Compare commits

...

3262 Commits

Author SHA1 Message Date
c1a668ef9d Adding a bunch of debug places. 2022-07-08 17:43:44 +02:00
2544c1434f [Generate Tests] Make sure no tokens are force-generated (#18053) 2022-07-07 15:08:34 +02:00
91c4a3ab1a Added Command for windows VENV activation in installation docs (#18008)
* Added command for windows VENV activation

* changed linux and macos  specification
2022-07-07 08:18:44 -04:00
1b749a7f8d Sort doc toc (#18034)
* Add script to sort doc ToC

* Style and fixes

* Add check to quality job
2022-07-07 08:17:58 -04:00
1b5ea74783 Place inputs on device when include_inputs_for_metrics is True (#18046) 2022-07-07 08:17:49 -04:00
870ff9e1da Skip failing test until @gante fix it. 2022-07-06 15:13:28 -04:00
2e90c3df8f Doc to dataset (#18037)
* Link to the Datasets doc

* Remove unwanted file
2022-07-06 12:10:06 -04:00
be79cd7d8e Protect TFGenerationMixin.seed_generator so it's not created at import (#18044) 2022-07-06 16:36:28 +01:00
360719a6a4 TF: GPT-J compatible with XLA generation (#17986) 2022-07-06 15:02:07 +01:00
bf37e5c7f6 Fix T5 incorrect weight decay in Trainer and official summarization example (#18002)
* Add ALL_LAYERNORM_LAYERS for LayerNorm

* fix bug of appending layer norm
2022-07-06 09:44:19 -04:00
22edb68d49 Squash commits (#17981)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-07-06 08:11:48 -04:00
f681437203 Enable Past CI (#17919)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 18:08:36 +02:00
5ae087cf8e Fix T5/mT5 tests (#18029) 2022-07-05 16:22:03 +01:00
ec07eccc7d [Flax] Bump to v0.4.1 (#17966) 2022-07-05 15:17:17 +01:00
97db5b4223 Update expected values in DecisionTransformerModelIntegrationTest (#18016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 14:53:43 +02:00
f0982682bd TF: T5 can now handle a padded past (i.e. XLA generation) (#17969)
* get the right slicing index for position_bias
2022-07-04 19:47:43 +01:00
e3139ad301 fixed calculation of ctc loss in TFWav2Vec2ForCTC (#18014)
Co-authored-by: Sreyan-G@NVIDIA <sreyang@nvidia.com>
2022-07-04 17:36:36 +01:00
96d833b211 Return scalar losses instead of per-sample means (#18013)
* Return scalar losses instead of per-sample means

* Make loss shape (1,) instead of scalar

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Remove XLA loss function for RAG
2022-07-04 17:26:19 +01:00
6cb19540c9 sort list of models (#18011) 2022-07-04 09:20:55 -04:00
7498db06a1 Replace BloomTokenizer by BloomTokenizerFast in doc (#18005) 2022-07-04 08:40:13 -04:00
3cfdefaa4d Fix typo in error message in generation_utils (#18000) 2022-07-04 06:04:58 -04:00
cf2578ae00 Refactor to inherit from nn.Module instead of nn.ModuleList (#17501)
* Refactor to inherit from nn.Module instead of nn.ModuleList

* Fix typo

* Empty to trigger CI re-run

Blender Bot tests failing (should be unrelated to this PR) and pass locally). I don't have sufficient permisisons to re-run the CI workflow (totally or from failed)
2022-07-04 06:03:42 -04:00
77ea5130a1 Add TF ResNet model (#17427)
* Rought TF conversion outline

* Tidy up

* Fix padding differences between layers

* Add back embedder - whoops

* Match test file to main

* Match upstream test file

* Correctly pass and assign image_size parameter

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Add in MainLayer

* Correctly name layer

* Tidy up AdaptivePooler

* Small tidy-up

More accurate type hints and remove whitespaces

* Change AdaptiveAvgPool

Use the AdaptiveAvgPool implementation by @Rocketknight1, which correctly pools if the output shape does not evenly divide by input shape c.f. 9e26607e22 (r900109509)

Co-authored-by: From: matt <rocketknight1@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Use updated AdaptiveAvgPool

Co-authored-by: matt <rocketknight1@gmail.com>

* Make AdaptiveAvgPool compatible with CPU

* Remove image_size from configuration

* Fixup

* Tensorflow -> TensorFlow

* Fix pt references in tests

* Apply suggestions from code review - grammar and wording

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add TFResNet to doc tests

* PR comments - GlobalAveragePooling and clearer comments

* Remove unused import

* Add in keepdims argument

* Add num_channels check

* grammar fix: by -> of

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove transposes - keep NHWC throughout forward pass

* Fixup look sharp

* Add missing layer names

* Final tidy up - remove from_pt now weights on hub

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-07-04 10:59:15 +01:00
7b18702ca7 Add link to existing documentation (#17931) 2022-07-04 04:13:05 -04:00
a045cbd6c9 only a stupid typo, but it can lead to confusion (#17930) 2022-07-04 04:04:16 -04:00
49c8c67fb8 Exclude Databricks from notebook env only if the runtime is below 11.0 (#17988)
* Exclude Databricks from notebook env only if the runtime is below 11.0

* Dummy commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI
2022-07-01 16:17:40 -04:00
6890d1960f Shifting labels for causal LM when using label smoother (#17987)
* Shifting labels for causal LM when using label smoother

When training CausalLM, loss is computed within model's foward() function and
labels are shifted internally. However, if label smoothing is applied, loss is
computed in trainer's compute_loss function and labels are not shifted.
This causes unintended confusion during the alignment of labels and corresponding
inputs. This commit is for resolving this confusion.

Resolves #17960

On branch shift_labels_for_causalLM
Changes to be committed:
	modified:   src/transformers/trainer.py
	modified:   src/transformers/trainer_pt_utils.py

* Update trainer.py

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 14:55:35 -04:00
6f0723a9be Restore original task in test_warning_logs (#17985)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 20:44:27 +02:00
009171d1ba Ensure PT model is in evaluation mode and lightweight forward pass done (#17970) 2022-07-01 19:33:47 +01:00
d6cec45801 XLA train step fixes (#17973)
* Copy inputs to train and test step before modifying them, as this breaks things

* Add XLA tests, fix our loss functions to be XLA-compatible

* make fixup

* Update loss computation test to expect vector of per-sample losses

* Patch loss for TFLED

* Patch loss for TFAlbert

* Add a tf_legacy_loss config flag that enables old loss functions

* Stop using config.get() because it's not a dict

* Skip loss computation test for RAG because its loss is very strange and I'm afraid to rewrite it

* make fixup

* Add XLA-compatible RAG loss

* Fix dtype of loss mask for TFAlbert

* Fix test for XLNet too because it overrides the default one

* make fixup

* Fix config test

* No more depending on GPU NaN behaviour

* Add test, avoid potential zero division

* Fix test item assignment

* Fix loss computation masking test

* make fixup

* Fix dtype bugs
2022-07-01 19:11:14 +01:00
485bbe79d5 [Flax] Add remat (gradient checkpointing) (#17843)
* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* make fix-copies

* fix big-bird, electra, roberta

* cookie-cutter

* fix flax big-bird

* move test to common
2022-07-01 18:33:54 +01:00
664688b94f higher atol to avoid flaky trainer test failure (#17979)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 17:53:16 +02:00
8bb2c387f4 Fix FlaxBigBirdEmbeddings (#17842)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 16:46:01 +02:00
b68d408f1b add ONNX support for BLOOM (#17961)
* add onnx support for BLOOM

* use TYPE_CHECKING for type annotations

* fix past_shape for bloom (different from gpt2)

* use logical_or instead of `+` for onnx support

* bigger `atol_for_validation` for larger bloom models

* copied -> taken because it's no longer an exact copy

* remove "copied from" comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 10:44:42 -04:00
462b7f3a94 fixing fsdp autowrap functionality (#17922)
* fixing fsdp autowrap functionality

* update version and quality

* update torch version to latest stable version
2022-07-01 19:40:55 +05:30
3a064bd4dd fix bias keyword argument in TFDebertaEmbeddings (#17940) 2022-07-01 14:48:43 +01:00
569b679adb Update expected values in CodeGen tests (#17888)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 15:33:36 +02:00
cb42502410 Fix typo in perf_train_gpu_one.mdx (#17983) 2022-07-01 09:19:13 -04:00
14fb8a63b9 skip some gpt_neox tests that require 80G RAM (#17923)
* skip some gpt_neox tests that require 80G RAM

* remove tests

* fix quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 09:04:38 -04:00
49cd736a28 feat: add pipeline registry abstraction (#17905)
* feat: add pipeline registry abstraction

- added `PipelineRegistry` abstraction
- updates `add_new_pipeline.mdx` (english docs) to reflect the api addition
- migrate `check_task` and `get_supported_tasks` from
  transformers/pipelines/__init__.py to
  transformers/pipelines/base.py#PipelineRegistry.{check_task,get_supported_tasks}

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: update with upstream/main

chore: Apply suggestions from sgugger's code review

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR updates

- revert src/transformers/dependency_versions_table.py from upstream/main
- updates pipeline registry to use global variables

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add tests for pipeline registry

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add test for output warning.

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* chore: fmt and cleanup unused imports

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: change imports to top of the file and address comments

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 12:11:08 -04:00
9cb7cef285 Add ONNX support for LayoutLMv3 (#17953)
* Add ONNX support for LayoutLMv3

* Update docstrings

* Update empty description in docstring

* Fix imports and type hints
2022-06-30 12:09:52 -04:00
fe14046421 skip some ipex tests until it works with torch 1.12 (#17964)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-30 18:05:29 +02:00
91e1f24ef3 CLI: convert sharded PT models (#17959)
* sharded conversion; add flag to control max hidden error

* better hidden name matching

* Add test: load TF from PT shards

* fix test (PT data must be local)
2022-06-30 16:51:03 +01:00
f25457b273 Fix number of examples for iterable dataset in distributed training (#17951) 2022-06-30 11:01:40 -04:00
e4d2588573 [Pipelines] Add revision tag to all default pipelines (#17667)
* trigger test failure

* upload revision poc

* Update src/transformers/pipelines/base.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* up

* add test

* correct some stuff

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct require flag

Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 16:37:18 +02:00
4f8361afe7 Unifying training argument type annotations (#17934)
* doc: Unify training arg type annotations

* wip: extracting enum type from Union

* blackening
2022-06-30 08:53:32 -04:00
205bc4152c Fix GPT-NeoX-20B past handling, attention computation (#17811)
* Fix GPT-NeoX-20B past handling, swap attention computation to hopefully avoid NaN, update docs

* 20B tests
2022-06-30 08:47:40 -04:00
692e61e91a Flax t5 Encoder (#17784)
* first draft adding Flax-t5-encoder and Flax-mt5-encoder

* imports

* after make fixup

* flax t5 encoder test

* black on test

* make fix-copies

* clean

* all_model_classes -> tuple

* clean test

* is_encoder_decoder=False in t5-enc tester

* remove file docstring before FlaxT5Encoder

* black

* isort

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* remove _get_encoder_module

* self.decoder_seq_length -> self.encoder_seq_length as t5-enc does not have decoder

* bugfix - self.module_class is class itself, not instance;

* docs for mt5 and t5

* call -> __call__ in t5 doc

* FlaxMT5EncoderModel to TYPE_HINT

* run doc-builder to allow change the files

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-06-30 00:49:02 +02:00
eb1493b15d Fix #17893, removed dead code (#17917)
* Removed dead position_id code, fix #17893

* Removed unused var

* Now ignores removed (dead) dict key for backward comp
2022-06-29 17:54:26 -04:00
fbc7598bab add MobileViT model (#17354)
* add MobileViT

* fixup

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove empty line

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* use clearer variable names

* rename to MobileViTTransformerLayer

* no longer inherit from nn.Sequential

* fixup

* fixup

* not sure why this got added twice

* rename organization for checkpoints

* fix it up

* Update src/transformers/models/mobilevit/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/mobilevit/test_modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* code style improvements

* fixup

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* download labels from hub

* rename layers

* rename more layers

* don't compute loss in separate function

* remove some nn.Sequential

* replace nn.Sequential with new MobileViTTransformer class

* replace nn.Sequential with MobileViTMobileNetLayer

* fix pruning since model structure changed

* fixup

* fix doc comment

* remove custom resize from feature extractor

* fix ONNX import

* add to doc tests

* use center_crop from image_utils

* move RGB->BGR flipping into image_utils

* fix broken tests

* wrong type hint

* small tweaks

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-29 16:07:51 -04:00
5feac3d080 Fix prepare_tf_dataset when drop_remainder is not supplied (#17950) 2022-06-29 19:23:39 +01:00
bc019b0e5f ExplicitEnum subclass str (JSON dump compatible) (#17933)
* ExplicitEnum subclass str (JSON dump compatible)

* allow union if one of the types is str
2022-06-29 13:49:31 -04:00
b089cca347 PyTorch 1.12.0 for scheduled CI (#17949)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 19:32:19 +02:00
d444edb3f6 OPT - Fix Softmax NaN in half precision mode (#17437) 2022-06-29 19:15:32 +02:00
9fe2403bc5 Use explicit torch version in deepspeed CI (#17942)
* use explicit torch version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 18:20:34 +02:00
4c722e9e22 fix regexes with escape sequence (#17943) 2022-06-29 08:55:22 -07:00
7c4c6f6084 Fix all is_torch_tpu_available issues (#17936)
* Fix all is_torch_tpu_available
2022-06-29 11:03:33 -04:00
77b76672e2 Fix img seg tests (load checkpoints from hf-internal-testing) (#17939)
* Revert "Skip failing test until they are fixed."

This reverts commit 8f400775fc5bc1011a2674dcfd5408d30d69f678.

* Use `tiny-detr` checkpts from `hf-internal-testing`
2022-06-29 10:19:37 -04:00
3cff4cc587 Add MVP model (#17787)
* Add MVP model

* Update README

* Remove useless module

* Update docs

* Fix bugs in tokenizer

* Remove useless test

* Remove useless module

* Update vocab

* Remove specifying

* Remove specifying

* Add #Copied ... statement

* Update paper link

* Remove useless TFMvp

* Add #Copied ... statement

* Fix style in test mvp model

* Fix some typos

* Fix properties of unset special tokens in non verbose mode

* Update paper link

* Update MVP doc

* Update MVP doc

* Fix README

* Fix typos in docs

* Update docs
2022-06-29 09:30:55 -04:00
8f400775fc Skip failing test until they are fixed. 2022-06-29 09:11:29 -04:00
47b9165109 Remove imports and use forward references in ONNX feature (#17926) 2022-06-29 09:02:53 -04:00
5cdfff5df3 Fix job links in Slack report (#17892)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 14:53:13 +02:00
a7eba83161 TF implementation of RegNets (#17554)
* chore: initial commit

Copied the torch implementation of regnets and porting the code to tf step by step. Also introduced an output layer which was needed for regnets.

* chore: porting the rest of the modules to tensorflow

did not change the documentation yet, yet to try the playground on the model

* Fix initilizations (#1)

* fix: code structure in few cases.

* fix: code structure to align tf models.

* fix: layer naming, bn layer still remains.

* chore: change default epsilon and momentum in bn.

* chore: styling nits.

* fix: cross-loading bn params.

* fix: regnet tf model, integration passing.

* add: tests for TF regnet.

* fix: code quality related issues.

* chore: added rest of the files.

* minor additions..

* fix: repo consistency.

* fix: regnet tf tests.

* chore: reorganize dummy_tf_objects for regnet.

* chore: remove checkpoint var.

* chore: remov unnecessary files.

* chore: run make style.

* Update docs/source/en/model_doc/regnet.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR feedback I.

* fix: pt test. thanks to @ydshieh.

* New adaptive pooler (#3)

* feat: new adaptive pooler

Co-authored-by: @Rocketknight1

* chore: remove image_size argument.

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: matt <rocketknight1@gmail.com>

* Empty-Commit

* chore: remove image_size comment.

* chore: remove playground_tf.py

* chore: minor changes related to spacing.

* chore: make style.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* chore: refactored __init__.

* chore: copied from -> taken from./g

* adaptive pool -> global avg pool, channel check.

* chore: move channel check to stem.

* pr comments - minor refactor and add regnets to doc tests.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* minor fix in the xlayer.

* Empty-Commit

* chore: removed from_pt=True.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-29 13:45:14 +01:00
e6d27ca5c8 TF: XLA beam search + most generation-compatible models are now also XLA-generate-compatible (#17857)
* working beam search 🎉

* XLA generation compatible with ALL classes

* add xla generation slow test
2022-06-29 12:41:01 +01:00
b8142753f9 Add missing comment quotes (#17379) 2022-06-29 06:16:36 -04:00
e113c5cb64 Remove render tags (#17897)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-29 06:06:42 -04:00
90415475bb Fix the Conda package build (#16737)
* Fix the Conda package build

* Update build.sh

* Update release-conda.yml
2022-06-29 06:03:16 -04:00
babd7b1a92 Remove DT_DOUBLE from the T5 graph (#17891) 2022-06-29 10:23:49 +01:00
6aae59d0b5 Compute min_resolution in prepare_image_inputs (#17915)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 10:30:20 +02:00
776855c752 Fixing a regression with return_all_scores introduced in #17606 (#17906)
Fixing a regression with `return_all_scores` introduced in #17606

- The legacy test actually tested `return_all_scores=False` (the actual
  default) instead of `return_all_scores=True` (the actual weird case).

This commit adds the correct legacy test and fixes it.

Tmp legacy tests.

Actually fix the regression (also contains lists)

Less diffed code.
2022-06-28 17:24:45 -04:00
5f1e67a566 Pin PyTorch in requirements as well 2022-06-28 15:56:10 -04:00
5a3d0cbdda Pin PyTorch while we fix compatibility with 1.12 2022-06-28 15:07:26 -04:00
6c8f4c9a93 Adding GroupViT Models (#17313)
* add group vit and fixed test (except slow)

* passing slow test

* addressed some comments

* fixed test

* fixed style

* fixed copy

* fixed segmentation output

* fixed test

* fixed relative path

* fixed copy

* add ignore non auto configured

* fixed docstring, add doc

* fixed copies

* Apply suggestions from code review

merge suggestions

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolve comment, renaming model

* delete unused attr

* use fix copies

* resolve comments

* fixed attn

* remove unused vars

* refactor tests

* resolve final comments

* add demo notebook

* fixed inconsitent default

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename stage->stages

* Create single GroupViTEncoderLayer class

* Update conversion script

* Simplify conversion script

* Remove cross-attention class in favor of GroupViTAttention

* Convert other model as well, add processor to conversion script

* addressing final comment

* fixed args

* Update src/transformers/models/groupvit/modeling_groupvit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-28 20:51:47 +02:00
b424f0b4a3 Mrbean/codegen onnx (#17903) 2022-06-28 14:57:53 +02:00
76d13de5ae Add ONNX support for DETR (#17904) 2022-06-28 14:48:43 +02:00
bfcd5743ee In group_texts function, drop last block if smaller than block_size (#17908) 2022-06-28 08:34:55 -04:00
f71895a633 Move logic into pixelshuffle layer (#17899)
* Move all pixelshuffle logic into layer

* Rename layer

* Use correct input to function
2022-06-28 13:04:19 +01:00
0094565fc5 Fix loss computation in TFBertForPreTraining (#17898) 2022-06-28 12:44:56 +01:00
1dfa03f12b Pin black to 22.3.0 to benefit from a stable --preview flag (#17918) 2022-06-28 04:32:18 -04:00
9eec4e937e [M2M100] update conversion script (#17916) 2022-06-28 10:15:07 +02:00
db2644b9eb Fix PyTorch/TF Auto tests (#17895)
* add loading_info

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:56:24 +02:00
f717d47fe0 Fix test_number_of_steps_in_training_with_ipex (#17889)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:55:02 +02:00
0b0dd97737 Update expected values in constrained beam search tests (#17887)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:53:53 +02:00
e02037b352 Fix bug in gpt2's (from-scratch) special scaled weight initialization (#17877)
* only special scale init each gpt2 c_proj weight once, on exact match

* fix double quotes

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
2022-06-27 15:01:49 -04:00
6dd00f6bd4 Update README_zh-hans.md (#17861) 2022-06-27 13:09:20 -04:00
71b2839fd3 bert: add conversion script for BERT Token Dropping TF2 checkpoints (#17142)
* bert: add conversion script for BERT Token Dropping TF2 checkpoints

* bert: rename conversion script for BERT Token Dropping checkpoints

* bert: fix flake errors in BERT Token Dropping conversion script

* bert: make doc-builder happy!!1!11

* bert: fix pytorch_dump_path of BERT Token Dropping conversion script
2022-06-27 13:08:32 -04:00
98742829d3 Fix add new model like frameworks (#17869)
* Add new model like adds only the selected frameworks object in init

* Small fix
2022-06-27 13:07:34 -04:00
afb71b6726 Add type annotations for RoFormer models (#17878) 2022-06-27 14:50:43 +01:00
9a3453846b fix (#17890)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 14:36:11 +02:00
3ec7d4cfe4 fix mask (#17837) 2022-06-27 14:08:18 +02:00
ee0d001de7 Add a TF in-graph tokenizer for BERT (#17701)
* Add a TF in-graph tokenizer for BERT

* Add from_pretrained

* Add proper truncation, option handling to match other tokenizers

* Add proper imports and guards

* Add test, fix all the bugs exposed by said test

* Fix truncation of paired texts in graph mode, more test updates

* Small fixes, add a (very careful) test for savedmodel

* Add tensorflow-text dependency, make fixup

* Update documentation

* Update documentation

* make fixup

* Slight changes to tests

* Add some docstring examples

* Update tests

* Update tests and add proper lowercasing/normalization

* make fixup

* Add docstring for padding!

* Mark slow tests

* make fixup

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* make fixup

* Properly handle tensorflow-text dummies
2022-06-27 12:06:21 +01:00
401fcca6c5 Fix TF GPT2 test_onnx_runtime_optimize (#17874)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 09:27:30 +02:00
cc5c061e34 CLI: handle multimodal inputs (#17839) 2022-06-25 16:17:11 +01:00
e8eb699ee8 Properly get tests deps in test_fetcher (#17870)
* Properly get tests deps in test_fetcher

* Remove print
2022-06-24 16:56:46 -04:00
b03be78a4b Fix test_inference_instance_segmentation_head (#17872)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:36:45 +02:00
494aac65a7 Skip test_multi_gpu_data_parallel_forward for MaskFormer (#17864)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:35:00 +02:00
0e0f1f4692 Use higher value for hidden_size in Flax BigBird test (#17822)
* Use higher value for hidden_size in Flax BigBird test

* remove 5e-5

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:31:30 +02:00
2ef94ee039 Fix: torch.utils.checkpoint import error. (#17849) 2022-06-24 13:23:29 -04:00
ef28a402a9 Add type hints for gptneox models (#17858)
* feat: Add type hints for GPTNeoxForCausalLM and GPTNeoXModel

* fix: removed imported Dict type

* fix: Removed unused List import
2022-06-24 17:12:36 +01:00
061a73d16f [CodeGen] support device_map="auto" for sharded checkpoints (#17871) 2022-06-24 18:06:30 +02:00
d6b6fb9963 Add CodeGen model (#17443)
* Add CodeGen model

* Add missing key and switch order of super()

* Fix torch.ones init with uint8 instead of bool

* Address comments: copy statements and doc

* update tests

* remove old model parallel

* fix batch gen tests

* fix batch gen test

* update test_gpt2_sample_max_time

* fix codgen test and revert gpt2 test change

* Fix incorrect tie_word_embedding value, typo, URL

* Fix model order in README and styling

* Reorder model list alphabetically

* Set tie_word_embedding to False by default

* Apply suggestions from code review

* Better attn mask name & remove attn masked_bias

* add tokenizer for codegen

* quality

* doc tokenizer

* fix-copies

* add CodeGenTokenizer in converter

* make truncation optional

* add test for truncation

* add copyright

* fix-copies

* fix fast tokenizer decode

* Update src/transformers/models/codegen/tokenization_codegen.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* increase vocab_size in tests

Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-24 17:10:38 +02:00
447490015a Fix Splinter test (#17854)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 16:26:14 +02:00
73a0496c2f [tests/VisionEncoderDecoder] import to_2tuple from test utils (#17865) 2022-06-24 15:23:30 +02:00
NaN
bc7a6fdc02 Fix Constrained beam search duplication and weird output issue (#17814)
* fix(ConstrainedBeamSearchScorer.step_sentence_constraint): avoid hypothesis duplication between topk and advance

* fix(GenerationMixin.constrained_beam_search): appropriately assign beam scores instead of token scores
2022-06-24 14:56:08 +02:00
c2c0d9db5f Improve encoder decoder model docs (#17815)
* Copied all the changes from the last PR

* added in documentation_tests.txt

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-06-24 14:48:19 +02:00
0917870510 Improve vision models (#17731)
* Improve vision models

* Add a lot of improvements

* Remove to_2tuple from swin tests

* Fix TF Swin

* Fix more tests

* Fix copies

* Improve more models

* Fix ViTMAE test

* Add channel check for TF models

* Add proper channel check for TF models

* Apply suggestion from code review

* Apply suggestions from code review

* Add channel check for Flax models, apply suggestion

* Fix bug

* Add tests for greyscale images

* Add test for interpolation of pos encodigns

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-24 11:34:51 +02:00
893ab12452 Auto-build Docker images before on-merge if setup.py was changed (#17573)
* Auto-build on setup modification

* Modify push-caller

* Make adjustments based on code review
2022-06-23 16:51:33 -04:00
75259b44bf Properly calculate the total train iterations and recalculate num epochs in no_trainer scripts (#17856) 2022-06-23 15:46:01 -04:00
7c1b91281f Index RNG states by global rank in saves (#17852) 2022-06-23 12:53:50 -04:00
7cf52a49de Nezha Pytorch implementation (#17776)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* wip

* wip

* wip

* most basic tests passes

* all tests pass now

* relative embedding

* wip

* running make fixup

* remove bert changes

* fix doc

* fix doc

* fix issues

* fix doc

* address comments

* fix CI

* remove redundant copied from

* address comments

* fix broken test

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-23 12:36:22 -04:00
acb709d551 Change no trainer image_classification test (#17635)
* Adjust test arguments and use a new example test
2022-06-23 11:11:16 -04:00
e70abdad1b Update modeling_cvt.py (#17846)
As shown in the colab notebook I added the missing type hints for " CvtForImageClassification
CvtModel
"
2022-06-23 16:08:36 +01:00
1a7ef3349f Fix broken test for models with batchnorm (#17841)
* Fix tests that broke when models used batchnorm

* Initializing the model twice does not actually...
...give you the same weights each time.
I am good at machine learning.

* Fix speed regression
2022-06-23 15:59:53 +01:00
18c263c4b6 BLOOM minor changes on tokenizer (#17823)
* few fixes:

- hardcode tokenizer padding side
- remove unused args

* few fixes:

- added new attribute on TokenizerTesterMixin
- added new slow test
- remove unused arg on tokenizer class

* make style

* Update src/transformers/models/bloom/tokenization_bloom_fast.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* make quality

* apply changes

- remove new attribute
- redefine test on the class

* add comments

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 15:57:12 +02:00
6f29029b05 Improve performance docs (#17750)
* add skeleton files

* fix cpu inference link

* add hint to make clear that single gpu section contains general info

* add new files to ToC

* update toctree to have subsection for performance

* add "coming soon" to the still empty sections

* fix missing title

* fix typo

* add reference to empty documents

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-23 14:51:54 +02:00
5bc779ae28 Fix an error message in BigBird (#17840)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 14:43:53 +02:00
3eed5530ec Fix properties of unset special tokens in non verbose mode (#17797)
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 14:40:13 +02:00
b2fdbaccdd change message (#17836) 2022-06-23 14:39:48 +02:00
d37a68e685 Add missing type hints for QDQBertModel (#17783)
* Feat: add missing type hints for QDQBertModel

* fix: ran black and isort

* feat: Add missing output type for QDQBertModel

* feat: Add type hints for QDQBertLMHeadModel and models starting with QDQBertFor

* fix: add missing return type for QDQBertModel

* fix: remove wrong return type for QDQBertEmbeddings

* fix: readded config argument to load_tf_weights_in_qdqbert

* fix: add BertConfig type to BertEmbeddings config due t checko error in ci

* fix: removed config type hints to avoid copy checks
2022-06-23 12:58:43 +01:00
4297f44b63 Update type hints modeling_yoso.py (#17827)
* Update modeling_yoso.py

* make fixup

* Update modeling_yoso.py

That should be it copied from previous PR
2022-06-23 12:37:29 +01:00
5cce3076c4 TF: generate without tf.TensorArray (#17801) 2022-06-23 12:28:08 +01:00
ab223fc148 add doctests for DETR (#17786)
* add: check labels for detr object detection doctests

* add: check shapes

* add: add detr to documentation_tests.py

* fix: make fixup output

* fix: add a comment
2022-06-23 13:26:14 +02:00
8d634b70e0 Fix push CI artifact path (#17788)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 12:31:22 +02:00
df8e6804c0 Offload fixes (#17810)
* Offload fixes

* Add a test
2022-06-22 12:23:07 -04:00
0d0c392c45 CLI: use hub's create_commit (#17755)
* use create_commit

* better commit message and description

* touch setup.py to trigger cache update

* add hub version gating
2022-06-22 16:50:21 +01:00
c366ce1011 Bump numpy from 1.21.0 to 1.22.0 in /examples/research_projects/lxmert (#17817)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:40 -04:00
af0d21e741 Bump numpy in /examples/research_projects/visual_bert (#17816)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:28 -04:00
56b83cf049 initial commit (#17818) 2022-06-22 14:26:03 +02:00
1357038164 Add logits_processor parameter, used by generate, to Seq2SeqTrainer methods evaluate and predict (#17805)
* Add logits_processor parameter, used by `generate`, to `Seq2SeqTrainer` methods `evaluate` and `predict`

* Add all generate parameters to `Seq2SeqTrainer`, and also to `QuestionAnsweringSeq2SeqTrainer` which overrides it

* Remove `self._num_beams` from trainer classes

* - Run fixup
- Fix "Constraint" not exposed
- Fix synced_gpus to actually read from param

* Use kwargs

* Copy kwargs before making changes to it

* Fix style issues unused imports
2022-06-22 08:11:39 -04:00
16c6eb7ca1 Flax sharded (#17760) 2022-06-22 07:04:35 +02:00
3b00b623b7 Fix top_k_top_p_filtering having unexpected behavior (#17744)
- Fix `top_k_top_p_filtering` not passing `filter_value` to
   `TopPLogitsWarper` causing any top-p filtered logits to be -inf
   instead of specified value

 - Add corresponding test
2022-06-21 21:35:55 +02:00
3ccff0d400 Remove duplicate code (#17708) 2022-06-21 21:30:40 +02:00
26a6a42608 Improve error message Union not allowed (#17769)
* Improve error message Union not allowed

* make style

* Update src/transformers/hf_argparser.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 14:27:01 -04:00
abc400b06a Add final_layer_norm to OPT model (#17785)
* Add final_layer_norm to OPT model

* Add JAX and TF version

* Fix Keras name

* Woops

* Allow for non breaking change

* Apply suggestions from code review

* add tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-21 20:26:36 +02:00
52404cbad4 Properly check for a TPU device (#17802) 2022-06-21 13:39:55 -04:00
ef23fae596 Fix test for BF16 detection (#17803) 2022-06-21 18:31:15 +02:00
7cced021fa TF Sharded (#17713)
* initial commit

* update modeeling tf utils

* quality

* clean and update args

* update

* remove potential bug

* code quality

* update

* update max shard

* update tests for sharding from pretrained

* fix remaining test

* make style

* h5py if tf available

* update and fix test

* fix test

* style

* modified push to hub to support shard for TF

* quick fix

* update code

* merge branch main and style

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update based on reviews

* update doc

* update and style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* fix typo

* style

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 18:01:08 +02:00
f47afefb21 Use 5e-5 For BigBird PT/Flax equivalence tests (#17780)
* rename to check_pt_flax_outputs

* update check_pt_flax_outputs

* use 5e-5 for BigBird PT/Flax test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-21 17:55:26 +02:00
6a5272b205 Prepare transformers for v0.8.0 huggingface-hub release (#17716)
* Prepare CI for v0.8.0

* pin hfh (revert before merge)

* Revert "pin hfh (revert before merge)"

This reverts commit a0103140e1c77b810ffcb735192968bc03be3e1f.

