask format based on the attention implementation (for example, flex attention uses a BlockMask format, while sdpa uses a 4D tensor).
By default, if you do not register an attention mask function along with your attention function, mask creation will be skipped
and `attention_mask=None` will be passed along to the Attention layers.
The default signature of the attention mask functions is the following:
```python
def custom_attention_mask(
batch_size: int, # required arg
cache_position: torch.Tensor, # required arg
kv_length: int, # required arg
kv_offset: int = 0, # required arg
mask_function: Callable = causal_mask_function, # required arg
attention_mask: Optional[torch.Tensor] = None, # required arg
**kwargs, # a few additional args may be passed as kwargs, especially the model's config is always passed
) -> Optional[torch.Tensor]:
```
It mostly works thanks to the `mask_function`, which is a `Callable` in the form of [torch's mask_mod functions](https://pytorch.org/blog/flexattention/), taking 4 indices as input and returning a boolean to indicate if this position should take part in the attention computation.
If you cannot use the `mask_function` to create your mask for some reason, you can try to work around it by doing something similar to our [torch export workaround](https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/executorch.py).

View File

@ -0,0 +1,279 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utilizing the @auto_docstring Decorator
The `@auto_docstring` decorator in the Hugging Face Transformers library helps generate docstrings for model classes and their methods, which will be used to build the documentation for the library. It aims to improve consistency and reduce boilerplate by automatically including standard argument descriptions and allowing for targeted overrides and additions.
---
## 📜 How it Works
The `@auto_docstring` decorator constructs docstrings by:
1. **Signature Inspection:** It inspects the signature (arguments, types, defaults) of the decorated class's `__init__` method or the decorated function.
2. **Centralized Docstring Fetching:** It retrieves predefined docstrings for common arguments (e.g., `input_ids`, `attention_mask`) from internal library sources (like `ModelArgs` or `ImageProcessorArgs` in `utils/args_doc.py`).
3. **Overriding or Adding Arguments Descriptions:**
* **Direct Docstring Block:** It incorporates custom docstring content from an `r""" """` (or `""" """`) block below the method signature or within the `__init__` docstring. This is for documenting new arguments or overriding standard descriptions.
* **Decorator Arguments (`custom_args`):** A `custom_args` docstring block can be passed to the decorator to provide docstrings for specific arguments directly in the decorator call. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
4. **Adding Classes and Functions Introduction:**
* **`custom_intro` argument:** Allows prepending a custom introductory paragraph to a class or function docstring.
* **Automatic Introduction Generation:** For model classes with standard naming patterns (like `ModelForCausalLM`) or belonging to a pipeline, the decorator automatically generates an appropriate introductory paragraph using `ClassDocstring` in `utils/args_doc.py` as the source.
5. **Templating:** The decorator uses a templating system, allowing predefined docstrings to include dynamic information deduced from the `auto_modules` of the library, such as `{{processor_class}}` or `{{config_class}}`.
6. **Deducing Relevant Examples:** The decorator attempts to find appropriate usage examples based on the model's task or pipeline compatibility. It extracts checkpoint information from the model's configuration class to provide concrete examples with real model identifiers.
7. **Adding Return Value Documentation:** For methods like `forward`, the decorator can automatically generate the "Returns" section based on the method's return type annotation. For example, for a method returning a `ModelOutput` subclass, it will extracts field descriptions from that class's docstring to create a comprehensive return value description. A custom `Returns` section can also be manually specified in the function docstring block.
8. **Unrolling Kwargs Typed With Unpack Operator:** For specific methods (defined in `UNROLL_KWARGS_METHODS`) or classes (defined in `UNROLL_KWARGS_CLASSES`), the decorator processes `**kwargs` parameters that are typed with `Unpack[KwargsTypedDict]`. It extracts the documentation from the TypedDict and adds each parameter to the function's docstring. Currently, this functionality is only supported for `FastImageProcessorKwargs`.
---
## 🚀 How to Use @auto_docstring
### 1. Importing the Decorator
Import the decorator into your modeling file:
```python
from ...utils import auto_docstring
```
### 2. Applying to Classes
Place `@auto_docstring` directly above the class definition. It uses the `__init__` method's signature and its docstring for parameter descriptions.
```python
from transformers.modeling_utils import PreTrainedModel
from ...utils import auto_docstring
@auto_docstring
class MyAwesomeModel(PreTrainedModel):
def __init__(self, config, custom_parameter: int = 10, another_custom_arg: str = "default"):
r"""
custom_parameter (`int`, *optional*, defaults to 10):
Description of the custom_parameter for MyAwesomeModel.
another_custom_arg (`str`, *optional*, defaults to "default"):
Documentation for another unique argument.
"""
super().__init__(config)
self.custom_parameter = custom_parameter
self.another_custom_arg = another_custom_arg
# ... rest of your init
# ... other methods
```
#### Advanced Class Decoration:
Arguments can be passed directly to `@auto_docstring` for more control:
```python
@auto_docstring(
custom_intro="""This model performs specific synergistic operations.
It builds upon the standard Transformer architecture with unique modifications.""",
custom_args="""
custom_parameter (`type`, *optional*, defaults to `default_value`):
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
"""
)
class MySpecialModel(PreTrainedModel):
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
# ...
```
Or:
```python
@auto_docstring(
custom_intro="""This model performs specific synergistic operations.
It builds upon the standard Transformer architecture with unique modifications.""",
)
class MySpecialModel(PreTrainedModel):
def __init__(self, config: ConfigType, custom_parameter: "type" = "default_value", internal_helper_arg=None):
r"""
custom_parameter (`type`, *optional*, defaults to `default_value`):
A concise description for custom_parameter if not defined or overriding the description in `args_doc.py`.
internal_helper_arg (`type`, *optional*, defaults to `default_value`):
A concise description for internal_helper_arg if not defined or overriding the description in `args_doc.py`.
"""
# ...
```
### 3. Applying to Functions (e.g., `forward` method)
Apply the decorator above method definitions, such as the `forward` method.
```python
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
new_custom_argument: Optional[torch.Tensor] = None,
arg_documented_in_args_doc: Optional[torch.Tensor] = None,
# ... other arguments
) -> Union[Tuple, ModelOutput]: # The description of the return value will automatically be generated from the ModelOutput class docstring.
r"""
new_custom_argument (`torch.Tensor`, *optional*):
Description of this new custom argument and its expected shape or type.
"""
# ...
```
#### Advanced Function Decoration:
Arguments can be passed directly to `@auto_docstring` for more control. `Returns` and `Examples` sections can also be manually specified:
```python
MODEL_COMMON_CUSTOM_ARGS = r"""
common_arg_1 (`torch.Tensor`, *optional*, defaults to `default_value`):
Description of common_arg_1
common_arg_2 (`torch.Tensor`, *optional*, defaults to `default_value`):
Description of common_arg_2
...
"""
class MyModel(PreTrainedModel):
# ...
@auto_docstring(
custom_intro="""
This is a custom introduction for the function.
"""
custom_args=MODEL_COMMON_CUSTOM_ARGS
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
common_arg_1: Optional[torch.Tensor] = None,
common_arg_2: Optional[torch.Tensor] = None,
#...
function_specific_argument: Optional[torch.Tensor] = None,
# ... other arguments
) -> torch.Tensor:
r"""
function_specific_argument (`torch.Tensor`, *optional*):
Description of an argument specific to this function
Returns:
`torch.Tensor`: For a function returning a generic type, a custom "Returns" section can be specified.
Example:
(To override the default example with a custom one or to add an example for a model class that does not have a pipeline)
```python
...
```
"""
# ...
```
---
### ✍️ Documenting Arguments: Approach & Priority
1. **Standard Arguments (e.g., `input_ids`, `attention_mask`, `pixel_values`, `encoder_hidden_states` etc.):**
* `@auto_docstring` retrieves descriptions from a central source. Do not redefine these locally if their description and shape are the same as in `args_doc.py`.
2. **New or Custom Arguments:**
* **Primary Method:** Document these within an `r""" """` docstring block following the signature (for functions) or in the `__init__` method's docstring (for class parameters).
* **Format:**
```
argument_name (`type`, *optional*, defaults to `X`):
Description of the argument.
Explain its purpose, expected shape/type if complex, and default behavior.
This can span multiple lines.
```
* Include `type` in backticks.
* Add "*optional*" if the argument is not required (has a default value).
* Add "defaults to `X`" if it has a default value (no need to specify "defaults to `None`" if the default value is `None`).
3. **Overriding Standard Arguments:**
* If a standard argument behaves differently (e.g., different expected shape, model-specific behavior), provide its complete description in the local `r""" """` docstring. This local definition takes precedence.
* The `labels` argument is often customized per model and typically requires a specific docstring.
4. **Using Decorator Arguments for Overrides or New Arguments (`custom_args`):**
* New or custom arguments docstrings can also be passed to `@auto_docstring` as a `custom_args` argument. This can be used to define the docstring block for new arguments once if they are repeated in multiple places in the modeling file.
---
### Usage with [modular files](./modular_transformers)
When working with modular files, follow these guidelines for applying the `@auto_docstring` decorator:
- **For standalone models in modular files:**
Apply the `@auto_docstring` decorator just as you would in regular modeling files.
- **For models inheriting from other library models:**
- When inheriting from a parent model, decorators (including `@auto_docstring`) are automatically carried over to the generated modeling file without needing to add them in your modular file.
- If you need to modify the `@auto_docstring` behavior, apply the customized decorator in your modular file, making sure to *include all other decorators* that were present on the original function/class.
> **Warning**: When overriding any decorator in a modular file, you must include ALL decorators that were applied to that function/class in the parent model. If you only override some decorators, the others won't be included in the generated modeling file.
**Note**: The `check_auto_docstrings` tool doesn't check modular files directly, but it will check (and modify when using `--fix_and_overwrite`) the generated modeling files. If issues are found in the generated files, you'll need to update your modular files accordingly.
---
## ✅ Checking Your Docstrings with `check_auto_docstrings`
The library includes a utility script to validate docstrings. This check is typically run during Continuous Integration (CI).
#### What it Checks:
* **Decorator Presence:** Ensures `@auto_docstring` is applied to relevant model classes and public methods. (TODO)
* **Argument Completeness & Consistency:**
* Flags arguments in the signature that are not known standard arguments and lack a local description.
* Ensures documented arguments exist in the signature. (TODO)
* Verifies that types and default values in the docstring match the signature. (TODO)
* **Placeholder Detection:** Reminds you to complete placeholders like `<fill_type>` or `<fill_docstring>`.
* **Formatting:** Adherence to the expected docstring style.
#### Running the Check Locally:
Run this check locally before committing. The common command is:
```bash
make fix-copies
```
Alternatively, to only perform docstrings and auto-docstring checks, you can use:
```bash
python utils/check_docstrings.py # to only check files included in the diff without fixing them
# Or: python utils/check_docstrings.py --fix_and_overwrite # to fix and overwrite the files in the diff
# Or: python utils/check_docstrings.py --fix_and_overwrite --check_all # to fix and overwrite all files
```
#### Workflow with the Checker:
1. Add `@auto_docstring(...)` to the class or method.
2. For new, custom, or overridden arguments, add descriptions in an `r""" """` block.
3. Run `make fix-copies` (or the `check_docstrings.py` utility).
* For unrecognized arguments lacking documentation, the utility will create placeholder entries.
4. Manually edit these placeholders with accurate types and descriptions.
5. Re-run the check to ensure all issues are resolved.
---
## 🔑 Key Takeaways & Best Practices
* Use `@auto_docstring` for new PyTorch model classes (`PreTrainedModel` subclasses) and their primary for methods (e.g., `forward`, `get_text_features` etc.).
* For classes, the `__init__` method's docstring is the main source for parameter descriptions when using `@auto_docstring` on the class.
* Rely on standard docstrings; do not redefine common arguments unless their behavior is different in your specific model.
* Document new or custom arguments clearly.
* Run `check_docstrings` locally and iteratively.
By following these guidelines, you help maintain consistent and informative documentation for the Hugging Face Transformers library 🤗.

