Compare commits

...

290 Commits

Author SHA1 Message Date
488c084e86 use config attr 2025-04-28 18:26:34 +02:00
9c5b1319d0 [config] revert #37603 (#37821)
revert
2025-04-28 16:28:30 +02:00
9e730689c3 change XLA deprecated api (#37741)
* deprecated api

* fix
2025-04-28 16:27:41 +02:00
2933894985 Fix error of HPU TP (#37782)
* Fix error of HPU TP

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Add the init distrubuted for hpu

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Fix error of make style

Signed-off-by: yuanwu <yuan.wu@intel.com>

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
2025-04-28 15:47:16 +02:00
da4ff2a5f5 Add Optional to remaining types (#37808)
More Optional typing

Signed-off-by: cyy <cyyever@outlook.com>
2025-04-28 14:20:45 +01:00
1a9188a54e FIX: Faulty PEFT tests (#37757)
Two PEFT tests are actually failing:

tests/peft_integration/test_peft_integration.py::PeftIntegrationTester::test_delete_adapter
tests/peft_integration/test_peft_integration.py::PeftIntegrationTester::test_peft_pipeline_no_warning

This must have been going on for some time but was apparently never
noticed. The cause is that the tests themselves are faulty, the PEFT
integration is correct in these cases.

test_delete_adapter

The first faulty test was introduced by #34650. AFAICT, it should never
have passed in the first place, the PEFT integration logic was not
changed in the meantime. At this point, the logs for the PR CI are gone,
so I'm not sure if the test passed back then or not.

test_peft_pipeline_no_warning

This test was introduced in #36783 and should also never have passed, as
the self.assertNoLogs context manager only returns None, thus the assert
should never have worked (mea culpa for suggesting this code snippet).
Here too, the CI logs are deleted by now, so I can't check if the test
already failed back then.
2025-04-28 15:10:46 +02:00
b262680af4 Add Bitnet model (#37742)
* Adding BitNet b1.58 Model

* Add testing code for BitNet

* Fix format issues

* Fix docstring format issues

* Fix docstring

* Fix docstring

* Fix: weight back to uint8

* Fix

* Fix format issues

* Remove copy comments

* Add model link to the docstring

* Fix: set tie_word_embeddings default to false

* Update

* Generate modeling file

* Change config name for automatically generating modeling file.

* Generate modeling file

* Fix class name

* Change testing branch

* Remove unused param

* Fix config docstring

* Add docstring for BitNetQuantConfig.

* Fix docstring

* Update docs/source/en/model_doc/bitnet.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/model_doc/bitnet.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update bitnet config

* Update explanation between online and offline mode

* Remove space

* revert changes

* more revert

* spaces

* update

* fix-copies

* doc fix

* fix minor nits

* empty

* small nit

* empty

---------

Co-authored-by: Shuming Ma <shumingma@pku.edu.cn>
Co-authored-by: shumingma <shmingm@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-28 15:08:46 +02:00
82862ce443 [RT-DETR] Improve docs (#37814)
Fix docs
2025-04-28 13:19:24 +02:00
97e57b2545 Fix: Correct tensor shape comment in Mamba modeling (#37801)
* Fix: Correct tensor shape comment in Mamba modeling

* Update src/transformers/models/mamba/modeling_mamba.py

* Update src/transformers/models/mamba/modeling_mamba.py

---------

Co-authored-by: ShadyPi <11342288+shadypi@user.noreply.gitee.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-04-28 11:56:42 +01:00
33493542aa [doc] fix the code examples in qwen doc (#37803) 2025-04-28 11:56:32 +01:00
d5fa7d2d19 Fix typos in strings and comments (#37799) 2025-04-28 11:39:11 +01:00
f466603963 Define warmup allocator for torchao quantization (#37764)
* torchao allocator

* add comment

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-28 10:45:55 +02:00
a41b6d9b5c Fix the fsdp config cannot work issue. (#37549)
* Fix the fsdp config cannot work issue.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Check the fsdp_config type

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Add the accelerate_fsdp_config test

Signed-off-by: yuanwu <yuan.wu@intel.com>

* fix error of make style

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Add key check

Signed-off-by: yuanwu <yuan.wu@intel.com>

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-28 10:44:51 +02:00
816b37010c Gemma3 is Torch Exportable (#37728)
* Gemma3 is Torch Exportable

* Expand the support to other mdoels using HybridCache

---------

Co-authored-by: Guang Yang <guangyang@fb.com>
2025-04-28 09:36:46 +02:00
SR
397a5ede33 Fix error message in hub.py (#37796)
Fix error message
2025-04-25 14:03:06 -07:00
6ce675ee81 fix performance issue in convert_ids_to_tokens (#37773) 2025-04-25 22:00:50 +02:00
57c620bf8a chore: update SigLIP2 model card (#37624)
* update siglip2 model card

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* address comments

* separate naflex and fixres variant

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip2.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-25 12:46:17 -07:00
eb4afdd1fb [i18n-KO] Translated keypoint_detection.md to Korean (#36649)
* fix: manual edits

* fix: manual edits

* fix: manual edits

* Update docs/source/ko/tasks/keypoint_detection.md

Anchor lower modify

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/keypoint_detection.md

connect letter

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/keypoint_detection.md

modify to usual words

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/keypoint_detection.md

modify extension word

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/tasks/keypoint_detection.md

modify to usual words

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/keypoint_detection.md

modify to usual words

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* Update docs/source/ko/tasks/keypoint_detection.md

modify to usual representation

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

---------

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-25 12:24:12 -07:00
555693fbfa fix mpt test of different outputs from cuda (#37691)
* fix mpt test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix mpt tests with Expectations

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix typo

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix output

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-04-25 18:04:56 +02:00
0cfbf9c95b Force torch>=2.6 with torch.load to avoid vulnerability issue (#37785)
* fix all main files

* fix test files

* oups forgot modular

* add link

* update message
2025-04-25 16:57:09 +02:00
eefc86aa31 Fix tensor parallel with non-floating dtypes (#37790)
fix
2025-04-25 15:48:16 +02:00
214062201e Fix typos in strings and comments (#37784)
* Fix typos in strings and comments

* Fix
2025-04-25 13:47:25 +01:00
ba3bd37253 Align gpt2 mask preparation to #37612 (#37787)
Update modeling_gpt2.py
2025-04-25 12:50:30 +02:00
50d231a806 unpin pytest<8 (#37768)
* pytest 8

* pytest 8

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-25 12:34:33 +02:00
79d4bc761d [causal mask] fix preparation with multi-gpu (#37612)
* fix multi-gpu

* forgot non-copied models

* fixup
2025-04-25 09:34:18 +02:00
7bb619d710 🌐 [i18n-KO] Translated roberta.md to Korean (#37069)
* docs: ko: roberta.md

* fix: manual edits

* Apply suggestions from code review

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>

---------

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
2025-04-24 10:00:24 -07:00
cfe666919e Update model card for Gemma (#37674)
* Update Gemma model card

* Updated after review

* Update following review
2025-04-24 09:58:46 -07:00
b2d70e9c49 Fix auto-round hfoption (#37759)
fix
2025-04-24 18:19:38 +02:00
acdbe627e3 Guard DeepSpeed imports (#37755)
* Guard DeepSpeed imports

* Fix import

* Import deepspeed consistently

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-24 18:16:34 +02:00
af6d2756d9 [deps] pin max torch version (#37760)
pin max pt version :(
2025-04-24 16:18:25 +01:00
0302aa1c6e Fix typos in comments (#37694)
Signed-off-by: co63oc <co63oc@users.noreply.github.com>
2025-04-24 15:59:56 +01:00
af000ceb92 Fix load of rng state for resuming training from checkpoint (#37162)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-24 16:55:34 +02:00
0af0a5f969 Fix tied weight loading with TP and loading sub state_dicts (#37758)
Update modeling_utils.py
2025-04-24 16:47:40 +02:00
3af24f7e27 Refine parameter type annotations (#37666) 2025-04-24 15:37:13 +01:00
22e3da92b7 Fix wrong input shapes in doc-string of models (#37729)
* Fix wrong position_ids shape in doc

Supported by ClvpDecoder.forward, line 1212--1215:

src/transformers/models/clvp/modeling_clvp.py:
  1212	        if inputs_embeds is None:
  1213	            inputs_embeds = self.input_embeds_layer(input_ids)
  1214	        position_embeds = self.position_embeds_layer(position_ids)
  1215	        inputs_embeds = inputs_embeds + position_embeds

* Fix possibly wrong input_ids shape in doc

Since 'input_ids_length' was mentioned immediately after the shape `(batch_size, sequence_length)`, it doesn't make sense to me for `input_ids` to have such shape---IMO it ought to have shape `(batch_size, input_ids_length)` instead.

* Fix possibly wrong inputs_embeds shape in doc

Supported by CTRLModel.forward, line 448--449:

src/transformers/models/ctrl/modeling_ctrl.py:
   448	        if inputs_embeds is None:
   449	            inputs_embeds = self.w(input_ids)

This commit is introduced due to commit 6f36b56497828642b65f54ea26aa4064186de57a.

* Fix possibly wrong token_type_ids shape in doc

Supported by CTRLModel.forward, line 441--460:

src/transformers/models/ctrl/modeling_ctrl.py:
   441	        if token_type_ids is not None:
   442	            token_type_ids = token_type_ids.view(-1, input_shape[-1])
   443	            token_type_embeds = self.w(token_type_ids)
   444	            token_type_embeds *= np.sqrt(self.d_model_size)
   445	        else:
   446	            token_type_embeds = 0
   447
   448	        if inputs_embeds is None:
   449	            inputs_embeds = self.w(input_ids)
   450	        # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
   451	        seq_len = input_shape[-1]
   452	        mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device)
   453
   454	        inputs_embeds *= np.sqrt(self.d_model_size)
   455
   456	        # `self.pos_encoding` won't be sent to the correct device along the model, so we do it manually.
   457	        self.pos_encoding = self.pos_encoding.to(device)
   458	        pos_embeds = self.pos_encoding[position_ids, :]
   459
   460	        hidden_states = inputs_embeds + pos_embeds + token_type_embeds

This commit is introduced due to commit 6f36b56497828642b65f54ea26aa4064186de57a.

* Fix possibly wrong position_ids shape in doc

Supported by CTRLModel.forward, line 448--460:

src/transformers/models/ctrl/modeling_ctrl.py:
   448	        if inputs_embeds is None:
   449	            inputs_embeds = self.w(input_ids)
   450	        # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
   451	        seq_len = input_shape[-1]
   452	        mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device)
   453
   454	        inputs_embeds *= np.sqrt(self.d_model_size)
   455
   456	        # `self.pos_encoding` won't be sent to the correct device along the model, so we do it manually.
   457	        self.pos_encoding = self.pos_encoding.to(device)
   458	        pos_embeds = self.pos_encoding[position_ids, :]
   459
   460	        hidden_states = inputs_embeds + pos_embeds + token_type_embeds

This commit is introduced due to commit 6f36b56497828642b65f54ea26aa4064186de57a.

* Fix wrong token_type_ids shape in doc

Supported by TFCTRLMainLayer.call, line 376--394:

src/transformers/models/ctrl/modeling_tf_ctrl.py:
   376	        if token_type_ids is not None:
   377	            token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
   378	            token_type_embeds = self.w(token_type_ids)
   379	            token_type_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, dtype=token_type_embeds.dtype))
   380	        else:
   381	            token_type_embeds = tf.constant(0.0)
   382	        position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
   383
   384	        if inputs_embeds is None:
   385	            check_embeddings_within_bounds(input_ids, self.w.input_dim)
   386	            inputs_embeds = self.w(input_ids)
   387	        seq_len = input_shape[-1]
   388	        mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
   389
   390	        inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, inputs_embeds.dtype))
   391
   392	        pos_embeds = tf.gather(self.pos_encoding, position_ids)
   393	        pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype)
   394	        hidden_states = inputs_embeds + pos_embeds + token_type_embeds

* Fix wrong position_ids shape in doc

Supported by TFCTRLMainLayer.call, line 384--394:

src/transformers/models/ctrl/modeling_tf_ctrl.py:
   384	        if inputs_embeds is None:
   385	            check_embeddings_within_bounds(input_ids, self.w.input_dim)
   386	            inputs_embeds = self.w(input_ids)
   387	        seq_len = input_shape[-1]
   388	        mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
   389
   390	        inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, inputs_embeds.dtype))
   391
   392	        pos_embeds = tf.gather(self.pos_encoding, position_ids)
   393	        pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype)
   394	        hidden_states = inputs_embeds + pos_embeds + token_type_embeds

* Fix wrong inputs_embeds shape in doc

Supported by TFCTRLMainLayer.call, line 384--394:

src/transformers/models/ctrl/modeling_tf_ctrl.py:
   384	        if inputs_embeds is None:
   385	            check_embeddings_within_bounds(input_ids, self.w.input_dim)
   386	            inputs_embeds = self.w(input_ids)
   387	        seq_len = input_shape[-1]
   388	        mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
   389
   390	        inputs_embeds *= tf.math.sqrt(tf.cast(self.d_model_size, inputs_embeds.dtype))
   391
   392	        pos_embeds = tf.gather(self.pos_encoding, position_ids)
   393	        pos_embeds = tf.cast(pos_embeds, dtype=token_type_embeds.dtype)
   394	        hidden_states = inputs_embeds + pos_embeds + token_type_embeds

* Fix wrong inputs_embeds shape in doc

Supported by ClvpDecoder.forward, line 1212--1213:

src/transformers/models/clvp/modeling_clvp.py:
  1212	        if inputs_embeds is None:
  1213	            inputs_embeds = self.input_embeds_layer(input_ids)

* Fix wrong position_ids shape in doc

Supported by FlaxGemmaPreTrainedModel.__call__, line 502--508:

src/transformers/models/gemma/modeling_flax_gemma.py:
   502	        batch_size, sequence_length = input_ids.shape
   503
   504	        if position_ids is None:
   505	            if past_key_values is not None:
   506	                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
   507
   508	            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

* Fix wrong position_ids shape in doc

Supported by FlaxGPT2PreTrainedModel.__call__, line 482--488:

src/transformers/models/gpt2/modeling_flax_gpt2.py:
   482	        batch_size, sequence_length = input_ids.shape
   483
   484	        if position_ids is None:
   485	            if past_key_values is not None:
   486	                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
   487
   488	            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

* Fix wrong position_ids shape in doc

Supported by GPT2Model.forward, line 918--921:

src/transformers/models/gpt2/modeling_gpt2.py:
   918	        if inputs_embeds is None:
   919	            inputs_embeds = self.wte(input_ids)
   920	        position_embeds = self.wpe(position_ids)
   921	        hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)

* Fix wrong inputs_embeds shape in doc

Supported by GPT2Model.forward, line 918--919:

src/transformers/models/gpt2/modeling_gpt2.py:
   918	        if inputs_embeds is None:
   919	            inputs_embeds = self.wte(input_ids)

* Fix wrong labels shape in doc

Supported by GPT2LMHeadModel.forward, line 1156--1157:

src/transformers/models/gpt2/modeling_gpt2.py:
  1156	            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
  1157	            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

* Fix wrong labels shape in doc

Supported by GPT2DoubleHeadsModel.forward, line 1314--1315:

src/transformers/models/gpt2/modeling_gpt2.py:
  1314	            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
  1315	            `labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to

* Fix wrong token_type_ids shape in doc

Supported by TFGPT2MainLayer.call, line 486--500:

src/transformers/models/gpt2/modeling_tf_gpt2.py:
   486	        if inputs_embeds is None:
   487	            check_embeddings_within_bounds(input_ids, self.config.vocab_size)
   488	            inputs_embeds = self.wte(input_ids)
   489
   490	        position_embeds = self.wpe(position_ids)
   491
   492	        if token_type_ids is not None:
   493	            token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
   494	            token_type_embeds = self.wte(token_type_ids)
   495	        else:
   496	            token_type_embeds = tf.constant(0.0)
   497
   498	        position_embeds = tf.cast(position_embeds, dtype=inputs_embeds.dtype)
   499	        token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
   500	        hidden_states = inputs_embeds + position_embeds + token_type_embeds

* Fix wrong position_ids shape in doc

Supported by TFGPT2MainLayer.call, line 486--500:

src/transformers/models/gpt2/modeling_tf_gpt2.py:
   486	        if inputs_embeds is None:
   487	            check_embeddings_within_bounds(input_ids, self.config.vocab_size)
   488	            inputs_embeds = self.wte(input_ids)
   489
   490	        position_embeds = self.wpe(position_ids)
   491
   492	        if token_type_ids is not None:
   493	            token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
   494	            token_type_embeds = self.wte(token_type_ids)
   495	        else:
   496	            token_type_embeds = tf.constant(0.0)
   497
   498	        position_embeds = tf.cast(position_embeds, dtype=inputs_embeds.dtype)
   499	        token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
   500	        hidden_states = inputs_embeds + position_embeds + token_type_embeds

* Fix wrong inputs_embeds shape in doc

Supported by TFGPT2MainLayer.call, line 486--488:

src/transformers/models/gpt2/modeling_tf_gpt2.py:
   486	        if inputs_embeds is None:
   487	            check_embeddings_within_bounds(input_ids, self.config.vocab_size)
   488	            inputs_embeds = self.wte(input_ids)

* Fix wrong position_ids shape in doc

Supported by GPTBigCodeModel.forward, line 962--965:

src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py:
   962	        if inputs_embeds is None:
   963	            inputs_embeds = self.wte(input_ids)
   964	        position_embeds = self.wpe(position_ids)
   965	        hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)

* Fix wrong inputs_embeds shape in doc

Supported by GPTBigCodeModel.forward, line 962--963:

src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py:
   962	        if inputs_embeds is None:
   963	            inputs_embeds = self.wte(input_ids)

* Fix wrong labels shape in doc

Supported by GPTBigCodeForCausalLM.forward, line 1158--1159:

src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py:
  1158	            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
  1159	            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

* Fix wrong position_ids shape in doc

Supported by FlaxGPTNeoModule.__call__, line 549--552:

src/transformers/models/gpt_neo/modeling_flax_gpt_neo.py:
   549	        input_embeds = self.wte(input_ids.astype("i4"))
   550	        position_embeds = self.wpe(position_ids.astype("i4"))
   551
   552	        hidden_states = input_embeds + position_embeds

* Fix wrong position_ids shape in doc

Supported by GPTNeoModel.forward, line 685--720:

src/transformers/models/gpt_neo/modeling_gpt_neo.py:
   685	        if inputs_embeds is None:
   686	            inputs_embeds = self.wte(input_ids)
   687
   688	        # kept for BC (non `Cache` `past_key_values` inputs)
   689	        return_legacy_cache = False
   690	        if use_cache and not isinstance(past_key_values, Cache):
   691	            return_legacy_cache = True
   692	            if past_key_values is None:
   693	                past_key_values = DynamicCache()
   694	            else:
   695	                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
   696	                logger.warning_once(
   697	                    "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
   698	                    "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
   699	                    "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
   700	                )
   701
   702	        seq_length = inputs_embeds.shape[1]
   703	        if cache_position is None:
   704	            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
   705	            cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
   706
   707	        if position_ids is None:
   708	            position_ids = cache_position.unsqueeze(0)
   709
   710	        causal_mask = self._update_causal_mask(
   711	            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
   712	        )
   713
   714	        # Prepare head mask if needed
   715	        # 1.0 in head_mask indicate we keep the head
   716	        # attention_probs has shape bsz x num_heads x N x N
   717	        # head_mask has shape n_layer x batch x num_heads x N x N
   718	        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
   719	        position_embeds = self.wpe(position_ids)
   720	        hidden_states = inputs_embeds + position_embeds

* Fix wrong inputs_embeds shape in doc

Supported by GPTNeoModel.forward, line 685--686:

src/transformers/models/gpt_neo/modeling_gpt_neo.py:
   685	        if inputs_embeds is None:
   686	            inputs_embeds = self.wte(input_ids)

* Fix wrong labels shape in doc

Supported by GPTNeoForCausalLM.forward, line 968--969:

src/transformers/models/gpt_neo/modeling_gpt_neo.py:
   968	            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
   969	            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

* Fix wrong position_ids shape in doc

Supported by FlaxGPTJPreTrainedModel.__call__, line 455--461:

src/transformers/models/gptj/modeling_flax_gptj.py:
   455	        batch_size, sequence_length = input_ids.shape
   456
   457	        if position_ids is None:
   458	            if past_key_values is not None:
   459	                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
   460
   461	            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

* Fix wrong token_type_ids shape in doc

Supported by TFGPTJMainLayer.call, line 482--493:

src/transformers/models/gptj/modeling_tf_gptj.py:
   482	        if inputs_embeds is None:
   483	            check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
   484	            inputs_embeds = self.wte(input_ids, mode="embedding")
   485
   486	        if token_type_ids is not None:
   487	            token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
   488	            token_type_embeds = self.wte(token_type_ids, mode="embedding")
   489	        else:
   490	            token_type_embeds = tf.constant(0.0)
   491
   492	        token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
   493	        hidden_states = inputs_embeds + token_type_embeds

* Fix wrong position_ids shape in doc

Supported by TFGPTJMainLayer.call, line 434--449:

src/transformers/models/gptj/modeling_tf_gptj.py:
   434	        elif input_ids is not None:
   435	            input_shape = shape_list(input_ids)
   436	            input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
   437	        elif inputs_embeds is not None:
   438	            input_shape = shape_list(inputs_embeds)[:-1]
   439	        else:
   440	            raise ValueError("You have to specify either input_ids or inputs_embeds")
   441
   442	        if past_key_values is None:
   443	            past_length = 0
   444	            past_key_values = [None] * len(self.h)
   445	        else:
   446	            past_length = shape_list(past_key_values[0][0])[-2]
   447
   448	        if position_ids is None:
   449	            position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)

* Fix wrong inputs_embeds shape in doc

Supported by TFGPTJMainLayer.call, line 482--484:

src/transformers/models/gptj/modeling_tf_gptj.py:
   482	        if inputs_embeds is None:
   483	            check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
   484	            inputs_embeds = self.wte(input_ids, mode="embedding")

* Fix wrong labels shape in doc

Supported by TFGPTJForCausalLM.call, line 812--813:

src/transformers/models/gptj/modeling_tf_gptj.py:
   812	            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
   813	            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

* Fix possibly wrong input_ids shape in doc

Since 'input_ids_length' was mentioned immediately after the shape `(batch_size, sequence_length)`, it doesn't make sense to me for `input_ids` to have such shape---IMO it ought to have shape `(batch_size, input_ids_length)` instead.

* Fix possibly wrong token_type_ids shape in doc

Supported by ImageGPTModel.forward, line 773--780:

src/transformers/models/imagegpt/modeling_imagegpt.py:
   773	        if inputs_embeds is None:
   774	            inputs_embeds = self.wte(input_ids)
   775	        position_embeds = self.wpe(position_ids)
   776	        hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
   777
   778	        if token_type_ids is not None:
   779	            token_type_embeds = self.wte(token_type_ids)
   780	            hidden_states = hidden_states + token_type_embeds

This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.

* Fix possibly wrong position_ids shape in doc

Supported by ImageGPTModel.forward, line 773--776:

src/transformers/models/imagegpt/modeling_imagegpt.py:
   773	        if inputs_embeds is None:
   774	            inputs_embeds = self.wte(input_ids)
   775	        position_embeds = self.wpe(position_ids)
   776	        hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)

This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.

* Fix possibly wrong inputs_embeds shape in doc

Supported by ImageGPTModel.forward, line 773--774:

src/transformers/models/imagegpt/modeling_imagegpt.py:
   773	        if inputs_embeds is None:
   774	            inputs_embeds = self.wte(input_ids)

This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.

* Fix possibly wrong labels shape in doc

Supported by ImageGPTForCausalImageModeling.forward, line 923--924:

src/transformers/models/imagegpt/modeling_imagegpt.py:
   923	            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
   924	            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.

* Fix possibly wrong labels shape in doc

Supported by ImageGPTModel.forward, line 665--666:

src/transformers/models/imagegpt/modeling_imagegpt.py:
   665	            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
   666	            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`

This commit is introduced due to commit 8e594a4143cca79f165b99e4ed4c9f3a90047bf3.

* Fix wrong position_ids shape in doc

Supported by FlaxLlamaPreTrainedModel.__call__, line 484--490:

src/transformers/models/llama/modeling_flax_llama.py:
   484	        batch_size, sequence_length = input_ids.shape
   485
   486	        if position_ids is None:
   487	            if past_key_values is not None:
   488	                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
   489
   490	            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))

* Fix wrong position_ids shape in doc

Supported by FlaxMistralPreTrainedModel.__call__, line 478--484:

src/transformers/models/mistral/modeling_flax_mistral.py:
   478	        batch_size, sequence_length = input_ids.shape
   479
   480	        if position_ids is None:
   481	            if past_key_values is not None:
   482	                raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
   483
   484	            position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
2025-04-24 15:36:03 +01:00
4d64c38593 [generate] fix default autocompile case on gpu (#37756) 2025-04-24 15:08:38 +01:00
43bb4c0456 Fix qwen2_5 get_rope_index tensor device locations (#37597)
* Fix qwen2_5 get_rope_index tensor device locations

* simpler fix

* edit right file for modular model

* add a test

* try normalizing type to fix non-video

* fix some imports

* add a video forward test with dummy input
2025-04-24 16:04:38 +02:00
dd2649fa98 updated hidden_features for FlaxDinov2SwiGLUFFN in Dinov2 (#37747)
Flax Dinov2: updated hidden_features in FlaxDinov2SwiGLUFFN

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-24 14:30:31 +01:00
8bdd4f2acd [generate] skip compilation on cpu offload (#37709)
* skip compilation on cpu offload

* add test

* better logic

* docstring

* boolean logic

* add disk offload check

* warn users if compilation options are set but compilation doesn happen

* fix test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-24 14:08:17 +01:00
7c62e69326 GPT2Model StaticCache support (#35761)
* initial GPT2 changes

* causal_mask support

* return_legacy_cache

* cleanup

* fix1

* outputs shape fixes

* gpt2 return fix

* pkv, attn fixes

* fix dual_head

* is_causal arg fix

* decision transformer updated

* style fix

* batch_size from inputs_embeds

* DecisionTransformerModel fixes

* cross-attn support + cache warning

* x-attn @decision

* EDCache proper init

* simplified logic in `if use_cache:` for GPT2Model

* @deprecate_kwarg for DecisionTr attn fwd

* @deprecate_kwarg in gpt2

* deprecation version updated to 4.51

* kwargs in gradient_checkpointing_fn

* rename next_cache to past_key_values

* attention_mask prep

* +cache_position in GPT2DoubleHeadsModel

* undo kwargs in gradient checkpointing

* moved up `if self.gradient_checkpointing`

* consistency in decision_transformer

* pastkv, cache_pos in grad_checkpt args

* rm _reorder_cache

* output_attentions streamlined

* decision_transformer consistency

* return_legacy_cache improved

* ClvpForCausalLM used for legacy cache test now

* is_causal fixed

* attn_output cleanup

* consistency @ decision_transformer

* Updated deprecation notice version to 4.52

* upd deprecation

* consistent legacy cache code in decision transformers\

* next_cache -> past_kv in decision_tr

* cache support flags in decision_transf

* rm legacy cache warning

* consistency in cache init for decision transf

* no Static Cache for Decision Transformer

---------

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-04-24 14:46:35 +02:00
9f927c8250 [cache] fix HybridCache init when device is passed (#37718)
fix device init
2025-04-24 13:36:52 +01:00
4fee320926 Expand quantized data type support for tensor parallelism (#37719)
Update tensor_parallel.py

Co-authored-by: Xiao YU <Xiao.YU@xilinx.com>
2025-04-24 14:34:32 +02:00
0f7940bb3f Update MllamaForConditionalGenerationIntegrationTest (#37750)
* fix 1

* fix 2

* fix 3

* fix 4

* fix 5

* fix 6

* trigger CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-24 14:29:46 +02:00
7e6f36cd38 Skip all AriaForConditionalGenerationIntegrationTest on T4 (#37746)
* skip

* ruff

* trigger CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-24 14:11:56 +02:00
0327d0f7f2 [performance_optim] define flash attention mask on NPU device directly (#37698)
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-24 14:06:47 +02:00
14e28bd721 Correctly raise errors when downloading tokenizer files (#37740)
* first try

* Update tokenization_utils_base.py

* Update tokenization_utils_base.py

* standardize
2025-04-24 12:53:07 +02:00
0ec0495967 Fix embeds_to_talker device in Qwen2.5-Omni (#37739)
Fix `embeds_to_talker` device

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
2025-04-24 12:49:57 +02:00
72e4844059 fix: learning_rate logged as tensor causing save issue with deepspeed (#37704)
* fix: learning_rate logged as tensor causing save issue with deepspeed

* chore: lint

---------

Co-authored-by: NanoCode012 <chanvichet@Chanvichets-MacBook-Pro.local>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-24 12:20:47 +02:00
1cfcbfcab8 [VLMs] fix flash-attention tests (#37603)
* fix one test

* fa2 ln test

* remove keys from config recursively

* fix

* fixup
2025-04-24 11:48:11 +02:00
02baa61fab Make sure torch_is_available before using torch.distributed (#37693)
fix
2025-04-24 11:31:35 +02:00
864e9636ff [tests] fix test_nemotron_8b_generation_sdpa (#37665)
add max_new_tokens
2025-04-24 11:28:35 +02:00
9b3bf4a206 Fix torchao doc examples (#37697)
fix

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-24 11:10:27 +02:00
3ed56bea0f Fix inference bugs in Qwen2.5 Omni (#37701)
* Init `SinusoidsPositionEmbedding` with float to avoid precision problem

* fix hidden_state for talker

* Update modular_qwen2_5_omni.py

* Move hidden processing out from thinker

* fixup

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.com>
2025-04-24 10:51:44 +02:00
b7f7aa78a0 Fix Aria tests (#37444)
* update aria tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add cuda tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check outputs for cpu and cuda and xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check outputs for cpu and cuda and xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check outputs for cpu and cuda and xpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* check output for each device

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix style

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix style

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix xpu output

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add comments and use assert list equal

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* rm pad token assign

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-04-24 10:51:29 +02:00
b6d65e40b2 Add Fast Image Processor for MobileNetV1 (#37111)
* fast image processor template for MobileNetV1 via transformers-cli

* Add fast image processors and unify tests for slow/fast image processor classes

* added loop over image_processor_list for all tests and removed boilerplate comments.

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-23 15:55:41 -04:00
dea1919be4 Add Fast Image Processor for PoolFormer (#37182)
* support poolformer fast image processor

* support test for crop_pct=None

* run make style

* Apply suggestions from code review

* rename test

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-23 15:55:33 -04:00
b491f128d6 Add Fast PVT Processor (#37204)
* Add Fast PVT Processor

* Update image_processing_pvt_fast.py

* Update image_processing_pvt_fast.py

* remove kwargs

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-23 15:55:20 -04:00
19e9079dc1 enable 4 test_trainer cases on XPU (#37645)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-04-23 21:29:42 +02:00
5cd6b64059 Process inputs directly in apply_chat_template in image-text-to-text pipeline (#35616)
* tokenize inputs directly in apply_chat_template

* refactor processing

* revert changes processing llava

* Update docs

* fix issue with str being iterable

* add test chat text only

* change function name
2025-04-23 13:31:33 -04:00
80ea2c05c2 [tests, qwen2_5_omni] fix flaky tests (#37721) 2025-04-23 17:54:12 +01:00
63c6331387 Qwen 2.5 Omni: apply video defaults (#37660)
* Apply video defaults for min_pixels and max_pixels

* fps kwarg should not be a list

* Update test to account for new resizing
2025-04-23 17:08:11 +02:00
1e9087368c [internvl] fix chat template (#37656)
* fix chat template

* update

* update conversion

* rename `fake_image_token` in tests
2025-04-23 16:56:36 +02:00
9ec8be56dd TransfoXL is deprecated, don't keep it in tested examples! (#37707)
* TransfoXL is deprecated, so we should remove it from examples that get tested

* Remove the tokenizer too

* Trigger tests
2025-04-23 14:59:38 +01:00
be9b0e8521 [CI] add back sacrebleu (and document why) (#37700)
* example test

* add back dep

* dev-ci

* dev-ci
2025-04-23 14:45:00 +01:00
1d7d7a942e Add maintainers for ROCm/Intel XPU/Ascend NPU (#37678)
* Add maintainers for ROCm/Intel XPU/Ascend NPU

* Correct capitalization for usernames

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>

* Trigger tests

---------

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
2025-04-23 14:28:32 +01:00
cc9a245e6d [cleanup] remove /model_cards 🧹 🧹 (#37685)
rm model_cards
2025-04-23 12:45:27 +01:00
ca790303f7 Pin torch == 2.6 on PR CI docker images for now (#37695)
pin 2.6 on CircleCi images

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-23 11:47:23 +02:00
12f65ee752 enable cpu offloading for Bark on xpu (#37599)
* enable cpu offloading of bark modeling on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* remove debug print

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix review comments

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* enhance test

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update

* add deprecate message

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update

* update

* trigger CI

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-23 11:37:15 +02:00
4f9893cbbc fix: remove classmethod from Qwen2_5OmniConfig.get_text_config (#37690)
- Since the `get_text_config` references an instance variable within
    the class (`self.thinker_config`), the `get_text_config` method
    should not be a classmethod.

  - Before this fix, users were getting the following error:

    '''
    AttributeError: type object 'Qwen2_5OmniConfig' has no attribute 'thinker_config'
    '''
2025-04-23 09:30:57 +02:00
1d9743edc2 Updated model card for mbart and mbart50 (#37619)
* new card for mbart and mbart50

* removed comment BADGES

* Update mBart overview

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix typo (MBart to mBart)

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* maybe fix typo

* update typo and combine notes

* changed notes

* changed the example sentence

* fixed grammatical error and removed some lines from notes example

* missed one word

* removed documentation resources and added some lines of example code back in notes.

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-22 12:26:47 -07:00
fbfa1dd4db 🌐 [i18n-KO] Translated siglip.md to Korean (#37145)
* docs: ko: siglip.md

* feat: nmt draft

* fix: manual edits

* chore: Correct document title to kebab-case format

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Convert unnatural language to natural Korean

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
2025-04-22 12:23:19 -07:00
ece79b0688 enable blip2 and emu3 cases on XPU (#37662)
* enable blip2 and emu3 modeling cases on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* remove extra new line

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-22 18:37:09 +02:00
ca4c114dc4 Add counters for dataset classes (#37636)
* add counters for dataset classes

* fix failed code style
2025-04-22 17:30:43 +01:00
d47cdae27e [Docs] Move models to appropriate section (#37338)
* Move models

* update

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-22 18:23:14 +02:00
dbfccd3c92 typo update in the parameter name (#37655)
See L118 and L143 for the class attribute `hidden_dim`
2025-04-22 18:14:20 +02:00
de8916dde6 [docs] only build en docs in push CI (#37677) 2025-04-22 17:05:11 +01:00
0f8c34b0a0 [cleanup] remove old scripts in /scripts 🧹 🧹 (#37676)
* rm old files

* not this one
2025-04-22 16:59:03 +01:00
6673081b21 enable 6 granite cases on xpu (#37569)
* enable 6 granite cases on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* make them all pass on A100

Signed-off-by: N <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* update

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Signed-off-by: N <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-22 17:55:02 +02:00
9167461a7d enable mllama cases on xpu (#37644)
* enable mllama testing on xpu

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* more mllama cases enabling

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* make cases pass on A100

Signed-off-by: N <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Signed-off-by: N <matrix.yao@intel.com>
2025-04-22 17:39:10 +02:00
de182ba269 Refactor bitsandbytes doc (#37668)
* doc

* torch ops

* fix

* nits

* Update docs/source/en/quantization/bitsandbytes.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-22 16:13:25 +02:00
dde9b03e3b Fix no_split_modules for Llama4 pretrained models (#37673) 2025-04-22 16:05:12 +02:00
9481e9e9f1 Fix autoround docs (#37675)
* fix

* empty
2025-04-22 15:33:13 +02:00
38c406844e Fixing quantization tests (#37650)
* fix

* style

* add capability check
2025-04-22 13:59:57 +02:00
b3492ff9f7 Add AutoRound quantization support (#37393)
* add auto-round support

* Update src/transformers/quantizers/auto.py

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>

* fix style issue

Signed-off-by: wenhuach <wenhuach87@gmail.com>

* tiny change

* tiny change

* refine ut and doc

* revert unnecessary change

* tiny change

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* fix doc issue

* Update tests/quantization/autoround/test_auto_round.py

* fix comments

* Update tests/quantization/autoround/test_auto_round.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/autoround/test_auto_round.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* update doc

* Update src/transformers/quantizers/quantizer_auto_round.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* update

* update

* fix

* try to fix style issue

* Update src/transformers/quantizers/auto.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/quantization/auto_round.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/quantization/auto_round.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/quantization/auto_round.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* update

* fix style issue

* update doc

* update doc

* Refine the doc

* refine doc

* revert one change

* set sym to True by default

* Enhance the unit test's robustness.

* update

* add torch dtype

* tiny change

* add awq convert test

* fix typo

* update

* fix packing format issue

* use one gpu

---------

Signed-off-by: wenhuach <wenhuach87@gmail.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Shen, Haihao <haihao.shen@intel.com>
2025-04-22 13:56:54 +02:00
9608908639 Correct warm-up with fp8 (#37670)
* start clean warmup for quantizers

* style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-22 13:12:49 +02:00
6614209b96 Fix duplicated weights in fp8 quantization (#37667)
* fix fp8

* Update quantizer_finegrained_fp8.py

* fix circular import

* Update quantizer_finegrained_fp8.py
2025-04-22 13:12:27 +02:00
dcf6df5b0d [qwen-omni] fix training (#37517)
* fix

* add text config

* fixup

* fix docs
2025-04-22 12:36:07 +02:00
9167fadab9 Introduce GradientCheckpointingLayer (#37223)
* GradientCheckpointingLayer

* trigger

* Move GC layer to a separate file

* Update import

* Expose and document GC layer

* Fix dummy

* Apply to llama-based models

* Update modulars

* Update a few more models for consistency

* Update glm4

* Update Janus
2025-04-22 11:33:31 +01:00
413f9bbf80 Fixes #37219 : RecurrentGemma crashes for inputs longer than sliding window length (#37613)
* fix: RecurrentGemma crashes during inference for inputs longer than sliding window width

* fix recurrentgemma tests; add long test bigger than context window
2025-04-22 12:21:16 +02:00
964a1b6b7d Fix ValueError when eval_do_concat_batches=False with examples (#37621)
https://github.com/huggingface/transformers/issues/37593

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-22 12:13:25 +02:00
85665a4263 [tests] Stricter generate + compilation test -- no recompilations allowed (#37629)
* tmp commit

* stricter compilation test

* trigger tests

* rm todo
2025-04-22 11:12:18 +01:00
362fa37da2 [test] update test_past_key_values_format (#37614)
allow custom shapes
2025-04-22 11:07:34 +01:00
1cd110c6cb Add test to ensure unknown exceptions reraising in utils/hub.py::cached_files() (#37651)
* add test to ensure unknown exceptions are reraised in utils/hub.py::cached_files()
2025-04-22 11:38:10 +02:00
c69e23455d Support loading Gemma3 QAT GGUF models (#37649)
* fix gemma3 qat gguf support

Signed-off-by: isotr0py <2037008807@qq.com>

* update test

Signed-off-by: isotr0py <2037008807@qq.com>

* make ruff happy

Signed-off-by: isotr0py <2037008807@qq.com>

---------

Signed-off-by: isotr0py <2037008807@qq.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-22 11:23:17 +02:00
7eb1107cc2 Restructure torchao quantization examples (#37592)
* Restructure torchao quantization examples

Summary:
Mainly structured the examples by hardwares and then listed
the recommended quantization methods for each hardware H100 GPU, A100 GPU and CPU

Also added example for push_to_hub

Test Plan:
not required

Reviewers:

Subscribers:

Tasks:

Tags:

* update

* drop float8 cpu

* address comments and simplify

* small update

* link update

* minor update
2025-04-22 11:20:34 +02:00
006530d285 [fix gemma] Set default value for output_attentions parameter in Gemma2 and Gemma… (#37633)
* Set default value for output_attentions parameter in Gemma2 and Gemma3 models

* update

* fix

* fix

---------

Co-authored-by: chenin <wangzhichen@encosmart.com>
2025-04-22 11:18:17 +02:00
31ea547b7a [fix] make legacy bnb code work (#37331)
* [fix] make legacy bnb code work

* [fix] use get with default instead of getter

* add test for bnb 8bit optim skip embed

* [fix] style

* add require annotation of bnb

---------

Co-authored-by: jaycha <jaycha@ncsoft.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-22 11:17:29 +02:00
5f791281c3 Fix Qwen2.5-Omni get_chunked_index chunking functionality (#37631)
* fix: qwen2.5 omni modular get_rope_index

* test: add test for qwen2.5 omni rope index (video with audio input)

* style

* expected_position_ids readability

* fix: use spatial_merge_size = 1 in unit test
2025-04-22 11:15:37 +02:00
fee1190601 Refactor phi doc (#37583)
* Added documentation for phi model

* Update phi.md

* Update phi.md

* Update phi.md

* Update docs/source/en/model_doc/phi.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/phi.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated model card

* Update phi.md

* Update phi.md

* Update phi.md

* Update docs/source/en/model_doc/phi.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Jihad <jihadhammoud_@hotmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-21 10:31:04 -07:00
b2db54f66b Update longformer.md (#37622)
* Update longformer.md

* Update longformer.md

* Update docs/source/en/model_doc/longformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/longformer.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update longformer.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-21 10:30:51 -07:00
2c60a442f3 fix link in kv_cache.md (#37652)
fix typo in kv_cache.md
2025-04-21 09:01:11 -07:00
a42ba80fa5 Allow Exclusion of Input IDs from RepetitionPenaltyLogitsProcessor (#37625)
* Allow exclusion of input IDs for repetition penalty

* Add logit proc tests for rep penalty exclusion

* Expose rep pen flag through generate

* Only slice if needed

* keep current rep pen default behavior

* Revert exposing reppen changes through generate

* Fix test arg

* Update src/transformers/generation/logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Rename to rep penalty kwarg

* Add custom repetition penalty processor example

* Validate prompt_ignore_length

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-21 15:46:05 +01:00
1077603410 Remove torchvision requirement from AutoImageProcessor (#37457) 2025-04-21 14:59:33 +02:00
1930e750e4 [kernels] use original forward at compile time (#37604) 2025-04-21 13:22:47 +01:00
6daa3eeba5 Fix InternVL attention when using qk_norm (38B and 78B) (#37620)
* fix internvlvision attention when using qk_norm

* nit

* modular
2025-04-19 21:39:08 +02:00
27a25bee4f chore: update model card for SigLIP (#37585)
* edit siglip model card

* fix syntax

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/siglip.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* address comments

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-18 13:30:41 -07:00
e1f379bb09 Fixing the example in generation strategy doc (#37598)
Update generation_strategies.md

The prompt text shown in the example does not match what is inside the generated output. As the generated output always include the prompt, the correct prompt should be "Hugging Face is an open-source company".
2025-04-18 12:50:17 -07:00
4f58fc9c82 Deprecate modeling_utils.py classes (#37298)
* Move utils classes into models

* Add deprecation warnings

* Remove from docs

* Update config attributes check
2025-04-18 18:47:34 +01:00
a245011252 Add InternVL (2.5 MPO) (#35968)
* initial commit

* add convert internvl

* add first end-to-end working internvl

* nit prompt and image proc

* add working chat template

* add conversion llama-based models

* add tests

* pass all tests

* fix isort

* fix modular after main merge

* add video processing for internvl

* add support for interlaced images and videos

* Remove processing and config from modular, add more tests

* add llama model tests

* Modify processor for compatibility with refactored got ocr image processor

* add comments in processor

* Add docs and nits

* change video processing to use custom sample_indices_fn

* rebase and fix tests

* add processor tests

* Add changes Raushan review

* Use the new attention interface for the vision model

* nits

* add support for custom video_load_backend

* remove mention to InternVLTokenizer

* refactor vision model to simplify logic

* refactor processor for better readibility

* fix copies

* fix require av processor test

* refactor internVL vision

* Update processor and fix processing tests

* fix docstring

* update convert_weights for internvl3

* change image processor to fast by default

* remove do_center_crop=True in convert_weights

* force use_cache to True

* push_to_hub before reloading

* fix internVLVision for larger models

* update convert weight for qk norm

* fix convert_weights

* fix eos_token_id in convert

* update docs and integration tests

* make modifs after review

* fix wrong k_norm and reduce modular

* change image_token_index to image_token_id

* change checkpoint to OpenGVLab org

* last nits

* explicitely del self.num_key_value_groups

* add extra special tokens
2025-04-18 18:57:33 +02:00
b0c6ff5e13 fix issue that some example with no trainer use accelerator.end_train… (#37435)
* fix issue that some example with no trainer use accelerator.end_training in a wrong way

* reformat code

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-18 17:59:42 +02:00
6f5014ac31 fix 2 encoder_decoder issues on XPU (#37572)
* fix 2 encoder_decoder issues on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fmt

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-18 17:49:24 +02:00
2ba6b92a6f [VLMs] use only xxx_token_id for multimodal tokens (#37573)
* use only `xxx_token_id` for multimodal tokens

* update modeling files as well

* fixup

* why fixup doesn't fix modular docstring first?

* janus, need to update configs in the hub still

* last fixup
2025-04-18 17:03:39 +02:00
4afd3f4820 Model debugger upgrades (#37391)
* debugging improvements

* add debugging details

* add more debugging details

* debug more

* clean up layers + output

* add summary json file

* cleanup

* copies 👀

* remove hooks + add documentation

* draft a small test, why not

* respect the format (respect it)

* fixup imports

* nit

* add tests and configurable pruning of layers
2025-04-18 16:45:54 +02:00
e5ac23081e [Gemma3] compile (#37447) 2025-04-18 14:55:43 +01:00
a1b82563f1 enable 6 modeling cases on XPU (#37571)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-04-18 12:28:08 +02:00
3cd6627cd7 enable 6 gemma2 cases on XPU (#37564)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-04-18 12:10:34 +02:00
049b75ea72 Flag SpeechT5 flaky test (#37587)
flag flaky test
2025-04-18 11:35:46 +02:00
aa17cfb4d5 [Bugfix] Fix flash-attention func param mismatch and softmax_scale default value mistake on Ascend NPU (#37575)
[Bugfix] fix flash-attention func param mismatch and softmax_scale default value mistake on Ascend NPU

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-18 11:34:17 +02:00
14b3dbcf3b remove _run_third_party_device_tests (#37445)
Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-04-18 11:19:56 +02:00
f974214353 Fix some GPU OOM after #37553 (#37591)
* fix

* trigger CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-18 10:09:19 +02:00
438324c9cf Gaudi: Add the bf16 support for hpu (#37568)
* Fix: hpu can support the bf16

Signed-off-by: yuanwu <yuan.wu@intel.com>

* hpu is not integrated into torch.

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Gaudi1 cannot support bf16

Signed-off-by: yuanwu <yuan.wu@intel.com>

* Update src/transformers/utils/import_utils.py

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>

---------

Signed-off-by: yuanwu <yuan.wu@intel.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
2025-04-18 08:00:26 +02:00
bb2a44ad4b Fix Quark quantization config (#37578)
fix
2025-04-18 07:23:39 +02:00
4acf692ace Update Phi4 converter (#37594)
* fix converter

* Update phi4_multimodal.md
2025-04-17 23:08:24 +02:00
40cba20e87 Ensure positive warm-up size (#37581)
ensure > 0
2025-04-17 16:11:54 +02:00
346f1eebbd docs: fix typo (#37567)
Co-authored-by: Anthony <anthony.song@capitalone.com>
2025-04-17 14:54:44 +01:00
48dd89cf55 [phi4] update conversion (#37579)
* update conversion

* update
2025-04-17 15:43:04 +02:00
58e5e976e0 Small fix on context manager detection (#37562)
* small fixes

* Update modeling_utils.py

* test

* Update test_modeling_common.py

* Update test_modeling_timm_backbone.py

* more general

* simpler
2025-04-17 15:39:44 +02:00
c7d3cc67a1 Fix qwen2audio wanr -> warn (#37559)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-04-17 14:34:58 +01:00
dc06e7cecd [TimesFM] use the main revison instead of revision for integration test (#37558)
* use the main revison instead of revision

* test prediction

* check larger time steps
2025-04-17 11:26:03 +02:00
3bc44eaaee [qwen-vl] Standardize config (#37268)
* update

* fix tests

* fixup

* update

* skip this one

* fixup

* fix
2025-04-17 09:38:12 +02:00
4f96081aad [chat template] fix security vulnerability (#37523)
* fix security issues

* nit
2025-04-17 09:21:37 +02:00
a2ef3cf537 Add Janus model (#36053)
* Iterative generation using input embeds

* Add Janus model

* discard changes

* Janus imports

* Refactor config and processor

* Added Vision tower of Janus

* Import Janus Image processor

* Vision tower fixes

* Refactor code

* Added VQ Model

* Complete model integration

* temp conversion script

* processor refactor

* Adding files to facilitate pulling

* Fixes after debugging

* Skip test for these models

* Add Janus Model

* discard changes

* Janus imports

* Refactor config and processor

* Added Vision tower of Janus

* Import Janus Image processor

* Vision tower fixes

* Refactor code

* Added VQ Model

* Complete model integration

* temp conversion script

* processor refactor

* Adding files to facilitate pulling

* Fixes after debugging

* Refactor to Text config

*  Added generate function

* Saving intermediate convert file. Still need to read configs from the hub and convert them to our format.

* Adding version that reads from the JSON files. Still have to tweak some parameters manually.

* relative imports

* Initial tests

* Refactor image processor

* Seemingly working version of the conversion script, will need to test further.

* Adding command message

* Fixing conflicting JanusTextConfig class

* Incorporating some of the discussed changes.

* Small fix to create dir.

* Removing system from JINJA template

* Adding draft processor tests

* style fixes

* Minor fixes and enhancement

* added generation config

* Initial tests

* Small modifications, tests are now passing.

* Small changes I noticed while reading code.

* more fixes

* Added JanusModel class

* Small merge adaptations

* Small merge adaptations

* Image processing tests passing

* More tests and fixes

* Convert script updated and refactored

* Tests and cleanup

* make style

* Postprocessing for image generation

* generate refactor

* fixes

* - Passing tests that write a part of the model to cpu (e.g. test_cpu_offload)
- Passing tests of dispatching SDPA
- Only gradient checkpointing tests are left.