* Test rc3

* Test latest rc

* Unpin to the RC

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-06-21 11:51:18 -04:00
7bc88c0511 Fix forward reference imports in DeBERTa configs (#17800) 2022-06-21 11:21:06 -04:00
27e907386a Fix Automatic Download of Pretrained Weights in DETR (#17712)
* added use_backbone_pretrained

* style fixes

* update

* Update detr.mdx

* Update detr.mdx

* Update detr.mdx

* update using doc py

* Update detr.mdx

* Update src/transformers/models/detr/configuration_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 16:45:35 +02:00
b681e12d59 [ViTMAE] Fix docstrings and variable names (#17710)
* Fix docstrings and variable names

* Rename x to something better

* Improve messages

* Fix docstrings and add test for greyscale images

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 15:56:00 +02:00
3fab17fce8 Add link to notebook (#17791)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 14:53:08 +02:00
da2bd2ae96 [CodeParrot] Near-deduplication with jaccard similarity (#17054)
* deduplication draft

* update style

* update style test

* dummy test main

* rename modules

* rename functions

* return extremes in deduplicate_clusters

* update style

* cast str for gzip

* update doc string

* time processing

* use dataset map to compute minhash

* fill value for short token

* remove da map method

* update style

* use share object to multiprocess

* update style

* use f-string and minor fix

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* update style

* use module parameters

* change ds_dedup to ds_filter

* save ds_dedup

* mv test to script tests

* make jaccard threshold a parameter of deduplicate_dataset

* update style

* add doc strings

* update style

* add doc string for DuplicationIndex

* save files into data dir

* update readme

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* make near deduplication optional

* move near deduplication in README

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* use f string

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
2022-06-21 14:23:36 +02:00
eb16be415a add onnx support for deberta and debertav2 (#17617)
* add onnx support for debertav2

* debertav2 -> deberta-v2 in onnx features file

* remove causal lm

* add deberta-v2-xlarge to onnx tests

* use self.type().dtype() in xsoftmax

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* remove hack for deberta

* remove unused imports

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* use generate dummy inputs

* linter

* add imports

* add support for deberta v1 as well

* deberta does not support multiple choice

* Update src/transformers/models/deberta/configuration_deberta.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* one line ordered dict

* fire build

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>
2022-06-21 11:04:15 +02:00
8fcbe275c3 Add UL2 (just docs) (#17740)
* Add UL2
Co-authored-by: Daniel Hesslow <Daniel.Hesslow@gmail.com>

* Correct naming

* sort better

* up

* apply sylvains suggestion
2022-06-21 10:24:50 +02:00
da27c4b398 Update modeling_longt5.py (#17777)
On line 180, `torch.tensor(-1.0, xxx)` gives the error "TypeError: 'float' object cannot be interpreted as an integer" 
This is because the dtype here is `int64`.  For `dtype=int64`, this needs to simply be `-1`.  
This impacts the long-t5-tglogbal-x model.  It does not impact the long-t5-local-x version which does not appear to call this line.
2022-06-20 18:49:08 +02:00
d3cb28886a Not use -1e4 as attn mask (#17306)
* Use torch.finfo(self.dtype).min

* for GPTNeoX

* for Albert

* For Splinter

* Update src/transformers/models/data2vec/modeling_data2vec_audio.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix -inf used in Bart-like models

* Fix a few remaining -inf

* more fix

* clean up

* For CLIP

* For FSMT

* clean up

* fix test

* Add dtype argument and use it for LayoutLMv3

* update FlaxLongT5Attention

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-20 16:16:16 +02:00
fdb120805c Fix cache for GPT-Neo-X (#17764)
* Fix cache for GPT-Neo-X

* Add more tests
2022-06-20 08:43:36 -04:00
a2d34b7c04 deprecate is_torch_bf16_available (#17738)
* deprecate is_torch_bf16_available

* address suggestions
2022-06-20 08:40:11 -04:00
132402d752 TF: BART compatible with XLA generation (#17479)
* Also propagate changes to blenderbot, blenderbot_small, marian, mbart, and pegasus
2022-06-20 11:07:46 +01:00
6589e510fa Attempt to change Push CI to workflow_run (#17753)
* Use workflow_run event for push CI

* change to workflow_run

* Add comments

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-18 08:35:03 +02:00
0d92798b45 Added translation of index.mdx to Portuguese Issue #16824 (#17565)
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py

* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.

* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.

[ pipeline_tutorial.mdx ] - Grammar changes.

* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.

* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.

[ training.mdx ] - Added portuguese translation for training tutorial.

* [ preprocessing.mdx ] - WIP

* Update _toctree.yml

* Adding Pré-processamento to _toctree.yml

* Update accelerate.mdx

* Nits and eliminate preprocessing file while it is ready

* [ index.mdx ] - Translated to Portuguese the index apresentation page.

* [ docs/source/pt ] - Updated _toctree.yml to match newest translations.

* Fix build_pr_documentation.yml

* Fix index nits

* nits in _toctree

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-06-17 20:06:05 -04:00
522a9ece4b Save huggingface checkpoint as artifact in mlflow callback (#17686)
* Fix eval to compute rouge correctly for rouge_score

* styling

* moving sentence tokenization to utils from run_eval

* saving ckpt in mlflow

* use existing format of args

* fix documentation

Co-authored-by: Swetha Mandava <smandava@nvidia.com>
2022-06-17 14:14:03 -04:00
21a772426d Migrate HFDeepSpeedConfig from trfrs to accelerate (#17623)
* Migrate HFDeepSpeedConfig from trfrs to accelerate

* add `accelerate` to testing dep

* addressing comments

* addressing comments

Using `_shared_state` and avoiding object creation. This is necessary as `notebook_launcher` in `launcers.py` checks `len(AcceleratorState._shared_state)>0` to throw an error.

* resolving comments

1. Use simple API from accelerate to manage the deepspeed config integration
2. Update the related documentation

* reverting changes and addressing comments

* docstring correction

* addressing nits

* addressing nits

* addressing nits 3

* bumping up the accelerate version to 0.10.0

* resolving import

* update setup.py to include deepspeed dependencies

* Update dependency_versions_table.py

* fixing imports

* reverting changes to CI dependencies for "run_tests_pipelines_tf*" tests

These changes didn't help with resolving the failures and I believe this needs to be addressed in another PR.

* removing `accelerate` as hard dependency

Resolves issues related to CI Tests

* adding `accelerate` as dependency for building docs

resolves failure in Build PR Documentation test

* adding `accelerate` as dependency in "dev" to resolve doc build issue

* resolving comments

1. adding `accelerate` to extras["all"]
2. Including check for accelerate too before import HFDeepSpeedConfig from there

Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolving comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-17 23:29:35 +05:30
e44a569fef Bump notebook in /examples/research_projects/lxmert (#17743)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:33 -04:00
5089a2d412 Bump notebook in /examples/research_projects/visual_bert (#17742)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:17 -04:00
2d7c1bb192 feat: add num_workers arg to DataLoader (#17751) 2022-06-17 10:53:45 -04:00
ca169dbdf1 Enable PyTorch nightly build CI (#17335)
* nightly build pytorch CI

* fix working dir

* change time and event name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-17 16:42:27 +02:00
3c7e56fbb1 Remove needless file 2022-06-16 12:21:12 -04:00
7c6ec195ad v4.21.0.dev0 2022-06-16 12:20:53 -04:00
36d4647993 Refine Bf16 test for deepspeed (#17734)
* Refine BF16 check in CPU/GPU

* Fixes

* Renames
2022-06-16 11:27:58 -04:00
f44e2c2b6f Fix tf shared embedding (#17730)
* fix the naming

* from pt in test for now

* make style

* slow test and removed from_pt
2022-06-16 14:17:47 +02:00
2eadb7e54a Fix mask token in the example (#17725)
VIsualBert uses bert-base-uncased tokenizer, therefore, instead of {mask}, the mask token should be [MASK]
2022-06-16 07:54:45 -04:00
3981ee8650 Sort the model doc Toc Alphabetically (#17723) 2022-06-15 16:11:56 -04:00
66f893320c normalize keys_to_ignore (#17722) 2022-06-15 11:59:11 -07:00
c3c62b5d2c CLI: Add flag to push TF weights directly into main (#17720)
* Add flag to push weights directly into main
2022-06-15 19:25:50 +01:00
6ebeeeef81 Update requirements.txt (#17719) 2022-06-15 13:51:41 -04:00
50415b84d6 Revert "Change push CI to run on workflow_run event (#17692)" (#17717)
This reverts commit b76290f44ce432e2ee7678a76036e8509167bae6.
2022-06-15 18:42:43 +02:00
7f14839f55 [Wav2Vec2Conformer] Official release (#17709)
* [Wav2Vec2Conformer] Official release

* remove from not-in-readme
2022-06-15 18:34:15 +02:00
242cc6e265 Documentation: RemBERT fixes (#17641)
* rembert: fix python codeblock

* rembert: use correct google/rembert checkpoint name in documentation

* rembert: use correct google/rembert checkpoint name in TF documentation
2022-06-15 18:17:59 +02:00
b76290f44c Change push CI to run on workflow_run event (#17692)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-15 17:43:31 +02:00
d453ea6120 fix tolerance for a bloom slow test (#17634) 2022-06-14 18:14:12 +02:00
120649bf3a [LongT5] disable model parallel test (#17702) 2022-06-14 17:27:39 +02:00
7ec9128e5a FX function refactor (#17625)
* Function refactor

* Update src/transformers/utils/fx.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-14 17:22:21 +02:00
edb672ac5e Add BloomForSequenceClassification and BloomForTokenClassification classes (#17639)
* add new bloom classes

* (feat) add bloom classification tests; make style

* style: change import in test

* add some typehints to bloom classes

* merge main into branch

* fix: input checking in bloom seq classification

* fix tests

* change model class tests

* fix few tests

- more tests should pass
- one test left

* make token classifier return hidden states

* style: make BLOOM typehints consistent

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-06-14 17:10:12 +02:00
bd43151af4 Swin main layer (#17693)
* Swin models call TFSwinMainLayer

* Tidy up
2022-06-14 14:28:12 +01:00
3960ce917f Include a comment to reflect Amy's contributions (#17689)
* Add note on amy's contribution.

Co-authored-by: Amy Roberts <aeroberts4444@gmail.com>

* remove non-tech comment.

Co-authored by: Amy Roberts <aeroberts4444@gmail.com>

Co-authored-by: Amy Roberts <aeroberts4444@gmail.com>
2022-06-14 09:15:39 -04:00
9068fa6c57 Rag end2end new (#17650)
* check

* update the RAG-end2end with new PL and RAY

* removed unwanted comments
2022-06-14 14:56:32 +02:00
53496ac510 [LongT5] Rename checkpoitns (#17700) 2022-06-14 14:10:50 +02:00
3b29c9fdb7 Extend Transformers Trainer Class to Enable PyTorch Torchscript for Inference (#17153)
* add jit mode option and model wrap

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refine code

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add ut and refine code

* code refine

* refine code

* add inference doc

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add cpu inference performance doc

* Update perf_infer_cpu.mdx

* Update perf_infer_cpu.mdx

* Update performance.mdx

* Update _toctree.yml

* refine jit func naming

* Update _toctree.yml

* Delete perf_infer_gpu_one.mdx

* Update perf_infer_cpu.mdx

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add none check before jit

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-14 07:56:47 -04:00
df15703b42 Fix doc builder Dockerfile (#17435)
* Fix doc builder Dockerfile

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-14 09:58:48 +02:00
a72f1c9f5b Add LongT5 model (#16792)
* Initial commit

* Make some fixes

* Make PT model full forward pass

* Drop TF & Flax implementation, fix copies etc

* Add Flax model and update some corresponding stuff

* Drop some TF things

* Update config and flax local attn

* Add encoder_attention_type to config

* .

* Update docs

* Do some cleansing

* Fix some issues -> make style; add some docs

* Fix position_bias + mask addition + Update tests

* Fix repo consistency

* Fix model consistency by removing flax operation over attn_mask

* [WIP] Add PT TGlobal LongT5

* .

* [WIP] Add flax tglobal model

* [WIP] Update flax model to use the right attention type in the encoder

* Fix flax tglobal model forward pass

* Make the use of global_relative_attention_bias

* Add test suites for TGlobal model

* Fix minor bugs, clean code

* Fix pt-flax equivalence though not convinced with correctness

* Fix LocalAttn implementation to match the original impl. + update READMEs

* Few updates

* Update: [Flax] improve large model init and loading #16148

* Add ckpt conversion script accoring to #16853 + handle torch device placement

* Minor updates to conversion script.

* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM

* gpu support + dtype fix

* Apply some suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies

* Remove caching logic for local & tglobal attention

* Apply another batch of suggestions from code review

* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx

* Fix converting script + revert config file change

* Revert "Remove caching logic for local & tglobal attention"

This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.

* Stash caching logic in Flax model

* Make side relative bias used always

* Drop caching logic in PT model

* Return side bias as it was

* Drop all remaining model parallel logic

* Remove clamp statements

* Move test files to the proper place

* Update docs with new version of hf-doc-builder

* Fix test imports

* Make some minor improvements

* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray

* Fix TGlobal for ONNX conversion + update docs

* fix _make_global_fixed_block_ids and masked neg  value

* update flax model

* style and quality

* fix imports

* remove load_tf_weights_in_longt5 from init and fix copies

* add slow test for TGlobal model

* typo fix

* Drop obsolete is_parallelizable and one warning

* Update __init__ files to fix repo-consistency

* fix pipeline test

* Fix some device placements

* [wip]: Update tests -- need to generate summaries to update expected_summary

* Fix quality

* Update LongT5 model card

* Update (slow) summarization tests

* make style

* rename checkpoitns

* finish

* fix flax tests

Co-authored-by: phungvanduy <pvduy23@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
2022-06-13 22:36:58 +02:00
1690094bdb Add FP16 Support for SageMaker Model Parallel (#17386)
* Add FP16 supporot for sagemaker model parallel

* minor fix

* fix indentation

* handle mix precision exception for smmp

* minor fix

* remove amp implementation on SMMP

* remove redundant stuff

* reformat trainer

* restyling

* reformat
2022-06-13 13:45:25 -04:00
4aabf9b52c enable cpu distribution training using mpirun (#17570)
* enable cpu distribution training using mpirun

*command like
*    mpirun -n 2 python3 run_qa.py --no_cuda --xpu_backend ccl xxxx
*MASTER_ADDR and MASTER_PORT should be set as env
*export MASTER_ADDR=127.0.0.1
*export MASTER_PORT=29500

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix according to the review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* use accelerate logic for cpu distribution training to set "RANK","LOCAL_RANK","WORLD_SIZE" environment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-06-13 13:34:07 -04:00
457d4a3245 Add Ray's scope to training arguments (#17629)
* allow scope from trainer arg

* add ray_scope to training args

* escape double quotes

* make style && quality

* attempt to solve doc style issues

* splitting up URLs for style

* make fixup

* Update src/transformers/training_args.py

Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>

* make style

Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2022-06-13 10:44:06 -04:00
5483388631 Update modeling_gpt_neox.py (#17575)
I'm guessing that the intention was to have the `_no_split_modules` class attribute for `GPTNeoXPreTrainedModel` to be set to `["GPTNeoXLayer"]`, akin to how its set as `["GPTJBlock"]` for `GPTJPreTrainedModel`.

If this is incorrect, please feel free to just close the PR.

Thanks!
2022-06-13 09:59:27 -04:00
a1344dbfb9 Fix dtype getter (#17668)
* Fix dtype getters

* Proper fix for dtype getter

* Style and commant

* Always use last for consistency

* Quality
2022-06-13 09:34:45 -04:00
73083581a4 explicitly set utf8 for Windows (#17664) 2022-06-13 08:05:45 -04:00
c1daf724ea Fixed documentation typo, parameter name is evaluation_strategy, not eval_strategy (#17669)
Co-authored-by: Saint <saint@st-mini.local>
2022-06-13 08:02:06 -04:00
66336dc183 Add Visual Question Answering (VQA) pipeline (#17286)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* Update src/transformers/models/auto/modeling_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* merge

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-13 07:49:44 -04:00
a5282ab4bc Fix typo in adding_a_new_model README (#17679) 2022-06-13 03:22:07 -04:00
224bde91ca Avoid GPU OOM for a TF Rag test (#17638)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-10 18:50:29 +02:00
39e146146b fix typo from emtpy to empty (#17643) 2022-06-10 18:50:11 +02:00
13e875cc07 [Generation Test] Make fast test actually fast (#17661) 2022-06-10 18:49:03 +02:00
b4eef63a1d [Data2Vec] Speed up test (#17660) 2022-06-10 18:48:58 +02:00
5e428b71b4 [BigBirdFlaxTests] Make tests slow (#17658)
* [BigBirdFlaxTests] Make tests slow

* up

* correct black with new version
2022-06-10 16:54:14 +02:00
3114df41f4 update README.md (#17657)
- use CodeParrot scores of v1.1
- change evaluation command to use accelerate
2022-06-10 15:55:24 +02:00
c99ddcc441 🐛 Properly raise RepoNotFoundError when not authenticated (#17651)
* Raise RepoNotFoundError in case of 401

* Include changes from revert-17646-skip_repo_not_found

* Add a comment

* 💄 Code quality

* 💚 Update `get_from_cache` test

* 💚 Code quality & skip failing test
2022-06-10 15:41:53 +02:00
35b16032cb Fixes #17128 . (#17356)
VisibleDeprecationWarning is addressed by specifying dtype=object when creating numpy array.
Update code based on review feedback.
Undo whitespace changes to tokenization_utils_base.py.

Co-authored-by: I like data <ilikedata@nym.hush.com>
2022-06-10 09:36:48 -04:00
b88090914d Fix dtype getters (#17656) 2022-06-10 07:43:13 -04:00
fd1e67033e Add skip logic for attentions test - Levit (#17633) 2022-06-10 12:46:30 +02:00
cdaed367b0 Fix style 2022-06-10 11:53:44 +02:00
2bc305107a Fix style 2022-06-10 11:20:14 +02:00
1d463303fe Bump cookiecutter in /examples/research_projects/decision_transformer (#17645)
Bumps [cookiecutter](https://github.com/cookiecutter/cookiecutter) from 1.7.2 to 2.1.1.
- [Release notes](https://github.com/cookiecutter/cookiecutter/releases)
- [Changelog](https://github.com/cookiecutter/cookiecutter/blob/master/HISTORY.md)
- [Commits](https://github.com/cookiecutter/cookiecutter/compare/1.7.2...2.1.1)

---
updated-dependencies:
- dependency-name: cookiecutter
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-10 04:27:51 -04:00
49becbaa55 Enable crop_center method to handle (W, H, C) images (#17626)
* enable crop_center method to handle (W, H, C) images

* minor style and comment edits
2022-06-10 09:18:42 +03:00
6e93d94792 Move Clip image utils to image_utils.py (#17628)
* move clip image utils to image_utils.py

* dont default to square images

* fix typo, revert change to test file

* edit convert_rgb comments
2022-06-10 09:12:17 +03:00
af4a1ecad0 Skip tests until bug is fixed. (#17646) 2022-06-09 21:32:19 -04:00
e0b58fb5ba Translation/autoclass (#17615)
* Add Italian translation for autoclass_tutorial.mdx

* Fix synthesis

Co-authored-by: martina.fumanelli <martina.fumanelli@MBP-di-martinafumanelli.local>
2022-06-09 20:56:44 -04:00
df1ec6b122 didn't exist in pt-1.9 (#17644) 2022-06-09 16:01:01 -07:00
fba0b6a820 convert assertion to raised exception in debertav2 (#17619)
* convert assertion to raised exception in debertav2

* change assert to raise exception in deberta

* fix messages
2022-06-09 18:18:29 -04:00
da0bed5f4a Pre-build DeepSpeed (#17607)
* pre-build deepspeed

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-09 23:02:33 +02:00
75343de938 [modeling_utils] torch_dtype/auto floating dtype fixes (#17614)
* [modeling_utils] torch_dtype/auto fixes

* add test

* apply suggestions

* add missing fallback

* Renaming things

* Use for else

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-06-09 10:18:26 -07:00
c38f4e1f1c Running a pipeline of float16. (#17637)
When we're preparing the tensors for CPU for postprocessing, we need
to upgrade the `float16` to `float32` since CPUs don't have instructions
for `[b]float16`.
2022-06-09 19:04:42 +02:00
90ed9ae2d1 fix use_amp rename after pr 17138 (#17636) 2022-06-09 09:38:48 -07:00
c70dacde94 Fix very long job failure text in Slack report (#17630)
* Fix very long job failure text in Slack report

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-09 18:37:48 +02:00
2351729f7d Adding top_k argument to text-classification pipeline. (#17606)
* Adding `top_k` and `sort` arguments to `text-classification` pipeline.

- Deprecate `return_all_scores` as `top_k` is more uniform with other
  pipelines, and a superset of what `return_all_scores` can do.
  BC is maintained though.
  `return_all_scores=True` -> `top_k=None`
  `return_all_scores=False` -> `top_k=1`

- Using `top_k` will imply sorting the results, but using no argument
  will keep the results unsorted for backward compatibility.

* Remove `sort`.

* Fixing the test.

* Remove bad doc.
2022-06-09 18:33:10 +02:00
29080643eb Mention in the doc we drop support for fairscale (#17610) 2022-06-09 12:20:39 -04:00
9fc34235fa Use shape_list to safely get shapes for Swin (#17591)
* Use shape_list to safely get shapes

* Add relevant test

* Tidy and add metrics

* Resolve dynamic shaping issues and move test

* Tidy up and all samples in batch

* Formatting
2022-06-09 15:50:50 +02:00
e0be053e43 Add ONNX support for ConvNeXT (#17627) 2022-06-09 09:31:02 -04:00
5323094a22 Add ONNX support for ResNet (#17585)
* Add ONNX support for ResNet

* Add ONNX test

* make fix-copies
2022-06-09 08:44:27 -04:00
ca2a55e9df BLOOM (#17474)
* adding template

* update model

* model update

* update conf for debug model

* update conversion

* update conversion script

* update conversion script

* fix missing keys check

* add tests to test the tokenizer in the local machine

* Change variable name

* add tests on xnli dataset

* add more description

* add descriptions + clearer code

* clearer code

* adding new tests + skipping few tests because of env problems

* change comment

* add dtype on the configuration

* add test embeddings

* add hardcoded test

* fix dtype issue

* adding torch.float16 to config

* adding more metrics (min, max, mean)

* add sum

* now the test passes with almost equal

* add files for conversion - test passes on cpu  gpu

* add final changes

* cleaning code

* add new args in the docstring

* fix one liner function

* remove macros

* remove forward attention

* clean up init funtion

* add comments on the issue

* rm scale mask softmax

* do make style

* fix dtype in init

* fixing for loop on att probs

* fix style with black

* fix style + doc error

* fix and debug CI errors (docs + style)

* some updates

- change new operations
- finally add scaled softmax
- added new args in the config

* make use cache working

* add changes

- save sharded models
- final changes on the modeling script

* add changes

- comment on alibi
- add TODO on seq length

* test commit

- added a text to test the commit

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* final changes

- attention mask change
- generation works on BS176b

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* changes - model + conversion

* move to correct dir

* put ,

* fex fixes

* fix tokenizer autodoc

* fix minor CI issues

* fix minor CI issues

* fix minor CI issues

* fix style issue

* fix minor import issues

* fix few issues

* remove def main on the test

* add require torch

* replace decorator with 'with'

* fix style

* change to bloom

* add quick fix tokenizer

* fix tokenizer file

* fix tokenizer

- merge tests
- small fixes

* fix import issue

* add bloom to readme

* fix consistency

* Update docs/source/en/model_doc/bloom.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

fix comment issues on file headers

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix doc issue

* small fix - modeling test

* some changes

- refactor some code
- taking into account reviews
- more tests should pass
- removed pruning tests

* remove useless division

* more tests should pass

* more tests should pass

* more tests should pass

* let's try this one

-add alibi offset
- remove all permutes to make the grad operations work
- finger crossed

* refactor

- refactor code
- style changes
- add new threshold for test

* major changes

- change BLOOM to Bloom
- add quick doc on bloom.mdx
- move embeddings test on modeling test

* modify readme

* small fixes

* small fix

- better threshold for a test

* remove old test file from fetcher

* fix small typo

* major change

- change BloomLMHead to BloomForCausalLM

* remove onnx config

* major changes

- refactor the code
- remove asserts
- change tol for test

* make style

* small change

* adding a slow test + commenting old ones for now

* make style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

* fix duplicates

* cleaning comments on config

* clean a bit conversion file

* refacor a bit modeling file

* refactor tokenizer file

* fix tokenization test issue

* fix tokenization issue #2

* fix tokenization issue second try

* fix test issue

* make style + add suggestions

* change test fetcher

* try this one

- slow tests should pass
- finger crossed

* possible final changes

* make style

* try fix padding side issue

* fix side

* fix padding issue

* fix ko-readme

* fix config auto

* cleaning modeling file

* keep bloom in caps in ko

* update config docs

* remove pretraining_pp

* remove model parallel

* update config

- add correct config files

* fix duplicates

* fix fetcher

* fix refactor issue

- remove divide function

* try to remove alibi

* small fixes

- fix alibi
- remove seq length
- refactor a bit the code

* put correct values

- fix bos and eos token ids

* fix attention mask loop

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* small fixes:

- remove skip bias add

* small fixes

- fix typo in readme
- fix typos in config

* small changes

- remove a test
- add reconstruction test
- change config

* small changes

- change Scaled Softmax to BloomScaledSoftmax

* small fixes

- fix alibi dtype

* major changes

- removing explicit dtype when loading modules
- fixing test args (torch_dtype=auto)
- add dosctring

* fix readmes

* major changes

- now bloom supports alibi shifting
- refactor a bit the code
- better test tolerance now

* refactor a bit

* refactor a bit

* put correct name on test

* change docstring

* small changes

- fix docstring modeling
- fix test tolerance

* fix small nit

- take dtype from tensors in the conversion script

* minor fix

- fix mdx issue

* minor fix

- change config docstring

* forward contrib credits from PR14084

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply modifications

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* resolve softmax upcast

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>

* final changes modeling

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Merge commit 'd156898f3b9b2c990e5963f5030a7143d57921a2'

* merge commit

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply suggestions

Apply suggestions from Stas comments
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix gradient checkpointing

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add slow but exact

* add accelerate compatibility

Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>

* forward contrib credits

Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix torch device on tests

* make style

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix nits

Co-authored-by: patrickvonplaten<patrickvonplaten@users.noreply.github.com>

* remove final nits

* fix doc

- add more details on the doc
- add links to checkpoints

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

Co-authored-by: sgugger <sgugger@users.noreply.github.com>

* put test torchscript to false

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: justheuristic <justheuristic@gmail.com>

* fix alibi

- create alibi only once

* add small doc

* make quality

* replace torch.nn

* remove token type emb

* fix fused op + output bias

* add fused op

- now can control fused operation from config

* remove fused op

* make quality

* small changes

- remove unsed args on config
- removed bias gelu file
- make the model torchscriptable
- add torchscript slow tests

* Update src/transformers/models/bloom/modeling_bloom.py

* fix slow

* make style

* add accelerate support

* add bloom to deepspeed tests

* minor changes

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* minor change

* slow tests pass

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/bloom.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* minor changes:

- change docstring
- add link to paper

Co-authored-by: Thomwolf <thomwolf@gmail.com>
Co-authored-by: Thomas Wolf <thomas@huggingface.co>
Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sIncerass <sheng.s@berkeley.edu>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>
Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-06-09 12:00:40 +02:00
dfc76b2542 has_attentions - consistent test skipping logic and tf tests (#17495) 2022-06-09 09:50:03 +02:00
66e8656778 CLI: Print all different tensors on exception (#17612) 2022-06-08 18:30:03 +01:00
e9d5138768 TF: Merge PT and TF behavior for Bart when no decoder_input_ids are passed (#17593)
* Merge PT and TF behavior
2022-06-08 17:42:23 +01:00
e160a5dd62 Fix telemetry URL (#17608) 2022-06-08 11:34:05 -04:00
7d0b6fc340 CLI: Properly detect encoder-decoder models (#17605) 2022-06-08 16:15:59 +01:00
ee82c86bdc Fix link for community notebooks (#17602)
* Fix link for community notebooks

This fixes the link for community notebooks due to reorganization.

* Replace old link with fully link to the doc page

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 10:51:39 -04:00
34097b3304 Extend Transformers Trainer Class to Enable CPU AMP and Integrate Intel Extension for PyTorch (#17138)
* init PR

* fix import ipex

* minor fix on bf16

* refine optimizer

* refine args notes

* refine code

* refine ipex optimize args

* refine half_precision_backend

* black format

* isort format

* isort format files

* flake8 format

* doc builder format

* refine codes

* remove jit and optim bits

* black preview format

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refine code

* refine notes

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* code refine

* add ipex ut

* add performance cpu doc

* link to the cpu doc from main perf doc

* install ipex into CI's docker

* Update perf_train_cpu.mdx

* Update docs/source/en/perf_train_cpu.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-08 09:41:57 -04:00
ae7bae8fe7 fix train_new_from_iterator in the case of byte-level tokenizers (#17549) 2022-06-08 15:30:41 +02:00
264128cb9d Explicit versions in docker files (#17586)
* Update docker file

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-08 15:04:22 +02:00
9d99489f2f Add TFData2VecVision for semantic segmentation (#17271)
* feat: initial implementation of data2vec segmentation model in TF.

* chore: minor corrections to make the segmenter work.

* chore: removed unncessary files.

* chore: add tests and other modifications.

* fix: loss computation for segmentation.

* chore: remove unused variable.

* chore: formatting.

* added a dummy adaptive pooling layer.

* removed unnecessary file.

* potentially add identifiers to layer names.

* fix: layer naming.

* chore: removed unnecessary print.

* Skipping unneeded test

* chore: add logging to debug tolerance.

* fix: segmentation tests for tfdata2vecvision

* chore: make style.

* fix: layer names, assertion to be resolved.

* Bumping test tolerance a bit

* chore: bump the tol in PT test.

Co-authored-by: matt <rocketknight1@gmail.com>
2022-06-08 14:03:18 +01:00
78c695eb62 CLI: add stricter automatic checks to pt-to-tf (#17588)
* Stricter pt-to-tf checks; Update docker image for related tests

* check all attributes in the output

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 10:45:10 +01:00
c6cea5a78c fix (#17589)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-08 01:50:59 +02:00
119e3c0fc8 M-CTC-T Model (#16402)
* added cbs to notebooks, made copy-paste error fix in generation_utils

* initial push for mctc model

* mctc feature extractor done

* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.

* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.

* passing attention, now struggling to figure out how attention masks make sense here

* works when excluding attention masks. ask later how one would integrate attention maskshere

* bizarre configuration error (model prefix comes first in config dict json and messes up the order)

* all passing but bizzarre config dict ordering issue when to_dict

* passing all major tests

* feature extraction, processor, tokenizer added & tests passing

* style & consistency & other logistical fixes

* copy paste fix

* model after feature extraction working

* commiting final feature extraction results; need to fix normalization

* feature extraction passing tests; probably should add tests on the specific flashlight-copied functions?

* delete print ; format code a bit

* fixing tests

* passing major tests

* fixing styles

* completed tokenization test with real example; not sure if these values are entirely correct.

* last test fixes from local

* reverting accidentally included custom setup configs

* remove load tf weights; fix config error

* testing couldnt import featureextractor

* fix docs

* fix docs

* resolving comments

* style fixes

* style fixes

* Update to MCTCConv1dSubSampler

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* relposemb fixes

* conv1d name issue; expecting config fail with paraentheses

* fix config issue

* fix config issue

* fix config issue

* change everything to MCTCT

* fixing naming change errors

* archive list

* copyrights and docs

* copyrights and docs

* copyrights and docs

* merge resolution

* move tests, fix to changed optionaldependency structure

* test directories changed

* fixing tests

* how to avoid tf tests?

* how to avoid tf tests?

* tests passing locally

* allow mctctprocessor imported any env

* allow mctctprocessor imported any env

* fixed second round of feedback, need to fix docs

* doc changes not being applied

* all fixed

* style fix

* feedback fixes

* fix copies and feature extraction style fix

* Update tests/models/visual_bert/test_modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* copy paste huggingface:main visual bert

* added eof newline to visual bert; all tests are passing otherwise

* fix slow tests by adding attention mask

* change model id to speechbrain

* make fix-copies

* fix readme unwanted deletes

* fixing readmes, make fix-copies

* consistent M-CTC-T naming

* Update src/transformers/models/mctct/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* all fixed but variable naming

* adjust double quotes

* fixed variable names

* copyright and mr quilter

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct slow tests

* make fix-copies

* Update src/transformers/models/mctct/configuration_mctct.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mctct/configuration_mctct.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* m-ctc-t not mctct

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 00:33:07 +02:00
706bb8364d quicktour.mdx en -> pt translation (#17074)
* Quicktour Portuguese Translation

Translated quicktour.mdx until line 161

* Finished translating quicktour.mdx

Ready to upload and adjust eventual .mdx or translation mistakes.

* Add _toctree.yml and fix nits

* Fixed pt-br mdx syntax problem

Closed <frameworkcontent> instance

* Changed </frameworkcontent> line

* Copied missing block from english version of quicktour.mdx

* Reviwed the entire file once again. It should be working now.