View File

@ -15,8 +15,7 @@ rendered properly in your Markdown viewer.
-->
# Caching
Imagine youre having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
Imagine you're having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
You can extend this analogy to transformer models. Autoregressive model generation can be slow because it makes a prediction one token at a time. Each new prediction is dependent on all the previous context.
@ -29,8 +28,50 @@ A key-value (KV) cache eliminates this inefficiency by storing kv pairs derived
> [!WARNING]
> Caching should only be used for **inference**. It may cause unexpected errors if it's enabled during training.
To better understand how and why caching works, let's take a closer look at the structure of the attention matrices.
## Attention matrices
The **scaled dot-product attention** is calculated as shown below for a batch of size `b`, number of attention heads `h`, sequence length so far `T`, and dimension per attention head `d_head`.
$$
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
$$
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
$$
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
$$
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
$$
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
$$
Attention is calculated independently in each layer of the model, and caching is done on a per-layer basis.
Refer to the table below to compare how caching improves efficiency.
| without caching | with caching |
|---|---|
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V`
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) |
## Cache class
A basic KV cache interface takes a key and value tensor for the current token and returns the updated `K` and `V` tensors. This is internally managed by a model's `forward` method.
```py
new_K, new_V = cache.update(k_t, v_t, layer_idx)
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
```
When you use Transformers' [`Cache`] class, the self-attention module performs several critical steps to integrate past and present information.
1. The attention module concatenates current kv pairs with past kv pairs stored in the cache. This creates attentions weights with the shape `(new_tokens_length, past_kv_length + new_tokens_length)`. The current and past kv pairs are essentially combined to compute the attention scores, ensuring a model is aware of previous context and the current input.
@ -39,6 +80,27 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
3. It is also important to be aware of the `cache_position`. This is important if you want to reuse a prefilled [`Cache`] with the `forward` method because you have to pass a valid `cache_position` value. This indicates the input positions in a sequence. `cache_position` is unaffected by padding, and it always adds one more position for each token. For example, if a kv cache contains 10 tokens - regardless of pad tokens - the cache position for the next token should be `torch.tensor([10])`.
## Cache storage implementation
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
- `key_cache`: A list of tensors, one for each layer.
- `value_cache`: A list of tensors, one for each layer.
When new tokens are processed:
1. For each layer, the new key and value states are concatenated with the existing cache.
```py
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
```
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
```py
@ -72,10 +134,14 @@ for _ in range(max_new_tokens):
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
## Legacy cache format
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format has is dynamic because it grows as text is generated, similar to [`DynamicCache`].
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
The legacy format is essentially the same data structure but organized differently.
- It's a tuple of tuples, where each inner tuple contains the key and value tensors for a layer.
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
- The format is less flexible and doesn't support features like quantization or offloading.
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.

View File

@ -25,22 +25,28 @@ Check model leaderboards like [OpenLLM](https://hf.co/spaces/HuggingFaceH4/open_
This guide shows you how to quickly start chatting with Transformers from the command line, how build and format a conversation, and how to chat using the [`TextGenerationPipeline`].
## transformers-cli
## transformers CLI
Chat with a model directly from the command line as shown below. It launches an interactive session with a model. Enter `clear` to reset the conversation, `exit` to terminate the session, and `help` to display all the command options.
After you've [installed Transformers](./installation.md), chat with a model directly from the command line as shown below. It launches an interactive session with a model, with a few base commands listed at the start of the session.
```bash
transformers-cli chat --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct
transformers chat Qwen/Qwen2.5-0.5B-Instruct
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/transformers-chat-cli.png"/>
</div>
You can launch the CLI with arbitrary `generate` flags, with the format `arg_1=value_1 arg_2=value_2 ...`
```bash
transformers chat Qwen/Qwen2.5-0.5B-Instruct do_sample=False max_new_tokens=10
```
For a full list of options, run the command below.
```bash
transformers-cli chat -h
transformers chat -h
```
The chat is implemented on top of the [AutoClass](./model_doc/auto), using tooling from [text generation](./llm_tutorial) and [chat](./chat_templating).
@ -76,16 +82,16 @@ print(response[0]["generated_text"][-1]["content"])
(sigh) Oh boy, you're asking me for advice? You're gonna need a map, pal! Alright,
alright, I'll give you the lowdown. But don't say I didn't warn you, I'm a robot, not a tour guide!
So, you wanna know what's fun to do in the Big Apple? Well, let me tell you, there's a million
things to do, but I'll give you the highlights. First off, you gotta see the sights: the Statue of
Liberty, Central Park, Times Square... you know, the usual tourist traps. But if you're lookin' for
something a little more... unusual, I'd recommend checkin' out the Museum of Modern Art. It's got
So, you wanna know what's fun to do in the Big Apple? Well, let me tell you, there's a million
things to do, but I'll give you the highlights. First off, you gotta see the sights: the Statue of
Liberty, Central Park, Times Square... you know, the usual tourist traps. But if you're lookin' for
something a little more... unusual, I'd recommend checkin' out the Museum of Modern Art. It's got
some wild stuff, like that Warhol guy's soup cans and all that jazz.
And if you're feelin' adventurous, take a walk across the Brooklyn Bridge. Just watch out for
And if you're feelin' adventurous, take a walk across the Brooklyn Bridge. Just watch out for
those pesky pigeons, they're like little feathered thieves! (laughs) Get it? Thieves? Ah, never mind.
Now, if you're lookin' for some serious fun, hit up the comedy clubs in Greenwich Village. You might
Now, if you're lookin' for some serious fun, hit up the comedy clubs in Greenwich Village. You might
even catch a glimpse of some up-and-coming comedians... or a bunch of wannabes tryin' to make it big. (winks)
And finally, if you're feelin' like a real New Yorker, grab a slice of pizza from one of the many amazing
@ -107,9 +113,9 @@ print(response[0]["generated_text"][-1]["content"])
```
```txt
(laughs) Oh, you're killin' me, pal! You don't get it, do you? Warhol's soup cans are like, art, man!
It's like, he took something totally mundane, like a can of soup, and turned it into a masterpiece. It's
like, "Hey, look at me, I'm a can of soup, but I'm also a work of art!"
(laughs) Oh, you're killin' me, pal! You don't get it, do you? Warhol's soup cans are like, art, man!
It's like, he took something totally mundane, like a can of soup, and turned it into a masterpiece. It's
like, "Hey, look at me, I'm a can of soup, but I'm also a work of art!"
(sarcastically) Oh, yeah, real original, Andy.
But, you know, back in the '60s, it was like, a big deal. People were all about challenging the

View File

@ -20,11 +20,15 @@ A decoding strategy informs how a model should select the next generated token.
This guide will help you understand the different decoding strategies available in Transformers and how and when to use them.
## Greedy search
## Basic decoding methods
Greedy search is the default decoding strategy. It selects the next most likely token at each step. Unless specified in [`GenerationConfig`], this strategy generates a maximum of 20 tokens.
These are well established decoding methods, and should be your starting point for text generation tasks.
Greedy search works well for tasks with relatively short outputs. However, it breaks down when generating longer sequences because it begins to repeat itself.
### Greedy search
Greedy search is the default decoding strategy. It selects the next most likely token at each step. Unless specified in [`GenerationConfig`], this strategy generates a maximum of 20 new tokens.
Greedy search works well for tasks with relatively short outputs where creativity is not a priority. However, it breaks down when generating longer sequences because it begins to repeat itself.
```py
import torch
@ -40,11 +44,11 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company that provides a suite of tools and services for building, deploying, and maintaining natural language processing'
```
## Contrastive search
### Sampling
[Contrastive search](https://huggingface.co/papers/2202.06417) is a decoding strategy that aims to reduce repetition even while generating longer sequences. This strategy compares how similar a generated token is against previous tokens, and if they're more similar, a penalty is applied.
Sampling, or multinomial sampling, randomly selects a token based on the probability distribution over the entire model's vocabulary (as opposed to the most likely token, as in greedy search). This means every token with a non-zero probability has a chance to be selected. Sampling strategies reduce repetition and can generate more creative and diverse outputs.
Enable contrastive search with the `penalty_alpha` and `top_k` parameters. The `penalty_alpha` manages the penalty applied and `top_k` is the number of most likely tokens to return.
Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
```py
import torch
@ -55,14 +59,14 @@ inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt"
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=100, penalty_alpha=0.6, top_k=4)
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=1)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company that provides a platform for building and deploying AI models.\nHugging Face is an open-source company that provides a platform for building and deploying AI models. The platform allows developers to build and deploy AI models, as well as collaborate with other developers.\nHugging Face was founded in 2019 by Thibault Wittemberg and Clément Delangue. The company is based in Paris, France.\nHugging Face has'
'Hugging Face is an open-source company 🤗\nWe are open-source and believe that open-source is the best way to build technology. Our mission is to make AI accessible to everyone, and we believe that open-source is the best way to achieve that.'
```
## Beam search
### Beam search
Beam search keeps track of several generated sequences (beams) at each time step. After a certain number of steps, it selects the sequence with the highest *overall* probability. Unlike greedy search, this strategy can "look ahead" and pick a sequence with a higher probability overall even if the initial tokens have a lower probability.
Beam search keeps track of several generated sequences (beams) at each time step. After a certain number of steps, it selects the sequence with the highest *overall* probability. Unlike greedy search, this strategy can "look ahead" and pick a sequence with a higher probability overall even if the initial tokens have a lower probability. It is best suited for input-grounded tasks, like describing an image or speech recognition. You can also use `do_sample=True` with beam search to sample at each step, but beam search will still greedily prune out low probability sequences between steps.
> [!TIP]
> Check out the [beam search visualizer](https://huggingface.co/spaces/m-ric/beam_search_visualizer) to see how beam search works.
@ -83,66 +87,11 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
"['Hugging Face is an open-source company that develops and maintains the Hugging Face platform, which is a collection of tools and libraries for building and deploying natural language processing (NLP) models. Hugging Face was founded in 2018 by Thomas Wolf']"
```
## Diverse beam search
## Advanced decoding methods
[Diverse beam search](https://hf.co/papers/1610.02424) is a variant of beam search that produces more diverse output candidates to choose from. This strategy measures the dissimilarity of sequences and a penalty is applied if sequences are too similar. To avoid high computation costs, the number of beams is divided into groups.
Advanced decoding methods aim at either tackling specific generation quality issues (e.g. repetition) or at improving the generation throughput in certain situations. These techniques are more complex, and may not work correctly with all models.
Enable diverse beam search with the `num_beams`, `num_beam_groups` and `diversity_penalty` parameters (the `num_beams` parameter should be divisible by `num_beam_groups`).
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, num_beams=6, num_beam_groups=3, diversity_penalty=1.0, do_sample=False)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company 🤗\nWe are an open-source company. Our mission is to democratize AI and make it accessible to everyone. We believe that AI should be used for the benefit of humanity, not for the benefit of a'
```
## Multinomial sampling
Search methods selects the most likely tokens. Sampling, or multinomial sampling, randomly selects a token based on the probability distribution over the entire models vocabulary. This means every token with a non-zero probability has a chance to be selected. Sampling strategies reduce repetition and can generate more creative and diverse outputs.
Enable multinomial sampling with `do_sample=True` and `num_beams=1`.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=1)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company 🤗\nWe are open-source and believe that open-source is the best way to build technology. Our mission is to make AI accessible to everyone, and we believe that open-source is the best way to achieve that.'
```
## Beam search multinomial sampling
This decoding strategy is a combination of beam search and multinomial sampling. It generates multiple beams and uses a sampling strategy for each beam.
Enable beam search multinomial sampling by setting `num_beams` to a value greater than 1 and `do_sample=True`.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, num_beams=4)
'Hugging Face is an open-source company 100% dedicated to making AI more accessible. We believe that AI should be available to everyone, and were working hard to make that a reality.\nWere a team of passionate engineers, designers,'
```
## Speculative decoding
### Speculative decoding
[Speculative](https://hf.co/papers/2211.17192) or assistive decoding isn't a search or sampling strategy. Instead, speculative decoding adds a second smaller model to generate candidate tokens. The main model verifies the candidate tokens in a single `forward` pass, which speeds up the decoding process overall. This method is especially useful for LLMs where it can be more costly and slower to generate tokens. Refer to the [speculative decoding](./llm_optims#speculative-decoding) guide to learn more.
@ -203,7 +152,7 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
</hfoption>
</hfoptions>
### Prompt lookup decoding
#### Prompt lookup decoding
[Prompt lookup decoding](./llm_optims#prompt-lookup-decoding) is a variant of speculative decoding that uses overlapping n-grams as the candidate tokens. It works well for input-grounded tasks such as summarization. Refer to the [prompt lookup decoding](./llm_optims#prompt-lookup-decoding) guide to learn more.
@ -245,7 +194,7 @@ outputs = model.generate(**inputs, assistant_early_exit=4, do_sample=False, max_
tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
### Universal assisted decoding
#### Universal assisted decoding
Universal assisted decoding (UAD) enables the main and assistant models to use different tokenizers. The main models input tokens are re-encoded into assistant model tokens. Candidate tokens are generated in the assistant encoding which are re-encoded into the main model candidate tokens. The candidate tokens are verified as explained in [speculative decoding](#speculative-decoding).
@ -269,7 +218,27 @@ tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Alice and Bob are sitting in a bar. Alice is drinking a beer and Bob is drinking a']
```
## DoLa
### Contrastive search
[Contrastive search](https://huggingface.co/papers/2202.06417) is a decoding strategy that aims to reduce repetition even while generating longer sequences. This strategy compares how similar a generated token is against previous tokens, and if they're more similar, a penalty is applied.
Enable contrastive search with the `penalty_alpha` and `top_k` parameters. The `penalty_alpha` manages the penalty applied and `top_k` is the number of most likely tokens to return.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=100, penalty_alpha=0.6, top_k=4)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company that provides a platform for building and deploying AI models.\nHugging Face is an open-source company that provides a platform for building and deploying AI models. The platform allows developers to build and deploy AI models, as well as collaborate with other developers.\nHugging Face was founded in 2019 by Thibault Wittemberg and Clément Delangue. The company is based in Paris, France.\nHugging Face has'
```
### DoLa
[Decoding by Contrasting Layers (DoLa)](https://hf.co/papers/2309.03883) is a contrastive decoding strategy for improving factuality and reducing hallucination. This strategy works by contrasting the logit differences between the final and early layers. As a result, factual knowledge localized to particular layers are amplified. DoLa is not recommended for smaller models like GPT-2.
@ -325,6 +294,209 @@ tokenizer.batch_decode(outputs[:, inputs.input_ids.shape[-1]:], skip_special_tok
</hfoption>
</hfoptions>
### Diverse beam search
[Diverse beam search](https://hf.co/papers/1610.02424) is a variant of beam search that produces more diverse output candidates to choose from. This strategy measures the dissimilarity of sequences and a penalty is applied if sequences are too similar. To avoid high computation costs, the number of beams is divided into groups.
Enable diverse beam search with the `num_beams`, `num_beam_groups` and `diversity_penalty` parameters (the `num_beams` parameter should be divisible by `num_beam_groups`).
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to 100 because Llama2 generation length is 4096
outputs = model.generate(**inputs, max_new_tokens=50, num_beams=6, num_beam_groups=3, diversity_penalty=1.0, do_sample=False)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
'Hugging Face is an open-source company 🤗\nWe are an open-source company. Our mission is to democratize AI and make it accessible to everyone. We believe that AI should be used for the benefit of humanity, not for the benefit of a'
```
## Custom decoding methods
Custom decoding methods enable specialized generation behavior such as the following:
- have the model continue thinking if it is uncertain;
- roll back generation if the model gets stuck;
- handle special tokens with custom logic;
- enhanced input preparation for advanced models;
We enable custom decoding methods through model repositories, assuming a specific model tag and file structure (see subsection below). This feature is an extension of [custom modeling code](./models.md#custom-models) and, like such, requires setting `trust_remote_code=True`.
If a model repository holds a custom decoding method, the easiest way to try it out is to load the model and generate with it:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
# `transformers-community/custom_generate_example` holds a copy of `Qwen/Qwen2.5-0.5B-Instruct`, but
# with custom generation code -> calling `generate` uses the custom decoding method!
tokenizer = AutoTokenizer.from_pretrained("transformers-community/custom_generate_example")
model = AutoModelForCausalLM.from_pretrained(
"transformers-community/custom_generate_example", device_map="auto", trust_remote_code=True
)
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
# The custom decoding method is a minimal greedy decoding implementation. It also prints a custom message at run time.
gen_out = model.generate(**inputs)
# you should now see its custom message, "✨ using a custom generation method ✨"
print(tokenizer.batch_decode(gen_out, skip_special_tokens=True))
'The quick brown fox jumps over a lazy dog, and the dog is a type of animal. Is'
```
Model repositories with custom decoding methods have a special property: their decoding method can be loaded from **any** model through [`~GenerationMixin.generate`]'s `custom_generate` argument. This means anyone can create and share their custom generation method to potentially work with any Transformers model, without requiring users to install additional Python packages.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", device_map="auto")
inputs = tokenizer(["The quick brown"], return_tensors="pt").to(model.device)
# `custom_generate` replaces the original `generate` by the custom decoding method defined in
# `transformers-community/custom_generate_example`
gen_out = model.generate(**inputs, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True)
print(tokenizer.batch_decode(gen_out, skip_special_tokens=True)[0])
'The quick brown fox jumps over a lazy dog, and the dog is a type of animal. Is'
```
You should read the `README.md` file of the repository containing the custom generation strategy to see what the new arguments and output type differences are, if they exist. Otherwise, you can assume it works like the base [`~GenerationMixin.generate`] method.
> [!TIP]
> You can find all custom decoding methods by [searching for their custom tag.](https://huggingface.co/models?other=custom_generate), `custom_generate`
Consider the Hub repository [transformers-community/custom_generate_example](https://huggingface.co/transformers-community/custom_generate_example) as an example. The `README.md` states that it has an additional input argument, `left_padding`, which adds a number of padding tokens before the prompt.
```py
gen_out = model.generate(
**inputs, custom_generate="transformers-community/custom_generate_example", trust_remote_code=True, left_padding=5
)
print(tokenizer.batch_decode(gen_out)[0])
'<|endoftext|><|endoftext|><|endoftext|><|endoftext|><|endoftext|>The quick brown fox jumps over the lazy dog.\n\nThe sentence "The quick'
```
If the custom method has pinned Python requirements that your environment doesn't meet, you'll get an exception about missing requirements. For instance, [transformers-community/custom_generate_bad_requirements](https://huggingface.co/transformers-community/custom_generate_bad_requirements) has an impossible set of requirements defined in its `custom_generate/requirements.txt` file, and you'll see the error message below if you try to run it.
```
ImportError: Missing requirements in your local environment for `transformers-community/custom_generate_bad_requirements`:
foo (installed: None)
bar==0.0.0 (installed: None)
torch>=99.0 (installed: 2.6.0)
```
Updating your Python requirements accordingly will remove this error message.
### Creating a custom decoding method
To create a new decoding method, you need to create a new [**Model**](https://huggingface.co/new) repository and push a few files into it.
1. The model you've designed your decoding method with.
2. `custom_generate/generate.py`, which contains all the logic for your custom decoding method.
3. `custom_generate/requirements.txt`, used to optionally add new Python requirements and/or lock specific versions to correctly use your method.
4. `README.md`, where you should add the `custom_generate` tag and document any new arguments or output type differences of your custom method here.
After you've added all required files, your repository should look like this
```
your_repo/
├── README.md # include the 'custom_generate' tag
├── config.json
├── ...
└── custom_generate/
├── generate.py
└── requirements.txt
```
#### Adding the base model
The starting point for your custom decoding method is a model repository just like any other. The model to add to this repository should be the model you've designed your method with, and it is meant to be part of a working self-contained model-generate pair. When the model in this repository is loaded, your custom decoding method will override `generate`. Don't worry -- your decoding method can still be loaded with any other Transformers model, as explained in the section above.
If you simply want to copy an existing model, you can do
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("source/model_repo")
model = AutoModelForCausalLM.from_pretrained("source/model_repo")
tokenizer.save_pretrained("your/decoding_method", push_to_hub=True)
model.save_pretrained("your/decoding_method", push_to_hub=True)
```
#### generate.py
This is the core of your decoding method. It *must* contain a method named `generate`, and this method *must* contain a `model` argument as its first argument. `model` is the model instance, which means you have access to all attributes and methods in the model, including the ones defined in [`GenerationMixin`] (like the base `generate` method).
> [!WARNING]
> `generate.py` must be placed in a folder named `custom_generate`, and not at the root level of the repository. The file paths for this feature are hardcoded.
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method, with the exception of the arguments used to trigger the custom generation (`trust_remote_code` and `custom_generate`).
This means your `generate` can have a mix of original and custom arguments (as well as a different output type) as shown below.
```py
import torch
def generate(model, input_ids, generation_config=None, left_padding=None, **kwargs):
generation_config = generation_config or model.generation_config # default to the model generation config
cur_length = input_ids.shape[1]
max_length = generation_config.max_length or cur_length + generation_config.max_new_tokens
# Example of custom argument: add `left_padding` (integer) pad tokens before the prompt
if left_padding is not None:
if not isinstance(left_padding, int) or left_padding < 0:
raise ValueError(f"left_padding must be an integer larger than 0, but is {left_padding}")
pad_token = kwargs.pop("pad_token", None) or generation_config.pad_token_id or model.config.pad_token_id
if pad_token is None:
raise ValueError("pad_token is not defined")
batch_size = input_ids.shape[0]
pad_tensor = torch.full(size=(batch_size, left_padding), fill_value=pad_token).to(input_ids.device)
input_ids = torch.cat((pad_tensor, input_ids), dim=1)
cur_length = input_ids.shape[1]
# Simple greedy decoding loop
while cur_length < max_length:
logits = model(input_ids).logits
next_token_logits = logits[:, -1, :]
next_tokens = torch.argmax(next_token_logits, dim=-1)
input_ids = torch.cat((input_ids, next_tokens[:, None]), dim=-1)
cur_length += 1
return input_ids
```
Follow the recommended practices below to ensure your custom decoding method works as expected.
- Feel free to reuse the logic for validation and input preparation in the original [`~GenerationMixin.generate`].
- Pin the `transformers` version in the requirements if you use any private method/attribute in `model`.
- You can add other files in the `custom_generate` folder, and use relative imports.
- Consider adding model validation, input validation, or even a separate test file to help users sanity-check your code in their environment.
#### requirements.txt
You can optionally specify additional Python requirements in a `requirements.txt` file inside the `custom_generate` folder. These are checked at runtime and an exception will be thrown if they're missing, nudging users to update their environment accordingly.
#### README.md
The root level `README.md` in the model repository usually describes the model therein. However, since the focus of the repository is the custom decoding method, we highly recommend to shift its focus towards describing the custom decoding method. In addition to a description of the method, we recommend documenting any input and/or output differences to the original [`~GenerationMixin.generate`]. This way, users can focus on what's new, and rely on Transformers docs for generic implementation details.
For discoverability, we highly recommend you to add the `custom_generate` tag to your repository. To do so, the top of your `README.md` file should look like the example below. After you push the file, you should see the tag in your repository!
```
---
library_name: transformers
tags:
- custom_generate
---
(your markdown content here)
```
Recommended practices:
- Document input and output differences in [`~GenerationMixin.generate`].
- Add self-contained examples to enable quick experimentation.
- Describe soft-requirements such as if the method only works well with a certain family of models.
## Resources
Read the [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) blog post for an explanation of how common decoding strategies work.