* Removing temporary code

* Changes

* Writing change to modular

* Added JanusVisionModel. SDPA dispatch tests pass more robustly. Gradient checkpoint tests are next

* Gradient checkpoint tests passing

* Removing debug code

* Major generate refactor 😮‍💨

* Temp changes for testing

* Green quality CI

* 2 out of 4 integration tests passing

* breadcrumbs

* Usage Examples

* Regenerate modeling after merge

* dirty code

* JanusIntegrationTest are passing

* breadcrumbs

* happy CI

* fixes

* Changing template

* nits

* Text generation logits matching original codebase at 100% precision

* Remove ./tmp from git tracking

* Remove ./tmp from git tracking

* Checkpointing changes after reviewing

* Fixing code in docstrings

* CHanging comments and small bug in convert file

* Fixing bug in image_token_id for 7B version

* Removing line that was added by both of us

* Pushing changes after discussion. Only one left is to change the key mapping for convert file.

* Updating module file

* New convert file using dict. Tested that it is equivalent to the old one by:
- comparing keys in a script
- comparing checksums of the output files between version generated with the current convert script and those generated with the old script. This is a more reliable test.

* revert changes

* mistake

* consistency change for CI

* make style

* doc fixes

* more fixes

* experimenting with masking out pad token

* checkpoint

* Batched generation with multi-images working for 1B models. Will test 7B next.

* Device fix.

* Writing changes to modular, previous ones were written to modeling just for quick testing.

* Using passed processor attention mask (only in modeling for now)

* Matching performance done in the non-standard way

* Working version of batched generation. Will change how some args are passed to make it more similar to language case

* More compliant version of the code

* Removed duplicated `_prepare_4d_causal_attention_mask_with_cache_position`

* Updating modular file, making masked filling with paddings more efficient

* Slightly more efficient version

* Modifying JanusVisionModel to be a wrapper

* Fixing test to comply with new names

* Modular overhaul

* More refactoring

* - Changing JanusVisionModel back
- Changing forward pass
- Adding boi token to the comparison

* - Removing whole context model_ids
- Using inherited implementation of prepare_inputs_for_generation

* Moving the way boi token is passed to the model

* Fixing sdpa test

* Minor changes

* testing changes

* Minor fix

* - Adding postprocessing test
- checking values of generated image on integration test

* changes

* Removing pooled attention vision module, fixing convert script as a consequence

* More changes

* Fixes

* Draft after merge

* Bug fixes

* More bug fix

* Fixing docs

* Nits

* Refactor return dict

* Moving image post processing test to main processor post process

* Passing guidance_scale as kwarg

* make style

* 🔥 refactor

* make style

* Update and green CI

* Nits and tests update

* up

* Added MID block

* fix

* Dead code

* update testcase

* update

* model_id change

* init_weight changes

---------

Co-authored-by: hsilva664 <metallic-silver@hotmail.com>
2025-04-17 09:18:51 +02:00
688f4707bf All models can be initialized on meta device (#37563)
* Update test_modeling_common.py

* fix all

* more fixes
2025-04-16 23:26:44 +02:00
0a83588c51 Bridgetower fast image processor (#37373)
* add support for fast tokenizer

* make style

* fix according to reviews

* make style

* relax slow_fast_equivalence mean diff

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
2025-04-16 22:39:18 +02:00
4005730044 Fix Mamba2 Grouped SSD Support in the torch_forward Path (#37533)
* Fix mamba2 grouped support in bamba torch path

* patch zamba2 and mamba2

* Add a unit test for grouped SSD

* add comment for the new unit test

* add output_size arg value to repeat_interleave calls

* Add comment
2025-04-16 22:16:01 +02:00
a7d2bbaaa8 Add EfficientNet Image PreProcessor (#37055)
* added efficientnet image preprocessor but tests fail

* ruff checks pass

* ruff formatted

* properly pass rescale_offset through the functions

* - corrected indentation, ordering of methods
- reshape test passes when casted to float64
- equivalence test doesn't pass

* all tests now pass
- changes order of rescale, normalize acc to slow
- rescale_offset defaults to False acc to slow
- resample was causing difference in fast and slow. Changing test to bilinear resolves this difference

* ruff reformat

* F.InterpolationMode.NEAREST_EXACT gives TypeError: Object of type InterpolationMode is not JSON serializable

* fixes offset not being applied when do_rescale and do_normalization are both true

* - using nearest_exact sampling
- added tests for rescale + normalize

* resolving reviews

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-16 21:59:24 +02:00
32eca7197a [vlm] adjust max length for special tokens (#37342)
* update

* apply suggestion

* fix tests for main branch

* remove unused logger

* add special tokens in tests

* nit

* fix more tests

* fix test

* pg also
2025-04-16 20:49:20 +02:00
c94c59fc47 Fix pixel attention mask padding in smolvlm (#37497)
* fix bad init

* also modif smolvlm

---------

Co-authored-by: Raushan Turganbay <raushan@huggingface.co>
2025-04-16 20:48:46 +02:00
5a6de703a7 Run test_can_load_with_global_device_set using a subprocess (#37553)
* fix

* fix

* fix

* Update tests/test_modeling_common.py

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-04-16 19:48:30 +02:00
9a4ce64770 🔴 Update CLIP vision attention to new attention interface (#37498)
* update attention interface

* fix test

* propagate attention changes

* revert weird changes

* fix modular

* what?

* ruff is mocking me

* ruff being ruff

* simplify test suite + fix FA2

* fixup tests  + propagate FA2 fixes

* add Copied From where relevant

* fix conflict between copies and modular

* recover FA2 training for CLIP + handle quantization

* don't ditch the warning

* tiny import fix

* code review (FA2 support, copied from)

* fix style

* modularity

* wrong copies

* future-proofing for TP

* mlcd inherits from CLIP
2025-04-16 18:15:22 +02:00
dc8227827d Fix TimesFm doc issue (#37552)
* fix doc

* code block
2025-04-16 16:28:42 +02:00
2f517200c1 Make Ignored Columns ValueError More Informative (#33299)
Make Ignored Columns Value Error More Informative

Included forward method signature columns in the ValueError so end users will know what columns are expected to be passed to the model in addition to those which are ignored.
2025-04-16 16:14:55 +02:00
0577cae808 Fix device issue for tapas (with as_tensor) (#37551)
* fix 1

* fix 2

* fix 3

* fix 4

* fix 5

* fix 6

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-16 16:02:53 +02:00
b33edf1b9b docs(typo): Update ISSUES.md, fix a small typo (#37542)
Update ISSUES.md
2025-04-16 15:01:04 +01:00
503541d7ef add FlashAttentionKwargs and seq_idx to flat collator (#36456)
* add flash attn kwargs to flattening collator

* add return_seq_idx option

* doc string edits

* cleaner max len updates

* various fixes

* temp testing code

* return int32 seq_idx and FlashAttnKwargs

* DataCollatorIntegrationTest impl

* fix batch dims and dtypes

* fill out remaining collator tests

* test name change and fmt

* rm unused var

* fmt

* minor change

* fmt

* add missing pos_ids check

* consistent {np,pt,tf} tests

* split pt tests into 3, like np/tf tests

* mv comment, rename fa test

* remove batch dim comment

* simply wrapping

* compute cu_seq_len/max_length once

* fmt

* remove tf code

* rm warning

* move separator_id back to 2nd pos

* use cleaner lists in tests

* ret -> batch

* fmt

* attr ordering

* use py ints for max_length_{k,q}
2025-04-16 15:45:03 +02:00
9ddcf5fce5 Update quantization docs (#37439) 2025-04-16 15:44:53 +02:00
a91020aed0 Add TimesFM Time Series Forecasting Model (#34082)
* initial documentation

* rename mask to attention_mask

* smaller tests

* fixup

* fix copies

* move to time series section

* sort docs

* isort fix

* batch_size is not a configuration

* rename to TimesFMModelForPrediction

* initial script

* add check_outputs

* remove dropout_rate

* works with torch.Tensor inputs

* rename script

* fix docstrings

* fix freq when window_size is given

* add loss

* fix _quantile_loss

* formatting

* fix isort

* add weight init

* add support for sdpa and flash_attention_2

* fixes for flash_attention

* formatting

* remove flash_attention

* fix tests

* fix file name

* fix quantile loss

* added initial TimesFMModelIntegrationTests

* fix formatting

* fix import order

* fix _quantile_loss

* add doc for SDPA

* use timesfm 2.0

* bug fix in timesfm decode function.

* compare mean forecasts

* refactor type hints, use CamelCase

* consolidate decode func

* more readable code for weight conversion

* fix-copies

* simpler init

* renaem TimesFmMLP

* use T5LayerNorm

* fix tests

* use initializer_range

* TimesFmModel instead of TimesFmDecoder

* TimesFmPositionalEmbedding takes config for its init

* 2.0-500m-pytorch default configs

* use TimesFmModel

* fix formatting

* ignore TimesFmModel for testing

* fix docstring

* override generate as its not needed

* add doc strings

* fix logging

* add docstrings to output data classes

* initial copy from t5

* added config and attention layers

* add TimesFMPositionalEmbedding

* calcuate scale_factor once

* add more configs and TimesFMResidualBlock

* fix input_dims

* standardize code format with black

* remove unneeded modules

* TimesFM Model

* order of imports

* copy from Google official implementation

* remove covariate forecasting

* Adapting TimesFM to HF format

* restructing in progress

* adapted to HF convention

* timesfm test

* the model runs

* fixing unit tests

* fixing unit tests in progress

* add post_init

* do not change TimesFMOutput

* fixing unit tests

* all unit tests passed

* remove timesfm_layers

* add intermediate_size and initialize with config

* initial documentation

* rename mask to attention_mask

* smaller tests

* fixup

* fix copies

* move to time series section

* sort docs

* isort fix

* batch_size is not a configuration

* rename to TimesFMModelForPrediction

* initial script

* add check_outputs

* remove dropout_rate

* works with torch.Tensor inputs

* rename script

* fix docstrings

* fix freq when window_size is given

* add loss

* fix _quantile_loss

* formatting

* fix isort

* add weight init

* add support for sdpa and flash_attention_2

* fixes for flash_attention

* formatting

* remove flash_attention

* fix tests

* fix file name

* fix quantile loss

* added initial TimesFMModelIntegrationTests

* fix formatting

* fix import order

* fix _quantile_loss

* add doc for SDPA

* use timesfm 2.0

* bug fix in timesfm decode function.

* compare mean forecasts

* refactor type hints, use CamelCase

* consolidate decode func

* more readable code for weight conversion

* fix-copies

* simpler init

* renaem TimesFmMLP

* use T5LayerNorm

* fix tests

* use initializer_range

* TimesFmModel instead of TimesFmDecoder

* TimesFmPositionalEmbedding takes config for its init

* 2.0-500m-pytorch default configs

* use TimesFmModel

* fix formatting

* ignore TimesFmModel for testing

* fix docstring

* override generate as its not needed

* add doc strings

* fix logging

* add docstrings to output data classes

* add _CHECKPOINT_FOR_DOC

* fix comments

* Revert "fix comments"

This reverts commit 8deeb3e191b3671bc1d74dbfe77b736a066c3d34.

* add _prepare_4d_attention_mask

* we do not have generative model classes

* use Cache

* return past_key_values

* modules initialized with config only

* update year

* Update docs/source/en/model_doc/timesfm.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add layer_idx to cache

* modular timesfm

* fix test

* unwrap sequential class

* fix toctree

* remove TimesFmOnnxConfig

* fix modular

* remove TimesFmStackedDecoder

* split qkv layer into individual layers

* rename projection layers

* use ALL_ATTENTION_FUNCTIONS

* is_causal is True

* rename config

* does not support flash_attn_2

* formatting

* fix typo in docsstring

* rename inputs

* add time series mapping

* Update src/transformers/models/olmo2/modeling_olmo2.py

* Update src/transformers/models/moonshine/modeling_moonshine.py

* use updated arguments

* fix class name

* add MODEL_FOR_TIME_SERIES_PREDICTION_MAPPING

* isort

* consolidate _preprocess into forward

* fix a typo

* fix a typo

* fix toc

* fix modular

* remove aaserts

* use self.config._attn_implementation

* move to _postprocess_output

* remove timesfm_get_large_negative_number

* use view unstead of multiple unsqueeze

* make helpers static methods of the Model

* use to_tuple

* use to_tuple if not return_dict

* remove unused intitialization block as its incorporated in nn.Linear

* remove unused num_key_value_groups

* use the same convention as the masking method

* update modular

* do not use unsqueeze

* use view instead of unsqueeze

* use buffer for inv_timescales

* formatting

* modular conversion

* remove unneeded intialization

* add missing docstrings

* remove cache

* use simple_eager_attention_forward

* support tp_plan

* support for flex and flash attention masks

* Revert "support for flex and flash attention masks"

This reverts commit def36c4fcf31599b3f4937c9334b7da1a20132c3.

* fix device

* fix tests on gpu

* remove unsued large model test

* removed unneeded comments

* add example usage

* fix style

* add import

* Update docs/source/en/model_doc/timesfm.md

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* inherit from LlamaRMSNorm

* use can_return_tuple decorator

* remvoe return_dict

* fix year

* Update docs/source/en/model_doc/timesfm.md

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* pretrained does not inherit from GenerationMixin

* use model for integration test

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Rajat Sen <rsen91@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-04-16 15:00:53 +02:00
8669c016d2 Refactor torchao docs (#37490)
* refactor docs

* add serialization

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* reorder

* add link

* change automatic to autoquant

Co-authored-by: DerekLiu35 <91234588+DerekLiu35@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/torchao.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* nits

* refactor

* add colab

* update

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: DerekLiu35 <91234588+DerekLiu35@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-16 14:56:48 +02:00
e3d3b54638 Keep Quark loading through meta device (#37538) 2025-04-16 14:19:56 +02:00
61436a9323 convert scale and zero to cuda when using HQQ backend (#37425) 2025-04-16 14:13:20 +02:00
7752e7487c Fixes hqq by following a new path for bias parameter in pre_quantized models (#37530)
* fix

* add test
2025-04-16 13:58:14 +02:00
7dafcd0077 More appropriate cuda warmup in resource-constrained hardware (#37550)
* better allocation in resource constrained env

* Update modeling_utils.py

* CIs
2025-04-16 13:40:02 +02:00
6fd87d1172 Add Fast Grounding-Dino Processor (#37108)
* Add Fast Grounding-Dino Processor

* Added modular file

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-16 12:26:08 +02:00
ed53809ac5 enable 6 rt_detr_v2 cases on xpu (#37548)
* enable 6 rt_detr_v2 cases on xpu

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-16 11:23:56 +02:00
d91858c232 enable 3 mpt test cases on XPU (#37546)
* enable 3 mpt test cases on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-16 11:23:06 +02:00
4541c2cdef Fix BitsAndBytesConfig JSON serialization in TrainingArguments (#37520)
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-16 11:18:17 +02:00
a335dc4d6d enable test_offloaded_cache_implementation on XPU (#37514)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-16 11:04:57 +02:00
33f6c5a5c8 enable several cases on XPU (#37516)
* enable several cases on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* Update tests/test_modeling_common.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-16 11:01:04 +02:00
5ab7a7c640 enable 5 cases on XPU (#37507)
* make speecht5 test_batch_generation pass on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* enable 4 GlmIntegrationTest cases on XPU

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* Update src/transformers/testing_utils.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-16 09:28:02 +02:00
3165eb7c28 Refactor ColPali model documentation (#37309)
* Refactor ColPali model documentation

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Include quantisation exemple + real images

* simpler image loading

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-15 13:52:11 -07:00
33c6fdb2cf Update VITS model card (#37335)
* Update VITS model card

* Update docs/source/en/model_doc/vits.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vits.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vits.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/vits.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update vits.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-15 13:16:05 -07:00
4cc6b60654 Fix broken add-fast-image-processor CLI (#37499) 2025-04-15 18:50:21 +02:00
51f544a4d4 Add Fast Conditional-DETR Processor (#37071)
* Add Fast Conditional-DETR Processor

* Update image_processing_conditional_detr_fast.py

* Add modular_conditional_detr.py

* Update image_processing_conditional_detr_fast.py

* Update tests

* make fix

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-15 18:33:34 +02:00
4f1dbe8152 Add Fast Chinese-CLIP Processor (#37012)
* Add Fast Chinese-CLIP Processor

* Update dummy_torchvision_objects.py

* Fix tests
2025-04-15 18:31:20 +02:00
c08997c52e VDR task guide (#37485)
* VDR task guide

* Add to toctree

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/visual_document_retrieval.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-15 08:55:13 -07:00
57da364d8e fix and enhance pipeline_webserver.md (#36992)
* fix and enhance pipeline_webserver.md

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>

* Update docs/source/en/pipeline_webserver.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/pipeline_webserver.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* use pipe

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: Yao, Matrix <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-15 08:35:05 -07:00
356b3cd71d Fix missing return type for MLCD docs (#37527)
* Fix missing return type for docs

* trigger
2025-04-15 14:04:16 +01:00
0ad3710d47 fix: Restore explicit error surfacing for unexpected hub exceptions (#37525)
* fix: Restore explicit error surfacing for unexpected hub exceptions

Prior to PR #36033, unexpected exceptions (e.g., ModuleNotFoundError) during hub model loading were not swallowed silently. They either matched specific except blocks or were raised.

After #36033, a catch-all except Exception block was introduced without a fallback else, causing unknown errors to be silently ignored and leading to misleading downstream behavior.

This commit adds an `else: raise e` to ensure only explicitly handled exceptions are suppressed. All others are surfaced, restoring pre-4.50 behavior and aiding in debugging and dependency visibility.

Co-authored-by: Cyril Vallez <cyril.vallez@huggingface.co>
2025-04-15 14:54:11 +02:00
f6c79f767c Add Fast Yolos Processor (#37292)
* Add Fast Yolos Processor

* Update modular file

* Fix copies

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-15 14:23:08 +02:00
ecaeee66bc Llama4: remove redundant transpose of router_logits (#37468)
* Llama4: remove redundant transpose of router_logits

* Fix formatting
2025-04-15 12:29:26 +01:00
6f7ea1cf00 Add MLCD model (#36182)
* Add MLCD model

* Update codes for auto-mapping

* Add test scripts for MLCD

* Update doc for MLCD model

* Fix import error

* Fix import error

* Fix CI error for attention_outputs

* Fix code style for CI

* Fix code style for CI

* Fix code style for CI

* Fix code style for CI

* Fix code style for CI

* Fix CI error for initialization

* Fix code style for CI

* Fix code style for CI

* Reformat codes and docs for CI test

* Reformat codes and docs for CI test

* Remove unused attributes for CI test

* Fix style for CI test

* List MLCD in flash_attn doc

* Fix: typos, modulars, refactors from suggestions

* Refactoring convert_mlcd_weights_to_hf.py from suggestions

* Fix: docs conflicts

* Fix error for CI test

* Fix style for CI test

* Add integration test for MLCD

* Refactoring by class inheritance

* Fix: refactor attention interface, adjust codes

* Fix: merging conflicts

* Fix: merging conflicts

* Fix: style for CI test

* Fix: style for CI test

* Fix: set test_resize_embeddings to be False

* Fix: initializer for CI test

* Fix: conflicts, CI test, warning and refactoring

* Fix: merging conflicts

* Refactor

* Update docs

* Fix mistakes

* Remove unused args and fix multi-gpu error

* Revert position_embeddings

* Solve conflicts

* Solve conflicts

* Remove dummy

* Update _init_weights

* Update _init_weights

* Update _init_weights for CI test
2025-04-15 11:33:09 +01:00
d6ac923ad9 Change default value of attn_temperature_tuning (#37501)
fix: change default value of `attn_temperature_tuning`
2025-04-15 12:10:38 +02:00
c8e0e603de Detect and use device context manager or global device in from_pretrained (#37216)
* Update modeling_utils.py

* improve

* Update modeling_utils.py

* Update test_modeling_common.py

* Update test_modeling_timm_backbone.py

* Update test_modeling_common.py

* Update test_modeling_common.py

* Update test_modeling_common.py

* Update test_modeling_common.py

* CIs
2025-04-15 09:59:20 +02:00
4e63a1747c Don't auto-assign reviewers when the author is in HF (#37500)
* Don't auto-assign reviewers when the author is in HF

* Trigger tests
2025-04-14 18:17:38 +01:00
8ab296501a Remove deprecation warning for num_logits_to_keep (#37149)
* remove everything

* style
2025-04-14 19:08:45 +02:00
20ceaca228 Add Fast owlvit Processor (#37164)
* Add Fast Owlvit Processor

* Update image_processing_owlvit_fast.py

* Update image_processing_owlvit_fast.py

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 17:58:09 +02:00
cb39f7dd5b [qwen-omni] fix processor (#37493)
* fix

* delete print

* accept kwargs in overriden models as well

* remove duplicate
2025-04-14 17:30:31 +02:00
d228f50acc Fixing gated repo issues (#37463)
using unsloth model
2025-04-14 17:19:10 +02:00
a5dfb98977 Fix wrong argparse type in modular checker script (#37472)
fix(util): wrong argparse type in modular checker script
2025-04-14 16:11:29 +01:00
a53a63c9c2 Add Fast Mobilenet-V2 Processor (#37113)
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 17:08:47 +02:00
4774a39d05 Add ImageProcessorFast to BiT processor (#37180)
* Add ImageProcessorFast to BiT processor

* propose a fast processor and add tests

* all tests pass except one

* run make

* remove useless print

* use same test as clip

* apply make

* Update src/transformers/models/bit/image_processing_bit_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* Update setup.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* Update src/transformers/models/bit/image_processing_bit_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* apply review comment

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 17:07:48 +02:00
e43f168eb3 Add Fast LeViT Processor (#37154)
* Add Fast LeViT Processor

* Update levit.md

* Update src/transformers/models/levit/image_processing_levit_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* ruff check

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 17:07:36 +02:00
1efcfa9ca4 Fix mask handling for flex attention in llama/gemma2/mistral/qwen2 (#37381)
* fix BlockMask handling when using flex_attention for llama/mistral/gemma2

* fix attention_mask types

* revert type hints and fixup

* remove unnecessary assertion
2025-04-14 15:53:27 +01:00
86064035f0 [bug] deprecated deta load_cuda_kernel, MultiScaleDeformableAttention (#37443)
* Update modeling_deta.py

* variable initialization
2025-04-14 15:44:30 +01:00
7cc9e61a3a Add Fast Image Processor for Donut (#37081)
* add donut fast image processor support

* run make style

* Update src/transformers/models/donut/image_processing_donut_fast.py

Co-authored-by: Parteek <parteekkamboj112@gmail.com>

* update test, remove none default values

* add do_align_axis = True test, fix bug in slow image processor

* run make style

* remove np usage

* make style

* Apply suggestions from code review

* Update src/transformers/models/donut/image_processing_donut_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* add size revert in preprocess

* make style

* fix copies

* add test for preprocess with kwargs

* make style

* handle None input_data_format in align_long_axis

---------

Co-authored-by: Parteek <parteekkamboj112@gmail.com>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 16:24:01 +02:00
4e53840920 Detect and fix most _init_weights() issues - make it work for composite models (#37070)
* Update test_modeling_common.py

* Fix Llama and its modular children

* Update test_modeling_common.py

* qwen3

* first try at prioritizing models

* Update test_modeling_common.py

* Update test_modeling_common.py

* Update test_modeling_common.py

* test

* fix

* fix

* more models

* more

* more

* more

* smarter init for composite models!

* fix post rebase

* smol

* fix missing args

* more

* typo

* Super elegant and efficient init for submodels

* Update modeling_utils.py

* style

* last fixes

* cleanup

* finalize cleanup

* CIs

* improve docstring

* Update modeling_utils.py

* llama4

* style

* CIs

* style

* add dpt

* granite speech

* qwen 2.5 omni

* better fix

* Parse the config file instead

* CIs
2025-04-14 16:19:04 +02:00
1897a02d83 Add Fast Image Processor for LayoutLMv3 (#37201)
* support fast image processor layoutlmv3

* make style

* add warning and update test

* make style

* Update src/transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py

* Update image_processing_auto.py

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 15:42:11 +02:00
7bff4bdcf6 Fixed broken links (#37466)
* Update broken link

* Update broken link
2025-04-14 14:16:07 +01:00
e16775d103 Add Fast Image Processor for LayoutLMv2 (#37203)
* add support layoutlmv2

* make style

* Apply suggestions from code review

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* add warning and clean up

* make style

* Update src/transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 15:06:41 +02:00
49b9a69a36 Add Fast Image Processor for Flava (#37135)
* support flava fast image processor

* run style and quality

* update test

* update according to reviews

* make style

* update comment on BICUBIC

* make style

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 15:05:31 +02:00
a5079a2c84 [ci] fix doc builder (#37489)
happy doc ci
2025-04-14 13:49:31 +02:00
e7f5724efd Add Fast Image Processor for Perceiver (#37176)
* add test and fast image processor

* make style

* Update src/transformers/models/perceiver/image_processing_perceiver_fast.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* make style

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-14 13:49:13 +02:00
4b8c6d4cf8 Add Qwen2.5-Omni (#36752)
* Add qwen2.5-omni

* Remove einops dependency

* Add torchdiffeq dependency

* Sort init

* Add torchdiffeq to extras['diffeq']

* Fix repo consistency

* use cached_file

* del odeint

* renew pytest

* format

* Remove torchdiffeq

* format

* fixed batch infer bug

* Change positional_embedding to parameter

* Change default speaker

* Config revision

* Use modular & code clean

* code clean

* decouple padding with model & code cleaning

* sort init

* fix

* fix

* Second code review

* fix

* fix

* rename vars to full name + some comments

* update pytest

* Code clean & fix

* fix

* style

* more clean up

* fixup

* smaller vision model in tests

* fix processor test

* deflake a bit the tests (still flaky though)

* de-flake tests finally + add generation mixin

* final nits i hope

* make sure processor tests are complete

* replace with Qwen2_5OmniForConditionalGeneration

* fix tests after updating ckpt

* fix typos when cleaning, also we can't change ckpt

* fixup

* images and videos kwargs for processor

* thinker and talker loadable from hub ckpt

* address comments and update tests after rebase

* fixup

* skip for now

* fixup

* fixup

* remove torch dependency in processors

---------

Co-authored-by: lvyuanjun.lyj <lvyuanjun.lyj@alibaba-inc.con>
Co-authored-by: feizi.wx <feizi.wx@alibaba-inc.com>
Co-authored-by: raushan <raushan@huggingface.co>
2025-04-14 12:36:41 +02:00
ac1df5fccd Fix tests failed with gated repos. (#37484)
* fix

* slow

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-14 12:08:13 +02:00
1ef64710d2 Remove fsspec dependency which isn't directly used by transformers (#37318)
Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-14 12:02:28 +02:00
47b9f06aa2 make test_snowman_image_captioning pass on XPU, by sharing same atol w/ ROCM (#37480)
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2025-04-14 11:39:45 +02:00
78cea3e22c fix: (llama4) fix no_split_modules to be picked up for fsdpv1 and v2 sharding (#37462)
fix: fix no_split_modules to be picked up for fsdpv1 and v2 sharding

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
2025-04-14 10:44:32 +02:00
953196a43d Fix typing issues with SigLip2 (#37356)
* Fix issues

* Fix comment

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-04-11 22:24:23 +01:00
aaf129cdae [agents] remove agents 🧹 (#37368) 2025-04-11 18:42:37 +01:00
69e6ddf27f Delete hubconf.py (#37455)
* Delete hubconf.py

* Trigger tests
2025-04-11 18:12:45 +01:00
623d395aff Add Granite Speech Support (#36801)
* First pass at speech granite

Add encoder / projector, rename things

* Combine into one model file with causal lm outputs for forward

* Add loss calc

* Fix config loading

Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>

* Split new / old loading logic

* Use transformers integration for loading peft adapters

* Add generation wrapper for selective lora enablement

* Add note for qformer encoder automodel

* Guard torch/audio imports in feature extractor

* Handle granite speech autoclasses

* Handle optional deps in package structure for granite speech

* Add granite pretrained model def for init

* Add dummy objects for torch/torchaudio

* Add tests for granite speech processor

* Minor formatting fixes and refactoring

* Add options for falling back to config in forward

* Tentative model docstrings for granite speech

* Fix config type

* Remove legacy load

* Allow non-lora variants for granite speech

* Override weight tying for llm

* Use text config instead of llm config

* Add output embeddings getter to fix weight tying

* Fix relative imports

* computing the number of audio features, based on the raw audio sequence.

* collating audio inputs, and keeping the original lengths.

* asserted we have text. otherwise we can't specify the audio special token.

* assering the number of audio-symbols/audios match correctly.
running get validated_audios only when audio is present

* indentation bugfix + supporting different feature lengths when expanding audio.

* redundant, done in _get_validated_text

* adapting the tests:
- we must have text (not either audio or text)
- _get_num_audio_features takes a list of raw lengths, provided it insetad.

* Minor cleanup, remove unused import

* Add more tests for batch feature processing

* Allow setting offset in rel position embeddings

* Add config option for warning if peft is not installed w/ lora

* Port blip2 qformer code into granite speech

* Add sad test for numpy arr processing

* Allow numpy arrays / tuples in granite speech processor

* Fix config type for projector

* - pad instead of creating a zeros tensor, to keep the original dtype/device (support bfloat16)
- cast input_features to the model dtype (support bfloat16)

* merge Blip2QFormerConfig to GraniteSpeechProjectorConfig

* prevent a crash when re-saving/loading the model (line 109)

* consider additional edge cases during preprocessing.

* consider additional edge cases during preprocessing.

* add features mask for batched inference (bugfix)

* Minor refactor, remove multiaudio processor tests

* Add set input/output embeddings for granite speech

* Fix feature dim check in processor test

* Pop input features in embed test for granite speech

* Small fixes for test edge cases

Add granite speech to seq2seq causal lm mapping names

* Add small tests for granite speech model

* Fix data parallelism test

* Standardize model class names

* Fix check for copies

* Fix misaligned init check

* Skip granite speech in checkpoint check

* Use default for tie_word_embeddings in granite speech

* Fix non documentation granite speech repo issues

* Fix comments and docstring checks

* Add placeholder docs for granite speech

* Fix test naming collision

* Code formatting

* Rerun torch dummy obj regen

* Fix save pretrained for granite speech

* Import sorting

* Fix tests typo

* Remove offset hack

* Pass args through encoder config

* Remove unused prune heads from blip2

* removing einsum. replaced with explicit multiplication (relative positional encodings) and sdpa attention.

* remove Sequential from ConformerFeedForward and ConformerConvModule. + fix for sdpa attention

* remove GraniteSpeechConformerScale

* rename to hidden_states

* rename conformer layers to self.layers, remove the first linear from the list to keep the list homogenous.

* move pre-norm to the attention/feedforward blocks (avoid complex module wrapping)

* adding pre_norm into forward

* feature extractor refactoring to resemble how it's done in phi4multimodal.

* rename feature_extractor to audio_processor

* bugfix: input_feature_mask fix to get the exact number tokens.

* Fix pytest decorator in processor test

* Add (disabled) integration tests for granite speech

* Fix handling of optional feature masking

* Loosen validation in processing for vLLM compatability

* Formatting fixes

* Update init structure to mirror llama

* Make granite speech projector generic

* Update test config to reflect generic projector

* Formatting fixes

* Fix typos, add license

* Fix undefined var in input processing

* Cleanup and expose ctc encoder

* Add missing config docstrings

* Better var names, type hints, etc

* Set attn context size in init

* Add max pos emb to encoder config

* Cleanup feature extractor

* Add granite speech architecture details

* Remove granite speech qformer ref

* Add paper link, explicit calc for qkv

* Calculate padding directly in depthwise conv1d init

* Raise value error instead of asserting

* Reorder class defs (classes used at top)

* Precompute relpos distances

* Run formatting

* Pass attention distances through forward

* Apply suggestions from code review

Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>

* Add todo for using common batch feature extraction

* Rename audios/features

* Ensure chat template may be provided to processor

* Move granite speech docs to audio models

* Add todos for input proc refactoring

* Fix import order

* Guard torch import

* Use relative imports

* Require torch backend for processor in granite speech

* Add backend guards in feature extractor

---------

Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
Co-authored-by: Avihu Dekel <avihu.dekel@ibm.com>
Co-authored-by: eustlb <94853470+eustlb@users.noreply.github.com>
2025-04-11 18:52:00 +02:00
435f88f1db nit: typing use Llama4TextConfig instead of Llama4Config (#37430)
nit: typing to text config

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
2025-04-11 17:29:34 +01:00
954f31cd81 Add XPU case to is_torch_bf16_gpu_available (#37132)
* Add xpu case to is_torch_bf16_gpu_available

Signed-off-by: cyy <cyyever@outlook.com>

* Refine error messages

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-11 17:28:47 +01:00
28eae8b4bd Add weights_only=True to torch.load (#37062) 2025-04-11 17:18:41 +01:00
bf46e44878 🚨 🚨 Allow saving and loading multiple "raw" chat template files (#36588)
* Add saving in the new format (but no loading yet!)

* Add saving in the new format (but no loading yet!)

* A new approach to template files!

* make fixup

* make fixup, set correct dir

* Some progress but need to rework for cached_file

* Rework loading handling again

* Small fixes

* Looks like it's working now!

* make fixup

* Working!

* make fixup

* make fixup

* Add TODO so I don't miss it

* Cleaner control flow with one less indent

* Copy the new logic to processing_utils as well

* Proper support for dicts of templates

* make fixup

* define the file/dir names in a single place

* Update the processor chat template reload test as well

* Add processor loading of multiple templates

* Flatten correctly to match tokenizers

* Better support when files are empty sometimes

* Stop creating those empty templates

* Revert changes now we don't have empty templates

* Revert changes now we don't have empty templates

* Don't support separate template files on the legacy path

* Rework/simplify loading code

* Make sure it's always a chat_template key in chat_template.json

* Update processor handling of multiple templates

* Add a full save-loading test to the tokenizer tests as well

* Correct un-flattening

* New test was incorrect

* Correct error/offline handling

* Better exception handling

* More error handling cleanup

* Add skips for test failing on main

* Reorder to fix errors

* make fixup

* clarify legacy processor file docs and location

* Update src/transformers/processing_utils.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Update src/transformers/processing_utils.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Update src/transformers/processing_utils.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Update src/transformers/processing_utils.py

Co-authored-by: Lucain <lucainp@gmail.com>

* Rename to _jinja and _legacy

* Stop saving multiple templates in the legacy format

* Cleanup the processing code

* Cleanup the processing code more

* make fixup

* make fixup

* correct reformatting

* Use correct dir name

* Fix import location

* Use save_jinja_files instead of save_raw_chat_template_files

* Correct the test for saving multiple processor templates

* Fix type hint

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Patch llava_onevision test

* Update src/transformers/processing_utils.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Refactor chat template saving out into a separate function

* Update tests for the new default

* Don't do chat template saving logic when chat template isn't there

* Ensure save_jinja_files is propagated to tokenizer correctly

* Trigger tests

* Update more tests to new default

* Trigger tests

---------

Co-authored-by: Lucain <lucainp@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
2025-04-11 16:37:23 +01:00
897874748b Disable kernels for quantization (#37446)
fix
2025-04-11 16:35:38 +02:00
6a75528cbc prevent creating a view/leaf param for low rank optimizers w FSDP (#37379)
prevent creating a view/leaf param for low rank optimizers:
2025-04-11 14:36:29 +02:00
6cef03ba66 [Regression] Fix Quark quantized model loading after refactorization (#37407) 2025-04-11 13:43:36 +02:00
a563999a02 [processor] clean up mulitmodal tests (#37362)
* clkea up mulitmodal processor tests

* fixup

* fix tests

* fix one last test

* forgot
2025-04-11 13:32:19 +02:00
3c39c07939 Remove triton mlp kernel, not compiling for some models (#37449)
* remove mlp for now

* disable on docker
2025-04-11 12:47:13 +02:00
f797e3d98a Fix the test fetcher (#37452)
Test fetcher
2025-04-11 12:19:27 +02:00
442d356aa5 Add moe kernels (#37376)
* the fix that did not get in

* add kernels

* full graph does not work

* simpler is better

* Update src/transformers/integrations/hub_kernels.py

Co-authored-by: Daniël de Kok <me@danieldk.eu>

* Update src/transformers/integrations/fbgemm_fp8.py

Co-authored-by: Daniël de Kok <me@danieldk.eu>

* Update src/transformers/integrations/hub_kernels.py

Co-authored-by: Daniël de Kok <me@danieldk.eu>

* fixup

---------

Co-authored-by: Daniël de Kok <me@danieldk.eu>
2025-04-11 11:56:22 +02:00
7e9b57ce62 Update-kernel-pin (#37448)
* update `kernels`

* oups

* new pinned version
2025-04-11 11:19:21 +02:00
54a123f068 Simplify soft dependencies and update the dummy-creation process (#36827)
* Reverse dependency map shouldn't be created when test_all is set

* [test_all] Remove dummies

* Modular fixes

* Update utils/check_repo.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* [test_all] Better docs

* [test_all] Update src/transformers/commands/chat.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* [test_all] Remove deprecated AdaptiveEmbeddings from the tests

* [test_all] Doc builder

* [test_all] is_dummy

* [test_all] Import utils

* [test_all] Doc building should not require all deps

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-11 11:08:36 +02:00
931126b929 Fixes: Corrects file path for CUDA kernels (#37438)
Corrects the file path used to locate the CUDA kernels
for the Deformable Attention module. This ensures that
the kernels are loaded correctly, resolving potential
errors during module initialization and usage.
2025-04-11 09:41:46 +01:00
c7064cdba1 enhance require_deterministic_for_xpu (#37437)
* enhance require_deterministic_for_xpu

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
2025-04-11 08:06:08 +02:00
371c44d0ef Remove old code for PyTorch, Accelerator and tokenizers (#37234)
* Remove unneeded library version checks

Signed-off-by: cyy <cyyever@outlook.com>

* Remove PyTorch condition

Signed-off-by: cyy <cyyever@outlook.com>

* Remove PyTorch condition

Signed-off-by: cyy <cyyever@outlook.com>

* Fix ROCm get_device_capability

Signed-off-by: cyy <cyyever@outlook.com>

* Revert "Fix ROCm get_device_capability"

This reverts commit 0e756434bd7e74ffd73de5500476072b096570a6.

* Remove unnecessary check

Signed-off-by: cyy <cyyever@outlook.com>

* Revert changes

Signed-off-by: cyy <cyyever@outlook.com>

---------

Signed-off-by: cyy <cyyever@outlook.com>
2025-04-10 20:54:21 +02:00
7ff896c0f2 [Feat] Support npu in modeling models (#37369) 2025-04-10 19:00:58 +02:00
10907e2846 Adding to self_comment_ci.yml (#37426)
add myself
2025-04-10 17:46:56 +02:00
7d76876498 (Part 2) feat: allow for tp_size attr for tplizing the model (#37054)
* feat: custom tp_size, new transformers tp interface

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* fix: review cmt - error when tp_plan not set for tp_size

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* fix: nit in docs

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Matej Sirovatka <54212263+S1ro1@users.noreply.github.com>
2025-04-10 17:44:09 +02:00
dac443414e fix: use mtime by default in Trainer._rotate_checkpoints with automatic fallback (#37260)
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-10 17:42:06 +02:00
6daec12d0b Add GGUF support to Gemma3 Text backbone (#37424)
* add gemma3 gguf support

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix typo and add gguf limit

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix a typo

Signed-off-by: Isotr0py <2037008807@qq.com>

* add vision conversion test

Signed-off-by: Isotr0py <2037008807@qq.com>

* fix typos

Signed-off-by: Isotr0py <2037008807@qq.com>

---------

Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-10 17:15:43 +02:00
0ea1151222 Llama Kernel integration (#37092)
* initial commit

* style

* update

* change approach attention

* clean up

* fix import

* update

* update

* fix style

* change method

* attention

* add mlp back

* change name

* update name

* fix copies

* fix config

* fix
2025-04-10 17:13:25 +02:00
9c0c323e12 Fix require_read_token (#37422)
* nit

* fix

* fix
2025-04-10 17:01:40 +02:00
bde41d69b4 Correctly drop tokens in SwitchTransformer (#37123)
Previously, the identity function was used for dropped tokens
with a weight from the expert that was not applied to the hidden states.
This was misleading, because dropping means, the expert weight is zero.
Instead of trying to fix the weight, we take an easier approach by initializing with zeros.

Fixes issue https://github.com/huggingface/transformers/issues/37017
2025-04-10 16:58:57 +02:00
7ecc5b88c0 Add image classifier donut & update loss calculation for all swins (#37224)
* add classifier head to donut

* add to transformers __init__

* add to auto model

* fix typo

* add loss for image classification

* add checkpoint

* remove no needed import

* reoder import

* format

* consistency

* add test of classifier

* add doc

* try ignore

* update loss for all swin models
2025-04-10 15:00:42 +02:00
5ae9b2cac0 Quark Quantization gated repo (#37412)
* fix

* empty commit

* empty

* nit

* fix maybe ?
2025-04-10 14:57:15 +02:00
d9e76656ae Fix new failure reports not including anything other than tests/models/ (#37415)
* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-10 14:47:23 +02:00
1ae8d54b04 [chat-template] Unify tests and clean up 🧼 (#37275)
* fix tests and some clean up

* make one general test for each modality

* remove redundant merging of kwargs

* edge cases

* dont enforce slow when reloading

* fix gemma3 tests

* has to adapt llama 4 after rebase

* remove also from overriden tests

* should be green now
2025-04-10 14:42:32 +02:00
10144ff116 use rms_norm_eps for the L2Norm for Llama4 (#37418)
use `rms_norm_eps`
2025-04-10 13:33:50 +02:00
aa478567f8 Allow rocm systems to run these tests (#37278)
* Allow rocm systems to run these tests

* Fix skipTest logic

* Use get_device_properties to check system capabilities
2025-04-10 13:33:01 +02:00
ae5ce22664 from_pretrained should handle xpu case (#37382)
* from_pretrained should handle xpu case

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fmt

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

---------

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2025-04-10 13:23:17 +02:00
4f139f5a50 Send trainer/fsdp/deepspeed CI job reports to a single channel (#37411)
* send trainer/fsdd/deepspeed channel

* update

* change name

* no .

* final

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-10 13:17:31 +02:00
a2c2fb0108 update kernels to 0.4.3 (#37419)
* update `kernels`

* oups
2025-04-10 12:14:22 +02:00
0ddad2d655 mark llama4 as not supported with fa2 (#37416) 2025-04-10 11:48:46 +02:00
fbb2054ed5 Offloaded hybrid cache for Llama4 (#37401)
* first try (maybe race condition)

* Update cache_utils.py

* cannot avoid the race condition -> use 2 layers

* Update cache_utils.py

* Update cache_utils.py
2025-04-10 11:44:34 +02:00
6d8b0b3378 Fix Llama4 offset (#37414)
* add +1

* Update modeling_llama4.py
2025-04-10 11:40:58 +02:00
f5865d32a2 Restrict & Explain tp_plan for FBgemm (#37404)
* explain tp_plan

* add llama4 check

* add clarification
2025-04-10 11:33:33 +02:00
e39c732644 Handle torch ver in flexattn (#37400)
* Handle torch ver in flexattn

* update
2025-04-10 11:27:54 +02:00
bc0150bb04 Add warning when failed to acquire other user's lock at model download (#37395) 2025-04-10 11:18:27 +02:00
9cda4265d6 handle torch version edge cases (#37399) 2025-04-09 21:49:57 +02:00
e032d12e8a the fix that did not get in (#37370)
* debugging improvements

* add debugging details

* add more debugging details

* debug more

* the fix that did not get in

* First fix flex

* fix query offset

* fix flex first

* fix device mask creation for speed

* small mask creation sdpa

* Update flex_attention.py

* remove chunked prefill from HybridChunkedCache

* never seen such a fucked up merged

* clean up layers + output

* add summary json file

* Efficient general cache

* Update cache_utils.py

* cleanup

* fix?

* fix!

* oups typo

* not everywhere

* more fixes

* revert unrelated changes

* Fix but ugly for now -> should use pad instead

* oups

* re-initialize the cache

* Use pad to simplify

* style

* correct slicing

---------

Co-authored-by: Pablo <pablo.montalvo.leroux@gmail.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-04-09 20:15:33 +02:00
f834ca2c19 Attention Quantization with FBGemm & TP (#37384)
* fix

* keep fused

* contiguous

* rm print

* update

* update

* rm print
2025-04-09 18:45:42 +02:00
c5c648dd74 Fix some failing AWQ tests (#37383)
* update AwqQuantizer

* fix style

* add an arg to get_modules_to_not_convert to add get_keys_to_not_convert(model)
2025-04-09 18:24:57 +02:00
71b35387fd Apply torchfix to replace deprecated functions: _pytree._register_pytree_node and torch.cpu.amp.autocast (#37372)
fix: apply torchfix
2025-04-09 16:11:18 +01:00
ad340908e4 Fix warning message for PEFT models in text-generation pipeline #36783 (#36887)
* add peft model in constant

* add test

* fix formating

* make fixup execute

* change code

* check by self.task

* add test

* fixup test code

* fix minor typo

* fix pipeline test

* apply maintainers reqests
2025-04-09 15:36:52 +01:00
2527f71a47 Add "selecting a quantization method" doc (#37159)
* initial draft

* make documentation simpler

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/selecting.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* turn pros and cons into tables

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* add links to each quant method page

* separate calibration vs no calibration methods

* add calibration time estimates

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-09 15:51:37 +02:00
7ae0be722e update deepspeed docker (#37371)
* update

* create docker image

* 03

* uninstall pytest as it conflits with transformers

* wrong one

* better

* see which package depends on pytest

* up

* resintall

* fix

* deepspeedddddddd

* deepspeedddddddd

* deepspeedddddddd

* deepspeedddddddd

* deepspeedddddddd

* deepspeedddddddd

* deepspeedddddddd

* deepspeedddddddd

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-09 14:54:06 +02:00
e3eda6d188 Add glm4 (#37388)
* add changed

* Revert "add changed"

This reverts commit 0a0166a1fe80556115a49fbf0c2132de0f4f85c9.

* update with NEW MODEL class called GLM4

* update

* Update glm4.md

* Name

* style

* fix copies

* fixup test

---------

Co-authored-by: Yuxuan Zhang <2448370773@qq.com>
2025-04-09 14:02:04 +02:00
1e6ff5fd55 fix: llama4 conversion script no_rope_layers (#37359)
fix conversion script no_rope_layers

`no_rope_layers` should either be a list of NoPE layers or None, such that it is created in the config from the `no_rope_layer_interval`

Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
2025-04-09 13:02:15 +02:00
6f4058aee3 Update composition flag usage (#36263)
* update composition flag usage

* remove print

* fix tests

* actually fix

* oh c'mon

* now should be fixed right?

* fix copies
2025-04-09 11:48:49 +02:00
08e3217baf Preserve requires_grad in pre quantized model (#37354)
* Preserve requires_grad in pre quantized model

Summary:
discovered this when running lm-eval for some models, current
code will set requires_grad to True always

Test Plan:
lm_eval --model hf --model_args pretrained=jerryzh168/phi4-torchao-gguf-q4_k --tasks hellaswag --device cuda:0 --batch_size 8

Reviewers:

Subscribers:

Tasks:

Tags:

* ruff format

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-04-08 18:41:30 +02:00
4d0de5f73a 🚨 🚨 Setup -> setupclass conversion (#37282)
* More limited setup -> setupclass conversion

* make fixup

* Trigger tests

* Fixup UDOP

* Missed a spot

* tearDown -> tearDownClass where appropriate

* Couple more class fixes

* Fixups for UDOP and VisionTextDualEncoder

* Ignore errors when removing the tmpdir, in case it already got cleaned up somewhere

* CLIP fixes

* More correct classmethods

* Wav2Vec2Bert fixes

* More methods become static

* More class methods

* More class methods

* Revert changes for integration tests / modeling files

* Use a different tempdir for tests that actually write to it

* Remove addClassCleanup and just use teardownclass

* Remove changes in modeling files

* Cleanup get_processor_dict() for got_ocr2

* Fix regression on Wav2Vec2BERT test that was masked by this before

* Rework tests that modify the tmpdir

* make fix-copies

* revert clvp modeling test changes

* Fix CLIP processor test

* make fix-copies
2025-04-08 17:15:37 +01:00
c15a7adb28 fix(qwen): fix shape error when using tp (#36947)
* fix(qwen): fix shape error when using tp

* Update modeling_qwen2_vl.py

---------

Co-authored-by: shidongxing <shidongxing@pjlab.org.cn>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-04-08 17:47:30 +02:00
121f91d36c prune LM Head for USD (#36695)
* initial commit

* fix

* fix style

* set default to prune

* add tests

* comment

* remove prune flag from generate

* address Joao's comments

* deprecate_kwarg

* add doc

* fix target_vocab_size

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation/candidate_generator.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* fix deprecated argument assistant_model_device

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2025-04-08 16:44:10 +01:00
4321b0648c [core] remove GenerationMixin inheritance by default in PreTrainedModel (#37173) 2025-04-08 16:42:05 +01:00
aab0878327 Skip non-selected experts for mixtral and qwen2_moe (#32429)
* Skip non-selected experts for mixtral and qwen2_moe

* Fix: tensor tolist()

* WIP: tokenization test

* fix modular source of truth

* nits

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-04-08 17:41:28 +02:00
35f0f5b5da [llama 4] dynamic rope decorator (#37365)
l4 + dynamic rope decorator
2025-04-08 15:56:31 +01:00
530322ccb6 Set vision config to None for Gemma 1B conversion (#37366)
* Set vision config to None for Gemma 1B conversion

* Trigger tests

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2025-04-08 14:22:32 +01:00
8064cd9b4f fix deepspeed job (#37284)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-08 15:19:33 +02:00
cdfb018d03 A bit of cleaning 🧹🧹 (#37215)
* cleaning

* CIs
2025-04-08 14:33:58 +02:00
1e6b546ea6 Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00
0fc683d1cd convert float for yarn related arguments in rope_scaling (#37139)
* convert float for yarn related arguments in rope_scaling

* sort keys alphabetically

---------

Co-authored-by: ryan.agile <ryan.agile@kakaobrain.com>
2025-04-08 13:58:22 +02:00
2515a5a290 Expose blip2qformer (#37254)
* Expose blip2qformer

* Add missing args to blip2 config
2025-04-08 12:04:33 +02:00
2da82e432d Multiple llama4 fixe (#37353)
* update for fixes

* more fixes

* fuxix dynamic cache?