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-06-07 17:35:05 -04:00
5c8f601007 Fx support for Deberta-v[1-2], Hubert and LXMERT (#17539)
* Support for deberta and deberta-v2

* Support for LXMert

* Support for Hubert

* Fix for pt1.11

* Trigger CI
2022-06-07 18:05:20 +02:00
3cab90279f Add examples telemetry (#17552)
* Add examples telemetry

* Alternative approach

* Add to all other examples

* Add to templates as well

* Put framework separately

* Same for TensorFlow
2022-06-07 11:57:52 -04:00
9e72eb4416 Skip disk offload test for T5 2022-06-07 11:11:40 -04:00
b118730745 Fix gendered sentence in Spanish translation(#17558) 2022-06-07 14:09:39 +02:00
b6a65ae52a Fix circular import in onnx.utils (#17577)
* Fix circular import in onnx.utils

* Add comment for test fetcher

* Here too

* Style
2022-06-07 08:00:36 -04:00
9aa230aa2f Use latest stable PyTorch/DeepSpeed for Push & Scheduled CI (#17417)
* update versions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-07 11:53:05 +02:00
ad71965246 Remove circular imports in layoutlm/__init__.py (#17576) 2022-06-06 22:41:41 +02:00
19a8a3036d Add magic method to our TF models to convert datasets with column inference (#17160)
* Add method to call to_tf_dataset() with column inference

* Add test for dataset creation

* Add a default arg for data collator

* Fix test

* Fix call with non-dev version of datasets

* Test correct column removal too

* make fixup

* More tests to make sure we remove unwanted columns

* Fix test to avoid predicting on unbuilt models

* Fix test to avoid predicting on unbuilt models

* Fix test to remove unwanted head mask columns from inputs

* Stop pushing your debug breakpoints to the main repo of the $2bn company you work for

* Skip the test in convnext because no grouped conv support

* Drop bools from the dataset dict

* Make style

* Skip the training test for models whose input dicts don't give us labels

* Skip transformerXL in the test because it doesn't return a simple loss

* Skip TFTapas because of some odd NaN losses

* make style

* make fixup

* Add docstring

* fixup

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove breakpoint from tests

* Fix assert, add requires_backends

* Protect tokenizer import with if TYPE_CHECKING

* make fixup

* Add noqa, more fixup

* More rearranging for ~* aesthetics *~

* Adding defaults for shuffle and batch_size to match to_tf_dataset()

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-06 15:53:49 +01:00
d28b7aa8cb [deepspeed / testing] reset global state (#17553)
* [deepspeed] fix load_best_model test

* [deepspeed] add state reset on unittest tearDown
2022-06-06 07:49:25 -07:00
34a886fce3 Translation/italian: added pipeline_tutorial.mdx [Issue: #17459] (#17507)
* added toctree.yml file

* first translation

* added pipeline_tutorial.mdx translation

added pipeline_tutorial.mdx
updated _toctree.yml

* updated pipeline_tutorial.mdx

* updated _toctree.yml

Updated preprocessing and training

* updated preprocessing.mdx

start translation

* Update _toctree.yml

* Delete preprocessing.mdx

* Update _toctree.yml

* updated _toctree.yml

* added preprocessing

* Update _toctree.yml

* updated _toctree.yml

* undo

* Revert "undo"

This reverts commit 5d38d768752dc80918bf60ada9d185f98b742520.

* Revert "Revert "undo""

This reverts commit 8aa0830b587f915ca7d154ebca282b782e82bd92.
2022-06-06 10:35:20 -04:00
2e37ef35d1 Remove RuntimeErrors for NaN-checking in 20B (#17563) 2022-06-06 09:29:06 -04:00
f6ad0e0556 Add installation.mdx Italian translation (#17530)
* Add the Italian translation of the file installation.mdx and edit _toctree

* Add the Italian translation of the file installation.mdx and edit _toctree
2022-06-06 07:48:08 -04:00
4aed1dc81b Adding the Portuguese version of the tasks/token_classification.mdx documentation (#17492)
* add tasks/token_classification pt doc structure

* add tasks/token_classification pt doc translation

* add tasks/token_classification pt doc translation
2022-06-06 07:47:34 -04:00
da71df1afc fix integration test levit (#17555) 2022-06-06 13:47:32 +02:00
26e5e129b4 [deepspeed] fix load_best_model test (#17550) 2022-06-03 11:19:03 -07:00
72f5b94984 Update index.mdx (#17547)
This PR updates our Expert Acceleration Program image with a new image featuring our experts.

This is similar to our Transformers/README.md image update that has proven to be successful.
2022-06-03 12:56:37 -05:00
c4e58cd8ba Clean imports to fix test_fetcher (#17531)
* Clean imports to fix test_fetcher

* Add dependencies printer

* Update utils/tests_fetcher.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Fix Perceiver import

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-06-03 12:34:41 -04:00
254d9c068e Update run_glue_no_trainer.py (#17546) 2022-06-03 12:29:37 -04:00
8343901263 Fix all offload and MP tests (#17533) 2022-06-03 09:59:13 -04:00
1c57242d7b Fix bug - layer names and activation from previous refactor (#17524)
* Fix activation and layers in MLP head

* Remove unused import
2022-06-03 09:31:10 -04:00
babeff5524 Add support for Perceiver ONNX export (#17213)
* Start adding perceiver support for ONNX

* Fix pad token bug for fast tokenizers

* Fix formatting

* Make get_preprocesor more opinionated (processor priority, otherwise tokenizer/feature extractor)

* Clean docs format

* Minor cleanup following @sgugger's comments

* Fix typo in docs

* Fix another docs typo

* Fix one more typo in docs

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-03 07:40:22 -04:00
5c17918fe4 Allow from transformers import TypicalLogitsWarper (#17477)
* Allow from transformers import TypicalLogitsWarper

* Added TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

Added TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper
2022-06-03 11:08:35 +02:00
607acd4fbd Add Gated-SiLU to T5 (#17420)
* Add gated-silu to t5 architecture to support UL2

* Fix error message

* formatting

* formatting again

* refactor

* fix classnames in _init_weights

* remove is_gated

* add test

* fix test

* Try without the test?

* Add back the test.

* Improve error message.

Co-authored-by: Daniel Hesslow <daniel@lighton.ai>
2022-06-03 10:56:37 +02:00
1c220ced8e Update URL for Hub PR docs (#17532) 2022-06-02 21:52:30 +02:00
013462c57b fix OPT-Flax CI tests (#17512) 2022-06-02 18:52:46 +02:00
2f59ad1609 [trainer/deepspeed] load_best_model (reimplement re-init) (#17151)
* [trainer/deepspeed] load_best_model

* to sync with DS PR #1947

* simplify

* rework load_best_model test

* cleanup

* bump deepspeed>=0.6.5

Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2022-06-02 09:14:21 -07:00
046c5ea906 Implemented loss for training AudioFrameClassification (#17513)
* Implemented loss for training AudioFrameClassification

* reported changes in wav2vec2 main class and used make copies to propagate

* running black for code formatting
2022-06-02 17:40:02 +02:00
085321c9a1 Update configuration_auto.py (#17527) 2022-06-02 10:37:00 -04:00
048dd73bba Check list of models in the main README and sort it (#17517)
* Script for README

* Fix copies

* Complete error message
2022-06-02 08:10:08 -04:00
588d8f1f26 Fix when Accelerate is not installed (#17518) 2022-06-02 07:45:41 -04:00
f128ccb997 Clean README in post release job as well. (#17519) 2022-06-02 07:44:03 -04:00
216499bfcc Fix CI tests hang forever (#17471)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:30:54 +02:00
659b27fd26 Print more library versions in CI (#17384)
* print more lib. versions and just befor test runs

* update print_env_pt.py

* rename to print_env

* Disable warning + better job name

* print python version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:24:16 +02:00
0932adb3e8 Split push CI into 2 workflows (#17369)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:19:26 +02:00
58fb3c9f98 Fix Tapas tests (#17510)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 21:01:32 +02:00
ca1f1c8685 CLI: tool to convert PT into TF weights and open hub PR (#17497) 2022-06-01 18:52:07 +01:00
3766df4fe1 Fix flakey no-trainer test (#17515) 2022-06-01 13:40:49 -04:00
028d4b7c8b Deal with the error when task is regression (#16330) 2022-06-01 11:15:53 -04:00
84aaadd8c5 Adding LeViT Model by Facebook (#17466)
* levit files

* levit tests

* weights script

* weights script

* update

* style fixes

* few minor corrections

* Added teacher model

* edit docs

* fix-copies

* style fixes

* pr error resolved

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/configuration_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/configuration_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* suggested pr changes

* style fixes

* minor bug

* update

* minor doc edit

* style

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/levit/test_modeling_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* residual layer readable

* style

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update tests/models/levit/test_feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* change checkpoints and style

* update

* minor changes

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-01 17:06:20 +02:00
1d2b57b8a2 Fix CTRL tests (#17508)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 16:27:23 +02:00
693720e567 Fix LayoutXLMProcessorTest (#17506)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 16:26:37 +02:00
4d1ce39683 Debug LukeForMaskedLM (#17499)
* add a test for a word only input

* make LukeForMaskedLM work without entity inputs

* update test

* add LukeForMaskedLM to MODEL_FOR_MASKED_LM_MAPPING_NAMES

* restore pyproject.toml

* empty line at the end of pyproject.toml
2022-06-01 10:03:06 -04:00
4390151ba2 Fix MP and CPU offload tests for Funnel and GPT-Neo (#17503) 2022-06-01 09:59:40 -04:00
6813439fdc Exclude Databricks from notebook env (#17496) 2022-06-01 09:00:11 -04:00
3042ea4f6f Fix tokenizer type annotation in pipeline(...) (#17500)
I think you mean to accept either an instance of `PreTrainedTokenizer` or `PreTrainedTokenizerFast` inside of the `pipeline(...)` factory function, if the `tokenizer` argument isn't a `str`.
2022-06-01 08:43:28 -04:00
bdc01711d6 Refactor classes to inherit from nn.Module instead of nn.Sequential (#17493)
* Adapt Maskformer, VAN, ResNet and RegNet modules to inherit from nn.Module
2022-06-01 13:36:19 +01:00
b1160c0b56 Fix wav2vec2 export onnx model with attention_mask error (#16004)
* Fix wav2vec2 export onnx model with attention_mask error

* fix repository_consistency
2022-06-01 13:30:58 +02:00
d91da4c6df Add warning when using older version of torch for ViltFeatureExtractor (#16756)
* Update feature_extraction_vilt.py

* apply black

* Update imports

* Change warning to logging

* Use logger instead of logging.logging

* make fixup

* Move error message

* Update src/transformers/models/vilt/feature_extraction_vilt.py

Co-authored-by: Xing Han Lu <xhlperso@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-06-01 07:15:38 -04:00
24092b1464 Fix typo of variable names for key and query projection layer (#17155)
self.pos_proj and self.pos_q_proj should be changed to self.pos_key_proj and self.pos_query_proj as same as PyTorch implements.
2022-06-01 11:38:44 +01:00
811da2b8c2 Fixed wrong error message for missing weight file (#17216) 2022-06-01 06:24:20 -04:00
4f38808e9e Add OnnxConfig for SqueezeBert iss17314 (#17315)
* add onnx config for SqueezeBert

* add test for onnx config for SqueezeBert

* add automatically updated doc for onnx config for SqueezeBert

* Update src/transformers/onnx/features.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/models/squeezebert/configuration_squeezebert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-06-01 06:16:15 -04:00
ba286fe7d5 [GPT2Tokenizer] Fix GPT2 with bos token (#17498) 2022-05-31 20:06:48 +02:00
7822a9b7a7 Opt in flax and tf (#17388)
* initial commit

* add init file

* update globakl init

* update index and dummy objects

* style

* update modelling auto

* fix initi typo in src/transformers

* fix typo in modeling tf auto, opt was in wrong mapping name

* fixed a slow test : saved_model

* style

* fix positionnal embedding if no position id is provided

* update tf test

* update test flax requirements

* fixed serialization

* update

* update tf name to allow smooth convertion

* update flax tests

* style

* fix test typo

* fix tf typo test

* add xla for generate support in causal LM

* fixed bug

* cleaned tf tests

* style

* removed from PT for slow tests

* fix typp

* opt test as slow

* trying to fix GPT2 undefined

* correct documentation and add to test doc

* update tf doc

* fix doc

* fake commit

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update test based on review

* merged main layer for functionning test

* fixup + quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update long comment

* make fix copies

Co-authored-by: Arthur <arthur@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-31 18:41:22 +02:00
f394a2a50d [Json configs] Make json prettier for all saved tokenizer files & ensure same json format for all processors (tok + feat_extract) (#17457)
* [Json dump] Make json prettier

* correct more tokenizeirs

* more patterns

* add aggressive test

* the aggressive test was actually useful :-)

* more tests

* Apply suggestions from code review
2022-05-31 17:07:30 +02:00
6ee1474b67 Accumulate tokens into batches in PreTrainedTokenizerBase.add_tokens() (#17119)
* Accumulate tokens into batches in PreTrainedTokenizerBase.add_tokens()

For tokenizers with a small number of special tokens or special tokens
with consecutive token IDs, this reduces the time complexity of creating
the trie from quadratic to linear, see also #16936.

* Extend explanation of batching added tokens
2022-05-31 16:36:45 +02:00
52e7c92920 Add HF.co for PRs / Issues regarding specific model checkpoints (#17485)
* Add HF.co for PRs / Issues regarding specific model checkpoints

* Update .github/ISSUE_TEMPLATE/config.yml

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-05-31 15:58:39 +02:00
dfc38463b8 Setup for Italian translation and add quicktour.mdx translation (#17472)
* Setup for Italian translation and add first document

- Add 'it' folder for files translated into Italian
- Add _config.py and _toctree.yml files
- Add translation of quicktour.mdx

* Fix style issue of italian documentation files

* Add 'it' to the languages section in the .github/workflows

* Remove - installation from _toctree for Italian

* Translation for index file

- Add index to _toctree.yml
- Add translation of index.mdx

* Fix typo in docs/source/it/index.mdx

* Translate code comments in docs/source/it/_config.py

Co-authored-by: Martina Fumanelli <martinafumanelli@Martinas-MBP.homenet.telecomitalia.it>
2022-05-31 09:57:43 -04:00
8f8b3cbce4 Fix checkpoint name (#17484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:40:48 +02:00
400b30936a Docker image build in parallel (#17434)
* docker image build in parallel

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:39:03 +02:00
5af38953bb Added XLM onnx config (#17030)
* Add onnx configuration for xlm

* Add supported features for xlm

* Add xlm to models exportable with onnx

* Add xlm architecture to test file

* Modify docs

* Make code quality fixes
2022-05-31 09:26:06 -04:00
567d9c061d Disk offload fix (#17428)
* Fix offload to disk for big models

* Add test

* Fix test for other models
2022-05-31 09:16:18 -04:00
975dd2bbbc TF: GPT-2 generation supports left-padding (#17426)
* TF GPT-2 now properly works with left padding

* throw a warning when eos token == pad token and there is no attention mask
2022-05-31 14:06:44 +01:00
c1a138613d Fix ViTMAEModelTester (#17470)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:01:54 +02:00
b0e0ac8a67 [Generate] Fix output scores greedy search (#17442) 2022-05-31 14:59:49 +02:00
2ef09ecfb8 Fix nits (#17349) 2022-05-31 08:41:54 -04:00
28d0048218 Fx support for multiple model architectures (#17393)
* Support for Bart and LayoutLM, and partial support for XLNet

* Support for mbart

* A lot of new models supported

* Support for other models

* LayoutLM fix

* Use strings instead of classes
2022-05-31 10:02:55 +02:00
04681c1d81 typo IBERT in __repr__ quant_mode (#17398)
fix #17397
2022-05-31 03:48:10 -04:00
13fd67346a Fix typo (remove parenthesis) (#17415) 2022-05-31 03:21:32 -04:00
d156898f3b Improve notrainer examples (#17449)
* improve no-trainer examples

* Trigger CI

* adding comment to clarify tracker init on main process

* Trigger CI

* Trigger CI

* Trigger CI
2022-05-28 00:06:31 +05:30
7999ec125f [OPT] Fix bos token id default (#17441) 2022-05-26 18:24:12 +02:00
98f6e1ee87 Fix model parallelism test (#17439) 2022-05-26 09:57:12 -04:00
7535d92e71 Pin protobouf that breaks TensorBoard in PyTorch (#17440) 2022-05-26 09:56:55 -04:00
2295bcaea8 Spanish translation of the file preprocessing.mdx (#16299)
* Spanish translation of the file training.mdx

* Settings - Spanish translation of the file training.mdx

* Latest changes to the Spanish translation of the training.mdx file

* Delete Hugging.mdx

* Last changes to the training fil Espanish version

* Latest modifications

* Latest changes, document ready for PR

* Nits

* Spanish translation of the preprocessing file

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Nits and add preprocessing to _toctree.yml

Co-authored-by: Yhary Arias <yharystefa@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-26 07:28:14 -04:00
8f46ac9849 Spanish translation of the files sagemaker.mdx and image_classification.mdx (#17262)
* Duplication of the source eng file

* Spanish translation of the file multilingual.mdx

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

* Spanish translation of sagemaker.mdx

* Was deleted in main

* Security saving

* Complete translation of image_classification.mdx

* Nits

* nits

* Update docs/source/es/image_classification.mdx

* Add files to _toctree.yml

* Fix toctree and add tasks folder

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-25 19:10:16 -04:00
5e7f085fcc Added es version of bertology.mdx doc (#17255)
* added bertology es doc

* toctree fix

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* change position of bertology in _toctree.yml

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-25 18:46:53 -04:00
70484a8d74 Adding the Portuguese version of the tasks/sequence_classification.mdx documentation (#17352)
* add sequence_classification pt doc structure

* add Portuguese tasks/sequence_classification.mdx
2022-05-25 16:21:27 -04:00
a9eca74372 Wav2vec2 finetuning shared file system (#17423)
* fix_torch_device_generate_test

* remove @

* [Fix shared file system]

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2022-05-25 22:04:43 +02:00
740a1574f1 fix link in performance docs (#17419) 2022-05-25 20:54:43 +02:00
284fc6c0bb Add link to Hub PR docs in model cards (#17421) 2022-05-25 20:38:56 +02:00
35e2d13f3c Upd AutoTokenizer.from_pretrained doc examples (#17416) 2022-05-25 11:35:50 -04:00
897a8dd89f Support compilation via Torchdynamo, AOT Autograd, NVFuser (#17308)
* Support compilation via Torchdynamo, AOT Autograd, NVFuser

* Address comments

* Lint

* Stas comments - missing quality test

* Lintere

* Quality test

* Doc lint

* Reset CUDA peak mem

* Add CustomTrainer

* require a single gpu

Co-authored-by: Stas Bekman <stas@stason.org>
2022-05-25 11:16:09 -04:00
31484afbed Add test for new model parallelism features (#17401) 2022-05-25 10:51:27 -04:00
56b35ce3eb Make check_init script more robust and clean inits (#17408) 2022-05-25 07:23:56 -04:00
bd908e9bb1 Fix README localizer script (#17407) 2022-05-25 07:23:40 -04:00
4d727bd2df Fix expected value for OPT test test_inference_no_head (#17395)
* Fix expected value

* 5e-5

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-25 11:19:06 +02:00
1ef9a1ed4a Bump tensorflow in /examples/research_projects/decision_transformer (#17400)
Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 2.8.0 to 2.8.1.
- [Release notes](https://github.com/tensorflow/tensorflow/releases)
- [Changelog](https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorflow/compare/v2.8.0...v2.8.1)

---
updated-dependencies:
- dependency-name: tensorflow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-24 19:36:55 -04:00
71e602725b [WIP] Adding GPT-NeoX-20B (#16659)
* initial

* first try

* working 20B

* 20B tokenizers

* Docs

* Import fixes for missing classes

* Update docs, fixup

* black formatting

* isort

* flake

* dummy objects

* documentation

* Documentation yml

* more docs

* tweaks for tests

* tokenization auto

* fix neox tests

* test

* test

* einsum

* address PR feedback

* Documentation

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neox/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neox/configuration_gpt_neox.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove undefined LaTeX syntax

* Update to full url to avoid confusion about if that's supposed to refer to the Hub

* fix auto

* move tests

* documentation fix

* more doc fixes

* test refactor

* fix import

* fix import

* fix import

* fix import

* fix import

* style fixes

* More modeling fixes

Co-authored-by: Jason Phang <zp489@gr057.hpc.nyu.edu>
Co-authored-by: Stella Biderman <stellabiderman@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-24 09:31:10 -04:00
374a2f693f Clean up CLIP tests (#17380)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-24 14:51:26 +02:00
d980929803 Enabling imageGPT auto feature extractor. (#16871)
* Enablign `imageGPT` auto feature extractor.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Small updates.

* Update after rebase to use `input_ids` instead of `pixel_values`.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-24 12:30:46 +02:00
31ee80d556 Add LayoutLMv3 (#17060)
* Make forward pass work

* More improvements

* Remove unused imports

* Remove timm dependency

* Improve loss calculation of token classifier

* Fix most tests

* Add docs

* Add model integration test

* Make all tests pass

* Add LayoutLMv3FeatureExtractor

* Improve integration test + make fixup

* Add example script

* Fix style

* Add LayoutLMv3Processor

* Fix style

* Add option to add visual labels

* Make more tokenizer tests pass

* Fix more tests

* Make more tests pass

* Fix bug and improve docs

* Fix import of processors

* Improve docstrings

* Fix toctree and improve docs

* Fix auto tokenizer

* Move tests to model folder

* Move tests to model folder

* change default behavior add_prefix_space

* add prefix space for fast

* add_prefix_spcae set to True for Fast

* no space before `unique_no_split` token

* add test to hightligh special treatment of added tokens

* fix `test_batch_encode_dynamic_overflowing` by building a long enough example

* fix `test_full_tokenizer` with add_prefix_token

* Fix tokenizer integration test

* Make the code more readable

* Add tests for LayoutLMv3Processor

* Fix style

* Add model to README and update init

* Apply suggestions from code review

* Replace asserts by value errors

* Add suggestion by @ducviet00

* Add model to doc tests

* Simplify script

* Improve README

* a step ahead to fix

* Update pair_input_test

* Make all tokenizer tests pass - phew

* Make style

* Add LayoutLMv3 to CI job

* Fix auto mapping

* Fix CI job name

* Make all processor tests pass

* Make tests of LayoutLMv2 and LayoutXLM consistent

* Add copied from statements to fast tokenizer

* Add copied from statements to slow tokenizer

* Remove add_visual_labels attribute

* Fix tests

* Add link to notebooks

* Improve docs of LayoutLMv3Processor

* Fix reference to section

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-24 09:53:45 +02:00
13541b4aa2 Add support for device_map="auto" to OPT (#17382) 2022-05-23 15:25:51 -04:00
71cced8ae3 OPTForCausalLM lm_head input size should be config.word_embed_proj_dim (#17225) 2022-05-23 21:20:29 +02:00
56f50590d5 Use Accelerate in from_pretrained for big model inference (#17341)
* Initial work

* More or less finished with first draft

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix randomly initialized weights

* Update src/transformers/modeling_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* Rename DeepSpeed folder to temporarily fix the test issue?

* Revert to try if Accelerate fix works

* Use latest Accelerate release

* Quality and fixes

* Style

* Quality

* Add doc

* Test + fix

* More blocks

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-05-23 14:32:21 -04:00
2e7e4280aa Traced models serialization and torchscripting fix (#17206)
* Fix torch.jit.script and pickling issues

* Fix get_attr issues

* Fix import in function

* Fix GPT-J and T5 tracing for torch=1.11

* Gate graph surgery on torch version

* Modeling minor changes to enable TorchScripting

* Model serialization / deserialization test

* Remove _assert_is_none users
2022-05-23 17:50:40 +02:00
1cd01b0af3 Fix Comet ML integration (#17381)
Callback function `on_train_end` crashed if Comet ML integration was
used but `COMET_MODE` set to `DISABLE`
2022-05-23 10:43:10 -04:00
c86aad6110 Fix cvt docstrings (#17367) 2022-05-23 16:11:09 +02:00
7b8cb26953 Correct & Improve Doctests for LayoutLMv2 (#17168)
* add inference example to LayoutLMv2ForQuestionAnswering, passing doctest

* add loss example to LayoutLMv2ForQuestionAnswering, passing doctest

* Add correct doctest for LayoutLMv2ForTokenClassification, passing doctest

* add correct doctest for LayoutLMv2ForSequenceClassification, passing test

* add correct doctest for LayoutLMv2Model, passing test

* make fixup

* fix to address review comments

* make style

* fix doctest line break issue, add to documentaiton_tests.txt, address review comments

* move comment about layoutlmv2 dependencies to the doc page

* format doc page as suggested

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* delete extraneous backtick

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-23 08:02:31 -04:00
b48ac1a094 Fix CodeParrot training script (#17291)
* average loss over batches and accumulated steps for tracking

* fix layernorm weight decay

* use AdamW from Pytorch instead of Transformers

* add shuffling of sequences inside the batches

* add shuffling of sequences inside the batches

* add logging dir and reformat code

* fix lr tracking

* remove Mistral scaling

* keep Mistral scaling

* reformat code

* fix error

* fix error

* use shuffling function from Pytorch

* remove argument for shuffling batch sequences as it isn't optional

* update package versions and install accelerate from source

* remove unused package

* Update loss average over accumulated steps

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update loss average over accumulated steps

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* use one shuffle buffer argument

* compute avg_loss in one line

Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-05-23 12:55:35 +02:00
b9bb417324 Fix a typo relative_postion_if_large -> relative_position_if_large (#17366) 2022-05-20 18:41:12 +02:00
3fd7de49f4 Pin dill to fix examples (#17368)
* Pin dill for now

* Try this version?

* force install

* Actually use dep in testing

* Try a larger pin
2022-05-20 11:00:58 -04:00
54192058f3 [Test OPT] Add batch generation test opt (#17359)
* up

* up
2022-05-19 23:46:26 +02:00
48c22691e3 Fix bug in Wav2Vec2 pretrain example (#17326) 2022-05-19 22:42:44 +02:00
5d6feecf16 fix for 17292 (#17293) 2022-05-19 22:21:19 +02:00
518bd02c9b [Generation] Fix Transition probs (#17311)
* [Draft] fix transition probs

* up

* up

* up

* make it work

* fix

* finish

* update
2022-05-19 22:17:02 +02:00
e8714c0307 [OPT] Run test in lower precision on GPU (#17353)
* [OPT] Run test only in half precision

* up

* up

* up

* up

* finish

* fix on GPU

* Update tests/models/opt/test_modeling_opt.py
2022-05-19 22:15:36 +02:00
2b282296f1 Adding batch_size test to QA pipeline. (#17330) 2022-05-19 14:28:12 -04:00
a4386d7e40 [BC] Fixing usage of text pairs (#17324)
* [BC] Fixing usage of text pairs

The BC is actually preventing users from misusing the pipeline since
users could have been willing to send text pairs and the pipeline would
instead understand the thing as a batch returning bogus results.

The correct usage of text pairs is preserved in this PR even when that
makes the code clunky.

Adds support for {"text":..,, "text_pair": ...} inputs for both dataset
iteration and more explicit usage to pairs.

* Updating the doc.

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_text_classification.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* quality.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-19 10:29:16 +02:00
3601aa8fc9 [tests] fix copy-n-paste error (#17312)
* [tests] fix copy-n-paste error

* fix
2022-05-18 16:00:47 -07:00
1b20c970a2 Fix ci_url might be None (#17332)
* fix

* Update utils/notification_service.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-05-18 21:49:08 +02:00
6aad3872ce fix (#17337)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 15:26:44 -04:00
1762ded30a Fix metric calculation in examples and setup tests to run on multi-gpu for no_trainer scripts (#17331)
* Fix length in no_trainer examples

* Add setup and teardown

* Use new accelerator config generator to automatically make tests able to run based on environment
2022-05-18 14:17:40 -04:00
6e195eb9de docs for typical decoding (#17186)
Co-authored-by: Jader Martins <jadermcs94@gmail.com>
2022-05-18 19:18:43 +02:00
060fe61dff Not send successful report (#17329)
* send report only if there is any failure

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 19:07:48 +02:00
b3b9f99ed2 Fix test_t5_decoder_model_past_large_inputs (#17320)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 17:57:23 +02:00
6da76b9c2a Add onnx export cuda support (#17183)
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-05-18 17:52:13 +02:00
adc0ff2502 Add CvT (#17299)
* Adding cvt files

* Adding cvt files

* changes in init file

* Adding cvt files

* changes in init file

* Style fixes

* Address comments from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Format lists in docstring

* Fix copies

* Apply suggestion from code review

Co-authored-by: AnugunjNaman <anugunjjha@gmail.com>
Co-authored-by: Ayushman Singh <singhayushman13@protonmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-18 17:47:18 +02:00
4710702837 Fix style 2022-05-18 10:46:40 -04:00
5fdb54ece7 Add Information Gain Filtration algorithm (#16953)
* Add information gain filtration algorithm

* Complying with black requirements

* Added author

* Fixed import order

* flake8 corrections

Co-authored-by: Javier Turek <javier.turek@intel.com>
2022-05-18 10:39:02 -04:00
91ede485a7 Fix typo (#17328) 2022-05-18 10:29:53 -04:00
fe28eb9452 remove (#17325)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 10:06:41 -04:00
2cb2ea3fa1 Accepting real pytorch device as arguments. (#17318)
* Accepting real pytorch device as arguments.

* is_torch_available.
2022-05-18 10:06:24 -04:00
1c9d1f4ca8 Updating the docs for max_seq_len in QA pipeline (#17316) 2022-05-18 15:46:12 +02:00
60ad73448c [T5] Fix init in TF and Flax for pretraining (#17294)
* fix init

* Apply suggestions from code review

* fix

* finish

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-18 15:08:56 +02:00
7ba1d4e51f Add type hints for ProphetNet (Pytorch) (#17223)
* added type hints to prophetnet

* reformatted with black

* fix bc black misformatted some parts

* fix imports

* fix imports

* Update src/transformers/models/prophetnet/configuration_prophetnet.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* update OPTIONAL type hint and docstring

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-18 13:23:47 +01:00
d6b8e9cec7 Add trajectory transformer (#17141)
* Add trajectory transformer


Fix model init


Fix end of lines for .mdx files

Add trajectory transformer model to toctree

Add forward input docs

Fix docs, remove prints, simplify prediction test

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update docs, more descriptive comments

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update readme

Small comment update and add conversion script

Rebase and reformat

Fix copies

Fix rebase, remove duplicates

Fix rebase, remove duplicates

* Remove tapex

* Remove tapex

* Remove tapex
2022-05-17 19:07:43 -04:00
c35264007b fix (#17310) 2022-05-17 18:34:31 -04:00
d9050dc768 [LED] fix global_attention_mask not being passed for generation and docs clarification about grad checkpointing (#17112)
* [LED] fixed global_attention_mask not passed for generation + docs clarification for gradient checkpointing

* LED docs clarification

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] gradient_checkpointing=True should be passed to TrainingArguments

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] docs: remove wrong word

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] docs fix typo

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-05-17 23:44:37 +02:00
bad358398a Add support for pretraining recurring span selection to Splinter (#17247)
* Add SplinterForSpanSelection for pre-training recurring span selection.

* Formatting.

* Rename SplinterForSpanSelection to SplinterForPreTraining.

* Ensure repo consistency

* Fixup changes

* Address SplinterForPreTraining PR comments

* Incorporate feedback and derive multiple question tokens per example.

