mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-21 01:23:56 +08:00
Compare commits
4 Commits
v4.51.2
...
test-datas
Author | SHA1 | Date | |
---|---|---|---|
c8ed9fb4fb | |||
e0209b2354 | |||
7626ea4932 | |||
ce805595fc |
@ -144,6 +144,7 @@ class CircleCIJob:
|
||||
}
|
||||
}
|
||||
)
|
||||
steps.append({"run": {"name": "Install `datasets@pr`", "command": 'pip uninstall datasets -y && pip install git+https://github.com/huggingface/datasets.git@refs/pull/6493/head'}})
|
||||
steps.append({"run": {"name": "Show installed libraries and their versions", "command": "pip freeze | tee installed.txt"}})
|
||||
steps.append({"store_artifacts": {"path": "~/transformers/installed.txt"}})
|
||||
|
||||
|
2
setup.py
2
setup.py
@ -102,7 +102,7 @@ _deps = [
|
||||
"codecarbon==1.2.0",
|
||||
"cookiecutter==1.7.3",
|
||||
"dataclasses",
|
||||
"datasets!=2.5.0",
|
||||
"datasets!=2.5.0", # pinned to datasets@refs/pull/6493/head in create_circleci_config.py
|
||||
"decord==0.6.0",
|
||||
"deepspeed>=0.9.3",
|
||||
"diffusers",
|
||||
|
@ -226,10 +226,10 @@ class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
||||
|
||||
|
||||
def prepare_images():
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test")
|
||||
dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
image1 = Image.open(dataset[4]["file"])
|
||||
image2 = Image.open(dataset[5]["file"])
|
||||
image1 = dataset[4]["image"]
|
||||
image2 = dataset[5]["image"]
|
||||
|
||||
images = [image1, image2]
|
||||
|
||||
|
@ -68,17 +68,17 @@ class DepthEstimationPipelineTests(unittest.TestCase):
|
||||
self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, outputs)
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
outputs = depth_estimator(
|
||||
[
|
||||
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
||||
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
||||
# RGBA
|
||||
dataset[0]["file"],
|
||||
dataset[0]["image"],
|
||||
# LA
|
||||
dataset[1]["file"],
|
||||
dataset[1]["image"],
|
||||
# L
|
||||
dataset[2]["file"],
|
||||
dataset[2]["image"],
|
||||
]
|
||||
)
|
||||
self.assertEqual(
|
||||
|
@ -72,7 +72,7 @@ class ImageClassificationPipelineTests(unittest.TestCase):
|
||||
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
# Accepts URL + PIL.Image + lists
|
||||
outputs = image_classifier(
|
||||
@ -80,11 +80,11 @@ class ImageClassificationPipelineTests(unittest.TestCase):
|
||||
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
||||
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
||||
# RGBA
|
||||
dataset[0]["file"],
|
||||
dataset[0]["image"],
|
||||
# LA
|
||||
dataset[1]["file"],
|
||||
dataset[1]["image"],
|
||||
# L
|
||||
dataset[2]["file"],
|
||||
dataset[2]["image"],
|
||||
]
|
||||
)
|
||||
self.assertEqual(
|
||||
|
@ -113,18 +113,18 @@ class ImageSegmentationPipelineTests(unittest.TestCase):
|
||||
# to make it work
|
||||
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
|
||||
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
# RGBA
|
||||
outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
|
||||
outputs = image_segmenter(dataset[0]["image"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
|
||||
m = len(outputs)
|
||||
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
|
||||
# LA
|
||||
outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
|
||||
outputs = image_segmenter(dataset[1]["image"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
|
||||
m = len(outputs)
|
||||
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
|
||||
# L
|
||||
outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
|
||||
outputs = image_segmenter(dataset[2]["image"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
|
||||
m = len(outputs)
|
||||
self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
|
||||
|
||||
|
@ -73,17 +73,17 @@ class ObjectDetectionPipelineTests(unittest.TestCase):
|
||||
|
||||
import datasets
|
||||
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
batch = [
|
||||
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
||||
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
||||
# RGBA
|
||||
dataset[0]["file"],
|
||||
dataset[0]["image"],
|
||||
# LA
|
||||
dataset[1]["file"],
|
||||
dataset[1]["image"],
|
||||
# L
|
||||
dataset[2]["file"],
|
||||
dataset[2]["image"],
|
||||
]
|
||||
batch_outputs = object_detector(batch, threshold=0.0)
|
||||
|
||||
|
@ -538,9 +538,9 @@ class LoadImageTester(unittest.TestCase):
|
||||
self.assertEqual(img_arr.shape, (64, 32, 3))
|
||||
|
||||
def test_load_img_rgba(self):
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
img = load_image(dataset[0]["file"]) # img with mode RGBA
|
||||
img = load_image(dataset[0]["image"]) # img with mode RGBA
|
||||
img_arr = np.array(img)
|
||||
|
||||
self.assertEqual(
|
||||
@ -549,9 +549,9 @@ class LoadImageTester(unittest.TestCase):
|
||||
)
|
||||
|
||||
def test_load_img_la(self):
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
img = load_image(dataset[1]["file"]) # img with mode LA
|
||||
img = load_image(dataset[1]["image"]) # img with mode LA
|
||||
img_arr = np.array(img)
|
||||
|
||||
self.assertEqual(
|
||||
@ -560,9 +560,9 @@ class LoadImageTester(unittest.TestCase):
|
||||
)
|
||||
|
||||
def test_load_img_l(self):
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
img = load_image(dataset[2]["file"]) # img with mode L
|
||||
img = load_image(dataset[2]["image"]) # img with mode L
|
||||
img_arr = np.array(img)
|
||||
|
||||
self.assertEqual(
|
||||
@ -571,10 +571,9 @@ class LoadImageTester(unittest.TestCase):
|
||||
)
|
||||
|
||||
def test_load_img_exif_transpose(self):
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
|
||||
img_file = dataset[3]["file"]
|
||||
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
||||
|
||||
img_without_exif_transpose = PIL.Image.open(img_file)
|
||||
img_without_exif_transpose = dataset[3]["image"]
|
||||
img_arr_without_exif_transpose = np.array(img_without_exif_transpose)
|
||||
|
||||
self.assertEqual(
|
||||
@ -582,7 +581,7 @@ class LoadImageTester(unittest.TestCase):
|
||||
(333, 500, 3),
|
||||
)
|
||||
|
||||
img_with_exif_transpose = load_image(img_file)
|
||||
img_with_exif_transpose = load_image(dataset[3]["image"])
|
||||
img_arr_with_exif_transpose = np.array(img_with_exif_transpose)
|
||||
|
||||
self.assertEqual(
|
||||
|
Reference in New Issue
Block a user