* style

* fix both traiining and generating. Eager seems alright

* dynamic does not work

* fix most cases, use_cache or not, eager or not, no default cache (ex: not training but you want to get cache states)

* should be final fixes

* fix more stuff no cat

* style

* fix

* style

* final sytle

* qualityeioiwhjfaopsejdpofqsdjkfjha;wesdhgfkjlqsw.denghjkaswednkgs

* fix

* revert
2025-04-08 11:14:49 +02:00
794fde7b1c Fixing flex attention for torch=2.6.0 (#37285)
* adding compile kwarg for torch 2.6

* fixing dynamic

* addressing comment

* typo

* Update src/transformers/integrations/flex_attention.py

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-04-07 23:04:46 +02:00
b54c2f4689 more fixes for post-training llama4 (#37329)
* more fixes for post-training llama4

* use target_length instead of guearded past_key_values
2025-04-07 21:20:23 +02:00
754a370bca Remove unnecessary attr assignment (#36837)
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-04-07 20:19:54 +01:00
31a62c2eb8 Updated Model-card for donut (#37290)
* Updated documentation for Donut model

* Update docs/source/en/model_doc/donut.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/donut.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/donut.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/donut.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated code suggestions

* Update docs/source/en/model_doc/donut.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated code suggestion to Align with the AutoModel example

* Update docs/source/en/model_doc/donut.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Updated notes section included code examples

* close hfoption block and indent

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-07 11:54:47 -07:00
f830105183 Add bnb to the list of supported quantization methods for LLama4 (#37348)
* add bnb

* style

* update

* add pre_quantized check
2025-04-07 20:34:06 +02:00
e2b0224d94 Update Model Card for Jamba (#37152)
* Update model card for jamba

* Apply the suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review-2

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update model page.

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update as per code review.

* Update docs/source/en/model_doc/jamba.md as per code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/jamba.md as per code review

`

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update as per code review.

* fixes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-07 11:02:59 -07:00
6cc109c354 Improvements in Gemma2 model card (#37076)
* Improved Model card for Gemma2

* Made changes in gemma2 as suggested

* Made more changes in the doc (adding image, notes, closing hfoptions)

* minor fixes

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-07 10:51:26 -07:00
8bbcdf5409 Clean up the compressed-tensors integration (#37349)
clean up
2025-04-07 19:26:45 +02:00
3a826a45ca Update Model card for GPT2 (#37101)
* Update Model card for gpt2

* Update link for gpt2 space

* fixes docs based on suggestions

* Add transformers-cli and quantization example for GPT-2

* Remove resources and flash attention docs and fix typos
2025-04-07 10:15:28 -07:00
5e855095a2 Update falcon mamba card (#37253)
* feat: edit falcon mamba card

* fix: edit statement on falconmamba arch

* Update docs/source/en/model_doc/falcon_mamba.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon_mamba.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/falcon_mamba.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix: add right indent for tags

* fix: remove notas

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-07 10:12:44 -07:00
416b5a875d Update model-card for DINOv2 (#37104)
[docs] Update model-card for DINOv2
2025-04-07 10:11:08 -07:00
f8a16805c5 updated model card for Mistral (#37156)
* model card for Mistral

* Update docs/source/en/model_doc/mistral.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/mistral.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/mistral.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/mistral.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/mistral.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* apply suggestions

* fix typo

* updated with comments

* updated with comments

* updated with comments

* remove hfoption block

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-04-07 10:05:36 -07:00
48e179857c Remove HQQ from caching allocator warmup (#37347)
Update modeling_utils.py
2025-04-07 18:33:48 +02:00
832cb684a0 Update translation template (#37294) 2025-04-07 09:29:37 -07:00
22065bd645 fix derived berts _init_weights (#37341)
* fix derived berts

* more

* roformer
2025-04-07 18:25:07 +02:00
f789f960c8 Avoid build crashes when torch.version.xpu doesn't exist and fix Llama4 processor tests (#37346)
* Avoid build crashes when torch.version.xpu doesn't exist

* Trigger tests

* Fix image token and skip inappropriate test

* Remove ignore_errors=True

* Add another skip
2025-04-07 17:05:54 +01:00
12bf24d6ae enable 2 llama UT cases on xpu (#37126)
* enable tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits and tests/models/llama/test_modeling_llama.py::LlamaIntegrationTest::test_model_7b_logits_bf16 on xpu

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* switch to use Expectations

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* extract gen bits from architecture and use it

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* add cross refererence

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* fix style

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

---------

Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-07 16:02:14 +02:00
e7ad077012 byebye torch 2.0 (#37277)
* bump Torch 2.1 with broken compatibility `torch.compile`

* dep table

* remove usage of is_torch_greater_or_equal_than_2_1

* remove usage of is_torch_greater_or_equal_than_2_1

* remove if is_torch_greater_or_equal("2.1.0")

* remove torch >= "2.1.0"

* deal with 2.0.0

* PyTorch 2.0+ --> PyTorch 2.1+

* ruff 1

* difficult ruff

* address comment

* address comment

---------

Co-authored-by: Jirka B <j.borovec+github@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-04-07 15:19:47 +02:00
99f9f1042f Fix torchao usage (#37034)
* fix load path

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix path

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* Fix torchao usage

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* revert useless change

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* revert fp8 test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix fp8 test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix fp8 test

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix torch dtype

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-04-07 14:50:48 +02:00
0fb8d49e88 Use Python 3.9 syntax in examples (#37279)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-07 12:52:21 +01:00
08f36771b3 Fix init empty weights without accelerate (#37337)
* add the integration

* Update accelerate.py

* Update accelerate.py

* add find_tied_params as well

* Update accelerate.py

* add where copied from

* simplify

* add error
2025-04-07 11:37:29 +02:00
9db31ea585 Fix deepspeed with quantization (#37324)
* Update modeling_utils.py

* Update modeling_utils.py
2025-04-07 11:36:44 +02:00
debfe904c9 fix llama4 training (#37319) 2025-04-07 09:24:44 +02:00
54538ebee3 fix flex attn when optional args aren't passed (#37327) 2025-04-07 09:12:21 +02:00
d1b92369ca v4.52.0.dev0 2025-04-05 22:04:21 +02:00
2108 changed files with 61358 additions and 54359 deletions

View File

@ -56,6 +56,12 @@ body:
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc @MekkCyber
Devices/Backends:
- AMD ROCm: @ivarflakstad
- Intel XPU: @IlyasMoutawwakil
- Ascend NPU: @ivarflakstad
Documentation: @stevhliu

View File

@ -23,7 +23,7 @@ Some notes:
* Please translate in a gender-neutral way.
* Add your translations to the folder called `<languageCode>` inside the [source folder](https://github.com/huggingface/transformers/tree/main/docs/source).
* Register your translation in `<languageCode>/_toctree.yml`; please follow the order of the [English version](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml).
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu and @MKhalusova for review.
* Once you're finished, open a pull request and tag this issue by including #issue-number in the description, where issue-number is the number of this issue. Please ping @stevhliu for review.
* 🙋 If you'd like others to help you with the translation, you can also post in the 🤗 [forums](https://discuss.huggingface.co/).
## Get Started section

View File

@ -54,6 +54,21 @@ def get_file_owners(file_path, codeowners_lines):
return owners # Remember, can still be empty!
return [] # Should never happen, but just in case
def pr_author_is_in_hf(pr_author, codeowners_lines):
# Check if the PR author is in the codeowners file
for line in codeowners_lines:
line = line.split('#')[0].strip()
if not line:
continue
# Split into pattern and owners
parts = line.split()
owners = [owner.removeprefix("@") for owner in parts[1:]]
if pr_author in owners:
return True
return False
def main():
script_dir = Path(__file__).parent.absolute()
with open(script_dir / "codeowners_for_review_action") as f:
@ -68,6 +83,9 @@ def main():
pr_number = event['pull_request']['number']
pr = repo.get_pull(pr_number)
pr_author = pr.user.login
if pr_author_is_in_hf(pr_author, codeowners_lines):
print(f"PR author {pr_author} is in codeowners, skipping review request.")
return
existing_reviews = list(pr.get_reviews())
if existing_reviews:

View File

@ -63,14 +63,14 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
title: 🤗 Results of the transformers-all-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on:
group: aws-general-8-plus
group: aws-g4dn-2xlarge-cache
steps:
-
name: Set up Docker Buildx
@ -99,7 +99,7 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER}}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu docker build
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -140,7 +140,7 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
title: 🤗 Results of the transformers-pytorch-deepspeed-latest-gpu-push-ci docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -176,7 +176,7 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-doc-builder docker build
title: 🤗 Results of the huggingface/transformers-doc-builder docker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -214,7 +214,7 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
title: 🤗 Results of the huggingface/transformers-pytorch-gpudocker build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -223,19 +223,19 @@ jobs:
runs-on:
group: aws-general-8-plus
steps:
-
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
-
name: Check out code
uses: actions/checkout@v4
-
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
-
name: Build and push
uses: docker/build-push-action@v5
with:
@ -263,7 +263,7 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
title: 🤗 Results of the huggingface/transformers-pytorch-amd-gpu-push-ci build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -301,7 +301,7 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
title: 🤗 Results of the huggingface/transformers-tensorflow-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -310,19 +310,19 @@ jobs:
runs-on:
group: aws-general-8-plus
steps:
-
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
-
name: Check out code
uses: actions/checkout@v4
-
-
name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
-
name: Build and push
uses: docker/build-push-action@v5
with:
@ -350,7 +350,7 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-pytorch-deepspeed-amd-gpu build
title: 🤗 Results of the transformers-pytorch-deepspeed-amd-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
@ -388,6 +388,6 @@ jobs:
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ secrets.CI_SLACK_CHANNEL_DOCKER }}
title: 🤗 Results of the transformers-quantization-latest-gpu build
title: 🤗 Results of the transformers-quantization-latest-gpu build
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -42,7 +42,7 @@ jobs:
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
runs-on:
group: aws-general-8-plus
group: aws-g4dn-2xlarge-cache
steps:
-
name: Set up Docker Buildx

View File

@ -14,4 +14,4 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: ar de en es fr hi it ko pt tr zh ja te
languages: en

View File

@ -18,6 +18,10 @@ on:
docker:
required: true
type: string
report_name_prefix:
required: false
default: run_models_gpu
type: string
env:
HF_HOME: /mnt/cache
@ -116,23 +120,23 @@ jobs:
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
run: python3 -m pytest -rsfE -v --make-reports=${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
run: cat /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
mkdir -p /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ env.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
name: ${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ env.machine_type }}_${{ inputs.report_name_prefix }}_${{ matrix.folders }}_test_reports

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -54,12 +54,23 @@ jobs:
ci_event: Daily CI
secrets: inherit
trainer-fsdp-ci:
name: Trainer/FSDP CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_trainer_and_fsdp_gpu
slack_report_channel: "#transformers-ci-daily-training"
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-deepspeed"
slack_report_channel: "#transformers-ci-daily-training"
runner: daily-ci
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI

View File

@ -45,7 +45,7 @@ env:
jobs:
setup:
if: contains(fromJSON('["run_models_gpu", "run_quantization_torch_gpu"]'), inputs.job)
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu", "run_quantization_torch_gpu"]'), inputs.job)
name: Setup
strategy:
matrix:
@ -77,12 +77,17 @@ jobs:
run: pip freeze
- id: set-matrix
if: ${{ inputs.job == 'run_models_gpu' }}
if: contains(fromJSON('["run_models_gpu", "run_trainer_and_fsdp_gpu"]'), inputs.job)
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
if [ "${{ inputs.job }}" = "run_models_gpu" ]; then
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
elif [ "${{ inputs.job }}" = "run_trainer_and_fsdp_gpu" ]; then
echo "folder_slices=[['trainer'], ['fsdp']]" >> $GITHUB_OUTPUT
echo "slice_ids=[0, 1]" >> $GITHUB_OUTPUT
fi
- id: set-matrix-quantization
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
@ -113,6 +118,25 @@ jobs:
docker: ${{ inputs.docker }}
secrets: inherit
run_trainer_and_fsdp_gpu:
if: ${{ inputs.job == 'run_trainer_and_fsdp_gpu' }}
name: " "
needs: setup
strategy:
fail-fast: false
matrix:
machine_type: [aws-g4dn-2xlarge-cache, aws-g4dn-12xlarge-cache]
slice_id: [0, 1]
uses: ./.github/workflows/model_jobs.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner: ${{ inputs.runner }}
docker: ${{ inputs.docker }}
report_name_prefix: run_trainer_and_fsdp_gpu
secrets: inherit
run_pipelines_torch_gpu:
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
name: PyTorch pipelines
@ -382,7 +406,7 @@ jobs:
run: pip freeze
- name: Set `machine_type` for report and artifact names
working-directory: /transformers
working-directory: ${{ inputs.working-directory-prefix }}/transformers
shell: bash
run: |
echo "${{ matrix.machine_type }}"
@ -541,6 +565,7 @@ jobs:
needs: [
setup,
run_models_gpu,
run_trainer_and_fsdp_gpu,
run_pipelines_torch_gpu,
run_pipelines_tf_gpu,
run_examples_gpu,

View File

@ -26,7 +26,7 @@ There are two main venues to receive support: [the forums](https://discuss.huggi
[The user forums](https://discuss.huggingface.co/) are supported by the wide community of the library users and backed up by developers when needed.
If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystalized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues).
If you have a difficulty with deploying this library or some questions, or you'd like to discuss a new feature, please first consider discussing those things at the forums. Only when you feel your subject matter has been crystallized and you still need support from the library developers do proceed to file an [issue](https://github.com/huggingface/transformers/issues).
In particular all "Please explain" questions or objectively very user-specific feature requests belong to the forums. Here are some example of such questions:

View File

@ -70,7 +70,7 @@ Explore the [Hub](https://huggingface.com/) today to find a model and use Transf
## Installation
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.0+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
Transformers works with Python 3.9+ [PyTorch](https://pytorch.org/get-started/locally/) 2.1+, [TensorFlow](https://www.tensorflow.org/install/pip) 2.6+, and [Flax](https://flax.readthedocs.io/en/latest/) 0.4.1+.
Create and activate a virtual environment with [venv](https://docs.python.org/3/library/venv.html) or [uv](https://docs.astral.sh/uv/), a fast Rust-based Python package and project manager.

View File

@ -27,13 +27,6 @@ These models require the `trust_remote_code=True` parameter to be set when using
the content of the modeling files when using this argument. We recommend setting a revision in order to ensure you
protect yourself from updates on the repository.
#### Tools
Through the `Agent` framework, remote tools can be downloaded to be used by the Agent. You're to specify these tools
yourself, but please keep in mind that their code will be run on your machine if the Agent chooses to run them.
Please inspect the code of the tools before passing them to the Agent to protect your runtime and local setup.
## Reporting a Vulnerability
Feel free to submit vulnerability reports to [security@huggingface.co](mailto:security@huggingface.co), where someone from the HF security team will review and recommend next steps. If reporting a vulnerability specific to open source, please note [Huntr](https://huntr.com) is a vulnerability disclosure program for open source software.

View File

@ -90,7 +90,7 @@ def summarize(run_dir, metrics, expand_metrics=False):
model = benchmark.config.backend["model"]
# Ths looks like `benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5`.
# This looks like `benchmark.input_shapes.batch_size=1,benchmark.input_shapes.sequence_length=5`.
# (we rely on the usage of hydra's `${hydra.job.override_dirname}`.)
benchmark_name = re.sub(f"backend.model={model},*", "", report_dir)
benchmark_name = str(Path(benchmark_name).parts[-1])

View File

@ -293,7 +293,7 @@ def run_benchmark(logger: Logger, branch: str, commit_id: str, commit_msg: str,
max_cache_len=seq_length + 128,
)
# 3nd call
# 3rd call
start = perf_counter()
output = model.generate(**inputs, past_key_values=past_key_values)
end = perf_counter()

View File

@ -66,7 +66,6 @@ NOT_DEVICE_TESTS = {
"ModelTester::test_pipeline_",
"/repo_utils/",
"/utils/",
"/agents/",
}
# allow having multiple repository checkouts and not needing to remember to rerun
@ -83,7 +82,6 @@ def pytest_configure(config):
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested")
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate")
config.addinivalue_line("markers", "agent_tests: mark the agent tests that are run on their specific schedule")
config.addinivalue_line("markers", "not_device_test: mark the tests always running on cpu")

View File

@ -5,7 +5,7 @@ ARG REF=main
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"

View File

@ -16,7 +16,7 @@ RUN cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local
RUN make install -j 10
RUN uv pip install --no-cache --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache --upgrade 'torch==2.6.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]" unidic unidic-lite
# spacy is not used so not tested. Causes to failures. TODO fix later

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]" seqeval albumentations jiwer
RUN uv pip uninstall transformers

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y libsndfile1-dev espeak-ng time git libgl1-mesa-glx libgl1 g++ tesseract-ocr
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --no-deps timm accelerate
RUN pip install -U --upgrade-strategy eager --no-cache-dir pytesseract python-Levenshtein opencv-python nltk
# RUN uv pip install --no-cache-dir natten==0.15.1+torch210cpu -f https://shi-labs.com/natten/wheels

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git pkg-config openssh-client git
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN uv pip uninstall transformers

View File

@ -5,7 +5,7 @@ USER root
RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-dev espeak-ng time git g++ cmake pkg-config openssh-client git git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir --upgrade 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken,num2words,video]"
RUN uv pip uninstall transformers

View File

@ -7,7 +7,7 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN uv pip install --no-cache-dir --no-deps accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir 'torch==2.6.0' 'torchaudio==2.6.0' 'torchvision==0.21.0' --index-url https://download.pytorch.org/whl/cpu
RUN git lfs install
RUN uv pip install --no-cache-dir pypi-kenlm

View File

@ -14,6 +14,8 @@ ARG PYTORCH='2.6.0'
ARG INTEL_TORCH_EXT='2.3.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
# Disable kernel mapping for now until all tests pass
ENV DISABLE_KERNEL_MAPPING=1
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs

View File

@ -1,12 +1,12 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.11-py3
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-08.html
FROM nvcr.io/nvidia/pytorch:24.08-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='2.2.0'
ARG PYTORCH='2.6.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
ARG CUDA='cu126'
RUN apt -y update
RUN apt install -y libaio-dev
@ -15,7 +15,8 @@ RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# `datasets` requires pandas, pandas has some modules compiled with numpy=1.x causing errors
RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'pandas<2' 'numpy<2'
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)

View File

@ -1,11 +1,11 @@
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-23-11.html#rel-23-11
FROM nvcr.io/nvidia/pytorch:23.11-py3
FROM nvcr.io/nvidia/pytorch:24.08-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
ARG CUDA='cu126'
RUN apt -y update
RUN apt install -y libaio-dev
@ -21,7 +21,8 @@ RUN python3 -m pip uninstall -y torch torchvision torchaudio
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# `datasets` requires pandas, pandas has some modules compiled with numpy=1.x causing errors
RUN python3 -m pip install --no-cache-dir './transformers[deepspeed-testing]' 'pandas<2' 'numpy<2'
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate

View File

@ -12,6 +12,8 @@ SHELL ["sh", "-lc"]
ARG PYTORCH='2.6.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu121'
# Disable kernel mapping for quantization tests
ENV DISABLE_KERNEL_MAPPING=1
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
@ -82,6 +84,9 @@ RUN python3 -m pip install --no-cache-dir compressed-tensors
# Add AMD Quark for quantization testing
RUN python3 -m pip install --no-cache-dir amd-quark
# Add AutoRound for quantization testing
RUN python3 -m pip install --no-cache-dir "auto-round>=0.5.0"
# Add transformers in editable mode
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch]

View File

@ -23,8 +23,6 @@
title: تحميل النماذج المخصصة وتدريبها باستخدام 🤗 PEFT
- local: model_sharing
title: مشاركة نموذجك
- local: agents
title: الوكلاء
- local: llm_tutorial
title: التوليد باستخدام LLMs
- local: conversations
@ -252,8 +250,6 @@
title: أطر مفاهيمية
# - sections:
# - sections:
# - local: main_classes/agent
# title: الوكلاء والأدوات
# - local: model_doc/auto
# title: فئات يتم إنشاؤها ديناميكيًا
# - local: main_classes/backbones

View File

@ -1,539 +0,0 @@
# الوكلاء والأدوات
[[open-in-colab]]
### ما هو الوكيل؟
يمكن للنظم اللغوية الكبيرة (LLMs) التي تم تدريبها على أداء [نمذجة اللغة السببية](./tasks/language_modeling.) التعامل مع مجموعة واسعة من المهام، ولكنها غالبًا ما تواجه صعوبات في المهام الأساسية مثل المنطق والحساب والبحث. وعندما يتم استدعاؤها في مجالات لا تؤدي فيها أداءً جيدًا، فإنها غالبًا ما تفشل في توليد الإجابة التي نتوقعها منها.
يتمثل أحد النهج للتغلب على هذا القصور في إنشاء "وكيل".
الوكيل هو نظام يستخدم LLM كمحرك له، ولديه حق الوصول إلى وظائف تسمى "أدوات".
هذه "الأدوات" هي وظائف لأداء مهمة، وتحتوي على جميع الأوصاف اللازمة للوكيل لاستخدامها بشكل صحيح.
يمكن برمجة الوكيل للقيام بما يلي:
- وضع سلسلة من الإجراءات/الأدوات وتشغيلها جميعًا في نفس الوقت مثل [`CodeAgent`] على سبيل المثال
- التخطيط للاجراءات/الأدوات وتنفيذها واحدة تلو الأخرى والانتظار حتى انتهاء كل إجراء قبل إطلاق التالي مثل [`ReactJsonAgent`] على سبيل المثال
### أنواع الوكلاء
#### الوكيل البرمجي (Code agent)
يتمتع هذا الوكيل يتبع خطوات محددة: أولًا، يخطط لسلسلة من الإجراءات التي يريد تنفيذها، ثم شفرة Python لتنفيذ جميع الإجراءات في نفس الوقت. وهو يتعامل بشكل أصلي مع أنواع مختلفة من المدخلات والمخرجات للأدوات التي يستخدمها، وبالتالي فهو الخيار الموصى به للمهام متعددة الوسائط.
#### وكلاء التفاعل
هذا هو الوكيل الذي يتم اللجوء إليه لحل مهام الاستدلال، حيث يجعل إطار ReAct ([Yao et al.، 2022](https://huggingface.co/papers/2210.03629)) من الكفاءة حقًا التفكير على أساس ملاحظاته السابقة.
نقوم بتنفيذ إصدارين من ReactJsonAgent:
- [`ReactJsonAgent`] يقوم بتوليد استدعاءات الأدوات كـ JSON في إخراجها.
- [`ReactCodeAgent`] هو نوع جديد من ReactJsonAgent يقوم بتوليد استدعاءات أدواته كمقاطع من التعليمات البرمجية، والتي تعمل بشكل جيد حقًا مع LLMs التي تتمتع بأداء قوي في البرمجة.
> [!TIP]
> اقرأ منشور المدونة [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) لمعرفة المزيد عن وكيل ReAct.
![إطار عمل وكيل ReAct](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/open-source-llms-as-agents/ReAct.png)
على سبيل المثال، إليك كيف يعمل وكيل ReAct Code طريقه من خلال السؤال التالي.
```py3
>>> agent.run(
... "How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?",
... )
=====New task=====
How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?
====Agent is executing the code below:
bert_blocks = search(query="number of blocks in BERT base encoder")
print("BERT blocks:", bert_blocks)
====
Print outputs:
BERT blocks: twelve encoder blocks
====Agent is executing the code below:
attention_layer = search(query="number of layers in Attention is All You Need")
print("Attention layers:", attention_layer)
====
Print outputs:
Attention layers: Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position- 2 Page 3 Figure 1: The Transformer - model architecture.
====Agent is executing the code below:
bert_blocks = 12
attention_layers = 6
diff = bert_blocks - attention_layers
print("Difference in blocks:", diff)
final_answer(diff)
====
Print outputs:
Difference in blocks: 6
Final answer: 6
```
### كيف يمكنني بناء وكيل؟
لتهيئة وكيل، تحتاج إلى هذه الوسائط:
- نموذج لغوي كبير (LLM) يشكل المحرك الأساسي للوكيل. الوكيل نفسه ليس النموذج اللغوي، بل هو برنامج يستخدم النموذج اللغوي كمحرك له.
- موجه النظام (system prompt): هذه هي التعليمات التي يتم إعطاؤها للنموذج اللغوي لإنشاء مخرجاته.
- صندوق أدوات (toolbox) يختار الوكيل منه الأدوات لتنفيذها
- محلل (parser) لاستخراج الأدوات التي يجب استدعاؤها من مخرجات النموذج اللغوي LLM والأدوات التي يجب استخدامها
عند تهيئة نظام الوكيل، يتم استخدام سمات الأداة لإنشاء وصف للأداة، ثم يتم دمجها في موجه النظام الخاص `system_prompt` للوكيل لإعلامه بالأدوات التي يمكنه استخدامها ولماذا.
للبدء، يرجى تثبيت `agents` الإضافية لتثبيت جميع التبعيات الافتراضية.
```bash
pip install transformers[agents]
```
قم ببناء محرك LLM الخاص بك من خلال تعريف طريقة `llm_engine` التي تقبل قائمة من [الرسائل](./chat_templating.) وتعيد النص. يجب أن تقبل هذه الدالة القابلة للاستدعاء أيضًا معامل `stop` يشير إلى متى يجب التوقف عن التوليد.
```python
from huggingface_hub import login, InferenceClient
login("<YOUR_HUGGINGFACEHUB_API_TOKEN>")
client = InferenceClient(model="meta-llama/Meta-Llama-3-70B-Instruct")
def llm_engine(messages, stop_sequences=["Task"]) -> str:
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000)
answer = response.choices[0].message.content
return answer
```
يمكنك استخدام أي طريقة `llm_engine` طالما أنها:
1. يتبع تنسيق [رسائل](./chat_templating.md) لإدخاله (`List [Dict [str، str]]`) ويعيد `str`
2. يتوقف عن توليد المخراجات من التسلسلات التي تم تمريرها في معامل `stop`
أنت بحاجة أيضًا إلى معامل "الأدوات" الذي يقبل قائمة من "الأدوات". يمكنك توفير قائمة فارغة لـ "الأدوات"، ولكن استخدم صندوق الأدوات الافتراضي مع معامل اختياري `add_base_tools=True`.
الآن يمكنك إنشاء وكيل، مثل [`CodeAgent`], وتشغيله. ولتسهيل الأمر، نقدم أيضًا فئة [`HfEngine`] التي تستخدم `huggingface_hub.InferenceClient` بشكل مخفى.
```python
from transformers import CodeAgent, HfEngine
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.run(
"Could you translate this sentence from French, say it out loud and return the audio.",
sentence="Où est la boulangerie la plus proche?",
)
```
هذه الميزة ستكون مفيدة في حالة الحاجة الملحة! يمكنك حتى ترك معامل `llm_engine` غير محدد، وسيتم إنشاء [`HfEngine`] بشكل تلقائي.
```python
from transformers import CodeAgent
agent = CodeAgent(tools=[], add_base_tools=True)
agent.run(
"Could you translate this sentence from French, say it out loud and give me the audio.",
sentence="Où est la boulangerie la plus proche?",
)
```
لاحظ أننا استخدمنا معامل "sentence" إضافي: يمكنك تمرير النص كمعامل إضافي إلى النموذج.
يمكنك أيضًا استخدام هذا للإشارة إلى مسار الملفات المحلية أو البعيدة للنموذج لاستخدامها:
```py
from transformers import ReactCodeAgent
agent = ReactCodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.run("Why does Mike not know many people in New York?", audio="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/recording.mp3")
```
تم تحديد موجه النظام ومحلل المخرجات تلقائيًا، ولكن يمكنك فحصهما بسهولة عن طريق استدعاء `system_prompt_template` على وكيلك.
```python
print(agent.system_prompt_template)
```
من المهم أن تشرح بأكبر قدر ممكن من الوضوح المهمة التي تريد تنفيذها.
كل عملية [`~Agent.run`] مستقلة، وبما أن الوكيل مدعوم من LLM، فقد تؤدي الاختلافات الطفيفة في موجهك إلى نتائج مختلفة تمامًا.
يمكنك أيضًا تشغيل وكيل بشكل متتالي لمهام مختلفة: في كل مرة يتم فيها إعادة تهيئة سمتي `agent.task` و`agent.logs`.
#### تنفيذ التعليمات البرمجية
يقوم مفسر Python بتنفيذ التعليمات البرمجية على مجموعة من المدخلات التي يتم تمريرها جنبًا إلى جنب مع أدواتك.
يجب أن يكون هذا الأمر آمنًا لأن الوظائف الوحيدة التي يمكن استدعاؤها هي الأدوات التي قدمتها (خاصة إذا كانت أدوات من Hugging Face فقط) ووظيفة الطباعة، لذا فأنت مقيد بالفعل بما يمكن تنفيذه.
مفسر Python لا يسمح أيضًا باستدعاء دوال بشكل افتراضي خارج قائمة آمنة، لذا فإن جميع الهجمات الأكثر وضوحًا لا ينبغي أن تكون مشكلة.
يمكنك أيضًا الإذن باستيرادات إضافية عن طريق تمرير الوحدات النمطية المصرح بها كقائمة من السلاسل في معامل `additional_authorized_imports` عند تهيئة [`ReactCodeAgent`] أو [`CodeAgent`]:
```py
>>> from transformers import ReactCodeAgent
>>> agent = ReactCodeAgent(tools=[], additional_authorized_imports=['requests', 'bs4'])
>>> agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")
(...)
'Hugging Face Blog'
```
سيتم إيقاف التنفيذ عند أي رمز يحاول تنفيذ عملية غير قانونية أو إذا كان هناك خطأ Python عادي في التعليمات البرمجية التي تم إنشاؤها بواسطة الوكيل.
> [!WARNING]
> يمكن لـ LLM توليد شفرة برمجية عشوائية سيتم تنفيذها بعد ذلك: لا تقمب استدعاء أى دوال غير آمنة!
### موجه النظام
ينشئ الوكيل، أو بالأحرى LLM الذي يقود الوكيل، يولد مخرجات بناءً على موجه النظام. يمكن تخصيص موجه النظام وتصميمه للمهام المقصودة. على سبيل المثال، تحقق من موجه النظام لـ [`ReactCodeAgent`] (الإصدار أدناه مبسط قليلاً).
```text
You will be given a task to solve as best you can.
You have access to the following tools:
<<tool_descriptions>>
To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences.
At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task, then the tools that you want to use.
Then in the 'Code:' sequence, you should write the code in simple Python. The code sequence must end with '/End code' sequence.
During each intermediate step, you can use 'print()' to save whatever important information you will then need.
These print outputs will then be available in the 'Observation:' field, for using this information as input for the next step.
In the end you have to return a final answer using the `final_answer` tool.
Here are a few examples using notional tools:
---
{examples}
Above example were using notional tools that might not exist for you. You only have access to those tools:
<<tool_names>>
You also can perform computations in the python code you generate.
Always provide a 'Thought:' and a 'Code:\n```py' sequence ending with '```<end_code>' sequence. You MUST provide at least the 'Code:' sequence to move forward.
Remember to not perform too many operations in a single code block! You should split the task into intermediate code blocks.
Print results at the end of each step to save the intermediate results. Then use final_answer() to return the final result.
Remember to make sure that variables you use are all defined.
Now Begin!
```
يتضمن موجه النظام:
- *مقدمة* تشرح كيف يجب أن يتصرف الوكيل والأدوات التي يجب عليه استخدامها.
- وصف لجميع الأدوات التي يتم تحديدها بواسطة رمز `<<tool_descriptions>>` الذي يتم استبداله ديناميكيًا في وقت التشغيل بالأدوات التي يحددها المستخدم أو يختارها.
- يأتي وصف الأداة من سمات الأداة، `name`، و`description`، و`inputs` و`output_type`، وقالب `jinja2` بسيط يمكنك تحسينه.
- شكل المخرج المتوقع.
يمكنك تحسين موجه النظام، على سبيل المثال، عن طريق إضافة شرح لتنسيق المخرجات.
للحصول على أقصى قدر من المرونة، يمكنك الكتابة فوق قالب موجه النظام بالكامل عن طريق تمرير موجه مخصص كمعامل إلى معلمة `system_prompt`.
```python
from transformers import ReactJsonAgent
from transformers.agents import PythonInterpreterTool
agent = ReactJsonAgent(tools=[PythonInterpreterTool()], system_prompt="{your_custom_prompt}")
```
> [!WARNING]
> يرجى التأكد من تحديد سلسلة `<<tool_descriptions>>` في مكان ما في `template` حتى يكون الوكيل على علم
بالأدوات المتاحة.
### فحص تشغيل الوكيل
فيما يلي بعض السمات المفيدة لفحص ما حدث بعد التشغيل:
- تخزن `agent.logs` سجلات مفصلة للوكيل. في كل خطوة من تشغيل الوكيل، يتم تخزين كل شيء في قاموس إلحاقه بـ `agent.logs`.
- تشغيل `agent.write_inner_memory_from_logs()` يخلق ذاكرة داخلية لسجلات الوكيل للنظام LLM لعرضها، كقائمة من رسائل الدردشة. تنتقل هذه الطريقة عبر كل خطوة من سجل الوكيل ولا تخزن سوى ما يهمها كرسالة: على سبيل المثال، سيحفظ موجه النظام والمهمة في رسائل منفصلة، ثم لكل خطوة سيخزن مخرج LLM كرسالة، ومخرج استدعاء الأداة كرسالة أخرى. استخدم هذا إذا كنت تريد عرضًا عامًا لما حدث - ولكن لن يتم نسخ كل سجل بواسطة هذه الطريقة.
## الأدوات
الأداة هي عبارة عن وظيفة أساسية يستخدمها الوكيل لتنفيذ مهمة محددة.
يمكنك على سبيل المثال التحقق من [`PythonInterpreterTool`]: لديه اسم ووصف ووصف للمدخلات ونوع للمخرج، وطريقة `__call__` التي تقوم بتنفيذ المهمة المطلوبة.
عند تهيئة الوكيل، يتم استخدام سمات الأداة لتوليد وصف للأداة يتم تضمينه في موجه النظام الخاص بالوكيل. يتيح هذا للوكيل معرفة الأدوات التي يمكنه استخدامها ولماذا.
### صندوق الأدوات الافتراضي
يأتي Transformers مع صندوق أدوات افتراضي لتمكين الوكلاء، والذي يمكنك إضافته إلى وكيلك عند التهيئة باستخدام معامل `add_base_tools = True`:
- **الإجابة على أسئلة المستند**: الإجابة على سؤال حول المستند (مثل ملف PDF) بتنسيق صورة ([Donut](./model_doc/donut))
- **الإجابة على أسئلة الصور**: الإجابة على سؤال حول صورة ([VILT](./model_doc/vilt))
- **التحدث إلى النص**: قم بتفريغ الكلام إلى نص ([Whisper](./model_doc/whisper))
- **النص إلى كلام**: تحويل النص إلى كلام ([SpeechT5](./model_doc/speecht5))
- **الترجمة**: ترجمة جملة معينة من لغة المصدر إلى لغة الهدف.
- **مفسر كود Python**: تشغيل كود Python الذي تم إنشاؤه بواسطة LLM في بيئة آمنة. لن يتم إضافة هذه الأداة إلى [`ReactJsonAgent`] إلا إذا استخدمت `add_base_tools=True`، نظرًا لأن الأدوات المستندة إلى التعليمات البرمجية يمكنها بالفعل تنفيذ كود Python
لا تترجم النصوص الخاصة ولا الأكواد البرمجية ولا الروابط ولا رموز HTML وCSS:
يمكنك استخدام أداة يدويًا عن طريق استدعاء دالة [`load_tool`] وتحديد مهمة لتنفيذها.
```python
from transformers import load_tool
tool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")
```
### إنشاء أداة جديدة
يمكنك إنشاء أداتك الخاصة لتغطية حالات الاستخدام التي لا تغطيها الأدوات الافتراضية من Hugging Face.
على سبيل المثال، دعنا نقوم بإنشاء أداة تعرض النموذج الأكثر تنزيلًا لمهمة معينة من Hub.
سوف نبدأ بالكود التالي.
```python
from huggingface_hub import list_models
task = "text-classification"
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(model.id)
```
يمكن تحويل هذه الشيفرة إلى فئة ترث من الفئة العليا [`Tool`].
تحتاج الأداة المخصصة إلى:
- اسم `name`، والتي تمثل اسم الأداة نفسها. عادةً ما يصف الاسم وظيفتها. بما أن الكود يعيد النموذج الأكثر تنزيلًا لمهمة ما، فلنسمها `model_download_counter`.
- تستخدم خاصية `description` لملء موجه نظام الوكيل.
- خاصية `inputs`، والتي هي عبارة عن قاموس بمفاتيح "type" و"description". يحتوي على معلومات تساعد المفسر Python على اتخاذ خيارات مستنيرة بشأن المدخلات.
- خاصية `output_type`، والتي تحدد نوع المخرج.
- طريقة `forward` والتي تحتوي على الكود الذي سيتم تنفيذه للحصول على النتيجة النهائية.
```python
from transformers import Tool
from huggingface_hub import list_models
class HFModelDownloadsTool(Tool):
name = "model_download_counter"
description = (
"This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. "
"It returns the name of the checkpoint."
)
inputs = {
"task": {
"type": "text",
"description": "the task category (such as text-classification, depth-estimation, etc)",
}
}
output_type = "text"
def forward(self, task: str):
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
return model.id
```
الآن بعد أن أصبحت فئة `HfModelDownloadsTool` المخصصة جاهزة، يمكنك حفظها في ملف باسم `model_downloads.py` واستيرادها للاستخدام.
```python
from model_downloads import HFModelDownloadsTool
tool = HFModelDownloadsTool()
```
يمكنك أيضًا مشاركة أداتك المخصصة في Hub عن طريق استدعاء [`~Tool.push_to_hub`] على الأداة. تأكد من أنك قمت بإنشاء مستودع لها على Hub وأنك تستخدم رمز وصول للقراءة.
```python
tool.push_to_hub("{your_username}/hf-model-downloads")
```
قم بتحميل الأداة باستخدام دالة [`~Tool.load_tool`] ومررها إلى معلمة `tools` في الوكيل الخاص بك.
```python
from transformers import load_tool, CodeAgent
model_download_tool = load_tool("m-ric/hf-model-downloads")
agent = CodeAgent(tools=[model_download_tool], llm_engine=llm_engine)
agent.run(
"Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?"
)
```
ستحصل على ما يلي:
```text
======== New task ========
Can you give me the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub?
==== Agent is executing the code below:
most_downloaded_model = model_download_counter(task="text-to-video")
print(f"The most downloaded model for the 'text-to-video' task is {most_downloaded_model}.")
====
```
والناتج:
`"النموذج الأكثر تنزيلًا لمهمة `text-to-video` هو ByteDance/AnimateDiff-Lightning."`
### إدارة صندوق أدوات الوكيل الخاص بك
إذا كنت قد قمت بتهيئة وكيل، فمن غير الملائم إعادة تهيئته من البداية لإضافة أداة جديدة ترغب في استخدامها. باستخدام مكتبة Transformers، يمكنك إدارة صندوق أدوات الوكيل بإضافة أو استبدال أداة موجودة.
دعنا نضيف الأداة `model_download_tool` إلى وكيل تم تهيئته مسبقًا باستخدام صندوق الأدوات الافتراضي.
```python
from transformers import CodeAgent
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.toolbox.add_tool(model_download_tool)
```
الآن يمكننا الاستفادة من الأداة الجديدة وأداة تحويل النص إلى كلام السابقة:
```python
agent.run(
"Can you read out loud the name of the model that has the most downloads in the 'text-to-video' task on the Hugging Face Hub and return the audio?"
)
```
| **Audio** |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/damo.wav" type="audio/wav"/> |
> [!WARNING]
> احترس عند إضافة أدوات إلى وكيل يعمل بالفعل لأنه يمكن أن يؤثر على اختيار الأداة لصالح أداتك أو اختيار أداة أخرى غير المحددة بالفعل.
استخدم طريقة `agent.toolbox.update_tool()` لاستبدال أداة موجودة في صندوق أدوات الوكيل.
هذا مفيد إذا كانت أداتك الجديدة بديلاً مباشرًا للأداة الموجودة لأن الوكيل يعرف بالفعل كيفية تنفيذ تلك المهمة المحددة.
تأكد فقط من اتباع الأداة الجديدة لنفس واجهة برمجة التطبيقات (API) للأداة المستبدلة أو قم بتكييف قالب موجه النظام لضمان تحديث جميع الأمثلة التي تستخدم الأداة المستبدلة.
### استخدام مجموعة من الأدوات
يمكنك الاستفادة من مجموعات الأدوات باستخدام كائن ToolCollection، مع تحديد مجموعة الأدوات التي تريد استخدامها.
ثم قم بتمريرها كقائمة لتهيئة الوكيل الخاص بك، وبدء استخدامها!
```py
from transformers import ToolCollection, ReactCodeAgent
image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
agent = ReactCodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
agent.run("Please draw me a picture of rivers and lakes.")
```
لتسريع البداية، يتم تحميل الأدوات فقط إذا استدعاها الوكيل.
ستحصل على هذه الصورة:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" />
### استخدام gradio-tools
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) هي مكتبة قوية تتيح استخدام Hugging
Face Spaces كأدوات. تدعم العديد من المساحات الموجودة بالإضافة إلى مساحات مخصصة.
تدعم مكتبة Transformers `gradio_tools` باستخدام طريقة [`Tool.from_gradio`] في الفئة. على سبيل المثال، دعنا نستخدم [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) من مجموعة أدوات `gradio-tools` لتحسين المطالبات لإنشاء صور أفضل.
استورد وقم بتهيئة الأداة، ثم مررها إلى طريقة `Tool.from_gradio`:
```python
from gradio_tools import StableDiffusionPromptGeneratorTool
from transformers import Tool, load_tool, CodeAgent
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
```
الآن يمكنك استخدامه مثل أي أداة أخرى. على سبيل المثال، دعنا نحسن الموجه `a rabbit wearing a space suit`.
```python
image_generation_tool = load_tool('huggingface-tools/text-to-image')
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
agent.run(
"Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit'
)
```
يستفيد النموذج بشكل كافٍ من الأداة:
```text
======== New task ========
Improve this prompt, then generate an image of it.
You have been provided with these initial arguments: {'prompt': 'A rabbit wearing a space suit'}.
==== Agent is executing the code below:
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
while improved_prompt == "QUEUE_FULL":
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
print(f"The improved prompt is {improved_prompt}.")
image = image_generator(prompt=improved_prompt)
====
```
قبل إنشاء الصورة أخيرًا:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit_spacesuit_flux.webp" />
> [!WARNING]
> تتطلب gradio-tools إدخالات وإخراجات *نصية* حتى عند العمل مع طرائق مختلفة مثل كائنات الصور والصوت. الإدخالات والإخراجات الصورية والصوتية غير متوافقة حاليًا.
### استخدام أدوات LangChain
نحن نحب Langchain ونعتقد أنها تحتوي على مجموعة أدوات قوية للغاية.
لاستيراد أداة من LangChain، استخدم الطريقة `from_langchain()`.
فيما يلي كيفية استخدامها لإعادة إنشاء نتيجة البحث في المقدمة باستخدام أداة بحث الويب LangChain.
```python
from langchain.agents import load_tools
from transformers import Tool, ReactCodeAgent
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
agent = ReactCodeAgent(tools=[search_tool])
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
```
## واجهة Gradio
يمكنك الاستفادة من `gradio.Chatbot` لعرض أفكار الوكيل الخاص بك باستخدام `stream_to_gradio`، إليك مثال:
```py
import gradio as gr
from transformers import (
load_tool,
ReactCodeAgent,
HfEngine,
stream_to_gradio,
)
# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image")
llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
# Initialize the agent with the image generation tool
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
def interact_with_agent(task):
messages = []
messages.append(gr.ChatMessage(role="user", content=task))
yield messages
for msg in stream_to_gradio(agent, task):
messages.append(msg)
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
]
yield messages
with gr.Blocks() as demo:
text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.")
submit = gr.Button("Run illustrator agent!")
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
),
)
submit.click(interact_with_agent, [text_input], [chatbot])
if __name__ == "__main__":
demo.launch()
```

View File

@ -77,7 +77,7 @@ model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)
الآن لديك إمكانية الوصول إلى النسخة الكامل غير المكممة للنموذج في بيئة PyTorch، حيث يمكنك دمجه مع مجموعة كبيرة من الأدوات الأخرى.
لإعادة التحويل إلى ملف `gguf`، نوصي باستخدام ملف [`convert-hf-to-gguf.py`](https://github.com/ggerganov/llama.cpp/blob/master/convert-hf-to-gguf.py) من llama.cpp.
لإعادة التحويل إلى ملف `gguf`، نوصي باستخدام ملف [`convert-hf-to-gguf.py`](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py) من llama.cpp.
فيما يلي كيفية إكمال البرنامج النصي أعلاه لحفظ النموذج وإعادة تصديره مرة أخرى إلى `gguf`:

View File

@ -674,29 +674,7 @@ use_cpu: false
```
</hfoption>
<hfoption id="Tensor Parallelism with PyTorch 2">
```yml
compute_environment: LOCAL_MACHINE
tp_config:
tp_size: 4
distributed_type: TP
downcast_bf16: 'no'
machine_rank: 0
main_training_function: main
mixed_precision: 'no'
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</hfoption>
</hfoptions>
يُعد أمر [`accelerate_launch`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-launch) هو الطريقة المُوصى بها لتشغيل نص البرمجى للتدريب على نظام موزع باستخدام Accelerate و [`Trainer`] مع المعلمات المحددة في `config_file.yaml`. يتم حفظ هذا الملف في مجلد ذاكرة التخزين المؤقت لـ Accelerate ويتم تحميله تلقائيًا عند تشغيل `accelerate_launch`.