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Jean Vancoppenole <jean.vancoppenolle@retresco.de>
Co-authored-by: Tobias Günther <tobias.guenther@retresco.de>
Co-authored-by: Tobias Günther <github@tobigue.de>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-05-17 23:42:14 +02:00
0511305549 Add PR author in CI report + merged by info (#17298)
* Add author info to CI report

* Add merged by info

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 12:56:58 -04:00
032d63b976 Fix dummy creation script (#17304) 2022-05-17 12:56:24 -04:00
986dd5c5bf Fix style 2022-05-17 12:50:14 -04:00
38ddab10da Doctest longformer (#16441)
* Add initial doctring changes

* make fixup

* Add TF doc changes

* fix seq classifier output

* fix quality errors

* t

* swithc head to random init

* Fix expected outputs

* Update src/transformers/models/longformer/modeling_longformer.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-05-17 18:32:12 +02:00
10704e1209 [Test] Fix W2V-Conformer integration test (#17303)
* [Test] Fix W2V-Conformer integration test

* correct w2v2

* up
2022-05-17 18:20:36 +02:00
28a0811652 Improve mismatched sizes management when loading a pretrained model (#17257)
- Add --ignore_mismatched_sizes argument to classification examples

- Expand the error message when loading a model whose head dimensions are different from expected dimensions
2022-05-17 17:58:14 +02:00
1f13ba818e correct opt (#17301) 2022-05-17 15:48:23 +02:00
349f1c85d3 Rewrite TensorFlow train_step and test_step (#17057)
* Initial commit

* Better label renaming

* Remove breakpoint before pushing (this is your job)

* Test a lot more in the Keras fit() test

* make fixup

* Clarify the case where we flatten y dicts into tensors

* Clarify the case where we flatten y dicts into tensors

* Extract label name remapping to a method
2022-05-17 14:36:23 +01:00
651e48e1e5 Fix tests of mixed precision now that experimental is deprecated (#17300)
* Fix tests of mixed precision now that experimental is deprecated

* Fix mixed precision in training_args_tf.py too
2022-05-17 14:14:17 +01:00
6d211429ec fix retribert's test_torch_encode_plus_sent_to_model (#17231) 2022-05-17 14:33:13 +02:00
ec7f8af106 [ConvNeXT] Fix drop_path_rate (#17280)
* Fix drop_path_rate

* Fix TF's drop path rate
2022-05-17 07:37:48 -04:00
a26ab95e30 Fix wrong PT/TF categories in CI report (#17272)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 09:32:47 +02:00
1ac2b8fa7f Fix missing job action button in CI report (#17270)
* use matrix.machine_type

* fix job names used in job_link

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 08:31:06 +02:00
5a9957358c Add Wav2Vec2Conformer (#16812)
* save intermediate

* add wav2vec2 conformer

* add more code

* more

* first test passes

* make all checkpoints work

* update

* up

* more clean ups

* save clean-up

* save clean-up

* save more

* remove bogus

* finalize design conformer

* remove vision

* finish all tests

* more changes

* finish code

* add doc tests

* add slow tests

* fix autoconfig test

* up

* correct docstring

* up

* update

* fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update docs/source/en/model_doc/wav2vec2-conformer.mdx

* upload

* save copied from

* correct configs

* fix model outputs

* add to docs

* fix imports

* finish

* finish code

* correct copied from

* correct again

* correct make fix

* improve make fix copies

* save

* correct fix copy from

* correct init structure

* correct

* fix import

* apply suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2022-05-17 00:43:16 +02:00
f0395cf58e Fix test_model_parallelization (#17249)
* Fix test_model_parallelization

* Modify
2022-05-16 23:30:49 +02:00
e705e1267c [Tests] Fix slow opt tests (#17282)
* fix opt tests

* remove unused tok

* make style

* make flake8 happy

* Update tests/models/opt/test_modeling_opt.py
2022-05-16 23:24:20 +02:00
f6a6388972 Add Tensorflow Swin model (#16988)
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 22:19:53 +01:00
6cb7187324 docs(transformers): fix typo (#17263) 2022-05-16 17:04:30 -04:00
053a80c606 logging documentation update (#17174)
* logging documentation

* style

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-05-16 16:47:28 -04:00
8600d770d4 Use the PR URL in CI report (#17269)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 22:02:28 +02:00
3fb82f74fd Fix FlavaForPreTrainingIntegrationTest CI test (#17232)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 21:14:25 +02:00
9b0d2860eb Better error in the Auto API when a dep is missing (#17289) 2022-05-16 14:55:46 -04:00
66b3e106a1 Make TrainerHyperParameterSigOptIntegrationTest slow test (#17288)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 14:18:09 -04:00
ddb1a47ec8 Automatically sort auto mappings (#17250)
* Automatically sort auto mappings

* Better class extraction

* Some auto class magic

* Adapt test and underlying behavior

* Remove re-used config

* Quality
2022-05-16 13:24:20 -04:00
2f611f85e2 Mlflowcallback fix nonetype error (#17171)
* Fix edge cases TypeError: 'NoneType' object is not callable

* fix style
2022-05-16 12:18:30 -04:00
95b6bef624 Align logits and labels in OPT (#17237) 2022-05-16 09:37:39 -04:00
a5d1839679 Remove next sentence prediction from supported ONNX tasks (#17276) 2022-05-16 15:34:04 +02:00
05a90579a8 CodeParrot data pretokenization (#16932)
* add pretokenization arguments

* add pretokenization script

* add support for pretokenized data

* reformat code

* fix run command for training

* fix model call from config

* remove a package

* add comments on pretokenization in the readme

* remove explicit parallelization

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme -remove username

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme -remove username

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* keep data parallelization

* reformat code

* reformat code

* update readme

* reformat code

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
2022-05-16 15:32:16 +02:00
e730e12567 Update codeparrot data preprocessing (#16944)
* add new preprocessing arguments

* add new filters

* add new filters to readme

* fix config and test count, update function names and docstrings

* reformat code

* update readme

* Update readme

* rename config_test filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename few_assignments filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename tokenizer in arguments

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename functions and add limit_line argument for config_test filter

* update threshold for config_test filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
2022-05-16 14:43:25 +02:00
518dd1277e Updated checkpoint support for Sagemaker Model Parallel (#17219)
* adding partial checkpoint support for optimizer state

* formatted trainer.py

* Refactoring based on comments

* reformatting

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 08:17:25 -04:00
71d18d0831 fixed bug in run_mlm_flax_stream.py (#17203)
* fixed bug run_mlm_flax_stream.py

Fixed bug caused by an update to tokenizer keys introduced in recent transformers versions (between `4.6.2` and `4.18.0`) where additional keys were introduced to the tokenizer output.

* Update run_mlm_flax_stream.py

* adding missing paranthesis

* formatted to black

* remove cols from dataset instead

* reformat to black

* moved rem. columns to map

* formatted to black

Co-authored-by: KennethEnevoldsen <kennethcenevolsen@gmail.com>
2022-05-16 13:40:27 +02:00
71abd3ade1 [WIP] [doc] performance/scalability revamp (#15723)
* [doc] performance/scalability revamp

* link the new docs

* no :

* mixed precision

* work on the first doc

* expand the main doc

* Trigger CI

* style

* revamp single GPU training section

* work on training performance

* remove files not used anymore or will be added later

* final touches

* fix rebase

* Add hardware section to toctree

* fix toctree again

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove `fast_tokenizers` entry that was copied in rebase

* add warning about DP vs DDP

* remove todo

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix missing closure of codeblock

* Update docs/source/en/perf_train_gpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* sync with #16860

* update toc

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 13:36:41 +02:00
d3d87b451e TF - Fix convnext classification example (#17261) 2022-05-16 12:24:01 +01:00
e86faecfd4 Fix obvious typos in flax decoder impl (#17279)
Change config.encoder_ffn_dim -> config.decoder_ffn_dim for decoder.
2022-05-16 13:08:04 +02:00
ee393c009a Guide to create custom models in Spanish (#17158)
* file copied and toctree updated

* Intro and configuration translated

* model section translated

* enter hotfix

* Translation over, correction pending

* Typos and corrections

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:19:29 -04:00
16be422912 Translated version of model_sharing.mdx doc to spanish (#16184)
* Translated version of model_sharing to spanish

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Addind model sharing to _toctree.yml

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:18:46 -04:00
f9024814e1 [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial (#17076)
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial

* Delete docs/source/pt-br directory

* [ fast_tokenizers.mdx ] - Continuing work on file

* [ fast_tokenizers.mdx ] - Continuing work on file

* Add fast tokenizers to _toctree.yml

* Eliminated config and toctree.yml

* Nits in fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:18:14 -04:00
50d1867cf8 Add PR title to push CI report (#17246)
* add PR title to push CI report

* add link

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 21:50:40 +02:00
506899d147 Fix push CI channel (#17242)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 20:59:56 +02:00
7198b63362 install dev. version of accelerate (#17243)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 13:47:09 -04:00
b96cb1693f Fix Trainer for Datasets that don't have dict items (#17239) 2022-05-13 11:49:23 -04:00
9c8fde8e19 Handle copyright in add-new-model-like (#17218) 2022-05-13 11:47:19 -04:00
993553b2f1 fix --gpus option for docker (#17235)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 17:26:26 +02:00
38043d8453 Update self-push workflow (#17177)
* update push ci

* install git-python

* update comment

* update deepspeed jobs

* fix report

* skip 2 more tests that require fairscale

* Fix changes in test_fetcher.py (to deal with `setup.py` is changed)

* set RUN_PT_TF_CROSS_TESTS=1 and final clean-up

* remove SIGOPT_API_TOKEN

* remove echo "$matrix_folders"

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 16:28:00 +02:00
18d6b356c5 OPT - fix docstring and improve tests slighly (#17228)
* correct some stuff

* fix doc tests

* make style
2022-05-13 15:14:50 +02:00
dfc76018c1 OPT-fix (#17229)
* try fixes

* Revert "try fixes"

This reverts commit a8ad75ef69d4fc03a402ef61bd034b018aa8555e.

* add correct shape

* add correct path
2022-05-13 15:14:23 +02:00
85fc455972 Added translation of installation.mdx to Portuguese Issue #16824 (#16979)
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py

* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.

* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.

[ pipeline_tutorial.mdx ] - Grammar changes.

* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.

* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.

[ training.mdx ] - Added portuguese translation for training tutorial.

* [ preprocessing.mdx ] - WIP

* Update _toctree.yml

* Adding Pré-processamento to _toctree.yml

* Update accelerate.mdx

* Nits and eliminate preprocessing file while it is ready

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 07:55:44 -04:00
3f936df662 Fix typo in bug report template (#17178)
* Fix typo

* Force rerun workflows

Co-authored-by: Felix Marty <felix@huggingface.co>
2022-05-12 16:31:12 -04:00
afe5d42d8d Black preview (#17217)
* Black preview

* Fixup too!

* Fix check copies

* Use the same version as the CI

* Bump black
2022-05-12 16:25:55 -04:00
9bd67ac7bb update BART docs (#17212) 2022-05-12 19:25:16 +01:00
30be0da5da Fix dependency table 2022-05-12 11:29:32 -04:00
f04257fdbc Add test to ensure models can take int64 inputs (#17210)
* Add test to ensure models can take int64 inputs

* is_integer is an attribute, not a method

* Fix test when some inputs aren't tensors

* Add casts to blenderbot and blenderbot-small

* Add casts to the other failing models
2022-05-12 16:09:25 +01:00
5294fa12ee Dev version 2022-05-12 11:04:23 -04:00
9f16a1cc13 Update data2vec.mdx to include a Colab Notebook link (that shows fine-tuning) (#17194)
* Update data2vec.mdx

* Update data2vec.mdx

* Update docs/source/en/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-12 10:22:00 -04:00
a42242da7c migrate azure blob for beit checkpoints (#16902)
## Motivation

We are going to use a new blob account to store the checkpoints.

## Modification

Modify the azure blob storage URLs for BEiT checkpoints.
2022-05-12 13:08:15 +02:00
b971c769e8 Add OPT (#17088)
* First version - OPT model

* Final changes

- putting use cache to False

* few changes

- remove commented block

* few changes

- remove unecessary files

* fix style issues

* few changes

- remove a test file
- added the logits test

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add gen tests

* few changes

- rm mask filling example on docstring

* few changes

- remove useless args

* some changes

- more tests should pass now
- needs to clean more
- documentation still needs to be done

* fix code quality

* major changes

- change attention architecture to BART-like
- modify some tests
- style fix

* rm useless classes

- remove opt for:
- QA
- cond generation
- seq classif

* Removed autodoc calls to non-existant classes

TOkenizers are not implemented

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Replaced OPTTokeniser with GPT2 tokenizer

* added GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")

* Removed OPTTokenizer

* make style

* Make style replaces

``` ...).unsqueeze(```
by
``` >>>).unsqueeze(```

* make repo consistency

* Removed PretrainedOPTModel

* fix opt.mdx removed other heads

* fix init, removed 3 heads

* removed heads

* finished cleaning head

* removed seauence classif and question answering

* removed unused imports

* removed useless dummy object for QA, SC and CG

* removed tests for removed useless dummy object for QA, SC and CG

* Removed head_mask using encoder layers which don't exist

* fixed test

* fix line

* added OPT to toctree

* Updated model path with pushed weigths

* fix model path

* fixed code quality

* fixed embeddings and generation tests

* update paths

* clean comments

* removed OPTClassificationHead for sentence classification

* renamed hidden layer

* renamed num layers to standard num_hidden_layers

* num_attention_heads fix

* changes for 125m

* add first version for 125m

* add first version - flax

* add new version

* causal LM output

* replace output type with BaseModelOutputWithPastAndCrossAttentions

* revert working config from 150m to 350m

* clean

* removed decoder input ids

* fixed embed dim

* more embed_dim issues

* make style + removed enc_dec test

* update falx model

* removed troublesome copy

* added is_encoder_decoder=False to config

* added set_input emb fuinction to model class

* requires torch on embed test

* use head mask instead of decoder head mask input param solves a test

* 8 test remaining, update

* Updated create_and_check_decoder_model_past_large_inputs

* Make style

* update op tokenizer with condition

* make style

* See if I can push

* some clean up

* remove linear head hack

* save intermediate

* save correct attention

* add copied from from bart

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix part of the reviewss
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* same changes in naming / conversion

* correct mask

* more fixes

* delete FlaxOPT and TfOPT

* clean traces of Flax and Tf

* fix mask

* fixed positionnal embedding length when past key value is provoded

* get 125m, 6.7b to work

* Added do_layer_norm

* solved mismatch in load dictionnary

* clean up preapre opt input dict

* fixed past key value as bool

* fix previus

* fixed return dict False tuple issue

* All tests are passing

* Make style

* Ignore OPTDecoder non tested

* make fix-copies

* make repo consistency

* small fix

* removed uselss @torch.no_grad decorator

* make styl;e

* fix previous opt test

* style

* make style

* added opt documentation

* update OPT_PRETRAINED_MODEL_ARCHIVE_LIST

* up

* more fixes

* model & config work

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* added comment on padding hack (+2)

* cleaup

* review update

* docstring for missing arg

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update pretrained map

* update path and tests

* make style

* styling

* make consistency

* add gpt2 tok new

* more tok fixes

* Update src/transformers/models/auto/tokenization_auto.py

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/opt/test_modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* make style

* make tokenizer auto tests pass

* apply Lysandre suggestion

* finish tests

* add some good tokenizer tests

* improve docs slighly

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-12 12:24:35 +02:00
8c7481f35c ViT and Swin symbolic tracing with torch.fx (#17182)
* Support tracing for ViT

* Swin support

* Fix copies

* Fix type annotation issue

* Removed unused import
2022-05-12 10:42:27 +02:00
1a688709b3 Fix contents in index.mdx to match docs' sidebar (#17198)
* Fix contents in index.mdx to match docs' sidebar

* Eliminates api section from contents
2022-05-12 02:37:13 -05:00
b17b78897b Fix style error in Spanish docs (#17197) 2022-05-12 08:51:46 +02:00
1a66a6c677 Translate index.mdx (to ES) and add Spanish models to quicktour.mdx examples (#16685)
* Change nits in Spanish for quicktour.mdx

- Add tasks names in English too.
- Fix small nits in Spanish

* Translate index.mdx to Spanish

* Translate body of index.
* Translated the compatible models list (not the papers´ names). Since this should not be updated manually, I can come back to the original text.

* Add models and a  dataset for Spanish in the code exmaples

* Replaced the English models to Spanish versions.

* Add index to _toctree.yml and fix Spanish

* Fix double ““ error

* Change negative example in ASR example

* make style

* Debug style in quicktour.mdx
2022-05-11 23:35:07 -05:00
e2d678b71c Documentation: Spanish translation of fast_tokenizers.mdx (#16882)
* Spanish translation of fast_tokenizers.mdx

* add fast_tokenizers to the spanish _toctree.yml

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 22:25:44 -05:00
ae82da2181 Added es version of language_modeling.mdx doc (#17021)
* Spanish version of language_modeling.mdx doc file

* modification to toctree.yml file

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Correct position of Guías conceptuales

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 22:04:56 -05:00
36ddcc0d35 Spanish translation of philosophy.mdx #15947 (#16922)
* adding philosophy.mdx translation to Spanish

* adding philosophy.mdx translation to Spanish

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* philosophy translation to Spanish

* Update _toctree.yml

* Update _toctree.yml

* nits

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 20:47:50 -05:00
d1d5ebb16c Remove duplicated os.path.join (#17192) 2022-05-11 20:28:32 -04:00
a10f61834d [feat] Add FLAVA model (#16654)
* [WIP] Add FLAVA model

This PR aims to add [FLAVA](ihttps://arxiv.org/abs/2112.04482) model to the transformers repo.

Following checklist delineates the list of things to be done for this PR
to be complete:

[x] Flava init
[x] Flava base models
[x] Flava layers
[x] Flava Configs
[x] Flava encoders
[x] Flava pretraining models
[ ] Flava classification/retrieval models (To be added in a separate PR)
[x] Documentation updates 
[x] Imports updates 
[x] Argstring updates
[x] Flava pretrained checkpoints 
[x] Flava tests
[x] Flava processors 
[x] Sanity check
[x] Lint
2022-05-11 14:56:48 -07:00
7b95825d7d Remove columns before passing to data collator (#17187) 2022-05-11 15:58:32 -04:00
934e21cd4b add shift_tokens_right in FlaxMT5 (#17188) 2022-05-11 20:31:41 +01:00
47412c7d43 Ensure tensors are at least 1d for pad and concat (#17179)
* Ensure tensors are at least 1d for pad and concat

* Compatibility

* Fix

* Fix

* Add test

* Retrigger CI

* Consistency with master

* Retrigger CI
2022-05-11 13:19:08 -04:00
c76afa511c Fix LED documentation (#17181)
* Fix markdown code block

* Use consistent spelling for self-attention

* Fix typos and phrasing

* Fix code style
2022-05-11 13:17:50 -04:00
edcc66d27c Remove unnecessary columns for all dataset types in Trainer (#17166)
* Remove unneeded columns for IterableDataset

* Add test

* Update trainer tests

* Edit docstring

* Lint

* Apply feedback

* Apply feedback
2022-05-11 11:11:26 -04:00
c33f6046c3 [WIP] Enable reproducibility for distributed trainings (#16907)
* add seed worker and set_deterministic_seed_for_cuda function to enforce reproducability

* change function name to enable determinism, add docstrings, reproducability support for tf

* change function name to enable_determinism_for_distributed_training

* revert changes in set_seed and call set_seed within enable_full_determinism

* add one position argument for seed_worker function

* add full_determinism flag in training args and call enable_full_determinism when it is true

* add enable_full_determinism to documentation

* apply make fixup after the last commit

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-11 09:37:13 -04:00
5229744b26 Add missing RetriBERT tokenizer tests (#17017)
* Create RetriBERT tests folder

* Add missing RetriBERT tokenizer test file

* Apply style corrections

* Add non-english filter

* Update tests/retribert/test_tokenization_retribert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Update tests/retribert/test_tokenization_retribert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Move test files to new directory

* Update import path for testing utils to new test file structure

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-05-11 15:04:07 +02:00
6bc6797e04 Convert image to rgb for clip model (#17101)
Co-authored-by: kuanwee.heng <kuanwee.heng@aaqua.live>
2022-05-11 13:09:54 +01:00
0a2bea4752 Fix repo consistency 2022-05-11 08:05:45 -04:00
0645b07daf propagate "attention_mask" dtype for "use_past" in OnnxConfig.generate_dummy_inputs (#17105)
* propagate attention_mask dtype

* fixup&style
2022-05-11 07:50:35 -04:00
0e6ec2a469 Extend Transformers Trainer Class to Enable PyTorch SGD/Adagrad Optimizers for Training (#17154)
* add torch SGD and Adagrad optimizer bits

* refine naming

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-11 07:24:11 -04:00
63517fdf48 [M2M100 doc] remove duplicate example (#17175)
* remove duplicate example

* remove code block
2022-05-11 12:16:46 +01:00
4a419d4995 MobileBERT tokenizer tests (#16896)
* unhardcode pretrained model path, make it a class var

* add tests for mobilebert tokenizer

* allow tempfiles for vocab & merge similarity test to autodelete

* add explanatory comments

* remove unused imports, let make style do its.. thing

* remove inheritance and use BERT tok tests for MobileBERT

* Update tests/mobilebert/test_tokenization_mobilebert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* amend class names, remove unused import, add fix for mobilebert's hub pathname

* unhardcode pretrained model path, make it a class var

* add tests for mobilebert tokenizer

* allow tempfiles for vocab & merge similarity test to autodelete

* add explanatory comments

* remove unused imports, let make style do its.. thing

* remove inheritance and use BERT tok tests for MobileBERT

* Update tests/mobilebert/test_tokenization_mobilebert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* amend class names, remove unused import, add fix for mobilebert's hub pathname

* amend paths for model tests being in models/ subdir of /tests

* explicitly rm test from prev path

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-05-10 16:39:58 -04:00
48a8f3daa1 Add DebertaV2ForMultipleChoice (#17135) 2022-05-10 16:21:44 -04:00
4ad2f68e34 Fix template init (#17163) 2022-05-10 15:24:23 -04:00
e99f0efedc Add MLFLOW_FLATTEN_PARAMS support in MLflowCallback (#17148)
* add support for MLFLOW_FLATTEN_PARAMS

* ensure key is str

* fix style and update warning msg

* Empty commit to trigger CI

* fix bug in check_inits.py

* add unittest for flatten_dict utils

* fix 'NoneType' object is not callable on __del__

* add generic flatten_dict unittest to SPECIAL_MODULE_TO_TEST_MAP

* fix style
2022-05-10 14:29:18 -04:00
976835d515 missing file (#17164) 2022-05-10 10:19:50 -07:00
259eeb6dab Fixing the output of code examples in the preprocessing chapter (#17162) 2022-05-10 12:16:28 -04:00
f861504466 [Deepspeed] add many more models to the model zoo test (#12695)
* model zoo take 2

* add deberta

* new param for zero2

* doc update

* doc update

* add layoutlm

* bump deepspeed

* add deberta-v2, funnel, longformer

* new models

* style

* add t5_v1

* update TAPAS status

* reorg problematic models

* move doc to another PR

* style

* fix checkpoint check test

* making progress on more models running

* cleanup

* new version

* cleanup
2022-05-10 08:22:42 -07:00
9aeacfe0ff [trainer] sharded _load_best_model (#17150)
* [trainer] sharded _load_best_model

probably needs a test?

* undo delete
2022-05-10 07:58:53 -07:00
1766fa2159 train args defaulting None marked as Optional (#17156)
Co-authored-by: Dom Miketa <dmiketa@exscientia.co.uk>
2022-05-10 10:09:34 -04:00
6d80c92c77 LogSumExp trick question_answering pipeline. (#17143)
* LogSumExp trick `question_answering` pipeline.

* Adding a failing test.
2022-05-10 10:03:55 +02:00
d719bcd46a Fix all docs for accelerate install directions (#17145) 2022-05-09 15:45:18 -04:00
766d4bf792 Fix MLflowCallback end_run() and add support for tags and nested runs (#17130)
* ensure mlflow.end_run() is executed at end of training when mlflow.start_run() was executed by the callback

* add debug msg

* add support for MLFLOW_TAGS, MLFLOW_RUN_ID, and MLFLOW_NESTED_RUN

* update to support python 3.6+

* Validate env variables using ENV_VARS_TRUE_VALUES

* Empty-Commit
2022-05-09 13:09:48 -04:00
2fbb237967 Add the auto_find_batch_size capability from Accelerate into Trainer (#17068)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

- Adds auto_batch_size finder 
- Moves training loop to an inner training loop
2022-05-09 12:29:18 -04:00
df735d1317 [WIP] Fix Pyright static type checking by replacing if-else imports with try-except (#16578)
* rebase and isort

* modify cookiecutter init

* fix cookiecutter auto imports

* fix clean_frameworks_in_init

* fix add_model_to_main_init

* blackify

* replace unnecessary f-strings

* update yolos imports

* fix roberta import bug

* fix yolos missing dependency

* fix add_model_like and cookiecutter bug

* fix repository consistency error

* modify cookiecutter, fix add_new_model_like

* remove stale line

Co-authored-by: Dom Miketa <dmiketa@exscientia.co.uk>
2022-05-09 11:28:53 -04:00
7783fa6bb3 Fix quality and repo consistency 2022-05-09 11:14:36 -04:00
05fc1766ff PyTorch FSDP integration in Trainer (#17136)
* PyTorch FSDP integration in Trainer

* reformatting

make style and make quality are now compliant.

* Updating dependency check

* Trigger CI

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-05-09 20:40:56 +05:30
dc3645dc9c add mobilebert onnx configs (#17029)
* update docs of length_penalty

* Revert "update docs of length_penalty"

This reverts commit 466bf4800b75ec29bd2ff75bad8e8973bd98d01c.

* add mobilebert onnx config

* address suggestions

* Update auto.mdx

* Update __init__.py

* Update features.py
2022-05-09 10:36:53 -04:00
a021f2b90c Add type hints for BigBirdPegasus and Data2VecText PyTorch models (#17123)
* Add type hints for remaining BigBirdPegasus models

Here I added type hints to the BigBirdPegasusForCausalLM class.

* Add missing type hints for Data2VecText models

Added type hints to the Data2VecTextForCausalLM, Data2VecTextForMaskedLM,
Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering,
Data2VecTextForSequenceClassification, and
Data2VecTextForTokenClassification classes.
2022-05-09 12:45:43 +01:00
e9fd583ce0 LayoutLMv2Processor: ensure 1-to-1 mapping between images and samples in case of overflowing tokens (#17092)
* add get_overflowing_images function to ensure 1-to-1 mapping between samples and images in LayoutLMv2Processor

* make style

* add test for overflowing_tokens, change assert to ValueError, avoiding unrelated formatting changes

* change line length by passing --preview into black
2022-05-09 07:39:08 -04:00
3212afa614 split single_gpu and multi_gpu (#17083)
* split single_gpu and multi_gpu

* update needs in send_result

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-09 07:13:07 -04:00
215e0681e4 Added BigBirdPegasus onnx config (#17104)
* Add onnx configuration for bigbird-pegasus

* Modify docs
2022-05-06 17:31:00 +02:00
351cdbdfdc Fix self-push CI report path in cat (#17111)
* fix report cat path

* fix report cat path

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-06 07:45:17 -07:00
cad61b6839 Fix link to example scripts (#17103) 2022-05-05 15:20:27 -05:00
a59eb349c5 fix missing "models" in pipeline test module (#17090)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-05 16:12:01 +02:00
dd16a113a4 Remove torchhub test (#17097) 2022-05-05 10:02:47 -04:00
c849a61e65 Fix MLflowCallback and add support for MLFLOW_EXPERIMENT_NAME (#17091)
* Fix use of mlflow.active_run() and add proper support for MLFLOW_EXPERIMENT_NAME

* Fix code style (make style)
2022-05-05 09:49:55 -04:00
99289c08a1 Add type hints for BERTGeneration (#17047)
Added type hints for the BERTGenerationEncoder and BERTGenerationDecoder
classes.
2022-05-05 12:22:46 +01:00
45360e1a8e type hints for pytorch models (#17064)
* type hints for pytorch models

* fixed import error

* fixed some errors
2022-05-05 12:21:17 +01:00
db377a0b37 Added spanish translation of autoclass_tutorial. (#17069)
* Added spanish translation of autoclass_tutorial.
Added 'local' and 'title' fields for autoclass_tutorial.

* Fixed autoclass_tutorial title in _toctree.yml and autoclass_tutorial.mdx
2022-05-04 14:18:24 -05:00
6dc4c36acb minor change on TF Data2Vec test (#17085)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-04 18:39:30 +02:00
23619ef6b7 📝 open fresh PR for pipeline doctests (#17073) 2022-05-04 11:30:34 -05:00
870e6f29a6 Fix DeBERTa token_type_ids (#17082) 2022-05-04 18:23:37 +02:00
279bc5849b Allow saved_model export of TFCLIPModel in save_pretrained (#16886)
* CLIP Serving

* Add type hints per code review

* Use black, flake8, and isort

* Update src/transformers/models/clip/modeling_tf_clip.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Rollback serving_output and add TODO

* Remove irrelevant portions of failing tests

* Revert "Rollback serving_output and add TODO"

This reverts commit a4abfa6ba3b7875a13538dbc2ddc4eb17dfcca8d.

* Rollback to original test/serving_output

* Fix unused var

* Apply suggestions from code review

* Update formatting with black

* Fix style again from rebase

* Update tests/models/clip/test_modeling_tf_clip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sean Moriarity <sean.l.moriarity.mil@army.mil>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-05-04 16:37:58 +02:00
ef20390291 Update to build via git for accelerate (#17084) 2022-05-04 09:42:36 -04:00
bb8d40529e Deprecate model templates (#17062)
* Deprecate model templates

* Address review comments
2022-05-04 09:36:38 -04:00
9c5ae87f13 Type hint complete Albert model file. (#16682)
* Type hint complete Albert model file.

* Update typing.

* Update src/transformers/models/albert/modeling_albert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-04 14:35:12 +01:00
2bf95e2b09 Bump notebook from 6.4.1 to 6.4.10 in /examples/research_projects/lxmert (#16634)
Bumps [notebook](http://jupyter.org) from 6.4.1 to 6.4.10.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-04 08:27:40 -04:00
7a229ef446 Bump notebook in /examples/research_projects/visual_bert (#16635)
Bumps [notebook](http://jupyter.org) from 6.4.1 to 6.4.10.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-04 08:27:27 -04:00
049e791758 Add Data2Vec for Vision in TF (#17008)
* add utilities till TFData2VecVisionLayer.

* chore: pass window_size to attention layer.

* feat: add TFData2VecVisionRelativePositionBias.

* feat: initial implementation ready for tf data2vec.

* fix: relative position bias index, table to be fixed.

* chore: implementation added, tests remaining.

* add: tests, other PR files.

* fix: code quality.

* fix: import structure in init.

* chore: run make fix-copies.

* chore: address PR feedback (round I).

* chore: styling nit.

* fix: tests due to removal of to_2tuple().

* chore: rebase with upstream main and move the test.

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix: layer call.

* chore: remove from_pt=True and rerun test.

* chore: remove cast and tf.divide.

* chore: minor edits to the test script.

* Update src/transformers/models/data2vec/modeling_tf_data2vec_vision.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* fix: expand() on TF tensors with broadcast_to().