View File

@ -1,94 +0,0 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# GPU selection
During distributed training, you can specify the number of GPUs to use and in what order. This can be useful when you have GPUs with different computing power and you want to use the faster GPU first. Or you could only use a subset of the available GPUs. The selection process works for both [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) and [DataParallel](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html). You don't need Accelerate or [DeepSpeed integration](./main_classes/deepspeed).
This guide will show you how to select the number of GPUs to use and the order to use them in.
## Number of GPUs
For example, if there are 4 GPUs and you only want to use the first 2, run the command below.
<hfoptions id="select-gpu">
<hfoption id="torchrun">
Use the `--nproc_per_node` to select how many GPUs to use.
```bash
torchrun --nproc_per_node=2 trainer-program.py ...
```
</hfoption>
<hfoption id="Accelerate">
Use `--num_processes` to select how many GPUs to use.
```bash
accelerate launch --num_processes 2 trainer-program.py ...
```
</hfoption>
<hfoption id="DeepSpeed">
Use `--num_gpus` to select how many GPUs to use.
```bash
deepspeed --num_gpus 2 trainer-program.py ...
```
</hfoption>
</hfoptions>
### Order of GPUs
To select specific GPUs to use and their order, configure the `CUDA_VISIBLE_DEVICES` environment variable. It is easiest to set the environment variable in `~/bashrc` or another startup config file. `CUDA_VISIBLE_DEVICES` is used to map which GPUs are used. For example, if there are 4 GPUs (0, 1, 2, 3) and you only want to run GPUs 0 and 2:
```bash
CUDA_VISIBLE_DEVICES=0,2 torchrun trainer-program.py ...
```
Only the 2 physical GPUs (0 and 2) are "visible" to PyTorch and these are mapped to `cuda:0` and `cuda:1` respectively. You can also reverse the order of the GPUs to use 2 first. The mapping becomes `cuda:1` for GPU 0 and `cuda:0` for GPU 2.
```bash
CUDA_VISIBLE_DEVICES=2,0 torchrun trainer-program.py ...
```
You can also set the `CUDA_VISIBLE_DEVICES` environment variable to an empty value to create an environment without GPUs.
```bash
CUDA_VISIBLE_DEVICES= python trainer-program.py ...
```
> [!WARNING]
> As with any environment variable, they can be exported instead of being added to the command line. However, this is not recommended because it can be confusing if you forget how the environment variable was set up and you end up using the wrong GPUs. Instead, it is common practice to set the environment variable for a specific training run on the same command line.
`CUDA_DEVICE_ORDER` is an alternative environment variable you can use to control how the GPUs are ordered. You can order according to the following.
1. PCIe bus IDs that matches the order of [`nvidia-smi`](https://developer.nvidia.com/nvidia-system-management-interface) and [`rocm-smi`](https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/.doxygen/docBin/html/index.html) for NVIDIA and AMD GPUs respectively.
```bash
export CUDA_DEVICE_ORDER=PCI_BUS_ID
```
2. GPU compute ability.
```bash
export CUDA_DEVICE_ORDER=FASTEST_FIRST
```
The `CUDA_DEVICE_ORDER` is especially useful if your training setup consists of an older and newer GPU, where the older GPU appears first, but you cannot physically swap the cards to make the newer GPU appear first. In this case, set `CUDA_DEVICE_ORDER=FASTEST_FIRST` to always use the newer and faster GPU first (`nvidia-smi` or `rocm-smi` still reports the GPUs in their PCIe order). Or you could also set `export CUDA_VISIBLE_DEVICES=1,0`.