View File

@ -23,8 +23,6 @@
title: Laden und Trainieren von Adaptern mit 🤗 PEFT
- local: model_sharing
title: Ein Modell teilen
- local: transformers_agents
title: Agents
- local: llm_tutorial
title: Generation with LLMs
title: Tutorials
@ -39,4 +37,4 @@
title: Testen
- local: pr_checks
title: Überprüfung einer Pull Request
title: Contribute
title: Contribute

View File

@ -1,323 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Transformers Agents
<Tip warning={true}>
Transformers Agents ist eine experimentelle API, die jederzeit geändert werden kann. Die von den Agenten zurückgegebenen Ergebnisse
zurückgegeben werden, können variieren, da sich die APIs oder die zugrunde liegenden Modelle ändern können.
</Tip>
Transformers Version v4.29.0, die auf dem Konzept von *Tools* und *Agenten* aufbaut. Sie können damit spielen in
[dieses Colab](https://colab.research.google.com/drive/1c7MHD-T1forUPGcC_jlwsIptOzpG3hSj).
Kurz gesagt, es bietet eine API für natürliche Sprache auf der Grundlage von Transformers: Wir definieren eine Reihe von kuratierten Tools und entwerfen einen
Agenten, um natürliche Sprache zu interpretieren und diese Werkzeuge zu verwenden. Es ist von vornherein erweiterbar; wir haben einige relevante Tools kuratiert,
aber wir werden Ihnen zeigen, wie das System einfach erweitert werden kann, um jedes von der Community entwickelte Tool zu verwenden.
Beginnen wir mit einigen Beispielen dafür, was mit dieser neuen API erreicht werden kann. Sie ist besonders leistungsfähig, wenn es um
Sie ist besonders leistungsstark, wenn es um multimodale Aufgaben geht. Lassen Sie uns also eine Runde drehen, um Bilder zu erzeugen und Text vorzulesen.
```py
agent.run("Caption the following image", image=image)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png" width=200> | A beaver is swimming in the water |
---
```py
agent.run("Read the following text out loud", text=text)
```
| **Input** | **Output** |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| A beaver is swimming in the water | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tts_example.wav" type="audio/wav"> your browser does not support the audio element. </audio>
---
```py
agent.run(
"In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?",
document=document,
)
```
| **Input** | **Output** |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| <img src="https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/0/image/image.jpg" width=200> | ballroom foyer |
## Schnellstart
Bevor Sie `agent.run` verwenden können, müssen Sie einen Agenten instanziieren, der ein großes Sprachmodell (LLM) ist.
Wir bieten Unterstützung für openAI-Modelle sowie für OpenSource-Alternativen von BigCode und OpenAssistant. Die openAI
Modelle sind leistungsfähiger (erfordern aber einen openAI-API-Schlüssel, können also nicht kostenlos verwendet werden); Hugging Face
bietet kostenlosen Zugang zu Endpunkten für BigCode- und OpenAssistant-Modelle.
To start with, please install the `agents` extras in order to install all default dependencies.
```bash
pip install transformers[agents]
```
Um openAI-Modelle zu verwenden, instanziieren Sie einen [`OpenAiAgent`], nachdem Sie die `openai`-Abhängigkeit installiert haben:
```bash
pip install openai
```
```py
from transformers import OpenAiAgent
agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>")
```
Um BigCode oder OpenAssistant zu verwenden, melden Sie sich zunächst an, um Zugriff auf die Inference API zu erhalten:
```py
from huggingface_hub import login
login("<YOUR_TOKEN>")
```
Dann instanziieren Sie den Agenten
```py
from transformers import HfAgent
# Starcoder
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
# StarcoderBase
# agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase")
# OpenAssistant
# agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5")
```
Dies geschieht mit der Inferenz-API, die Hugging Face derzeit kostenlos zur Verfügung stellt. Wenn Sie Ihren eigenen Inferenz
Endpunkt für dieses Modell (oder einen anderen) haben, können Sie die obige URL durch Ihren URL-Endpunkt ersetzen.
<Tip>
StarCoder und OpenAssistant sind kostenlos und leisten bei einfachen Aufgaben bewundernswert gute Arbeit. Allerdings halten die Kontrollpunkte
nicht, wenn es um komplexere Aufforderungen geht. Wenn Sie mit einem solchen Problem konfrontiert sind, empfehlen wir Ihnen, das OpenAI
Modell auszuprobieren, das zwar leider nicht quelloffen ist, aber zur Zeit eine bessere Leistung erbringt.
</Tip>
Sie sind jetzt startklar! Lassen Sie uns in die beiden APIs eintauchen, die Ihnen jetzt zur Verfügung stehen.
### Einzelne Ausführung (run)
Die Methode der einmaligen Ausführung ist die Verwendung der [`~Agent.run`] Methode des Agenten:
```py
agent.run("Draw me a picture of rivers and lakes.")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
Es wählt automatisch das (oder die) Werkzeug(e) aus, das (die) für die von Ihnen gewünschte Aufgabe geeignet ist (sind) und führt es (sie) entsprechend aus. Es
kann eine oder mehrere Aufgaben in der gleichen Anweisung ausführen (je komplexer Ihre Anweisung ist, desto wahrscheinlicher ist ein
der Agent scheitern).
```py
agent.run("Draw me a picture of the sea then transform the picture to add an island")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sea_and_island.png" width=200>
<br/>
Jede [`~Agent.run`] Operation ist unabhängig, so dass Sie sie mehrmals hintereinander mit unterschiedlichen Aufgaben ausführen können.
Beachten Sie, dass Ihr `Agent` nur ein großsprachiges Modell ist, so dass kleine Variationen in Ihrer Eingabeaufforderung völlig unterschiedliche Ergebnisse liefern können.
unterschiedliche Ergebnisse liefern. Es ist wichtig, dass Sie die Aufgabe, die Sie ausführen möchten, so genau wie möglich erklären. Wir gehen noch weiter ins Detail
wie man gute Prompts schreibt [hier](custom_tools#writing-good-user-inputs).
Wenn Sie einen Status über Ausführungszeiten hinweg beibehalten oder dem Agenten Nicht-Text-Objekte übergeben möchten, können Sie dies tun, indem Sie
Variablen, die der Agent verwenden soll. Sie könnten zum Beispiel das erste Bild von Flüssen und Seen erzeugen,
und das Modell bitten, dieses Bild zu aktualisieren und eine Insel hinzuzufügen, indem Sie Folgendes tun:
```python
picture = agent.run("Generate a picture of rivers and lakes.")
updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture)
```
<Tip>
Dies kann hilfreich sein, wenn das Modell Ihre Anfrage nicht verstehen kann und die Werkzeuge verwechselt. Ein Beispiel wäre:
```py
agent.run("Draw me the picture of a capybara swimming in the sea")
```
Hier könnte das Modell auf zwei Arten interpretieren:
- Die Funktion `Text-zu-Bild` erzeugt ein Wasserschwein, das im Meer schwimmt.
- Oder Sie lassen das `Text-zu-Bild` ein Wasserschwein erzeugen und verwenden dann das Werkzeug `Bildtransformation`, um es im Meer schwimmen zu lassen.
Falls Sie das erste Szenario erzwingen möchten, können Sie dies tun, indem Sie die Eingabeaufforderung als Argument übergeben:
```py
agent.run("Draw me a picture of the `prompt`", prompt="a capybara swimming in the sea")
```
</Tip>
### Chat-basierte Ausführung (Chat)
Der Agent verfügt auch über einen Chat-basierten Ansatz, der die Methode [`~Agent.chat`] verwendet:
```py
agent.chat("Generate a picture of rivers and lakes")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200>
```py
agent.chat("Transform the picture so that there is a rock in there")
```
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_and_beaver.png" width=200>
<br/>
Dies ist ein interessanter Ansatz, wenn Sie den Zustand über Anweisungen hinweg beibehalten möchten. Er ist besser für Experimente geeignet,
eignet sich aber eher für einzelne Anweisungen als für komplexe Anweisungen (die die [`~Agent.run`]
Methode besser verarbeiten kann).
Diese Methode kann auch Argumente entgegennehmen, wenn Sie Nicht-Text-Typen oder bestimmte Aufforderungen übergeben möchten.
### ⚠️ Fernausführung
Zu Demonstrationszwecken und damit es mit allen Setups verwendet werden kann, haben wir Remote-Executors für mehrere
der Standard-Tools erstellt, auf die der Agent in dieser Version Zugriff hat. Diese werden erstellt mit
[inference endpoints](https://huggingface.co/inference-endpoints).
Wir haben diese vorerst deaktiviert, aber um zu sehen, wie Sie selbst Remote Executors Tools einrichten können,
empfehlen wir die Lektüre des [custom tool guide](./custom_tools).
### Was passiert hier? Was sind Tools und was sind Agenten?
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/diagram.png">
#### Agenten
Der "Agent" ist hier ein großes Sprachmodell, das wir auffordern, Zugang zu einem bestimmten Satz von Tools zu erhalten.
LLMs sind ziemlich gut darin, kleine Codeproben zu erzeugen. Diese API macht sich das zunutze, indem sie das
LLM ein kleines Codebeispiel gibt, das eine Aufgabe mit einer Reihe von Werkzeugen ausführt. Diese Aufforderung wird dann ergänzt durch die
Aufgabe, die Sie Ihrem Agenten geben, und die Beschreibung der Werkzeuge, die Sie ihm geben. Auf diese Weise erhält er Zugriff auf die Dokumentation der
Tools, insbesondere die erwarteten Eingaben und Ausgaben, und kann den entsprechenden Code generieren.
#### Tools
Tools sind sehr einfach: Sie bestehen aus einer einzigen Funktion mit einem Namen und einer Beschreibung. Wir verwenden dann die Beschreibungen dieser Tools
um den Agenten aufzufordern. Anhand der Eingabeaufforderung zeigen wir dem Agenten, wie er die Tools nutzen kann, um das zu tun, was in der
in der Abfrage angefordert wurde.
Dies geschieht mit brandneuen Tools und nicht mit Pipelines, denn der Agent schreibt besseren Code mit sehr atomaren Tools.
Pipelines sind stärker refaktorisiert und fassen oft mehrere Aufgaben in einer einzigen zusammen. Tools sind dafür gedacht, sich auf
eine einzige, sehr einfache Aufgabe konzentrieren.
#### Code-Ausführung?!
Dieser Code wird dann mit unserem kleinen Python-Interpreter auf den mit Ihren Tools übergebenen Eingaben ausgeführt.
Wir hören Sie schon schreien "Willkürliche Codeausführung!", aber lassen Sie uns erklären, warum das nicht der Fall ist.
Die einzigen Funktionen, die aufgerufen werden können, sind die von Ihnen zur Verfügung gestellten Tools und die Druckfunktion, so dass Sie bereits eingeschränkt sind
eingeschränkt, was ausgeführt werden kann. Sie sollten sicher sein, wenn es sich auf die Werkzeuge für das Umarmungsgesicht beschränkt.
Dann lassen wir keine Attributsuche oder Importe zu (die ohnehin nicht benötigt werden, um die
Inputs/Outputs an eine kleine Gruppe von Funktionen), so dass alle offensichtlichen Angriffe (und Sie müssten den LLM
dazu auffordern, sie auszugeben) kein Problem darstellen sollten. Wenn Sie auf Nummer sicher gehen wollen, können Sie die
run()-Methode mit dem zusätzlichen Argument return_code=True ausführen. In diesem Fall gibt der Agent nur den auszuführenden Code
zur Ausführung zurück und Sie können entscheiden, ob Sie ihn ausführen möchten oder nicht.
Die Ausführung bricht bei jeder Zeile ab, in der versucht wird, eine illegale Operation auszuführen, oder wenn ein regulärer Python-Fehler
mit dem vom Agenten generierten Code.
### Ein kuratierter Satz von Tools
Wir haben eine Reihe von Tools identifiziert, die solche Agenten unterstützen können. Hier ist eine aktualisierte Liste der Tools, die wir integriert haben
in `transformers` integriert haben:
- **Beantwortung von Fragen zu Dokumenten**: Beantworten Sie anhand eines Dokuments (z.B. PDF) im Bildformat eine Frage zu diesem Dokument ([Donut](./model_doc/donut))
- Beantworten von Textfragen**: Geben Sie einen langen Text und eine Frage an, beantworten Sie die Frage im Text ([Flan-T5](./model_doc/flan-t5))
- **Unbedingte Bildunterschriften**: Beschriften Sie das Bild! ([BLIP](./model_doc/blip))
- **Bildfragebeantwortung**: Beantworten Sie bei einem Bild eine Frage zu diesem Bild ([VILT](./model_doc/vilt))
- **Bildsegmentierung**: Geben Sie ein Bild und einen Prompt an und geben Sie die Segmentierungsmaske dieses Prompts aus ([CLIPSeg](./model_doc/clipseg))
- **Sprache in Text**: Geben Sie eine Audioaufnahme einer sprechenden Person an und transkribieren Sie die Sprache in Text ([Whisper](./model_doc/whisper))
- **Text in Sprache**: wandelt Text in Sprache um ([SpeechT5](./model_doc/speecht5))
- **Zero-Shot-Textklassifizierung**: Ermitteln Sie anhand eines Textes und einer Liste von Bezeichnungen, welcher Bezeichnung der Text am ehesten entspricht ([BART](./model_doc/bart))
- **Textzusammenfassung**: fassen Sie einen langen Text in einem oder wenigen Sätzen zusammen ([BART](./model_doc/bart))
- **Übersetzung**: Übersetzen des Textes in eine bestimmte Sprache ([NLLB](./model_doc/nllb))
Diese Tools sind in Transformatoren integriert und können auch manuell verwendet werden, zum Beispiel:
```py
from transformers import load_tool
tool = load_tool("text-to-speech")
audio = tool("This is a text to speech tool")
```
### Benutzerdefinierte Tools
Wir haben zwar eine Reihe von Tools identifiziert, sind aber der festen Überzeugung, dass der Hauptwert dieser Implementierung darin besteht
die Möglichkeit, benutzerdefinierte Tools schnell zu erstellen und weiterzugeben.
Indem Sie den Code eines Tools in einen Hugging Face Space oder ein Modell-Repository stellen, können Sie das Tool
direkt mit dem Agenten nutzen. Wir haben ein paar neue Funktionen hinzugefügt
**transformers-agnostic** Tools zur [`huggingface-tools` Organisation](https://huggingface.co/huggingface-tools) hinzugefügt:
- **Text-Downloader**: zum Herunterladen eines Textes von einer Web-URL
- **Text zu Bild**: erzeugt ein Bild nach einer Eingabeaufforderung und nutzt dabei stabile Diffusion
- **Bildtransformation**: verändert ein Bild anhand eines Ausgangsbildes und einer Eingabeaufforderung, unter Ausnutzung der stabilen pix2pix-Diffusion
- **Text zu Video**: Erzeugen eines kleinen Videos nach einer Eingabeaufforderung, unter Verwendung von damo-vilab
Das Text-zu-Bild-Tool, das wir von Anfang an verwendet haben, ist ein Remote-Tool, das sich in
[*huggingface-tools/text-to-image*](https://huggingface.co/spaces/huggingface-tools/text-to-image)! Wir werden
weiterhin solche Tools für diese und andere Organisationen veröffentlichen, um diese Implementierung weiter zu verbessern.
Die Agenten haben standardmäßig Zugriff auf die Tools, die sich auf [*huggingface-tools*](https://huggingface.co/huggingface-tools) befinden.
Wie Sie Ihre eigenen Tools schreiben und freigeben können und wie Sie jedes benutzerdefinierte Tool, das sich auf dem Hub befindet, nutzen können, erklären wir in [folgender Anleitung](custom_tools).
### Code-Erzeugung
Bisher haben wir gezeigt, wie Sie die Agenten nutzen können, um Aktionen für Sie durchzuführen. Der Agent generiert jedoch nur Code
den wir dann mit einem sehr eingeschränkten Python-Interpreter ausführen. Falls Sie den generierten Code in einer anderen Umgebung verwenden möchten
einer anderen Umgebung verwenden möchten, können Sie den Agenten auffordern, den Code zusammen mit einer Tooldefinition und genauen Importen zurückzugeben.
Zum Beispiel die folgende Anweisung
```python
agent.run("Draw me a picture of rivers and lakes", return_code=True)
```
gibt den folgenden Code zurück
```python
from transformers import load_tool
image_generator = load_tool("huggingface-tools/text-to-image")
image = image_generator(prompt="rivers and lakes")
```
die Sie dann selbst ändern und ausführen können.

View File

@ -161,8 +161,14 @@
sections:
- local: quantization/overview
title: Overview
- local: quantization/selecting
title: Selecting a quantization method
- local: quantization/concept_guide
title: Quantization concepts
- local: quantization/aqlm
title: AQLM
- local: quantization/auto_round
title: AutoRound
- local: quantization/awq
title: AWQ
- local: quantization/bitnet
@ -279,6 +285,8 @@
title: Image-text-to-text
- local: tasks/video_text_to_text
title: Video-text-to-text
- local: tasks/visual_document_retrieval
title: Visual Document Retrieval
title: Multimodal
title: Task recipes
- local: run_scripts
@ -306,8 +314,6 @@
- isExpanded: false
sections:
- sections:
- local: main_classes/agent
title: Agents and Tools
- local: model_doc/auto
title: Auto Classes
- local: main_classes/backbones
@ -379,6 +385,8 @@
title: BigBirdPegasus
- local: model_doc/biogpt
title: BioGpt
- local: model_doc/bitnet
title: BitNet
- local: model_doc/blenderbot
title: Blenderbot
- local: model_doc/blenderbot-small
@ -461,6 +469,8 @@
title: Gemma2
- local: model_doc/glm
title: GLM
- local: model_doc/glm4
title: glm4
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
@ -485,8 +495,6 @@
title: GraniteMoe
- local: model_doc/granitemoeshared
title: GraniteMoeShared
- local: model_doc/granitevision
title: GraniteVision
- local: model_doc/helium
title: Helium
- local: model_doc/herbert
@ -507,8 +515,6 @@
title: Llama2
- local: model_doc/llama3
title: Llama3
- local: model_doc/llama4
title: Llama4
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
@ -537,8 +543,6 @@
title: MegatronGPT2
- local: model_doc/mistral
title: Mistral
- local: model_doc/mistral3
title: Mistral3
- local: model_doc/mixtral
title: Mixtral
- local: model_doc/mluke
@ -589,8 +593,6 @@
title: Phi
- local: model_doc/phi3
title: Phi-3
- local: model_doc/phi4_multimodal
title: Phi4 Multimodal
- local: model_doc/phimoe
title: PhiMoE
- local: model_doc/phobert
@ -735,6 +737,8 @@
title: Mask2Former
- local: model_doc/maskformer
title: MaskFormer
- local: model_doc/mlcd
title: MLCD
- local: model_doc/mobilenet_v1
title: MobileNetV1
- local: model_doc/mobilenet_v2
@ -819,6 +823,8 @@
title: EnCodec
- local: model_doc/fastspeech2_conformer
title: FastSpeech2Conformer
- local: model_doc/granite_speech
title: GraniteSpeech
- local: model_doc/hubert
title: Hubert
- local: model_doc/mctct
@ -929,6 +935,8 @@
title: GIT
- local: model_doc/got_ocr2
title: GOT-OCR2
- local: model_doc/granitevision
title: GraniteVision
- local: model_doc/grounding-dino
title: Grounding DINO
- local: model_doc/groupvit
@ -943,6 +951,10 @@
title: InstructBLIP
- local: model_doc/instructblipvideo
title: InstructBlipVideo
- local: model_doc/internvl
title: InternVL
- local: model_doc/janus
title: Janus
- local: model_doc/kosmos-2
title: KOSMOS-2
- local: model_doc/layoutlm
@ -955,6 +967,8 @@
title: LayoutXLM
- local: model_doc/lilt
title: LiLT
- local: model_doc/llama4
title: Llama4
- local: model_doc/llava
title: Llava
- local: model_doc/llava_next
@ -969,6 +983,8 @@
title: MatCha
- local: model_doc/mgp-str
title: MGP-STR
- local: model_doc/mistral3
title: Mistral3
- local: model_doc/mllama
title: mllama
- local: model_doc/nougat
@ -985,10 +1001,14 @@
title: PaliGemma
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/phi4_multimodal
title: Phi4 Multimodal
- local: model_doc/pix2struct
title: Pix2Struct
- local: model_doc/pixtral
title: Pixtral
- local: model_doc/qwen2_5_omni
title: Qwen2.5-Omni
- local: model_doc/qwen2_5_vl
title: Qwen2.5-VL
- local: model_doc/qwen2_audio
@ -1049,6 +1069,8 @@
title: PatchTST
- local: model_doc/time_series_transformer
title: Time Series Transformer
- local: model_doc/timesfm
title: TimesFM
title: Time series models
- sections:
- local: model_doc/graphormer
@ -1074,6 +1096,8 @@
title: Utilities for Audio processing
- local: internal/file_utils
title: General Utilities
- local: internal/import_utils
title: Importing Utilities
- local: internal/time_series_utils
title: Utilities for Time Series
title: Internal helpers

View File

@ -15,283 +15,4 @@ rendered properly in your Markdown viewer.
-->
> [!WARNING]
> Agents and tools are being spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. These docs will be deprecated in the future!
# Agents
[[open-in-colab]]
An agent is a system where a large language model (LLM) can execute more complex tasks through *planning* and using *tools*.
- Planning helps a LLM reason its way through a task by breaking it down into smaller subtasks. For example, [`CodeAgent`] plans a series of actions to take and then generates Python code to execute all the actions at once.
Another planning method is by self-reflection and refinement of its previous actions to improve its performance. The [`ReactJsonAgent`] is an example of this type of planning, and it's based on the [ReAct](https://hf.co/papers/2210.03629) framework. This agent plans and executes actions one at a time based on the feedback it receives from each action.
- Tools give a LLM access to external functions or APIs that it can use to help it complete a task. For example, [gradio-tools](https://github.com/freddyaboulton/gradio-tools) gives a LLM access to any of the [Gradio](https://www.gradio.app/) apps available on Hugging Face [Spaces](https://hf.co/spaces). These apps can be used for a wide range of tasks such as image generation, video generation, audio transcription, and more.
To use agents in Transformers, make sure you have the extra `agents` dependencies installed.
```bash
!pip install transformers[agents]
```
Create an agent instance (refer to the [Agents](./main_classes/agent#agents) API for supported agents in Transformers) and a list of tools available for it to use, then [`~ReactAgent.run`] the agent on your task. The example below demonstrates how a ReAct agent reasons through a task.
```py
from transformers import ReactCodeAgent
agent = ReactCodeAgent(tools=[])
agent.run(
"How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?",
)
```
```bash
======== New task ========
How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?
==== Agent is executing the code below:
bert_layers = 12 # BERT base encoder has 12 layers
attention_layers = 6 # Encoder in Attention is All You Need has 6 layers
layer_diff = bert_layers - attention_layers
print("The difference in layers between BERT base encoder and Attention is All You Need is", layer_diff)
====
Print outputs:
The difference in layers between BERT base encoder and Attention is All You Need is 6
==== Agent is executing the code below:
final_answer("BERT base encoder has {} more layers than the encoder from Attention is All You Need.".format(layer_diff))
====
Print outputs:
>>> Final answer:
BERT base encoder has 6 more layers than the encoder from Attention is All You Need.
```
This guide will walk you through in more detail how to initialize an agent.
## LLM
An agent uses a LLM to plan and execute a task; it is the engine that powers the agent. To choose and build your own LLM engine, you need a method that:
1. the input uses the [chat template](./chat_templating) format, `List[Dict[str, str]]`, and it returns a string
2. the LLM stops generating outputs when it encounters the sequences in `stop_sequences`
```py
def llm_engine(messages, stop_sequences=["Task"]) -> str:
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000)
answer = response.choices[0].message.content
return answer
```
Next, initialize an engine to load a model. To run an agent locally, create a [`TransformersEngine`] to load a preinitialized [`Pipeline`].
However, you could also leverage Hugging Face's powerful inference infrastructure, [Inference API](https://hf.co/docs/api-inference/index) or [Inference Endpoints](https://hf.co/docs/inference-endpoints/index), to run your model. This is useful for loading larger models that are typically required for agentic behavior. In this case, load the [`HfApiEngine`] to run the agent.
The agent requires a list of tools it can use to complete a task. If you aren't using any additional tools, pass an empty list. The default tools provided by Transformers are loaded automatically, but you can optionally set `add_base_tools=True` to explicitly enable them.
<hfoptions id="engine">
<hfoption id="TransformersEngine">
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TransformersEngine, CodeAgent
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B-Instruct").to("cuda")
pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
llm_engine = TransformersEngine(pipeline)
agent = CodeAgent(tools=[], llm_engine=llm_engine)
agent.run(
"What causes bread to rise?",
)
```
</hfoption>
<hfoption id="HfApiEngine">
```py
from transformers import CodeAgent, HfApiEngine
llm_engine = HfApiEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
agent = CodeAgent(tools=[], llm_engine=llm_engine)
agent.run(
"Could you translate this sentence from French, say it out loud and return the audio.",
sentence="Où est la boulangerie la plus proche?",
)
```
</hfoption>
</hfoptions>
The agent supports [constrained generation](https://hf.co/docs/text-generation-inference/conceptual/guidance) for generating outputs according to a specific structure with the `grammar` parameter. The `grammar` parameter should be specified in the `llm_engine` method or you can set it when initializing an agent.
Lastly, an agent accepts additional inputs such as text and audio. In the [`HfApiEngine`] example above, the agent accepted a sentence to translate. But you could also pass a path to a local or remote file for the agent to access. The example below demonstrates how to pass a path to an audio file.
```py
from transformers import ReactCodeAgent
agent = ReactCodeAgent(tools=[], llm_engine=llm_engine)
agent.run("Why doesn't he know many people in New York?", audio="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/recording.mp3")
```
## System prompt
A system prompt describes how an agent should behave, a description of the available tools, and the expected output format.
Tools are defined by the `<<tool_descriptions>>` token which is dynamically replaced during runtime with the actual tool. The tool description is derived from the tool name, description, inputs, output type, and a Jinja2 template. Refer to the [Tools](./tools) guide for more information about how to describe tools.
The example below is the system prompt for [`ReactCodeAgent`].
```py
You will be given a task to solve as best you can.
You have access to the following tools:
<<tool_descriptions>>
To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences.
At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task, then the tools that you want to use.
Then in the 'Code:' sequence, you should write the code in simple Python. The code sequence must end with '/End code' sequence.
During each intermediate step, you can use 'print()' to save whatever important information you will then need.
These print outputs will then be available in the 'Observation:' field, for using this information as input for the next step.
In the end you have to return a final answer using the `final_answer` tool.
Here are a few examples using notional tools:
---
{examples}
Above example were using notional tools that might not exist for you. You only have access to those tools:
<<tool_names>>
You also can perform computations in the python code you generate.
Always provide a 'Thought:' and a 'Code:\n```py' sequence ending with '```<end_code>' sequence. You MUST provide at least the 'Code:' sequence to move forward.
Remember to not perform too many operations in a single code block! You should split the task into intermediate code blocks.
Print results at the end of each step to save the intermediate results. Then use final_answer() to return the final result.
Remember to make sure that variables you use are all defined.
Now Begin!
```
The system prompt can be tailored to the intended task. For example, you can add a better explanation of the output format or you can overwrite the system prompt template entirely with your own custom system prompt as shown below.
> [!WARNING]
> If you're writing a custom system prompt, make sure to include `<<tool_descriptions>>` in the template so the agent is aware of the available tools.
```py
from transformers import ReactJsonAgent
from transformers.agents import PythonInterpreterTool
agent = ReactJsonAgent(tools=[PythonInterpreterTool()], system_prompt="{your_custom_prompt}")
```
## Code execution
For safety, only the tools you provide (and the default Transformers tools) and the `print` function are executed. The interpreter doesn't allow importing modules that aren't on a safe list.
To import modules that aren't on the list, add them as a list to the `additional_authorized_imports` parameter when initializing an agent.
```py
from transformers import ReactCodeAgent
agent = ReactCodeAgent(tools=[], additional_authorized_imports=['requests', 'bs4'])
agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")
```
Code execution stops if a tool isn't on the safe list, it isn't authorized, or if the code generated by the agent returns a Python error.
> [!WARNING]
> A LLM can generate any arbitrary code that can be executed, so don't add any unsafe imports!
## Multi-agent
[Multi-agent](https://hf.co/papers/2308.08155) refers to multiple agents working together to solve a task. Performance is typically better because each agent is specialized for a particular subtask.
Multi-agents are created through a [`ManagedAgent`] class, where a *manager agent* oversees how other agents work together. The manager agent requires an agent and their name and description. These are added to the manager agents system prompt which lets it know how to call and use them.
The multi-agent example below creates a web search agent that is managed by another [`ReactCodeAgent`].
```py
from transformers.agents import ReactCodeAgent, HfApiEngine, DuckDuckGoSearchTool, ManagedAgent
llm_engine = HfApiEngine()
web_agent = ReactCodeAgent(tools=[DuckDuckGoSearchTool()], llm_engine=llm_engine)
managed_web_agent = ManagedAgent(
agent=web_agent,
name="web_search",
description="Runs web searches for you. Give it your query as an argument."
)
manager_agent = ReactCodeAgent(
tools=[], llm_engine=llm_engine, managed_agents=[managed_web_agent]
)
manager_agent.run("Who is the CEO of Hugging Face?")
```
## Gradio integration
[Gradio](https://www.gradio.app/) is a library for quickly creating and sharing machine learning apps. The [gradio.Chatbot](https://www.gradio.app/docs/gradio/chatbot) supports chatting with a Transformers agent with the [`stream_to_gradio`] function.
Load a tool and LLM with an agent, and then create a Gradio app. The key is to use [`stream_to_gradio`] to stream the agents messages and display how it's reasoning through a task.
```py
import gradio as gr
from transformers import (
load_tool,
ReactCodeAgent,
HfApiEngine,
stream_to_gradio,
)
# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image")
llm_engine = HfApiEngine("meta-llama/Meta-Llama-3-70B-Instruct")
# Initialize the agent with the image generation tool
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
def interact_with_agent(task):
messages = []
messages.append(gr.ChatMessage(role="user", content=task))
yield messages
for msg in stream_to_gradio(agent, task):
messages.append(msg)
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
]
yield messages
with gr.Blocks() as demo:
text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.")
submit = gr.Button("Run illustrator agent!")
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
),
)
submit.click(interact_with_agent, [text_input], [chatbot])
if __name__ == "__main__":
demo.launch()
```
## Troubleshoot
For a better idea of what is happening when you call an agent, it is always a good idea to check the system prompt template first.
```py
print(agent.system_prompt_template)
```
If the agent is behaving unexpectedly, remember to explain the task you want to perform as clearly as possible. Every [`~Agent.run`] is different and minor variations in your system prompt may yield completely different results.
To find out what happened after a run, check the following agent attributes.
- `agent.logs` stores the finegrained agent logs. At every step of the agents run, everything is stored in a dictionary and appended to `agent.logs`.
- `agent.write_inner_memory_from_logs` only stores a high-level overview of the agents run. For example, at each step, it stores the LLM output as a message and the tool call output as a separate message. Not every detail from a step is transcripted by `write_inner_memory_from_logs`.
## Resources
Learn more about ReAct agents in the [Open-source LLMs as LangChain Agents](https://hf.co/blog/open-source-llms-as-agents) blog post.
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.

View File

@ -181,35 +181,6 @@ processed_chat = processor.apply_chat_template(
print(processed_chat.keys())
```
</hfoption>
<hfoption id="custom frame sampling">
Some models don't sample frames *uniformly* and require more complex logic to determine which frames to use. For example, the model may have an *adaptive frame selection* or if the model prioritizes *key moments* in a video rather than evenly spaced frames.
If a model has a different sampling strategy, you can write a function that customizes frame selection. The function should include the following requirements.
- Use the `sample_indices_fn` parameter to pass a callable function for sampling.
- If provided, this function *overrides* the standard `num_frames` and `fps` parameters.
- The function receives all the parameters passed to `load_video` and must return valid frame indices to sample from.
An example function is shown below. This gives you full control over frame selection, making the model more adaptable to different video scenarios.
```py
def sample_indices_fn(metadata, **kwargs):
# samples only the first and the second frame
return [0, 1]
processed_chat = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
sample_indices_fn=sample_indices_fn,
video_load_backend="decord",
)
print(processed_chat.keys())
```
</hfoption>
<hfoption id="list of image frames">

View File

@ -31,7 +31,7 @@ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
inputs = tokenizer("I look forward to", return_tensors="pt").to("cuda")
inputs = tokenizer("Hugging Face is an open-source company", return_tensors="pt").to("cuda")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", torch_dtype=torch.float16).to("cuda")
# explicitly set to default length because Llama2 generation length is 4096

View File

@ -20,7 +20,7 @@ rendered properly in your Markdown viewer.
# Installation
Transformers works with [PyTorch](https://pytorch.org/get-started/locally/), [TensorFlow 2.0](https://www.tensorflow.org/install/pip), and [Flax](https://flax.readthedocs.io/en/latest/). It has been tested on Python 3.9+, PyTorch 2.0+, TensorFlow 2.6+, and Flax 0.4.1+.
Transformers works with [PyTorch](https://pytorch.org/get-started/locally/), [TensorFlow 2.0](https://www.tensorflow.org/install/pip), and [Flax](https://flax.readthedocs.io/en/latest/). It has been tested on Python 3.9+, PyTorch 2.1+, TensorFlow 2.6+, and Flax 0.4.1+.
## Virtual environment

View File

@ -0,0 +1,91 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Import Utilities
This page goes through the transformers utilities to enable lazy and fast object import.
While we strive for minimal dependencies, some models have specific dependencies requirements that cannot be
worked around. We don't want for all users of `transformers` to have to install those dependencies to use other models,
we therefore mark those as soft dependencies rather than hard dependencies.
The transformers toolkit is not made to error-out on import of a model that has a specific dependency; instead, an
object for which you are lacking a dependency will error-out when calling any method on it. As an example, if
`torchvision` isn't installed, the fast image processors will not be available.
This object is still importable:
```python
>>> from transformers import DetrImageProcessorFast
>>> print(DetrImageProcessorFast)
<class 'DetrImageProcessorFast'>
```
However, no method can be called on that object:
```python
>>> DetrImageProcessorFast.from_pretrained()
ImportError:
DetrImageProcessorFast requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
Please note that you may need to restart your runtime after installation.
```
Let's see how to specify specific object dependencies.
## Specifying Object Dependencies
### Filename-based
All objects under a given filename have an automatic dependency to the tool linked to the filename
**TensorFlow**: All files starting with `modeling_tf_` have an automatic TensorFlow dependency.
**Flax**: All files starting with `modeling_flax_` have an automatic Flax dependency
**PyTorch**: All files starting with `modeling_` and not valid with the above (TensorFlow and Flax) have an automatic
PyTorch dependency
**Tokenizers**: All files starting with `tokenization_` and ending with `_fast` have an automatic `tokenizers` dependency
**Vision**: All files starting with `image_processing_` have an automatic dependency to the `vision` dependency group;
at the time of writing, this only contains the `pillow` dependency.
**Vision + Torch + Torchvision**: All files starting with `image_processing_` and ending with `_fast` have an automatic
dependency to `vision`, `torch`, and `torchvision`.
All of these automatic dependencies are added on top of the explicit dependencies that are detailed below.
### Explicit Object Dependencies
We add a method called `requires` that is used to explicitly specify the dependencies of a given object. As an
example, the `Trainer` class has two hard dependencies: `torch` and `accelerate`. Here is how we specify these
required dependencies:
```python
from .utils.import_utils import requires
@requires(backends=("torch", "accelerate"))
class Trainer:
...
```
Backends that can be added here are all the backends that are available in the `import_utils.py` module.
## Methods
[[autodoc]] utils.import_utils.define_import_structure
[[autodoc]] utils.import_utils.requires

View File

@ -28,7 +28,7 @@ Most of those are only useful if you are adding new models in the library.
This context manager is a power user tool intended for model adders.
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
To note, this context manager enforces `torch.inference_mode()`.
To note, this context manager enforces `torch.no_grad()`.
### Rationale
@ -43,6 +43,7 @@ import torch
from PIL import Image
import requests
from transformers import LlavaProcessor, LlavaForConditionalGeneration
from transformers.model_debugging_utils import model_addition_debugger_context
torch.random.manual_seed(673)
# load pretrained model and processor
@ -60,12 +61,153 @@ prompt = "<image>Describe this image."
inputs = processor(text=prompt, images=random_image, return_tensors="pt")
# call forward method (not .generate!)
with model_addition_debugger_context(model, "optional_path_to_your_output_file.json"):
with model_addition_debugger_context(
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False # This will output ALL the layers of a model.
):
output = model.forward(**inputs)
```
[[autodoc]] model_addition_debugger
### Reading results
The debugger generates two files from the forward call, both with the same base name,
but ending either with `_SUMMARY.json` or with `_FULL_TENSORS.json`.
The first one will contain a summary of each module's _input_ and _output_ tensor values and shapes.
```json
{
"module_path": "MolmoForConditionalGeneration",
"inputs": {
"args": [],
"kwargs": {
"input_ids": {
"shape": "torch.Size([1, 589])",
"dtype": "torch.int64"
},
"attention_mask": {
"shape": "torch.Size([1, 589])",
"dtype": "torch.int64"
},
"pixel_values": {
"shape": "torch.Size([1, 5, 576, 588])",
"dtype": "torch.float32",
"mean": "tensor(-8.9514e-01, device='cuda:0')",
"std": "tensor(9.2586e-01, device='cuda:0')",
"min": "tensor(-1.7923e+00, device='cuda:0')",
"max": "tensor(1.8899e+00, device='cuda:0')"
}
},
"children": [
{
"module_path": "MolmoForConditionalGeneration.language_model.model.embed_tokens",
"inputs": {
"args": [
{
"shape": "torch.Size([1, 589])",
"dtype": "torch.int64"
}
]
},
"outputs": {
"shape": "torch.Size([1, 589, 3584])",
"dtype": "torch.float32",
"mean": "tensor(6.5460e-06, device='cuda:0')",
"std": "tensor(2.3807e-02, device='cuda:0')",
"min": "tensor(-3.3398e-01, device='cuda:0')",
"max": "tensor(3.9453e-01, device='cuda:0')"
}
},
{
"module_path": "MolmoForConditionalGeneration.vision_tower",
"inputs": {
"args": [
{
"shape": "torch.Size([5, 1, 576, 588])",
"dtype": "torch.float32",
"mean": "tensor(-8.9514e-01, device='cuda:0')",
"std": "tensor(9.2586e-01, device='cuda:0')",
"min": "tensor(-1.7923e+00, device='cuda:0')",
"max": "tensor(1.8899e+00, device='cuda:0')"
}
],
"kwargs": {
"output_hidden_states": "True"
}
},
"children": [
{ ... and so on
```
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful
for comparing two files.
```json
"pixel_values": {
"shape": "torch.Size([1, 5, 576, 588])",
"dtype": "torch.float32",
"value": [
"tensor([[[[-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" ...,",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00]],",
"",
" [[-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" ...,",
" [-1.4857e+00, -1.4820e+00, -1.2100e+00, ..., -6.0979e-01, -5.9650e-01, -3.8527e-01],",
" [-1.6755e+00, -1.7221e+00, -1.4518e+00, ..., -7.5577e-01, -7.4658e-01, -5.5592e-01],",
" [-7.9957e-01, -8.2162e-01, -5.7014e-01, ..., -1.3689e+00, -1.3169e+00, -1.0678e+00]],",
"",
" [[-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" ...,",
" [-3.0322e-01, -5.0645e-01, -5.8436e-01, ..., -6.2439e-01, -7.9160e-01, -8.1188e-01],",
" [-4.4921e-01, -6.5653e-01, -7.2656e-01, ..., -3.4702e-01, -5.2146e-01, -5.1326e-01],",
" [-3.4702e-01, -5.3647e-01, -5.4170e-01, ..., -1.0915e+00, -1.1968e+00, -1.0252e+00]],",
"",
" [[-1.1207e+00, -1.2718e+00, -1.0678e+00, ..., 1.2013e-01, -1.3126e-01, -1.7197e-01],",
" [-6.9738e-01, -9.1166e-01, -8.5454e-01, ..., -5.5050e-02, -2.8134e-01, -4.2793e-01],",
" [-3.4702e-01, -5.5148e-01, -5.8436e-01, ..., 1.9312e-01, -8.6235e-02, -2.1463e-01],",
" ...,",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00]],",
"",
" [[-1.0039e+00, -9.5669e-01, -6.5546e-01, ..., -1.4711e+00, -1.4219e+00, -1.1389e+00],",
" [-1.0039e+00, -9.5669e-01, -6.5546e-01, ..., -1.7193e+00, -1.6771e+00, -1.4091e+00],",
" [-1.6317e+00, -1.6020e+00, -1.2669e+00, ..., -1.2667e+00, -1.2268e+00, -8.9720e-01],",
" ...,",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00],",
" [-1.7923e+00, -1.7521e+00, -1.4802e+00, ..., -1.7923e+00, -1.7521e+00, -1.4802e+00]]]], device='cuda:0')"
],
"mean": "tensor(-8.9514e-01, device='cuda:0')",
"std": "tensor(9.2586e-01, device='cuda:0')",
"min": "tensor(-1.7923e+00, device='cuda:0')",
"max": "tensor(1.8899e+00, device='cuda:0')"
},
```
### Comparing between implementations
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/files_difference_debugging.png)
### Limitations and scope
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
[[autodoc]] model_addition_debugger_context

View File

@ -20,6 +20,10 @@ This page lists all the custom layers used by the library, as well as the utilit
Most of those are only useful if you are studying the code of the models in the library.
## Layers
[[autodoc]] GradientCheckpointingLayer
## Attention Functions
[[autodoc]] AttentionInterface
@ -33,23 +37,6 @@ Most of those are only useful if you are studying the code of the models in the
[[autodoc]] pytorch_utils.Conv1D
[[autodoc]] modeling_utils.PoolerStartLogits
- forward
[[autodoc]] modeling_utils.PoolerEndLogits
- forward
[[autodoc]] modeling_utils.PoolerAnswerClass
- forward
[[autodoc]] modeling_utils.SquadHeadOutput
[[autodoc]] modeling_utils.SQuADHead
- forward
[[autodoc]] modeling_utils.SequenceSummary
- forward
## PyTorch Helper Functions
[[autodoc]] pytorch_utils.apply_chunking_to_forward

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
The key-value (KV) vectors are used to calculate attention scores. For autoregressive models, KV scores are calculated *every* time because the model predicts one token at a time. Each prediction depends on the previous tokens, which means the model performs the same computations each time.
A KV *cache* stores these calculations so they can be reused without recomputing them. Efficient caching is crucial for optimizing model performance because it reduces computation time and improves response rates. Refer to the [Caching](./cache_explanation.md) doc for a more detailed explanation about how a cache works.
A KV *cache* stores these calculations so they can be reused without recomputing them. Efficient caching is crucial for optimizing model performance because it reduces computation time and improves response rates. Refer to the [Caching](./cache_explanation) doc for a more detailed explanation about how a cache works.
Transformers offers several [`Cache`] classes that implement different caching mechanisms. Some of these [`Cache`] classes are optimized to save memory while others are designed to maximize generation speed. Refer to the table below to compare cache types and use it to help you select the best cache for your use case.

View File

@ -1,167 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Agents & Tools
<Tip warning={true}>
Transformers Agents is an experimental API which is subject to change at any time. Results returned by the agents
can vary as the APIs or underlying models are prone to change.
</Tip>
To learn more about agents and tools make sure to read the [introductory guide](../transformers_agents). This page
contains the API docs for the underlying classes.
## Agents
We provide two types of agents, based on the main [`Agent`] class:
- [`CodeAgent`] acts in one shot, generating code to solve the task, then executes it at once.
- [`ReactAgent`] acts step by step, each step consisting of one thought, then one tool call and execution. It has two classes:
- [`ReactJsonAgent`] writes its tool calls in JSON.
- [`ReactCodeAgent`] writes its tool calls in Python code.
### Agent
[[autodoc]] Agent
### CodeAgent
[[autodoc]] CodeAgent
### React agents
[[autodoc]] ReactAgent
[[autodoc]] ReactJsonAgent
[[autodoc]] ReactCodeAgent
### ManagedAgent
[[autodoc]] ManagedAgent
## Tools
### load_tool
[[autodoc]] load_tool
### tool
[[autodoc]] tool
### Tool
[[autodoc]] Tool
### Toolbox
[[autodoc]] Toolbox
### PipelineTool
[[autodoc]] PipelineTool
### launch_gradio_demo
[[autodoc]] launch_gradio_demo
### stream_to_gradio
[[autodoc]] stream_to_gradio
### ToolCollection
[[autodoc]] ToolCollection
## Engines
You're free to create and use your own engines to be usable by the Agents framework.
These engines have the following specification:
1. Follow the [messages format](../chat_templating.md) for its input (`List[Dict[str, str]]`) and return a string.
2. Stop generating outputs *before* the sequences passed in the argument `stop_sequences`
### TransformersEngine
For convenience, we have added a `TransformersEngine` that implements the points above, taking a pre-initialized `Pipeline` as input.
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TransformersEngine
>>> model_name = "HuggingFaceTB/SmolLM-135M-Instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> model = AutoModelForCausalLM.from_pretrained(model_name)
>>> pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
>>> engine = TransformersEngine(pipe)
>>> engine([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])
"What a "
```
[[autodoc]] TransformersEngine
### HfApiEngine
The `HfApiEngine` is an engine that wraps an [HF Inference API](https://huggingface.co/docs/api-inference/index) client for the execution of the LLM.
```python
>>> from transformers import HfApiEngine
>>> messages = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "No need to help, take it easy."},
... ]
>>> HfApiEngine()(messages, stop_sequences=["conversation"])
"That's very kind of you to say! It's always nice to have a relaxed "
```
[[autodoc]] HfApiEngine
## Agent Types
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return
text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to
correctly render these returns in ipython (jupyter, colab, ipython notebooks, ...), we implement wrapper classes
around these types.
The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image
object should still behave as a `PIL.Image`.
These types have three specific purposes:
- Calling `to_raw` on the type should return the underlying object
- Calling `to_string` on the type should return the object as a string: that can be the string in case of an `AgentText`
but will be the path of the serialized version of the object in other instances
- Displaying it in an ipython kernel should display the object correctly
### AgentText
[[autodoc]] transformers.agents.agent_types.AgentText
### AgentImage
[[autodoc]] transformers.agents.agent_types.AgentImage
### AgentAudio
[[autodoc]] transformers.agents.agent_types.AgentAudio

View File

@ -77,9 +77,9 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
[[autodoc]] TorchAoConfig
## BitNetConfig
## BitNetQuantConfig
[[autodoc]] BitNetConfig
[[autodoc]] BitNetQuantConfig
## SpQRConfig
@ -92,3 +92,7 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
## QuarkConfig
[[autodoc]] QuarkConfig
## AutoRoundConfig
[[autodoc]] AutoRoundConfig

View File

@ -58,6 +58,11 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] BitImageProcessor
- preprocess
## BitImageProcessorFast
[[autodoc]] BitImageProcessorFast
- preprocess
## BitModel
[[autodoc]] BitModel

View File

@ -0,0 +1,121 @@
<!--Copyright 2025 The BitNet Team and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BitNet
## Overview
Trained on a corpus of 4 trillion tokens, this model demonstrates that native 1-bit LLMs can achieve performance comparable to leading open-weight, full-precision models of similar size, while offering substantial advantages in computational efficiency (memory, energy, latency).
➡️ **Technical Report:** [BitNet b1.58 2B4T Technical Report](https://arxiv.org/abs/2504.12285)
➡️ **Official Inference Code:** [microsoft/BitNet (bitnet.cpp)](https://github.com/microsoft/BitNet)
## Model Variants
Several versions of the model weights are available on Hugging Face:
* [**`microsoft/bitnet-b1.58-2B-4T`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T): Contains the packed 1.58-bit weights optimized for efficient inference. **Use this for deployment.**
* [**`microsoft/bitnet-b1.58-2B-4T-bf16`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-bf16): Contains the master weights in BF16 format. **Use this only for training or fine-tuning purposes.**
* [**`microsoft/bitnet-b1.58-2B-4T-gguf`**](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T-gguf): Contains the model weights in GGUF format, compatible with the `bitnet.cpp` library for CPU inference.
### Model Details
* **Architecture:** Transformer-based, modified with `BitLinear` layers (BitNet framework).
* Uses Rotary Position Embeddings (RoPE).
* Uses squared ReLU (ReLU²) activation in FFN layers.
* Employs [`subln`](https://proceedings.mlr.press/v202/wang23u.html) normalization.
* No bias terms in linear or normalization layers.
* **Quantization:** Native 1.58-bit weights and 8-bit activations (W1.58A8).
* Weights are quantized to ternary values {-1, 0, +1} using absmean quantization during the forward pass.
* Activations are quantized to 8-bit integers using absmax quantization (per-token).
* **Crucially, the model was *trained from scratch* with this quantization scheme, not post-training quantized.**
* **Parameters:** ~2 Billion
* **Training Tokens:** 4 Trillion
* **Context Length:** Maximum sequence length of **4096 tokens**.
* *Recommendation:* For optimal performance on tasks requiring very long contexts (beyond the pre-training length or for specialized long-reasoning tasks), we recommend performing intermediate long-sequence adaptation/training before the final fine-tuning stage.
* **Training Stages:**
1. **Pre-training:** Large-scale training on public text/code and synthetic math data using a two-stage learning rate and weight decay schedule.
2. **Supervised Fine-tuning (SFT):** Fine-tuned on instruction-following and conversational datasets using sum loss aggregation and specific hyperparameter tuning.
3. **Direct Preference Optimization (DPO):** Aligned with human preferences using preference pairs.
* **Tokenizer:** LLaMA 3 Tokenizer (vocab size: 128,256).
## Usage tips
**VERY IMPORTANT NOTE ON EFFICIENCY**
> Please do NOT expect performance efficiency gains (in terms of speed, latency, or energy consumption) when using this model with the standard transformers library.
>
> The current execution paths within transformers do not contain the specialized, highly optimized computational kernels required to leverage the advantages of the BitNet architecture. Running the model via transformers will likely result in inference speeds and energy usage comparable to, or potentially worse than, standard full-precision models within this framework on both CPU and GPU.
>
> While you might observe reduced memory usage due to the quantized weights, the primary computational efficiency benefits are not accessible through this standard transformers usage path.
>
> For achieving the efficiency benefits demonstrated in the technical paper, you MUST use the dedicated C++ implementation: [bitnet.cpp](https://github.com/microsoft/BitNet).
### Requirements
```bash
pip install transformers
```
### Example
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "microsoft/bitnet-b1.58-2B-4T"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16
)
# Apply the chat template
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "How are you?"},
]
chat_input = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
# Generate response
chat_outputs = model.generate(chat_input, max_new_tokens=50)
response = tokenizer.decode(chat_outputs[0][chat_input.shape[-1]:], skip_special_tokens=True) # Decode only the response part
print("\nAssistant Response:", response)
```
## BitNetConfig
[[autodoc]] BitNetConfig
## BitNetModel
[[autodoc]] BitNetModel
- forward
## BitNetForCausalLM
[[autodoc]] BitNetForCausalLM
- forward

View File

@ -88,6 +88,11 @@ The original code can be found [here](https://github.com/salesforce/BLIP).
[[autodoc]] BlipTextModel
- forward
## BlipTextLMHeadModel
[[autodoc]] BlipTextLMHeadModel
- forward
## BlipVisionModel
[[autodoc]] BlipVisionModel
@ -123,6 +128,11 @@ The original code can be found [here](https://github.com/salesforce/BLIP).
[[autodoc]] TFBlipTextModel
- call
## TFBlipTextLMHeadModel
[[autodoc]] TFBlipTextLMHeadModel
- forward
## TFBlipVisionModel
[[autodoc]] TFBlipVisionModel

View File

@ -147,6 +147,11 @@ Tips:
[[autodoc]] BridgeTowerImageProcessor
- preprocess
## BridgeTowerImageProcessorFast
[[autodoc]] BridgeTowerImageProcessorFast
- preprocess
## BridgeTowerProcessor
[[autodoc]] BridgeTowerProcessor

View File

@ -90,6 +90,11 @@ Currently, following scales of pretrained Chinese-CLIP models are available on
[[autodoc]] ChineseCLIPImageProcessor
- preprocess
## ChineseCLIPImageProcessorFast
[[autodoc]] ChineseCLIPImageProcessorFast
- preprocess
## ChineseCLIPFeatureExtractor
[[autodoc]] ChineseCLIPFeatureExtractor

View File

@ -1,5 +1,4 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@ -9,76 +8,134 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# ColPali
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[ColPali](https://huggingface.co/papers/2407.01449) is a model designed to retrieve documents by analyzing their visual features. Unlike traditional systems that rely heavily on text extraction and OCR, ColPali treats each page as an image. It uses [Paligemma-3B](./paligemma) to capture not only text, but also the layout, tables, charts, and other visual elements to create detailed embeddings. This offers a more comprehensive understanding of documents and enables more efficient and accurate retrieval.
## Overview
You can find all the original ColPali checkpoints under the [ColPali](https://huggingface.co/collections/vidore/hf-native-colvision-models-6755d68fc60a8553acaa96f7) collection.
The *ColPali* model was proposed in [ColPali: Efficient Document Retrieval with Vision Language Models](https://doi.org/10.48550/arXiv.2407.01449) by **Manuel Faysse***, **Hugues Sibille***, **Tony Wu***, Bilel Omrani, Gautier Viaud, Céline Hudelot, Pierre Colombo (* denotes equal contribution). Work lead by ILLUIN Technology.
> [!TIP]
> Click on the ColPali models in the right sidebar for more examples of how to use ColPali for image retrieval.
In our proposed *ColPali* approach, we leverage VLMs to construct efficient multi-vector embeddings directly from document images (“screenshots”) for document retrieval. We train the model to maximize the similarity between these document embeddings and the corresponding query embeddings, using the late interaction method introduced in ColBERT.
<hfoptions id="usage">
<hfoption id="image retrieval">
Using *ColPali* removes the need for potentially complex and brittle layout recognition and OCR pipelines with a single model that can take into account both the textual and visual content (layout, charts, etc.) of a document.
## Resources
- The *ColPali* arXiv paper can be found [here](https://doi.org/10.48550/arXiv.2407.01449). 📄
- The official blog post detailing ColPali can be found [here](https://huggingface.co/blog/manu/colpali). 📝
- The original model implementation code for the ColPali model and for the `colpali-engine` package can be found [here](https://github.com/illuin-tech/colpali). 🌎
- Cookbooks for learning to use the transformers-native version of *ColPali*, fine-tuning, and similarity maps generation can be found [here](https://github.com/tonywu71/colpali-cookbooks). 📚
This model was contributed by [@tonywu71](https://huggingface.co/tonywu71) and [@yonigozlan](https://huggingface.co/yonigozlan).
## Usage
This example demonstrates how to use *ColPali* to embed both queries and images, calculate their similarity scores, and identify the most relevant matches. For a specific query, you can retrieve the top-k most similar images by selecting the ones with the highest similarity scores.
```python
```py
import requests
import torch
from PIL import Image
from transformers import ColPaliForRetrieval, ColPaliProcessor
model_name = "vidore/colpali-v1.2-hf"
# Load model (bfloat16 support is limited; fallback to float32 if needed)
model = ColPaliForRetrieval.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="cuda:0", # or "mps" if on Apple Silicon
"vidore/colpali-v1.2-hf",
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto", # "cpu", "cuda", or "mps" for Apple Silicon
).eval()
processor = ColPaliProcessor.from_pretrained(model_name)
# Your inputs (replace dummy images with screenshots of your documents)
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
images = [
Image.new("RGB", (32, 32), color="white"),
Image.new("RGB", (16, 16), color="black"),
Image.open(requests.get(url1, stream=True).raw),
Image.open(requests.get(url2, stream=True).raw),
]
queries = [
"What is the organizational structure for our R&D department?",
"Can you provide a breakdown of last years financial performance?",
"Who printed the edition of Romeo and Juliet?",
"When was the United States Declaration of Independence proclaimed?",
]
# Process the inputs
batch_images = processor(images=images).to(model.device)
batch_queries = processor(text=queries).to(model.device)
inputs_images = processor(images=images, return_tensors="pt").to(model.device)
inputs_text = processor(text=queries, return_tensors="pt").to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**batch_images).embeddings
query_embeddings = model(**batch_queries).embeddings
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
# Score the queries against the images
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes.md) to quantize the weights to int4.
```py
import requests
import torch
from PIL import Image
from transformers import ColPaliForRetrieval, ColPaliProcessor
from transformers import BitsAndBytesConfig
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model_name = "vidore/colpali-v1.2-hf"
# Load model
model = ColPaliForRetrieval.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="cuda"
).eval()
processor = ColPaliProcessor.from_pretrained(model_name)
url1 = "https://upload.wikimedia.org/wikipedia/commons/8/89/US-original-Declaration-1776.jpg"
url2 = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Romeoandjuliet1597.jpg/500px-Romeoandjuliet1597.jpg"
images = [
Image.open(requests.get(url1, stream=True).raw),
Image.open(requests.get(url2, stream=True).raw),
]
queries = [
"Who printed the edition of Romeo and Juliet?",
"When was the United States Declaration of Independence proclaimed?",
]
# Process the inputs
inputs_images = processor(images=images, return_tensors="pt").to(model.device)
inputs_text = processor(text=queries, return_tensors="pt").to(model.device)
# Forward pass
with torch.no_grad():
image_embeddings = model(**inputs_images).embeddings
query_embeddings = model(**inputs_text).embeddings
scores = processor.score_retrieval(query_embeddings, image_embeddings)
print("Retrieval scores (query x image):")
print(scores)
```
## Notes
- [`~ColPaliProcessor.score_retrieval`] returns a 2D tensor where the first dimension is the number of queries and the second dimension is the number of images. A higher score indicates more similarity between the query and image.
## ColPaliConfig

View File

@ -48,6 +48,11 @@ This model was contributed by [DepuMeng](https://huggingface.co/DepuMeng). The o
[[autodoc]] ConditionalDetrImageProcessor
- preprocess
## ConditionalDetrImageProcessorFast
[[autodoc]] ConditionalDetrImageProcessorFast
- preprocess
- post_process_object_detection
- post_process_instance_segmentation
- post_process_semantic_segmentation

View File

@ -10,71 +10,134 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# DINOv2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
The DINOv2 model was proposed in [DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193) by
Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
DINOv2 is an upgrade of [DINO](https://arxiv.org/abs/2104.14294), a self-supervised method applied on [Vision Transformers](vit). This method enables all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning.
# DINOv2
The abstract from the paper is the following:
[DINOv2](https://huggingface.co/papers/2304.07193) is a vision foundation model that uses [ViT](./vit) as a feature extractor for multiple downstream tasks like image classification and depth estimation. It focuses on stabilizing and accelerating training through techniques like a faster memory-efficient attention, sequence packing, improved stochastic depth, Fully Sharded Data Parallel (FSDP), and model distillation.
*The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy et al., 2020) with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the benchmarks at image and pixel levels.*
You can find all the original DINOv2 checkpoints under the [Dinov2](https://huggingface.co/collections/facebook/dinov2-6526c98554b3d2576e071ce3) collection.
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/facebookresearch/dinov2).
> [!TIP]
> Click on the DINOv2 models in the right sidebar for more examples of how to apply DINOv2 to different vision tasks.
## Usage tips
The example below demonstrates how to obtain an image embedding with [`Pipeline`] or the [`AutoModel`] class.
The model can be traced using `torch.jit.trace` which leverages JIT compilation to optimize the model making it faster to run. Note this still produces some mis-matched elements and the difference between the original model and the traced model is of the order of 1e-4.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
```py
import torch
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
from transformers import pipeline
pipe = pipeline(
task="image-classification",
model="facebook/dinov2-small-imagenet1k-1-layer",
torch_dtype=torch.float16,
device=0
)
pipe("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
</hfoption>
<hfoption id="AutoModel">
```py
import requests
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("facebook/dinov2-small-imagenet1k-1-layer")
model = AutoModelForImageClassification.from_pretrained(
"facebook/dinov2-small-imagenet1k-1-layer",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = processor(images=image, return_tensors="pt")
logits = model(**inputs).logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```py
# pip install torchao
import requests
from transformers import TorchAoConfig, AutoImageProcessor, AutoModelForImageClassification
from torchao.quantization import Int4WeightOnlyConfig
from PIL import Image
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
model = AutoModel.from_pretrained('facebook/dinov2-base')
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-giant-imagenet1k-1-layer')
quant_config = Int4WeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_config)
model = AutoModelForImageClassification.from_pretrained(
'facebook/dinov2-giant-imagenet1k-1-layer',
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs[0]
# We have to force return_dict=False for tracing
model.config.return_dict = False
with torch.no_grad():
traced_model = torch.jit.trace(model, [inputs.pixel_values])
traced_outputs = traced_model(inputs.pixel_values)
print((last_hidden_states - traced_outputs[0]).abs().max())
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
```
## Resources
## Notes
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DINOv2.
- Use [torch.jit.trace](https://pytorch.org/docs/stable/generated/torch.jit.trace.html) to speedup inference. However, it will produce some mismatched elements. The difference between the original and traced model is 1e-4.
- Demo notebooks for DINOv2 can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DINOv2). 🌎
```py
import torch
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
import requests
<PipelineTag pipeline="image-classification"/>
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
- [`Dinov2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
model = AutoModel.from_pretrained('facebook/dinov2-base')
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
last_hidden_states = outputs[0]
# We have to force return_dict=False for tracing
model.config.return_dict = False
with torch.no_grad():
traced_model = torch.jit.trace(model, [inputs.pixel_values])
traced_outputs = traced_model(inputs.pixel_values)
print((last_hidden_states - traced_outputs[0]).abs().max())
```
## Dinov2Config