* fix: test import.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-04 08:08:25 -04:00
d76d2a2af7 Make sure telemetry arguments are not returned as unused kwargs (#17063)
* Make sure telemetry arguments are not returned as unused kwargs

* Fix test
2022-05-04 07:47:57 -04:00
675e2d1663 Remove masked image modeling from BEIT ONNX export (#16980)
* Add masked image modelling to task mapping

* Refactor ONNX features to be listed alphabetically

* Add warning about BEiT masked image modeling

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-04 10:05:24 +02:00
4bb1d0ec84 Skip RoFormer ONNX test if rjieba not installed (#16981)
* Skip RoFormer ONNX test if rjieba not installed

* Update deps table

* Skip RoFormer serialization test

* Fix RoFormer vocab

* Add rjieba to CircleCI
2022-05-04 10:04:10 +02:00
db034660fb Fix hashing for deduplication (#17048) 2022-05-04 08:40:24 +02:00
39f8eafc1b Remove device parameter from create_extended_attention_mask_for_decoder (#16894) 2022-05-03 11:06:11 -04:00
dd739f7045 Remove fetch in model templates test 2022-05-03 10:49:12 -04:00
1c9fcd0e04 Fix RNG reload in resume training from epoch checkpoint (#17055)
* Fix RNG reload in resume training from epoch checkpoint

* Fix test
2022-05-03 10:31:24 -04:00
6e17ba6aa5 Remove Python and use v2 action (#17059) 2022-05-03 10:12:17 -04:00
a8fa2f91f4 Make Trainer compatible with sharded checkpoints (#17053)
* Make Trainer compatible with sharded checkpoints

* Add doc
2022-05-03 09:55:10 -04:00
19420fd99e Move test model folders (#17034)
* move test model folders (TODO: fix imports and others)

* fix (potentially partially) imports (in model test modules)

* fix (potentially partially) imports (in tokenization test modules)

* fix (potentially partially) imports (in feature extraction test modules)

* fix import utils.test_modeling_tf_core

* fix path ../fixtures/

* fix imports about generation.test_generation_flax_utils

* fix more imports

* fix fixture path

* fix get_test_dir

* update module_to_test_file

* fix get_tests_dir from wrong transformers.utils

* update config.yml (CircleCI)

* fix style

* remove missing imports

* update new model script

* update check_repo

* update SPECIAL_MODULE_TO_TEST_MAP

* fix style

* add __init__

* update self-scheduled

* fix add_new_model scripts

* check one way to get location back

* python setup.py build install

* fix import in test auto

* update self-scheduled.yml

* update slack notification script

* Add comments about artifact names

* fix for yolos

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-03 14:42:02 +02:00
cd9274d010 [FlaxBert] Add ForCausalLM (#16995)
* [FlaxBert] Add ForCausalLM

* make style

* fix output attentions

* Add RobertaForCausalLM

* remove comment

* fix fx-to-pt model loading

* remove comment

* add modeling tests

* add enc-dec model tests

* add big_bird

* add electra

* make style

* make repo-consitency

* add to docs

* remove roberta test

* quality

* amend cookiecutter

* fix attention_mask bug in flax bert model tester

* tighten pt-fx thresholds to 1e-5

* add 'copied from' statements

* amend 'copied from' statements

* amend 'copied from' statements

* quality
2022-05-03 11:26:19 +02:00
31616b8d61 [T5 Tokenizer] Model has no fixed position ids - there is no hardcode… (#16990)
* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length

* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length

* correct t5 tokenizer

* correct t5 tokenizer

* fix test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* finish

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-02 21:27:34 +02:00
1073f00d4e Clean up setup.py (#17045)
* Clean up setup.py

* Trigger CI

* Upgrade Python used
2022-05-02 12:58:17 -04:00
30ca529902 Make the sacremoses dependency optional (#17049)
* Make sacremoses optional

* Pickle
2022-05-02 12:47:47 -04:00
bb2e088be7 Allow all imports from transformers (#17050) 2022-05-02 12:47:39 -04:00
1ac698744c Add YOLOS (#16848)
* First draft

* Add YolosForObjectDetection

* Make forward pass work

* Add mid position embeddings

* Add interpolation of position encodings

* Add expected values

* Add YOLOS to tests

* Add integration test

* Support tiny model as well

* Support all models in conversion script

* Remove mid_pe_size attribute

* Make more tests pass

* Add model to README and fix config

* Add copied from statements

* Rename base_model_prefix to vit

* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP

* Apply suggestions from code review

* Apply more suggestions from code review

* Convert remaining checkpoints

* Improve docstrings

* Add YolosFeatureExtractor

* Add feature extractor to docs

* Add corresponding tests

* Fix style

* Fix docs

* Apply suggestion from code review

* Fix bad rebase

* Fix some more bad rebase

* Fix missing character

* Improve docs and variable names

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-02 18:30:55 +02:00
f275e593bf Fix no_trainer examples to properly calculate the number of samples (#17046)
* Update all examples to properly calculate progress bar
2022-05-02 11:56:25 -04:00
35d48db881 Update no_trainer examples to use new logger (#17044)
* Propagate and fix imports
2022-05-02 11:56:15 -04:00
daecae1f1c [Trainer] Move logic for checkpoint loading into separate methods for easy overriding (#17043) 2022-05-02 10:40:37 -04:00
2de2c9ecca Clean up vision tests (#17024)
* Clean up tests

* Make fixup

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-02 16:28:58 +02:00
4be8b95a9f Disable Flax GPU tests on push (#17042) 2022-05-02 10:25:53 -04:00
bdd690a74d add torch.no_grad when in eval mode (#17020)
* add torch.no_grad when in eval mode

* make style quality
2022-05-02 07:49:19 -04:00
9586e222af Fix typo in RetriBERT docstring (#17018) 2022-05-02 07:48:20 -04:00
93b802c43e [Flax(Speech)EncoderDecoder] Fix bug in decoder_module (#17036)
* [FlaxSpeechEncoderDecoder] Fix bug in `decoder_module`

* [FlaxEncoderDecoder] Fix bug in `decoder_module`
2022-05-02 13:06:45 +02:00
1ae182d9a6 Fix style 2022-05-02 06:19:31 -04:00
2c2a2169b6 Fx with meta (#16836)
* Add meta proxy

* Uses meta data to trace data dependent control-flow

* Remove commented class

* Handles torch creating functions

* Added type annotation to fix tracing

* Tracing works for everything but T5 and GPT-J

* Almost all previously supported models pass

* All architectures can be traced except T5

* Intermediate commit to have a trace of the comparison operators for HFProxy

* Everything works, except loss computation

* Everything works

* Removed unused import

* Overriden methods do not use underlying ops (linear and torch.matmul), and model attributes are copied to the traced version

* Fix torch_matmul_override

* Change attributes reference to deepcopy

* Remove breakpoint and add torch_index_override

* Small fix

* Fix typo

* Replace asserts by explicit exceptions
2022-05-02 11:46:52 +02:00
ff846e9b28 [FlaxGenerate] Fix bug in decoder_start_token_id (#17035) 2022-05-02 11:05:27 +02:00
eb877f1fd0 update docs of length_penalty (#17022) 2022-05-02 11:01:18 +02:00
da47c264f9 Add translating guide (#17004)
* Add translating guide
2022-04-30 17:43:38 -05:00
ede5e04191 Add a check on config classes docstring checkpoints (#17012)
* Add the check

* add missing ckpts

* add a list to ignore

* call the added check script

* better regex pattern

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-30 10:40:46 +02:00
7152ed2bae Result of new doc style with fixes (#17015)
* Result of new doc style with fixes

* Add last two files

* Bump hf-doc-builder
2022-04-29 17:42:15 -04:00
18df440709 Replace dict/BatchEncoding instance checks by Mapping (#17014)
* Replace dict/BatchEncoding instance checks by Mapping

* Typo
2022-04-29 17:20:52 -04:00
b8dffd1f3e Revert "Updating variable names. (#16445)" (#17011)
This reverts commit 4f3a14e3c235c8b6b8cd2f5bc448a0cffacddf61.
2022-04-29 12:26:45 -04:00
4f3a14e3c2 Updating variable names. (#16445) 2022-04-29 17:44:28 +02:00
20fb5d51ea Update README_zh-hans.md (#16977) 2022-04-29 11:05:03 -04:00
63fbed5c59 Make create_extended_attention_mask_for_decoder static method (#16893) 2022-04-29 10:57:09 -04:00
fb0ae12947 TF: XLA bad words logits processor and list of processors (#16974) 2022-04-29 15:54:58 +01:00
57e6464ac9 Update all require decorators to use skipUnless when possible (#16999) 2022-04-29 08:55:38 -04:00
e952e049b4 use scale=1.0 in floats_tensor called in speech model testers (#17007)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-29 14:41:33 +02:00
e6f00a11d7 Update README to latest release (#16997) 2022-04-28 14:17:44 -04:00
3486a92a57 Fix savedir for by epoch (#16996) 2022-04-28 13:49:45 -04:00
5af5735f62 set eos_token_id to None to generate until max length (#16989)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-28 19:47:38 +02:00
01562dac7e Rename a class to reflect framework pattern AutoModelXxx -> TFAutoModelXxx (#16993) 2022-04-28 18:11:54 +01:00
1be8d56ec6 Add parameter --config_overrides for run_mlm_wwm.py (#16961)
* dd parameter --config_overrides for run_mlm_wwm.py

* linter
2022-04-28 10:44:55 -04:00
1f9e862507 Update check_models_are_tested to deal with Windows path (#16973)
* fix

* Apply suggestions from code review

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-28 15:31:57 +02:00
dced262409 Update tokenization_bertweet.py (#16941)
The emoji version must be either 0.5.4 or 0.6.0. Newer emoji versions have been updated to newer versions of the Emoji Charts, thus not consistent with the one used for pre-processing the pre-training Tweet corpus (i.e. not consistent with the vocab).
2022-04-27 16:54:31 -04:00
992996e9ca Add -e flag to some GH workflow yml files (#16959)
* Add -e flag

* add check

* create new keys

* run python setup.py build install

* add comments

* change to develop

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 21:44:21 +02:00
596afb4297 Fix check_all_models_are_tested (#16970)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 21:18:29 +02:00
691cdbb7d7 Fix doc notebooks links (#16969)
* Fix doc notebooks links

* Remove missing section
2022-04-27 14:59:53 -04:00
60e1d883f1 Fixup no_trainer save logic (#16968)
* Fixup all examples
2022-04-27 14:46:49 -04:00
c79bbc3ba5 Fix multiple deletions of the same files in save_pretrained (#16947)
* Fix multiple deletions of the same files in save_pretrained

* Add is_main_process argument
2022-04-27 12:28:42 -04:00
bfbec17765 Fix add-new-model-like when model doesn't support all frameworks (#16966) 2022-04-27 11:15:25 -04:00
cf8a7c2490 Update custom_models.mdx (#16964)
BertModelForSequenceClassification -> BertForSequenceClassification
2022-04-27 16:46:55 +02:00
5896b3ecce Fix distributed_concat with scalar tensor (#16963)
* Fix `distributed_concat` with scalar tensor

* Update trainer_pt_utils.py
2022-04-27 10:26:22 -04:00
084c38c59d [HF Argparser] Fix parsing of optional boolean arguments (#16946)
* Add fix

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-27 15:00:45 +02:00
c82e017aa9 Misc. fixes for Pytorch QA examples: (#16958)
1. Fixes evaluation errors popping up when you train/eval on squad v2 (one was newly encountered and one that was previously reported Running SQuAD 1.0 sample command raises IndexError #15401 but not completely fixed).
2. Removes boolean arguments that don't use store_true. Please, don't use these: *ANY non-empty string is being converted to True in this case and this clearly is not the desired behavior (and it creates a LOT of confusion).
3. All no-trainer test scripts are now saving metric values in the same way (with the right prefix eval_), which is consistent with the trainer-based versions.
4. Adds forgotten model.eval() in the no-trainer versions. This improved some results, but not everything (see the discussion in the end). Please, see the F1 scores and the discussion below.
2022-04-27 08:51:39 -04:00
49d5bcb0f3 Fix HubertRobustTest PT/TF equivalence test on GPU (#16943)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 10:50:03 +02:00
479fdc4925 Add semantic script, trainer (#16834)
* Add first draft

* Improve script and README

* Improve README

* Apply suggestions from code review

* Improve script, add link to resulting model

* Add corresponding test

* Adjust learning rate
2022-04-27 10:12:18 +02:00
a4a88fa09f [Research] Speed up evaluation for XTREME-S (#16785)
* Avoid repeated per-lang filtering

* Language groups and logits preprocessing

* Style
2022-04-27 08:34:21 +02:00
2d91e3c304 use original loaded keys to find mismatched keys (#16920) 2022-04-26 17:29:52 -04:00
d365f5074f Fix RuntimeError message format (#16906) 2022-04-26 17:08:28 -04:00
10dfa126b7 documentation: some minor clean up (#16850) 2022-04-26 16:56:08 -04:00
aaee4038c3 Add onnx config for RoFormer (#16861)
* add roformer onnx config
2022-04-26 16:51:15 +02:00
8afaaa26f5 FIx Iterations for decoder (#16934)
FIx Iterations for decoder
2022-04-26 12:54:14 +02:00
fa32247406 apply torch int div to layoutlmv2 (#15457)
* apply torch int div

* black linting fixup

* update path to torch_int_div

* clarify imports
2022-04-26 10:07:51 +02:00
344b9fb0c6 Limit the use of PreTrainedModel.device (#16935)
* Limit the use of PreTrainedModel.device

* Fix
2022-04-25 20:58:50 -04:00
6568752039 Fix issue probably-meant-fstring found at https://codereview.doctor (#16913) 2022-04-25 15:15:00 -04:00
fea94d6790 Replace deprecated logger.warn with warning (#16876) 2022-04-25 15:12:51 -04:00
e03966e404 TF: XLA stable softmax (#16892)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-25 20:10:51 +01:00
8246caf3eb added deit onnx config (#16887)
* added deit onnx config
2022-04-25 20:50:45 +02:00
9331b37967 TF: XLA Logits Warpers (#16899)
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-25 19:48:08 +01:00
809dac48f9 TF: XLA logits processors - minimum length, forced eos, and forced bos (#16912)
* XLA min len, forced eos, and forced bos

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-25 19:27:53 +01:00
f6210c49e2 Fix RemBertTokenizerFast (#16933)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-25 19:51:50 +02:00
32adbb26d6 Fix PyTorch RAG tests GPU OOM (#16881)
* add torch.cuda.empty_cache in some PT RAG tests

* torch.cuda.empty_cache in tearDownModule()

* tearDown()

* add gc.collect()

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-25 17:33:56 +02:00
3e47d19cfc Add missing ckpt in config docs (#16900)
* add missing ckpt in config docs

* add more missing ckpt in config docs

* fix wrong ckpts

* fix realm ckpt

* fix s2t2

* fix xlm_roberta ckpt

* Fix for deberta v2

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* use only one checkpoint for DPR

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-04-25 17:31:45 +02:00
3a71e94a92 Fix doc test quicktour dataset (#16929)
* fix doc test

* fix doc test

Co-authored-by: Patrick <patrick@pop-os.localdomain>
2022-04-25 16:26:59 +02:00
508baf1943 add bigbird typo fixes (#16897)
Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-04-25 11:32:06 +02:00
72728be3db [DocTests] Fix some doc tests (#16889)
* [DocTests] Fix some doc tests

* hacky fix

* correct
2022-04-23 08:40:14 +02:00
22fc93c4d9 Changes in create_optimizer to support tensor parallelism with SMP (#16880)
* changes in create optimizer to support tensor parallelism with SMP

* Update src/transformers/trainer.py

Convert if check to one line.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-22 15:24:38 -04:00
99c8226b12 TF: XLA repetition penalty (#16879) 2022-04-22 18:29:32 +01:00
ec81c11a18 Add OnnxConfig for ConvBERT (#16859)
* add OnnxConfig for ConvBert

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-04-22 18:19:15 +02:00
0d1cff1195 Add doc tests for Albert and Bigbird (#16774)
* Add doctest BERT

* make fixup

* fix typo

* change checkpoints

* make fixup

* define doctest output value, update doctest for mobilebert

* solve fix-copies

* update QA target start index and end index

* change checkpoint for docs and reuse defined variable

* Update src/transformers/models/bert/modeling_tf_bert.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

* Add Doctest for Albert and Bigbird

* make fixup

* overwrite examples for Albert and Bigbird

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update longer examples for Bigbird

* using examples from squad_v2

* print out example text

* change name token-classification-big-bird checkpoint to random

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-22 18:07:16 +02:00
9fa88172c2 Minor fixes/improvements in convert_file_size_to_int (#16891)
* Minor improvements to `convert_file_size_to_int`

* Add <unit>bit version to kilos and megas

* Minor fix
2022-04-22 16:54:20 +02:00
6d90d76f5d TF: rework XLA generate tests (#16866) 2022-04-22 12:38:08 +01:00
3b1bbefc47 Add missing entries in mappings (#16857)
* add missing entries in some mappings

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-22 10:53:24 +02:00
d91841315a New features for CodeParrot training script (#16851)
* add tflops logging and fix grad accumulation

* add accelerate tracking and checkpointing

* scale loss of last batch correctly

* fix typo

* compress loss computation

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* add resume from checkpoint argument

* add load_state accelerate from checkpoint, register lr scheduler and add tflops function

* reformat code

* reformat code

* add condition on path for resume checkpoint

* combine if conditions

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* add source for tflops formula

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-04-21 18:43:46 +02:00
eef2422e96 Fix doctest list (#16878)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-21 18:12:14 +02:00
0b1e0fcf7a Fix GPT-J onnx conversion (#16780)
* add gptj to TOKENIZER_MAPPING_NAMES

* fix int32 to float to avoid problem in onnx

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-04-21 15:55:30 +02:00
bae9b6458c Use ACT2FN to fetch ReLU activation (#16874)
- all activations should be fetched through ACT2FN
- it returns ReLU as `nn.Module`, which allows attaching hooks on the activation function and prints it to stdout when `print(model)`
2022-04-21 09:33:29 -04:00
cb555af2c7 Return input_ids in ImageGPT feature extractor (#16872) 2022-04-21 09:09:00 -04:00
e789418ebe Adding support for array key in raw dictionnaries in ASR pipeline. (#16827)
* Adding support for `array` key in raw dictionnaries in ASR pipeline.

* ES .

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Making it work by not popping `array` first.

* Black 22.3

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-21 14:39:10 +02:00
daf520b033 tiny tweak to allow BatchEncoding.token_to_char when token doesn't correspond to chars (#15901)
* tweak to allow BatchEncoding.char_to_token(0)

* update docstring

* remote trailing whitespace

* make fixup

* make value checking for span_indices explicit

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-21 08:07:54 -04:00
cb7e166428 t5: add conversion script for T5X to FLAX (#16853)
* t5: add conversion script for T5X to FLAX

* t5: make flake happy

* t5: add copyright message to t5x conversion script

* t5: fix lm head for v1.0 checkpoints
2022-04-21 13:00:35 +02:00
6620f60c0a Long QuestionAnsweringPipeline fix. (#16778)
* Temporary commit witht the long QA fix.

* Adding slow tests covering this fix.

* Removing fast test as it doesn't fail anyway.
2022-04-21 09:59:25 +02:00
705d65368f Fix multiproc metrics in no_trainer examples (#16865) 2022-04-20 17:26:27 -04:00
175da8d182 Fix custom init sorting script (#16864) 2022-04-20 17:05:39 -04:00
67ed0e43dc [docs] fix url (#16860) 2022-04-20 11:01:24 -07:00
afa1ef0992 [modeling_utils] use less cpu memory with sharded checkpoint loading (#16844)
* less cpu memory with sharded checkpoint loading

* Trigger CI

* Trigger CI
2022-04-20 07:44:37 -07:00
e13a91fe60 Fixing return type tensor with num_return_sequences>1. (#16828)
* Fixing return type tensor with `num_return_sequences>1`.

* Nit.
2022-04-20 16:11:51 +02:00
ff06b17791 add DebertaV2 fast tokenizer (#15529)
Co-authored-by: alcinos <carion.nicolas@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Nicolas Carion <carion.nicolas@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-20 10:26:51 +02:00
e1c153cbaa [Typo] Fix typo in modeling utils (#16840) 2022-04-19 23:09:03 +02:00
3104036e7f Add support for bitsandbytes (#15622)
* Add initial BNB integration

* fixup! Add initial BNB integration

* Add bnb test decorator

* Update Adamw8bit option name

* Use the full bnb package name

* Overide bnb for all embedding layers

* Fix package name

* Formatting

* Remove unnecessary import

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename AdamwBNB optimizer option

* Add training test checking that bnb memory utilization is lower

* fix merge

* fix merge; fix + extend new test

* cleanup

* expand bnb

* move all require_* candidates to testing_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-04-19 16:01:29 -04:00
e6d23a4b9b Improve test_pt_tf_model_equivalence on PT side (#16731)
* Update test_pt_tf_model_equivalence on PT side

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-19 21:13:27 +02:00
3dd57b15c5 Type hints added to Speech to Text (#16506)
* Type hints added

* return hints added

* Update src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-19 17:58:08 +01:00
1efca4e6c8 replace Speech2TextTokenizer by Speech2TextFeatureExtractor in some docstrings (#16835)
* replace `Speech2TextTokenizer` by `Speech2TextFeatureExtractor` in docstring

* quality
2022-04-19 18:32:22 +02:00
b5c6a63ed9 Correct Logging of Eval metric to Tensorboard (#16825)
* Correct Logging of Eval metric to Tensorboard

An empty dictionary ``eval_metrics`` was being logged, is replaced by ``eval_metric`` which is the output dictionary of ``metric.compute()``.

* Remove unused variable
2022-04-19 17:27:54 +02:00
f09c45e067 TF: Add sigmoid activation function (#16819) 2022-04-19 16:13:08 +01:00
74814574ae Add doc about attention_mask on gpt2 (#16829)
* Add doc about `attention_mask` on gpt2

Add a simple sentence describing how `attention_mask` needs to be constructed when ``past_key_values` is used.

* Add doc about attention_mask on gpt2_tf

* clean up style

* remove empty line white spaces

* remove whitespace in empty line
2022-04-19 16:32:26 +02:00
b96e82c80a Add image classification script, no trainer (#16727)
* Add first draft

* Improve README and run fixup

* Make script aligned with other scripts, improve README

* Improve script and add test

* Remove print statement

* Apply suggestions from code review

* Add num_labels to make test pass

* Improve README
2022-04-19 16:32:08 +02:00
db9f189121 [ASR Pipeline] Correct init docs (#16833)
* correct

* up
2022-04-19 16:12:36 +02:00
77de8d6c31 Add onnx export of models with a multiple choice classification head (#16758)
* Add export of models with a multiple-choice classification head
2022-04-19 15:51:51 +02:00
b74a955325 fix rum_clm.py seeking text column name twice (#16624) 2022-04-19 14:38:25 +01:00
3663fca41b Type hints added for TFMobileBert (#16505)
* Type hints added

* make style

* Return type hints added

* fixed typo

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-19 14:37:03 +01:00
a2392415e9 Some tests misusing assertTrue for comparisons fix (#16771)
* Fix issue avoid-misusing-assert-true found at https://codereview.doctor

* fix tests

* fix tf

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-19 14:44:08 +02:00
d3bd9ac728 [Flax] improve large model init and loading (#16148)
* begin do_init

* add params_shape_tree

* raise error if params are accessed when do_init is False

* don't allow do_init=False when keys are missing

* make shape tree a property

* assign self._params at the end

* add test for do_init

* add do_init arg to all flax models

* fix param setting

* disbale do_init for composite models

* update test

* add do_init in FlaxBigBirdForMultipleChoice

* better names and errors

* improve test

* style

* add a warning when do_init=False

* remove extra if

* set params after _required_params

* add test for from_pretrained

* do_init => _do_init

* chage warning to info

* fix typo

* add params in init_weights

* add params to gpt neo init

* add params to init_weights

* update do_init test

* Trigger CI

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update template

* trigger CI

* style

* style

* fix template

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-19 14:19:55 +02:00
6de4ee61a0 Wav2 vec2 phoneme ctc tokenizer optimisation (#16817)
* Solved href rendering issue in heading

Markdown references in headings such as '####' don't render well.
Replaced it with <h4>...<a></a></h> banners.

* PhonemeTokenizer optimization using phonemizer lib

The backend should only be initialized once, otherwise it is reloaded.
Added `init_backend` function, intializes a backend attribute.
Phonemize re-uses self.backend.
Should give ~10 times faster phonemization.

* formatted file with make style

* Documentation suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update /tokenization_wav2vec2_phoneme.py based on PR suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update CONTRIBUTING.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-19 07:39:04 -04:00
306c9ee966 Fix LayoutLMv2 tokenization docstrings (#16187)
* Fix docstrings

* Fix up

* Fix
2022-04-19 12:14:51 +02:00
7db7aab439 Add semantic script no trainer, v2 (#16788)
* Add first draft from previous PR

* First draft

* Improve README and remove num_labels

* Make script more aligned with other scripts

* Improve README and apply suggestion from code review
2022-04-19 09:07:29 +02:00
494c2a8c4d Clean up semantic segmentation tests (#16801)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-19 09:02:19 +02:00
989a15d173 fix _setup_devices in case where there is no torch.distributed package in build (#16821)
* fix _setup_devices in case where there is not torch.distributed

* in training_args_sm.py as well
2022-04-18 18:36:46 -04:00
c11a49573f Refactor issues with yaml (#16772)
* Refactor issues with yaml

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update .github/ISSUE_TEMPLATE/feature-request.yml

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Address review comments

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-18 16:43:21 -04:00
51e0ebedcb Allow passing encoder_ouputs as tuple to EncoderDecoder Models (#16814)
* Add passing encoder_outputs as tuple to existing test

* Add check for tuple

* Add check for tuple also for speech and vision

Co-authored-by: jsnfly <jsnfly@gmx.de>
2022-04-18 19:49:58 +02:00
51fa7191b1 use base_version to check torch version in torch_less_than_1_11 (#16806)
* use base_version

* make is_torch_less_than_1_8 match 1_11

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
2022-04-18 13:02:00 -04:00
8d3f952adb [Data2Vec] Add data2vec vision (#16760)
* save intermediate

* add vision

* add vision

* save

* finish models

* finish models

* continue

* finish

* up

* up

* up

* tests all pass

* clean up

* up

* up

* fix bugs in beit

* correct docs

* finish

* finish docs

* make style

* up

* more fixes

* fix type hint

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/data2vec/test_modeling_data2vec_vision.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix test

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-18 17:52:13 +02:00
33cd4be576 fix megatron bert convert state dict naming (#15820) 2022-04-18 11:34:36 -04:00
9a2995ee39 [Quicktour Audio] Improve && remove ffmpeg dependency (#16723)
* [Quicktour Audio] Improve && remove ffmpeg dependency

* final fix

* final touches
2022-04-18 16:50:13 +02:00
d3c9d0e55f [ViT, BEiT, DeiT, DPT] Improve code (#16799)
* Improve code

* Fix bugs

* Fix another bug

* Clean up DTP as well

* Update DPT model outputs

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-18 09:25:08 -04:00
3785f4665a Fix syntax error in TorchHub workflow 2022-04-18 07:54:00 -04:00
6984848ed0 Create empty venv on cache miss (#16816) 2022-04-18 07:49:31 -04:00
438144832e Raise error and suggestion when using custom optimizer with Fairscale or Deepspeed (#16786)
* optimizer issues related to saving

* remove the "optimizer saving" option

* reformat using make style
2022-04-18 07:47:21 -04:00
b4ddd2677c TF generate refactor - XLA sample (#16713) 2022-04-18 10:58:24 +01:00
02de7a8e7f CI: non-remote GH Actions now use a python venv (#16789) 2022-04-18 09:47:38 +01:00
dee6f01636 Pin Jax to last working release (#16808)
* Pin Jax to last working release

* Try lower

* Try lower
2022-04-16 21:15:19 -04:00
78f346c2b5 Update README.md (#16797) 2022-04-15 14:10:16 +02:00
ee209d4d01 Fix PT TF ViTMAE (#16766)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-15 06:37:10 +02:00
5da33f8729 [modeling utils] revamp from_pretrained(..., low_cpu_mem_usage=True) + tests (#16657)
* add low_cpu_mem_usage tests

* wip: revamping

* wip

* install /usr/bin/time

* wip

* cleanup

* cleanup

* cleanup

* cleanup

* cleanup

* fix assert

* put the wrapper back

* cleanup; switch to bert-base-cased

* Trigger CI

* Trigger CI
2022-04-14 18:10:05 -07:00
ce2fef2ad2 [trainer / deepspeed] fix hyperparameter_search (#16740)
* [trainer / deepspeed] fix hyperparameter_search

* require optuna

* style

* oops

* add dep in the right place

* create deepspeed-testing dep group

* Trigger CI
2022-04-14 17:24:38 -07:00
1b7de41a07 Fix issue avoid-missing-comma found at https://codereview.doctor (#16768) 2022-04-14 16:42:27 -04:00
de8b06f9bf [SpeechEncoderDecoderModel] Fix bug in reshaping labels (#16748) 2022-04-14 19:02:40 +01:00
048443db86 Improve image classification example (#16585)
* Improve README

* Make dataset_name argument optional

* Improve local data

* Fix bug

* Improve README some more

* Apply suggestions from code review

* Improve README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-14 18:10:52 +02:00
3e4eec47f5 Kill async pushes when calling push_to_hub with blocking=True (#16755) 2022-04-14 10:02:29 -04:00
c21e1071a7 [deepspeed / m2m_100] make deepspeed zero-3 work with layerdrop (#16717)
* [deepspeed / m2m_100] make deepspeed 3 work with layerdrop

* fix

* revert last
2022-04-14 06:51:55 -07:00
89293a0f6b Make nightly install dev accelerate (#16783) 2022-04-14 09:41:02 -04:00
b151ddb9b9 Fix batch size in evaluation loop (#16763)
* Fix batch size in evaluation loop

* remove debug statement
2022-04-14 09:22:54 -04:00
d8269eb4d5 [Flax .from_pretrained] Raise a warning if model weights are not in float32 (#16762)
* [Flax] Raise a warning if model weights are not in float32

* apply suggestions and few small changes

* reorder wording for better readability
2022-04-14 11:52:15 +02:00
195fbbb6cf Enabling Tapex in table question answering pipeline. (#16663)
* Enabling `Tapex` in table question answering pipeline.

* Questions are independant for Tapex, making the test respect that.

* Missing extra space.
2022-04-14 09:06:14 +02:00
442dc45645 [Doctest] added doctest changes for electra (#16675)
* added doctest changes for electra

* fixed doctest tests

* updated changes
2022-04-13 22:39:00 +02:00
be752d12f8 Fixup no_trainer examples scripts and add more tests (#16765)
* Change tracking to store_true

* Remove step param and use it in the log dictionary directly

* use vars(args) when passing args to init_trackers

* Include tracking tests since tensorboard is already a dep
2022-04-13 14:40:48 -04:00
3a16ab25c8 [self-scheduled ci] explain where dependencies are (#16757) 2022-04-13 12:28:02 -04:00
34ef029dc0 Add self training code for text classification (#16738)
* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Delete strata
2022-04-13 12:03:24 -04:00
8e0d3b427f Add defensive check for config num_labels and id2label (#16709)
* Add defensive check for config num_labels and id2label

* Actually check value...

* Only warning inside init plus better error message
2022-04-13 11:28:19 -04:00
6bed0647fe Reduce Funnel PT/TF diff (#16744)
* Make Funnel Test less flaky

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-13 17:19:52 +02:00
0b8f697219 CI: setup-dependent pip cache (#16751)
* Setup-dependent pip cache

* Do not restore from old versions
2022-04-13 16:19:14 +01:00
ac43a40e6a [modeling_utils] better explanation of ignore keys (#16741) 2022-04-13 08:03:20 -07:00
0235bc57ab Fix and improve CTRL doctests (#16573)
* Improve CTRL doctests

* Fix `CTRLForSequenceClassification` flakiness with inconsistent losses

* Remove unused

* Fixup

* Add CTRL to documentation_tests.txt

* Fix control code not being first

* Add output assertions

* Change from sshleifer/tiny-ctrl -> ctrl

* Run `make fixup`

* apply `list` to output logits shape for clarity

* Reduce output loss precision to make assertion more robust

* Add assertion of control code being first

* Fix docstyle

* upper case sentence following control code

* Weird bug fixes

* Add a better generation example

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-04-13 15:44:31 +02:00
06b4aac9eb Add Doc Test for GPT-J (#16507)
* Required the values GPTJ unfortunately cannot run the model =)

* Added the file to the doc tests

* Run Fixup and Style

* Fixed with the test versions of gptj. Ran Style and Fixup.

* Trigger ci

* A Minor Change to License

* Fixed spacing added to the benchmark_utils. Then refactored tests to const variables.

* Removed strings that were included as default parameters anyways.

Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
2022-04-13 15:04:47 +02:00
12bfa97a43 [from_pretrained] refactor find_mismatched_keys (#16706) 2022-04-13 07:50:15 -04:00
9f8bfe703c Fix #16660 (tokenizers setters of ids of special tokens) (#16661)
* Fix setters of *_token_id properties of SpecialTokensMixin

* Test setters of common tokens ids

* Move to a separate test checks of setters of tokens ids

* Add independent test for ByT5

* Add Canine test

* Test speech to text
2022-04-13 07:49:06 -04:00
b24201fa44 [Doctests] Fix all T5 doc tests (#16646)
* [Doctests] Fix all T5 doc tests

* make style

* Update docs/source/en/model_doc/t5.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply Sylvains comments

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-13 11:36:54 +02:00
f7196f2e63 Fix decoding score comparison when using logits processors or warpers (#10638)
* Normalize using a logits warper

* Add a flag in `generate` to support the logit renormalization

* Add in RAG
2022-04-13 09:37:33 +01:00
eb5bdcdfa5 TF generate: handle case without cache in beam search (#16704) 2022-04-12 20:46:10 +01:00
9c9db751e2 add Bigbird ONNX config (#16427)
* add Bigbird ONNX config
2022-04-12 20:46:06 +02:00
a960406722 [FlaxWav2Vec2Model] Fix bug in attention mask (#16725)
* [FlaxWav2Vec2Model] Fix bug in attention mask

* more fixes

* add (Flax)SpeechEncoderDecoderModel PT-FX cross-test
2022-04-12 19:48:24 +02:00
6adefba3f0 [FlaxSpeechEncoderDecoder] Fix input shape bug in weights init (#16728)
* [FlaxSpeechEncoderDecoder] Fix input shape bug in weights init

* make style
2022-04-12 19:33:57 +02:00
1bac40db8a Add Doc Tests for Reformer PyTorch (#16565)
* start working

* fix: ReformerForQA doctest

* fix: ReformerModelWithLMHead doctest

* fix: ReformerModelForSC doctest

* fix: ReformerModelForMLM doctest

* add: documentation_tests.txt

* make fixup

* change: ReformerModelForSC doctest

* change: checkpoint
2022-04-12 18:52:31 +02:00
d7f7f29f29 TF: remove set_tensor_by_indices_to_value (#16729) 2022-04-12 17:51:47 +01:00
a315988bae Moved functions to pytorch_utils.py (#16625)
* Moved functions to pytorch_utils.py

* isort formatting

* Reverted tf changes

* isort, make fix-copies

* documentation fix

* Fixed Conv1D import

* Reverted research examples file

* backward compatibility for pytorch_utils

* missing import

* isort fix
2022-04-12 12:38:50 -04:00
0711c45eae Remove duplicate header (#16732) 2022-04-12 12:37:13 -04:00
a192f61e08 Change the chunk_iter function to handle (#16730)
* Change the chunk_iter function to handle

the subtle cases where the last chunk gets ignored since all the
data is in the `left_strided` data.