View File

@ -90,11 +90,6 @@ class SamVisionAttentionSplit(SamVisionAttention, nn.Module):
attn_weights = (query * self.scale) @ key.transpose(-2, -1)
if self.use_rel_pos:
attn_weights = self.add_decomposed_rel_pos(
attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
)
attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype)
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1)
@ -114,13 +109,14 @@ Load the model with [`~PreTrainedModel.from_pretrained`].
```py
from transformers import SamModel
from transformers.models.sam import modeling_sam
# replace the attention class in the modeling_sam module
modeling_sam.SamVisionAttention = SamVisionAttentionSplit
# load the pretrained SAM model
model = SamModel.from_pretrained("facebook/sam-vit-base")
# replace the attention class in the vision_encoder module
for layer in model.vision_encoder.layers:
if hasattr(layer, "attn"):
layer.attn = SamVisionAttentionSplit(model.config.vision_config, model.config.vision_config.window_size)
```
## LoRA
@ -138,7 +134,7 @@ config = LoraConfig(
# apply LoRA to q and v
target_modules=["q", "v"],
lora_dropout=0.1,
task_type="mask-generation"
task_type="FEATURE_EXTRACTION"
)
```
@ -152,5 +148,5 @@ Call [print_trainable_parameters](https://huggingface.co/docs/peft/package_refer
```py
model.print_trainable_parameters()
"trainable params: 608,256 || all params: 94,343,728 || trainable%: 0.6447"
"trainable params: 589,824 || all params: 94,274,096 || trainable%: 0.6256"
```

View File

@ -19,6 +19,9 @@ Hyperparameter search discovers an optimal set of hyperparameters that produces
This guide will go over how to set up a hyperparameter search for each of the backends.
> [!WARNING]
> [SigOpt](https://github.com/sigopt/sigopt-server) is in public archive mode and is no longer actively maintained. Try using Optuna, Weights & Biases or Ray Tune instead.
```bash
pip install optuna/sigopt/wandb/ray[tune]
```

View File

@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
# Image processors
Image processors converts images into pixel values, tensors that represent image colors and size. The pixel values are inputs to a vision or video model. To ensure a pretrained model receives the correct input, an image processor can perform the following operations to make sure an image is exactly like the images a model was pretrained on.
Image processors converts images into pixel values, tensors that represent image colors and size. The pixel values are inputs to a vision model. To ensure a pretrained model receives the correct input, an image processor can perform the following operations to make sure an image is exactly like the images a model was pretrained on.
- [`~BaseImageProcessor.center_crop`] to resize an image
- [`~BaseImageProcessor.normalize`] or [`~BaseImageProcessor.rescale`] pixel values

View File

@ -380,11 +380,6 @@ A [`Constraint`] can be used to force the generation to include specific tokens
[[autodoc]] HQQQuantizedCache
[[autodoc]] SinkCache
- update
- get_seq_length
- reorder_cache
[[autodoc]] OffloadedCache
- update
- prefetch_layer
@ -443,4 +438,3 @@ A [`Constraint`] can be used to force the generation to include specific tokens
[[autodoc]] CompileConfig
- __call__

View File

@ -84,6 +84,19 @@ class Trainer:
Backends that can be added here are all the backends that are available in the `import_utils.py` module.
Additionally, specific versions can be specified in each backend. For example, this is how you would specify
a requirement on torch>=2.6 on the `Trainer` class:
```python
from .utils.import_utils import requires
@requires(backends=("torch>=2.6", "accelerate"))
class Trainer:
...
```
You can specify the following operators: `==`, `>`, `>=`, `<`, `<=`, `!=`.
## Methods
[[autodoc]] utils.import_utils.define_import_structure

View File

@ -16,7 +16,8 @@ rendered properly in your Markdown viewer.
# Model debugging toolboxes
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it provides for it.
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it
provides for it.
Most of those are only useful if you are adding new models in the library.
@ -26,13 +27,14 @@ Most of those are only useful if you are adding new models in the library.
### Model addition debugger - context manager for model adders
This context manager is a power user tool intended for model adders.
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
To note, this context manager enforces `torch.no_grad()`.
This context manager is a power user tool intended for model adders. It tracks all forward calls within a model forward
and logs a slice of each input and output on a nested JSON. To note, this context manager enforces `torch.no_grad()`.
### Rationale
Because when porting models to transformers, even from python to python, model adders often have to do a lot of manual operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some time.
When porting models to transformers, even from python to python, model adders often have to do a lot of manual
operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some
time.
### Usage
@ -62,10 +64,10 @@ inputs = processor(text=prompt, images=random_image, return_tensors="pt")
# call forward method (not .generate!)
with model_addition_debugger_context(
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False # This will output ALL the layers of a model.
):
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False # This will output ALL the layers of a model.
):
output = model.forward(**inputs)
```
@ -73,8 +75,8 @@ with model_addition_debugger_context(
### Reading results
The debugger generates two files from the forward call, both with the same base name,
but ending either with `_SUMMARY.json` or with `_FULL_TENSORS.json`.
The debugger generates two files from the forward call, both with the same base name, but ending either with
`_SUMMARY.json` or with `_FULL_TENSORS.json`.
The first one will contain a summary of each module's _input_ and _output_ tensor values and shapes.
@ -142,8 +144,8 @@ The first one will contain a summary of each module's _input_ and _output_ tenso
{ ... and so on
```
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful
for comparing two files.
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful for comparing two files.
```json
"pixel_values": {
"shape": "torch.Size([1, 5, 576, 588])",
@ -196,9 +198,38 @@ for comparing two files.
},
```
#### Saving tensors to disk
Some model adders may benefit from logging full tensor values to disk to support, for example, numerical analysis
across implementations.
Set `use_repr=False` to write tensors to disk using [SafeTensors](https://huggingface.co/docs/safetensors/en/index).
```python
with model_addition_debugger_context(
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False,
use_repr=False, # Defaults to True
):
output = model.forward(**inputs)
```
When using `use_repr=False`, tensors are written to the same disk location as the `_SUMMARY.json` and
`_FULL_TENSORS.json` files. The `value` property of entries in the `_FULL_TENSORS.json` file will contain a relative
path reference to the associated `.safetensors` file. Each tensor is written to its own file as the `data` property of
the state dictionary. File names are constructed using the `module_path` as a prefix with a few possible postfixes that
are built recursively.
* Module inputs are denoted with the `_inputs` and outputs by `_outputs`.
* `list` and `tuple` instances, such as `args` or function return values, will be postfixed with `_{index}`.
* `dict` instances will be postfixed with `_{key}`.
### Comparing between implementations
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See
below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly
identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/files_difference_debugging.png)
@ -206,8 +237,13 @@ Once the forward passes of two models have been traced by the debugger, one can
### Limitations and scope
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
This feature will only work for torch-based models, and would require more work and case-by-case approach for say
`jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will
probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be
traced once instead of reran N times with breakpoints.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the
first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N
layers.
[[autodoc]] model_addition_debugger_context

View File

@ -29,6 +29,11 @@ Most of those are only useful if you are studying the code of the models in the
[[autodoc]] AttentionInterface
- register
## Attention Mask Functions
[[autodoc]] AttentionMaskInterface
- register
## Rotary Position Embedding Functions
[[autodoc]] dynamic_rope_update

View File

@ -30,7 +30,6 @@ Transformers offers several [`Cache`] classes that implement different caching m
| Offloaded Static Cache | No | Yes | Yes | High | Yes |
| Quantized Cache | Yes | No | No | Low | Yes |
| Sliding Window Cache | No | Yes | Yes | High | No |
| Sink Cache | Yes | No | Yes | Mid | Yes |
This guide introduces you to the different [`Cache`] classes and shows you how to use them for generation.
@ -174,28 +173,6 @@ I like rock music because it's loud and energetic. It's a great way to express m
</hfoption>
</hfoptions>
### Sink cache
[`SinkCache`] is capable of generating very long sequences ("infinite length" according to the paper) by only retaining a few initial tokens from the sequence. These are called the *sink tokens* because they account for a significant portion of the attention scores during generation. Subsequent tokens are discarded on a sliding windowed basis, and only the latest `window_size` tokens are kept. This means most of the previous knowledge is discarded.
The sink tokens allow a model to maintain stable performance even when it's dealing with very long text sequences.
Enable [`SinkCache`] by initializing it first with the [window_length](https://hf.co/docs/transformers/main/en/internal/generation_utils#transformers.SinkCache.window_length) and [num_sink_tokens](https://hf.co/docs/transformers/main/en/internal/generation_utils#transformers.SinkCache.num_sink_tokens) parameters before passing it to [past_key_values](https://hf.co/docs/transformers/internal/generation_utils#transformers.generation.GenerateDecoderOnlyOutput.past_key_values) in [`~GenerationMixin.generate`].
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
inputs = tokenizer("This is a long story about unicorns, fairies and magic.", return_tensors="pt").to(model.device)
past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
out = model.generate(**inputs, do_sample=False, max_new_tokens=30, past_key_values=past_key_values)
tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"This is a long story about unicorns, fairies and magic. It is a fantasy world where unicorns and fairies live together in harmony. The story follows a young girl named Lily"
```
## Speed optimized caches
The default [`DynamicCache`] prevents you from taking advantage of just-in-time (JIT) optimizations because the cache size isn't fixed. JIT optimizations enable you to maximize latency at the expense of memory usage. All of the following cache types are compatible with JIT optimizations like [torch.compile](./llm_optims#static-kv-cache-and-torchcompile) to accelerate generation.
@ -247,7 +224,7 @@ Enable [`SlidingWindowCache`] by configuring `cache_implementation="sliding_wind
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0")
@ -284,8 +261,6 @@ A cache can also work in iterative generation settings where there is back-and-f
For iterative generation with a cache, start by initializing an empty cache class and then you can feed in your new prompts. Keep track of dialogue history with a [chat template](./chat_templating).
If you're using [`SinkCache`], the inputs need to be truncated to the maximum length because [`SinkCache`] can generate text that exceeds its maximum window size. However, the first input shouldn't exceed the maximum cache length.
The example below demonstrates how to use a cache for iterative generation.
```py
@ -293,7 +268,6 @@ import torch
from transformers import AutoTokenizer,AutoModelForCausalLM
from transformers.cache_utils import (
DynamicCache,
SinkCache,
StaticCache,
SlidingWindowCache,
QuantoQuantizedCache,
@ -313,8 +287,6 @@ messages = []
for prompt in user_prompts:
messages.append({"role": "user", "content": prompt})
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
if isinstance(past_key_values, SinkCache):
inputs = {k: v[:, -max_cache_length:] for k, v in inputs.items()}
input_length = inputs["input_ids"].shape[1]
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=256, past_key_values=past_key_values)
completion = tokenizer.decode(outputs[0, input_length: ], skip_special_tokens=True)
@ -336,7 +308,7 @@ model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda")
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Init StaticCache with big enough max-length (1024 tokens for the below example)
# Init StaticCache with big enough max-length (1024 tokens for the below example)
# You can also init a DynamicCache, if that suits you better
prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
@ -351,7 +323,7 @@ responses = []
for prompt in prompts:
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
response = tokenizer.batch_decode(outputs)[0]
responses.append(response)

View File

@ -20,9 +20,13 @@ rendered properly in your Markdown viewer.
Text generation is the most popular application for large language models (LLMs). A LLM is trained to generate the next word (token) given some initial text (prompt) along with its own generated outputs up to a predefined length or when it reaches an end-of-sequence (`EOS`) token.
In Transformers, the [`~GenerationMixin.generate`] API handles text generation, and it is available for all models with generative capabilities.
In Transformers, the [`~GenerationMixin.generate`] API handles text generation, and it is available for all models with generative capabilities. This guide will show you the basics of text generation with [`~GenerationMixin.generate`] and some common pitfalls to avoid.
This guide will show you the basics of text generation with [`~GenerationMixin.generate`] and some common pitfalls to avoid.
> [!TIP]
> You can also chat with a model directly from the command line. ([reference](./conversations.md#transformers-cli))
> ```shell
> transformers chat Qwen/Qwen2.5-0.5B-Instruct
> ```
## Default generate
@ -80,14 +84,17 @@ GenerationConfig {
}
```
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. Some of the most commonly adjusted parameters are [max_new_tokens](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.max_new_tokens), [num_beams](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_beams), [do_sample](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.do_sample), and [num_return_sequences](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_return_sequences).
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. See [this section below](#common-options) for commonly adjusted parameters.
```py
# enable beam search sampling strategy
model.generate(**inputs, num_beams=4, do_sample=True)
```
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code. The `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution. `stopping_criteria` supports custom [`StoppingCriteria`] to stop text generation. Check out the [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo) for more examples of external [`~GenerationMixin.generate`]-compatible extensions.
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code:
1. the `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution;
2. the `stopping_criteria` parameters supports custom [`StoppingCriteria`] to stop text generation;
3. other custom generation methods can be loaded through the `custom_generate` flag ([docs](generation_strategies.md/#custom-decoding-methods)).
Refer to the [Generation strategies](./generation_strategies) guide to learn more about search, sampling, and decoding strategies.
@ -134,6 +141,20 @@ outputs = model.generate(**inputs, generation_config=generation_config)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
```
## Common Options
[`~GenerationMixin.generate`] is a powerful tool that can be heavily customized. This can be daunting for a new users. This section contains a list of popular generation options that you can define in most text generation tools in Transformers: [`~GenerationMixin.generate`], [`GenerationConfig`], `pipelines`, the `chat` CLI, ...
| Option name | Type | Simplified description |
|---|---|---|
| `max_new_tokens` | `int` | Controls the maximum generation length. Be sure to define it, as it usually defaults to a small value. |
| `do_sample` | `bool` | Defines whether generation will sample the next token (`True`), or is greedy instead (`False`). Most use cases should set this flag to `True`. Check [this guide](./generation_strategies.md) for more information. |
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
| `eos_token_id` | `List[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
## Pitfalls
The section below covers some common issues you may encounter during text generation and how to solve them.
@ -286,4 +307,4 @@ Take a look below for some more specific and specialized text generation librari
- [SynCode](https://github.com/uiuc-focal-lab/syncode): a library for context-free grammar guided generation (JSON, SQL, Python).
- [Text Generation Inference](https://github.com/huggingface/text-generation-inference): a production-ready server for LLMs.
- [Text generation web UI](https://github.com/oobabooga/text-generation-webui): a Gradio web UI for text generation.
- [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo): additional logits processors for controlling text generation.
- [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo): additional logits processors for controlling text generation.

View File

@ -0,0 +1,55 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Video Processor
A **Video Processor** is a utility responsible for preparing input features for video models, as well as handling the post-processing of their outputs. It provides transformations such as resizing, normalization, and conversion into PyTorch.
The video processor extends the functionality of image processors by allowing Vision Large Language Models (VLMs) to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
### Usage Example
Here's an example of how to load a video processor with [`llava-hf/llava-onevision-qwen2-0.5b-ov-hf`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) model:
```python
from transformers import AutoVideoProcessor
processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
```
Currently, if using base image processor for videos, it processes video data by treating each frame as an individual image and applying transformations frame-by-frame. While functional, this approach is not highly efficient. Using `AutoVideoProcessor` allows us to take advantage of **fast video processors**, leveraging the [torchvision](https://pytorch.org/vision/stable/index.html) library. Fast processors handle the whole batch of videos at once, without iterating over each video or frame. These updates introduce GPU acceleration and significantly enhance processing speed, especially for tasks requiring high throughput.
Fast video processors are available for all models and are loaded by default when an `AutoVideoProcessor` is initialized. When using a fast video processor, you can also set the `device` argument to specify the device on which the processing should be done. By default, the processing is done on the same device as the inputs if the inputs are tensors, or on the CPU otherwise. For even more speed improvement, we can compile the processor when using 'cuda' as device.
```python
import torch
from transformers.video_utils import load_video
from transformers import AutoVideoProcessor
video = load_video("video.mp4")
processor = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf", device="cuda")
processor = torch.compile(processor)
processed_video = processor(video, return_tensors="pt")
```
## BaseVideoProcessor
[[autodoc]] video_processing_utils.BaseVideoProcessor

View File

@ -57,6 +57,7 @@ This model was contributed by [lysandre](https://huggingface.co/lysandre). This
- Embedding size E is different from hidden size H justified because the embeddings are context independent (one embedding vector represents one token), whereas hidden states are context dependent (one hidden state represents a sequence of tokens) so it's more logical to have H >> E. Also, the embedding matrix is large since it's V x E (V being the vocab size). If E < H, it has less parameters.
- Layers are split in groups that share parameters (to save memory).
Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B (that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been swapped or not.
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
### Using Scaled Dot Product Attention (SDPA)

View File

@ -13,65 +13,141 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Transformers" src="https://img.shields.io/badge/Transformers-6B5B95?style=flat&logo=transformers&logoColor=white">
</div>
</div>
# ALIGN
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[ALIGN](https://huggingface.co/papers/2102.05918) is pretrained on a noisy 1.8 billion alttext and image pair dataset to show that scale can make up for the noise. It uses a dualencoder architecture, [EfficientNet](./efficientnet) for images and [BERT](./bert) for text, and a contrastive loss to align similar imagetext embeddings together while pushing different embeddings apart. Once trained, ALIGN can encode any image and candidate captions into a shared vector space for zeroshot retrieval or classification without requiring extra labels. This scalefirst approach reduces dataset curation costs and powers stateoftheart imagetext retrieval and zeroshot ImageNet classification.
## Overview
You can find all the original ALIGN checkpoints under the [Kakao Brain](https://huggingface.co/kakaobrain?search_models=align) organization.
The ALIGN model was proposed in [Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision](https://arxiv.org/abs/2102.05918) by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig. ALIGN is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image classification. ALIGN features a dual-encoder architecture with [EfficientNet](efficientnet) as its vision encoder and [BERT](bert) as its text encoder, and learns to align visual and text representations with contrastive learning. Unlike previous work, ALIGN leverages a massive noisy dataset and shows that the scale of the corpus can be used to achieve SOTA representations with a simple recipe.
> [!TIP]
> Click on the ALIGN models in the right sidebar for more examples of how to apply ALIGN to different vision and text related tasks.
The abstract from the paper is the following:
The example below demonstrates zero-shot image classification with [`Pipeline`] or the [`AutoModel`] class.
*Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as ImageNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated cross-attention models. The representations also enable cross-modality search with complex text and text + image queries.*
<hfoptions id="usage">
This model was contributed by [Alara Dirik](https://huggingface.co/adirik).
The original code is not released, this implementation is based on the Kakao Brain implementation based on the original paper.
<hfoption id="Pipeline">
## Usage example
ALIGN uses EfficientNet to get visual features and BERT to get the text features. Both the text and visual features are then projected to a latent space with identical dimension. The dot product between the projected image and text features is then used as a similarity score.
[`AlignProcessor`] wraps [`EfficientNetImageProcessor`] and [`BertTokenizer`] into a single instance to both encode the text and preprocess the images. The following example shows how to get the image-text similarity scores using [`AlignProcessor`] and [`AlignModel`].
```python
import requests
```py
import torch
from PIL import Image
from transformers import AlignProcessor, AlignModel
from transformers import pipeline
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
model = AlignModel.from_pretrained("kakaobrain/align-base")
pipeline = pipeline(
task="zero-shot-image-classification",
model="kakaobrain/align-base",
device=0,
torch_dtype=torch.bfloat16
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["an image of a cat", "an image of a dog"]
candidate_labels = [
"a photo of a dog",
"a photo of a cat",
"a photo of a person"
]
inputs = processor(images=image ,text=candidate_labels, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# this is the image-text similarity score
logits_per_image = outputs.logits_per_image
# we can take the softmax to get the label probabilities
probs = logits_per_image.softmax(dim=1)
print(probs)
pipeline("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg", candidate_labels=candidate_labels)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
processor = AutoProcessor.from_pretrained("kakaobrain/align-base")
model = AutoModelForZeroShotImageClassification.from_pretrained("kakaobrain/align-base").to("cuda")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = requests.get(url, stream=True)
inputs = Image.open(image.raw).convert("RGB")
image_inputs = processor(images=inputs, return_tensors="pt").to("cuda")
with torch.no_grad():
image_embeds = model.get_image_features(**image_inputs)
candidate_labels = ["a photo of a dog", "a photo of a cat", "a photo of a person"]
text_inputs = processor(text=candidate_labels, padding=True, return_tensors="pt").to("cuda")
with torch.no_grad():
text_embeds = model.get_text_features(**text_inputs)
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
logits = (image_embeds @ text_embeds.T) * 100.0
probs = logits.softmax(dim=-1).cpu().squeeze()
for label, score in zip(candidate_labels, probs):
print(f"{label:20s}{score.item():.4f}")
```
</hfoption>
</hfoptions>
## Notes
- ALIGN projects the text and visual features into latent space and the dot product between the projected image and text features is used as the similarity score. The example below demonstrates how to calculate the image-text similarity score with [`AlignProcessor`] and [`AlignModel`].
```py
# Example of using ALIGN for image-text similarity
from transformers import AlignProcessor, AlignModel
import torch
from PIL import Image
import requests
from io import BytesIO
# Load processor and model
processor = AlignProcessor.from_pretrained("kakaobrain/align-base")
model = AlignModel.from_pretrained("kakaobrain/align-base")
# Download image from URL
url = "https://huggingface.co/roschmid/dog-races/resolve/main/images/Golden_Retriever.jpg"
response = requests.get(url)
image = Image.open(BytesIO(response.content)) # Convert the downloaded bytes to a PIL Image
texts = ["a photo of a cat", "a photo of a dog"]
# Process image and text inputs
inputs = processor(images=image, text=texts, return_tensors="pt")
# Get the embeddings
with torch.no_grad():
outputs = model(**inputs)
image_embeds = outputs.image_embeds
text_embeds = outputs.text_embeds
# Normalize embeddings for cosine similarity
image_embeds = image_embeds / image_embeds.norm(dim=1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=1, keepdim=True)
# Calculate similarity scores
similarity_scores = torch.matmul(text_embeds, image_embeds.T)
# Print raw scores
print("Similarity scores:", similarity_scores)
# Convert to probabilities
probs = torch.nn.functional.softmax(similarity_scores, dim=0)
print("Probabilities:", probs)
# Get the most similar text
most_similar_idx = similarity_scores.argmax().item()
print(f"Most similar text: '{texts[most_similar_idx]}'")
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ALIGN.
- A blog post on [ALIGN and the COYO-700M dataset](https://huggingface.co/blog/vit-align).
- A zero-shot image classification [demo](https://huggingface.co/spaces/adirik/ALIGN-zero-shot-image-classification).
- [Model card](https://huggingface.co/kakaobrain/align-base) of `kakaobrain/align-base` model.
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it. The resource should ideally demonstrate something new instead of duplicating an existing resource.
- Refer to the [Kakao Brains Open Source ViT, ALIGN, and the New COYO Text-Image Dataset](https://huggingface.co/blog/vit-align) blog post for more details.
## AlignConfig

View File

@ -14,60 +14,71 @@ rendered properly in your Markdown viewer.
-->
# Aria
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Aria
The Aria model was proposed in [Aria: An Open Multimodal Native Mixture-of-Experts Model](https://huggingface.co/papers/2410.05993) by Li et al. from the Rhymes.AI team.
[Aria](https://huggingface.co/papers/2410.05993) is a multimodal mixture-of-experts (MoE) model. The goal of this model is to open-source a training recipe for creating a multimodal native model from scratch. Aria has 3.9B and 3.5B activated parameters per visual and text token respectively. Text is handled by a MoE decoder and visual inputs are handled by a lightweight visual encoder. It is trained in 4 stages, language pretraining, multimodal pretraining, multimodal long-context pretraining, and multimodal post-training.
Aria is an open multimodal-native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. It has a Mixture-of-Experts architecture, with respectively 3.9B and 3.5B activated parameters per visual token and text token.
You can find all the original Aria checkpoints under the [Aria](https://huggingface.co/rhymes-ai?search_models=aria) organization.
The abstract from the paper is the following:
> [!TIP]
> Click on the Aria models in the right sidebar for more examples of how to apply Aria to different multimodal tasks.
*Information comes in diverse modalities. Multimodal native AI models are essential to integrate real-world information and deliver comprehensive understanding. While proprietary multimodal native models exist, their lack of openness imposes obstacles for adoptions, let alone adaptations. To fill this gap, we introduce Aria, an open multimodal native model with best-in-class performance across a wide range of multimodal, language, and coding tasks. Aria is a mixture-of-expert model with 3.9B and 3.5B activated parameters per visual token and text token, respectively. It outperforms Pixtral-12B and Llama3.2-11B, and is competitive against the best proprietary models on various multimodal tasks. We pre-train Aria from scratch following a 4-stage pipeline, which progressively equips the model with strong capabilities in language understanding, multimodal understanding, long context window, and instruction following. We open-source the model weights along with a codebase that facilitates easy adoptions and adaptations of Aria in real-world applications.*
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
This model was contributed by [m-ric](https://huggingface.co/m-ric).
The original code can be found [here](https://github.com/rhymes-ai/Aria).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Usage tips
Here's how to use the model for vision tasks:
```python
import requests
import torch
from PIL import Image
from transformers import pipeline
from transformers import AriaProcessor, AriaForConditionalGeneration
pipeline = pipeline(
"image-to-text",
model="rhymes-ai/Aria",
device=0,
torch_dtype=torch.bfloat16
)
pipeline(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
text="What is shown in this image?"
)
```
model_id_or_path = "rhymes-ai/Aria"
</hfoption>
<hfoption id="AutoModel">
model = AriaForConditionalGeneration.from_pretrained(
model_id_or_path, device_map="auto"
```python
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
model = AutoModelForCausalLM.from_pretrained(
"rhymes-ai/Aria",
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="sdpa"
)
processor = AriaProcessor.from_pretrained(model_id_or_path)
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
processor = AutoProcessor.from_pretrained("rhymes-ai/Aria")
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"text": "what is the image?", "type": "text"},
],
}
"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs.to(model.device)
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
ipnuts = inputs.to(model.device, torch.bfloat16)
output = model.generate(
**inputs,
@ -79,6 +90,55 @@ output = model.generate(
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4 and the [rhymes-ai/Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) checkpoint. This checkpoint replaces grouped GEMM with `torch.nn.Linear` layers for easier quantization.
```py
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoProcessor
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForCausalLM.from_pretrained(
"rhymes-ai/Aria-sequential_mlp",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
processor = AutoProcessor.from_pretrained(
"rhymes-ai/Aria-sequential_mlp",
)
messages = [
{
"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
{"type": "text", "text": "What is shown in this image?"},
]
},
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt")
inputs = inputs.to(model.device, torch.bfloat16)
output = model.generate(
**inputs,
max_new_tokens=15,
stop_strings=["<|im_end|>"],
tokenizer=processor.tokenizer,
do_sample=True,
temperature=0.9,
)
output_ids = output[0][inputs["input_ids"].shape[1]:]
response = processor.decode(output_ids, skip_special_tokens=True)
print(response)
```
@ -102,6 +162,10 @@ response = processor.decode(output_ids, skip_special_tokens=True)
[[autodoc]] AriaTextModel
## AriaModel
[[autodoc]] AriaModel
## AriaTextForCausalLM
[[autodoc]] AriaTextForCausalLM