View File

@ -13,180 +13,191 @@ rendered properly in your Markdown viewer.
specific language governing permissions and limitations under the License. -->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# Donut
## Overview
[Donut (Document Understanding Transformer)](https://huggingface.co/papers2111.15664) is a visual document understanding model that doesn't require an Optical Character Recognition (OCR) engine. Unlike traditional approaches that extract text using OCR before processing, Donut employs an end-to-end Transformer-based architecture to directly analyze document images. This eliminates OCR-related inefficiencies making it more accurate and adaptable to diverse languages and formats.
The Donut model was proposed in [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by
Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
Donut consists of an image Transformer encoder and an autoregressive text Transformer decoder to perform document understanding
tasks such as document image classification, form understanding and visual question answering.
Donut features vision encoder ([Swin](./swin)) and a text decoder ([BART](./bart)). Swin converts document images into embeddings and BART processes them into meaningful text sequences.
The abstract from the paper is the following:
You can find all the original Donut checkpoints under the [Naver Clova Information Extraction](https://huggingface.co/naver-clova-ix) organization.
*Understanding document images (e.g., invoices) is a core but challenging task since it requires complex functions such as reading text and a holistic understanding of the document. Current Visual Document Understanding (VDU) methods outsource the task of reading text to off-the-shelf Optical Character Recognition (OCR) engines and focus on the understanding task with the OCR outputs. Although such OCR-based approaches have shown promising performance, they suffer from 1) high computational costs for using OCR; 2) inflexibility of OCR models on languages or types of document; 3) OCR error propagation to the subsequent process. To address these issues, in this paper, we introduce a novel OCR-free VDU model named Donut, which stands for Document understanding transformer. As the first step in OCR-free VDU research, we propose a simple architecture (i.e., Transformer) with a pre-training objective (i.e., cross-entropy loss). Donut is conceptually simple yet effective. Through extensive experiments and analyses, we show a simple OCR-free VDU model, Donut, achieves state-of-the-art performances on various VDU tasks in terms of both speed and accuracy. In addition, we offer a synthetic data generator that helps the model pre-training to be flexible in various languages and domains.*
> [!TIP]
> Click on the Donut models in the right sidebar for more examples of how to apply Donut to different language and vision tasks.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg"
alt="drawing" width="600"/>
The examples below demonstrate how to perform document understanding tasks using Donut with [`Pipeline`] and [`AutoModel`]
<small> Donut high-level overview. Taken from the <a href="https://arxiv.org/abs/2111.15664">original paper</a>. </small>
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found
[here](https://github.com/clovaai/donut).
## Usage tips
- The quickest way to get started with Donut is by checking the [tutorial
notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut), which show how to use the model
at inference time as well as fine-tuning on custom data.
- Donut is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework.
## Inference examples
Donut's [`VisionEncoderDecoder`] model accepts images as input and makes use of
[`~generation.GenerationMixin.generate`] to autoregressively generate text given the input image.
The [`DonutImageProcessor`] class is responsible for preprocessing the input image and
[`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`] decodes the generated target tokens to the target string. The
[`DonutProcessor`] wraps [`DonutImageProcessor`] and [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]
into a single instance to both extract the input features and decode the predicted token ids.
- Step-by-step Document Image Classification
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
>>> import re
# pip install datasets
import torch
from transformers import pipeline
from PIL import Image
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
>>> from datasets import load_dataset
>>> import torch
pipeline = pipeline(
task="document-question-answering",
model="naver-clova-ix/donut-base-finetuned-docvqa",
device=0,
torch_dtype=torch.float16
)
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[0]["image"]
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # load document image
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
>>> image = dataset[1]["image"]
>>> # prepare decoder inputs
>>> task_prompt = "<s_rvlcdip>"
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> outputs = model.generate(
... pixel_values.to(device),
... decoder_input_ids=decoder_input_ids.to(device),
... max_length=model.decoder.config.max_position_embeddings,
... pad_token_id=processor.tokenizer.pad_token_id,
... eos_token_id=processor.tokenizer.eos_token_id,
... use_cache=True,
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
... return_dict_in_generate=True,
... )
>>> sequence = processor.batch_decode(outputs.sequences)[0]
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
>>> print(processor.token2json(sequence))
{'class': 'advertisement'}
pipeline(image=image, question="What time is the coffee break?")
```
- Step-by-step Document Parsing
</hfoption>
<hfoption id="AutoModel">
```py
>>> import re
# pip install datasets
import torch
from datasets import load_dataset
from transformers import AutoProcessor, AutoModelForVision2Seq
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
>>> from datasets import load_dataset
>>> import torch
processor = AutoProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = AutoModelForVision2Seq.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[0]["image"]
question = "What time is the coffee break?"
task_prompt = f"<s_docvqa><s_question>{question}</s_question><s_answer>"
inputs = processor(image, task_prompt, return_tensors="pt")
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # load document image
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
>>> image = dataset[2]["image"]
>>> # prepare decoder inputs
>>> task_prompt = "<s_cord-v2>"
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> outputs = model.generate(
... pixel_values.to(device),
... decoder_input_ids=decoder_input_ids.to(device),
... max_length=model.decoder.config.max_position_embeddings,
... pad_token_id=processor.tokenizer.pad_token_id,
... eos_token_id=processor.tokenizer.eos_token_id,
... use_cache=True,
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
... return_dict_in_generate=True,
... )
>>> sequence = processor.batch_decode(outputs.sequences)[0]
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
>>> print(processor.token2json(sequence))
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total': {'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}}
outputs = model.generate(
input_ids=inputs.input_ids,
pixel_values=inputs.pixel_values,
max_length=512
)
answer = processor.decode(outputs[0], skip_special_tokens=True)
print(answer)
```
- Step-by-step Document Visual Question Answering (DocVQA)
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```py
>>> import re
# pip install datasets torchao
import torch
from datasets import load_dataset
from transformers import TorchAoConfig, AutoProcessor, AutoModelForVision2Seq
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
>>> from datasets import load_dataset
>>> import torch
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
processor = AutoProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
model = AutoModelForVision2Seq.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa", quantization_config=quantization_config)
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[0]["image"]
question = "What time is the coffee break?"
task_prompt = f"<s_docvqa><s_question>{question}</s_question><s_answer>"
inputs = processor(image, task_prompt, return_tensors="pt")
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # load document image from the DocVQA dataset
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
>>> image = dataset[0]["image"]
>>> # prepare decoder inputs
>>> task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
>>> question = "When is the coffee break?"
>>> prompt = task_prompt.replace("{user_input}", question)
>>> decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> outputs = model.generate(
... pixel_values.to(device),
... decoder_input_ids=decoder_input_ids.to(device),
... max_length=model.decoder.config.max_position_embeddings,
... pad_token_id=processor.tokenizer.pad_token_id,
... eos_token_id=processor.tokenizer.eos_token_id,
... use_cache=True,
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
... return_dict_in_generate=True,
... )
>>> sequence = processor.batch_decode(outputs.sequences)[0]
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
>>> print(processor.token2json(sequence))
{'question': 'When is the coffee break?', 'answer': '11-14 to 11:39 a.m.'}
outputs = model.generate(
input_ids=inputs.input_ids,
pixel_values=inputs.pixel_values,
max_length=512
)
answer = processor.decode(outputs[0], skip_special_tokens=True)
print(answer)
```
See the [model hub](https://huggingface.co/models?filter=donut) to look for Donut checkpoints.
## Notes
## Training
- Use Donut for document image classification as shown below.
We refer to the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut).
```py
>>> import re
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
>>> from datasets import load_dataset
>>> import torch
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # load document image
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
>>> image = dataset[1]["image"]
>>> # prepare decoder inputs
>>> task_prompt = "<s_rvlcdip>"
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> outputs = model.generate(
... pixel_values.to(device),
... decoder_input_ids=decoder_input_ids.to(device),
... max_length=model.decoder.config.max_position_embeddings,
... pad_token_id=processor.tokenizer.pad_token_id,
... eos_token_id=processor.tokenizer.eos_token_id,
... use_cache=True,
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
... return_dict_in_generate=True,
... )
>>> sequence = processor.batch_decode(outputs.sequences)[0]
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
>>> print(processor.token2json(sequence))
{'class': 'advertisement'}
```
- Use Donut for document parsing as shown below.
```py
>>> import re
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
>>> from datasets import load_dataset
>>> import torch
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> model.to(device) # doctest: +IGNORE_RESULT
>>> # load document image
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
>>> image = dataset[2]["image"]
>>> # prepare decoder inputs
>>> task_prompt = "<s_cord-v2>"
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> outputs = model.generate(
... pixel_values.to(device),
... decoder_input_ids=decoder_input_ids.to(device),
... max_length=model.decoder.config.max_position_embeddings,
... pad_token_id=processor.tokenizer.pad_token_id,
... eos_token_id=processor.tokenizer.eos_token_id,
... use_cache=True,
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
... return_dict_in_generate=True,
... )
>>> sequence = processor.batch_decode(outputs.sequences)[0]
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
>>> print(processor.token2json(sequence))
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total':
{'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}}
```
## DonutSwinConfig
@ -197,6 +208,11 @@ We refer to the [tutorial notebooks](https://github.com/NielsRogge/Transformers-
[[autodoc]] DonutImageProcessor
- preprocess
## DonutImageProcessorFast
[[autodoc]] DonutImageProcessorFast
- preprocess
## DonutFeatureExtractor
[[autodoc]] DonutFeatureExtractor
@ -215,3 +231,8 @@ We refer to the [tutorial notebooks](https://github.com/NielsRogge/Transformers-
[[autodoc]] DonutSwinModel
- forward
## DonutSwinForImageClassification
[[autodoc]] transformers.DonutSwinForImageClassification
- forward

View File

@ -43,6 +43,11 @@ The original code can be found [here](https://github.com/tensorflow/tpu/tree/mas
[[autodoc]] EfficientNetImageProcessor
- preprocess
## EfficientNetImageProcessorFast
[[autodoc]] EfficientNetImageProcessorFast
- preprocess
## EfficientNetModel
[[autodoc]] EfficientNetModel

View File

@ -14,95 +14,100 @@ rendered properly in your Markdown viewer.
-->
# FalconMamba
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# FalconMamba
The FalconMamba model was proposed by TII UAE (Technology Innovation Institute) in their release.
[FalconMamba](https://huggingface.co/papers/2410.05355) is a 7B large language model, available as pretrained and instruction-tuned variants, based on the [Mamba](./mamba). This model implements a pure Mamba design that focuses on computational efficiency while maintaining strong performance. FalconMamba is significantly faster at inference and requires substantially less memory for long sequence generation. The models are pretrained on a diverse 5.8T token dataset including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), technical content, code, and mathematical data.
The abstract from the paper is the following:
You can find the official FalconMamba checkpoints in the [FalconMamba 7B](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a) collection.
*We present FalconMamba, a new base large language model based on the novel Mamba architecture. FalconMamba is trained on 5.8 trillion tokens with carefully selected data mixtures. As a pure Mamba-based model, FalconMamba surpasses leading open-weight models based on Transformers, such as Mistral 7B, Llama3 8B, and Falcon2 11B. It is on par with Gemma 7B and outperforms models with different architecture designs, such as RecurrentGemma 9B. Currently, FalconMamba is the best-performing Mamba model in the literature at this scale, surpassing both existing Mamba and hybrid Mamba-Transformer models.
Due to its architecture, FalconMamba is significantly faster at inference and requires substantially less memory for long sequence generation. Despite recent studies suggesting that hybrid Mamba-Transformer models outperform pure architecture designs, we argue and demonstrate that the pure Mamba design can achieve similar, even superior results compared to the hybrid design. We make the weights of our implementation of FalconMamba publicly available under a permissive license.*
> [!TIP]
> Click on the FalconMamba models in the right sidebar for more examples of how to apply FalconMamba to different language tasks.
Tips:
The examples below demonstrate how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
- FalconMamba is mostly based on Mamba architecture, the same [tips and best practices](./mamba) would be relevant here.
<hfoptions id="usage">
<hfoption id="Pipeline">
The model has been trained on approximtely 6T tokens consisting a mixture of many data sources such as RefineWeb, Cosmopedia and Math data.
For more details about the training procedure and the architecture, have a look at [the technical paper of FalconMamba]() (coming soon).
# Usage
Below we demonstrate how to use the model:
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer
```py
import torch
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b")
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
pipeline = pipeline(
"text-generation",
model="tiiuae/falcon-mamba-7b-instruct",
torch_dtype=torch.bfloat16,
device=0
)
pipeline(
"Explain the difference between transformers and SSMs",
max_length=100,
do_sample=True,
temperature=0.7
)
```
The architecture is also compatible with `torch.compile` for faster generation:
</hfoption>
<hfoption id="AutoModel">
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
```
If you have access to a GPU that is compatible with `bitsandbytes`, you can also quantize the model in 4-bit precision:
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", quantization_config=quantization_config)
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
```
You can also play with the instruction fine-tuned model:
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-mamba-7b-instruct",
torch_dtype=torch.bfloat16,
device_map="auto"
)
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True).input_ids
input_ids = tokenizer("Explain the difference between transformers and SSMs", return_tensors="pt").to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
output = model.generate(**input_ids, max_new_tokens=100, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
```bash
transformers-cli chat --model_name_or_path tiiuae/falcon-mamba-7b-instruct --torch_dtype auto --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits.
```python
import torch
from transformers import AutoTokenizer, FalconMambaForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = FalconMambaForCausalLM.from_pretrained(
"tiiuae/falcon-mamba-7b",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
)
inputs = tokenizer("Explain the concept of state space models in simple terms", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## FalconMambaConfig

View File

@ -72,6 +72,11 @@ This model was contributed by [aps](https://huggingface.co/aps). The original co
[[autodoc]] FlavaImageProcessor
- preprocess
## FlavaImageProcessorFast
[[autodoc]] FlavaImageProcessorFast
- preprocess
## FlavaForPreTraining
[[autodoc]] FlavaForPreTraining

View File

@ -1,4 +1,5 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@ -14,31 +15,146 @@ rendered properly in your Markdown viewer.
-->
# Gemma
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Gemma
The Gemma model was proposed in [Gemma: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/gemma-open-models/) by Gemma Team, Google.
Gemma models are trained on 6T tokens, and released with 2 versions, 2b and 7b.
[Gemma](https://huggingface.co/papers/2403.08295) is a family of lightweight language models with pretrained and instruction-tuned variants, available in 2B and 7B parameters. The architecture is based on a transformer decoder-only design. It features Multi-Query Attention, rotary positional embeddings (RoPE), GeGLU activation functions, and RMSNorm layer normalization.
The abstract from the paper is the following:
The instruction-tuned variant was fine-tuned with supervised learning on instruction-following data, followed by reinforcement learning from human feedback (RLHF) to align the model outputs with human preferences.
*This work introduces Gemma, a new family of open language models demonstrating strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of our model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations*
You can find all the original Gemma checkpoints under the [Gemma](https://huggingface.co/collections/google/gemma-release-65d5efbccdbb8c4202ec078b) release.
Tips:
- The original checkpoints can be converted using the conversion script `src/transformers/models/gemma/convert_gemma_weights_to_hf.py`
> [!TIP]
> Click on the Gemma models in the right sidebar for more examples of how to apply Gemma to different language tasks.
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Younes Belkada](https://huggingface.co/ybelkada), [Sanchit Gandhi](https://huggingface.co/sanchit-gandhi), [Pedro Cuenca](https://huggingface.co/pcuenq).
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="google/gemma-2b",
torch_dtype=torch.bfloat16,
device="cuda",
)
pipeline("LLMs generate text through a process known as", max_new_tokens=50)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "LLMs generate text through a process known as"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "LLMs generate text through a process known as" | transformers-cli run --task text-generation --model google/gemma-2b --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```py
#!pip install bitsandbytes
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-7b",
quantization_config=quantization_config,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "LLMs generate text through a process known as."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(
**input_ids,
max_new_tokens=50,
cache_implementation="static"
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
```py
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("LLMs generate text through a process known as")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/gemma-attn-mask.png"/>
</div>
## Notes
- The original Gemma models support standard kv-caching used in many transformer-based language models. You can use use the default [`DynamicCache`] instance or a tuple of tensors for past key values during generation. This makes it compatible with typical autoregressive generation workflows.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "LLMs generate text through a process known as"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
past_key_values = DynamicCache()
outputs = model.generate(**input_ids, max_new_tokens=50, past_key_values=past_key_values)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## GemmaConfig

View File

@ -14,36 +14,133 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# Gemma2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
[Gemma 2](https://huggingface.co/papers/2408.00118) is a family of language models with pretrained and instruction-tuned variants, available in 2B, 9B, 27B parameters. The architecture is similar to the previous Gemma, except it features interleaved local attention (4096 tokens) and global attention (8192 tokens) and grouped-query attention (GQA) to increase inference performance.
The 2B and 9B models are trained with knowledge distillation, and the instruction-tuned variant was post-trained with supervised fine-tuning and reinforcement learning.
You can find all the original Gemma 2 checkpoints under the [Gemma 2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315) collection.
> [!TIP]
> Click on the Gemma 2 models in the right sidebar for more examples of how to apply Gemma to different language tasks.
The example below demonstrates how to chat with the model with [`Pipeline`] or the [`AutoModel`] class, and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="google/gemma-2-9b",
torch_dtype=torch.bfloat16,
device="cuda",
)
pipe("Explain quantum computing simply. ", max_new_tokens=50)
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "Explain quantum computing simply."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
```
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model google/gemma-2-2b --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-27b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-27b",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_text = "Explain quantum computing simply."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=32, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
```python
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("google/gemma-2b")
visualizer("You are an assistant. Make sure you print me")
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/gemma-2-attn-mask.png"/>
</div>
## Overview
## Notes
The Gemma2 model was proposed in [Gemma2: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/google-gemma-2/) by Gemma2 Team, Google.
Two Gemma2 models are released, with parameters sizes of 9 billion (9B) and 27 billion (27B).
- Use a [`HybridCache`] instance to enable caching in Gemma 2. Gemma 2 doesn't support kv-caching strategies like [`DynamicCache`] or tuples of tensors because it uses sliding window attention every second layer.
The abstract from the blog post is the following:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
*Now were officially releasing Gemma 2 to researchers and developers globally. Available in both 9 billion (9B) and 27 billion (27B) parameter sizes, Gemma 2 is higher-performing and more efficient at inference than the first generation, with significant safety advancements built in. In fact, at 27B, it offers competitive alternatives to models more than twice its size, delivering the kind of performance that was only possible with proprietary models as recently as December.*
Tips:
- The original checkpoints can be converted using the conversion script `src/transformers/models/Gemma2/convert_Gemma2_weights_to_hf.py`
<Tip warning={true}>
- Gemma2 uses sliding window attention every second layer, which makes it unsuitable for typical kv caching with [`~DynamicCache`] or tuples of tensors. To enable caching in Gemma2 forward call, you must initialize a [`~HybridCache`] instance and pass it as `past_key_values` to the forward call. Note, that you also have to prepare `cache_position` if the `past_key_values` already contains previous keys and values.
</Tip>
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Pedro Cuenca](https://huggingface.co/pcuenq) and [Tom Arsen]().
model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b")
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
max_generated_length = inputs.input_ids.shape[1] + 10
past_key_values = HybridCache(config=model.config, max_batch_size=1,
max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
```
## Gemma2Config

View File

@ -1,4 +1,4 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
<!--Copyright 2025 The GLM & ZhipuAI team and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@ -14,13 +14,32 @@ rendered properly in your Markdown viewer.
-->
# エージェントとツール
# Glm4
<Tip warning={true}>
## Overview
The Agents framework has significantly changed in version v4.41.0.
This document has been removed as it was referencing an older API.
To be released with the official model launch.
We eagerly welcome new contributions for the updated API.
## Glm4Config
</Tip>
[[autodoc]] Glm4Config
## Glm4Model
[[autodoc]] Glm4Model
- forward
## Glm4ForCausalLM
[[autodoc]] Glm4ForCausalLM
- forward
## Glm4ForSequenceClassification
[[autodoc]] Glm4ForSequenceClassification
- forward
## Glm4ForTokenClassification
[[autodoc]] Glm4ForTokenClassification
- forward

View File

@ -14,197 +14,97 @@ rendered properly in your Markdown viewer.
-->
# OpenAI GPT2
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=gpt2">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-gpt2-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/gpt2">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
OpenAI GPT-2 model was proposed in [Language Models are Unsupervised Multitask Learners](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) by Alec
Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever from [OpenAI](https://huggingface.co/openai). It's a causal (unidirectional)
transformer pretrained using language modeling on a very large corpus of ~40 GB of text data.
# GPT-2
The abstract from the paper is the following:
[GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) is a scaled up version of GPT, a causal transformer language model, with 10x more parameters and training data. The model was pretrained on a 40GB dataset to predict the next word in a sequence based on all the previous words. This approach enabled the model to perform many downstream tasks in a zero-shot setting.
*GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million
web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some
text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks
across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than
10X the amount of data.*
The model architecture uses a unidirectional (causal) attention mechanism where each token can only attend to previous tokens, making it particularly effective for text generation tasks.
[Write With Transformer](https://transformer.huggingface.co/doc/gpt2-large) is a webapp created and hosted by
Hugging Face showcasing the generative capabilities of several models. GPT-2 is one of them and is available in five
different sizes: small, medium, large, xl and a distilled version of the small checkpoint: *distilgpt-2*.
You can find all the original GPT-2 checkpoints under the [OpenAI community](https://huggingface.co/openai-community?search_models=gpt) organization.
This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://openai.com/blog/better-language-models/).
> [!TIP]
> Click on the GPT-2 models in the right sidebar for more examples of how to apply GPT-2 to different language tasks.
## Usage tips
The example below demonstrates how to generate text with [`Pipeline`] or the [`AutoModel`], and from the command line.
- GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- GPT-2 was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next
token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be
observed in the *run_generation.py* example script.
- The model can take the *past_key_values* (for PyTorch) or *past* (for TF) as input, which is the previously computed
key/value attention pairs. Using this (*past_key_values* or *past*) value prevents the model from re-computing
pre-computed values in the context of text generation. For PyTorch, see *past_key_values* argument of the
[`GPT2Model.forward`] method, or for TF the *past* argument of the
[`TFGPT2Model.call`] method for more information on its usage.
- Enabling the *scale_attn_by_inverse_layer_idx* and *reorder_and_upcast_attn* flags will apply the training stability
improvements from [Mistral](https://github.com/stanford-crfm/mistral/) (for PyTorch only).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Usage example
```py
import torch
from transformers import pipeline
The `generate()` method can be used to generate text using GPT2 model.
pipeline = pipeline(task="text-generation", model="openai-community/gpt2", torch_dtype=torch.float16, device=0)
pipeline("Hello, I'm a language model")
```
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("gpt2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> prompt = "GPT2 is a model developed by OpenAI."
input_ids = tokenzier("Hello, I'm a language model". return_tensors="pt").to("cuda")
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
>>> gen_tokens = model.generate(
... input_ids,
... do_sample=True,
... temperature=0.9,
... max_length=100,
... )
>>> gen_text = tokenizer.batch_decode(gen_tokens)[0]
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Using Flash Attention 2
Flash Attention 2 is a faster, optimized version of the attention scores computation which relies on `cuda` kernels.
### Installation
First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features). If your hardware is not compatible with Flash Attention 2, you can still benefit from attention kernel optimisations through Better Transformer support covered [above](https://huggingface.co/docs/transformers/main/en/model_doc/bark#using-better-transformer).
Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2:
</hfoption>
<hfoption id="transformers-cli">
```bash
pip install -U flash-attn --no-build-isolation
echo -e "Hello, I'm a language model" | transformers-cli run --task text-generation --model openai-community/gpt2 --device 0
```
### Usage
</hfoption>
</hfoptions>
To load a model using Flash Attention 2, we can pass the argument `attn_implementation="flash_attention_2"` to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). We'll also load the model in half-precision (e.g. `torch.float16`), since it results in almost no degradation to audio quality but significantly lower memory usage and faster inference:
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
>>> model = AutoModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = AutoTokenizer.from_pretrained("gpt2")
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
>>> prompt = "def hello_world():"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True
)
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)
model = AutoModelForCausalLM.from_pretrained(
"openai-community/gpt2-xl",
quantization_config=quantization_config,
device_map="auto"
)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-xl")
inputs = tokenizer("Once upon a time, there was a magical forest", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Notes
### Expected speedups
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `gpt2` checkpoint and the Flash Attention 2 version of the model using a sequence length of 512.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/EduardoPacheco/documentation-images/resolve/main/gpt2_flash_attention_2_speedup.jpg">
</div>
## Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.float16, attn_implementation="sdpa")
...
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
On a local benchmark (rtx3080ti-16GB, PyTorch 2.2.1, OS Ubuntu 22.04) using `float16` with
[gpt2-large](https://huggingface.co/openai-community/gpt2-large), we saw the
following speedups during training and inference.
### Training
| Batch size | Seq len | Time per batch (Eager - s) | Time per batch (SDPA - s) | Speedup (%) | Eager peak mem (MB) | SDPA peak mem (MB) | Mem saving (%) |
|-----------:|--------:|----------------------------:|--------------------------:|------------:|--------------------:|-------------------:|------------------:|
| 1 | 128 | 0.039 | 0.032 | 23.042 | 3482.32 | 3494.62 | -0.352 |
| 1 | 256 | 0.073 | 0.059 | 25.15 | 3546.66 | 3552.6 | -0.167 |
| 1 | 512 | 0.155 | 0.118 | 30.96 | 4230.1 | 3665.59 | 15.4 |
| 1 | 1024 | 0.316 | 0.209 | 50.839 | 8682.26 | 4881.09 | 77.875 |
| 2 | 128 | 0.07 | 0.06 | 15.324 | 3557.8 | 3545.91 | 0.335 |
| 2 | 256 | 0.143 | 0.122 | 16.53 | 3901.5 | 3657.68 | 6.666 |
| 2 | 512 | 0.267 | 0.213 | 25.626 | 7062.21 | 4876.47 | 44.822 |
| 2 | 1024 | OOM | 0.404 | / | OOM | 8096.35 | SDPA does not OOM |
| 4 | 128 | 0.134 | 0.128 | 4.412 | 3675.79 | 3648.72 | 0.742 |
| 4 | 256 | 0.243 | 0.217 | 12.292 | 6129.76 | 4871.12 | 25.839 |
| 4 | 512 | 0.494 | 0.406 | 21.687 | 12466.6 | 8102.64 | 53.858 |
| 4 | 1024 | OOM | 0.795 | / | OOM | 14568.2 | SDPA does not OOM |
### Inference
| Batch size | Seq len | Per token latency Eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem Eager (MB) | Mem SDPA (MB) | Mem saved (%) |
|-----------:|--------:|-----------------------------:|----------------------------:|------------:|---------------:|--------------:|--------------:|
| 1 | 128 | 7.991 | 6.968 | 14.681 | 1685.2 | 1701.32 | -0.947 |
| 1 | 256 | 8.462 | 7.199 | 17.536 | 1745.49 | 1770.78 | -1.428 |
| 1 | 512 | 8.68 | 7.853 | 10.529 | 1907.69 | 1921.29 | -0.708 |
| 1 | 768 | 9.101 | 8.365 | 8.791 | 2032.93 | 2068.12 | -1.701 |
| 2 | 128 | 9.169 | 9.001 | 1.861 | 1803.84 | 1811.4 | -0.418 |
| 2 | 256 | 9.907 | 9.78 | 1.294 | 1907.72 | 1921.44 | -0.714 |
| 2 | 512 | 11.519 | 11.644 | -1.071 | 2176.86 | 2197.75 | -0.951 |
| 2 | 768 | 13.022 | 13.407 | -2.873 | 2464.3 | 2491.06 | -1.074 |
| 4 | 128 | 10.097 | 9.831 | 2.709 | 1942.25 | 1985.13 | -2.16 |
| 4 | 256 | 11.599 | 11.398 | 1.764 | 2177.28 | 2197.86 | -0.937 |
| 4 | 512 | 14.653 | 14.45 | 1.411 | 2753.16 | 2772.57 | -0.7 |
| 4 | 768 | 17.846 | 17.617 | 1.299 | 3327.04 | 3343.97 | -0.506 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with GPT2. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-generation"/>
- A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface).
- A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2.
- A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model.
- A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2.
- A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model.
- A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎
- A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎
- [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course.
- [`GPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-generation), and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxGPT2LMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#causal-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/causal_language_modeling_flax.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Causal language modeling task guide](../tasks/language_modeling)
- Pad inputs on the right because GPT-2 uses absolute position embeddings.
- GPT-2 can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers//en/model_doc/gpt2#transformers.GPT2Model.forward.past_key_values) parameter in [`GPT2Model.forward`].
- Enable the [scale_attn_by_inverse_layer_idx](https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Config.scale_attn_by_inverse_layer_idx) and [reorder_and_upcast_attn](https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2Config.reorder_and_upcast_attn) parameters to apply the training stability improvements from [Mistral](./mistral).
## GPT2Config

View File

@ -0,0 +1,68 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Granite Speech
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
The Granite Speech model is a multimodal language model, consisting of a speech encoder, speech projector, large language model, and LoRA adapter(s). More details regarding each component for the current (Granite 3.2 Speech) model architecture may be found below.
1. Speech Encoder: A [Conformer](https://arxiv.org/abs/2005.08100) encoder trained with Connectionist Temporal Classification (CTC) on character-level targets on ASR corpora. The encoder uses block-attention and self-conditioned CTC from the middle layer.
2. Speech Projector: A query transformer (q-former) operating on the outputs of the last encoder block. The encoder and projector temporally downsample the audio features to be merged into the multimodal embeddings to be processed by the llm.
3. Large Language Model: The Granite Speech model leverages Granite LLMs, which were originally proposed in [this paper](https://arxiv.org/abs/2408.13359).
4. LoRA adapter(s): The Granite Speech model contains a modality specific LoRA, which will be enabled when audio features are provided, and disabled otherwise.
Note that most of the aforementioned components are implemented generically to enable compatability and potential integration with other model architectures in transformers.
This model was contributed by [Alexander Brooks](https://huggingface.co/abrooks9944), [Avihu Dekel](https://huggingface.co/Avihu), and [George Saon](https://huggingface.co/gsaon).
## Usage tips
- This model bundles its own LoRA adapter, which will be automatically loaded and enabled/disabled as needed during inference calls. Be sure to install [PEFT](https://github.com/huggingface/peft) to ensure the LoRA is correctly applied!
<!-- TODO (@alex-jw-brooks) Add an example here once the model compatible with the transformers implementation is released -->
## GraniteSpeechConfig
[[autodoc]] GraniteSpeechConfig
## GraniteSpeechEncoderConfig
[[autodoc]] GraniteSpeechEncoderConfig
## GraniteSpeechProcessor
[[autodoc]] GraniteSpeechProcessor
## GraniteSpeechFeatureExtractor
[[autodoc]] GraniteSpeechFeatureExtractor
## GraniteSpeechForConditionalGeneration
[[autodoc]] GraniteSpeechForConditionalGeneration
- forward

View File

@ -102,6 +102,11 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
[[autodoc]] GroundingDinoImageProcessor
- preprocess
## GroundingDinoImageProcessorFast
[[autodoc]] GroundingDinoImageProcessorFast
- preprocess
- post_process_object_detection
## GroundingDinoProcessor

View File

@ -0,0 +1,350 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
</div>
# InternVL
The InternVL3 family of Visual Language Models was introduced in [InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models](https://huggingface.co/papers/2504.10479).
The abstract from the paper is the following:
*We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/internvl_architecture.png" alt="drawing" width="600"/>
<small> Overview of InternVL3 models architecture, which is the same as InternVL2.5. Taken from the <a href="https://huggingface.co/OpenGVLab/InternVL3-1B">original checkpoint.</a> </small>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/internvl_overview_performance.png" alt="drawing" width="600"/>
<small> Comparison of InternVL3 performance on OpenCompass against other SOTA VLLMs. Taken from the <a href="https://huggingface.co/OpenGVLab/InternVL3-1B">original checkpoint.</a> </small>
This model was contributed by [yonigozlan](https://huggingface.co/yonigozlan).
The original code can be found [here](https://github.com/OpenGVLab/InternVL).
## Usage example
### Inference with Pipeline
Here is how you can use the `image-text-to-text` pipeline to perform inference with the `InternVL3` models in just a few lines of code:
```python
>>> from transformers import pipeline
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "image",
... "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",
... },
... {"type": "text", "text": "Describe this image."},
... ],
... },
... ]
>>> pipe = pipeline("image-text-to-text", model="OpenGVLab/InternVL3-1B-hf")
>>> outputs = pipe(text=messages, max_new_tokens=50, return_full_text=False)
>>> outputs[0]["generated_text"]
'The image showcases a vibrant scene of nature, featuring several flowers and a bee. \n\n1. **Foreground Flowers**: \n - The primary focus is on a large, pink cosmos flower with a prominent yellow center. The petals are soft and slightly r'
```
### Inference on a single image
This example demonstrates how to perform inference on a single image with the InternVL models using chat templates.
> [!NOTE]
> Note that the model has been trained with a specific prompt format for chatting. Use `processor.apply_chat_template(my_conversation_dict)` to correctly format your prompts.
```python
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-1B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
... {"type": "text", "text": "Please describe the image explicitly."},
... ],
... }
... ]
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
>>> generate_ids = model.generate(**inputs, max_new_tokens=50)
>>> decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
>>> decoded_output
'The image shows two cats lying on a pink blanket. The cat on the left is a tabby with a mix of brown, black, and white fur, and it appears to be sleeping with its head resting on the blanket. The cat on the'
```
### Text-only generation
This example shows how to generate text using the InternVL model without providing any image input.
```python
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-1B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... {
... "role": "user",
... "content": [
... {"type": "text", "text": "Write a haiku"},
... ],
... }
... ]
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device, dtype=torch.bfloat16)
>>> generate_ids = model.generate(**inputs, max_new_tokens=50)
>>> decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
>>> print(decoded_output)
"Whispers of dawn,\nSilent whispers of the night,\nNew day's light begins."
```
### Batched image and text inputs
InternVL models also support batched image and text inputs.
```python
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-1B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
... {"type": "text", "text": "Write a haiku for this image"},
... ],
... },
... ],
... [
... {
... "role": "user",
... "content": [
... {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
... {"type": "text", "text": "Describe this image"},
... ],
... },
... ],
... ]
>>> inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
>>> output = model.generate(**inputs, max_new_tokens=25)
>>> decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
>>> decoded_outputs
["user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace.",
'user\n\nDescribe this image\nassistant\nThe image shows a street scene with a traditional Chinese archway, known as a "Chinese Gate" or "Chinese Gate of']
```
### Batched multi-image input
This implementation of the InternVL models supports batched text-images inputs with different number of images for each text.
```python
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-1B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
...     [
...         {
...             "role": "user",
...             "content": [
...                 {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
...                 {"type": "text", "text": "Write a haiku for this image"},
...             ],
...         },
...     ],
...     [
...         {
...             "role": "user",
...             "content": [
...                 {"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
...                 {"type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"},
...                 {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
...             ],
...         },
...     ],
>>> ]
>>> inputs = processor.apply_chat_template(messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
>>> output = model.generate(**inputs, max_new_tokens=25)
>>> decoded_outputs = processor.batch_decode(output, skip_special_tokens=True)
>>> decoded_outputs
["user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace.",
'user\n\n\nThese images depict two different landmarks. Can you identify them?\nassistant\nYes, these images depict the Statue of Liberty and the Golden Gate Bridge.']
```
### Video input
InternVL models can also handle video inputs. Here is an example of how to perform inference on a video input using chat templates.
```python
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
>>> model_checkpoint = "OpenGVLab/InternVL3-8B-hf"
>>> quantization_config = BitsAndBytesConfig(load_in_4bit=True)
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, quantization_config=quantization_config)
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "video",
... "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
... },
... {"type": "text", "text": "What type of shot is the man performing?"},
... ],
... }
>>> ]
>>> inputs = processor.apply_chat_template(
... messages,
... return_tensors="pt",
... add_generation_prompt=True,
... tokenize=True,
... return_dict=True,
... num_frames=8,
>>> ).to(model.device, dtype=torch.float16)
>>> output = model.generate(**inputs, max_new_tokens=25)
>>> decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
>>> decoded_output
'The man is performing a forehand shot.'
```
### Interleaved image and video inputs
This example showcases how to handle a batch of chat conversations with interleaved image and video inputs using chat template.
```python
>>> from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
>>> import torch
>>> torch_device = "cuda"
>>> model_checkpoint = "OpenGVLab/InternVL3-1B-hf"
>>> processor = AutoProcessor.from_pretrained(model_checkpoint)
>>> model = AutoModelForImageTextToText.from_pretrained(model_checkpoint, device_map=torch_device, torch_dtype=torch.bfloat16)
>>> messages = [
...     [
...         {
...             "role": "user",
...             "content": [
...                 {"type": "image", "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"},
...                 {"type": "image", "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"},
...                 {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
...             ],
...         },
...     ],
...     [
...         {
...             "role": "user",
...             "content": [
...                 {"type": "video", "url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4"},
...                 {"type": "text", "text": "What type of shot is the man performing?"},
...             ],
...         },
...     ],
...     [
...         {
...             "role": "user",
...             "content": [
...                 {"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
...                 {"type": "text", "text": "Write a haiku for this image"},
...             ],
...         },
...     ],
>>> ]
>>> inputs = processor.apply_chat_template(
...     messages,
...     padding=True,
... add_generation_prompt=True,
... tokenize=True,
... return_dict=True,
...     return_tensors="pt",
>>> ).to(model.device, dtype=torch.bfloat16)
>>> outputs = model.generate(**inputs, max_new_tokens=25)
>>> decoded_outputs = processor.batch_decode(outputs, skip_special_tokens=True)
>>> decoded_outputs
['user\n\n\nThese images depict two different landmarks. Can you identify them?\nassistant\nThe images depict the Statue of Liberty and the Golden Gate Bridge.',
'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nA forehand shot',
"user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace."]
```
## InternVLVisionConfig
[[autodoc]] InternVLVisionConfig
## InternVLConfig
[[autodoc]] InternVLConfig
## InternVLVisionModel
[[autodoc]] InternVLVisionModel
- forward
## InternVLForConditionalGeneration
[[autodoc]] InternVLForConditionalGeneration
- forward
## InternVLProcessor
[[autodoc]] InternVLProcessor

