Compare commits

...

4 Commits

Author SHA1 Message Date
c8ed9fb4fb update setup.py 2023-12-15 17:15:29 +01:00
e0209b2354 fix test 2023-12-15 16:24:55 +01:00
7626ea4932 fix hf-internal-testing/fixtures_image_utils 2023-12-15 15:01:58 +01:00
ce805595fc test datasets@pr 2023-12-15 14:30:02 +01:00
8 changed files with 30 additions and 30 deletions

View File

@ -144,6 +144,7 @@ class CircleCIJob:
}
}
)
steps.append({"run": {"name": "Install `datasets@pr`", "command": 'pip uninstall datasets -y && pip install git+https://github.com/huggingface/datasets.git@refs/pull/6493/head'}})
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})

View File

@ -102,7 +102,7 @@ _deps = [
"codecarbon==1.2.0",
"cookiecutter==1.7.3",
"dataclasses",
"datasets!=2.5.0",
"datasets!=2.5.0", # pinned to datasets@refs/pull/6493/head in create_circleci_config.py
"decord==0.6.0",
"deepspeed>=0.9.3",
"diffusers",

View File

@ -226,10 +226,10 @@ class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
def prepare_images():
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test")
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
image1 = Image.open(dataset[4]["file"])
image2 = Image.open(dataset[5]["file"])
image1 = dataset[4]["image"]
image2 = dataset[5]["image"]
images = [image1, image2]

View File

@ -68,17 +68,17 @@ class DepthEstimationPipelineTests(unittest.TestCase):
self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, outputs)
import datasets
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
outputs = depth_estimator(
[
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
dataset[0]["image"],
# LA
dataset[1]["file"],
dataset[1]["image"],
# L
dataset[2]["file"],
dataset[2]["image"],
]
)
self.assertEqual(

View File

@ -72,7 +72,7 @@ class ImageClassificationPipelineTests(unittest.TestCase):
import datasets
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
# Accepts URL + PIL.Image + lists
outputs = image_classifier(
@ -80,11 +80,11 @@ class ImageClassificationPipelineTests(unittest.TestCase):
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
dataset[0]["image"],
# LA
dataset[1]["file"],
dataset[1]["image"],
# L
dataset[2]["file"],
dataset[2]["image"],
]
)
self.assertEqual(

View File

@ -113,18 +113,18 @@ class ImageSegmentationPipelineTests(unittest.TestCase):
# to make it work
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
# RGBA
outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
outputs = image_segmenter(dataset[0]["image"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# LA
outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
outputs = image_segmenter(dataset[1]["image"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
# L
outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
outputs = image_segmenter(dataset[2]["image"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
m = len(outputs)
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

View File

@ -73,17 +73,17 @@ class ObjectDetectionPipelineTests(unittest.TestCase):
import datasets
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
batch = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
dataset[0]["image"],
# LA
dataset[1]["file"],
dataset[1]["image"],
# L
dataset[2]["file"],
dataset[2]["image"],
]
batch_outputs = object_detector(batch, threshold=0.0)

View File

@ -538,9 +538,9 @@ class LoadImageTester(unittest.TestCase):
self.assertEqual(img_arr.shape, (64, 32, 3))
def test_load_img_rgba(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img = load_image(dataset[0]["file"]) # img with mode RGBA
img = load_image(dataset[0]["image"]) # img with mode RGBA
img_arr = np.array(img)
self.assertEqual(
@ -549,9 +549,9 @@ class LoadImageTester(unittest.TestCase):
)
def test_load_img_la(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img = load_image(dataset[1]["file"]) # img with mode LA
img = load_image(dataset[1]["image"]) # img with mode LA
img_arr = np.array(img)
self.assertEqual(
@ -560,9 +560,9 @@ class LoadImageTester(unittest.TestCase):
)
def test_load_img_l(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img = load_image(dataset[2]["file"]) # img with mode L
img = load_image(dataset[2]["image"]) # img with mode L
img_arr = np.array(img)
self.assertEqual(
@ -571,10 +571,9 @@ class LoadImageTester(unittest.TestCase):
)
def test_load_img_exif_transpose(self):
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
img_file = dataset[3]["file"]
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
img_without_exif_transpose = PIL.Image.open(img_file)
img_without_exif_transpose = dataset[3]["image"]
img_arr_without_exif_transpose = np.array(img_without_exif_transpose)
self.assertEqual(
@ -582,7 +581,7 @@ class LoadImageTester(unittest.TestCase):
(333, 500, 3),
)
img_with_exif_transpose = load_image(img_file)
img_with_exif_transpose = load_image(dataset[3]["image"])
img_arr_with_exif_transpose = np.array(img_with_exif_transpose)
self.assertEqual(