We need to remove the right striding on the previous item.

* Remove commented line.
2022-04-12 18:25:02 +02:00
cc034f72eb Replace assertion with exception (#16720)
* Updated assertions to exceptions

* updated assertions to exceptions

* bug fixes

* fix-copies

* Update modeling_ctrl.py

* Update src/transformers/models/ctrl/modeling_tf_ctrl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_tf_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_led.py

* Update modeling_led.py

* Update modeling_led.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-12 11:47:01 -04:00
14daa6102a Qdqbert example add benchmark script with ORT-TRT (#16592)
* add ort-trt benchmark script

* Update README.md

* ort version can be newer

* formatting

* specify ORT version
2022-04-12 11:13:59 -04:00
db3edd050b Update run_translation_no_trainer.py (#16652)
args.model_name_or_path -> args.config_name
fix it
2022-04-12 08:55:12 -04:00
b9f12bedd3 Only call get_output_embeddings when tie_word_embeddings is set (#16667)
This avoids an unnecessary call and avoids problems during
initialization of class hierarchies.

Co-authored-by: Samuel Melm <samuel.melm@stud.uni-heidelberg.de>
2022-04-12 07:55:44 -04:00
924484ee4a Add Doc Test GPT-2 (#16439)
* First Pass All Tests Pass

* WIP

* Adding file to documentation tests

* Change the base model for the example in the doc test.

* Fix Code Styling by running
make fixup

* Called Style

* Reverted to gpt2 model rather than distill gpt2
Then used a token classification model over a sequence model for an example.

* Fix Styling Issue

* Hopefully ignores the formatting issue.

Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
2022-04-12 12:11:03 +02:00
70851a6bf0 [Bart] correct doc test (#16722) 2022-04-12 10:19:49 +02:00
69233cf03b Fix example logs repeating themselves (#16669)
Move declaration of log streams to before tests, so that results won't get compounded on top of each other
2022-04-11 16:25:16 -04:00
dce33f2150 Improve PT/TF equivalence test (#16557)
* add error message

* Use names in the error message

* allow ModelOutput

* rename to check_pt_tf_outputs and move outside

* fix style

* skip past_key_values in a better way

* Add comments

* improve code for label/loss

* make the logic clear by moving the ignore keys out

* fix _postprocessing_to_ignore

* fix _postprocessing_to_ignore: create new outputs from the remaining fields

* ignore past_key_values in TFGPT2 models for now

* make check_pt_tf_outputs better regarding names

* move check_pt_tf_models outside

* rename methods

* remove test_pt_tf_model_equivalence in TFCLIPModelTest

* Reduce TFViTMAEModelTest.test_pt_tf_model_equivalence

* move prepare_pt_inputs_from_tf_inputs outside check_pt_tf_models

* Fix quality

* Clean-up TFLxmertModelTester.test_pt_tf_model_equivalence

* Fix quality

* fix

* fix style

* Clean-up TFLEDModelTest.test_pt_tf_model_equivalence

* Fix quality

* add docstring

* improve comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 22:19:12 +02:00
7f7300856d Handle image_embeds in ViltModel (#16696)
* update

* batch_size -> text_batch_size

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 22:16:20 +02:00
161c0a2eec Private repo TrainingArgument (#16707)
* private repo argument to trainer

* format

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
2022-04-11 13:37:16 -04:00
d4b3e359aa Don't push checkpoints to hub in no_trainer scripts (#16703)
Adds checkpoint prefixes to the gitignore if `push_to_hub` is used along with `checkpointint_steps`
2022-04-11 12:42:45 -04:00
c04619ecf3 Enable more test_torchscript (#16679)
* update _create_and_check_torchscript

* Enable test_torchscript

* clear_class_registry

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:23:35 +02:00
3918d6a9d6 Reduce memory leak in _create_and_check_torchscript (#16691)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:22:28 +02:00
2109afae71 Rename the method test_torchscript (#16693)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:21:45 +02:00
40618ec29e Fix TF_MASKED_LM_SAMPLE (#16698)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:19:28 +02:00
1471857f13 update decoder_vocab_size when resizing embeds (#16700) 2022-04-11 18:02:10 +02:00
5e68675755 Fix t5 shard on TPU Pods (#16527)
* Fix t5 shard on TPU Pods

The current script doesn't work properly on a TPU pod because the global batch is not divided correctly per host.
This pull request fixes this issue by dividing the global batch to each host before it is shared on each host.

* fix style

Co-authored-by: ahmed-elnaggar <ahmed.elnaggar@allianz.com>
2022-04-11 16:45:20 +02:00
2831826bc6 Add Doc Test for BERT (#16523)
* Add doctest BERT

* make fixup

* fix typo

* change checkpoints

* make fixup

* define doctest output value, update doctest for mobilebert

* solve fix-copies

* update QA target start index and end index

* change checkpoint for docs and reuse defined variable

* Update src/transformers/models/bert/modeling_tf_bert.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-04-11 15:51:28 +02:00
098b002644 [Doctests] Correct task summary (#16644) 2022-04-11 14:59:35 +02:00
6ef7186b5d fixed crash when deleting older checkpoint and a file f"{checkpoint_prefix}-*" exist (#16686)
I create an archive of older checkpoints during training the checkpoint has a  name with `f"{checkpoint_prefix}-*.zip/.tar ` 
previously `glob(f"{checkpoint_prefix}-*")` takes all files/folders starting with the name checkpoint, and later `shutil.rmtree(checkpoint)` takes a folder name; since at some point it my get a zip file; it crashes training; adding this `if os.path.isdir(x)` allows only folders on `glob_checkpoints`
2022-04-11 07:32:07 -04:00
b0bf3011c1 Generate: min length can't be larger than max length (#16668)
* min length must be smaller than max length

* Update min_length in tests
2022-04-11 11:55:30 +01:00
4868a830db Jia multi gpu eval (#16428)
* add simple multi gpu complet

* add human_eval_multi_gpu

* use copy strategy to distribute across gpu, to avoid padding

* add doc string

* update code style

* use task id to arrange output

* truncate input to avoid zero pad

* Stop the copy mechanism

* update style

* restore copies to scale better in distributed mode

* update style

* replace human eval

* Apply suggestions from code review

1. Tokenize all input at the same time
2. use attention_mask to get the input length
3. other small fixes

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* correct typo and update docstring

* update code style

* remove num sample division constraint

* remove max len calculation

* use accelerator.gather once to speed up

* use accelerate set_seed; update accelerate version

* correct gather bug

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-04-11 11:24:32 +02:00
8e93dc7eaf Fix some doc examples in task summary (#16666)
* Fix some doc examples

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 11:20:03 +02:00
1025a9b742 add a warning in SpmConverter for sentencepiece's model using the byte fallback feature (#16629)
* update proto sentencepiece model

* Revert "update proto sentencepiece model"

This reverts commit b07f671747fec35773d0b3d4788b8b15aefa0229.

* add check

* add test

* Revert "Revert "update proto sentencepiece model""

This reverts commit 46108257b8927b73627ec8f4f3eed53a95fc700d.

* test for log level

* test for log level 2

* warning at the warning level

* clean

* format

* add explanation in docstring
2022-04-11 11:06:10 +02:00
7c5d79912a Update audio examples with MInDS-14 (#16633)
*  update audio examples with minds dataset

* 🖍 make style

* 🖍 minor fixes for doctests
2022-04-08 15:55:42 -05:00
4d46106718 [Trainer] tf32 arg doc (#16674)
* [Trainer] tf32 arg doc

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-08 12:35:39 -07:00
f4d4f0a1ec only load state dict when the checkpoint is not None (#16673) 2022-04-08 13:42:04 -04:00
d57da99237 Add tests for no_trainer and fix existing examples (#16656)
* Fixed some bugs involving saving during epochs
* Added tests mimicking the existing examples tests
* Added in json exporting to all `no_trainer` examples for consistency
2022-04-08 10:03:56 -04:00
ab229663b5 Fix QA sample (#16648)
* fix QA sample

* For TF_QUESTION_ANSWERING_SAMPLE

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-08 15:31:43 +02:00
9a24b97b7f Fix style 2022-04-08 08:07:16 -04:00
5db2fcc61d Fix error in doc of DataCollatorWithPadding (#16662)
The defalut value of `padding` in `DataCollatorWithPadding` is `True`, not `False`.
2022-04-08 07:58:02 -04:00
9db2eebbe2 add vit tf doctest with @add_code_sample_docstrings (#16636)
* add vit tf doctest with @add_code_sample_docstrings

* add labels string back in

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-04-08 07:31:38 -04:00
4ef0abb738 Add TAPEX (#16473)
* Add TapexTokenizer

* Improve docstrings and provide option to provide answer

* Remove option for pretokenized inputs

* Add TAPEX to README

* Fix copies

* Remove option for pretokenized inputs

* Initial commit: add tapex fine-tuning examples on both table-based question answering and table-based fact verification.

* - Draft a README file for running the script and introducing some background.
- Remove unused code lines in tabfact script.
- Disable the deafult `pad_to_max_length` option which is memory-consuming.

* * Support `as_target_tokenizer` function for TapexTokenizer.
* Fix the do_lower_case behaviour of TapexTokenizer.
* Add unit tests for target scenarios and cased/uncased scenarios for both source and target.

* * Replace the label BartTokenizer with TapexTokenizer's as_target_tokenizer function.
* Fix typos in tapex example README.

* * fix the evaluation script - remove the property `task_name`

* * Make the label space more clear for tabfact tasks

* * Using a new fine-tuning script for tapex-base on tabfact.

* * Remove the lowercase code outside the tokenizer - we use the tokenizer to control whether do_lower_case
* Guarantee the hyper-parameter can be run without out-of-memory on 16GB card and report the new reproduced number on wikisql

* * Remove the default tokenizer_name option.
* Provide evaluation command.

* * Support for WikiTableQuestion dataset.

* Fix a typo in README.

* * Fix the datasets's key name in WikiTableQuestions

* Run make fixup and move test to folder

* Fix quality

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions from code review

* Improve docstrings

* Overwrite failing test

* Improve comment in example scripts

* Fix rebase

* Add TAPEX to Auto mapping

* Add TAPEX to auto config mappings

* Put TAPEX higher than BART in auto mapping

* Add TAPEX to doc tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: SivilTaram <qianlxc@outlook.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-08 10:57:51 +02:00
33cb21150c bert: properly mention deprecation of TF2 conversion script (#16171) 2022-04-07 17:35:17 -04:00
af14c61973 RegNet (#16188)
* base model done

* make style

* done

* added files

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Trigger doc build

* resolved conversations

* resolved conversations

* seer models

* minor changes

* minor changes

* make fixup

* glob variables

* minor changes

* fix copies

* config when possibile

* resolved conflicts

* resolved conflicts

* resolved conflicts

* CI

* conversion script for 10b param

* fixed for 10b model

* minor updates in the doc + make style

* removed unused code

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* removed unused code

* removed unused code

* updated modeling_utils from main

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-04-07 21:58:00 +02:00
3e26e78b3b Update Support image on README.md (#16615)
* Update README.md Support Image

Updates the Support image linking to our EAP page (to give it a refresh + help avoid image fatigue).

Slack thread checking in with #open-source-internal on this update (https://huggingface.slack.com/archives/C021H1P1HKR/p1648838903316709)

* Compressed Updated Support image

* Improves Support Image Logo + Height

Updated the image based on logo + size feedback. Big thanks to Bibi for making quick edits to this image.
2022-04-07 15:06:50 -04:00
4099817bd6 Updated _load_pretrained_model_low_mem to check if keys are in the state_dict (#16643)
* Updated _load_pretrained_model_low_mem to check if keys are in the stored state_dict

* update after conversions
2022-04-07 20:48:04 +02:00
389f66151d Remove parent/child tests in auto model tests (#16653) 2022-04-07 11:05:10 -04:00
080e42d0ac [megatron-bert-uncased-345m] fix conversion (#16639) 2022-04-07 07:56:34 -07:00
09a272b02a Add inputs vector to calculate metric method (#16461)
* Add inputs vector to calculate metric method

* Include inputs for evaluation metrics with backwards compatibility

* Prevent inputs create OOM issue and documentation details

* Update style and code documentation

* Fix style formatting issues

* Update files format with make style
2022-04-07 10:02:43 -04:00
dc991805bf Fix doc example (#16448)
* Fix doc

* Make fixup

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-04-07 10:48:24 +02:00
febe42b5da Update no_trainer scripts with new Accelerate functionalities (#16617)
Adds logging and save/loading to the Accelerate scripts

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-06 15:29:32 -04:00
10c15d2d1e Allow the same config in the auto mapping (#16631) 2022-04-06 14:21:15 -04:00
8ac9b82724 Added Annotations for PyTorch models (#16619)
* Update modeling_mpnet.py

* Update modeling_ctrl.py

* formatting

* Formatting

* Formatting

* annotated FSMT

* Added annotations for LED

* Added Annotations for M2M

* Added annotations for nystromformer

* Added annotations for OpenAI

* Added annotations for RAG

* Removed unused imports

* fix isort errors

* Removed inputs_embeds docstring, corrected original

* flake8 fixes

* doc-builder fixes
2022-04-06 14:12:01 -04:00
3f43d824b9 TF generate refactor - Beam Search (#16374)
* refactor TF beam search

* refactored generate can now properly use attention masks

* add force bos/eos logit processors
2022-04-06 18:19:34 +01:00
4d10083539 [modeling_utils] rearrange text (#16632) 2022-04-06 09:35:42 -07:00
a180efe7fd Dev version 2022-04-06 11:08:12 -04:00
b9bf91a970 Revert "Allow the same config in the auto mapping"
This reverts commit b1a7dfe099b852340868f9aa7c75bb805ce57596.
2022-04-06 09:58:13 -04:00
b1a7dfe099 Allow the same config in the auto mapping 2022-04-06 09:57:47 -04:00
2aef4cfe58 Fix TFTransfoXLLMHeadModel outputs (#16590)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-06 15:42:15 +02:00
8d57c424e0 [FlaxSpeechEncoderDecoderModel] More Rigorous PT-Flax Equivalence Tests (#16589) 2022-04-06 15:33:32 +02:00
c65633156b [Speech2Text Doc] Fix docs (#16611)
* [Speech2Text Doc] Fix docs

* apply ydshiehs suggestions
2022-04-06 14:19:00 +02:00
fb3d0df454 typo (#16621) 2022-04-06 07:28:17 -04:00
ae6a7a763b Use CLIP model config to set some kwargs for components (#16609)
* Use CLIP model's config for some fields (if specified) instead of those of vision & text components.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-06 12:15:09 +02:00
47c5c05932 don't load state_dict twice when using low_cpu_mem_usage in from_pretrained (#16602) 2022-04-06 11:43:02 +02:00
a2b7d19bd7 Fix seq2seq doc tests (#16606)
* fix bart and mbart

* add ckpt names as variables

* fix mbart

* fix plbart

* use varibale for ckot name
2022-04-06 11:32:39 +02:00
0bf18643f4 [Minds14] Correct quicktour (#16626) 2022-04-06 11:27:11 +02:00
Jun
d55fcbcc50 fix default num_attention_heads in segformer doc (#16612) 2022-04-06 09:51:58 +02:00
b18dfd95e1 added type hints to CTRL pytorch (#16593)
* Completed documentation of CTRL

* Missing optional None

* Added return types

* updated imports

* Update modeling_ctrl.py
2022-04-05 16:55:01 -04:00
208f4c109a Quality 2022-04-05 14:12:01 -04:00
f553c3ce4c Update summary of the tasks (#16528)
* 📝 add image/vision classification and asr

* 🖍 minor formatting fixes

* Fixed a typo in legacy seq2seq_trainer.py (#16531)

* Add ONNX export for BeiT (#16498)

* Add beit onnx conversion support

* Updated docs

* Added cross reference to ViT ONNX config

* call on_train_end when trial is pruned (#16536)

* Type hints added (#16529)

* Fix Bart type hints (#16297)

* Add type hints to PLBart PyTorch

* Remove pending merge conflicts

* Fix PLBart Type Hints

* Add changes from review

* Add VisualBert type hints (#16544)

* Adding missing type hints for mBART model (PyTorch) (#16429)

* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

Co-authored-by: matt <rocketknight1@gmail.com>

* Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)

* Remove MBart subclass of XLMRoberta in tokenzier

* Fix style

* Copy docs from MBart50 tokenizer

* Use random_attention_mask for TF tests (#16517)

* use random_attention_mask for TF tests

* Fix for TFCLIP test (for now).

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Improve code example (#16450)

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>

* Pin tokenizers version <0.13 (#16539)

* Pin tokenizers version <0.13

* Style

* Add code samples for TF speech models (#16494)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)

* [FlaxSpeechEncoderDecoder] Fix dtype bug

* more fixes

* Making the impossible to connect error actually report the right URL. (#16446)

* Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556)

* Add utility to find model labels (#16526)

* Add utility to find model labels

* Use it in the Trainer

* Update src/transformers/utils/generic.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Quality

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Enable doc in Spanish (#16518)

* Reorganize doc for multilingual support

* Fix style

* Style

* Toc trees

* Adapt templates

* Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)

* fix formatting and remove use_auth

* Add use_auth_token to Flax examples

* add a test checking the format of `convert_tokens_to_string`'s output (#16540)

* add new tests

* add comment to overridden tests

* TF: Finalize `unpack_inputs`-related changes (#16499)

* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests

* [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586)

* initialize the default rank set on TrainerState (#16530)

* initialize the default rank set on TrainerState

* fix style

* Trigger doc build

* Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* add a template to add missing tokenization test (#16553)

* add a template to add missing tokenization test

* add cookiecutter setting

* improve doc

* Update templates/adding_a_missing_tokenization_test/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* made _load_pretrained_model_low_mem static + bug fix (#16548)

* handle torch_dtype in low cpu mem usage (#16580)

* [Doctests] Correct filenaming (#16599)

* [Doctests] Correct filenaming

* improve quicktour

* make style

* Adding new train_step logic to make things less confusing for users (#15994)

* Adding new train_step logic to make things less confusing for users

* DO NOT ASK WHY WE NEED THAT SUBCLASS

* Metrics now working, at least for single-output models with type annotations!

* Updates and TODOs for the new train_step

* Make fixup

* Temporary test workaround until T5 has types

* Temporary test workaround until T5 has types

* I think this actually works! Needs a lot of tests though

* MAke style/quality

* Revert changes to T5 tests

* Deleting the aforementioned unmentionable subclass

* Deleting the aforementioned unmentionable subclass

* Adding a Keras API test

* Style fixes

* Removing unneeded TODO and comments

* Update test_step too

* Stop trying to compute metrics with the dummy_loss, patch up test

* Make style

* make fixup

* Docstring cleanup

* make fixup

* make fixup

* Stop expanding 1D input tensors when using dummy loss

* Adjust T5 test given the new compile()

* make fixup

* Skipping test for convnext

* Removing old T5-specific Keras test now that we have a common one

* make fixup

* make fixup

* Only skip convnext test on CPU

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Avoiding TF import issues

* make fixup

* Update compile() to support TF 2.3

* Skipping model.fit() on template classes for now

* Skipping model.fit() on template class tests for now

* Replace ad-hoc solution with find_labels

* make fixup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding missing type hints for BigBird model   (#16555)

* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

* Type hints for BigBird

* removing typos

Co-authored-by: matt <rocketknight1@gmail.com>

* [deepspeed] fix typo, adjust config name (#16597)

* 🖍 apply feedback

Co-authored-by: Cathy <815244047@qq.com>
Co-authored-by: Jim Rohrer <jrohrer1@gmail.com>
Co-authored-by: Ferdinand Schlatt <fschlatt@gmail.com>
Co-authored-by: Dahlbomii <101373053+Dahlbomii@users.noreply.github.com>
Co-authored-by: Gunjan Chhablani <chhablani.gunjan@gmail.com>
Co-authored-by: Rishav Chandra Varma <rishavchandra.v16@iiits.in>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Daniel Stancl <46073029+stancld@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Andres Codas <andrescodas@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-04-05 12:48:42 -05:00
23fc4cba0d [benchmark tool] trainer-benchmark.py (#14934)
* [benchmark tool] trainer-benchmark.py

* improve

* massive rework/expansion

* fix

* mucho improved

* improved

* fix prefix

* fix

* fix diff calculation

* address suggestions
2022-04-05 10:27:29 -07:00
b33ab4eb59 Add global_attention_mask to gen_kwargs (#16485)
If global_attention_mask is found in the models inputs (used by certain
models, like LED) in the prediction_step method of Seq2SeqTrainer,
it is added to the gen_kwargs, which are passed to model.decode().
This allows us to properly set the global attention when decoding.
2022-04-05 13:05:27 -04:00
9fd5e6bbe6 [deepspeed] fix typo, adjust config name (#16597) 2022-04-05 08:13:12 -07:00
367558b90d Adding missing type hints for BigBird model (#16555)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

* Type hints for BigBird

* removing typos

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-05 14:50:45 +01:00
4354005291 Adding new train_step logic to make things less confusing for users (#15994)
* Adding new train_step logic to make things less confusing for users

* DO NOT ASK WHY WE NEED THAT SUBCLASS

* Metrics now working, at least for single-output models with type annotations!

* Updates and TODOs for the new train_step

* Make fixup

* Temporary test workaround until T5 has types

* Temporary test workaround until T5 has types

* I think this actually works! Needs a lot of tests though

* MAke style/quality

* Revert changes to T5 tests

* Deleting the aforementioned unmentionable subclass

* Deleting the aforementioned unmentionable subclass

* Adding a Keras API test

* Style fixes

* Removing unneeded TODO and comments

* Update test_step too

* Stop trying to compute metrics with the dummy_loss, patch up test

* Make style

* make fixup

* Docstring cleanup

* make fixup

* make fixup

* Stop expanding 1D input tensors when using dummy loss

* Adjust T5 test given the new compile()

* make fixup

* Skipping test for convnext

* Removing old T5-specific Keras test now that we have a common one

* make fixup

* make fixup

* Only skip convnext test on CPU

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Avoiding TF import issues

* make fixup

* Update compile() to support TF 2.3

* Skipping model.fit() on template classes for now

* Skipping model.fit() on template class tests for now

* Replace ad-hoc solution with find_labels

* make fixup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-05 14:23:27 +01:00
7ccacdf10f [Doctests] Correct filenaming (#16599)
* [Doctests] Correct filenaming

* improve quicktour

* make style
2022-04-05 14:15:02 +02:00
21decb7731 handle torch_dtype in low cpu mem usage (#16580) 2022-04-05 12:26:03 +02:00
8bf6d28c10 made _load_pretrained_model_low_mem static + bug fix (#16548) 2022-04-05 11:56:36 +02:00
02214cb3cc add a template to add missing tokenization test (#16553)
* add a template to add missing tokenization test

* add cookiecutter setting

* improve doc

* Update templates/adding_a_missing_tokenization_test/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-05 10:50:22 +02:00
765bafb8e4 Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-05 10:00:03 +02:00
104c065277 Trigger doc build 2022-04-04 14:06:49 -04:00
1cd2e21d1b initialize the default rank set on TrainerState (#16530)
* initialize the default rank set on TrainerState

* fix style
2022-04-04 12:20:26 -04:00
6f9d8dc156 [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586) 2022-04-04 17:50:56 +02:00
dad5ca83b2 TF: Finalize unpack_inputs-related changes (#16499)
* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests
2022-04-04 16:37:33 +01:00
be9474bd35 add a test checking the format of convert_tokens_to_string's output (#16540)
* add new tests

* add comment to overridden tests
2022-04-04 16:57:24 +02:00
24a85cca61 Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)
* fix formatting and remove use_auth

* Add use_auth_token to Flax examples
2022-04-04 10:27:45 -04:00
b9a768b3ff Enable doc in Spanish (#16518)
* Reorganize doc for multilingual support

* Fix style

* Style

* Toc trees

* Adapt templates
2022-04-04 10:25:46 -04:00
3951b9f390 Add utility to find model labels (#16526)
* Add utility to find model labels

* Use it in the Trainer

* Update src/transformers/utils/generic.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Quality

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-04 10:06:57 -04:00
ec4da72fe9 Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556) 2022-04-04 14:54:25 +02:00
013a7dbe3d Making the impossible to connect error actually report the right URL. (#16446) 2022-04-04 14:26:23 +02:00
ad0cba08ea [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)
* [FlaxSpeechEncoderDecoder] Fix dtype bug

* more fixes
2022-04-04 13:53:54 +02:00
60d27b1f15 Add code samples for TF speech models (#16494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-01 17:54:01 +02:00
53a4d6b115 Pin tokenizers version <0.13 (#16539)
* Pin tokenizers version <0.13

* Style
2022-04-01 11:53:18 -04:00
61ee26a892 Improve code example (#16450)
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-04-01 17:19:36 +02:00
2199382dfd Use random_attention_mask for TF tests (#16517)
* use random_attention_mask for TF tests

* Fix for TFCLIP test (for now).

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-01 16:53:07 +02:00
823dbf8a41 Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)
* Remove MBart subclass of XLMRoberta in tokenzier

* Fix style

* Copy docs from MBart50 tokenizer
2022-04-01 16:39:28 +02:00
5fe06b9bdd Adding missing type hints for mBART model (PyTorch) (#16429)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-01 15:21:26 +01:00
9947dd077c Add VisualBert type hints (#16544) 2022-04-01 15:02:58 +01:00
59a9c83e40 Fix Bart type hints (#16297)
* Add type hints to PLBart PyTorch

* Remove pending merge conflicts

* Fix PLBart Type Hints

* Add changes from review
2022-04-01 14:50:22 +01:00
afc5a1ea3a Type hints added (#16529) 2022-04-01 14:27:41 +01:00
483a9450a0 call on_train_end when trial is pruned (#16536) 2022-04-01 08:50:47 -04:00
9de70f213e Add ONNX export for BeiT (#16498)
* Add beit onnx conversion support

* Updated docs

* Added cross reference to ViT ONNX config
2022-04-01 10:52:42 +02:00
bfeff6cc6a Fixed a typo in legacy seq2seq_trainer.py (#16531) 2022-04-01 09:17:31 +02:00
5807054bd3 [research] link to the XTREME-S paper (#16519)
* [research] link to the XTREME-S paper

* Update examples/research_projects/xtreme-s/README.md

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-03-31 23:26:50 +04:00
e4b234834a Fix syntax error in generate docstrings (#16516) 2022-03-31 08:45:47 -04:00
b808d8a596 added type hints to xglm pytorch (#16500)
* added type hints to xglm pytorch

* Update src/transformers/models/xglm/modeling_xglm.py

* Update src/transformers/models/xglm/modeling_xglm.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-31 13:43:04 +01:00
05b4c32908 fixed a typo (#16508) 2022-03-31 07:49:02 -04:00
6a4dbba1a3 Translate accelerate.mdx from english to spanish (#16176)
* Translate accelerate.mdx from english to spanish

* Update docs/source_es/accelerate.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:45:18 -04:00
c551addeb0 Translate installation.mdx to Spanish (#16229)
* Translate installation.mdx to Spanish

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:44:47 -04:00
98939e6aee Spanish translation of the file multilingual.mdx (#16329)
* Duplication of the source eng file

* Spanish translation of the file multilingual.mdx

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:43:31 -04:00
99a01423b9 make tuple annotation more specific to avoid failures during symbolic_trace (#16490)
* make tuple annotation more specific to avoid failures during symbolic_trace

* make tuple annotation more specific to avoid failures during symbolic_trace
2022-03-31 12:39:46 +01:00
a8b6443e06 Refactor Modeling Outputs (#16341)
* first proposal

* replace model outputs in various models

* conflicts

* docstring

* update poolformer

* minor change in docstring

* CI

* removed poolformer specific outputs from doc

* removed convnext specific outputs from doc

* CI

* weird char in segformer

* conversations

* reverted docstring for BaseModelOutputWithPooling

* update outputs

* changed docstring in BaseModelOutput

* updated docstring in modeling outputs

* typos :)

* fixed typo after copy & paste it all around

* CI

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* segformer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-31 09:32:33 +02:00
857eb87cc4 Support reduce_bucket_size=auto for deepspeed stages <3 (#16496) 2022-03-30 14:12:29 -07:00
81ac45f85c update smddp api to v1.4.0 (#16371)
* update smddp api to v1.4.0

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address comments

* fix style

* remove unused import

* fix indent

* disable style check for import

* fix space

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-30 16:28:35 -04:00
a73281e3e4 [examples] max samples can't be bigger than the len of dataset (#16501)
* [examples] max samples can't be bigger than then len of dataset

* do tf and flax
2022-03-30 12:33:16 -07:00
c4deb7b3ae Feature Extractor accepts segmentation_maps (#15964)
* feature extractor accepts

* resolved conversations

* added examples in test for ADE20K

* num_classes -> num_labels

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolving conversations

* resolving conversations

* removed ADE

* CI

* minor changes in conversion script

* reduce_labels in feature extractor

* minor changes

* correct preprocess for instace segmentation maps

* minor changes

* minor changes

* CI

* debugging

* better padding

* going to update labels inside the model

* going to update labels inside the model

* minor changes

* tests

* removed changes in feature_extractor_utils

* conversation

* conversation

* example in feature extractor

* more docstring in modeling

* test

* make style

* doc

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-30 18:46:51 +02:00
c2f8eaf6bc TF: unpack inputs on Convbert, GPTJ, LED, and templates (#16491)
* Add unpack_inputs to remaining models

* remove stray use of inputs in the templates; fix tf.debugging of attn masks
2022-03-30 17:12:27 +01:00
ae189ef991 Add support for exporting GPT-J to ONNX-TRT (#16492)
Add support for exporting GPT-J to ONNX-TRT

Co-authored-by: Tomer Stav <stavt@amazon.com>
2022-03-30 17:56:03 +02:00
d04adc3521 Add length to PreTrainedTokenizer train_new_from_iterator (#16493) 2022-03-30 11:41:04 -04:00
147c816685 Nit: MCSCOCO -> MS COCO (#16481) 2022-03-30 10:06:32 -04:00
ffd19ee1de TF GPT-J Type hints and TF decorator (#16488)
* Type hints and TF decorator added

* Type hints and TF decorator added

* make style

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-30 14:03:54 +01:00
277d49a590 Do not initialize torch.distributed process group if one is already initailized (#16487)
* Do not initialize torch process group twice

* Apply suggestions from code review
2022-03-29 19:07:31 -04:00
2b483230a1 Raise diff tolerance value for TFViTMAEModelTest (#16483)
* Raise diff tolerance value

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 22:12:27 +02:00
ee18d4d2a9 TF GPT2: clearer model variable naming with @unpack_inputs (#16311)
* add unpack_inputs decorator to Main Layer

* add unpack_inputs decorator to Model

* add unpack_inputs decorator to LMHead Model

* add unpack_inputs decorator to Double Head Model

* add unpack_inputs decorator to Sequence Classification Model

* run fixup recipe

* make unpack_inputs the first decorator
2022-03-29 20:35:25 +01:00
d7c8ce57d4 Avoid accessing .dataset of a DataLoader in Trainer (#16451)
* Avoid accessing .dataset of a dataloader

* style

* fix

* cleaning up, reverting some misunderstandings

* black

* add train_dataset argument to get_train_dataloader, and fix other instances of length checks

* flake8

* address comments

* fix bug

* cleanup

* add test

* Update tests/trainer/test_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* under torch

* merge

* stylistic suggestion

Co-authored-by: Sander Land <sander@chatdesk.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-29 15:00:18 -04:00
781af7362b added typehints for RAG pytorch models (#16416) 2022-03-29 18:24:25 +01:00
5b40a37bc4 Add TF ViT MAE (#16255)
* ported TFViTMAEIntermediate and TFViTMAEOutput.

* added TFViTMAEModel and TFViTMAEDecoder.

* feat: added a noise argument in the implementation for reproducibility.

* feat: vit mae models with an additional noise argument for reproducibility.