View File

@ -14,96 +14,126 @@ rendered properly in your Markdown viewer.
-->
# Jamba
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Jamba
Jamba is a state-of-the-art, hybrid SSM-Transformer LLM. It is the first production-scale Mamba implementation, which opens up interesting research and application opportunities. While this initial experimentation shows encouraging gains, we expect these to be further enhanced with future optimizations and explorations.
[Jamba](https://huggingface.co/papers/2403.19887) is a hybrid Transformer-Mamba mixture-of-experts (MoE) language model ranging from 52B to 398B total parameters. This model aims to combine the advantages of both model families, the performance of transformer models and the efficiency and longer context (256K tokens) of state space models (SSMs) like Mamba.
For full details of this model please read the [release blog post](https://www.ai21.com/blog/announcing-jamba).
Jamba's architecture features a blocks-and-layers approach that allows Jamba to successfully integrate Transformer and Mamba architectures altogether. Each Jamba block contains either an attention or a Mamba layer, followed by a multi-layer perceptron (MLP), producing an overall ratio of one Transformer layer out of every eight total layers. MoE layers are mixed in to increase model capacity.
### Model Details
You can find all the original Jamba checkpoints under the [AI21](https://huggingface.co/ai21labs) organization.
Jamba is a pretrained, mixture-of-experts (MoE) generative text model, with 12B active parameters and an overall of 52B parameters across all experts. It supports a 256K context length, and can fit up to 140K tokens on a single 80GB GPU.
> [!TIP]
> Click on the Jamba models in the right sidebar for more examples of how to apply Jamba to different language tasks.
As depicted in the diagram below, Jamba's architecture features a blocks-and-layers approach that allows Jamba to successfully integrate Transformer and Mamba architectures altogether. Each Jamba block contains either an attention or a Mamba layer, followed by a multi-layer perceptron (MLP), producing an overall ratio of one Transformer layer out of every eight total layers.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/jamba_architecture.png"
alt="drawing" width="600"/>
<hfoptions id="usage">
<hfoption id="Pipeline">
## Usage
```py
# install optimized Mamba implementations
# !pip install mamba-ssm causal-conv1d>=1.2.0
import torch
from transformers import pipeline
### Prerequisites
Jamba requires you use `transformers` version 4.39.0 or higher:
```bash
pip install transformers>=4.39.0
pipeline = pipeline(
task="text-generation",
model="ai21labs/AI21-Jamba-Mini-1.6",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create energy through a process known as")
```
In order to run optimized Mamba implementations, you first need to install `mamba-ssm` and `causal-conv1d`:
```bash
pip install mamba-ssm causal-conv1d>=1.2.0
```
You also have to have the model on a CUDA device.
</hfoption>
<hfoption id="AutoModel">
You can run the model not using the optimized Mamba kernels, but it is **not** recommended as it will result in significantly lower latencies. In order to do that, you'll need to specify `use_mamba_kernels=False` when loading the model.
### Run the model
```python
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1")
tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1")
tokenizer = AutoTokenizer.from_pretrained(
"ai21labs/AI21-Jamba-Large-1.6",
)
model = AutoModelForCausalLM.from_pretrained(
"ai21labs/AI21-Jamba-Large-1.6",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
input_ids = tokenizer("In the recent Super Bowl LVIII,", return_tensors='pt').to(model.device)["input_ids"]
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model ai21labs/AI21-Jamba-Mini-1.6 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 8-bits.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True,
llm_int8_skip_modules=["mamba"])
# a device map to distribute the model evenly across 8 GPUs
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
quantization_config=quantization_config,
device_map=device_map)
tokenizer = AutoTokenizer.from_pretrained("ai21labs/AI21-Jamba-Large-1.6")
messages = [
{"role": "system", "content": "You are an ancient oracle who speaks in cryptic but wise phrases, always hinting at deeper meanings."},
{"role": "user", "content": "Hello!"},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device)
outputs = model.generate(input_ids, max_new_tokens=216)
print(tokenizer.batch_decode(outputs))
# ["<|startoftext|>In the recent Super Bowl LVIII, the Kansas City Chiefs emerged victorious, defeating the San Francisco 49ers in a thrilling overtime showdown. The game was a nail-biter, with both teams showcasing their skills and determination.\n\nThe Chiefs, led by their star quarterback Patrick Mahomes, displayed their offensive prowess, while the 49ers, led by their strong defense, put up a tough fight. The game went into overtime, with the Chiefs ultimately securing the win with a touchdown.\n\nThe victory marked the Chiefs' second Super Bowl win in four years, solidifying their status as one of the top teams in the NFL. The game was a testament to the skill and talent of both teams, and a thrilling end to the NFL season.\n\nThe Super Bowl is not just about the game itself, but also about the halftime show and the commercials. This year's halftime show featured a star-studded lineup, including Usher, Alicia Keys, and Lil Jon. The show was a spectacle of music and dance, with the performers delivering an energetic and entertaining performance.\n"]
# Decode the output
conversation = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Split the conversation to get only the assistant's response
assistant_response = conversation.split(messages[-1]['content'])[1].strip()
print(assistant_response)
# Output: Seek and you shall find. The path is winding, but the journey is enlightening. What wisdom do you seek from the ancient echoes?
```
<details>
<summary><strong>Loading the model in half precision</strong></summary>
## Notes
The published checkpoint is saved in BF16. In order to load it into RAM in BF16/FP16, you need to specify `torch_dtype`:
- Don't quantize the Mamba blocks to prevent model performance degradation.
- It is not recommended to use Mamba without the optimized Mamba kernels as it results in significantly lower latencies. If you still want to use Mamba without the kernels, then set `use_mamba_kernels=False` in [`~AutoModel.from_pretrained`].
```python
from transformers import AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16)
# you can also use torch_dtype=torch.float16
```
When using half precision, you can enable the [FlashAttention2](https://github.com/Dao-AILab/flash-attention) implementation of the Attention blocks. In order to use it, you also need the model on a CUDA device. Since in this precision the model is to big to fit on a single 80GB GPU, you'll also need to parallelize it using [accelerate](https://huggingface.co/docs/accelerate/index):
```python
from transformers import AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("ai21labs/Jamba-v0.1",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto")
```
</details>
<details><summary><strong>Load the model in 8-bit</strong></summary>
**Using 8-bit precision, it is possible to fit up to 140K sequence lengths on a single 80GB GPU.** You can easily quantize the model to 8-bit using [bitsandbytes](https://huggingface.co/docs/bitsandbytes/index). In order to not degrade model quality, we recommend to exclude the Mamba blocks from the quantization:
```python
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_skip_modules=["mamba"])
model = AutoModelForCausalLM.from_pretrained(
"ai21labs/Jamba-v0.1", torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", quantization_config=quantization_config
)
```
</details>
```py
import torch
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-1.5-Large",
use_mamba_kernels=False)
```
## JambaConfig

View File

@ -0,0 +1,230 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Janus
## Overview
The Janus Model was originally proposed in [Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation](https://arxiv.org/abs/2410.13848) by DeepSeek AI team and later refined in [Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling](https://arxiv.org/abs/2501.17811). Janus is a vision-language model that can generate both image and text output, it can also take both images and text as input.
> [!NOTE]
> The model doesn't generate both images and text in an interleaved format. The user has to pass a parameter indicating whether to generate text or image.
The abstract from the original paper is the following:
*In this paper, we introduce Janus, an autoregressive framework that unifies multimodal understanding and generation. Prior research often relies on a single visual encoder for both tasks, such as Chameleon. However, due to the differing levels of information granularity required by multimodal understanding and generation, this approach can lead to suboptimal performance, particularly in multimodal understanding. To address this issue, we decouple visual encoding into separate pathways, while still leveraging a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder's roles in understanding and generation, but also enhances the framework's flexibility. For instance, both the multimodal understanding and generation components can independently select their most suitable encoding methods. Experiments show that Janus surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus make it a strong candidate for next-generation unified multimodal models.*
The abstract from the aforementioned `Janus-Pro` paper, released afterwards, is the following:
*In this work, we introduce Janus-Pro, an advanced version of the previous work Janus. Specifically, Janus-Pro incorporates (1) an optimized training strate (2) expanded training data, and (3) scaling to larger model size. With these improvements, Janus-Pro achieves significant advancements in both multimodal understanding and text-to-image instruction-following capabilities, while also enhancing the stability of text-to-image generation. We hope this work will inspire further exploration in the field. Code and models are publicly available.*
This model was contributed by [Yaswanth Gali](https://huggingface.co/yaswanthgali) and [Hugo Silva](https://huggingface.co/hugosilva664).
The original code can be found [here](https://github.com/deepseek-ai/Janus).
## Usage Example
### Single image inference
Here is the example of visual understanding with a single image.
> [!NOTE]
> Note that the model has been trained with a specific prompt format for chatting. Use `processor.apply_chat_template(my_conversation_dict)` to correctly format your prompts.
```python
import torch
from PIL import Image
import requests
from transformers import JanusForConditionalGeneration, JanusProcessor
model_id = "deepseek-community/Janus-Pro-1B"
# Prepare Input for generation.
messages = [
{
"role": "user",
"content": [
{'type':'image', 'url': 'http://images.cocodataset.org/val2017/000000039769.jpg'},
{'type':"text", "text":"What do you see in this image?."}
]
},
]
# Set generation mode to `text` to perform text generation.
processor = JanusProcessor.from_pretrained(model_id)
model = JanusForConditionalGeneration.from_pretrained(model_id,
torch_dtype=torch.bfloat16,
device_map="auto")
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
generation_mode="text",
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device, dtype=torch.bfloat16)
output = model.generate(**inputs, max_new_tokens=40,generation_mode='text',do_sample=True)
text = processor.decode(output[0], skip_special_tokens=True)
print(text)
```
### Multi image inference
Janus can perform inference with multiple images as input, where images can belong to the same prompt or different prompts in batched inference, where the model processes many conversations in parallel. Here is how you can do it:
```python
import torch
from PIL import Image
import requests
from transformers import JanusForConditionalGeneration, JanusProcessor
model_id = "deepseek-community/Janus-Pro-1B"
image_urls = [
"http://images.cocodataset.org/val2017/000000039769.jpg",
"https://www.ilankelman.org/stopsigns/australia.jpg",
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
]
messages = [
[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between"},
{"type": "image", "url": image_urls[0]},
{"type": "text", "text": " and "},
{"type": "image", "url": image_urls[1]}
]
}
],
[
{
"role": "user",
"content": [
{"type": "image", "url": image_urls[2]},
{"type": "text", "text": "What do you see in this image?"}
]
}
]
]
# Load model and processor
processor = JanusProcessor.from_pretrained(model_id)
model = JanusForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch.bfloat16, device_map="auto"
)
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
generation_mode="text",
tokenize=True,
padding=True,
return_dict=True,
return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
# Generate response
output = model.generate(**inputs, max_new_tokens=40, generation_mode='text', do_sample=False)
text = processor.batch_decode(output, skip_special_tokens=True)
print(text)
```
## Text to Image generation
Janus can also generate images given a prompt.
```python
import torch
from transformers import JanusForConditionalGeneration, JanusProcessor
# Set generation mode to `image` to prepare inputs for image generation..
model_id = "deepseek-community/Janus-Pro-1B"
processor = JanusProcessor.from_pretrained(model_id)
model = JanusForConditionalGeneration.from_pretrained(model_id,
torch_dtype=torch.bfloat16,
device_map="auto")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "A dog running under the rain."},
],
}
]
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt,generation_mode="image",return_tensors="pt").to(model.device, dtype=torch.bfloat16)
# Set num_return_sequence parameter to generate multiple images per prompt.
model.generation_config.num_return_sequences = 2
outputs = model.generate(**inputs,
generation_mode="image",
do_sample=True,
use_cache=True,
)
# Perform post-processing on the generated token ids.
decoded_image = model.decode_image_tokens(outputs)
images = processor.postprocess(list(decoded_image.float()),return_tensors="PIL.Image.Image")
# Save the image
for i, image in enumerate(images['pixel_values']):
image.save(f"result{i}.png")
```
## JanusConfig
[[autodoc]] JanusConfig
## JanusVisionConfig
[[autodoc]] JanusVisionConfig
## JanusVQVAEConfig
[[autodoc]] JanusVQVAEConfig
## JanusProcessor
[[autodoc]] JanusProcessor
## JanusImageProcessor
[[autodoc]] JanusImageProcessor
## JanusVisionModel
[[autodoc]] JanusVisionModel
- forward
## JanusVQVAE
[[autodoc]] JanusVQVAE
- forward
## JanusModel
[[autodoc]] JanusModel
- forward
## JanusForConditionalGeneration
[[autodoc]] JanusForConditionalGeneration
- forward

View File

@ -310,6 +310,11 @@ print(encoding.keys())
[[autodoc]] LayoutLMv2ImageProcessor
- preprocess
## LayoutLMv2ImageProcessorFast
[[autodoc]] LayoutLMv2ImageProcessorFast
- preprocess
## LayoutLMv2Tokenizer
[[autodoc]] LayoutLMv2Tokenizer

View File

@ -88,6 +88,11 @@ LayoutLMv3 is nearly identical to LayoutLMv2, so we've also included LayoutLMv2
[[autodoc]] LayoutLMv3ImageProcessor
- preprocess
## LayoutLMv3ImageProcessorFast
[[autodoc]] LayoutLMv3ImageProcessorFast
- preprocess
## LayoutLMv3Tokenizer
[[autodoc]] LayoutLMv3Tokenizer

View File

@ -94,6 +94,11 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] LevitImageProcessor
- preprocess
## LevitImageProcessorFast
[[autodoc]] LevitImageProcessorFast
- preprocess
## LevitModel
[[autodoc]] LevitModel

View File

@ -1,5 +1,4 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
@ -9,93 +8,95 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
# Longformer
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
[Longformer](https://huggingface.co/papers/2004.05150) is a transformer model designed for processing long documents. The self-attention operation usually scales quadratically with sequence length, preventing transformers from processing longer sequences. The Longformer attention mechanism overcomes this by scaling linearly with sequence length. It combines local windowed attention with task-specific global attention, enabling efficient processing of documents with thousands of tokens.
## Overview
You can find all the original Longformer checkpoints under the [Ai2](https://huggingface.co/allenai?search_models=longformer) organization.
The Longformer model was presented in [Longformer: The Long-Document Transformer](https://arxiv.org/pdf/2004.05150.pdf) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
> [!TIP]
> Click on the Longformer models in the right sidebar for more examples of how to apply Longformer to different language tasks.
The abstract from the paper is the following:
The example below demonstrates how to fill the `<mask>` token with [`Pipeline`], [`AutoModel`] and from the command line.
*Transformer-based models are unable to process long sequences due to their self-attention operation, which scales
quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention
mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or
longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local
windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we
evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In
contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our
pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on
WikiHop and TriviaQA.*
This model was contributed by [beltagy](https://huggingface.co/beltagy). The Authors' code can be found [here](https://github.com/allenai/longformer).
## Usage tips
- Since the Longformer is based on RoBERTa, it doesn't have `token_type_ids`. You don't need to indicate which
token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or
`</s>`).
- A transformer model replacing the attention matrices by sparse matrices to go faster. Often, the local context (e.g., what are the two tokens left and right?) is enough to take action for a given token. Some preselected input tokens are still given global attention, but the attention matrix has way less parameters, resulting in a speed-up. See the local attention section for more information.
## Longformer Self Attention
Longformer self attention employs self attention on both a "local" context and a "global" context. Most tokens only
attend "locally" to each other meaning that each token attends to its \\(\frac{1}{2} w\\) previous tokens and
\\(\frac{1}{2} w\\) succeeding tokens with \\(w\\) being the window length as defined in
`config.attention_window`. Note that `config.attention_window` can be of type `List` to define a
different \\(w\\) for each layer. A selected few tokens attend "globally" to all other tokens, as it is
conventionally done for all tokens in `BertSelfAttention`.
Note that "locally" and "globally" attending tokens are projected by different query, key and value matrices. Also note
that every "locally" attending token not only attends to tokens within its window \\(w\\), but also to all "globally"
attending tokens so that global attention is *symmetric*.
The user can define which tokens attend "locally" and which tokens attend "globally" by setting the tensor
`global_attention_mask` at run-time appropriately. All Longformer models employ the following logic for
`global_attention_mask`:
- 0: the token attends "locally",
- 1: the token attends "globally".
For more information please also refer to [`~LongformerModel.forward`] method.
Using Longformer self attention, the memory and time complexity of the query-key matmul operation, which usually
represents the memory and time bottleneck, can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to
\\(\mathcal{O}(n_s \times w)\\), with \\(n_s\\) being the sequence length and \\(w\\) being the average window
size. It is assumed that the number of "globally" attending tokens is insignificant as compared to the number of
"locally" attending tokens.
For more information, please refer to the official [paper](https://arxiv.org/pdf/2004.05150.pdf).
## Training
[`LongformerForMaskedLM`] is trained the exact same way [`RobertaForMaskedLM`] is
trained and should be used as follows:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
input_ids = tokenizer.encode("This is a sentence from [MASK] training data", return_tensors="pt")
mlm_labels = tokenizer.encode("This is a sentence from the training data", return_tensors="pt")
import torch
from transformers import pipeline
loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
pipeline = pipeline(
task="fill-mask",
model="allenai/longformer-base-4096",
torch_dtype=torch.float16,
device=0
)
pipeline("""San Francisco 49ers cornerback Shawntae Spencer will miss the rest of the <mask> with a torn ligament in his left knee.
Spencer, a fifth-year pro, will be placed on injured reserve soon after undergoing surgery Wednesday to repair the ligament. He injured his knee late in the 49ers road victory at Seattle on Sept. 14, and missed last weeks victory over Detroit.
Tarell Brown and Donald Strickland will compete to replace Spencer with the 49ers, who kept 12 defensive backs on their 53-man roster to start the season. Brown, a second-year pro, got his first career interception last weekend while filling in for Strickland, who also sat out with a knee injury.""")
```
## Resources
</hfoption>
<hfoption id="AutoModel">
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
```python
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")
model = AutoModelForMaskedLM.from_pretrained("allenai/longformer-base-4096")
text = (
"""
San Francisco 49ers cornerback Shawntae Spencer will miss the rest of the <mask> with a torn ligament in his left knee.
Spencer, a fifth-year pro, will be placed on injured reserve soon after undergoing surgery Wednesday to repair the ligament. He injured his knee late in the 49ers road victory at Seattle on Sept. 14, and missed last weeks victory over Detroit.
Tarell Brown and Donald Strickland will compete to replace Spencer with the 49ers, who kept 12 defensive backs on their 53-man roster to start the season. Brown, a second-year pro, got his first career interception last weekend while filling in for Strickland, who also sat out with a knee injury.
"""
)
input_ids = tokenizer([text], return_tensors="pt")["input_ids"]
logits = model(input_ids).logits
masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
probs = logits[0, masked_index].softmax(dim=0)
values, predictions = probs.topk(5)
tokenizer.decode(predictions).split()
```
</hfoption>
<hfoption id="transformers-cli">
```bash
echo -e "San Francisco 49ers cornerback Shawntae Spencer will miss the rest of the <mask> with a torn ligament in his left knee." | transformers-cli run --task fill-mask --model allenai/longformer-base-4096 --device 0
```
</hfoption>
</hfoptions
## Notes
- Longformer is based on [RoBERTa](https://huggingface.co/docs/transformers/en/model_doc/roberta) and doesn't have `token_type_ids`. You don't need to indicate which token belongs to which segment. You only need to separate the segments with the separation token `</s>` or `tokenizer.sep_token`.
- You can set which tokens can attend locally and which tokens attend globally with the `global_attention_mask` at inference (see this [example](https://huggingface.co/docs/transformers/en/model_doc/longformer#transformers.LongformerModel.forward.example) for more details). A value of `0` means a token attends locally and a value of `1` means a token attends globally.
- [`LongformerForMaskedLM`] is trained like [`RobertaForMaskedLM`] and should be used as shown below.
```py
input_ids = tokenizer.encode("This is a sentence from [MASK] training data", return_tensors="pt")
mlm_labels = tokenizer.encode("This is a sentence from the training data", return_tensors="pt")
loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
```
## LongformerConfig
@ -139,9 +140,6 @@ loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
[[autodoc]] models.longformer.modeling_tf_longformer.TFLongformerTokenClassifierOutput
<frameworkcontent>
<pt>
## LongformerModel
[[autodoc]] LongformerModel
@ -149,45 +147,42 @@ loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
## LongformerForMaskedLM
[[autodoc]] LongformerForMaskedLM
[[autodoc]] LongformerForMaskedLM
- forward
## LongformerForSequenceClassification
[[autodoc]] LongformerForSequenceClassification
[[autodoc]] LongformerForSequenceClassification
- forward
## LongformerForMultipleChoice
[[autodoc]] LongformerForMultipleChoice
[[autodoc]] LongformerForMultipleChoice
- forward
## LongformerForTokenClassification
[[autodoc]] LongformerForTokenClassification
[[autodoc]] LongformerForTokenClassification
- forward
## LongformerForQuestionAnswering
[[autodoc]] LongformerForQuestionAnswering
[[autodoc]] LongformerForQuestionAnswering
- forward
</pt>
<tf>
## TFLongformerModel
[[autodoc]] TFLongformerModel
[[autodoc]] TFLongformerModel
- call
## TFLongformerForMaskedLM
[[autodoc]] TFLongformerForMaskedLM
[[autodoc]] TFLongformerForMaskedLM
- call
## TFLongformerForQuestionAnswering
[[autodoc]] TFLongformerForQuestionAnswering
[[autodoc]] TFLongformerForQuestionAnswering
- call
## TFLongformerForSequenceClassification
@ -197,13 +192,10 @@ loss = model(input_ids, labels=input_ids, masked_lm_labels=mlm_labels)[0]
## TFLongformerForTokenClassification
[[autodoc]] TFLongformerForTokenClassification
[[autodoc]] TFLongformerForTokenClassification
- call
## TFLongformerForMultipleChoice
[[autodoc]] TFLongformerForMultipleChoice
[[autodoc]] TFLongformerForMultipleChoice
- call
</tf>
</frameworkcontent>

View File

@ -14,154 +14,105 @@ rendered properly in your Markdown viewer.
-->
# MBart and MBart-50
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# mBART
## Overview of MBart
[mBART](https://huggingface.co/papers/2001.08210) is a multilingual machine translation model that pretrains the entire translation model (encoder-decoder) unlike previous methods that only focused on parts of the model. The model is trained on a denoising objective which reconstructs the corrupted text. This allows mBART to handle the source language and the target text to translate to.
The MBart model was presented in [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan
Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
[mBART-50](https://huggingface.co/paper/2008.00401) is pretrained on an additional 25 languages.
According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual
corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a complete
sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only
on the encoder, decoder, or reconstructing parts of the text.
You can find all the original mBART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=mbart) organization.
This model was contributed by [valhalla](https://huggingface.co/valhalla). The Authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/mbart)
> [!TIP]
> Click on the mBART models in the right sidebar for more examples of applying mBART to different language tasks.
### Training of MBart
The example below demonstrates how to translate text with [`Pipeline`] or the [`AutoModel`] class.
MBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for translation task. As the
model is multilingual it expects the sequences in a different format. A special language id token is added in both the
source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The
target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
<hfoptions id="usage">
<hfoption id="Pipeline">
The regular [`~MBartTokenizer.__call__`] will encode source text format passed as first argument or with the `text`
keyword, and target text format passed with the `text_label` keyword argument.
```py
import torch
from transformers import pipeline
- Supervised training
```python
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> # forward pass
>>> model(**inputs)
pipeline = pipeline(
task="translation",
model="facebook/mbart-large-50-many-to-many-mmt",
device=0,
torch_dtype=torch.float16,
src_lang="en_XX",
tgt_lang="fr_XX",
)
print(pipeline("UN Chief Says There Is No Military Solution in Syria"))
```
- Generation
</hfoption>
<hfoption id="AutoModel">
While generating the target text set the `decoder_start_token_id` to the target language id. The following
example shows how to translate English to Romanian using the *facebook/mbart-large-en-ro* model.
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
```python
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
article_en = "UN Chief Says There Is No Military Solution in Syria"
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
>>> article = "UN Chief Says There Is No Military Solution in Syria"
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Şeful ONU declară că nu există o soluţie militară în Siria"
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer.src_lang = "en_XX"
encoded_hi = tokenizer(article_en, return_tensors="pt").to("cuda")
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"], cache_implementation="static")
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))
```
## Overview of MBart-50
</hfoption>
</hfoptions>
MBart-50 was introduced in the [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extending
its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50
languages.
## Notes
According to the abstract
- You can check the full list of language codes via `tokenizer.lang_code_to_id.keys()`.
- mBART requires a special language id token in the source and target text during training. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The target text format is `[tgt_lang_code] X [eos]`. The `bos` token is never used. The [`~PreTrainedTokenizerBase._call_`] encodes the source text format passed as the first argument or with the `text` keyword. The target text format is passed with the `text_label` keyword.
- Set the `decoder_start_token_id` to the target language id for mBART.
*Multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one
direction, a pretrained model is finetuned on many directions at the same time. It demonstrates that pretrained models
can be extended to incorporate additional languages without loss of performance. Multilingual finetuning improves on
average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while
improving 9.3 BLEU on average over bilingual baselines from scratch.*
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-en-ro", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
### Training of MBart-50
article = "UN Chief Says There Is No Military Solution in Syria"
inputs = tokenizer(article, return_tensors="pt")
The text format for MBart-50 is slightly different from mBART. For MBart-50 the language id token is used as a prefix
for both source and target text i.e the text format is `[lang_code] X [eos]`, where `lang_code` is source
language id for source text and target language id for target text, with `X` being the source or target text
respectively.
translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
```
- mBART-50 has a different text format. The language id token is used as the prefix for the source and target text. The text format is `[lang_code] X [eos]` where `lang_code` is the source language id for the source text and target language id for the target text. `X` is the source or target text respectively.
- Set the `eos_token_id` as the `decoder_start_token_id` for mBART-50. The target language id is used as the first generated token by passing `forced_bos_token_id` to [`~GenerationMixin.generate`].
MBart-50 has its own tokenizer [`MBart50Tokenizer`].
```py
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
- Supervised training
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
```python
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."
tokenizer.src_lang = "ar_AR"
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
src_text = " UN Chief Says There Is No Military Solution in Syria"
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
model(**model_inputs) # forward pass
```
- Generation
To generate using the mBART-50 multilingual translation models, `eos_token_id` is used as the
`decoder_start_token_id` and the target language id is forced as the first generated token. To force the
target language id as the first generated token, pass the *forced_bos_token_id* parameter to the *generate* method.
The following example shows how to translate between Hindi to French and Arabic to English using the
*facebook/mbart-50-large-many-to-many* checkpoint.
```python
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है"
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# translate Hindi to French
tokenizer.src_lang = "hi_IN"
encoded_hi = tokenizer(article_hi, return_tensors="pt")
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire en Syria."
# translate Arabic to English
tokenizer.src_lang = "ar_AR"
encoded_ar = tokenizer(article_ar, return_tensors="pt")
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "The Secretary-General of the United Nations says there is no military solution in Syria."
```
## Documentation resources
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Translation task guide](../tasks/translation)
- [Summarization task guide](../tasks/summarization)
encoded_ar = tokenizer(article_ar, return_tensors="pt")
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
```
## MBartConfig
@ -253,4 +204,4 @@ tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
- decode
</jax>
</frameworkcontent>
</frameworkcontent>

View File

@ -14,74 +14,55 @@ rendered properly in your Markdown viewer.
-->
# Mistral
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Mistral
Mistral was introduced in the [this blogpost](https://mistral.ai/news/announcing-mistral-7b/) by Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
[Mistral](https://huggingface.co/papers/2310.06825) is a 7B parameter language model, available as a pretrained and instruction-tuned variant, focused on balancing
the scaling costs of large models with performance and efficient inference. This model uses sliding window attention (SWA) trained with a 8K context length and a fixed cache size to handle longer sequences more effectively. Grouped-query attention (GQA) speeds up inference and reduces memory requirements. Mistral also features a byte-fallback BPE tokenizer to improve token handling and efficiency by ensuring characters are never mapped to out-of-vocabulary tokens.
The introduction of the blog post says:
You can find all the original Mistral checkpoints under the [Mistral AI_](https://huggingface.co/mistralai) organization.
*Mistral AI team is proud to release Mistral 7B, the most powerful language model for its size to date.*
> [!TIP]
> Click on the Mistral models in the right sidebar for more examples of how to apply Mistral to different language tasks.
Mistral-7B is the first large language model (LLM) released by [mistral.ai](https://mistral.ai/).
The example below demonstrates how to chat with [`Pipeline`] or the [`AutoModel`], and from the command line.
### Architectural details
Mistral-7B is a decoder-only Transformer with the following architectural choices:
- Sliding Window Attention - Trained with 8k context length and fixed cache size, with a theoretical attention span of 128K tokens
- GQA (Grouped Query Attention) - allowing faster inference and lower cache size.
- Byte-fallback BPE tokenizer - ensures that characters are never mapped to out of vocabulary tokens.
For more details refer to the [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
### License
`Mistral-7B` is released under the Apache 2.0 license.
## Usage tips
The Mistral team has released 3 checkpoints:
- a base model, [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), which has been pre-trained to predict the next token on internet-scale data.
- an instruction tuned model, [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), which is the base model optimized for chat purposes using supervised fine-tuning (SFT) and direct preference optimization (DPO).
- an improved instruction tuned model, [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), which improves upon v1.
The base model can be used as follows:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> import torch
>>> from transformers import pipeline
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
... {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
... {"role": "user", "content": "Do you have mayonnaise recipes?"}
... ]
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"My favourite condiment is to ..."
>>> chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3", torch_dtype=torch.bfloat16, device=0)
>>> chatbot(messages)
```
The instruction tuned model can be used as follows:
</hfoption>
<hfoption id="AutoModel">
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", torch_dtype=torch.bfloat16, attn_implementation="sdpa", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
>>> messages = [
... {"role": "user", "content": "What is your favourite condiment?"},
@ -96,59 +77,20 @@ The instruction tuned model can be used as follows:
"Mayonnaise can be made as follows: (...)"
```
As can be seen, the instruction-tuned model requires a [chat template](../chat_templating) to be applied to make sure the inputs are prepared in the right format.
## Speeding up Mistral by using Flash Attention
The code snippets above showcase inference without any optimization tricks. However, one can drastically speed up the model by leveraging [Flash Attention](../perf_train_gpu_one#flash-attention-2), which is a faster implementation of the attention mechanism used inside the model.
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). Make also sure to load your model in half-precision (e.g. `torch.float16`)
To load and run a model using Flash Attention-2, refer to the snippet below:
</hfoption>
<hfoption id="transformers-cli">
```python
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> prompt = "My favourite condiment is"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
>>> tokenizer.batch_decode(generated_ids)[0]
"My favourite condiment is to (...)"
echo -e "My favorite condiment is" | transformers-cli chat --model_name_or_path mistralai/Mistral-7B-v0.3 --torch_dtype auto --device 0 --attn_implementation flash_attention_2
```
### Expected speedups
</hfoption>
</hfoptions>
Below is a expected speedup diagram that compares pure inference time between the native implementation in transformers using `mistralai/Mistral-7B-v0.1` checkpoint and the Flash Attention 2 version of the model.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/mistral-7b-inference-large-seqlen.png">
</div>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
### Sliding window Attention
The current implementation supports the sliding window attention mechanism and memory efficient cache management.
To enable sliding window attention, just make sure to have a `flash-attn` version that is compatible with sliding window attention (`>=2.3.0`).
The Flash Attention-2 model uses also a more memory efficient cache slicing mechanism - as recommended per the official implementation of Mistral model that use rolling cache mechanism we keep the cache size fixed (`self.config.sliding_window`), support batched generation only for `padding_side="left"` and use the absolute position of the current token to compute the positional embedding.
## Shrinking down Mistral using quantization
As the Mistral model has 7 billion parameters, that would require about 14GB of GPU RAM in half precision (float16), since each parameter is stored in 2 bytes. However, one can shrink down the size of the model using [quantization](../quantization.md). If the model is quantized to 4 bits (or half a byte per parameter),that requires only about 3.5GB of RAM.
Quantizing a model is as simple as passing a `quantization_config` to the model. Below, we'll leverage the BitsAndyBytes quantization (but refer to [this page](../quantization.md) for other quantization methods):
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```python
>>> import torch
@ -161,8 +103,8 @@ Quantizing a model is as simple as passing a `quantization_config` to the model.
... bnb_4bit_compute_dtype="torch.float16",
... )
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", quantization_config=True, device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", quantization_config=True, torch_dtype=torch.bfloat16, device_map="auto")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
>>> prompt = "My favourite condiment is"
@ -179,19 +121,18 @@ Quantizing a model is as simple as passing a `quantization_config` to the model.
"The expected output"
```
This model was contributed by [Younes Belkada](https://huggingface.co/ybelkada) and [Arthur Zucker](https://huggingface.co/ArthurZ) .
The original code can be found [here](https://github.com/mistralai/mistral-src).
Use the [AttentionMaskVisualizer](https://github.com/huggingface/transformers/blob/beb9b5b02246b9b7ee81ddf938f93f44cfeaad19/src/transformers/utils/attention_visualizer.py#L139) to better understand what tokens the model can and cannot attend to.
## Resources
```py
>>> from transformers.utils.attention_visualizer import AttentionMaskVisualizer
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Mistral. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
>>> visualizer = AttentionMaskVisualizer("mistralai/Mistral-7B-Instruct-v0.3")
>>> visualizer("Do you have mayonnaise recipes?")
```
<PipelineTag pipeline="text-generation"/>
- A demo notebook to perform supervised fine-tuning (SFT) of Mistral-7B can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Mistral/Supervised_fine_tuning_(SFT)_of_an_LLM_using_Hugging_Face_tooling.ipynb). 🌎
- A [blog post](https://www.philschmid.de/fine-tune-llms-in-2024-with-trl) on how to fine-tune LLMs in 2024 using Hugging Face tooling. 🌎
- The [Alignment Handbook](https://github.com/huggingface/alignment-handbook) by Hugging Face includes scripts and recipes to perform supervised fine-tuning (SFT) and direct preference optimization with Mistral-7B. This includes scripts for full fine-tuning, QLoRa on a single GPU as well as multi-GPU fine-tuning.
- [Causal language modeling task guide](../tasks/language_modeling)
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/mistral-attn-mask.png"/>
</div>
## MistralConfig
@ -245,4 +186,4 @@ A list of official Hugging Face and community (indicated by 🌎) resources to h
## TFMistralForSequenceClassification
[[autodoc]] TFMistralForSequenceClassification
- call
- call

View File

@ -0,0 +1,81 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MLCD
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
The MLCD models were released by the DeepGlint-AI team in [unicom](https://github.com/deepglint/unicom), which focuses on building foundational visual models for large multimodal language models using large-scale datasets such as LAION400M and COYO700M, and employs sample-to-cluster contrastive learning to optimize performance. MLCD models are primarily used for multimodal visual large language models, such as LLaVA.
🔥**MLCD-ViT-bigG**🔥 series is the state-of-the-art vision transformer model enhanced with 2D Rotary Position Embedding (RoPE2D), achieving superior performance on document understanding and visual question answering tasks. Developed by DeepGlint AI, this model demonstrates exceptional capabilities in processing complex visual-language interactions.
Tips:
- We adopted the official [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) and the official training dataset [LLaVA-NeXT-Data](https://huggingface.co/datasets/lmms-lab/LLaVA-NeXT-Data) for evaluating the foundational visual models.
- The language model is [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct).
Result:
| Vision Tower | RoPE2D | ChartQA | DocVQA | InfoVQA | OCRBench | MMMU |
| :-------------------------------------------------------------------------------------------- | :----: | :-------- | :-------- | :-------- | :--------- | :-------- |
| CLIP (ViT-L-14-336px) | × | 66.52 | 75.21 | 38.88 | 525.00 | 44.20 |
| SigLIP (ViT-SO400M-384px) | × | 69.28 | 76.71 | 41.38 | 554.00 | 46.78 |
| DFN5B (ViT-H-14-378px) | × | 64.36 | 70.87 | 38.59 | 473.00 | **48.00** |
| **[MLCD (ViT-L-14-336px)](https://huggingface.co/DeepGlint-AI/mlcd-vit-large-patch14-336)** | × | 67.84 | 76.46 | 43.48 | 531.00 | 44.30 |
| **[MLCD (ViT-bigG-14-336px)](https://huggingface.co/DeepGlint-AI/mlcd-vit-bigG-patch14-336)** | √ | 71.07 | 79.63 | 44.38 | 572.00 | 46.78 |
| **[MLCD (ViT-bigG-14-448px)](https://huggingface.co/DeepGlint-AI/mlcd-vit-bigG-patch14-448)** | √ | **73.80** | **83.34** | **46.59** | **582.00** | 46.00 |
## Usage
```python
import requests
from PIL import Image
from transformers import AutoProcessor, MLCDVisionModel
# Load model and processor
model = MLCDVisionModel.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-448")
processor = AutoProcessor.from_pretrained("DeepGlint-AI/mlcd-vit-bigG-patch14-448")
# Process single image
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
# Generate outputs
with torch.no_grad():
outputs = model(**inputs)
# Get visual features
features = outputs.last_hidden_state
print(f"Extracted features shape: {features.shape}")
```
## MLCDVisionConfig
[[autodoc]] MLCDVisionConfig
## MLCDVisionModel
[[autodoc]] MLCDVisionModel
- forward

View File

@ -77,6 +77,11 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] MobileNetV1ImageProcessor
- preprocess
## MobileNetV1ImageProcessorFast
[[autodoc]] MobileNetV1ImageProcessorFast
- preprocess
## MobileNetV1Model
[[autodoc]] MobileNetV1Model

View File

@ -84,6 +84,11 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] MobileNetV2ImageProcessor
- preprocess
## MobileNetV2ImageProcessorFast
[[autodoc]] MobileNetV2ImageProcessorFast
- preprocess
- post_process_semantic_segmentation
## MobileNetV2Model

View File

@ -94,6 +94,11 @@ A demo notebook on using OWL-ViT for zero- and one-shot (image-guided) object de
[[autodoc]] OwlViTImageProcessor
- preprocess
## OwlViTImageProcessorFast
[[autodoc]] OwlViTImageProcessorFast
- preprocess
- post_process_object_detection
- post_process_image_guided_detection

View File

@ -132,6 +132,11 @@ audio classification, video classification, etc.
[[autodoc]] PerceiverImageProcessor
- preprocess
## PerceiverImageProcessorFast
[[autodoc]] PerceiverImageProcessorFast
- preprocess
## PerceiverTextPreprocessor
[[autodoc]] models.perceiver.modeling_perceiver.PerceiverTextPreprocessor

View File

@ -13,166 +13,117 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# Phi
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[Phi](https://huggingface.co/papers/2306.11644) is a 1.3B parameter transformer model optimized for Python code generation. It focuses on "textbook-quality" training data of code examples, exercises and synthetic Python problems rather than scaling the model size or compute.
## Overview
You can find all the original Phi checkpoints under the [Phi-1](https://huggingface.co/collections/microsoft/phi-1-6626e29134744e94e222d572) collection.
The Phi-1 model was proposed in [Textbooks Are All You Need](https://arxiv.org/abs/2306.11644) by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li.
> [!TIP]
> Click on the Phi models in the right sidebar for more examples of how to apply Phi to different language tasks.
The Phi-1.5 model was proposed in [Textbooks Are All You Need II: phi-1.5 technical report](https://arxiv.org/abs/2309.05463) by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
### Summary
<hfoptions id="usage">
<hfoption id="Pipeline">
In Phi-1 and Phi-1.5 papers, the authors showed how important the quality of the data is in training relative to the model size.
They selected high quality "textbook" data alongside with synthetically generated data for training their small sized Transformer
based model Phi-1 with 1.3B parameters. Despite this small scale, phi-1 attains pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP.
They follow the same strategy for Phi-1.5 and created another 1.3B parameter model with performance on natural language tasks comparable
to models 5x larger, and surpassing most non-frontier LLMs. Phi-1.5 exhibits many of the traits of much larger LLMs such as the ability
to “think step by step” or perform some rudimentary in-context learning.
With these two experiments the authors successfully showed the huge impact of quality of training data when training machine learning models.
```py
import torch
from transformers import pipeline
The abstract from the Phi-1 paper is the following:
pipeline = pipeline(task="text-generation", model="microsoft/phi-1.5", device=0, torch_dtype=torch.bfloat16)
pipeline("pipeline('''def print_prime(n): """ Print all primes between 1 and n"""''')")
*We introduce phi-1, a new large language model for code, with significantly smaller size than
competing models: phi-1 is a Transformer-based model with 1.3B parameters, trained for 4 days on
8 A100s, using a selection of “textbook quality” data from the web (6B tokens) and synthetically
generated textbooks and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains
pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays surprising emergent
properties compared to phi-1-base, our model before our finetuning stage on a dataset of coding
exercises, and phi-1-small, a smaller model with 350M parameters trained with the same pipeline as
phi-1 that still achieves 45% on HumanEval.*
The abstract from the Phi-1.5 paper is the following:
*We continue the investigation into the power of smaller Transformer-based language models as
initiated by TinyStories a 10 million parameter model that can produce coherent English and
the follow-up work on phi-1, a 1.3 billion parameter model with Python coding performance close
to the state-of-the-art. The latter work proposed to use existing Large Language Models (LLMs) to
generate “textbook quality” data as a way to enhance the learning process compared to traditional
web data. We follow the “Textbooks Are All You Need” approach, focusing this time on common
sense reasoning in natural language, and create a new 1.3 billion parameter model named phi-1.5,
with performance on natural language tasks comparable to models 5x larger, and surpassing most
non-frontier LLMs on more complex reasoning tasks such as grade-school mathematics and basic
coding. More generally, phi-1.5 exhibits many of the traits of much larger LLMs, both good such
as the ability to “think step by step” or perform some rudimentary in-context learning and bad,
including hallucinations and the potential for toxic and biased generations encouragingly though, we
are seeing improvement on that front thanks to the absence of web data. We open-source phi-1.5 to
promote further research on these urgent topics.*
This model was contributed by [Susnato Dhar](https://huggingface.co/susnato).
The original code for Phi-1, Phi-1.5 and Phi-2 can be found [here](https://huggingface.co/microsoft/phi-1), [here](https://huggingface.co/microsoft/phi-1_5) and [here](https://huggingface.co/microsoft/phi-2), respectively.
## Usage tips
- This model is quite similar to `Llama` with the main difference in [`PhiDecoderLayer`], where they used [`PhiAttention`] and [`PhiMLP`] layers in parallel configuration.
- The tokenizer used for this model is identical to the [`CodeGenTokenizer`].
## How to use Phi-2
<Tip warning={true}>
Phi-2 has been integrated in the development version (4.37.0.dev) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
</Tip>
```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
>>> inputs = tokenizer('Can you help me write a formal email to a potential business partner proposing a joint venture?', return_tensors="pt", return_attention_mask=False)
>>> outputs = model.generate(**inputs, max_length=30)
>>> text = tokenizer.batch_decode(outputs)[0]
>>> print(text)
Can you help me write a formal email to a potential business partner proposing a joint venture?
Input: Company A: ABC Inc.
Company B
```
### Example :
</hfoption>
```python
>>> from transformers import PhiForCausalLM, AutoTokenizer
<hfoption id="AutoModel">
>>> # define the model and tokenizer.
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5")
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
>>> # feel free to change the prompt to your liking.
>>> prompt = "If I were an AI that had just achieved"
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
>>> # apply the tokenizer.
>>> tokens = tokenizer(prompt, return_tensors="pt")
input_ids = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt").to("cuda")
>>> # use the model to generate new tokens.
>>> generated_output = model.generate(**tokens, use_cache=True, max_new_tokens=10)
>>> tokenizer.batch_decode(generated_output)[0]
'If I were an AI that had just achieved a breakthrough in machine learning, I would be thrilled'
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Combining Phi and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
</hfoption>
<hfoption id="transformers-cli">
```bash
pip install -U flash-attn --no-build-isolation
echo -e "'''def print_prime(n): """ Print all primes between 1 and n"""'''" | transformers-cli run --task text-classification --model microsoft/phi-1.5 --device 0
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16``)
</hfoption>
</hfoptions>
To load and run a model using Flash Attention 2, refer to the snippet below:
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
```python
>>> import torch
>>> from transformers import PhiForCausalLM, AutoTokenizer
The example below uses [bitsandbytes](https://huggingface.co/docs/transformers/en/quantization/bitsandbytes) to only quantize the weights to 4-bits.
>>> # define the model and tokenizer and push the model and tokens to the GPU.
>>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1_5", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to("cuda") # doctest: +SKIP
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1_5")
```py
import torch
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM
>>> # feel free to change the prompt to your liking.
>>> prompt = "If I were an AI that had just achieved"
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-1", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa", quantization_config=bnb_config)
>>> # apply the tokenizer.
>>> tokens = tokenizer(prompt, return_tensors="pt").to("cuda")
input_ids = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt").to("cuda")
>>> # use the model to generate new tokens.
>>> generated_output = model.generate(**tokens, use_cache=True, max_new_tokens=10) # doctest: +SKIP
>>> tokenizer.batch_decode(generated_output)[0] # doctest: +SKIP
'If I were an AI that had just achieved a breakthrough in machine learning, I would be thrilled'
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
### Expected speedups
## Notes
Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `microsoft/phi-1` checkpoint and the Flash Attention 2 version of the model using a sequence length of 2048.
- If you're using Transformers < 4.37.0.dev, set `trust_remote_code=True` in [`~AutoModel.from_pretrained`]. Otherwise, make sure you update Transformers to the latest stable version.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/ybelkada/documentation-images/resolve/main/phi_1_speedup_plot.jpg">
</div>
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-1",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
attn_implementation="sdpa")
input_ids = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## PhiConfig
[[autodoc]] PhiConfig
<frameworkcontent>
<pt>
## PhiModel
[[autodoc]] PhiModel
@ -193,6 +144,3 @@ Below is an expected speedup diagram that compares pure inference time between t
[[autodoc]] PhiForTokenClassification
- forward
</pt>
</frameworkcontent>

View File

@ -64,7 +64,7 @@ inputs = processor.apply_chat_template(
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(device, torch.float16)
).to(device)
# Generate response
generate_ids = model.generate(
@ -98,8 +98,7 @@ inputs = processor.apply_chat_template(
tokenize=True,
return_dict=True,
return_tensors="pt",
sample_rate=sample_rate,
).to(device, torch.float16)
).to(device)
generate_ids = model.generate(
**inputs,

View File

@ -73,6 +73,11 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] PoolFormerImageProcessor
- preprocess
## PoolFormerImageProcessorFast
[[autodoc]] PoolFormerImageProcessorFast
- preprocess
## PoolFormerModel
[[autodoc]] PoolFormerModel

View File

@ -64,6 +64,11 @@ This model was contributed by [Xrenya](https://huggingface.co/Xrenya). The origi
[[autodoc]] PvtImageProcessor
- preprocess
## PvtImageProcessorFast
[[autodoc]] PvtImageProcessorFast
- preprocess
## PvtForImageClassification
[[autodoc]] PvtForImageClassification

View File

@ -0,0 +1,400 @@
<!--Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Qwen2.5-Omni
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
The [Qwen2.5-Omni](https://qwenlm.github.io/blog/) model is a unified multiple modalities model proposed in [Qwen2.5-Omni Technical Report]() from Qwen team, Alibaba Group.
The abstract from the technical report is the following:
*We present Qwen2.5-Omni, an end-to-end multimodal model designed to perceive diverse modalities, including text, images, audio, and video, while simultaneously generating text and natural speech responses in a streaming manner. To enable the streaming of multimodal information inputs, both audio and visual encoders utilize a block-wise processing approach. This strategy effectively decouples the handling of long sequences of multimodal data, assigning the perceptual responsibilities to the multimodal encoder and entrusting the modeling of extended sequences to a large language model. Such a division of labor enhances the fusion of different modalities via the shared attention mechanism. To synchronize the timestamps of video inputs with audio, we organized the audio and video sequentially in an interleaved manner and propose a novel position embedding approach, named TMRoPE (Time-aligned Multimodal RoPE). To concurrently generate text and speech while avoiding interference between the two modalities, we propose Thinker-Talker architecture. In this framework, Thinker functions as a large language model tasked with text generation, while Talker is a dual-track autoregressive model that directly utilizes the hidden representations from the Thinker to produce audio tokens as output. Both the Thinker and Talker models are designed to be trained and inferred in an end-to-end manner. For decoding audio tokens in a streaming manner, we introduce a sliding-window DiT that restricts the receptive field, aiming to reduce the initial package delay. Qwen2.5-Omni outperforms the similarly sized Qwen2-VL and Qwen2-Audio in both image and audio capabilities. Furthermore, Qwen2.5-Omni achieves state-of-the-art performance on multimodal benchmarks like Omni-Bench. Notably, Qwen2.5-Omni is the first open-source model to achieve a level of performance in end-to-end speech instruction following that is comparable to its capabilities with text inputs, as evidenced by benchmarks such as MMLU and GSM8K. As for speech generation, Qwen2.5-Omnis streaming Talker outperform most existing streaming and non-streaming alternatives in robustness and naturalness.*
## Notes
- Use [`Qwen2_5OmniForConditionalGeneration`] to generate audio and text output. To generate only one output type, use [`Qwen2_5OmniThinkerForConditionalGeneration`] for text-only and [`Qwen2_5OmniTalkersForConditionalGeneration`] for audio-only outputs.
- Audio generation with [`Qwen2_5OmniForConditionalGeneration`] supports only single batch size at the moment.
- In case out out-of-memory errors hwen working with video input, decrease `processor.max_pixels`. By default the maximum is set to a very arge value and high resolution visuals will not be resized, unless resolution exceeds `processor.max_pixels`.
- The processor has its own [`~ProcessorMixin.apply_chat_template`] method to convert chat messages to model inputs.
## Usage example
`Qwen2.5-Omni` can be found on the [Huggingface Hub](https://huggingface.co/Qwen).
### Single Media inference
The model can accept text, images, audio and videos as input. Here's an example code for inference.
```python
import soundfile as sf
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
torch_dtype="auto",
device_map="auto"
)
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
conversations = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
],
},
{
"role": "user",
"content": [
{"type": "video", "video": "/path/to/video.mp4"},
{"type": "text", "text": "What cant you hear and see in this video?"},
],
},
]
inputs = processor.apply_chat_template(
conversations,
load_audio_from_video=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
# kwargs to be passed to `Qwen2-5-OmniProcessor`
padding=True,
use_audio_in_video=True,
).to(model.device)
# Generation params for audio or text can be different and have to be prefixed with `thinker_` or `talker_`
text_ids, audio = model.generate(**inputs, use_audio_in_video=True, thinker_do_sample=False, talker_do_sample=True)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
sf.write(
"output.wav",
audio.reshape(-1).detach().cpu().numpy(),
samplerate=24000,
)
print(text)
```
### Text-only generation
To generate only text output and save compute by not loading the audio generation model, we can use `Qwen2_5OmniThinkerForConditionalGeneration` model.
```python
from transformers import Qwen2_5OmniThinkerForConditionalGeneration, Qwen2_5OmniProcessor
model = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
torch_dtype="auto",
device_map="auto",
)
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
conversations = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
],
},
{
"role": "user",
"content": [
{"type": "video", "video": "/path/to/video.mp4"},
{"type": "text", "text": "What cant you hear and see in this video?"},
],
},
]
inputs = processor.apply_chat_template(
conversations,
load_audio_from_video=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
# kwargs to be passed to `Qwen2-5-OmniProcessor`
padding=True,
use_audio_in_video=True,
).to(model.device)
text_ids = model.generate(**inputs, use_audio_in_video=True)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
sf.write(
"output.wav",
audio.reshape(-1).detach().cpu().numpy(),
samplerate=24000,
)
print(text)
```
### Batch Mixed Media Inference
The model can batch inputs composed of mixed samples of various types such as text, images, audio and videos as input when using `Qwen2_5OmniThinkerForConditionalGeneration` model. Here is an example.
```python
import soundfile as sf
from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
torch_dtype="auto",
device_map="auto"
)
processor = Qwen2_5OmniProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B")
# Conversation with video only
conversation1 = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
],
},
{
"role": "user",
"content": [
{"type": "video", "path": "/path/to/video.mp4"},
]
}
]
# Conversation with audio only
conversation2 = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
],
},
{
"role": "user",
"content": [
{"type": "audio", "path": "/path/to/audio.wav"},
]
}
]
# Conversation with pure text
conversation3 = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
],
},
{
"role": "user",
"content": [{"type": "text", "text": "who are you?"}],
}
]
# Conversation with mixed media
conversation4 = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
],
},
{
"role": "user",
"content": [
{"type": "image", "path": "/path/to/image.jpg"},
{"type": "video", "path": "/path/to/video.mp4"},
{"type": "audio", "path": "/path/to/audio.wav"},
{"type": "text", "text": "What are the elements can you see and hear in these medias?"},
],
}
]
conversations = [conversation1, conversation2, conversation3, conversation4]
inputs = processor.apply_chat_template(
conversations,
load_audio_from_video=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
video_fps=1,
# kwargs to be passed to `Qwen2-5-OmniProcessor`
padding=True,
use_audio_in_video=True,
).to(model.thinker.device)
text_ids = model.generate(**inputs, use_audio_in_video=True)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(text)
```
### Usage Tips
#### Image Resolution trade-off
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs.
```python
min_pixels = 128*28*28
max_pixels = 768*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-Omni-7B", min_pixels=min_pixels, max_pixels=max_pixels)
```
#### Prompt for audio output
If users need audio output, the system prompt must be set as "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.", otherwise the audio output may not work as expected.
```
{
"role": "system",
"content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
}
```
#### Use audio output or not
The model supports both text and audio outputs, if users do not need audio outputs, they can set `enable_audio_output` in the `from_pretrained` function. This option will save about `~2GB` of GPU memory but the `return_audio` option for `generate` function will only allow to be set at `False`.
```python
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
torch_dtype="auto",
device_map="auto",
enable_audio_output=False,
)
```
In order to obtain a flexible experience, we recommend that users set `enable_audio_output` at `True` when initializing the model through `from_pretrained` function, and then decide whether to return audio when `generate` function is called. When `return_audio` is set to `False`, the model will only return text outputs to get text responses faster.
```python
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
torch_dtype="auto",
device_map="auto",
enable_audio_output=True,
)
...
text_ids = model.generate(**inputs, return_audio=False)
```
#### Change voice type of output audio
Qwen2.5-Omni supports the ability to change the voice of the output audio. Users can use the `spk` parameter of `generate` function to specify the voice type. The `"Qwen/Qwen2.5-Omni-7B"` checkpoint support two voice types: `Chelsie` and `Ethan`, while `Chelsie` is a female voice and `Ethan` is a male voice. By defalut, if `spk` is not specified, the default voice type is `Chelsie`.
```python
text_ids, audio = model.generate(**inputs, spk="Chelsie")
```
```python
text_ids, audio = model.generate(**inputs, spk="Ethan")
```
#### Flash-Attention 2 to speed up generation
First, make sure to install the latest version of Flash Attention 2:
```bash
pip install -U flash-attn --no-build-isolation
```
Also, you should have hardware that is compatible with FlashAttention 2. Read more about it in the official documentation of the [flash attention repository](https://github.com/Dao-AILab/flash-attention). FlashAttention-2 can only be used when a model is loaded in `torch.float16` or `torch.bfloat16`.
To load and run a model using FlashAttention-2, add `attn_implementation="flash_attention_2"` when loading the model:
```python
from transformers import Qwen2_5OmniForConditionalGeneration
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-Omni-7B",
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
```
## Qwen2_5OmniConfig
[[autodoc]] Qwen2_5OmniConfig
## Qwen2_5OmniProcessor
[[autodoc]] Qwen2_5OmniProcessor
## Qwen2_5OmniForConditionalGeneration
[[autodoc]] Qwen2_5OmniForConditionalGeneration
- forward
## Qwen2_5OmniPreTrainedModelForConditionalGeneration
[[autodoc]] Qwen2_5OmniPreTrainedModelForConditionalGeneration
## Qwen2_5OmniThinkerConfig
[[autodoc]] Qwen2_5OmniThinkerConfig
## Qwen2_5OmniThinkerForConditionalGeneration
[[autodoc]] Qwen2_5OmniThinkerForConditionalGeneration
## Qwen2_5OmniThinkerTextModel
[[autodoc]] Qwen2_5OmniThinkerTextModel
## Qwen2_5OmniTalkerConfig
[[autodoc]] Qwen2_5OmniTalkerConfig
## Qwen2_5OmniTalkerForConditionalGeneration
[[autodoc]] Qwen2_5OmniTalkerForConditionalGeneration
## Qwen2_5OmniTalkerModel
[[autodoc]] Qwen2_5OmniTalkerModel
## Qwen2_5OmniToken2WavConfig
[[autodoc]] Qwen2_5OmniToken2WavConfig
## Qwen2_5OmniToken2WavModel
[[autodoc]] Qwen2_5OmniToken2WavModel
## Qwen2_5OmniToken2WavDiTModel
[[autodoc]] Qwen2_5OmniToken2WavDiTModel
## Qwen2_5OmniToken2WavBigVGANModel
[[autodoc]] Qwen2_5OmniToken2WavBigVGANModel