View File

@ -74,6 +74,10 @@ Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
[[autodoc]] AutoImageProcessor
## AutoVideoProcessor
[[autodoc]] AutoVideoProcessor
## AutoProcessor
[[autodoc]] AutoProcessor
@ -385,3 +389,9 @@ The following auto classes are available for the following multimodal tasks.
### AutoModelForImageTextToText
[[autodoc]] AutoModelForImageTextToText
## Time Series
### AutoModelForTimeSeriesPrediction
[[autodoc]] AutoModelForTimeSeriesPrediction

View File

@ -237,6 +237,10 @@ for i, output in enumerate(batch_outputs):
[[autodoc]] AyaVisionConfig
## AyaVisionModel
[[autodoc]] AyaVisionModel
## AyaVisionForConditionalGeneration
[[autodoc]] AyaVisionForConditionalGeneration

View File

@ -39,7 +39,7 @@ Checkout all Bamba-9B model checkpoints [here](https://github.com/foundation-mod
<!---
## Usage Tips
Tips:
Tips:
- The architecture is based on Mamba-2 models.
@ -63,7 +63,35 @@ response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
## Padding-Free Training
Bamba supports padding-free training in which distinct training examples can be concatenated
together while nevertheless processing the inputs as though they belonged to separate batches. When
the examples are of varying lengths, padding-free training can provide significant speed ups and
memory savings compared to batching the examples together and using padding, as the unnecessary
compute and memory due to padding is avoided entirely. The performance gains depend on factors such
as the model and the data distribution, but throughput gains up to [~2x are commonly
seen](https://github.com/huggingface/transformers/pull/35861#issue-2807873129).
Using padding-free training with Bamba requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d`
packages, and the following arguments must be passed to the model in addition to `input_ids` and
`labels`:
* `position_ids: torch.LongTensor`: the position index of each token in each sequence.
* `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
* Each of the [`FlashAttentionKwargs`]
* `cu_seq_lens_q: torch.LongTensor`: The cumulative sequence lengths of all queries.
* `cu_seq_lens_k: torch.LongTensor`: The cumulative sequence lengths of all keys.
* `max_length_q: int`: the longest query length in the batch.
* `max_length_k: int`: the longest key length in the batch.
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] can be used
to programmatically generate the above set of additional arguments using `return_seq_idx=True` and
`return_flash_attn_kwargs=True`. See [this blog post](https://huggingface.co/blog/packing-with-FA2)
for additional information.
[[autodoc]] BambaForCausalLM
- forward
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).

View File

@ -14,115 +14,87 @@ rendered properly in your Markdown viewer.
-->
# BART
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# BART
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. Its pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
The Bart model was proposed in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.
According to the abstract,
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a
left-to-right decoder (like GPT).
- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme,
where spans of text are replaced with a single mask token.
- BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It
matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new
state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains
of up to 6 ROUGE.
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/bart).
```py
import torch
from transformers import pipeline
## Usage tips:
pipeline = pipeline(
task="fill-mask",
model="facebook/bart-large",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
- BART is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- Sequence-to-sequence model with an encoder and a decoder. Encoder is fed a corrupted version of the tokens, decoder is fed the original tokens (but has a mask to hide the future words like a regular transformers decoder). A composition of the following transformations are applied on the pretraining tasks for the encoder:
```
</hfoption>
<hfoption id="AutoModel">
* mask random tokens (like in BERT)
* delete random tokens
* mask a span of k tokens with a single mask token (a span of 0 tokens is an insertion of a mask token)
* permute sentences
* rotate the document to make it start at a specific token
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
## Implementation Notes
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/bart-large",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
- Bart doesn't use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or
[`~BartTokenizer.encode`] to get the proper splitting.
- The forward pass of [`BartModel`] will create the `decoder_input_ids` if they are not passed.
This is different than some other modeling APIs. A typical use case of this feature is mask filling.
- Model predictions are intended to be identical to the original implementation when
`forced_bos_token_id=0`. This only works, however, if the string you pass to
[`fairseq.encode`] starts with a space.
- [`~generation.GenerationMixin.generate`] should be used for conditional generation tasks like
summarization, see the example in that docstrings.
- Models that load the *facebook/bart-large-cnn* weights will not have a `mask_token_id`, or be able to perform
mask-filling tasks.
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
## Mask Filling
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
The `facebook/bart-base` and `facebook/bart-large` checkpoints can be used to fill multi-token masks.
```python
from transformers import BartForConditionalGeneration, BartTokenizer
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
batch = tok(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"])
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
]
print(f"The predicted token is: {predicted_token}")
```
## Resources
</hfoption>
<hfoption id="transformers CLI">
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BART. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/bart-large --device 0
```
<PipelineTag pipeline="summarization"/>
</hfoption>
</hfoptions>
- A blog post on [Distributed Training: Train BART/T5 for Summarization using 🤗 Transformers and Amazon SageMaker](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq).
- A notebook on how to [finetune BART for summarization with fastai using blurr](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb). 🌎
- A notebook on how to [finetune BART for summarization in two languages with Trainer class](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb). 🌎
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization).
- An example of how to train [`BartForConditionalGeneration`] with a Hugging Face `datasets` object can be found in this [forum discussion](https://discuss.huggingface.co/t/train-bart-for-conditional-generation-e-g-summarization/1904)
- [Summarization](https://huggingface.co/course/chapter7/5?fw=pt#summarization) chapter of the 🤗 Hugging Face course.
- [Summarization task guide](../tasks/summarization)
## Notes
<PipelineTag pipeline="fill-mask"/>
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="translation"/>
- A notebook on how to [finetune mBART using Seq2SeqTrainer for Hindi to English translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb). 🌎
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
- [Translation task guide](../tasks/translation)
See also:
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Distilled checkpoints](https://huggingface.co/models?search=distilbart) are described in this [paper](https://arxiv.org/abs/2010.13002).
- Inputs should be padded on the right because BERT uses absolute position embeddings.
- The [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) checkpoint doesn't include `mask_token_id` which means it can't perform mask-filling tasks.
- BART doesnt use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or [`~PreTrainedTokenizerBase.encode`] to get the proper splitting.
- The forward pass of [`BartModel`] creates the `decoder_input_ids` if they're not passed. This can be different from other model APIs, but it is a useful feature for mask-filling tasks.
- Model predictions are intended to be identical to the original implementation when `forced_bos_token_id=0`. This only works if the text passed to `fairseq.encode` begins with a space.
- [`~GenerationMixin.generate`] should be used for conditional generation tasks like summarization.
## BartConfig

View File

@ -151,6 +151,12 @@ If you're interested in submitting a resource to be included here, please feel f
- preprocess
- post_process_semantic_segmentation
## BeitImageProcessorFast
[[autodoc]] BeitImageProcessorFast
- preprocess
- post_process_semantic_segmentation
<frameworkcontent>
<pt>

View File

@ -81,10 +81,10 @@ print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google-bert/bert-base-uncased --device 0
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model google-bert/bert-base-uncased --device 0
```
</hfoption>
@ -256,4 +256,4 @@ echo -e "Plants create [MASK] through a process known as photosynthesis." | tran
[[autodoc]] models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput

View File

@ -16,60 +16,82 @@ rendered properly in your Markdown viewer.
# BERTweet
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
## Overview
## BERTweet
The BERTweet model was proposed in [BERTweet: A pre-trained language model for English Tweets](https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf) by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen.
[BERTweet](https://huggingface.co/papers/2005.10200) shares the same architecture as [BERT-base](./bert), but its pretrained like [RoBERTa](./roberta) on English Tweets. It performs really well on Tweet-related tasks like part-of-speech tagging, named entity recognition, and text classification.
The abstract from the paper is the following:
*We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having
the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et
al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al.,
2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks:
Part-of-speech tagging, Named-entity recognition and text classification.*
You can find all the original BERTweet checkpoints under the [VinAI Research](https://huggingface.co/vinai?search_models=BERTweet) organization.
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BERTweet).
> [!TIP]
> Refer to the [BERT](./bert) docs for more examples of how to apply BERTweet to different language tasks.
## Usage example
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
<hfoptions id="usage">
<hfoption id="Pipeline">
>>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
```py
import torch
from transformers import pipeline
>>> # For transformers v4.x+:
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
pipeline = pipeline(
task="fill-mask",
model="vinai/bertweet-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
```
</hfoption>
<hfoption id="AutoModel">
>>> # For transformers v3.x:
>>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
>>> # INPUT TWEET IS ALREADY NORMALIZED!
>>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
tokenizer = AutoTokenizer.from_pretrained(
"vinai/bertweet-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"vinai/bertweet-base",
torch_dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
>>> input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
>>> with torch.no_grad():
... features = bertweet(input_ids) # Models outputs are now tuples
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
>>> # With TensorFlow 2.0+:
>>> # from transformers import TFAutoModel
>>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
print(f"The predicted token is: {predicted_token}")
```
<Tip>
</hfoption>
<hfoption id="transformers CLI">
This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for
API reference information.
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model vinai/bertweet-base --device 0
```
</Tip>
</hfoption>
</hfoptions>
## Notes
- Use the [`AutoTokenizer`] or [`BertweetTokenizer`] because its preloaded with a custom vocabulary adapted to tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Make sure to also install the [emoji](https://pypi.org/project/emoji/) library.
- Inputs should be padded on the right (`padding="max_length"`) because BERT uses absolute position embeddings.
## BertweetTokenizer

View File

@ -14,63 +14,87 @@ rendered properly in your Markdown viewer.
-->
# BigBird
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# BigBird
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse
attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it
has been shown that applying sparse, global, and random attention approximates full attention, while being
computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context,
BigBird has shown improved performance on various long document NLP tasks, such as question answering and
summarization, compared to BERT or RoBERTa.
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesnt try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
The abstract from the paper is the following:
*Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP.
Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence
length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that
reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and
is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our
theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire
sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to
8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also
propose novel applications to genomics data.*
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found
[here](https://github.com/google-research/bigbird).
> [!TIP]
> Click on the BigBird models in the right sidebar for more examples of how to apply BigBird to different language tasks.
## Usage tips
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
- For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird).
- BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using
**original_full** is advised as there is no benefit in using **block_sparse** attention.
- The code currently uses window size of 3 blocks and 2 global blocks.
- Sequence length must be divisible by block size.
- Current implementation supports only **ITC**.
- Current implementation doesn't support **num_random_blocks = 0**
- BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="google/bigbird-roberta-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"google/bigbird-roberta-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"google/bigbird-roberta-base",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
!echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google/bigbird-roberta-base --device 0
```
</hfoption>
</hfoptions>
## Notes
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
- BigBird supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
- The sequence length must be divisible by the block size.
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
- Read the [BigBird](https://huggingface.co/blog/big-bird) blog post for more details about how its attention works.
## BigBirdConfig

View File

@ -14,77 +14,121 @@ rendered properly in your Markdown viewer.
-->
# BioGPT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# BioGPT
The BioGPT model was proposed in [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch.
[BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
The abstract from the paper is the following:
You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization.
*Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.*
> [!TIP]
> Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks.
This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/BioGPT).
The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- BioGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left.
- BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it can be observed in the run_generation.py example script.
- The model can take the `past_key_values` (for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage.
```py
import torch
from transformers import pipeline
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import BioGptForCausalLM
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)
generator = pipeline(
task="text-generation",
model="microsoft/biogpt",
torch_dtype=torch.float16,
device=0,
)
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
print(result)
```
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a CausalLM head,
we saw the following speedups during training.
</hfoption>
<hfoption id="AutoModel">
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
| num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------|
| 100 | 1 | 128 | False | 0.038 | 0.031 | 21.301 | 1601.862 | 1601.497 | 0.023 |
| 100 | 1 | 256 | False | 0.039 | 0.034 | 15.084 | 1624.944 | 1625.296 | -0.022 |
| 100 | 2 | 128 | False | 0.039 | 0.033 | 16.820 | 1624.567 | 1625.296 | -0.045 |
| 100 | 2 | 256 | False | 0.065 | 0.059 | 10.255 | 1672.164 | 1672.164 | 0.000 |
| 100 | 4 | 128 | False | 0.062 | 0.058 | 6.998 | 1671.435 | 1672.164 | -0.044 |
| 100 | 4 | 256 | False | 0.113 | 0.100 | 13.316 | 2350.179 | 1848.435 | 27.144 |
| 100 | 8 | 128 | False | 0.107 | 0.098 | 9.883 | 2098.521 | 1848.435 | 13.530 |
| 100 | 8 | 256 | False | 0.222 | 0.196 | 13.413 | 3989.980 | 2986.492 | 33.601 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a simple AutoModel head,
we saw the following speedups during inference.
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
| num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|-------------|------------|---------|---------|---------|----------|------------------------------|-----------------------------|-------------|----------------|--------------|---------------|
| 50 | 1 | 64 | True | True | True | 0.115 | 0.098 | 17.392 | 716.998 | 716.998 | 0.000 |
| 50 | 1 | 128 | True | True | True | 0.115 | 0.093 | 24.640 | 730.916 | 730.916 | 0.000 |
| 50 | 2 | 64 | True | True | True | 0.114 | 0.096 | 19.204 | 730.900 | 730.900 | 0.000 |
| 50 | 2 | 128 | True | True | True | 0.117 | 0.095 | 23.529 | 759.262 | 759.262 | 0.000 |
| 50 | 4 | 64 | True | True | True | 0.113 | 0.096 | 18.325 | 759.229 | 759.229 | 0.000 |
| 50 | 4 | 128 | True | True | True | 0.186 | 0.178 | 4.289 | 816.478 | 816.478 | 0.000 |
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
</hfoption>
<hfoption id="transformers CLI">
## Resources
```bash
echo -e "Ibuprofen is best used for" | transformers-cli run --task text-generation --model microsoft/biogpt --device 0
```
- [Causal language modeling task guide](../tasks/language_modeling)
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/BioGPT-Large",
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
device_map="auto"
)
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
## Notes
- Pad inputs on the right because BioGPT uses absolute position embeddings.
- BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`].
- The `head_mask` argument is ignored when using an attention implementation other than "eager". If you want to use `head_mask`, make sure `attn_implementation="eager"`).
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
attn_implementation="eager"
)
## BioGptConfig
@ -108,7 +152,7 @@ we saw the following speedups during inference.
[[autodoc]] BioGptForCausalLM
- forward
## BioGptForTokenClassification
[[autodoc]] BioGptForTokenClassification

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
Note that [`BlenderbotSmallModel`] and
@ -52,7 +54,7 @@ found [here](https://github.com/facebookresearch/ParlAI).
## Usage tips
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -45,7 +47,7 @@ This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The
## Usage tips and example
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
An example:
@ -71,7 +73,7 @@ An example:
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
[BlenderbotSmall](blenderbot-small).
## Resources
- [Causal language modeling task guide](../tasks/language_modeling)

View File

@ -35,7 +35,7 @@ The example below demonstrates how to generate code with [`Pipeline`], or the [`
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
@ -76,7 +76,7 @@ prompt = "# Function to calculate the factorial of a number\ndef factorial(n):"
input_ids = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(
**input_ids,
**input_ids,
max_new_tokens=256,
cache_implementation="static"
)
@ -92,10 +92,10 @@ print(filled_text)
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
echo -e "# Function to calculate the factorial of a number\ndef factorial(n):" | transformers-cli run --task text-generation --model meta-llama/CodeLlama-7b-hf --device 0
echo -e "# Function to calculate the factorial of a number\ndef factorial(n):" | transformers run --task text-generation --model meta-llama/CodeLlama-7b-hf --device 0
```
</hfoption>
@ -146,7 +146,7 @@ visualizer("""def func(a, b):
- Use the `<FILL_ME>` token where you want your input to be filled. The tokenizer splits this token to create a formatted input string that follows the [original training pattern](https://github.com/facebookresearch/codellama/blob/cb51c14ec761370ba2e2bc351374a79265d0465e/llama/generation.py#L402). This is more robust than preparing the pattern yourself.
```py
from transformers import LlamaForCausalLM, CodeLlamaTokenizer
tokenizer = CodeLlamaTokenizer.from_pretrained("meta-llama/CodeLlama-7b-hf")
model = LlamaForCausalLM.from_pretrained("meta-llama/CodeLlama-7b-hf")
PROMPT = '''def remove_non_ascii(s: str) -> str:
@ -155,7 +155,7 @@ visualizer("""def func(a, b):
'''
input_ids = tokenizer(PROMPT, return_tensors="pt")["input_ids"]
generated_ids = model.generate(input_ids, max_new_tokens=128)
filling = tokenizer.batch_decode(generated_ids[:, input_ids.shape[1]:], skip_special_tokens = True)[0]
print(PROMPT.replace("<FILL_ME>", filling))
```