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:24:15 +01:00
7a9ef8181c TF: properly handle kwargs in encoder_decoder architectures (#16465)
* properly handle kwargs in encoder_decoder architectures

* make fixup
2022-03-29 18:17:47 +01:00
0540d1b6c0 Add type hints for UniSpeech (#16399)
* Add type hints for UniSpeech

* Added type hints for UniSpeechSat

* Added type hints for Wave2Vec2 (PT)

* Added type hints for models dependent of wave2vec
2022-03-29 18:02:46 +01:00
875e07a9e3 [doc] Fix missing trainer import (#16469) 2022-03-29 18:57:43 +02:00
6358a4c8ec Add TF vision model code samples (#16477)
* add code samples

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:57:16 +02:00
3015d12bfb fix wrong variable name (#16467) 2022-03-29 18:55:40 +02:00
b62ac4d240 Fix example test and test_fetcher for examples (#16478) 2022-03-29 12:21:19 -04:00
86cff21cf6 Fix some TF GPT-J CI testings (#16454)
* Fix for test_mixed_precision

* Fix test_saved_model_creation by using shape_list instead of shape

* skit test_model_from_pretrained on GPU for now to avoid GPU OOM

* skip test_gptj_sample_max_time for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:04:20 +02:00
aebca696af Fix missing output_attentions in PT/Flax equivalence test (#16271)
* fix - set output_attentions to True

* Update tests/test_modeling_flax_common.py

* update for has_attentions

* overwrite check_outputs in FlaxBigBirdModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-29 17:51:48 +02:00
45abb37ac9 Remove duplicate mLuke (#16460)
* Remove duplicate mLuke

* 🖍 apply feedback
2022-03-29 10:34:30 -05:00
5216607f8a [MNLI example] Prevent overwriting matched with mismatched metrics (#16475)
* Prevent overwriting matched with mismatched metrics

* Fix style
2022-03-29 10:38:14 -04:00
ed31ab3f10 Adding DocTest to TrOCR (#16398)
* docstring still WIP | adding to documentation_tests

* clean version | passes tests

* adding to documentation_test

* adding forward for training pass

* make fixup applied

* address comments

* fix doctest

* apply make fixup

* remove additional blank

* fix file to have correct split for prepare_for_doc_test

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* address comments

* changing text | adding loss check | make fixup

* make fixup

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-03-29 16:19:06 +02:00
85295621f1 Fix blenderbot conversion script (#16472) 2022-03-29 11:32:13 +02:00
c85547af2b Remove kwargs argument from IBERT MLM forward pass (#16449) 2022-03-28 16:37:56 +02:00
da936942b0 Translation from english to spanish of file pipeline_tutorial.mdx (#16149)
* Add the translation from English to Spanish of the pipeline_tutorial.mdx file

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: fernando <fernando@gethitch.ai>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-28 10:31:19 -04:00
979b039c89 Add DPT (#15991)
* First draft

* More improvements

* Add fusion blocks

* Make conversion script work for dpt_large

* Make conversion script work

* Improve implementation

* Improve conversion script

* Add DPTForSemanticSegmentation

* Make conversion work for semantic segmentation

* Add tests

* Remove print statements

* First draft

* Redesign neck

* Improve tests

* Improve implementation some more

* Make neck output list of tensors

* Improve neck and feature extractor

* Fix integration tests

* Make more tests pass

* Make all tests pass

* Add missing config archive map

* Add in_index attribute to make heads accept list of tensors

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions

* Add copied from statements

* Remove assert

* Apply suggestions from code review

* Apply suggestions from code review

* Remove DPTInterpolate in favor of nn.Upsample

* Add comments

* Apply suggestions from code review

* Apply suggestions from code review

* Add proposed design

* Update design

* Add DPTReassembleLayer

* Add DPTFeatureFusionStage

* Apply more suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Fix rebase

* Update in_index and out_indices

* Fix conversion script

* Fix code quality

* Add model to toctree and use DepthEstimatorOutput

* Fix rebase

* Fix code examples

* Improve code

* Fix copied from statements

* Apply suggestions from code review

* Remove compute_loss method

* Apply suggestions from code review

* Fix documentation tests file

* Remove test.py file

* Improve doc example

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-03-28 16:28:10 +02:00
7ca4633555 [FlaxSpeechEncoderDecoderModel] Ensure Input and Output Word Embeddings Are **Not** Tied (#16444)
* [FlaxSpeechEncoderDecoderModel] Ensure Input and Output Word Embeddings Are **Not** Tied

* rebase
2022-03-28 14:14:10 +02:00
e0ac72b7bd Fix PerceiverMLP and test (#16405)
Co-authored-by: Jaesun Park <jaesun.park1@navercorp.com>
2022-03-28 14:06:48 +02:00
473709fc76 Use doc builder styler (#16412)
* Config update

* Use doc-builder styler

* Cleanup

* Adapt import

* We need it there too!
2022-03-28 07:45:18 -04:00
8049dfa427 Update run_t5_mlm_flax.py (#16421)
Fix typo in comment: proprocessed -> preprocessed
2022-03-28 06:00:53 -04:00
925fc57b70 [Flax] Improve Robustness of Back-Prop Tests (#16418)
* [Flax] Improve Robustness of Back-Prop Tests

* check equality of logits/outputs

* make fixup
2022-03-28 11:56:54 +02:00
7ecbb9c5e4 QDQBert example update (#16395)
* update Dockerfile and utils_qa

* Update README.md
2022-03-28 05:47:52 -04:00
f6f6866e9e cached_download ∘ hf_hub_url is hf_hub_download (#16375) 2022-03-28 05:43:39 -04:00
c88ff66cc8 Fix broken links (#16113)
* Update marian.mdx

* Update marian.mdx

* Update docs/source/model_doc/marian.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update marian.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-03-28 05:38:17 -04:00
Jia
342ff6eb41 Update comments in class BatchEncoding (#15932) 2022-03-28 05:19:12 -04:00
e02f95b229 remove references to PDF reading via PIL (#15293)
* fix confusing PIL instructions

As stated in the documentation
[here](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html?highlight=pdf#write-only-formats),
PIL can only write PDF's, not read them. Remove references to reading
PDF's via PIL from this page to avoid confusion.

* mention PDF in doc examples using PIL

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Be explicit: PDFs must be converted to images

* fix formatting

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-28 05:00:29 -04:00
3dc8242716 TF: removed inputs_processing and replaced with decorator in lxmert (#16414) 2022-03-27 18:09:15 +01:00
b320d87ece Create concept guide section (#16369)
*  create concept guide section

* 🖍 make fixup

* 🖍 apply feedback

Co-authored-by: Steven <stevhliu@gmail.com>
2022-03-25 14:51:43 -05:00
ed2ee373d0 Add TF implementation of GPT-J (#15623)
* Initial commit

* Add TFGPTJModel

* Fix a forward pass

* Add TFGPTJCausalLM

* Add TFGPTJForSequenceClassification

* Add TFGPTJForQuestionAnswering

* Fix docs

* Deal with TF dynamic shapes

* Add Loss parents to models

* Adjust split and merge heads to handle 4 and 5-dim tensors

* Update outputs for @tooslow tests
2022-03-25 19:27:19 +00:00
aa4c0a86dc Fix Typo in Argument of FlaxWav2Vec2ForPreTrainingModule (#16084) 2022-03-25 17:49:37 +01:00
e231c72906 [FlaxSpeechEncoderDecoder] Fix feature extractor gradient test (#16407) 2022-03-25 17:46:53 +01:00
a97f3150c4 Add ONNX support for Blenderbot and BlenderbotSmall (#15875)
* Add ONNX support for Blenderbot

* Add BlenderbotSmall ONNX configuration

* Update serialization table
2022-03-25 17:04:43 +01:00
b473617d63 Checkpoint sharding (#16343)
* Sharded checkpoint support

* Handle distant sharded checkpoints

* Add tests

* TODO is done

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix docstring

* Add example and format

* Address review comments

* More review comments

* End of merge

* Revert unintentional change

* VsCode what did you do?

* Style

* Changes

* Address final comments

* Quality

* Moar tests

* Move import beneath is_pt_available

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-25 11:59:25 -04:00
7fa7408b26 Terminate previous pushes when we get to the final push (#16409) 2022-03-25 15:47:05 +00:00
867f3950fa Rename master to main for notebooks links and leftovers (#16397) 2022-03-25 09:12:23 -04:00
7e7490473e fixed typo from enable to disable in disable_progress_bar function (#16406) 2022-03-25 09:07:43 -04:00
088c1880b7 Big file_utils cleanup (#16396)
* Big file_utils cleanup

* This one still needs to be treated separately
2022-03-25 07:25:20 -04:00
2b23e0801a Make FeaturesManager.get_model_from_feature a static method (#16357) 2022-03-25 11:35:48 +01:00
aa6cfe9c4b Rename to SemanticSegmenterOutput (#15849)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-24 20:44:15 +01:00
70a9bc69a8 Added type hints (#16389)
* Added type hints for PyTorch T5 model

* removed a type hint

* ran make style

* added type hints for ibert pytorch

* added type hints for lxmert pytorch

* removed kwargs type hint and fixed arguments order
2022-03-24 19:14:34 +00:00
cae394c8fa Adapt import to new structure 2022-03-24 14:40:05 -04:00
4e0f583eea TF - variable naming for Distilbert model (unpack_inputs decorator) (#16384)
* variable naming for Distilbert model

* adding unpack inputs at top

* make style/quality

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-24 16:13:08 +00:00
3a0f1684c3 Fix readme links and add CI check (#16392)
* Fix doc links in README

* Fix name

* Fix links in READMEs and doc index

* Error if there is something wrong so the CI knows
2022-03-24 11:59:09 -04:00
8cbd9b8fb1 Fix style (#16391) 2022-03-24 11:47:49 -04:00
9d88be5778 bump cookiecutter version (#16387)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 11:08:31 -04:00
f571dc20ac Update PT Flax equivalence tests in PT test file (#16280)
* update PT/Flax equivalence tests on PT side

* overwrite check_outputs in BigBirdModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 14:45:30 +01:00
41bfc1e262 Add type hints for ConvBert model (#16377)
* Add missing type hints for ConvBERT flavored models.

* Update src/transformers/models/convbert/modeling_convbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-24 13:23:54 +00:00
23a75a5338 Type hints and decorator for TF T5 (#16376)
* Type hints and TF decorator added

* Re-add XLA generation method

* Re-add lines that were deleted by conflicting updates

* Re-add lines that were deleted by conflicting updates

* Re-add lines that were deleted by conflicting updates

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-24 13:19:40 +00:00
2a27c80063 Fix BigBirdModelTester (#16310)
* fix

* update the expected value in test_fast_integration

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 13:43:52 +01:00
f5e8c9bdea Update readme with how to train offline and fix BPE command (#15897)
* Update readme with how to train offline and fix BPE command

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-03-24 11:00:46 +01:00
9badcecf69 [Doctests] Make TFRoberta-like meaningfull (#16370)
* update doc examples for TFRoberta

* fix style

* fix style

* use TF ckpt

* apply suggestion

* add the code file to test here

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 10:26:27 +01:00
77c5a80536 [Doctests] Make roberta-like meaningfull (#16363)
* [Doctests] Make roberta-like meaningfull

* correct

* final correct

* Trigger test

* make style

* apply suggestion from sylvain
2022-03-24 00:17:00 +01:00
5f0d07b36b Make BigBird model compatiable to fp16 dtype. (#16034)
* Make BigBird model compatiable to fp16 dtype.

* Use tree_map instead of map

* Reformat the code

* Fix import order

* Convert masks to the correct dtype

* Fix format issue

* Address comments.
2022-03-24 00:07:34 +01:00
1cf28da66d Update docs/README.md (#16333)
* Update docs/README.md

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 22:46:11 +01:00
029b0d95ed add GPT-J ONNX config to Transformers (#16274)
* add GPT-J ONNX config to Transformers

* remove token-classification features mapping

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* add question-answering features mapping

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* add GPT2 config init to GPT2 config + copie shebang for fix-copies

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-03-23 16:36:11 -04:00
aff9bc405a Decision transformer gym (#15845)
* Created the Decision Transformer Modle

* updating tests, copy to other machine

* Added last hidden size to Decision Transformer modelling outputs

* Removed copy of original DT file

* made a temporary change to gpt2 to have it conform with the Decision Transformer version

* Updated tests

* Ignoring a file used to test the DT model

* added comments to config file

* added comments and argument descriptions to decision transformer file

* Updated doc

* Ran "make style"

* Remove old model imports

* Removed unused imports, cleaned up init file

* Update docs/source/model_doc/decision_transformer.mdx

added my username

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverted changes made to gpt2

* Removed datasets submodule

* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states

* Added support for return of hidden states, attentions and return dict of gpt2 model.

* Updated tests to include many of the ModelTesterMixin tests. 

The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes

* Added missing line to the end of gpt2 file

* Added an integration test for the Decision Transformer

Test performs and autoregressive evaluation for two time steps

* Set done and info to _ to fix failing test

* Updated integration test to be deterministic and check expected outputs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unnecessary config options

* Cleaned up commented code and old comments.

* Cleaned up commented code.

* Changed DecisionTransformer to Decision Transformer

* Added Decision Transformer to the main README file

* Added copy of GTP2 called DecisionTranformerGPT2Model

* isorted imports

* isorted imports

* Added model to non-English README files

* Ran make fix-copies and corrected some cases.

* Updated index file to include Decision Transformer

* Added gpt2 model as copy inside the Decision Transformer model file

* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS

* Deleted redundant checkpoint files (I don't know how these got committed)

* Removed testing files. (These should have never been committed)

* Removed accidentally committed files

* Moved the Decision Transformer test to its own directory

* Add type hints for Pegasus (#16324)

* Funnel type hints (#16323)

* add pt funnel type hints

* add tf funnel type hints

* Add type hints for ProphetNet PyTorch (#16272)

* [GLPN] Improve docs (#16331)

* Add link to notebook

* Add link

* Fix bug

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Added type hints for Pytorch Marian calls (#16200)

* Added type hinting for forward functions in pytorch marian

* typo correction

* Removed type hints on functions from BART per Suraj Patil request

* fix import pb

* fix typo

* corrected tuple call

* ran black

* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List

* Fixing copies to roformer and pegasus

Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>

* Moved DecisionTransformOutput to modeling_decision_transformer

* Moved the example usage to research project and cleaned comments

* Made tests ignore the copy of gpt2 in Decision Transformer

* Added module output to modelling decision transformer

* removed copied gpt2 model from list of transformers models

* Updated tests and created __init__ file for new test location

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unneeded summary type from config file

* Fixed copies

* Updated pretrained config map to refer to hopper-medium checkpoint

* done (#16340)

* Added Decision transformer to model docs

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type annotations for Rembert/Splinter and copies (#16338)

* undo black autoformat

* minor fix to rembert forward with default

* make fix-copies, make quality

* Adding types to template model

* Removing List from the template types

* Remove `Optional` from a couple of types that don't accept `None`

Co-authored-by: matt <rocketknight1@gmail.com>

* [Bug template] Shift responsibilities for long-range (#16344)

* Fix code repetition in serialization guide (#16346)

* Adopt framework-specific blocks for content (#16342)

*  refactor code samples with framework-specific blocks

*  update training.mdx

* 🖍 apply feedback

* Updates the default branch from master to main (#16326)

* Updates the default branch from master to main

* Links from `master` to `main`

* Typo

* Update examples/flax/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updated model with custom docstring example

* Created the Decision Transformer Modle

* updating tests, copy to other machine

* Added last hidden size to Decision Transformer modelling outputs

* Removed copy of original DT file

* made a temporary change to gpt2 to have it conform with the Decision Transformer version

* Updated tests

* Ignoring a file used to test the DT model

* added comments to config file

* added comments and argument descriptions to decision transformer file

* Updated doc

* Ran "make style"

* Remove old model imports

* Removed unused imports, cleaned up init file

* Update docs/source/model_doc/decision_transformer.mdx

added my username

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverted changes made to gpt2

* Removed datasets submodule

* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states

* Added support for return of hidden states, attentions and return dict of gpt2 model.

* Updated tests to include many of the ModelTesterMixin tests. 

The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes

* Added missing line to the end of gpt2 file

* Added an integration test for the Decision Transformer

Test performs and autoregressive evaluation for two time steps

* Set done and info to _ to fix failing test

* Updated integration test to be deterministic and check expected outputs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unnecessary config options

* Cleaned up commented code and old comments.

* Cleaned up commented code.

* Changed DecisionTransformer to Decision Transformer

* Added Decision Transformer to the main README file

* Added copy of GTP2 called DecisionTranformerGPT2Model

* isorted imports

* isorted imports

* Added model to non-English README files

* Ran make fix-copies and corrected some cases.

* Updated index file to include Decision Transformer

* Added gpt2 model as copy inside the Decision Transformer model file

* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS

* Deleted redundant checkpoint files (I don't know how these got committed)

* Removed testing files. (These should have never been committed)

* Removed accidentally committed files

* Moved the Decision Transformer test to its own directory

* Moved DecisionTransformOutput to modeling_decision_transformer

* Moved the example usage to research project and cleaned comments

* Made tests ignore the copy of gpt2 in Decision Transformer

* Added module output to modelling decision transformer

* removed copied gpt2 model from list of transformers models

* Updated tests and created __init__ file for new test location

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unneeded summary type from config file

* Fixed copies

* Updated pretrained config map to refer to hopper-medium checkpoint

* Added Decision transformer to model docs

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updated model with custom docstring example

* Updated copies, config auto, and readme files.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Tegzes <48134725+Tegzes@users.noreply.github.com>
Co-authored-by: Adam Montgomerie <adam@avanssion.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Clémentine Fourrier <22726840+clefourrier@users.noreply.github.com>
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Jacob Dineen <54680234+jacobdineen@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-03-23 16:18:43 -04:00
c595b6e6a9 Make Transformers use cache files when hf.co is down (#16362)
* Make Transformers use cache files when hf.co is down

* Fix tests

* Was there a random circleCI failure?

* Isolate patches

* Style

* Comment out the failure since it doesn't fail anymore

* Better comment
2022-03-23 15:56:49 -04:00
8a69e023bf Swap inequalities (#16368)
* Swap inequalities

* Update src/transformers/trainer_callback.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_callback.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 14:50:09 -04:00
9e8c37dc82 TF - Fix interchangeable past/past_key_values and revert output variable name in GPT2 (#16332)
* revert tf gpt2

* add test for unpack_inputs and fix test case

* add changes to vision encoder decoder
2022-03-23 18:41:18 +00:00
12428f0ef1 Fix style 2022-03-23 11:44:09 -04:00
1dfc11e9e0 complete the type annotations for config parameters (#16263) 2022-03-23 15:15:59 +00:00
bb3a1d345a Adding missing type hints for mBART model (TF) (#16281)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-23 15:14:55 +00:00
935330ddfd Trainer evaluation delay (#16356)
* Initial commit

* Reversed signs, adjusted log entery.

* Check only when

* Cleanup checks

* Only trigger if we want to eval

* Run

* Move changes to callback
2022-03-23 11:11:34 -04:00
a220f160e0 [FlaxBart] make sure no grads are computed an bias (#16345)
* [FlaxBart] make sure no grads are computed an bias

* correct all other seq2seq models
2022-03-23 15:56:11 +01:00
4975002df5 Reorganize file utils (#16264)
* Split file_utils in several submodules

* Fixes

* Add back more objects

* More fixes

* Who exactly decided to import that from there?

* Second suggestion to code with code review

* Revert wront move

* Fix imports

* Adapt all imports

* Adapt all imports everywhere

* Revert this import, will fix in a separate commit
2022-03-23 10:26:33 -04:00
7135603423 [T5] Add t5 download script (#16328)
* [T5] Add bash download script

* up

* up

* up

* Update src/transformers/models/t5/download_from_gcp.sh
2022-03-23 13:25:30 +01:00
eca77f4719 Updates the default branch from master to main (#16326)
* Updates the default branch from master to main

* Links from `master` to `main`

* Typo

* Update examples/flax/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 03:46:59 -04:00
7732148124 Adopt framework-specific blocks for content (#16342)
*  refactor code samples with framework-specific blocks

*  update training.mdx

* 🖍 apply feedback
2022-03-22 16:14:58 -05:00
62cbd8423b Fix code repetition in serialization guide (#16346) 2022-03-22 16:57:19 -04:00
4f6c938342 [Bug template] Shift responsibilities for long-range (#16344) 2022-03-22 21:55:22 +01:00
ec3aace0ae Add type annotations for Rembert/Splinter and copies (#16338)
* undo black autoformat

* minor fix to rembert forward with default

* make fix-copies, make quality

* Adding types to template model

* Removing List from the template types

* Remove `Optional` from a couple of types that don't accept `None`

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-22 20:07:48 +00:00
c30798ec9d done (#16340) 2022-03-22 18:06:17 +01:00
d49f8d3189 Added type hints for Pytorch Marian calls (#16200)
* Added type hinting for forward functions in pytorch marian

* typo correction

* Removed type hints on functions from BART per Suraj Patil request

* fix import pb

* fix typo

* corrected tuple call

* ran black

* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List

* Fixing copies to roformer and pegasus

Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-22 14:45:59 +00:00
a2379b9257 [GLPN] Improve docs (#16331)
* Add link to notebook

* Add link

* Fix bug

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-22 15:45:29 +01:00
87a9af533c Add type hints for ProphetNet PyTorch (#16272) 2022-03-22 13:55:58 +00:00
7b262b9692 Funnel type hints (#16323)
* add pt funnel type hints

* add tf funnel type hints
2022-03-22 13:52:29 +00:00
deb61e5f07 Add type hints for Pegasus (#16324) 2022-03-22 13:17:55 +00:00
7cc2c9c6b0 Fix bugs of s2t fairseq model converting (#15593)
* Fix bugs for argument typo and positional embedding weight loading

* Reflect code review suggestion to cover different missing keys cases
2022-03-22 12:09:51 +01:00
7865f4d01f add xglm conversion script (#16305)
* add xglm conversion script

* style

* update script
2022-03-22 11:45:50 +01:00
0c55d47cde Add GLPN (#16199)
* First draft

* Fix logits calculation

* Improve tests

* Add copied from statements

* Fix base_model_prefix

* Improve implementation, upload new models

* Update design

* Fix integration test

* Add model to README and toctree

* Add document image

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add decoder_hidden_size attribute

* Update design of decoder

* Add DepthEstimatorOutput class

* Rename in_index to head_in_index and add feature extractor tests

* Apply suggestions from code review

* Apply suggestions from code review

* Update pretrained model name and add to doc tests

* Remove test.py script

* Update copied from statements and clean up

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-22 08:51:13 +01:00
df32b5d89b TFLongformer: Add missing type hints and unpack inputs decorator (#16228)
* Add type annotations for TF Longformer

* Update docstring data types to include numpy array

* Implement unpack_inputs decorator

* fixup after decorator updates

* Numpy array -> np.ndarray in docstring

Co-authored-by: Johnny Greco <johnny.greco@radpartners.com>
2022-03-21 22:56:17 +00:00
0aac9ba2da Add Flaubert OnnxConfig to Transformers (#16279)
* Add Flaubert to ONNX to make it available for conversion.

* Fixed features for FlauBERT. fixup command remove flaubert to docs list.

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-03-21 21:46:31 +01:00
9fef668338 TF - update (vision_)encoder_decoder past variable (#16260) 2022-03-21 19:55:41 +00:00
f9387c948d Update Makefile Phonies (#16306) 2022-03-21 15:28:23 -04:00
96cd5bcbb9 added type hints for blenderbot and blenderbot_small (#16307) 2022-03-21 19:13:58 +00:00
e226a24f84 [xtreme-s] Update Minds14 results (#16241)
* update results

* per-language metrics

* Format the per-language metrics
2022-03-21 19:33:59 +01:00
6f1727d83a Fix Seq2SeqTrainingArguments docs (#16295)
* Indent Seq2Seq Train Args docs

* Add Args keyword to Seq2Seq Train Args docs
2022-03-21 13:48:07 -04:00
7643b1caa6 Added type hints to PyTorch Longformer models (#16244) 2022-03-21 17:09:03 +00:00
c77092a5ed [FlaxGPTJ] Fix bug in rotary embeddings (#16298) 2022-03-21 18:07:56 +01:00
4b2774832d fix last element in hidden_states for XGLM (#16301)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-21 17:38:52 +01:00
5a42bb431e Update troubleshoot with more content (#16243)
* 📝 first draft

* 🖍 apply feedback
2022-03-21 11:37:18 -05:00
fbb454307d [SegFormer] Remove unused attributes (#16285)
* Remove unused attributes

* Add link to blog and add clarification about input size

* Improve readability of the code

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-21 17:34:10 +01:00
f0c00d8ca9 Fix Marian conversion script (#16300) 2022-03-21 17:23:40 +01:00
94be424308 Added type hints for PyTorch T5 model (#16257)
* Added type hints for PyTorch T5 model

* removed a type hint

* ran make style
2022-03-21 16:17:52 +00:00
250b478a2c GPT2 TensorFlow Type Hints (#16261)
* Add typing hints for base model class

* Add typing hints for causal LM model class

* Add typing hints for double heads model class

* Add typing hints for sequence classification model class

* Add typing hints for Main Layer

* Run fixup
2022-03-21 16:11:03 +00:00
9ad77affee test (#16294) 2022-03-21 16:59:47 +01:00
d50f62f2de added type hints for BART model (#16270)
* added type hints for BART model

* make fixup, adding imports to copied files

* Adding some missing types to cookiecutter

* Adding some missing types to cookiecutter

* Adding some missing types to cookiecutter

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-21 15:18:01 +00:00
460f36d352 Add type hints transfoxl (#16267)
* Add type hint for pt transfo_xl model

* Add type hint for tf transfo_xl model
2022-03-21 15:04:13 +00:00
Xia
2afe9cd279 Add argument "cache_dir" for transformers.onnx (#16284)
* Add argument "cache_dir" for transformers.onnx

* Reformate files that can't pass CI.
2022-03-21 15:26:44 +01:00
3f0f75e497 Remove disclaimer from Longformer docs (#16296) 2022-03-21 10:05:47 -04:00
c6f7ea194b Add type hints to xlnet (#16214)
* added type hints to xlnet PT

* added type hints to xlnet TF

* added type hints to xlnet TF
2022-03-21 13:04:18 +00:00
abf3cc7064 Fix a typo (add a coma) (#16291)
As mentioned: https://github.com/huggingface/transformers/issues/16277
2022-03-21 12:10:24 +00:00
641e5f3f55 Fix XGLM cross attention (#16290) 2022-03-21 13:07:28 +01:00
f393868073 Fixed Error Raised Due to Wrongly Accessing Training Sample (#16115)
* Update training.mdx

Fixed Error Raised Due to Wrongly Accessing Training Sample

* Ran make style

* Revert to Old Commit

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-21 12:54:54 +01:00
4ecb022eb1 Draft a guide with our code quirks for new models (#16237)
* Draft a guide with our code quirks for new models

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-21 07:44:03 -04:00
8bbd41369f removed the 'optional' string (#16266)
Co-authored-by: dinesh-GDK <dinesh.gna111@gmail.com1>
2022-03-21 07:39:45 -04:00
c36b856580 Framework split for Spanish version of doc quicktour.mdx (#16215)
* Apply framework changes

* Fix italics

* Fix nits

* correct syntax

Co-authored-by: Omar Espejel <espejelomar@Omars-MacBook-Air.local>
2022-03-21 07:37:45 -04:00
c1af180dfe Add Slack notification support for doc tests (#16253)
* up

* up

* up

* fix

* yeh

* ups

* Empty test commit

* correct quicktour

* correct

* correct

* up

* up

* uP

* uP

* up

* up

* uP

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* Update src/transformers/models/van/modeling_van.py

* finish

* apply suggestions

* remove folder

* revert to daily testing
2022-03-21 11:33:18 +01:00
319cbbe191 Deberta v2 code simplification (#15732)
* Removed spurious substraction

* Fixed condition checking for attention type

* Fixed sew_d copy of DeBERTa v2 attention

* Removed unused `p2p` attention type from DebertaV2-class models

* Fixed docs style
2022-03-21 05:15:38 -04:00
0a5ef036e6 Make add-new-model-like work in an env without all frameworks (#16239)
* Make add-new-model-like work without all frameworks installed

* A few fixes

* Last default frameworks
2022-03-21 04:29:04 -04:00
f466936476 Add has_attentions to TFModelTesterMixin as done on PyTorch side (#16259)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-19 11:44:17 +01:00
8d7420768c Small fixes to the documentation (#16180) 2022-03-18 17:48:27 -04:00
ffc319e7b8 Fix links in guides (#16182)
* 🖍 fix links in guides

* 🖍 apply feedback
2022-03-18 16:16:16 -05:00
277fc2cc78 Update flaubert with tf decorator (#16258) 2022-03-18 17:57:55 +00:00
75c666b4a8 Aggressive PT/TF equivalence test on PT side (#16250)
* Aggressive PT/TF equivalence test on PT side

* Ugly fix for `TFTapasForQuestionAnswering`

* apply review suggestions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 18:51:24 +01:00
d481b6414d Make Flax pt-flax equivalence test more aggressive (#15841)
* Make test_equivalence_pt_to_flax more aggressive

* Make test_equivalence_flax_to_pt more aggressive

* don't use to_tuple

* clean-up

* fix missing test cases + testing on GPU

* fix conversion

* fix `ValueError: assignment destination is read-only`

* Add type checking

* commit to revert later

* Fix

* fix

* fix device

* better naming

* clean-up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 18:15:36 +01:00
c03b6e4259 value check for typical sampling (#16165)
* value check for typical sampling

* value check for typical sampling

* change from float to int comparison

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-18 17:05:27 +01:00
fdc2e643c3 added cbs to notebooks, made copy-paste error fix in generation_utils (#16246) 2022-03-18 17:04:43 +01:00
b25b92ac4f update jax version and re-enable some tests (#16254) 2022-03-18 16:45:39 +01:00
5709a20416 Add unpack_inputs decorator for ctrl (#16242)
* add unpack_inputs decorator for ctrl

* replace "past" with "past_key_values"

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-18 15:33:24 +00:00
ddbc9ae00b Update XLM with TF decorator (#16247)
* update XLM with tf decorator

* move to top decorator

* set unpack_inputs as top decorator

Co-authored-by: Louis Owen <yellow@Louis-Owen.local>
2022-03-18 14:07:02 +00:00
a6271967c9 Override _pad in LEDTokenizer to deal with global_attention_mask (#15940)
* Override _pad in LEDTokenizer

* Override _pad in LEDTokenizerFast

* add Copied from

* calling the super method

* add comment about -1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 13:30:08 +01:00
cb2b0276b6 Change assertion to warning when passing past_key_value to T5 encoder (#16153)
* Change assertion to warning when passing past_key_value to T5 encoder

* lint
2022-03-18 12:52:55 +01:00
ecb4662d17 Attention mask is important in the case of batching... (#16222)
* Attention mask is important in the case of batching...

* Improve the fix.

* Making the sentence different enough that they exhibit different
predictions.
2022-03-18 10:02:12 +01:00
ec4e421b7d Update expected slices for pillow > 9 (#16117)
* Update expected slices for pillow > 9

* Add expected slices depending on pillow version

* Add different slices depending on pillow version for other models

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-18 09:46:45 +01:00
12d1f07770 integrations: mlflow: skip start_run() if a run is already active and sanity check on enabling integration (#16131)
* integrations: mlflow: skip start_run() call if a run is already active

* integrations: typo fix

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 16:39:57 -04:00
47cccb5318 [Deepspeed] non-HF Trainer doc update (#16238) 2022-03-17 13:33:55 -07:00
8a96b0f10a [Generate Docs] Correct docs (#16133)
* [Generate Docs] Correct docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-03-17 20:05:28 +01:00
632ff3c39e [FlaxSpeechEncoderDecoderModel] Skip from_encoder_decoder_pretrained (#16236)
* skip the test

* fix

* fix skip
2022-03-17 20:05:14 +01:00
b6e06c845f fix(flax): generate with logits processor/warper (#16231) 2022-03-17 19:39:16 +01:00
1c1e377e99 TF - add unpack_inputs decorator for marian (#16226)
* add unpack_inputs decorator

* small fix for attn_mask string

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-17 18:23:40 +00:00
81643edda5 Support PEP 563 for HfArgumentParser (#15795)
* Support PEP 563 for HfArgumentParser

* Fix issues for Python 3.6

* Add test for string literal annotation for HfArgumentParser

* Remove wrong comment

* Fix typo

* Improve code readability

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Use `isinstance` to compare types to pass quality check

* Fix style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 13:51:37 -04:00
93d3fd8645 remove jax.ops.index (#16220) 2022-03-17 17:51:43 +01:00
8481ecefbd Fix Type Hint of Nan/Inf Logging Filter Arg (#16227) 2022-03-17 11:05:38 -04:00
5a6b3ccd28 Skip equivalence test for TransfoXL (#16224)
* Skip test for TransfoXL

* Single list
2022-03-17 09:03:07 -04:00
abd503d939 TF - Adding Unpack Decorator For DPR model (#16212)
* Adding Unpack Decorator

* Adding Unpack Decorator-moved it on top
2022-03-17 12:33:02 +00:00
d9b8d1a9f5 update test (#16219) 2022-03-17 08:11:55 -04:00
7e0d04bed1 Fix readmes (#16217) 2022-03-17 07:47:01 -04:00
e1da89ccb8 Fix reproducibility in Training for PyTorch 1.11 (#16209) 2022-03-17 07:42:58 -04:00
e5101c2e27 Fix typo (#16208) 2022-03-17 07:21:20 -04:00
25b8f9a85b Fix FlaxRoFormerClassificationHead activation (#16168)
* fix activation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-17 11:45:50 +01:00
03c14a515f [Tests] Fix DiT test (#16218)
* Fix device

* Clean up

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-17 10:53:57 +01:00
73f0a5d1f6 Fixes Loss for TransfoXL when using Trainer API v2 (#16140)
* fix(transfo_xl): Fixes TransfoXL support when using Trainer.