View File

@ -232,10 +232,15 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
[[autodoc]] Qwen2_5_VLConfig
## Qwen2_5_VLTextConfig
[[autodoc]] Qwen2_5_VLTextConfig
## Qwen2_5_VLProcessor
[[autodoc]] Qwen2_5_VLProcessor
## Qwen2_5_VLModel
[[autodoc]] Qwen2_5_VLModel

View File

@ -278,6 +278,10 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
[[autodoc]] Qwen2VLConfig
## Qwen2VLTextConfig
[[autodoc]] Qwen2VLTextConfig
## Qwen2VLImageProcessor
[[autodoc]] Qwen2VLImageProcessor

View File

@ -14,184 +14,116 @@ rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# SigLIP
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[SigLIP](https://huggingface.co/papers/2303.15343) is a multimodal image-text model similar to [CLIP](clip). It uses separate image and text encoders to generate representations for both modalities.
## Overview
Unlike CLIP, SigLIP employs a pairwise sigmoid loss on image-text pairs during training. This training loss eliminates the need for a global view of all pairwise similarities between images and texts within a batch. Consequently, it enables more efficient scaling to larger batch sizes while also delivering superior performance with smaller batch sizes.
The SigLIP model was proposed in [Sigmoid Loss for Language Image Pre-Training](https://arxiv.org/abs/2303.15343) by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer. SigLIP proposes to replace the loss function used in [CLIP](clip) by a simple pairwise sigmoid loss. This results in better performance in terms of zero-shot classification accuracy on ImageNet.
You can find all the original SigLIP checkpoints under the [SigLIP](https://huggingface.co/collections/google/siglip-659d5e62f0ae1a57ae0e83ba) collection.
The abstract from the paper is the following:
*We propose a simple pairwise Sigmoid loss for Language-Image Pre-training (SigLIP). Unlike standard contrastive learning with softmax normalization, the sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. The sigmoid loss simultaneously allows further scaling up the batch size, while also performing better at smaller batch sizes. Combined with Locked-image Tuning, with only four TPUv4 chips, we train a SigLiT model that achieves 84.5% ImageNet zero-shot accuracy in two days. The disentanglement of the batch size from the loss further allows us to study the impact of examples vs pairs and negative to positive ratio. Finally, we push the batch size to the extreme, up to one million, and find that the benefits of growing batch size quickly diminish, with a more reasonable batch size of 32k being sufficient.*
> [!TIP]
> Click on the SigLIP models in the right sidebar for more examples of how to apply SigLIP to different image and text tasks.
## Usage tips
The example below demonstrates how to generate similarity scores between texts and image(s) with [`Pipeline`] or the [`AutoModel`] class.
- Usage of SigLIP is similar to [CLIP](clip). The main difference is the training loss, which does not require a global view of all the pairwise similarities of images and texts within a batch. One needs to apply the sigmoid activation function to the logits, rather than the softmax.
- Training is supported but does not use `torch.distributed` utilities which may limit the scalability of batch size. However, DDP and FDSP works on single-node multi-gpu setup.
- When using the standalone [`SiglipTokenizer`] or [`SiglipProcessor`], make sure to pass `padding="max_length"` as that's how the model was trained.
- To get the same results as the pipeline, a prompt template of "This is a photo of {label}." should be used.
<hfoptions id="usage">
<hfoption id="Pipeline">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/siglip_table.jpeg"
alt="drawing" width="600"/>
```py
import torch
from transformers import pipeline
<small> SigLIP evaluation results compared to CLIP. Taken from the <a href="https://arxiv.org/abs/2303.15343">original paper</a>.</small>
image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/google-research/big_vision/tree/main).
## Usage example
There are 2 main ways to use SigLIP: either using the pipeline API, which abstracts away all the complexity for you, or by using the `SiglipModel` class yourself.
### Pipeline API
The pipeline allows to use the model in a few lines of code:
```python
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> # load pipe
>>> image_classifier = pipeline(task="zero-shot-image-classification", model="google/siglip-base-patch16-224")
>>> # load image
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # inference
>>> candidate_labels = ["2 cats", "a plane", "a remote"]
>>> outputs = image_classifier(image, candidate_labels=candidate_labels)
>>> outputs = [{"score": round(output["score"], 4), "label": output["label"] } for output in outputs]
>>> print(outputs)
[{'score': 0.1979, 'label': '2 cats'}, {'score': 0.0, 'label': 'a remote'}, {'score': 0.0, 'label': 'a plane'}]
pipeline = pipeline(task="zero-shot-image-classification", model="google/siglip-base-patch16-224", device=0, torch_dtype=torch.bfloat16)
pipeline(image, candidate_labels=candidate_labels)
```
### Using the model yourself
</hfoption>
<hfoption id="AutoModel">
If you want to do the pre- and postprocessing yourself, here's how to do that:
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
model = AutoModel.from_pretrained("google/siglip-base-patch16-224", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to("cuda")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
with torch.no_grad():
outputs = model(**inputs)
>>> candidate_labels = ["2 cats", "2 dogs"]
# follows the pipeline prompt template to get same results
>>> texts = [f'This is a photo of {label}.' for label in candidate_labels]
# important: we pass `padding=max_length` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
19.8% that image 0 is '2 cats'
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
```
## Resources
</hfoption>
</hfoptions>
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SigLIP.
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
- [Zero-shot image classification task guide](../tasks/zero_shot_image_classification)
- Demo notebooks for SigLIP can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/SigLIP). 🌎
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModel.from_pretrained("google/siglip-base-patch16-224", quantization_config=bnb_config, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
## Combining SigLIP and Flash Attention 2
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to("cuda")
First, make sure to install the latest version of Flash Attention 2.
with torch.no_grad():
outputs = model(**inputs)
```bash
pip install -U flash-attn --no-build-isolation
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
```
## Notes
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16``)
- Training is supported for DDP and FSDP on single-node multi-GPU setups. However, it does not use [torch.distributed](https://pytorch.org/tutorials/beginner/dist_overview.html) utilities which may limit the scalability of batch size.
- When using the standalone [`SiglipTokenizer`] or [`SiglipProcessor`], make sure to pass `padding="max_length"` because that is how the model was trained.
- To get the same results as the [`Pipeline`], a prompt template of `"This is a photo of {label}."` should be passed to the processor.
- Toggle the `attn_implementation` parameter to either `"sdpa"` or `"flash_attention_2"` to use a more memory-efficient attention.
```py
# pip install -U flash-attn --no-build-isolation
To load and run a model using Flash Attention 2, refer to the snippet below:
from transformers import SiglipModel
```python
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from transformers import SiglipProcessor, SiglipModel
>>> device = "cuda" # the device to load the model onto
>>> model = SiglipModel.from_pretrained(
... "google/siglip-so400m-patch14-384",
... attn_implementation="flash_attention_2",
... torch_dtype=torch.float16,
... device_map=device,
... )
>>> processor = SiglipProcessor.from_pretrained("google/siglip-so400m-patch14-384")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> candidate_labels = ["2 cats", "2 dogs"]
# follows the pipeline prompt template to get same results
>>> texts = [f'This is a photo of {label}.' for label in candidate_labels]
# important: we pass `padding=max_length` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to(device)
>>> with torch.no_grad():
... with torch.autocast(device):
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
19.8% that image 0 is '2 cats'
```
## Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
You may set `attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used. Make sure you have `torch>=2.1.1`.
```python
>>> from transformers import SiglipModel
>>> model = SiglipModel.from_pretrained(
... "google/siglip-so400m-patch14-384",
... attn_implementation="sdpa",
... torch_dtype=torch.float16,
... device_map=device,
... )
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
## Expected speedups
Below is an expected speedup diagram that compares inference time between the native implementation in transformers using `google/siglip-so400m-patch14-384` checkpoint in `float16` precision and the Flash Attention 2 / SDPA version of the model using different batch sizes.
<div style="text-align: center">
<img src="https://i.imgur.com/cWm4rsn.png">
</div>
model = SiglipModel.from_pretrained(
"google/siglip-so400m-patch14-384",
attn_implementation="flash_attention_2",
torch_dtype=torch.float16,
device_map=device,
)
```
## SiglipConfig

View File

@ -14,225 +14,160 @@ rendered properly in your Markdown viewer.
-->
# SigLIP2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# SigLIP2
## Overview
The SigLIP2 model was proposed in [SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features](https://huggingface.co/papers/2502.14786) by Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin,
Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff, Jeremiah Harmsen,
Andreas Steiner and Xiaohua Zhai.
[SigLIP2](https://huggingface.co/papers/2502.14786) is a family of multilingual vision-language encoders that builds on the [SigLIP](./siglip) training recipe. It includes decoder-based pretraining, self-distillation, and masked prediction to improve dense prediction tasks (segmentation, depth estimation, etc.). This model is available in two variants:
The model comes in two variants
- NaFlex supports different resolutions and maintains the native image aspect ratio
- FixRes supports fixed resolutions and is backwards compatible with [SigLIP](./siglip)
1) FixRes - model works with fixed resolution images (backward compatible with SigLIP v1)
2) NaFlex - model works with variable image aspect ratios and resolutions (SigLIP2 in `transformers`)
The abstract from the paper is the following:
You can find all the original SigLIP2 checkpoints under the [SigLIP2](https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107) collection.
*We introduce SigLIP 2, a family of new multilingual vision-language encoders that build on the success
of the original SigLIP. In this second iteration, we extend the original image-text training objective with
several prior, independently developed techniques into a unified recipe—this includes decoder-based
pretraining, self-supervised losses (self-distillation, masked prediction) and online data curation. With
these changes, SigLIP 2 models outperform their SigLIP counterparts at all model scales in core capabilities,
including zero-shot classification (best SigLIP 2 ViT-g/16 achieves 85.0% ImageNet zero-shot
accuracy), image-text retrieval, and transfer performance when extracting visual representations for
Vision-Language Models (VLMs). Furthermore, the new training recipe leads to significant improvements
on localization and dense prediction tasks. We also train variants which support multiple resolutions
and preserve the inputs native aspect ratio. Finally, we train on a more diverse data-mixture that
includes de-biasing techniques, leading to much better multilingual understanding and improved fair-
ness. To provide users with the ability to trade-off inference cost with performance, we release model
checkpoints at four sizes (ViT-B/86M, L/303M, So400m/400M, and g/1B).*
> [!TIP]
> Click on the SigLIP2 models in the right sidebar for more examples of how to apply SigLIP2 to different image and text tasks.
## Usage tips
The example below demonstrates zero-shot classification with [`Pipeline`] or the [`AutoModel`] class.
- Usage of SigLIP2 is similar to [SigLIP](siglip) and [CLIP](clip). The main difference from CLIP is the training loss, which does not require a global view of all the pairwise similarities of images and texts within a batch. One needs to apply the sigmoid activation function to the logits, rather than the softmax.
- Training is supported but does not use `torch.distributed` utilities which may limit the scalability of batch size. However, DDP and FDSP works on single-node multi-gpu setup.
- When using the standalone [`GemmaTokenizerFast`] make sure to pass `padding="max_length"` and `max_length=64` as that's how the model was trained.
- Model was trained with *lowercased* text, make sure you make the same preprocessing for your text labels.
- To get the same results as the pipeline, a prompt template of "this is a photo of {label}" should be used.
- The NaFlex variant supports processing images at higher resolutions by adjusting the `max_num_patches` parameter in the `Processor`. The default value is `max_num_patches=256`. Increasing `max_num_patches` to 1024 (4x) will approximately double processed image height and width, while preserving the aspect ratio.
<hfoptions id="usage">
<hfoption id="Pipeline">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/siglip2_metrics_table.png"
alt="drawing" width="600"/>
```py
import torch
from transformers import pipeline
This model was contributed by [qubvel](https://huggingface.co/qubvel-hf).
The original code can be found [here](https://github.com/google-research/big_vision/tree/main).
image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
## Usage example
There are 2 main ways to use SigLIP2: either using the pipeline API, which abstracts away all the complexity for you, or by using the `Siglip2Model` class yourself.
### FixRes variant
**Pipeline API**
The pipeline allows to use the model in a few lines of code:
```python
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> # load pipe
>>> image_classifier = pipeline(
... task="zero-shot-image-classification",
... model="google/siglip2-base-patch16-224",
... )
>>> # load image
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # inference
>>> candidate_labels = ["2 cats", "a plane", "a remote"]
>>> outputs = image_classifier(image, candidate_labels=candidate_labels)
>>> outputs = [{"score": round(output["score"], 4), "label": output["label"] } for output in outputs]
>>> print(outputs)
[{'score': 0.1499, 'label': '2 cats'}, {'score': 0.0008, 'label': 'a remote'}, {'score': 0.0, 'label': 'a plane'}]
pipeline = pipeline(task="zero-shot-image-classification", model="google/siglip2-base-patch16-224", device=0, torch_dtype=torch.bfloat16)
pipeline(image, candidate_labels=candidate_labels)
```
**Using the model yourself**
</hfoption>
<hfoption id="AutoModel (FixRes)">
If you want to do the pre- and postprocessing yourself, here's how to do that:
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
model = AutoModel.from_pretrained("google/siglip2-base-patch16-224", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224")
>>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> candidate_labels = ["2 cats", "2 dogs"]
# follows the pipeline prompt template to get same results
>>> texts = [f"This is a photo of {label}." for label in candidate_labels]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
# IMPORTANT: we pass `padding=max_length` and `max_length=64` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", max_length=64, return_tensors="pt")
inputs = processor(text=texts, images=image, padding="max_length", max_length=64, return_tensors="pt").to("cuda")
>>> with torch.no_grad():
... outputs = model(**inputs)
with torch.no_grad():
outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
15.0% that image 0 is '2 cats'
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
```
### NaFlex variant
</hfoption>
<hfoption id="AutoModel (NaFlex)">
NaFlex combines ideas from FlexiViT, i.e. supporting multiple, predefined sequence lengths
with a single ViT model, and NaViT, namely processing images at their native aspect ratio.
This enables processing different types of images at appropriate resolution, e.g. using a
larger resolution to process document images, while at the same time minimizing the impact
of aspect ratio distortion on certain inference tasks, e.g. on OCR.
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
Given a patch size and target sequence length, NaFlex preprocesses the data by first resizing
the input image such that the height and width after resizing are multiples of the patch size,
while
1. keeping the aspect ratio distortion as small as possible
2. producing a sequence length of at most the desired target sequence length (`max_num_patches`)
The resulting distortion in width and height is at most `(patch_size - 1) / width` and
`(patch_size - 1) / height`, respectively, which tends to be small for common resolutions and aspect ratios.
After resizing, the image is split into a sequence of patches, and a mask with padding information is added.
model = AutoModel.from_pretrained("google/siglip2-base-patch16-naflex", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
>>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-naflex")
>>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-naflex")
# default value for `max_num_patches` is 256, but you can increase resulted image resolution providing higher values e.g. `max_num_patches=512`
inputs = processor(text=texts, images=image, padding="max_length", max_num_patches=256, return_tensors="pt").to("cuda")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
with torch.no_grad():
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```py
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModel.from_pretrained("google/siglip2-large-patch16-512", quantization_config=bnb_config, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
>>> candidate_labels = ["2 cats", "2 dogs"]
# follows the pipeline prompt template to get same results
>>> texts = [f"This is a photo of {label}." for label in candidate_labels]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
# default value for `max_num_patches` is 256, but you can increase resulted image resolution providing
# higher values e.g. `max_num_patches=512`
>>> inputs = processor(text=texts, images=image, max_num_patches=256, return_tensors="pt")
# IMPORTANT: we pass `padding=max_length` and `max_length=64` since the model was trained with this
inputs = processor(text=texts, images=image, padding="max_length", max_length=64, return_tensors="pt").to("cuda")
>>> with torch.no_grad():
... outputs = model(**inputs)
with torch.no_grad():
outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
21.1% that image 0 is '2 cats'
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
```
## Resources
## Notes
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SigLIP2.
- Training is supported for DDP and FSDP on single-node multi-GPU setups. However, it does not use [torch.distributed](https://pytorch.org/tutorials/beginner/dist_overview.html) utilities which may limit the scalability of batch size.
- When using the standalone [`GemmaTokenizerFast`] make sure to pass `padding="max_length"` and `max_length=64` as that's how the model was trained.
- Model was trained with *lowercased* text, so make sure your text labels are preprocessed the same way.
- To get the same results as the [`Pipeline`], a prompt template of `"This is a photo of {label}."` should be passed to the processor.
- The NaFlex variant processes different types of images at the appropriate resolution (using a larger resolution to process document images for example), while also minimizing the impact of aspect ratio distortion for certain inference tasks like OCR.
- [Zero-shot image classification task guide](../tasks/zero_shot_image_classification)
- Demo notebook for SigLIP2 can be found [here](https://github.com/qubvel/transformers-notebooks/tree/master/notebooks/SigLIP2_inference.ipynb). 🌎
NaFlex resizes the input image so the height and width are multiples of the patch size after resizing. It keeps the aspect ratio distortion as low as possible and produces a sequence length of at most the desired target sequence length (`max_num_patches`). After resizing, the image is split into a sequence of patches and a mask with padding information is added.
- Toggle the `attn_implementation` parameter to either `"sdpa"` or `"flash_attention_2"` to use a more memory-efficient attention.
```py
# pip install -U flash-attn --no-build-isolation
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## Combining SigLIP2 and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16``)
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from transformers import AutoProcessor, AutoModel
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModel.from_pretrained(
... "google/siglip2-so400m-patch14-384",
... attn_implementation="flash_attention_2",
... torch_dtype=torch.float16,
... device_map=device,
... )
>>> processor = AutoProcessor.from_pretrained("google/siglip2-so400m-patch14-384")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> candidate_labels = ["2 cats", "2 dogs"]
# follows the pipeline prompt template to get same results
>>> texts = [f'This is a photo of {label}.' for label in candidate_labels]
# important: we pass `padding=max_length` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to(device)
>>> with torch.no_grad():
... with torch.autocast(device):
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
19.8% that image 0 is '2 cats'
```
from transformers import SiglipModel
model = SiglipModel.from_pretrained(
"google/siglip2-so400m-patch14-384",
attn_implementation="flash_attention_2",
torch_dtype=torch.float16,
device_map=device,
)
```
## Siglip2Config
[[autodoc]] Siglip2Config

View File

@ -0,0 +1,88 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TimesFM
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model proposed in [A decoder-only foundation model for time-series forecasting](https://huggingface.co/papers/2310.10688) by Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. It is a decoder only model that uses non-overlapping patches of time-series data as input and outputs some output patch length prediction in an autoregressive fashion.
The abstract from the paper is the following:
*Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a patched-decoder style attention model on a large time-series corpus, and can work well across different forecasting history lengths, prediction lengths and temporal granularities.*
This model was contributed by [kashif](https://huggingface.co/kashif).
The original code can be found [here](https://github.com/google-research/timesfm).
To use the model:
```python
import torch
from transformers import TimesFmModelForPrediction
model = TimesFmModelForPrediction.from_pretrained(
"google/timesfm-2.0-500m-pytorch",
torch_dtype=torch.bfloat16,
attn_implementation="sdpa",
device_map="cuda" if torch.cuda.is_available() else None
)
# Create dummy inputs
forecast_input = [
np.sin(np.linspace(0, 20, 100)),
np.sin(np.linspace(0, 20, 200)),
np.sin(np.linspace(0, 20, 400)),
]
frequency_input = [0, 1, 2]
# Convert inputs to sequence of tensors
forecast_input_tensor = [
torch.tensor(ts, dtype=torch.bfloat16).to("cuda" if torch.cuda.is_available() else "cpu")
for ts in forecast_input
]
frequency_input_tensor = torch.tensor(frequency_input, dtype=torch.long).to(
"cuda" if torch.cuda.is_available() else "cpu"
)
# Get predictions from the pre-trained model
with torch.no_grad():
outputs = model(past_values=forecast_input_tensor, freq=frequency_input_tensor, return_dict=True)
point_forecast_conv = outputs.mean_predictions.float().cpu().numpy()
quantile_forecast_conv = outputs.full_predictions.float().cpu().numpy()
```
## TimesFmConfig
[[autodoc]] TimesFmConfig
## TimesFmModel
[[autodoc]] TimesFmModel
- forward
## TimesFmModelForPrediction
[[autodoc]] TimesFmModelForPrediction
- forward

View File

@ -7,168 +7,139 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
specific language governing permissions and limitations under the License.-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
# VITS
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[VITS (Variational Inference with adversarial learning for end-to-end Text-to-Speech)](https://hf.co/papers/2106.06103) is a end-to-end speech synthesis model, simplifying the traditional two-stage text-to-speech (TTS) systems. It's unique because it directly synthesizes speech from text using variational inference, adversarial learning, and normalizing flows to produce natural and expressive speech with diverse rhythms and intonations.
## Overview
You can find all the original VITS checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=mms-tts) organization.
The VITS model was proposed in [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://arxiv.org/abs/2106.06103) by Jaehyeon Kim, Jungil Kong, Juhee Son.
> [!TIP]
> Click on the VITS models in the right sidebar for more examples of how to apply VITS.
VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end
speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational
autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior.
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based
text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers,
much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text
input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to
synthesise speech with different rhythms from the same input text.
The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training.
To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During
inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the
waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor,
the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform.
The abstract from the paper is the following:
*Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.*
This model can also be used with TTS checkpoints from [Massively Multilingual Speech (MMS)](https://arxiv.org/abs/2305.13516)
as these checkpoints use the same architecture and a slightly modified tokenizer.
This model was contributed by [Matthijs](https://huggingface.co/Matthijs) and [sanchit-gandhi](https://huggingface.co/sanchit-gandhi). The original code can be found [here](https://github.com/jaywalnut310/vits).
## Usage examples
Both the VITS and MMS-TTS checkpoints can be used with the same API. Since the flow-based model is non-deterministic, it
is good practice to set a seed to ensure reproducibility of the outputs. For languages with a Roman alphabet,
such as English or French, the tokenizer can be used directly to pre-process the text inputs. The following code example
runs a forward pass using the MMS-TTS English checkpoint:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import VitsTokenizer, VitsModel, set_seed
from transformers import pipeline, set_seed
from scipy.io.wavfile import write
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
model = VitsModel.from_pretrained("facebook/mms-tts-eng")
set_seed(555)
inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
pipe = pipeline(
task="text-to-speech",
model="facebook/mms-tts-eng",
torch_dtype=torch.float16,
device=0
)
set_seed(555) # make deterministic
speech = pipe("Hello, my dog is cute")
# Extract audio data and sampling rate
audio_data = speech["audio"]
sampling_rate = speech["sampling_rate"]
# Save as WAV file
write("hello.wav", sampling_rate, audio_data.squeeze())
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
import scipy
from IPython.display import Audio
from transformers import AutoTokenizer, VitsModel, set_seed
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
model = VitsModel.from_pretrained("facebook/mms-tts-eng", torch_dtype=torch.float16).to("cuda")
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt").to("cuda")
set_seed(555)
with torch.no_grad():
outputs = model(**inputs)
outputs = model(**inputs)
waveform = outputs.waveform[0]
```
The resulting waveform can be saved as a `.wav` file:
```python
import scipy
scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=waveform)
```
Or displayed in a Jupyter Notebook / Google Colab:
```python
from IPython.display import Audio
scipy.io.wavfile.write("hello.wav", rate=model.config.sampling_rate, data=waveform)
# display in Colab notebook
Audio(waveform, rate=model.config.sampling_rate)
```
For certain languages with a non-Roman alphabet, such as Arabic, Mandarin or Hindi, the [`uroman`](https://github.com/isi-nlp/uroman)
perl package is required to pre-process the text inputs to the Roman alphabet.
</hfoption>
</hfoptions>
You can check whether you require the `uroman` package for your language by inspecting the `is_uroman` attribute of
the pre-trained `tokenizer`:
## Notes
```python
from transformers import VitsTokenizer
- Set a seed for reproducibility because VITS synthesizes speech non-deterministically.
- For languages with non-Roman alphabets (Korean, Arabic, etc.), install the [uroman](https://github.com/isi-nlp/uroman) package to preprocess the text inputs to the Roman alphabet. You can check if the tokenizer requires uroman as shown below.
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
print(tokenizer.is_uroman)
```
If the is_uroman attribute is `True`, the tokenizer will automatically apply the `uroman` package to your text inputs, but you need to install uroman if not already installed using:
```
pip install --upgrade uroman
```
Note: Python version required to use `uroman` as python package should be >= `3.10`.
You can use the tokenizer as usual without any additional preprocessing steps:
```python
import torch
from transformers import VitsTokenizer, VitsModel, set_seed
import os
import subprocess
```py
# pip install -U uroman
from transformers import VitsTokenizer
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor")
model = VitsModel.from_pretrained("facebook/mms-tts-kor")
text = "이봐 무슨 일이야"
inputs = tokenizer(text=text, return_tensors="pt")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
print(tokenizer.is_uroman)
```
set_seed(555) # make deterministic
with torch.no_grad():
outputs = model(inputs["input_ids"])
If your language requires uroman, the tokenizer automatically applies it to the text inputs. Python >= 3.10 doesn't require any additional preprocessing steps. For Python < 3.10, follow the steps below.
waveform = outputs.waveform[0]
```
If you don't want to upgrade to python >= `3.10`, then you can use the `uroman` perl package to pre-process the text inputs to the Roman alphabet.
To do this, first clone the uroman repository to your local machine and set the bash variable `UROMAN` to the local path:
```bash
git clone https://github.com/isi-nlp/uroman.git
cd uroman
export UROMAN=$(pwd)
```
Create a function to preprocess the inputs. You can either use the bash variable `UROMAN` or pass the directory path directly to the function.
```bash
git clone https://github.com/isi-nlp/uroman.git
cd uroman
export UROMAN=$(pwd)
```
```py
import torch
from transformers import VitsTokenizer, VitsModel, set_seed
import os
import subprocess
You can then pre-process the text input using the following code snippet. You can either rely on using the bash variable
`UROMAN` to point to the uroman repository, or you can pass the uroman directory as an argument to the `uromanize` function:
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor")
model = VitsModel.from_pretrained("facebook/mms-tts-kor")
```python
import torch
from transformers import VitsTokenizer, VitsModel, set_seed
import os
import subprocess
def uromanize(input_string, uroman_path):
"""Convert non-Roman strings to Roman using the `uroman` perl package."""
script_path = os.path.join(uroman_path, "bin", "uroman.pl")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor")
model = VitsModel.from_pretrained("facebook/mms-tts-kor")
command = ["perl", script_path]
def uromanize(input_string, uroman_path):
"""Convert non-Roman strings to Roman using the `uroman` perl package."""
script_path = os.path.join(uroman_path, "bin", "uroman.pl")
process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Execute the perl command
stdout, stderr = process.communicate(input=input_string.encode())
command = ["perl", script_path]
if process.returncode != 0:
raise ValueError(f"Error {process.returncode}: {stderr.decode()}")
process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Execute the perl command
stdout, stderr = process.communicate(input=input_string.encode())
# Return the output as a string and skip the new-line character at the end
return stdout.decode()[:-1]
if process.returncode != 0:
raise ValueError(f"Error {process.returncode}: {stderr.decode()}")
text = "이봐 무슨 일이야"
uromanized_text = uromanize(text, uroman_path=os.environ["UROMAN"])
# Return the output as a string and skip the new-line character at the end
return stdout.decode()[:-1]
inputs = tokenizer(text=uromanized_text, return_tensors="pt")
text = "이봐 무슨 일이야"
uromanized_text = uromanize(text, uroman_path=os.environ["UROMAN"])
set_seed(555) # make deterministic
with torch.no_grad():
outputs = model(inputs["input_ids"])
inputs = tokenizer(text=uromanized_text, return_tensors="pt")
set_seed(555) # make deterministic
with torch.no_grad():
outputs = model(inputs["input_ids"])
waveform = outputs.waveform[0]
```
waveform = outputs.waveform[0]
```
## VitsConfig
@ -177,10 +148,11 @@ waveform = outputs.waveform[0]
## VitsTokenizer
[[autodoc]] VitsTokenizer
- __call__
- save_vocabulary
- __call__
- save_vocabulary
## VitsModel
[[autodoc]] VitsModel
- forward
- forward

View File

@ -92,6 +92,11 @@ Use [`YolosImageProcessor`] for preparing images (and optional targets) for the
[[autodoc]] YolosImageProcessor
- preprocess
## YolosImageProcessorFast
[[autodoc]] YolosImageProcessorFast
- preprocess
- pad
- post_process_object_detection

View File

@ -244,7 +244,7 @@ model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B", device_m
### Benchmarks
FlashAttention2 speeds up inference considerably especially for inputs with long sequences. However, since FlashAttention2 doesn't support computing attention scores with padding tokens, you must manually pad and unpad the attention scores for batched inference if a sequence contains padding tokens. The downside is batched generation is slower with padding tokens.
FlashAttention2 speeds up inference considerably especially for inputs with long sequences. However, since FlashAttention2 doesn't support computing attention scores with padding tokens, you must manually pad and unpad the attention scores for batched inference if a sequence contains padding tokens. The downside is batched generation is slower with padding tokens.
<hfoptions id="padded">
<hfoption id="short sequence length">

View File

@ -111,7 +111,7 @@ This approach optimizes parallel data processing by reducing idle GPU utilizatio
Data, pipeline and model parallelism combine to form [3D parallelism](https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/) to optimize memory and compute efficiency.
Memory effiiciency is achieved by splitting the model across GPUs and also dividing it into stages to create a pipeline. This allows GPUs to work in parallel on micro-batches of data, reducing the memory usage of the model, optimizer, and activations.
Memory efficiency is achieved by splitting the model across GPUs and also dividing it into stages to create a pipeline. This allows GPUs to work in parallel on micro-batches of data, reducing the memory usage of the model, optimizer, and activations.
Compute efficiency is enabled by ZeRO data parallelism where each GPU only stores a slice of the model, optimizer, and activations. This allows higher communication bandwidth between data parallel nodes because communication can occur independently or in parallel with the other pipeline stages.

View File

@ -52,10 +52,10 @@ async def homepage(request):
return JSONResponse(output)
async def server_loop(q):
pipeline = pipeline(task="fill-mask",model="google-bert/bert-base-uncased")
pipe = pipeline(task="fill-mask",model="google-bert/bert-base-uncased")
while True:
(string, response_q) = await q.get()
out = pipeline(string)
out = pipe(string)
await response_q.put(out)
app = Starlette(
@ -81,6 +81,10 @@ Query the server with a POST request.
```bash
curl -X POST -d "Paris is the [MASK] of France." http://localhost:8000/
```
This should return the output below.
```bash
[{'score': 0.9969332218170166,
'token': 3007,
'token_str': 'capital',
@ -112,23 +116,27 @@ The example below is written in pseudocode for readability rather than performan
1. There is no batch size limit.
2. The timeout is reset on every queue fetch, so you could end up waiting much longer than the `timeout` value before processing a request. This would also delay the first inference request by that amount of time. The web server always waits 1ms even if the queue is empty, which is inefficient, because that time can be used to start inference. It could make sense though if batching is essential to your use case.
It would be better to have a single 1ms deadline, instead of resetting it on every fetch.
It would be better to have a single 1ms deadline, instead of resetting it on every fetch, as shown below.
```py
(string, rq) = await q.get()
strings = []
queues = []
while True:
try:
(string, rq) = await asyncio.wait_for(q.get(), timeout=0.001)
except asyncio.exceptions.TimeoutError:
break
strings.append(string)
queues.append(rq)
strings
outs = pipeline(strings, batch_size=len(strings))
for rq, out in zip(queues, outs):
await rq.put(out)
async def server_loop(q):
pipe = pipeline(task="fill-mask", model="google-bert/bert-base-uncased")
while True:
(string, rq) = await q.get()
strings = []
queues = []
strings.append(string)
queues.append(rq)
while True:
try:
(string, rq) = await asyncio.wait_for(q.get(), timeout=1)
except asyncio.exceptions.TimeoutError:
break
strings.append(string)
queues.append(rq)
outs = pipe(strings, batch_size=len(strings))
for rq, out in zip(queues, outs):
await rq.put(out)
```
## Error checking

View File

@ -0,0 +1,286 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# AutoRound
[AutoRound](https://github.com/intel/auto-round) is an advanced quantization algorithm that delivers strong accuracy, even at 2-bit precision.
It leverages sign gradient descent to fine-tune both rounding values and min-max clipping thresholds in just 200 steps. Designed for broad compatibility, it seamlessly supports a wide range of LLMs and is actively expanding to cover more VLMs as well.
It also supports quantization and inference across multiple hardware platforms, including CPU, XPU, and CUDA.
AutoRound also offers a variety of useful features, including mixed-bit tuning and inference, lm-head quantization, support for exporting to formats like GPTQ/AWQ/GGUF, and flexible tuning recipes.
For a comprehensive overview and the latest updates, check out the AutoRound [README](https://github.com/intel/auto-round).
AutoRound was originally developed as part of the [Intel Neural Compressor](https://github.com/intel/neural-compressor), serving as a general-purpose model compression library for deep learning.
It has since evolved into a standalone library focused specifically on low-precision optimization for large language models (LLMs).
AutoRound remains fully integrated with the Intel Neural Compressor, and you can explore the repository for more details.
## Installation
```bash
pip install auto-round
```
## Supported Quantization Configurations
AutoRound supports several quantization configurations:
- **Int8 Weight Only**
- **Int4 Weight Only**
- **Int3 Weight Only**
- **Int2 Weight Only**
- **Mixed bits Weight only**
## Hardware Compatibility
CPU, XPU, and CUDA for both quantization and inference.
## Quantization and Serialization (offline)
Currently, only offline mode is supported to generate quantized models.
<hfoptions id="quantization">
<hfoption id="quantization cmd">
### Command Line Usage
```bash
auto-round \
--model facebook/opt-125m \
--bits 4 \
--group_size 128 \
--output_dir ./tmp_autoround
```
AutoRound also offer another two recipes, `auto-round-best` and `auto-round-light`, designed for optimal accuracy and improved speed, respectively.
For 2 bits, we recommend using `auto-round-best` or `auto-round`.
</hfoption>
<hfoption id="quantization auto-round api">
### AutoRound API Usage
This setting offers a better trade-off between accuracy and tuning cost, and is recommended in all scenarios.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_round import AutoRound
model_name = "facebook/opt-125m"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
bits, group_size, sym = 4, 128, True
# mixed bits config
# layer_config = {"model.decoder.layers.6.self_attn.out_proj": {"bits": 2, "group_size": 32}}
autoround = AutoRound(
model,
tokenizer,
bits=bits,
group_size=group_size,
sym=sym,
# enable_torch_compile=True,
# layer_config=layer_config,
)
output_dir = "./tmp_autoround"
# format= 'auto_round'(default), 'auto_gptq', 'auto_awq'
autoround.quantize_and_save(output_dir, format='auto_round')
```
</hfoption>
<hfoption id="quantization auto-round-best">
### AutoRoundBest recipe
This setting provides the best accuracy in most scenarios but is 45× slower than the standard AutoRound recipe. It is especially recommended for 2-bit quantization and is a good choice if sufficient resources are available.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_round import AutoRound
model_name = "facebook/opt-125m"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
bits, group_size, sym = 4, 128, True
autoround = AutoRound(
model,
tokenizer,
bits=bits,
group_size=group_size,
sym=sym,
nsamples=512,
iters=1000,
low_gpu_mem_usage=True
)
output_dir = "./tmp_autoround"
autoround.quantize_and_save(output_dir, format='auto_round')
```
</hfoption>
<hfoption id="quantization auto-round-light">
### AutoRoundLight recipe
This setting offers the best speed (2 - 3X faster than AutoRound), but it may cause a significant accuracy drop for small models and 2-bit quantization. It is recommended for 4-bit settings and models larger than 3B.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_round import AutoRound
model_name = "facebook/opt-125m"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
bits, group_size, sym = 4, 128, True
autoround = AutoRound(
model,
tokenizer,
bits=bits,
group_size=group_size,
sym=sym,
iters=50,
lr=5e-3,
)
output_dir = "./tmp_autoround"
autoround.quantize_and_save(output_dir, format='auto_round')
```
</hfoption>
</hfoptions>
W4G128 Average Accuracy of 13 tasks (mmlu-pro, if_eval, gsm8k, etc) and Time Cost Results (Testing was conducted on the Nvidia A100 80G using the version of PyTorch 2.6.0 with enable_torch_compile):
| Model | Qwen2.5-0.5B-Instruct | Falcon3-3B | Qwen2.5-7B-Instruct | Meta-Llama-3.1-8B-Instruct | Falcon3-10B | Qwen2.5-72B-Instruct |
|---------|--------------------|---------------|------------------|----------------------------|---------------|-------------------|
| 16bits | 0.4192 | 0.5203 | 0.6470 | 0.6212 | 0.6151 | 0.7229 |
| Best | **0.4137**(7m) | **0.5142**(23m) | 0.6426(58m) | **0.6116**(65m) | **0.6092**(81m) | 0.7242(575m) |
| Default | 0.4129(2m) | 0.5133(6m) | 0.6441(13m) | 0.6106(13m) | 0.6080(18m) | **0.7252**(118m) |
| Light | 0.4052(2m) | 0.5108(3m) | **0.6453**(5m) | 0.6104(6m) | 0.6063(6m) | 0.7243(37m) |
## Inference
AutoRound automatically selects the best available backend based on the installed libraries and prompts the user to install additional libraries when a better backend is found.
<hfoptions id="inference">
<hfoption id="inference cpu">
### CPU
Supports 2, 4, and 8 bits. We recommend using intel-extension-for-pytorch (IPEX) for 4 bits inference.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OPEA/Qwen2.5-1.5B-Instruct-int4-sym-inc"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50, do_sample=False)[0]))
```
</hfoption>
<hfoption id="inference xpu">
### XPU
Supports 4 bits only. We recommend using intel-extension-for-pytorch (IPEX) for inference.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OPEA/Qwen2.5-1.5B-Instruct-int4-sym-inc"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="xpu", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50, do_sample=False)[0]))
```
</hfoption>
<hfoption id="inference cuda">
### CUDA
Supports 2, 3, 4, and 8 bits. We recommend using GPTQModel for 4 and 8 bits inference.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OPEA/Qwen2.5-1.5B-Instruct-int4-sym-inc"
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda", torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50, do_sample=False)[0]))
```
</hfoption>
<hfoption id="inference backend">
### Specify Inference Backend
AutoRound automatically selects the backend for each layer based on compatibility. In general, the priority order is Marlin > ExLLaMAV2 > Triton, but the final choice depends on factors such as group size, bit width, packing format, hardware device, and other implementation details. For more details, please refer to [backends](https://github.com/intel/auto-round?tab=readme-ov-file#specify-backend),
The backend may not always be the most suitable for certain devices.
You can specify your preferred backend such as "ipex" for CPU and CPU, "marlin/exllamav2/triton" for CUDA, according to your needs or hardware compatibility. Please note that additional corresponding libraries may be required.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoRoundConfig
model_name = "OPEA/Qwen2.5-1.5B-Instruct-int4-sym-inc"
quantization_config = AutoRoundConfig(backend="ipex")
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", quantization_config=quantization_config, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50, do_sample=False)[0]))
```
</hfoption>
<hfoption id="format convert">
### Convert GPTQ/AWQ to AutoRound
Most GPTQ/AWQ models can be converted to the AutoRound format for better compatibility and support with Intel devices. Please note that the quantization config will be changed if the model is serialized.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoRoundConfig
model_name = "ybelkada/opt-125m-gptq-4bit"
quantization_config = AutoRoundConfig()
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", quantization_config=quantization_config, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "There is a girl who likes adventure,"
inputs = tokenizer(text, return_tensors="pt").to(model.device)
print(tokenizer.decode(model.generate(**inputs, max_new_tokens=50, do_sample=False)[0]))
```
</hfoption>
</hfoptions>
## Issues
If you encounter any issues with the transformers integration, please open an issue on
the [transformers](https://github.com/huggingface/transformers/issues) repository.
If you encounter any issues with auto-round, please open an issue on
the [AutoRound](https://github.com/intel/auto-round/issues) repository.
## Acknowledgement
Special thanks to open-source low precision libraries such as AutoGPTQ, AutoAWQ, GPTQModel, Triton, Marlin, and ExLLaMAV2 for providing low-precision CUDA kernels, which are leveraged in AutoRound.
## Contribution
Contributions to [AutoRound](https://github.com/intel/auto-round/pulls) are welcome and greatly appreciated!
Whether it's fixing bugs, improving documentation, adding new features, or suggesting improvements, your help is always valued.

View File

@ -14,13 +14,21 @@ rendered properly in your Markdown viewer.
-->
# bitsandbytes
# Bitsandbytes
[bitsandbytes](https://github.com/bitsandbytes-foundation/bitsandbytes) features the LLM.int8 and QLoRA quantization to enable accessible large language model inference and training.
The [bitsandbytes](https://github.com/bitsandbytes-foundation/bitsandbytes) library provides quantization tools for LLMs through a lightweight Python wrapper around CUDA functions. It enables working with large models using limited computational resources by reducing their memory footprint.
[LLM.int8()](https://hf.co/papers/2208.07339) is a quantization method that aims to make large language model inference more accessible without significant degradation. Unlike naive 8-bit quantization, which can result in loss of critical information and accuracy, LLM.int8() dynamically adapts to ensure sensitive components of the computation retain higher precision when needed.
At its core, bitsandbytes provides:
QLoRA, or 4-bit quantization, compresses a model even further to 4-bits and inserts a small set of trainable low-rank adaptation (LoRA) weights to allowing training.
- **Quantized Linear Layers**: `Linear8bitLt` and `Linear4bit` layers that replace standard PyTorch linear layers with memory-efficient quantized alternatives
- **Optimized Optimizers**: 8-bit versions of common optimizers through its `optim` module, enabling training of large models with reduced memory requirements
- **Matrix Multiplication**: Optimized matrix multiplication operations that leverage the quantized format
bitsandbytes offers two main quantization features:
1. **LLM.int8()** - An 8-bit quantization method that makes inference more accessible without significant performance degradation. Unlike naive quantization, [LLM.int8()](https://hf.co/papers/2208.07339) dynamically preserves higher precision for critical computations, preventing information loss in sensitive parts of the model.
2. **QLoRA** - A 4-bit quantization technique that compresses models even further while maintaining trainability by inserting a small set of trainable low-rank adaptation (LoRA) weights.
> **Note:** For a user-friendly quantization experience, you can use the `bitsandbytes` [community space](https://huggingface.co/spaces/bnb-community/bnb-my-repo).
@ -30,12 +38,38 @@ Run the command below to install bitsandbytes.
```bash
pip install --upgrade transformers accelerate bitsandbytes
```
To compile from source, follow the instructions in the [bitsandbytes installation guide](https://huggingface.co/docs/bitsandbytes/main/en/installation).
## Hardware Compatibility
bitsandbytes is currently only supported on CUDA GPUs for CUDA versions 11.0 - 12.8. However, there's an ongoing multi-backend effort under development, which is currently in alpha. If you're interested in providing feedback or testing, check out the [bitsandbytes repository](https://github.com/bitsandbytes-foundation/bitsandbytes) for more information.
### CUDA
| Feature | Minimum Hardware Requirement |
|---------|-------------------------------|
| 8-bit optimizers | NVIDIA Maxwell (GTX 900 series, TITAN X, M40) or newer GPUs * |
| LLM.int8() | NVIDIA Turing (RTX 20 series, T4) or newer GPUs |
| NF4/FP4 quantization | NVIDIA Maxwell (GTX 900 series, TITAN X, M40) or newer GPUs * |
### Multi-backend
| Backend | Supported Versions | Python versions | Architecture Support | Status |
|---------|-------------------|----------------|---------------------|---------|
| AMD ROCm | 6.1+ | 3.10+ | minimum CDNA - gfx90a, RDNA - gfx1100 | Alpha |
| Apple Silicon (MPS) | WIP | 3.10+ | M1/M2 chips | Planned |
| Intel CPU | v2.4.0+ (ipex) | 3.10+ | Intel CPU | Alpha |
| Intel GPU | v2.4.0+ (ipex) | 3.10+ | Intel GPU | Experimental |
| Ascend NPU | 2.1.0+ (torch_npu) | 3.10+ | Ascend NPU | Experimental |
> **Note:** Bitsandbytes is moving away from the multi-backend approach towards using [Pytorch Custom Operators](https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html), as the main mechanism for supporting new hardware, and dispatching to the correct backend.
## Quantization Examples
Quantize a model by passing a [`BitsAndBytesConfig`] to [`~PreTrainedModel.from_pretrained`]. This works for any model in any modality, as long as it supports [Accelerate](https://huggingface.co/docs/accelerate/index) and contains [torch.nn.Linear](https://pytorch.org/docs/stable/generated/torch.nn.Linear.html) layers.
<hfoptions id="bnb">
<hfoption id="8-bit">
<div class="bnb-container" style="border: 1px solid #ddd; border-radius: 8px; padding: 20px; margin: 20px 0">
Quantizing a model in 8-bit halves the memory-usage, and for large models, set `device_map="auto"` to efficiently distribute the weights across all available GPUs.
```py
@ -45,6 +79,7 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model_8bit = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-1b7",
device_map="auto",
quantization_config=quantization_config
)
```
@ -59,6 +94,7 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model_8bit = AutoModelForCausalLM.from_pretrained(
"facebook/opt-350m",
device_map="auto",
quantization_config=quantization_config,
torch_dtype="auto"
)
@ -74,16 +110,16 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-560m",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
model.push_to_hub("bloom-560m-8bit")
```
</div>
</hfoption>
<hfoption id="4-bit">
<div class="bnb-container" style="border: 1px solid #ddd; border-radius: 8px; padding: 20px; margin: 20px 0">
Quantizing a model in 4-bit reduces your memory-usage by 4x, and for large models, set `device_map="auto"` to efficiently distribute the weights across all available GPUs.
```py
@ -93,6 +129,7 @@ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model_4bit = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-1b7",
device_map="auto",
quantization_config=quantization_config
)
```
@ -107,6 +144,7 @@ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model_4bit = AutoModelForCausalLM.from_pretrained(
"facebook/opt-350m",
device_map="auto",
quantization_config=quantization_config,
torch_dtype="auto"
)
@ -115,6 +153,20 @@ model_4bit.model.decoder.layers[-1].final_layer_norm.weight.dtype
Make sure you have the latest bitsandbytes version so you can serialize 4-bit models and push them to the Hub with [`~PreTrainedModel.push_to_hub`]. Use [`~PreTrainedModel.save_pretrained`] to save the 4-bit model locally.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-560m",
device_map="auto",
quantization_config=quantization_config
)
model.push_to_hub("bloom-560m-4bit")
```
</div>
</hfoption>
</hfoptions>

View File

@ -0,0 +1,178 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Quantization concepts
Quantization reduces the memory footprint and computational cost of large machine learning models like those found in the Transformers library. It achieves this by representing the model's weights and or activations with lower-precision data types (like 8-bit integers or int8) instead of the standard 32-bit floating-point (float32).
Reducing a model's precision offers several significant benefits:
- Smaller model size: Lower-precision data types require less storage space. An int8 model, for example, is roughly 4 times smaller than its float32 counterpart.
- Faster inference: Operations on lower-precision data types, especially integers, can be significantly faster on compatible hardware (CPUs and GPUs often have specialized instructions for int8 operations). This leads to lower latency.
- Reduced energy consumption: Faster computations and smaller memory transfers often translate to lower power usage.
The primary trade-off in quantization is *efficiency* vs. *accuracy*. Reducing precision saves resources but inevitably introduces small errors (quantization noise). The goal is to minimize this error using appropriate schemes (affine/symmetric), granularity (per-tensor/channel), and techniques (PTQ/QAT) so that the model's performance on its target task degrades as little as possible.
The sections below cover quantization schemes, granularity, and techniques.
## Quantization schemes
The core idea is to map the range of values found in the original float32 weights and activations to the much smaller range represented by int8 (typically \\([-128, 127]\\)).
This section covers how some quantization techniques work.
<div class="flex justify-center">
<img width="606" alt="quant_visual" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/quant_visual.png" />
</div>
### Affine quantization
The most common method is *affine quantization*. For a given float32 tensor (like a layer's weights), it finds the minimum \\(val_{min}\\) and maximum \\(val_{max}\\) values. This range \\([val_{min}, val_{max}]\\) is mapped to the int8 range \\([q_{min}, q_{max}]\\), which is typically \\([-128, 127]\\).
There are two main ways to perform this mapping, *symmetric* and *asymmetric*. The choice between symmetric and asymmetric quantization determines how the float32 range is mapped to the int8 range.
- Symmetric: This method assumes the original float32 range is symmetric around zero ( \\([ -a, a ]\\) ). This range is mapped symmetrically to the int8 range, for example, \\([-127, 127]\\). A key characteristic is that the float32 value \\(0.0\\) maps directly to the int8 value \\(0\\). This only requires one parameter, the **scale ( \\(S\\) )**, to define the mapping. It can simplify computations, but it might be less accurate if the original data distribution isn't naturally centered around zero.
- Asymmetric (Affine): This method does not assume the data is centered around zero. It maps the exact range \\([val_{min}, val_{max}]\\) from float32 to the full int8 range, like \\([-128, 127]\\). This requires two parameters, a **scale ( \\(S\\) )** and a **zero-point ( \\(Z\\) )**.
scale ( \\(S\\) ): A positive float32 number representing the ratio between the float32 and the int8 range.
$$
S = \frac{val_{max} - val_{min}}{q_{max} - q_{min}}
$$
zero-Point ( \\(Z\\) ): An int8 value that corresponds to the float32 value \\(0.0\\).
$$
Z = q_{min} - round\left(\frac{val_{min}}{S}\right)
$$
> [!TIP]
> In symmetric quantization, Z would typically be fixed at 0.
With these parameters, a float32 value, \\(x\\). can be quantized to int8 ( \\(q\\) ) with the formula below.
$$
q = round\left(\frac{x}{S} + Z\right)
$$
The int8 value, \\(q\\), can be dequantized back to approximate float32 with the formula below.
$$
x \approx S \cdot (q - Z)
$$
<div class="flex justify-center">
<img width="606" alt="dequant" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/dequant.png" />
</div>
During inference, computations like matrix multiplication are performed using the int8 values ( \\(q\\) ), and the result is dequantized back to float32 (often using a higher-precision accumulation type like int32 internally) before it is passed to the next layer.
### int4 and weight packing
<div class="flex justify-center">
<img width="606" alt="weight packing" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/weight_packing.png" />
</div>
int4 quantization further reduces the model size and memory usage (halving it compared to int8). The same affine or symmetric quantization principles apply, mapping the float32 range to the 16 possible values representable by int4 ( \\([-8, 7]\\) for signed int4).
A key aspect of int4 quantization is **weight packing**. Since most hardware can't natively handle 4-bit data types in memory, two int4 values are typically packed together into a single int8 byte for storage and transfer. For example, the first value might occupy the lower 4 bits and the second value the upper 4 bits of the byte (`packed_byte = (val1 & 0x0F) | (val2 << 4)`).
int4 is still beneficial even without native int4 compute because the primary benefit comes from reduced memory bandwidth. Loading packed int4 weights (stored as int8) from memory (RAM or VRAM) to the compute units is twice as fast as loading int8 weights. For large models, memory access is often a significant bottleneck. The speed up from faster data transfer can outweigh the computational overhead of unpacking and dequantizing on the fly, leading to overall faster inference, especially in memory-bound scenarios.
However, int4 quantization typically results in a larger accuracy drop compared to int8. Advanced quantization techniques like [GPTQ](./gptq) or [AWQ](./awq) are often necessary for good performance with int4.
### FP8 Quantization (A8W8)
<div class="flex justify-center">
<img width="606" alt="fp8" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/fp8.png" />
</div>
A newer datatype, 8-bit floating-point (FP8), offers another way to reduce precision while retaining more accuracy than int8 in certain scenarios. FP8 keeps the floating-point structure (sign, exponent, mantissa) but uses fewer bits.
There are two common FP8 variants.
- E4M3: 1 sign bit, 4 exponent bits, 3 mantissa bits. Offers higher precision (more mantissa bits) but a smaller dynamic range (fewer exponent bits).
- E5M2: 1 sign bit, 5 exponent bits, 2 mantissa bits. Offers a wider dynamic range but lower precision.
FP8 is used in the *A8W8* quantization scheme, which quantizes both activations (A) and weights (W) to 8-bit precision.
While int8 has broad support, efficient FP8 computation requires specific hardware capabilities found in newer GPUs like NVIDIA H100/H200/B100 and AMD Instinct MI300 series. Without native hardware acceleration, the benefits of FP8 might not be fully realized.
Transformers supports FP8 through specific backends like [FBGEMM](./fbgemm_fp8), [FineGrainedFP8](./finegrained_fp8), and [compressed-tensors](./compressed_tensors). These backends handle the underlying FP8 conversion and computation when the appropriate hardware and configurations are used.
## Granularity
Quantization parameters ( \\(S\\) and \\(Z\\)) can be calculated in one of two ways.
- Per-Tensor: One set of \\(S\\) and \\(Z\\) for the entire tensor. Simpler, but less accurate if data values vary greatly within the tensor.
- Per-Channel (or Per-Group/Block): Separate \\(S\\) and \\(Z\\) for each channel or group. More accurate and better performance at the cost of slightly more complexity and memory.
<div class="flex justify-center">
<img width="625" alt="Granularities" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Granularities.png" />
</div>
## Quantization techniques
There are two main types of quantization techniques.
- Post-Training Quantization (PTQ): Quantization is applied *after* the model is fully trained.
- Quantization-Aware Training (QAT): Quantization effects are simulated *during* training by inserting "fake quantization" ops that simulate the rounding errors of quantization. This lets the model adapt to quantization, and usually results in better accuracy, especially at lower bit-widths.
## Quantization in Transformers
Transformers integrates several quantization backends such as bitsandbytes, torchao, compressed-tensors, and more (refer to the quantization [overview](./overview) for more backends).
All backends are unified under the [`HfQuantizer`] API and associated [`QuantizationConfig`] classes. You can integrate your own custom quantization backends by implementing a custom [`HfQuantizer`] and [`QuantizationConfig`], as shown in the [Contribution](./contribute) guide.
The typical workflow for quantization in Transformers is to:
1. Choose a quantization method suitable for your hardware and use case (see the [Overview](./overview) or [Selecting a quantization method](./selecting) guide to help you).
2. Load a pre-quantized model from the Hugging Face Hub or load a float32/float16/bfloat16 model and apply a specific quantization method with [`QuantizationConfig`].
The example below demonstrates loading a 8B parameter model and quantizing it to 4-bits with bitsandbytes.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "meta-llama/Llama-3.1-8B-Instruct"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
torch_dtype=torch.bfloat16,
device_map="auto"
)
```
## Resources
To explore quantization and related performance optimization concepts more deeply, check out the following resources.
- [Quantization Fundamentals with Hugging Face](https://www.deeplearning.ai/short-courses/quantization-fundamentals-with-hugging-face/)
- [Quantization in Depth](https://www.deeplearning.ai/short-courses/quantization-in-depth)
- [Introduction to Quantization cooked in 🤗 with 💗🧑‍🍳](https://huggingface.co/blog/merve/quantization)
- [EfficientML.ai Lecture 5 - Quantization Part I](https://www.youtube.com/watch?v=RP23-dRVDWM)
- [Making Deep Learning Go Brrrr From First Principles](https://horace.io/brrr_intro.html)
- [Accelerating Generative AI with PyTorch Part 2: LLM Optimizations](https://pytorch.org/blog/accelerating-generative-ai-2/)