View File

@ -49,9 +49,9 @@ model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", t
messages = [{"role": "user", "content": "How do plants make energy?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)
@ -59,11 +59,11 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
# pip install -U flash-attn --no-build-isolation
transformers-cli chat --model_name_or_path CohereForAI/c4ai-command-r-v01 --torch_dtype auto --attn_implementation flash_attention_2
transformers chat CohereForAI/c4ai-command-r-v01 --torch_dtype auto --attn_implementation flash_attention_2
```
</hfoption>
@ -85,9 +85,9 @@ model = AutoModelForCausalLM.from_pretrained("CohereForAI/c4ai-command-r-v01", t
messages = [{"role": "user", "content": "How do plants make energy?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
output = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
cache_implementation="static",
)

View File

@ -20,9 +20,11 @@ rendered properly in your Markdown viewer.
# ColPali
[ColPali](https://huggingface.co/papers/2407.01449) is a model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColPali treats each page as an image. It uses [Paligemma-3B](./paligemma) to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed embeddings. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
[ColPali](https://huggingface.co/papers/2407.01449) is a model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColPali treats each page as an image. It uses [Paligemma-3B](./paligemma) to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed multi-vector embeddings that can be used for retrieval by computing pairwise late interaction similarity scores. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
You can find all the original ColPali checkpoints under the [ColPali](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
This model was contributed by [@tonywu71](https://huggingface.co/tonywu71) (ILLUIN Technology) and [@yonigozlan](https://huggingface.co/yonigozlan) (HuggingFace).
You can find all the original ColPali checkpoints under Vidore's [Hf-native ColVision Models](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
> [!TIP]
> Click on the ColPali models in the right sidebar for more examples of how to use ColPali for image retrieval.
@ -30,21 +32,25 @@ You can find all the original ColPali checkpoints under the [ColPali](https://hu
<hfoptions id="usage">
<hfoption id="image retrieval">
```py
```python
import requests
import torch
from PIL import Image
from transformers import ColPaliForRetrieval, ColPaliProcessor
# Load model (bfloat16 support is limited; fallback to float32 if needed)
model = ColPaliForRetrieval.from_pretrained(
"vidore/colpali-v1.2-hf",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto", # "cpu", "cuda", or "mps" for Apple Silicon
).eval()
# Load the model and the processor
model_name = "vidore/colpali-v1.3-hf"
model = ColPaliForRetrieval.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto", # "cpu", "cuda", or "mps" for Apple Silicon
)
processor = ColPaliProcessor.from_pretrained(model_name)
# The document page screenshots from your corpus
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
@ -53,25 +59,37 @@ images = [
Image.open(requests.get(url2, stream=True).raw),
]
# The queries you want to retrieve documents for
queries = [
"Who printed the edition of Romeo and Juliet?",
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
inputs_images = processor(images=images, return_tensors="pt").to(model.device)
inputs_text = processor(text=queries, return_tensors="pt").to(model.device)
inputs_images = processor(images=images).to(model.device)
inputs_text = processor(text=queries).to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
If you have issue with loading the images with PIL, you can use the following code to create dummy images:
```python
images = [
Image.new("RGB", (128, 128), color="white"),
Image.new("RGB", (64, 32), color="black"),
]
```
</hfoption>
</hfoptions>
@ -79,12 +97,15 @@ Quantization reduces the memory burden of large models by representing the weigh
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
```py
```python
import requests
import torch
from PIL import Image
from transformers import ColPaliForRetrieval, ColPaliProcessor
from transformers import BitsAndBytesConfig
from transformers import BitsAndBytesConfig, ColPaliForRetrieval, ColPaliProcessor
model_name = "vidore/colpali-v1.3-hf"
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
@ -94,14 +115,11 @@ bnb_config = BitsAndBytesConfig(
bnb_4bit_compute_dtype=torch.float16,
)
model_name = "vidore/colpali-v1.2-hf"
# Load model
model = ColPaliForRetrieval.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="cuda"
).eval()
device_map="cuda",
)
processor = ColPaliProcessor.from_pretrained(model_name)
@ -114,8 +132,8 @@ images = [
]
queries = [
"Who printed the edition of Romeo and Juliet?",
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
@ -127,6 +145,7 @@ with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")

View File

@ -0,0 +1,176 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# ColQwen2
[ColQwen2](https://doi.org/10.48550/arXiv.2407.01449) is a variant of the [ColPali](./colpali) model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColQwen2 treats each page as an image. It uses the [Qwen2-VL](./qwen2_vl) backbone to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed multi-vector embeddings that can be used for retrieval by computing pairwise late interaction similarity scores. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
This model was contributed by [@tonywu71](https://huggingface.co/tonywu71) (ILLUIN Technology) and [@yonigozlan](https://huggingface.co/yonigozlan) (HuggingFace).
You can find all the original ColPali checkpoints under Vidore's [Hf-native ColVision Models](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
> [!TIP]
> Click on the ColQwen2 models in the right sidebar for more examples of how to use ColQwen2 for image retrieval.
<hfoptions id="usage">
<hfoption id="image retrieval">
```python
import requests
import torch
from PIL import Image
from transformers import ColQwen2ForRetrieval, ColQwen2Processor
from transformers.utils.import_utils import is_flash_attn_2_available
# Load the model and the processor
model_name = "vidore/colqwen2-v1.0-hf"
model = ColQwen2ForRetrieval.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto", # "cpu", "cuda", or "mps" for Apple Silicon
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "sdpa",
)
processor = ColQwen2Processor.from_pretrained(model_name)
# The document page screenshots from your corpus
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
images = [
Image.open(requests.get(url1, stream=True).raw),
Image.open(requests.get(url2, stream=True).raw),
]
# The queries you want to retrieve documents for
queries = [
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
inputs_images = processor(images=images).to(model.device)
inputs_text = processor(text=queries).to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
If you have issue with loading the images with PIL, you can use the following code to create dummy images:
```python
images = [
Image.new("RGB", (128, 128), color="white"),
Image.new("RGB", (64, 32), color="black"),
]
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
```python
import requests
import torch
from PIL import Image
from transformers import BitsAndBytesConfig, ColQwen2ForRetrieval, ColQwen2Processor
model_name = "vidore/colqwen2-v1.0-hf"
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = ColQwen2ForRetrieval.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="cuda",
).eval()
processor = ColQwen2Processor.from_pretrained(model_name)
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
images = [
Image.open(requests.get(url1, stream=True).raw),
Image.open(requests.get(url2, stream=True).raw),
]
queries = [
"When was the United States Declaration of Independence proclaimed?",
"Who printed the edition of Romeo and Juliet?",
]
# Process the inputs
inputs_images = processor(images=images, return_tensors="pt").to(model.device)
inputs_text = processor(text=queries, return_tensors="pt").to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
## Notes
- [`~ColQwen2Processor.score_retrieval`] returns a 2D tensor where the first dimension is the number of queries and the second dimension is the number of images. A higher score indicates more similarity between the query and image.
- Unlike ColPali, ColQwen2 supports arbitrary image resolutions and aspect ratios, which means images are not resized into fixed-size squares. This preserves more of the original input signal.
- Larger input images generate longer multi-vector embeddings, allowing users to adjust image resolution to balance performance and memory usage.
## ColQwen2Config
[[autodoc]] ColQwen2Config
## ColQwen2Processor
[[autodoc]] ColQwen2Processor
## ColQwen2ForRetrieval
[[autodoc]] ColQwen2ForRetrieval
- forward

View File

@ -0,0 +1,382 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Csm
## Overview
The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio.
**Model Architecture:**
CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi.md), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio.
The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/csm_architecture.png"/>
</div>
## Usage Tips
### Without Conversational Context
CSM can be used to simply generate speech from a text prompt:
```python
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
# prepare the inputs
text = "[0]The past is just a story we tell ourselves." # `[0]` for speaker id 0
inputs = processor(text, add_special_tokens=True).to(device)
# another equivalent way to prepare the inputs
conversation = [
{"role": "0", "content": [{"type": "text", "text": "The past is just a story we tell ourselves."}]},
]
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
return_dict=True,
).to(device)
# infer the model
audio = model.generate(**inputs, output_audio=True)
processor.save_audio(audio, "example_without_context.wav")
```
### With Conversational Context
CSM can be used to generate speech given a conversation, allowing consistency in the voices and content-aware generation:
```python
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
# prepare the inputs
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
# ensure the audio is 24kHz
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
conversation = []
# 1. context
for text, audio, speaker_id in zip(ds[:4]["text"], ds[:4]["audio"], ds[:4]["speaker_id"]):
conversation.append(
{
"role": f"{speaker_id}",
"content": [{"type": "text", "text": text}, {"type": "audio", "path": audio["array"]}],
}
)
# 2. text prompt
conversation.append({"role": f"{ds[4]['speaker_id']}", "content": [{"type": "text", "text": ds[4]["text"]}]})
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
return_dict=True,
).to(device)
# infer the model
audio = model.generate(**inputs, output_audio=True)
processor.save_audio(audio, "example_with_context.wav")
```
### Batched Inference
CSM supports batched inference!
```python
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
# prepare the inputs
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
# ensure the audio is 24kHz
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
# here a batch with two prompts
conversation = [
[
{
"role": f"{ds[0]['speaker_id']}",
"content": [
{"type": "text", "text": ds[0]["text"]},
{"type": "audio", "path": ds[0]["audio"]["array"]},
],
},
{
"role": f"{ds[1]['speaker_id']}",
"content": [
{"type": "text", "text": ds[1]["text"]},
],
},
],
[
{
"role": f"{ds[0]['speaker_id']}",
"content": [
{"type": "text", "text": ds[0]["text"]},
],
}
],
]
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
return_dict=True,
).to(device)
audio = model.generate(**inputs, output_audio=True)
processor.save_audio(audio, [f"speech_batch_idx_{i}.wav" for i in range(len(audio))])
```
### Making The Model Go Brrr
CSM supports full-graph compilation with CUDA graphs!
```python
import torch
import copy
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset
model_id = "sesame/csm-1b"
device = "cuda"
# set logs to ensure no recompilation and graph breaks
torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True)
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
# use static cache, enabling automatically torch compile with fullgraph and reduce-overhead
model.generation_config.max_length = 250 # big enough to avoid recompilation
model.generation_config.max_new_tokens = None # would take precedence over max_length
model.generation_config.cache_implementation = "static"
model.depth_decoder.generation_config.cache_implementation = "static"
# generation kwargs
gen_kwargs = {
"do_sample": False,
"depth_decoder_do_sample": False,
"temperature": 1.0,
"depth_decoder_temperature": 1.0,
}
# Define a timing decorator
class TimerContext:
def __init__(self, name="Execution"):
self.name = name
self.start_event = None
self.end_event = None
def __enter__(self):
# Use CUDA events for more accurate GPU timing
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
self.start_event.record()
return self
def __exit__(self, *args):
self.end_event.record()
torch.cuda.synchronize()
elapsed_time = self.start_event.elapsed_time(self.end_event) / 1000.0
print(f"{self.name} time: {elapsed_time:.4f} seconds")
# prepare the inputs
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
conversation = [
{
"role": f"{ds[0]['speaker_id']}",
"content": [
{"type": "text", "text": ds[0]["text"]},
{"type": "audio", "path": ds[0]["audio"]["array"]},
],
},
{
"role": f"{ds[1]['speaker_id']}",
"content": [
{"type": "text", "text": ds[1]["text"]},
{"type": "audio", "path": ds[1]["audio"]["array"]},
],
},
{
"role": f"{ds[2]['speaker_id']}",
"content": [
{"type": "text", "text": ds[2]["text"]},
],
},
]
padded_inputs_1 = processor.apply_chat_template(
conversation,
tokenize=True,
return_dict=True,
).to(device)
print("\n" + "="*50)
print("First generation - compiling and recording CUDA graphs...")
with TimerContext("First generation"):
_ = model.generate(**padded_inputs_1, **gen_kwargs)
print("="*50)
print("\n" + "="*50)
print("Second generation - fast !!!")
with TimerContext("Second generation"):
_ = model.generate(**padded_inputs_1, **gen_kwargs)
print("="*50)
# now with different inputs
conversation = [
{
"role": f"{ds[0]['speaker_id']}",
"content": [
{"type": "text", "text": ds[2]["text"]},
{"type": "audio", "path": ds[2]["audio"]["array"]},
],
},
{
"role": f"{ds[1]['speaker_id']}",
"content": [
{"type": "text", "text": ds[3]["text"]},
{"type": "audio", "path": ds[3]["audio"]["array"]},
],
},
{
"role": f"{ds[2]['speaker_id']}",
"content": [
{"type": "text", "text": ds[4]["text"]},
],
},
]
padded_inputs_2 = processor.apply_chat_template(
conversation,
tokenize=True,
return_dict=True,
).to(device)
print("\n" + "="*50)
print("Generation with other inputs!")
with TimerContext("Generation with different inputs"):
_ = model.generate(**padded_inputs_2, **gen_kwargs)
print("="*50)
```
### Training
CSM Transformers integration supports training!
```python
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "sesame/csm-1b"
device = "cuda"
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
model.train()
model.codec_model.eval()
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
# ensure the audio is 24kHz
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
conversation = []
# context
for text, audio, speaker_id in zip(ds[:4]["text"], ds[:4]["audio"], ds[:4]["speaker_id"]):
conversation.append(
{
"role": f"{speaker_id}",
"content": [{"type": "text", "text": text}, {"type": "audio", "path": audio["array"]}],
}
)
inputs = processor.apply_chat_template(
conversation,
tokenize=True,
return_dict=True,
output_labels=True,
).to(device)
out = model(**inputs)
out.loss.backward()
```
This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb).
The original code can be found [here](https://github.com/SesameAILabs/csm).
## CsmConfig
[[autodoc]] CsmConfig
## CsmDepthDecoderConfig
[[autodoc]] CsmDepthDecoderConfig
## CsmProcessor
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/fig1.jpg"/>
</div>
[[autodoc]] CsmProcessor
- __call__
## CsmForConditionalGeneration
[[autodoc]] CsmForConditionalGeneration
- forward
- generate
## CsmDepthDecoderForCausalLM
[[autodoc]] CsmDepthDecoderForCausalLM
## CsmDepthDecoderModel
[[autodoc]] CsmDepthDecoderModel
## CsmBackboneModel
[[autodoc]] CsmBackboneModel

View File

@ -53,6 +53,7 @@ The original code for vision can be found [here](https://github.com/facebookrese
- For Data2VecAudio, preprocessing is identical to [`Wav2Vec2Model`], including feature extraction
- For Data2VecText, preprocessing is identical to [`RobertaModel`], including tokenization.
- For Data2VecVision, preprocessing is identical to [`BeitModel`], including feature extraction.
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
### Using Scaled Dot Product Attention (SDPA)

View File

@ -28,8 +28,8 @@ We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 67
We are super happy to make this code community-powered, and would love to see how you can best optimize the following:
- current implementation uses the "naive" attention compution (so not really MLA)
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `intetrations/tensor_parallel`.
- current implementation uses the eleuther formula for ROPE, using the orginal one would be more efficient! (should still follow our API)
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `integrations/tensor_parallel`.
- current implementation uses the eleuther formula for ROPE, using the original one would be more efficient! (should still follow our API)
- static cache is not supported (this should be just a generation config issue / config shape issues)
### Usage tips

View File

@ -111,33 +111,68 @@ print("Predicted class:", model.config.id2label[predicted_class_idx])
## Notes
- Use [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html) to speedup inference. However, it will produce some mismatched elements. The difference between the original and traced model is 1e-4.
- The example below shows how to split the output tensor into:
- one embedding for the whole image, commonly referred to as a `CLS` token,
useful for classification and retrieval
- a set of local embeddings, one for each `14x14` patch of the input image,
useful for dense tasks, such as semantic segmentation
```py
import torch
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
```py
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
print(image.height, image.width) # [480, 640]
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
model = AutoModel.from_pretrained('facebook/dinov2-base')
patch_size = model.config.patch_size
inputs = processor(images=image, return_tensors="pt")
print(inputs.pixel_values.shape) # [1, 3, 224, 224]
batch_size, rgb, img_height, img_width = inputs.pixel_values.shape
num_patches_height, num_patches_width = img_height // patch_size, img_width // patch_size
num_patches_flat = num_patches_height * num_patches_width
outputs = model(**inputs)
last_hidden_states = outputs[0]
print(last_hidden_states.shape) # [1, 1 + 256, 768]
assert last_hidden_states.shape == (batch_size, 1 + num_patches_flat, model.config.hidden_size)
cls_token = last_hidden_states[:, 0, :]
patch_features = last_hidden_states[:, 1:, :].unflatten(1, (num_patches_height, num_patches_width))
```
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
- Use [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html) to speedup inference.
However, it will produce some mismatched elements. The difference between the original and traced model is 1e-4.
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
model = AutoModel.from_pretrained('facebook/dinov2-base')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs[0]
# We have to force return_dict=False for tracing
model.config.return_dict = False
with torch.no_grad():
traced_model = torch.jit.trace(model, [inputs.pixel_values])
traced_outputs = traced_model(inputs.pixel_values)
print((last_hidden_states - traced_outputs[0]).abs().max())
```
```py
import torch
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
model = AutoModel.from_pretrained('facebook/dinov2-base')
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs[0]
# We have to force return_dict=False for tracing
model.config.return_dict = False
with torch.no_grad():
traced_model = torch.jit.trace(model, [inputs.pixel_values])
traced_outputs = traced_model(inputs.pixel_values)
print((last_hidden_states - traced_outputs[0]).abs().max())
```
## Dinov2Config

