mirror of
				https://github.com/huggingface/transformers.git
				synced 2025-11-04 12:04:37 +08:00 
			
		
		
		
	Compare commits
	
		
			5 Commits
		
	
	
		
			v4.51.2
			...
			fix-Parame
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 04dd2e6cfa | |||
| dcbf4404a5 | |||
| b00809a417 | |||
| a5520be6bd | |||
| 71bc2f7229 | 
							
								
								
									
										2
									
								
								.github/workflows/doctests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/doctests.yml
									
									
									
									
										vendored
									
									
								
							@ -3,7 +3,7 @@ name: Doctests
 | 
			
		||||
on:
 | 
			
		||||
  push:
 | 
			
		||||
    branches:
 | 
			
		||||
      - run_doctest*
 | 
			
		||||
      - fix-Parameter-init
 | 
			
		||||
  repository_dispatch:
 | 
			
		||||
  schedule:
 | 
			
		||||
    - cron: "17 2 * * *"
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										34
									
								
								.github/workflows/self-scheduled-caller.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										34
									
								
								.github/workflows/self-scheduled-caller.yml
									
									
									
									
										vendored
									
									
								
							@ -7,17 +7,9 @@ on:
 | 
			
		||||
    - cron: "17 2 * * *"
 | 
			
		||||
  push:
 | 
			
		||||
    branches:
 | 
			
		||||
      - run_scheduled_ci*
 | 
			
		||||
      - fix-Parameter-init
 | 
			
		||||
 | 
			
		||||
jobs:
 | 
			
		||||
  model-ci:
 | 
			
		||||
    name: Model CI
 | 
			
		||||
    uses: ./.github/workflows/self-scheduled.yml
 | 
			
		||||
    with:
 | 
			
		||||
      job: run_tests_gpu
 | 
			
		||||
      slack_report_channel: "#transformers-ci-daily-models"
 | 
			
		||||
    secrets: inherit
 | 
			
		||||
 | 
			
		||||
  torch-pipeline:
 | 
			
		||||
    name: Torch pipeline CI
 | 
			
		||||
    uses: ./.github/workflows/self-scheduled.yml
 | 
			
		||||
@ -26,14 +18,6 @@ jobs:
 | 
			
		||||
      slack_report_channel: "#transformers-ci-daily-pipeline-torch"
 | 
			
		||||
    secrets: inherit
 | 
			
		||||
 | 
			
		||||
  tf-pipeline:
 | 
			
		||||
    name: TF pipeline CI
 | 
			
		||||
    uses: ./.github/workflows/self-scheduled.yml
 | 
			
		||||
    with:
 | 
			
		||||
      job: run_pipelines_tf_gpu
 | 
			
		||||
      slack_report_channel: "#transformers-ci-daily-pipeline-tf"
 | 
			
		||||
    secrets: inherit
 | 
			
		||||
 | 
			
		||||
  example-ci:
 | 
			
		||||
    name: Example CI
 | 
			
		||||
    uses: ./.github/workflows/self-scheduled.yml
 | 
			
		||||
@ -41,19 +25,3 @@ jobs:
 | 
			
		||||
      job: run_examples_gpu
 | 
			
		||||
      slack_report_channel: "#transformers-ci-daily-examples"
 | 
			
		||||
    secrets: inherit
 | 
			
		||||
 | 
			
		||||
  deepspeed-ci:
 | 
			
		||||
    name: DeepSpeed CI
 | 
			
		||||
    uses: ./.github/workflows/self-scheduled.yml
 | 
			
		||||
    with:
 | 
			
		||||
      job: run_all_tests_torch_cuda_extensions_gpu
 | 
			
		||||
      slack_report_channel: "#transformers-ci-daily-deepspeed"
 | 
			
		||||
    secrets: inherit
 | 
			
		||||
 | 
			
		||||
  quantization-ci:
 | 
			
		||||
    name: Quantization CI
 | 
			
		||||
    uses: ./.github/workflows/self-scheduled.yml
 | 
			
		||||
    with:
 | 
			
		||||
      job: run_tests_quantization_torch_gpu
 | 
			
		||||
      slack_report_channel: "#transformers-ci-daily-quantization"
 | 
			
		||||
    secrets: inherit
 | 
			
		||||
 | 
			
		||||
@ -858,7 +858,7 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -868,7 +868,7 @@ class Data2VecAudioModel(Data2VecAudioPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1005,7 +1005,7 @@ class HubertModel(HubertPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1015,7 +1015,7 @@ class HubertModel(HubertPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -862,7 +862,7 @@ class SEWModel(SEWPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -872,7 +872,7 @@ class SEWModel(SEWPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1388,7 +1388,7 @@ class SEWDModel(SEWDPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1398,7 +1398,7 @@ class SEWDModel(SEWDPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -616,7 +616,7 @@ class SpeechT5SpeechEncoderPrenet(nn.Module):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -626,7 +626,7 @@ class SpeechT5SpeechEncoderPrenet(nn.Module):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1121,7 +1121,7 @@ class UniSpeechModel(UniSpeechPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1131,7 +1131,7 @@ class UniSpeechModel(UniSpeechPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1139,7 +1139,7 @@ class UniSpeechSatModel(UniSpeechSatPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1149,7 +1149,7 @@ class UniSpeechSatModel(UniSpeechSatPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1496,7 +1496,7 @@ class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1506,7 +1506,7 @@ class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1087,7 +1087,7 @@ class Wav2Vec2BertModel(Wav2Vec2BertPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1097,7 +1097,7 @@ class Wav2Vec2BertModel(Wav2Vec2BertPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1273,7 +1273,7 @@ class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1283,7 +1283,7 @@ class Wav2Vec2ConformerModel(Wav2Vec2ConformerPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
@ -1158,7 +1158,7 @@ class WavLMModel(WavLMPreTrainedModel):
 | 
			
		||||
 | 
			
		||||
        if mask_time_indices is not None:
 | 
			
		||||
            # apply SpecAugment along time axis with given mask_time_indices
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
        elif self.config.mask_time_prob > 0 and self.training:
 | 
			
		||||
            mask_time_indices = _compute_mask_indices(
 | 
			
		||||
                (batch_size, sequence_length),
 | 
			
		||||
@ -1168,7 +1168,7 @@ class WavLMModel(WavLMPreTrainedModel):
 | 
			
		||||
                min_masks=self.config.mask_time_min_masks,
 | 
			
		||||
            )
 | 
			
		||||
            mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed
 | 
			
		||||
            hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
 | 
			
		||||
 | 
			
		||||
        if self.config.mask_feature_prob > 0 and self.training:
 | 
			
		||||
            # generate indices & apply SpecAugment along feature axis
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user