View File

@ -22,25 +22,26 @@ Transformers supports many quantization methods, each with their pros and cons,
Use the Space below to help you pick a quantization method depending on your hardware and number of bits to quantize to.
| Quantization Method | On the fly quantization | CPU | CUDA GPU | ROCm GPU | Metal (Apple Silicon) | Intel GPU | Torch compile() | Bits | PEFT Fine Tuning | Serializable with 🤗Transformers | 🤗Transformers Support | Link to library |
|-----------------------------------------------|----------------------|-----------------|----------|-----------|------------------------------------|-----------------|-----------------|---------------|------------------|-----------------------------|-------------------------|---------------------------------------------|
| [AQLM](./aqlm) | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 1/2 | 🟢 | 🟢 | 🟢 | https://github.com/Vahe1994/AQLM |
| [AWQ](./awq) | 🔴 | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | ? | 4 | 🟢 | 🟢 | 🟢 | https://github.com/casper-hansen/AutoAWQ |
| [bitsandbytes](./bitsandbytes) | 🟢 | 🟡 | 🟢 | 🟡 | 🔴 | 🟡 | 🔴 | 4/8 | 🟢 | 🟢 | 🟢 | https://github.com/bitsandbytes-foundation/bitsandbytes |
| [compressed-tensors](./compressed_tensors) | 🔴 | 🟢 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 1/8 | 🟢 | 🟢 | 🟢 | https://github.com/neuralmagic/compressed-tensors |
| [EETQ](./eetq) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | ? | 8 | 🟢 | 🟢 | 🟢 | https://github.com/NetEase-FuXi/EETQ |
| [GGUF / GGML (llama.cpp)](../gguf) | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 1/8 | 🔴 | [See Notes](../gguf) | [See Notes](../gguf) | https://github.com/ggerganov/llama.cpp |
| [GPTQModel](./gptq) | 🔴 | 🟢 | 🟢 | 🟢 | 🟢 | 🟢 | 🔴 | 2/3/4/8 | 🟢 | 🟢 | 🟢 | https://github.com/ModelCloud/GPTQModel |
| [AutoGPTQ](./gptq) | 🔴 | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 2/3/4/8 | 🟢 | 🟢 | 🟢 | https://github.com/AutoGPTQ/AutoGPTQ |
| [HIGGS](./higgs) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 2/4 | 🔴 | 🟢 | 🟢 | https://github.com/HanGuo97/flute |
| [HQQ](./hqq) | 🟢 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 1/8 | 🟢 | 🔴 | 🟢 | https://github.com/mobiusml/hqq/ |
| [optimum-quanto](./quanto) | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | 🔴 | 🟢 | 2/4/8 | 🔴 | 🔴 | 🟢 | https://github.com/huggingface/optimum-quanto |
| [FBGEMM_FP8](./fbgemm_fp8) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🔴 | 8 | 🔴 | 🟢 | 🟢 | https://github.com/pytorch/FBGEMM |
| [torchao](./torchao) | 🟢 | 🟢 | 🟢 | 🔴 | 🟡 | 🔴 | | 4/8 | | 🟢🔴 | 🟢 | https://github.com/pytorch/ao |
| [VPTQ](./vptq) | 🔴 | 🔴 | 🟢 | 🟡 | 🔴 | 🔴 | 🟢 | 1/8 | 🔴 | 🟢 | 🟢 | https://github.com/microsoft/VPTQ |
| [FINEGRAINED_FP8](./finegrained_fp8) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🔴 | 8 | 🔴 | 🟢 | 🟢 | |
| [SpQR](./spqr) | 🔴 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 3 | 🔴 | 🟢 | 🟢 | https://github.com/Vahe1994/SpQR/ |
| [Quark](./quark) | 🔴 | 🟢 | 🟢 | 🟢 | 🟢 | 🟢 | ? | 2/4/6/8/9/16 | 🔴 | 🔴 | 🟢 | https://quark.docs.amd.com/latest/ |
| Quantization Method | On the fly quantization | CPU | CUDA GPU | ROCm GPU | Metal (Apple Silicon) | Intel GPU | Torch compile() | Bits | PEFT Fine Tuning | Serializable with 🤗Transformers | 🤗Transformers Support | Link to library |
|-------------------------------------------|----------------------|-----------------|----------|-----------|------------------------------------|-----------------|-----------------|--------------|------------------|-----------------------------|-------------------------|---------------------------------------------|
| [AQLM](./aqlm) | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 1/2 | 🟢 | 🟢 | 🟢 | https://github.com/Vahe1994/AQLM |
| [AutoRound](./auto_round) | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🟢 | 🔴 | 2/3/4/8 | 🔴 | 🟢 | 🟢 | https://github.com/intel/auto-round |
| [AWQ](./awq) | 🔴 | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | ? | 4 | 🟢 | 🟢 | 🟢 | https://github.com/casper-hansen/AutoAWQ |
| [bitsandbytes](./bitsandbytes) | 🟢 | 🟡 | 🟢 | 🟡 | 🔴 | 🟡 | 🔴 | 4/8 | 🟢 | 🟢 | 🟢 | https://github.com/bitsandbytes-foundation/bitsandbytes |
| [compressed-tensors](./compressed_tensors) | 🔴 | 🟢 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 1/8 | 🟢 | 🟢 | 🟢 | https://github.com/neuralmagic/compressed-tensors |
| [EETQ](./eetq) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | ? | 8 | 🟢 | 🟢 | 🟢 | https://github.com/NetEase-FuXi/EETQ |
| [GGUF / GGML (llama.cpp)](../gguf) | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 1/8 | 🔴 | [See Notes](../gguf) | [See Notes](../gguf) | https://github.com/ggerganov/llama.cpp |
| [GPTQModel](./gptq) | 🔴 | 🟢 | 🟢 | 🟢 | 🟢 | 🟢 | 🔴 | 2/3/4/8 | 🟢 | 🟢 | 🟢 | https://github.com/ModelCloud/GPTQModel |
| [AutoGPTQ](./gptq) | 🔴 | 🔴 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 2/3/4/8 | 🟢 | 🟢 | 🟢 | https://github.com/AutoGPTQ/AutoGPTQ |
| [HIGGS](./higgs) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 2/4 | 🔴 | 🟢 | 🟢 | https://github.com/HanGuo97/flute |
| [HQQ](./hqq) | 🟢 | 🟢 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 1/8 | 🟢 | 🔴 | 🟢 | https://github.com/mobiusml/hqq/ |
| [optimum-quanto](./quanto) | 🟢 | 🟢 | 🟢 | 🔴 | 🟢 | 🔴 | 🟢 | 2/4/8 | 🔴 | 🔴 | 🟢 | https://github.com/huggingface/optimum-quanto |
| [FBGEMM_FP8](./fbgemm_fp8) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🔴 | 8 | 🔴 | 🟢 | 🟢 | https://github.com/pytorch/FBGEMM |
| [torchao](./torchao) | 🟢 | 🟢 | 🟢 | 🔴 | 🟡 | 🔴 | | 4/8 | | 🟢🔴 | 🟢 | https://github.com/pytorch/ao |
| [VPTQ](./vptq) | 🔴 | 🔴 | 🟢 | 🟡 | 🔴 | 🔴 | 🟢 | 1/8 | 🔴 | 🟢 | 🟢 | https://github.com/microsoft/VPTQ |
| [FINEGRAINED_FP8](./finegrained_fp8) | 🟢 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🔴 | 8 | 🔴 | 🟢 | 🟢 | |
| [SpQR](./spqr) | 🔴 | 🔴 | 🟢 | 🔴 | 🔴 | 🔴 | 🟢 | 3 | 🔴 | 🟢 | 🟢 | https://github.com/Vahe1994/SpQR/ |
| [Quark](./quark) | 🔴 | 🟢 | 🟢 | 🟢 | 🟢 | 🟢 | ? | 2/4/6/8/9/16 | 🔴 | 🔴 | 🟢 | https://quark.docs.amd.com/latest/ |
## Resources

View File

@ -0,0 +1,157 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Selecting a quantization method
There are many quantization methods available in Transformers for inference and fine-tuning. This guide helps you choose the most common and production-ready quantization techniques depending on your use case, and presents the advantages and disadvantages of each technique.
For a comprehensive overview of all supported methods and their features, refer back to the table in the [Overview](./overview).
## Inference
Consider the quantization methods below for inference.
| quantization method | use case |
|---|---|
| bitsandbytes | ease of use and QLoRA fine-tuning on NVIDIA GPUs |
| compressed-tensors | loading specific quantized formats (FP8, Sparse) |
| GPTQModel or AWQ | good 4-bit accuracy with upfront calibration |
| HQQ | fast on the fly quantization without calibration |
| torchao | flexibility and fast inference with torch.compile |
### No Calibration Required (On-the-fly Quantization)
These methods are generally easier to use as they don't need a separate calibration dataset or step.
#### bitsandbytes
| Pros | Cons |
|--------------------------------------------------------------|---------------------------------------------------------|
| Very simple, no calibration dataset required for inference. | Primarily optimized for NVIDIA GPUs (CUDA). |
| Good community support and widely adopted. | Inference speedup isn't guaranteed. |
See the [bitsandbytes documentation](./bitsandbytes) for more details.
#### HQQ (Half-Quadratic Quantization)
| Pros | Cons |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|
| Fast quantization process, no calibration data needed. | Accuracy can degrade significantly at bit depths <4-bit. |
| Multiple backends for fast inference. | Inference speed may not match others unless using `torch.compile` or backends. |
| Compatible with `torch.compile`. | |
| Supports wide range of bit depths (8, 4, 3, 2, 1-bit). | |
See the [HQQ documentation](./hqq) for more details.
#### torchao
| Pros | Cons |
|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Strong integration with `torch.compile` for potential speedups. | Newer library, ecosystem still evolving. |
| Offers decent CPU quantization support. | Performance depends on `torch.compile` working well. |
| Flexibility in quantization schemes (int8, int4, fp8). | 4-bit quantization (int4wo) may not match GPTQ/AWQ in accuracy. |
See the [torchao documentation](./torchao) for more details.
### Calibration-based Quantization
These methods require an upfront calibration step using a dataset to potentially achieve higher accuracy.
#### GPTQ/GPTQModel
Calibration for 8B model takes ~20 minutes on one A100 gpu.
| Pros | Cons |
|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Often achieves high accuracy. | Requires a calibration dataset and a separate calibration step. |
| Can lead to inference speedups. | Possible to overfit on calibration data. |
| Many pre-quantized GPTQ models on [Hugging Face Hub](https://huggingface.co/models?other=gptq). | |
See the [GPTQ documentation](./gptq) for more details.
#### AWQ (Activation-aware Weight Quantization)
Calibration for 8B model takes ~10 minutes on one A100 gpu.
| Pros | Cons |
|----------------------------------------------------------------------|-----------------------------------------------------|
| Often achieves high accuracy at 4-bit. (Sometimes surpasses GPTQ on specific tasks.) | Requires calibration if quantizing yourself. |
| Can lead to inference speedups. | |
| Shorter calibration time than GPTQ. | |
| Many pre-quantized AWQ models on [Hugging Face Hub](https://huggingface.co/models?other=awq). | |
See the [AWQ documentation](./awq) for more details.
### Loading Specific Formats
#### compressed-tensors
| Pros | Cons |
|--------------------------------------------------------------|-------------------------------------------------------------|
| Supports flexible formats including FP8 and sparsity. | Primarily for loading pre-quantized models. |
| | Doesn't perform quantization within Transformers directly. |
See the [compressed-tensors documentation](./compressed_tensors) for more details.
## Fine-tuning
Consider the quantization method below during fine-tuning to save memory.
### bitsandbytes[[training]]
* **Description:** The standard method for QLoRA fine-tuning via PEFT.
* **Pros:** Enables fine-tuning large models on consumer GPUs; widely supported and documented for PEFT.
* **Cons:** Primarily for NVIDIA GPUs.
Other methods offer PEFT compatibility, though bitsandbytes is the most established and straightforward path for QLoRA.
See the [bitsandbytes documentation](./bitsandbytes#qlora) and [PEFT Docs](https://huggingface.co/docs/peft/developer_guides/quantization#aqlm-quantization) for more details.
## Research
Methods like [AQLM](./aqlm), [SpQR](./spqr), [VPTQ](./vptq), [HIGGS](./higgs), etc., push the boundaries of compression (< 2-bit) or explore novel techniques.
* Consider these if:
* You need extreme compression (sub-4-bit).
* You are conducting research or require state-of-the-art results from their respective papers.
* You have significant compute resources available for potentially complex quantization procedures.
We recommend consulting each methods documentation and associated papers carefully before choosing one for use in production.
## Benchmark Comparison
To provide a quantitative comparison of different quantization methods, we benchmarked several popular techniques on the Llama 3.1 8B and 70B models. The following tables show results for accuracy (higher is better), inference throughput measured in tokens/second (higher is better), peak VRAM usage measured in GB (lower is better), and quantization time.
Performance metrics were measured on 2 NVIDIA A100 80GB GPU for Llama 3.1 70B (bfloat16), 1 NVIDIA H100 80GB GPU for FP8 methods, and 1 NVIDIA A100 80GB GPU for all other methods. Throughput was measured with a batch size of 1 and generating 64 tokens.
Results for `torch.compile` and Marlin kernels are included where applicable and supported.
<iframe
src="https://huggingface.co/datasets/derekl35/quantization-benchmarks/embed/viewer/default/train"
frameborder="0"
width="100%"
height="560px"
title="benchmarking results dataset"
></iframe>
The key takeaways are:
| Quantization & Methods | Memory Savings (vs bf16) | Accuracy | Other Notes |
|-------------------------------------------- |------------------------- |--------------------- |------------------------------------------------------------------- |
| **8-bit** (bnb-int8, HQQ, Quanto, torchao, fp8) | ~2x | Very close to baseline bf16 model | |
| **4-bit** (AWQ, GPTQ, HQQ, bnb-nf4) | ~4x | Relatively high accuracy | AWQ/GPTQ often lead in accuracy but need calibration. HQQ/bnb-nf4 are easy on-the-fly. |
| **Sub-4-bit** (VPTQ, AQLM, 2-bit GPTQ) | Extreme (>4x) | Noticeable drop, especially at 2-bit | Quantization times can be very long (AQLM, VPTQ). Performance varies. |
> [!TIP]
> Always benchmark the performance (accuracy and speed) of the quantized model on your specific task and hardware to ensure it meets your requirements. Refer to the individual documentation pages linked above for detailed usage instructions.

View File

@ -11,50 +11,100 @@ rendered properly in your Markdown viewer.
# torchao
[![Open In Colab: Torchao Demo](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/transformers_doc/en/quantization/torchao.ipynb)
[torchao](https://github.com/pytorch/ao) is a PyTorch architecture optimization library with support for custom high performance data types, quantization, and sparsity. It is composable with native PyTorch features such as [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) for even faster inference and training.
Install torchao with the following command.
See the table below for additional torchao features.
| Feature | Description |
|--------|-------------|
| **Quantization Aware Training (QAT)** | Train quantized models with minimal accuracy loss (see [QAT README](https://github.com/pytorch/ao/blob/main/torchao/quantization/qat/README.md)) |
| **Float8 Training** | High-throughput training with float8 formats (see [torchtitan](https://github.com/pytorch/torchtitan/blob/main/docs/float8.md) and [Accelerate](https://huggingface.co/docs/accelerate/usage_guides/low_precision_training#configuring-torchao) docs) |
| **Sparsity Support** | Semi-structured (2:4) sparsity for faster inference (see [Accelerating Neural Network Training with Semi-Structured (2:4) Sparsity](https://pytorch.org/blog/accelerating-neural-network-training/) blog post) |
| **Optimizer Quantization** | Reduce optimizer state memory with 4 and 8-bit variants of Adam |
| **KV Cache Quantization** | Enables long context inference with lower memory (see [KV Cache Quantization](https://github.com/pytorch/ao/blob/main/torchao/_models/llama/README.md)) |
| **Custom Kernels Support** | use your own `torch.compile` compatible ops |
| **FSDP2** | Composable with FSDP2 for training|
> [!TIP]
> Refer to the torchao [README.md](https://github.com/pytorch/ao#torchao-pytorch-architecture-optimization) for more details about the library.
torchao supports the [quantization techniques](https://github.com/pytorch/ao/blob/main/torchao/quantization/README.md) below.
- A16W8 Float8 Dynamic Quantization
- A16W8 Float8 WeightOnly Quantization
- A8W8 Int8 Dynamic Quantization
- A16W8 Int8 Weight Only Quantization
- A16W4 Int4 Weight Only Quantization
- Autoquantization
Check the table below to see if your hardware is compatible.
| Component | Compatibility |
|----------|----------------|
| CUDA Versions | ✅ cu118, cu126, cu128 |
| CPU | ✅ change `device_map="cpu"` (see examples below) |
Install torchao from PyPi or the PyTorch index with the following commands.
<hfoptions id="install torchao">
<hfoption id="PyPi">
```bash
# Updating 🤗 Transformers to the latest version, as the example script below uses the new auto compilation
pip install --upgrade torch torchao transformers
# Stable release from Pypi which will default to CUDA 12.6
pip install --upgrade torchao transformers
```
</hfoption>
<hfoption id="PyTorch Index">
Stable Release from the PyTorch index
```bash
pip install torchao --index-url https://download.pytorch.org/whl/cu126 # options are cpu/cu118/cu126/cu128
```
</hfoption>
</hfoptions>
torchao supports many quantization types for different data types (int4, float8, weight only, etc.).
Starting with version 0.10.0, torchao provides enhanced flexibility through the `AOBaseConfig` API, allowing for more customized quantization configurations.
And full access to the techniques offered in the torchao library.
If your torcha version is below 0.10.0, you need to upgrade it, please refer to the [deprecation notice](#deprecation-notice) for more details.
## Quantization examples
TorchAO provides a variety of quantization configurations. Each configuration can be further customized with parameters such as `group_size`, `scheme`, and `layout` to optimize for specific hardware and model architectures.
For a complete list of available configurations, see the [quantization API documentation](https://github.com/pytorch/ao/blob/main/torchao/quantization/quant_api.py).
You can manually choose the quantization types and settings or automatically select the quantization types.
<hfoptions id="torchao">
<hfoption id="manual">
Create a [`TorchAoConfig`] and specify the quantization type and `group_size` of the weights to quantize (for int8 weight only and int4 weight only). Set the `cache_implementation` to `"static"` to automatically [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) the forward method.
We'll show examples for recommended quantization methods based on hardwares, e.g. A100 GPU, H100 GPU, CPU.
Create a [`TorchAoConfig`] and specify the quantization type and `group_size` of the weights to quantize. Set the `cache_implementation` to `"static"` to automatically [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) the forward method.
> [!TIP]
> Run the quantized model on a CPU by changing `device_map` to `"cpu"` and `layout` to `Int4CPULayout()`. This is only available in torchao 0.8.0+.
In torchao 0.10.0+, you can use the more flexible `AOBaseConfig` approach instead of string identifiers:
### H100 GPU
<hfoptions id="examples-H100-GPU">
<hfoption id="float8-dynamic-and-weight-only">
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int4WeightOnlyConfig
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
# Using AOBaseConfig instance (torchao >= 0.10.0)
quant_config = Int4WeightOnlyConfig(group_size=128)
quant_config = Float8DynamicActivationFloat8WeightConfig()
# or float8 weight only quantization
# quant_config = Float8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B",
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
@ -62,22 +112,302 @@ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="int4-weight-only">
## Available Quantization Schemes
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import GemliteUIntXWeightOnlyConfig
TorchAO provides a variety of quantization configurations:
# We integrated with gemlite, which optimizes for batch size N on A100 and H100
quant_config = GemliteUIntXWeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_config)
- `Int4WeightOnlyConfig`
- `Int8WeightOnlyConfig`
- `Int8DynamicActivationInt8WeightConfig`
- `Float8WeightOnlyConfig`
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
Each configuration can be further customized with parameters such as `group_size`, `scheme`, and `layout` to optimize for specific hardware and model architectures.
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
For a complete list of available configurations, see our [quantization API documentation](https://github.com/pytorch/ao/blob/main/torchao/quantization/quant_api.py).
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
### A100 GPU
<hfoptions id="examples-A100-GPU">
<hfoption id="int8-dynamic-and-weight-only">
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int8DynamicActivationInt8WeightConfig
quant_config = Int8DynamicActivationInt8WeightConfig()
# or int8 weight only quantization
# quant_config = Int8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="int4-weight-only">
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import GemliteUIntXWeightOnlyConfig
# For batch size N, we recommend gemlite, which may require autotuning
# default is 4 bit, 8 bit is also supported by passing `bit_width=8`
quant_config = GemliteUIntXWeightOnlyConfig(group_size=128)
# For batch size 1, we also have custom tinygemm kernel that's only optimized for this
# We can set `use_hqq` to `True` for better accuracy
# quant_config = Int4WeightOnlyConfig(group_size=128, use_hqq=True)
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
### CPU
<hfoptions id="examples-CPU">
<hfoption id="int8-dynamic-and-weight-only">
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int8DynamicActivationInt8WeightConfig
quant_config = Int8DynamicActivationInt8WeightConfig()
# quant_config = Int8WeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="cpu",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="int4-weight-only">
> [!TIP]
> Run the quantized model on a CPU by changing `device_map` to `"cpu"` and `layout` to `Int4CPULayout()`.
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int4WeightOnlyConfig
from torchao.dtypes import Int4CPULayout
quant_config = Int4WeightOnlyConfig(group_size=128, layout=Int4CPULayout())
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="cpu",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
</hfoptions>
### Autoquant
If you want to automatically choose a quantization type for quantizable layers (`nn.Linear`) you can use the [autoquant](https://pytorch.org/ao/stable/generated/torchao.quantization.autoquant.html#torchao.quantization.autoquant) API.
The `autoquant` API automatically chooses a quantization type by micro-benchmarking on input type and shape and compiling a single linear layer.
Note: autoquant is for GPU only right now.
Create a [`TorchAoConfig`] and set to `"autoquant"`. Set the `cache_implementation` to `"static"` to automatically [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) the forward method. Finally, call `finalize_autoquant` on the quantized model to finalize the quantization and log the input shapes.
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
quantization_config = TorchAoConfig("autoquant", min_sqnr=None)
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
# explicitly call `finalize_autoquant` (may be refactored and removed in the future)
quantized_model.finalize_autoquant()
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Serialization
torchao implements [torch.Tensor subclasses](https://pytorch.org/docs/stable/notes/extending.html#subclassing-torch-tensor) for maximum flexibility in supporting new quantized torch.Tensor formats. [Safetensors](https://huggingface.co/docs/safetensors/en/index) serialization and deserialization does not work with torchao.
To avoid arbitrary user code execution, torchao sets `weights_only=True` in [torch.load](https://pytorch.org/docs/stable/generated/torch.load.html) to ensure only tensors are loaded. Any known user functions can be whitelisted with [add_safe_globals](https://pytorch.org/docs/stable/notes/serialization.html#torch.serialization.add_safe_globals).
<hfoptions id="serialization-examples">
<hfoption id="save-locally">
```py
# don't serialize model with Safetensors
output_dir = "llama3-8b-int4wo-128"
quantized_model.save_pretrained("llama3-8b-int4wo-128", safe_serialization=False)
```
</hfoption>
<hfoption id="push-to-huggingface-hub">
```py
# don't serialize model with Safetensors
USER_ID = "your_huggingface_user_id"
REPO_ID = "llama3-8b-int4wo-128"
quantized_model.push_to_hub(f"{USER_ID}/llama3-8b-int4wo-128", safe_serialization=False)
tokenizer.push_to_hub(f"{USER_ID}/llama3-8b-int4wo-128")
```
</hfoption>
</hfoptions>
## Loading quantized models
Loading a quantized model depends on the quantization scheme. For quantization schemes, like int8 and float8, you can quantize the model on any device and also load it on any device. The example below demonstrates quantizing a model on the CPU and then loading it on CUDA.
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int8WeightOnlyConfig
quant_config = Int8WeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="cpu",
quantization_config=quantization_config
)
# save the quantized model
output_dir = "llama-3.1-8b-torchao-int8-cuda"
quantized_model.save_pretrained(output_dir, safe_serialization=False)
# reload the quantized model
reloaded_model = AutoModelForCausalLM.from_pretrained(
output_dir,
device_map="auto",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
output = reloaded_model.generate(**input_ids, max_new_tokens=10)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
For int4, the model can only be loaded on the same device it was quantized on because the layout is specific to the device. The example below demonstrates quantizing and loading a model on the CPU.
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
from torchao.quantization import Int4WeightOnlyConfig
from torchao.dtypes import Int4CPULayout
quant_config = Int4WeightOnlyConfig(group_size=128, layout=Int4CPULayout())
quantization_config = TorchAoConfig(quant_type=quant_config)
# Load and quantize the model
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype="auto",
device_map="cpu",
quantization_config=quantization_config
)
# save the quantized model
output_dir = "llama-3.1-8b-torchao-int4-cpu"
quantized_model.save_pretrained(output_dir, safe_serialization=False)
# reload the quantized model
reloaded_model = AutoModelForCausalLM.from_pretrained(
output_dir,
device_map="cpu",
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt")
output = reloaded_model.generate(**input_ids, max_new_tokens=10)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## ⚠️ Deprecation Notice
> **⚠️ DEPRECATION WARNING**
>
> Starting with version 0.10.0, the string-based API for quantization configuration (e.g., `TorchAoConfig("int4_weight_only", group_size=128)`) is **deprecated** and will be removed in a future release.
>
> Please use the new `AOBaseConfig`-based approach instead:
@ -94,7 +424,7 @@ For a complete list of available configurations, see our [quantization API docum
>
> The new API offers greater flexibility, better type safety, and access to the full range of features available in torchao.
>
> ## Migration Guide
> [Migration Guide](#migration-guide)
>
> Here's how to migrate from common string identifiers to their `AOBaseConfig` equivalents:
>
@ -107,30 +437,10 @@ For a complete list of available configurations, see our [quantization API docum
> All configuration objects accept parameters for customization (e.g., `group_size`, `scheme`, `layout`).
Below is the API for for torchao < `0.9.0`
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
## Resources
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Run the code below to benchmark the quantized models performance.
For a better sense of expected performance, view the [benchmarks](https://github.com/pytorch/ao/tree/main/torchao/quantization#benchmarks) for various models with CUDA and XPU backends. You can also run the code below to benchmark a model yourself.
```py
from torch._inductor.utils import do_bench_using_profiling
@ -153,76 +463,8 @@ print("bf16 model:", benchmark_fn(bf16_model.generate, **input_ids, max_new_toke
> [!TIP]
> For best performance, you can use recommended settings by calling `torchao.quantization.utils.recommended_inductor_config_setter()`
</hfoption>
<hfoption id="automatic">
The [autoquant](https://pytorch.org/ao/stable/generated/torchao.quantization.autoquant.html#torchao.quantization.autoquant) API automatically chooses a quantization type for quantizable layers (`nn.Linear`) by micro-benchmarking on input type and shape and compiling a single linear layer.
Create a [`TorchAoConfig`] and set to `"autoquant"`. Set the `cache_implementation` to `"static"` to automatically [torch.compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) the forward method. Finally, call `finalize_autoquant` on the quantized model to finalize the quantization and log the input shapes.
> [!TIP]
> Run the quantized model on a CPU by changing `device_map` to `"cpu"` and `layout` to `Int4CPULayout()`. This is only available in torchao 0.8.0+.
```py
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
quantization_config = TorchAoConfig("autoquant", min_sqnr=None)
quantized_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B",
torch_dtype="auto",
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
# auto-compile the quantized model with `cache_implementation="static"` to get speed up
output = quantized_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static")
# explicitly call `finalize_autoquant` (may be refactored and removed in the future)
quantized_model.finalize_autoquant()
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
Run the code below to benchmark the quantized models performance.
```py
from torch._inductor.utils import do_bench_using_profiling
from typing import Callable
def benchmark_fn(func: Callable, *args, **kwargs) -> float:
"""Thin wrapper around do_bench_using_profiling"""
no_args = lambda: func(*args, **kwargs)
time = do_bench_using_profiling(no_args)
return time * 1e3
MAX_NEW_TOKENS = 1000
print("autoquantized model:", benchmark_fn(quantized_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
bf16_model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16)
output = bf16_model.generate(**input_ids, max_new_tokens=10, cache_implementation="static") # auto-compile
print("bf16 model:", benchmark_fn(bf16_model.generate, **input_ids, max_new_tokens=MAX_NEW_TOKENS, cache_implementation="static"))
```
</hfoption>
</hfoptions>
## Serialization
torchao implements [torch.Tensor subclasses](https://pytorch.org/docs/stable/notes/extending.html#subclassing-torch-tensor) for maximum flexibility in supporting new quantized torch.Tensor formats. [Safetensors](https://huggingface.co/docs/safetensors/en/index) serialization and deserialization does not work with torchao.
To avoid arbitrary user code execution, torchao sets `weights_only=True` in [torch.load](https://pytorch.org/docs/stable/generated/torch.load.html) to ensure only tensors are loaded. Any known user functions can be whitelisted with [add_safe_globals](https://pytorch.org/docs/stable/notes/serialization.html#torch.serialization.add_safe_globals).
```py
# don't serialize model with Safetensors
output_dir = "llama3-8b-int4wo-128"
quantized_model.save_pretrained("llama3-8b-int4wo-128", safe_serialization=False)
```
## Resources
For a better sense of expected performance, view the [benchmarks](https://github.com/pytorch/ao/tree/main/torchao/quantization#benchmarks) for various models with CUDA and XPU backends.
Refer to [Other Available Quantization Techniques](https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques) for more examples and documentation.
## Issues
If you encounter any issues with the Transformers integration, please open an issue on the [Transformers](https://github.com/huggingface/transformers/issues) repository. For issues directly related to torchao, please open an issue on the [torchao](https://github.com/pytorch/ao/issues) repository.

View File

@ -160,7 +160,48 @@ outputs[0]["generated_text"]
# with a yellow center in the foreground. The flower is surrounded by red and white flowers with green stems
```
## Streaming
If you prefer, you can also load the images separately and pass them to the pipeline like so:
```python
pipe = pipeline("image-text-to-text", model="HuggingFaceTB/SmolVLM-256M-Instruct")
img_urls = [
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png",
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg",
]
images = [
Image.open(requests.get(img_urls[0], stream=True).raw),
Image.open(requests.get(img_urls[1], stream=True).raw),
]
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "image"},
{"type": "text", "text": "What do you see in these images?"},
],
}
]
outputs = pipe(text=messages, images=images, max_new_tokens=50, return_full_text=False)
outputs[0]["generated_text"]
" In the first image, there are two cats sitting on a plant. In the second image, there are flowers with a pinkish hue."
```
The images will still be included in the `"input_text"` field of the output:
```python
outputs[0]['input_text']
"""
[{'role': 'user',
'content': [{'type': 'image',
'image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=622x412>},
{'type': 'image',
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=5184x3456>},
{'type': 'text', 'text': 'What do you see in these images?'}]}]## Streaming
"""
```
We can use [text streaming](./generation_strategies#streaming) for a better generation experience. Transformers supports streaming with the [`TextStreamer`] or [`TextIteratorStreamer`] classes. We will use the [`TextIteratorStreamer`] with IDEFICS-8B.

View File

@ -0,0 +1,144 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Visual document retrieval
Documents can contain multimodal data if they include charts, tables, and visuals in addition to text. Retrieving information from these documents is challenging because text retrieval models alone can't handle visual data and image retrieval models lack the granularity and document processing capabilities.
Visual document retrieval can help retrieve information from all types of documents, including multimodal retrieval augmented generation (RAG). These models accept documents (as images) and texts and calculates the similarity scores between them.
This guide demonstrates how to index and retrieve documents with [ColPali](../model_doc/colpali).
> [!TIP]
> For large scale use cases, you may want to index and retrieve documents with a vector database.
Make sure Transformers and Datasets is installed.
```bash
pip install -q datasets transformers
```
We will index a dataset of documents related to UFO sightings. We filter the examples where our column of interest is missing. It contains several columns, we are interested in the column `specific_detail_query` where it contains short summary of the document, and `image` column that contains our documents.
```python
from datasets import load_dataset
dataset = load_dataset("davanstrien/ufo-ColPali")
dataset = dataset["train"]
dataset = dataset.filter(lambda example: example["specific_detail_query"] is not None)
dataset
```
```
Dataset({
features: ['image', 'raw_queries', 'broad_topical_query', 'broad_topical_explanation', 'specific_detail_query', 'specific_detail_explanation', 'visual_element_query', 'visual_element_explanation', 'parsed_into_json'],
num_rows: 2172
})
```
Let's load the model and the tokenizer.
```python
import torch
from transformers import ColPaliForRetrieval, ColPaliProcessor
model_name = "vidore/colpali-v1.2-hf"
processor = ColPaliProcessor.from_pretrained(model_name)
model = ColPaliForRetrieval.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="cuda",
).eval()
```
Pass the text query to the processor and return the indexed text embeddings from the model. For image-to-text search, replace the `text` parameter in [`ColPaliProcessor`] with the `images` parameter to pass images.
```python
inputs = processor(text="a document about Mars expedition").to("cuda")
with torch.no_grad():
text_embeds = model(**inputs, return_tensors="pt").embeddings
```
Index the images offline, and during inference, return the query text embeddings to get its closest image embeddings.
Store the image and image embeddings by writing them to the dataset with [`~datasets.Dataset.map`] as shown below. Add an `embeddings` column that contains the indexed embeddings. ColPali embeddings take up a lot of storage, so remove them from the GPU and store them in the CPU as NumPy vectors.
```python
ds_with_embeddings = dataset.map(lambda example: {'embeddings': model(**processor(images=example["image"]).to("cuda"), return_tensors="pt").embeddings.to(torch.float32).detach().cpu().numpy()})
```
For online inference, create a function to search the image embeddings in batches and retrieve the k-most relevant images. The function below returns the indices in the dataset and their scores for a given indexed dataset, text embeddings, number of top results, and the batch size.
```python
def find_top_k_indices_batched(dataset, text_embedding, processor, k=10, batch_size=4):
scores_and_indices = []
for start_idx in range(0, len(dataset), batch_size):
end_idx = min(start_idx + batch_size, len(dataset))
batch = dataset[start_idx:end_idx]
batch_embeddings = [torch.tensor(emb[0], dtype=torch.float32) for emb in batch["embeddings"]]
scores = processor.score_retrieval(text_embedding.to("cpu").to(torch.float32), batch_embeddings)
if hasattr(scores, "tolist"):
scores = scores.tolist()[0]
for i, score in enumerate(scores):
scores_and_indices.append((score, start_idx + i))
sorted_results = sorted(scores_and_indices, key=lambda x: -x[0])
topk = sorted_results[:k]
indices = [idx for _, idx in topk]
scores = [score for score, _ in topk]
return indices, scores
```
Generate the text embeddings and pass them to the function above to return the dataset indices and scores.
```python
with torch.no_grad():
text_embeds = model(**processor(text="a document about Mars expedition").to("cuda"), return_tensors="pt").embeddings
indices, scores = find_top_k_indices_batched(ds_with_embeddings, text_embeds, processor, k=3, batch_size=4)
print(indices, scores)
```
```
([440, 442, 443],
[14.370786666870117,
13.675487518310547,
12.9899320602417])
```
Display the images to view the Mars related documents.
```python
for i in indices:
display(dataset[i]["image"])
```
<div style="display: flex; align-items: center;">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/doc_1.png"
alt="Document 1"
style="height: 200px; object-fit: contain; margin-right: 10px;">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/doc_2.png"
alt="Document 2"
style="height: 200px; object-fit: contain;">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/doc_3.png"
alt="Document 3"
style="height: 200px; object-fit: contain;">
</div>

View File

@ -15,238 +15,4 @@ rendered properly in your Markdown viewer.
-->
> [!WARNING]
> Agents and tools are being spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. These docs will be deprecated in the future!
# Tools
A tool is a function an agent can use to complete a task. Depending on your task, a tool can perform a web search, answer questions about a document, transcribe speech to text, and much more.
Transformers provides a default set of tools for agents. These include the tools mentioned above as well as image question answering, text-to-speech, translation, and a Python code interpreter that executes the Python code generated by a LLM in a secure environment.
Set `add_base_tools=True` to enable this default set of tools. The `tools` parameter is for adding additional tools. Leave the list empty if you aren't planning on adding any other tools to the toolbox.
```py
from transformers import ReactCodeAgent
agent = ReactCodeAgent(tools=[], add_base_tools=True)
```
You could also manually load a tool with [`load_tool`].
```py
from transformers import load_tool, ReactCodeAgent
tool = load_tool("text-to-speech")
audio = tool("This is a text-to-speech tool")
agent = ReactCodeAgent(tools=[audio])
```
This guide will help you learn how to create your own tools and manage an agents toolbox.
## Create a new tool
You can create any tool you can dream of to empower an agent. The example in this section creates a tool that returns the most downloaded model for a task from the Hub, and the code for it is shown below.
```py
from huggingface_hub import list_models
task = "text-classification"
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
print(model.id)
```
There are two ways you can create a tool, using a decorator or a superclass.
### Tool decorator
A fast and simple way to create a tool is to add the `@tool` decorator.
Convert the code above into a tool by wrapping it in a function and adding the `@tool` decorator. The function needs:
- A clear name that describes what the tool does, `model_download_counter`.
- Type hints for the input and output (`str`).
- A description that describes the tool in more detail and its arguments. This description is incorporated in the agents system prompt. It tells the agent *how* to use the tool, so try to make it as clear as possible!
```py
from transformers import tool
@tool
def model_download_counter(task: str) -> str:
"""
This is a tool that returns the checkpoint name of the most downloaded model for a task from the Hugging Face Hub.
Args:
task: The task to retrieve the most downloaded model from.
"""
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
return model.id
```
Pass the `model_download_counter` tool to the agents `tools` parameter to use it.
```py
from transformers import CodeAgent
agent = CodeAgent(tools=[model_download_counter], add_base_tools=True)
agent.run(
"Can you give me the name of the model that has the most downloads on the 'text-to-video' task on the Hugging Face Hub?"
)
```
### Tool superclass
Inheritance allows you to customize the [`Tool`] superclass or build a tool much more flexibly and comprehensively. This example will show you how to build the same `model_download_counter` tool as a [`Tool`] class.
The [`Tool`] class needs:
- A clear name that describes what the tool does, `model_download_counter`.
- A description that describes the tool in more detail and its arguments. This description is incorporated in the agents system prompt. It tells the agent *how* to use the tool, so try to make it as clear as possible!
- An `inputs` attribute that describes the input type. This is a dictionary with the keys, `type` and `description`.
- An `outputs` attribute that describes the output type.
- A `forward` method containing the code to be executed when the tool is called.
Write the following code below to a file named `model_download.py`.
```py
from transformers import Tool
from huggingface_hub import list_models
class HFModelDownloadsTool(Tool):
name = "model_download_counter"
description = """
This is a tool that returns the checkpoint name of the most downloaded model for a task from the Hugging Face Hub."""
inputs = {
"task": {
"type": "string",
"description": "the task category (such as text-classification, depth-estimation, etc)",
}
}
output_type = "string"
def forward(self, task: str):
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
return model.id
```
Import the tool from `model_download.py` and use [`load_tool`] to load it into the agent.
```py
from model_download import HFModelDownloadsTool
from transformers import load_tool, CodeAgent
tool = HFModelDownloadsTool()
model_counter = load_tool(tool)
agent = CodeAgent(tools=[model_counter], add_base_tools=True)
```
Also consider sharing your tool to the Hub with [`~Tool.push_to_hub`] so that everyone can use it!
```py
from model_download import HFModelDownloadsTool
from transformers import load_tool, CodeAgent
tool = HFModelDownloadsTool()
tool.push_to_hub("{your_username}/hf-model-downloads")
model_counter = load_tool("m-ric/hf-model-downloads")
agent = CodeAgent(tools=[model_counter], add_base_tools=True)
```
## Add and replace tools
Once an agent is initialized, add or replace its available tools without reinitializing the agent from scratch.
Use [`add_tool`] to add a tool to an existing agent.
```py
from transformers import CodeAgent
agent = CodeAgent(tools=[], add_base_tools=True)
agent.toolbox.add_tool(model_download_counter)
```
Now you can use the default text-to-speech tool to read aloud the most downloaded model for the text-to-video task.
```py
agent.run(
"Can you read out loud the name of the model that has the most downloads on the 'text-to-video' task on the Hugging Face Hub and return the audio?"
)
```
> [!WARNING]
> When adding tools to an agent that already works well, it can bias the agent towards your tool or a tool other than the one currently defined.
Use [`update_tool`] to replace an agents existing tool. This is useful if the new tool is a one-to-one replacement of the existing tool because the agent already knows how to perform the task. The new tool should follow the same API as the tool it replaced or the system prompt template should be adapted to ensure all examples using the replaced tool are updated.
```py
agent.toolbox.update_tool(new_model_download_counter)
```
## ToolCollection
A [`ToolCollection`] is a collection of Hugging Face [Spaces](https://hf.co/spaces) that can be quickly loaded and used by an agent.
> [!TIP]
> Learn more about creating collections on the Hub.
Create a [`ToolCollection`] object and specify the `collection_slug` of the collection you want to use, and then pass it to the agent. To speed up the starting process, tools are only loaded if they're called by the agent.
The example loads a collection of image generation tools.
```py
from transformers import ToolCollection, ReactCodeAgent
image_tool_collection = ToolCollection(collection_slug="")
agent = ReactCodeAgent(tools=[*image_tool_collection], add_base_tools=True)
agent.run(
"Please draw me a picture of rivers and lakes."
)
```
## Tool integrations
Transformers supports tools from several other libraries, such as [gradio-tools](https://github.com/freddyaboulton/gradio-tools) and [LangChain](https://python.langchain.com/docs/introduction/).
### gradio-tools
gradio-tools is a library that enables [Gradio](https://www.gradio.app/) apps to be used as tools. With the wide variety of Gradio apps available, you can enhance your agent with a range of tools like generating images and videos or transcribing audio and summarizing it.
Import and instantiate a tool from gradio-tools, for example, the [StableDiffusionPromptGeneratorTool](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py). This tool can help improve prompts to generate better images.
> [!WARNING]
> gradio-tools require text inputs and outputs even when working with different modalities like images and audio, which are currently incompatible.
Use [`~Tool.from_gradio`] to load the prompt generator tool.
```py
from gradio_tools import StableDiffusionPromptGeneratorTool
from transformers import Tool, load_tool, CodeAgent
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
```
Now pass it to the agent along with a text-to-image tool.
```py
image_generation_tool = load_tool("huggingface-tools/text-to-image")
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
agent.run(
"Improve this prompt, then generate an image of it.", prompt="A rabbit wearing a space suit"
)
```
### LangChain
LangChain is a library for working with LLMs which includes agents and tools. Use the [`~Tool.from_langchain`] method to load any LangChain tool into an agent.
The example below demonstrates how to use LangChains web search tool.
```py
from langchain.agents import load_tools
from transformers import Tool, ReactCodeAgent
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
agent = ReactCodeAgent(tools=[search_tool])
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
```
> Agents and tools were spun out into the standalone [smolagents](https://huggingface.co/docs/smolagents/index) library. They were removed from `transformers` in v4.52.

Some files were not shown because too many files have changed in this diff Show More