View File

@ -83,10 +83,10 @@ print(f"Predicted label: {predicted_label}")
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
echo -e "I love using Hugging Face Transformers!" | transformers-cli run --task text-classification --model distilbert-base-uncased-finetuned-sst-2-english
echo -e "I love using Hugging Face Transformers!" | transformers run --task text-classification --model distilbert-base-uncased-finetuned-sst-2-english
```
</hfoption>
@ -213,7 +213,3 @@ echo -e "I love using Hugging Face Transformers!" | transformers-cli run --task
</jax>
</frameworkcontent>

View File

@ -45,9 +45,9 @@ import torch
from transformers import pipeline
classifier = pipeline(
task="text-classification",
model="bhadresh-savani/electra-base-emotion",
torch_dtype=torch.float16,
task="text-classification",
model="bhadresh-savani/electra-base-emotion",
torch_dtype=torch.float16,
device=0
)
classifier("This restaurant has amazing food!")
@ -64,7 +64,7 @@ tokenizer = AutoTokenizer.from_pretrained(
"bhadresh-savani/electra-base-emotion",
)
model = AutoModelForSequenceClassification.from_pretrained(
"bhadresh-savani/electra-base-emotion",
"bhadresh-savani/electra-base-emotion",
torch_dtype=torch.float16
)
inputs = tokenizer("ELECTRA is more efficient than BERT", return_tensors="pt")
@ -78,10 +78,10 @@ print(f"Predicted label: {predicted_label}")
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
echo -e "This restaurant has amazing food." | transformers-cli run --task text-classification --model bhadresh-savani/electra-base-emotion --device 0
echo -e "This restaurant has amazing food." | transformers run --task text-classification --model bhadresh-savani/electra-base-emotion --device 0
```
</hfoption>
@ -96,12 +96,12 @@ echo -e "This restaurant has amazing food." | transformers-cli run --task text-c
```py
# Example of properly handling padding with attention masks
inputs = tokenizer(["Short text", "This is a much longer text that needs padding"],
padding=True,
inputs = tokenizer(["Short text", "This is a much longer text that needs padding"],
padding=True,
return_tensors="pt")
outputs = model(**inputs) # automatically uses the attention_mask
```
- When using the discriminator for a downstream task, you can load it into any of the ELECTRA model classes ([`ElectraForSequenceClassification`], [`ElectraForTokenClassification`], etc.).
## ElectraConfig

View File

@ -174,6 +174,10 @@ for i, image in enumerate(images['pixel_values']):
[[autodoc]] Emu3TextModel
- forward
## Emu3Model
[[autodoc]] Emu3Model
## Emu3ForCausalLM
[[autodoc]] Emu3ForCausalLM

View File

@ -41,7 +41,7 @@ import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
task="text-generation",
model="tiiuae/falcon-7b-instruct",
torch_dtype=torch.bfloat16,
device=0
@ -76,11 +76,11 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
# pip install -U flash-attn --no-build-isolation
transformers-cli chat --model_name_or_path tiiuae/falcon-7b-instruct --torch_dtype auto --attn_implementation flash_attention_2 --device 0
transformers chat tiiuae/falcon-7b-instruct --torch_dtype auto --attn_implementation flash_attention_2 --device 0
```
</hfoption>
@ -150,4 +150,4 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
## FalconForQuestionAnswering
[[autodoc]] FalconForQuestionAnswering
- forward
- forward

View File

@ -0,0 +1,65 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FalconH1
## Overview
The FalconH1 model was developed by the TII Pretraining team. A comprehensive research paper covering the architecture, pretraining dynamics, experimental results, and conclusions is forthcoming. You can read more about this series in [this website](https://github.com/tiiuae/Falcon-H1).
## Contributors
This model was contributed by [DhiyaEddine](https://huggingface.co/DhiyaEddine), [ybelkada](https://huggingface.co/ybelkada), [JingweiZuo](https://huggingface.co/JingweiZuo), [IlyasChahed](https://huggingface.co/IChahed), and [MaksimVelikanov](https://huggingface.co/yellowvm).
The original code can be found [here](https://github.com/tiiuae/Falcon-H1).
## FalconH1Config
| Model | Depth | Dim | Attn Heads | KV | Mamba Heads | d_head | d_state | Ctx Len |
|-----------|--------|------|------------|----|--------------|--------------|------|-----------------|
| H1 0.5B | 36 | 1024 | 8 | 2 | 24 | 64 / 64 | 128 | 4K, 16K-SFT |
| H1 1.5B | 24 | 2048 | 8 | 2 | 48 | 128 / 64 | 256 | 128K |
| H1 1.5B-d | 66 | 1280 | 6 | 2 | 24 | 128 / 64 | 256 | 128K |
| H1 3B | 32 | 2560 | 10 | 2 | 32 | 128 / 128 | 256 | 128K |
| H1 7B | 44 | 3072 | 12 | 2 | 24 | 128 / 128 | 256 | 256K |
| H1 34B | 72 | 5120 | 20 | 4 | 32 | 128 / 128 | 256 | 256K |
[[autodoc]] FalconH1Config
<!---
## Usage Tips
Tips:
- The architecture is based on Mamba-2 models.
## FalconH1Model
[[autodoc]] FalconH1Model
- forward
-->
## FalconH1ForCausalLM
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon-H1-7B-Instruct")
message = ["Mamba is a snake with following properties "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
[[autodoc]] FalconH1ForCausalLM
- forward
This HF implementation is contributed by [younesbelkada](https://github.com/younesbelkada) and [DhiaEddineRhaiem](https://github.com/dhiaEddineRhaiem).

View File

@ -39,7 +39,7 @@ import torch
from transformers import pipeline
pipeline = pipeline(
"text-generation",
"text-generation",
model="tiiuae/falcon-mamba-7b-instruct",
torch_dtype=torch.bfloat16,
device=0
@ -73,10 +73,10 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
transformers-cli chat --model_name_or_path tiiuae/falcon-mamba-7b-instruct --torch_dtype auto --device 0
transformers chat tiiuae/falcon-mamba-7b-instruct --torch_dtype auto --device 0
```
</hfoption>

View File

@ -103,6 +103,10 @@ The `LlamaTokenizer` is used as it is a standard wrapper around sentencepiece.
[[autodoc]] FuyuConfig
## FuyuModel
[[autodoc]] FuyuModel
## FuyuForCausalLM
[[autodoc]] FuyuForCausalLM

View File

@ -80,10 +80,10 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
echo -e "LLMs generate text through a process known as" | transformers-cli run --task text-generation --model google/gemma-2b --device 0
echo -e "LLMs generate text through a process known as" | transformers run --task text-generation --model google/gemma-2b --device 0
```
</hfoption>
@ -114,8 +114,8 @@ model = AutoModelForCausalLM.from_pretrained(
input_text = "LLMs generate text through a process known as."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(
**input_ids,
max_new_tokens=50,
**input_ids,
max_new_tokens=50,
cache_implementation="static"
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
@ -127,7 +127,7 @@ Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/bl
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("LLMs generate text through a process known as")
visualizer("LLMs generate text through a process known as")
```
<div class="flex justify-center">

View File

@ -58,7 +58,7 @@ pipe("Explain quantum computing simply. ", max_new_tokens=50)
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
@ -80,16 +80,16 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model google/gemma-2-2b --device 0
echo -e "Explain quantum computing simply." | transformers run --task text-generation --model google/gemma-2-2b --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
@ -118,7 +118,7 @@ Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/bl
```python
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("You are an assistant. Make sure you print me")
visualizer("You are an assistant. Make sure you print me")
```
<div class="flex justify-center">
@ -137,7 +137,7 @@ visualizer("You are an assistant. Make sure you print me")
inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
max_generated_length = inputs.input_ids.shape[1] + 10
past_key_values = HybridCache(config=model.config, max_batch_size=1,
past_key_values = HybridCache(config=model.config, max_batch_size=1,
max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
```

View File

@ -28,7 +28,7 @@ rendered properly in your Markdown viewer.
The instruction-tuned variant was post-trained with knowledge distillation and reinforcement learning.
You can find all the original Gemma 3 checkpoints under the [Gemma 3](https://huggingface.co/collections/meta-llama/llama-2-family-661da1f90a9d678b6f55773b) release.
You can find all the original Gemma 3 checkpoints under the [Gemma 3](https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d) release.
> [!TIP]
> Click on the Gemma 3 models in the right sidebar for more examples of how to apply Gemma to different vision and language tasks.
@ -99,10 +99,10 @@ print(processor.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model google/gemma-3-1b-pt --device 0
echo -e "Plants create energy through a process known as" | transformers run --task text-generation --model google/gemma-3-1b-pt --device 0
```
</hfoption>
@ -254,6 +254,10 @@ visualizer("<img>What is shown in this image?")
[[autodoc]] Gemma3TextModel
- forward
## Gemma3Model
[[autodoc]] Gemma3Model
## Gemma3ForCausalLM
[[autodoc]] Gemma3ForCausalLM

View File

@ -277,6 +277,10 @@ alt="drawing" width="600"/>
[[autodoc]] GotOcr2Processor
## GotOcr2Model
[[autodoc]] GotOcr2Model
## GotOcr2ForConditionalGeneration
[[autodoc]] GotOcr2ForConditionalGeneration

View File

@ -64,15 +64,21 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
<hfoption id="transformers CLI">
```bash
echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model openai-community/gpt2 --device 0
echo -e "Hello, I'm a language model" | transformers run --task text-generation --model openai-community/gpt2 --device 0
```
</hfoption>
</hfoptions>
One can also serve the model using vLLM with the `transformers backend`.
```
vllm serve openai-community/gpt2 --model-imp transformers
```
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
@ -82,16 +88,16 @@ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"openai-community/gpt2-xl",
quantization_config=quantization_config,
device_map="auto"
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-xl")

View File

@ -46,8 +46,12 @@ The main differences compared to GPT2.
- Merge the key and value caches into one (this changes the format of layer_past/ present, does it risk creating problems?)
- Use the memory layout (self.num_heads, 3, self.head_dim) instead of `(3, self.num_heads, self.head_dim)` for the QKV tensor with MHA. (prevents an overhead with the merged key and values, but makes the checkpoints incompatible with the original openai-community/gpt2 model).
You can read more about the optimizations in the [original pull request](https://github.com/huggingface/transformers/pull/22575)
> [!NOTE]
> The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
## Combining Starcoder and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.

View File

@ -14,93 +14,94 @@ rendered properly in your Markdown viewer.
-->
# GPT Neo
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
## Overview
The GPTNeo model was released in the [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) repository by Sid
Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. It is a GPT2 like causal language model trained on the
[Pile](https://pile.eleuther.ai/) dataset.
The architecture is similar to GPT2 except that GPT Neo uses local attention in every other layer with a window size of
256 tokens.
This model was contributed by [valhalla](https://huggingface.co/valhalla).
## Usage example
The `generate()` method can be used to generate text using GPT Neo model.
```python
>>> from transformers import GPTNeoForCausalLM, GPT2Tokenizer
>>> model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
>>> prompt = (
... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
... "previously unexplored valley, in the Andes Mountains. Even more surprising to the "
... "researchers was the fact that the unicorns spoke perfect English."
... )
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
```
## Combining GPT-Neo and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature, and make sure your hardware is compatible with Flash-Attention 2. More details are available [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2) concerning the installation.
Make sure as well to load your model in half-precision (e.g. `torch.float16`).
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
>>> prompt = "def hello_world():"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"def hello_world():\n >>> run_script("hello.py")\n >>> exit(0)\n<|endoftext|>"
```
### Expected speedups
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `EleutherAI/gpt-neo-2.7B` checkpoint and the Flash Attention 2 version of the model.
Note that for GPT-Neo it is not possible to train / run on very long context as the max [position embeddings](https://huggingface.co/EleutherAI/gpt-neo-2.7B/blob/main/config.json#L58 ) is limited to 2048 - but this is applicable to all gpt-neo models and not specific to FA-2
<div style="text-align: center">
<img src="https://user-images.githubusercontent.com/49240599/272241893-b1c66b75-3a48-4265-bc47-688448568b3d.png">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
## Resources
## GPT-Neo
- [Text classification task guide](../tasks/sequence_classification)
- [Causal language modeling task guide](../tasks/language_modeling)
[GPT-Neo](https://zenodo.org/records/5297715) is an open-source alternative to GPT-2 and GPT-3 models, built with Mesh TensorFlow for TPUs. GPT-Neo uses local attention in every other layer for more efficiency. It is trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), a diverse dataset consisting of 22 smaller high-quality datasets.
You can find all the original GPT-Neo checkpoints under the [EleutherAI](https://huggingface.co/EleutherAI?search_models=gpt-neo) organization.
> [!TIP]
> Click on the GPT-Neo models in the right sidebar for more examples of how to apply GPT Neo to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(task="text-generation", model="EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device=0)
pipeline("Hello, I'm a language model")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B", torch_dtype=torch.float16, device_map="auto", attn_implementation="flash_attention_2")
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
input_ids = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model EleutherAI/gpt-neo-1.3B --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
)
model = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-2.7B",
quantization_config=quantization_config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B")
inputs = tokenizer("Hello, I'm a language model", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Notes
- Pad inputs on the right because GPT-Neo uses absolute position embeddings.
## GPTNeoConfig

Some files were not shown because too many files have changed in this diff Show More