* fix(tests): Uses losses_1 and losses_2 pattern with TransfoXL test.

* fix(transfo_xl): Adds requested changes to allow for backward compatibility.

fix(transfo_xl): Adds requested changes to allow for backward compatibility.

fix(transfo_xl): Fixes code styling.

* Backward compatibility

* Update src/transformers/models/transfo_xl/modeling_transfo_xl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Gustavo de Rosa <gth.rosa@uol.com.br>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 05:49:24 -04:00
76c74b37c1 VAN: update modules names (#16201)
* done

* done
2022-03-17 10:25:09 +01:00
99e2982f3e Add/type annotations/model vision (#16151)
* add types annotations for Beit (PyTorch)

* add types annotations for ViT (PyTorch)

* add types annotations for Deit (PyTorch)

* change Optional[bool] to bool into some places at Beit

* change Optional[bool] to bool into some places at ViT
2022-03-16 20:27:54 +00:00
2410d0f8ed Fix generation min length (#16206)
* up

* fix min lengths
2022-03-16 18:49:23 +01:00
667b823b89 Swin support for any input size (#15986)
* padding done

* correctly return one attention per layer

* almost correct, attentions are not flatten one tuple per stage

* tests green

* doc

* conversations

* reshaping hidden_states

* view in the test

* reshape_hidden_states in Encoder and Model

* new outputs with reshaped_hidden_states

* conversations

* doc

* Update docs/source/model_doc/swin.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversations

* fix tests

* minor changes

* resolved conversations

* attentions one per stage

* typo

* typos

* typos

* function signature

* CI

* clean up tests

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-16 18:38:25 +01:00
204c54d411 TF: add beam search tests (#16202) 2022-03-16 15:44:33 +00:00
190994573a Fix loading CLIPVisionConfig and CLIPTextConfig (#16198)
* override from_pretrained

* add tests

* remove docstrings

* fix typo

* Trigger CI
2022-03-16 16:24:01 +01:00
09013efdf1 Update step name (#16189)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-16 11:19:38 -04:00
36f8c42519 ResNet: update modules names (#16196)
* updated names

* fit in one line

* typo
2022-03-16 15:59:56 +01:00
5bdf3313ef Adding type hints for Distilbert (#16090)
* Distillbert type - squash

* Update src/transformers/models/distilbert/modeling_distilbert.py

Undo cleanup

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove type

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-16 14:54:50 +00:00
0b8b06185d clearer model variable naming: blenderbot_small (#16194)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 14:03:58 +00:00
f06c2c2ba1 TF unpack_input decorator for convnext (#16181)
* unpack_input decorator for tf_convnext

* set unpack_input as top decorator

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-16 14:01:32 +00:00
d35e0c6247 Minor fixes to XTREME-S (#16193)
* Minor fixes

* Fix vocab union

* Update examples/research_projects/xtreme-s/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update README

* unused import

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-16 17:23:00 +04:00
8cc925a241 TF clearer model variable naming: blenderbot (#16192)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 12:37:08 +00:00
0f35cda459 TF clearer model variable naming: funnel (#16178)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 10:37:47 +00:00
ee27b3d7df Replace all deprecated jax.ops operations with jnp's at (#16078)
* Replace all deprecated `jax.ops` operations with jnp's `at`

* np to jnp scores

* suggested changes
2022-03-16 09:08:55 +00:00
c2dc89be62 [Xtreme-S] fix some namings (#16183) 2022-03-16 01:21:31 +01:00
99fd3eb4a5 Add the XTREME-S fine-tuning example (#15985)
* CTC+classification draft

* CTC+classification draft

* style

* multilingual runs

* Fix race condition during processor.from_reatrained

* Merge covost experiments

* Add README

* Quality

* Switch to .all configs

* Fix typos
2022-03-16 00:21:06 +01:00
db4dd44ae3 Trigger doc build 2022-03-15 17:00:31 -04:00
ea05d67164 Fix some Flax models' hidden_states (#16167)
* fix the last element in `hidden_states`

* fix missing elements in outputs for FlaxWav2Vec2EncoderLayerStableLayerNormCollection

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-15 19:06:46 +01:00
88f7c564f0 Added type hints for Reformer (#16175) 2022-03-15 17:59:59 +00:00
16399d6197 Add type annotations for Perceiver (#16174) 2022-03-15 17:56:57 +00:00
015de6f081 TF clearer model variable naming: xlnet (#16150) 2022-03-15 17:50:30 +00:00
a23a7c0cd6 Add flaubert types (#16118)
* Add type hints for FlauBERT PyTorch Base model. Others downstream tasks are inherited from XLM RoBERTa.

* Add type hints for FlaubERT Tensorflow models.

* fix output for TFFlaubertWithLMHeadModel
2022-03-15 16:57:45 +00:00
366c18f473 TF clearer model variable naming: Deberta (#16146) 2022-03-15 16:53:25 +00:00
79465ac521 TF clearer model variable naming: Tapas (#16145) 2022-03-15 16:52:56 +00:00
a78565b7aa [MT5Config] add relative_attention_max_distance in config (#16170) 2022-03-15 16:26:52 +01:00
4f4e5ddbcb Framework split (#16030)
* First files

* More files

* Last files

* Style
2022-03-15 10:13:34 -04:00
4a353cacb7 added type hints to yoso (#16163) 2022-03-15 14:04:32 +00:00
c1c17bd0b3 update transformer XL with tf decorator (#16166)
* update transformer XL with tf decorator

* code fixup

* remove unused variables
2022-03-15 14:00:18 +00:00
611d3a09b2 Change unpacking of TF inputs: layoutlm, mpnet, rag, and roformer (#16112)
Co-authored-by: ChienVM <chien_vm@detomo.co.jp>
2022-03-15 13:47:45 +00:00
0d7322c1b7 TF clearer model variable naming: pegasus (#16152) 2022-03-15 13:45:59 +00:00
cd4c5c9060 TF XLA greedy generation (#15786)
* First attempt at TF XLA generation

* Fix comments

* Update XLA greedy generate with direct XLA calls

* Support attention mask, prepare_inputs_for_generation no longer hardcoded for greedy

* Handle position_ids correctly

* make xla generate work for non xla case

* force using xla generate

* refactor

* more fixes

* finish cleaning

* finish

* finish

* clean gpt2 tests

* add gpt2 tests

* correct more cases

* up

* finish

* finish

* more fixes

* flake 8 stuff

* final rag fix

* Update src/transformers/models/rag/modeling_tf_rag.py

* finish t5 as well

* finish

* Update src/transformers/generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-15 14:19:20 +01:00
e5bc438cc8 [Fix doc example] Fix 2 PyTorch Vilt docstring examples (#16076)
* fix 2 pytorch vilt docstring examples

* add vilt to doctest list file

* remove device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-15 13:35:02 +01:00
bcaf566038 [Fix doc example] Fix first example for the custom_datasets tutorial (#16087)
* Fix inconsistent example variable naming

- Example code for a sequence classification in Tensorflow had spelling mistakes and incorrect and inconsistent naming
- Changed variable naming to be consistent with the two other TF examples

* Fix incorrect incorrect training examples
2022-03-15 08:17:51 -04:00
8bfd2fb8f0 Use templates (#16142)
* Use tempaltes for all doc building jobs

* Add this branch to the doc build

* Switch to main branch
2022-03-15 08:07:56 -04:00
daa4944759 Added spanish translation of quicktour.mdx (#16158)
* Added spanish translation of quicktour.mdx

* Suggestions applied in the revision of the translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-15 08:07:35 -04:00
57713443de Configurable Relative Position Max. Distance (#16155)
* Configurable Relative Position Max. Distance

* fix missing config

Co-authored-by: ahmed-elnaggar <ahmed.elnaggar@allianz.com>
2022-03-15 08:05:33 -04:00
cd1ffb40bf typo "conaining" -> "containing" (#16132) 2022-03-15 07:08:53 -04:00
5664d27622 Shift responsibilities a bit (#16154) 2022-03-15 11:07:17 +01:00
5a386fb05c Make transformers.utils.fx. _SUPPORTED_MODELS unique (#16015) 2022-03-15 10:15:03 +01:00
a7aca42fc4 Improve Swin for VisionEncoderDecoder (#16070)
* Add Swin2Bart test

* Fix swin tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-15 09:59:48 +01:00
0a057201a9 Visual Attention Network (VAN) (#16027)
* encoder works

* addded files

* norm in stage

* convertion script

* tests

* fix copies

* make fix-copies

* fixed __init__

* make fix-copies

* fix

* shapiro test needed

* make fix-copie

* minor changes

* make style + quality

* minor refactor conversion script

* rebase + tests

* removed unused variables

* updated doc

* toctree

* CI

* doc

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolved conversations

* make fixup

* config passed to modules

* config passed to modules

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversations

* conversations

* copyrights

* normal test

* tests

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-15 08:47:12 +01:00
8f3ea7a1e1 Add type hints for GPTNeo PyTorch (#16127)
* Add type hints for SqueezeBert PyTorch

* Add type hints for GPTNeo PyTorch

* style fixes

* chenged List with Tuple
2022-03-14 20:26:12 +01:00
e3008c679f [WIP] Resnet (#15770)
* first commit

* ResNet model correctly implemented.

basic modeling + weights conversion is done

removed unused doc

mdx file

doc and conversion script

added feature_extractor to auto

test

minor changes + style + quality

doc

test

Delete process.yml

A left over from my attempt of running circleci locally

* minor changes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* new test format

* minor changes from conversations

* minor changes from conversations

* make style + quality

* readded the tests

* test + README

* minor changes from conversations

* error in README

* make fix-copies

* removed regression for classification head

* make quality

* fixed loss control flow

* fixed loss control flow

* resolved conversations

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* READMEs

* index.mdx

* minor changes

* updated tests and models

* unused import

* outputs

* Update docs/source/model_doc/resnet.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added embeddings_size

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversation

* added push to hub

* test

* embedding_size

* make fix-copies

* resolved conversations

* CI

* changed organization

* minor changes

* CI

* minor changes

* conversations

* conversation

* doc

* tests

* removed unused docstring

* conversation

* removed unused outputs

* CI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-14 19:57:55 +01:00
6458236181 TF Electra - clearer model variable naming (#16143) 2022-03-14 18:10:07 +00:00
37793259bb update albert with tf decorator (#16147) 2022-03-14 18:09:19 +00:00
e109edf16f Use HF_ENDPOINT for custom endpoints (#16139) 2022-03-14 13:26:23 -04:00
0dcdfe8630 Add type hints for FNet PyTorch (#16123) 2022-03-14 17:11:19 +00:00
f86235ad1b Add type annotations for CLIP (torch) (#16059) (#16106)
* clip typhinting #16059

* removed optional type annotations for dataclass in CLIPOutput

* type annotation fixes per Rocket - Clip Torch
2022-03-14 16:56:04 +00:00
c1000e703b Dcoker images runtime -> devel (#16141)
* Runtime -> Devel

* Torch before DeepSpeed
2022-03-14 12:37:20 -04:00
10cf1ffdbf Added missing type hints - ELECTRA TF (#16104)
* Add missing type hints - ELECTRA TF

* bool -> Optional[bool]
2022-03-14 16:28:34 +00:00
6db8693086 Add type hints for SqueezeBert PyTorch (#16126)
* Add type hints for SqueezeBert PyTorch

* fixed unused List err

* style fixes
2022-03-14 16:21:08 +00:00
5493c10ecb Add type hints for PoolFormer in Pytorch (#16121) 2022-03-14 16:14:04 +00:00
6c2f3ed74c Add type hints for Luke in PyTorch (#16111)
* Add type hints for LukeModel

* Add type hints for entitypairclassification

* Remove blank space

Co-authored-by: bhavika <bhavika@debian-BULLSEYE-live-builder-AMD64>
2022-03-14 15:55:03 +00:00
37a9fc49f2 Choose framework for ONNX export (#16018)
* Can choose framework for ONNX export

* Fix docstring
2022-03-14 16:47:29 +01:00
3f8360a7b6 Add type hints for TFDistilBert (#16107)
* Add type hints for TFDistilBert

* Update src/transformers/models/distilbert/modeling_tf_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-14 15:39:59 +00:00
97e32b7854 Improve model variable naming - CLIP [TF] (#16128)
* First pass

* Fixup

* Fix broken tests

* Make unpack_inputs the first decorator
2022-03-14 15:26:40 +00:00
d02bd4f333 Better input variable naming for OpenAI (TF) (#16129)
* Replace input_processing

* move unpack_inputs
2022-03-14 15:25:45 +00:00
c8c8c114a3 [Fix doc example] Fix checkpoint name in docstring example in Speech2Text2 (#16083)
* Fix checkpoint name in docstring example

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-14 16:19:18 +01:00
72ae06b904 Added missing type hints - V1 and V2 (#16105) 2022-03-14 15:12:22 +00:00
1d43933fbc Added missing type hints (#16103) 2022-03-14 14:53:57 +00:00
efd6e9a82a Spanish translation of the file training.mdx (#16047)
* Spanish translation of the file training.mdx

* Settings - Spanish translation of the file training.mdx

* Latest changes to the Spanish translation of the training.mdx file

* Delete Hugging.mdx

* Last changes to the training fil Espanish version

* Latest modifications

* Latest changes, document ready for PR

* Nits

Co-authored-by: Yhary Arias <yharystefa@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-14 10:12:38 -04:00
9fd584e544 Add copied from statements and fix prefix (#16119)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-14 15:05:14 +01:00
f284aa320d steps strategy fix for PushtoHubCallback (#16138) 2022-03-14 13:37:07 +00:00
e3645fd280 Change unpacking of TF mobilebert inputs to use decorator (#16110)
* Change unpacking of TF mobilebert inputs to use decorator

* Move unpack_inputs as the top decorator

* make fixup

Co-authored-by: ChienVM <chien_vm@detomo.co.jp>
2022-03-14 13:15:08 +00:00
5dbf36bd4e Fix ProphetNetTokenizer (#16082)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-14 09:02:41 -04:00
923c35b5c5 Make TF pt-tf equivalence test more aggressive (#15839)
* Make TF pt-tf equivalence test more aggressive

* Fix for TFConvNextModelTest and TFTransfoXLModelTest

* fix kwargs for outputs

* clean-up

* Add docstring for check_outputs()

* remove: need to rename encoder-decoder

* clean-up

* send PyTorch things to the correct device

* Add back the accidentally removed test case in test_pt_tf_model_equivalence()

* Fix: change to tuple before calling check_outputs()

* Fix: tfo could be a list

* use to_tuple()

* allow tfo only to be tuple or tensor

* allow tfo to be list or tuple for now + style change

* minor fix

* remove np.copy and update comments

* tfo -> tf_output, same for pt

* Add more detailed comment

* remove the incorrect comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-14 13:31:32 +01:00
9e9f6b8a45 Update convert_marian_to_pytorch.py (#16124)
Configuration `tied-embeddings-all` implies `tied-embeddings-src`
2022-03-14 12:15:38 +01:00
2de99e6c43 Fix Loading of Flax(Speech)EncoderDecoderModel kwargs from PreTrained Encoder-Decoder Checkpoints (#16056)
* Fix Loading of Flax(Speech)EncoderDecoderModel kwargs from PreTrained Encoder-Decoder Checkpoints

* change wording
2022-03-14 10:12:29 +01:00
802984ad42 Fix and document Zero Shot Image Classification (#16079) 2022-03-14 08:50:36 +01:00
6e1e88fd38 Add TFCamembertForCausalLM and ONNX integration test (#16073)
* Make Camembert great again!

* Add Camembert to TensorFlow ONNX tests
2022-03-14 08:40:42 +01:00
20ab1582cf Add missing type hints for all flavors of LayoutLMv2 PyTorch models. (#16089)
* Add missing type hints for all flavors of LayoutLMv2 PyTorch models.

* Fixed return types and added type hints for LayoutLM.

* Fix removed arguments which breaks tests.
2022-03-13 18:54:01 +00:00
65cf33e7e5 Add type hints to XLM model (PyTorch) (#16108) 2022-03-12 19:28:48 +00:00
841620684b apply unpack_input decorator to ViT model (#16102) 2022-03-12 15:05:13 +00:00
62b05b6917 Add type annotations for segformer classes (#16099) 2022-03-12 12:37:09 +00:00
9042dfe35c add unpack_inputs decorator to mbart (#16097) 2022-03-12 12:30:43 +00:00
3e9d0f7f59 Change unpacking of TF Bart inputs (#16094) 2022-03-12 12:06:55 +00:00
580dd87c55 [Deepspeed] add support for bf16 mode (#14569)
* [WIP] add support for bf16 mode

* prep for bf16

* prep for bf16

* fix; zero2/bf16 is ok

* check bf16 is available

* test fixes

* enable zero3_bf16

* config files

* docs

* split stage_dtype; merge back to non-dtype-specific config file

* fix doc

* cleanup

* cleanup

* bfloat16 => bf16 to match the PR changes

* s/zero_gather_fp16_weights_on_model_save/zero_gather_16bit_weights_on_model_save/; s/save_fp16_model/save_16bit_model/

* test fixes/skipping

* move

* fix

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* backticks

* cleanup

* cleanup

* cleanup

* new version

* add note about grad accum in bf16

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-11 17:53:53 -08:00
c1f209dadd [ZeRO] Fixes issue with embedding resize (#16093)
* gather z3 params for new_lm_head

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-11 15:13:11 -08:00
ae2dd42be5 Audio/vision task guides (#15808)
* 📝 first draft of audio/vision guides

*  make fixup

* 🖍 fix typo

* 🖍 close parentheses

* 🖍 apply feedback

* 🖍 apply feedback, make fixup

* 🖍 more fixup for perceiver

* 🖍 apply feedback

*  make fixup

* 🖍 fix data collator
2022-03-11 16:43:49 -06:00
cb5e50c8c2 [Fix doc example] FSMT (#16085)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-11 21:21:31 +01:00
eaed6897da Add missing type hints for all flavors of RoBERTa PyTorch models. (#16086)
* Add missing type hints for all flavors of RoBERTa PyTorch models.

* Fixed type hints for all classes and fixed return types.
2022-03-11 19:40:50 +00:00
a01fe4cd32 Rebuild deepspeed (#16081)
* Rebuild deepspeed

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-11 14:35:48 -05:00
7f3d4440d6 add type annotations for ImageGPT (#16088) 2022-03-11 19:16:14 +00:00
5b4c97d09d Update troubleshoot guide (#16001)
* 📝 first draft

* 🖍 apply feedback

* 🖍 apply feedback
2022-03-11 13:05:44 -06:00
9442b3ce31 Add soft length regulation for sequence generation (#15245)
* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* fix wrong docstring

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* change test according to new param

* fix formatting

* fix test case

* fix doc style

* move start_length calculation to Logitprocessor

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* fix test config, fix formatting

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* add possibility to softly regulate length when using sampling method in model.generate() function

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* remove unused import

* fix small errors

* fix test

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* change test according to new param

* fix test case

* move start_length calculation to Logitprocessor

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* fix test config, fix formatting

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* fix small errors

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

* Update src/transformers/generation_utils.py

* fix docstring, add type ind model rag

* fix docstrings

* introduce seq_length variable for cleaner code

* fix black formatting

* add input_ids_seq_length to modeling_rag

* add input_ids_seq_length to test

* retrigger checks

* retrigger checks

Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.local>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.fritz.box>
2022-03-11 19:36:44 +01:00
322c8533d7 Run daily test without time-out at least once (#16077) 2022-03-11 18:04:17 +01:00
7e00247fad check for key 'torch.dtype' in nested dicts in config (#16065) 2022-03-11 12:00:11 -05:00
5d2fed2e8c Adding type hints for TFRoBERTa (#16057)
* Adding type annotations for TFRoBERTa

* Add type hints to TFRobertaModel too
2022-03-11 16:13:47 +00:00
bb69d154c5 Add type annotations for BERT and copies (#16074)
* Add type annotations for BERT and copies

* make fixup
2022-03-11 16:13:29 +00:00
f7708e1bed Force default brnahc name via the config 2022-03-11 10:09:15 -05:00
ecf989ca73 Trigger doc build 2022-03-11 09:20:05 -05:00
0868fdef85 Fix torch-scatter version (#16072) 2022-03-11 09:03:27 -05:00
5b369dc5d8 Remove assertion over possible activation functions in DistilBERT (#16066)
* Remove assertion over possible activation functions

* Same for TF and Flax
2022-03-11 14:27:59 +01:00
f5741bcd02 Move QDQBert in just PyTorch block (#16062) 2022-03-11 07:58:02 -05:00
b6bdb943b2 Fix a TF test name (LayoutLMModelTest) (#16061)
* fix name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-11 11:22:36 +01:00
96ac7549cb updating fine-tune classifier documentation (#16063) 2022-03-10 16:21:56 -05:00
6b09328368 Fix duplicate arguments passed to dummy inputs in ONNX export (#16045)
* Fix duplicate arguments passed to dummy inputs in ONNX export

* Fix M2M100 ONNX config

* Ensure we check PreTrained model only if torch is available

* Remove TensorFlow tests for models without PyTorch parity
2022-03-10 20:19:45 +01:00
ba21001f4c support new marian models (#15831)
* support not sharing embeddings

* update modeling

* update tokenizer

* fix conversion script

* always use self.shared

* boom boom

* begin tests

* update tests

* fix resize_decoder_token_embeddings

* address Patrick's comments

* style

* update conversion script

* fix conversion script

* fix tokenizer

* better name target vocab

* add integration test for tokenizer with two vocabs

* style

* address Patrick's comments

* add integration test for model
2022-03-10 19:41:56 +01:00
e66743e6c9 DeBERTa/DeBERTa-v2/SEW Support for torch 1.11 (#16043)
* Support for torch 1.11

* Address Sylvain's comment
2022-03-10 09:01:05 -05:00
741e49305d Fix Bug in Flax Seq2Seq Models (#16021)
* Fix Bug in Flax Seq2Seq Models

* incorporate suggested changes
2022-03-10 14:58:05 +01:00
b7018abf3c TF: Unpack model inputs through a decorator (#15907)
* MVP

* apply decorator to TFBertModel

* finish updating bert

* update rembert (copy-linked to bert)

* update roberta (copy-linked to bert); Fix args

* Now working for non-text modalities
2022-03-10 13:31:35 +00:00
19597998f6 Don't compute metrics in LM examples on TPU (#16029) 2022-03-10 07:44:51 -05:00
10591399d6 Build the doc in a seperate folder then move it (#16020)
* Build the doc in a seperate folder then move it

* Allow job

* Is this it?

* Dislike comments?

* Copy instead of move

* Removing version built

* Typos

* No variable

* Take _versions.yml into account

* Finish main job and add dev job

* Forgot the run

* Fix syntax error

* Execute builder from the repo

* Typo
2022-03-10 07:44:29 -05:00
2f463effb3 Fix TFDebertaV2ConvLayer in TFDebertaV2Model (#16031)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-10 12:23:46 +01:00
1da84ae02c Fix Bug in Flax-Speech-Encoder-Decoder Test (#16041)
* Fix Bug in Flax-Speech-Encoder-Decoder Test

* change thresholds for CPU precision
2022-03-10 12:09:29 +01:00
b2a1c994cb [README] fix url for Preprocessing tutorial (#16042) 2022-03-10 12:09:05 +01:00
8d83ebdf18 [Tests] Add attentions_option to ModelTesterMixin (#15909)
* Add attentions_option to common tester

* Fix tests, apply suggestion

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-10 12:00:30 +01:00
6ce11c2c0f [Docs] Improve PyTorch, Flax generate API (#15988)
* Move generate docs

* up

* Update docs/source/_toctree.yml

* correct

* correct some stuff

* correct tests

* more fixes

* finish generate

* add to doc stest

* finish

* finalize

* add warning to generate method
2022-03-10 11:54:45 +01:00
0951d31788 Fix dependency error message in ServeCommand (#16033)
"uvicorn" is misspelled as "unicorn".
2022-03-10 11:35:26 +01:00
0835119bf3 Add Document Image Transformer (DiT) (#15984)
* Add conversion script

* Improve script

* Fix bug

* Add option to push to hub

* Add support for classification models

* Update model name

* Upload feature extractor files first

* Remove hash checking

* Fix config

* Add id2label

* Add import

* Fix id2label file name

* Fix expected shape

* Add model to README

* Improve docs

* Add integration test and fix CI

* Fix code style

* Add missing init

* Add model to SPECIAL_MODULE_TO_TEST_MAP

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-10 11:34:44 +01:00
6c9010ef63 Update README.md 2022-03-10 10:20:37 +01:00
fde901877a Freeze Feature Encoder in FlaxSpeechEncoderDecoder (#15997)
* Freeze Feature Encoder in FlaxSpeechEncoderDecoder

* add backprop test
2022-03-10 09:59:19 +01:00
65f9653ed0 Fix warning message in ElectraForCausalLM (#16023) 2022-03-09 17:27:15 -05:00
a69e185074 add doctests for bart like seq2seq models (#15987)
* boom boom

* enable doctest for few seq2seq models

* add seq2seq models in documentation_tests.txt

* fix docstring blenderbot

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix seq classif doc sample

* don't check loss for seq classif examples

* +IGNORE_OUTPUT => +IGNORE_RESULT

* fix _SEQ_CLASS_EXPECTED_OUTPUT_SHAPE

* fix some docs

* more fixes

* last fix (hopefully)

* fix big bird gen example

* fix mbart gen example

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-09 20:30:38 +01:00
b256f3518d Add FlaxBartForCausalLM (#15995)
* add causal lm

* add CausalLM tests

* Add FlaxBartForCausalLM

* Add EncoderDecoder model tests

* change docstring

* make repo-consistency

* suggested changes

* remove jax ops

* correction

* rename pre-trained decoder model
2022-03-09 19:53:01 +01:00
50dd314d93 Add ONNX export for ViT (#15658)
* Add ONNX support for ViT

* Refactor to use generic preprocessor

* Add vision dep to tests

* Extend ONNX slow tests to ViT

* Add dummy image generator

* Use model_type to determine modality

* Add deprecation warnings for tokenizer argument

* Add warning when overwriting the preprocessor

* Add optional args to docstrings

* Add minimum PyTorch version to OnnxConfig

* Refactor OnnxConfig class variables from CONSTANT_NAME to snake_case

* Add reasonable value for default atol

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-09 17:36:59 +01:00
b7fa1e3dee Use tiny models for get_pretrained_model in TFEncoderDecoderModelTest (#15989)
* Use tiny model for TFRembertEncoderDecoderModelTest.get_pretrained_model()

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-09 17:16:25 +01:00
8feede229c Fix broken code blocks in README.md (#15967)
at transformers/examples/pytorch/contrastive-image-text
2022-03-09 17:07:52 +01:00
1e8f37992f done (#16012) 2022-03-09 15:51:56 +01:00
38bce1d4cf Make pos optional to avoid crashing PerceiverModel operation (#15972)
Updates `PerceiverAudioPreprocessor` `forward()` implementation to match most other preprocessors / postprocessors
2022-03-09 15:48:52 +01:00
cec89e1a0e Simplify release utils (#15921)
* Simplify release utils

* Quality
2022-03-09 08:47:58 -05:00
e493a3a5e2 Fix github actions comment (#16009)
* Add issue number

* Dev
2022-03-09 08:39:03 -05:00
e7f34ccd4f Swag example: Update doc format (#16014) 2022-03-09 13:25:34 +00:00
3ea046995e Removed an outdated check about hdf5_version (#16011)
* removed an outdated check about hdf5_version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-09 14:21:23 +01:00
c1aaa43935 [Doctests] Move doctests to new GPU & Fix bugs (#15969)
* test

* up

* up

* Empty test commit

* up

* update tests

* up

* fix some vision models

* correct

* correct docs

* Trigger notification

* finalize

* check

* correct quicktour

* Apply suggestions from code review

* improve doctests

* Trigger Build

* next try

* next try

* and again

* Output current clone information

* Output current clone information

* Correct path

* add tf round again

* revert to daily job

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-03-09 13:09:56 +01:00
f4e4ad34cc Add ForInstanceSegmentation models to image-segmentation pipelines (#15937)
* Adding ForInstanceSegmentation to pipelines.

* Last fix `category_id` renamed to `label_id`.

* Can't be none no more.

* No `is_thing_map` anymore.
2022-03-09 10:19:05 +01:00
5b7dcc7342 Seed _get_train_sampler's generator with arg seed to improve reproducibility (#15961)
* Seed get_train_sampler's generator with arg seed to improve reproducibility

and make the world_size<=1 code path more similar to the others

* move test file into trainer test explicitly

* dumb typo

* make style lint happy

* per discussion, switch to data_seed

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-08 13:45:41 -05:00
70203b5937 TF generate refactor - past without encoder outputs (#15944)
* Remove packed past from generation_tf_utils

* update models with the new past format

* update template accordingly
2022-03-08 14:46:44 +00:00
62d847602a Update TF multiple choice example (#15868) 2022-03-08 13:16:34 +00:00
ab2f8d12a7 add hf hub to env version command (#15981) 2022-03-08 14:03:03 +01:00
72983303c5 Fix TFEncoderDecoderModelTest - Pytorch device (#15979)
* fix device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-08 13:37:20 +01:00
f5a080dd10 Do a pull in case docs were updated during build (#15922) 2022-03-08 07:19:41 -05:00
91fb62d01c Speedup training by using numpy instead of jnp for batch shuffling (#15963)
Speedup training by using numpy instead of jnp for batch shuffling

Co-authored-by: Yeb Havinga <y.t.havinga@mgrid.net>
2022-03-08 12:18:38 +01:00
ea07064a5c Returning outputs only when asked for for MaskFormer. (#15936)
* Returning outputs only when asked for for MaskFormer.

* Adding `output_auxiliary_logits` to the config.
2022-03-08 11:17:57 +01:00
b19f3e69a0 [Tests] Fix ViTMAE integration test (#15949)
* Fix test across both cpu and gpu

* Fix typo
2022-03-08 10:49:44 +01:00
9879a1d5f0 Fix LayoutLMv2 test (#15939)
* Fix LayoutLMv2 test

* Update black
2022-03-08 10:49:30 +01:00
8b9ae45549 Set scale_embedding to False in some TF tests (#15952)
* set scale_embedding to False to avoid large (> 1e-5) output differences between PT/TF

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-07 22:14:33 +01:00
38cc35069c Update training scripts docs (#15931)
* 📝 first draft

* 🖍 apply feedback

* 🖍 remove examples from toctree

* 🗑 remove examples from docs/source
2022-03-07 13:29:14 -06:00
c87cfd653c Better error message when inputs are empty 2022-03-07 13:29:16 -05:00
e9fa7cd5d7 Make is_thing_map in Feature Extractor post_process_panoptic_segmentation defaults to all instances (#15954)
* is_thing_map defaults to all instances

* better naming

* control flow

* resolving conversations
2022-03-07 19:10:32 +01:00
2596f95e84 Fix Embedding Module Bug in Flax Models (#15920) 2022-03-07 18:17:45 +01:00
1a62b25caf Backprop Test for Freeze FlaxWav2Vec2 Feature Encoder (#15938)
* Backprop Test for Freeze FlaxWav2Vec2 Feature Encoder

* remove jnp.ndarray type suggestion

* assert frozen grads are precisely zero
2022-03-07 18:10:15 +01:00
544fd9876b Support modern list type hints in HfArgumentParser (#15951)
* Support modern list type hint in HfArgumentParser

* Fix formatting with black
2022-03-07 10:22:48 -05:00
60b81dfa6f remove re-defination of FlaxWav2Vec2ForCTCModule (#15965) 2022-03-07 14:58:44 +01:00
ef9c3ca348 [Bug Fix] Beam search example in docs fails & a fix (integrating max_length in BeamScorer.finalize()) (#15555)
* added the test and fix

* had left out a comment
2022-03-07 09:10:18 +01:00
9932ee4b4b made MaskFormerModelTest faster (#15942) 2022-03-04 19:11:48 +01:00
e8efaecb87 Move dependency to call method (#15941) 2022-03-04 18:53:54 +01:00
5c6f57ee75 Constrained Beam Search [*With* Disjunctive Decoding] (#15761)
* added classes to get started with constrained beam search

* in progress, think i can directly force tokens now but not yet with the round robin

* think now i have total control, now need to code the bank selection

* technically works as desired, need to optimize and fix design choices leading to undersirable outputs

* complete PR #1 without disjunctive decoding

* removed incorrect tests

* Delete k.txt

* Delete test.py

* Delete test.sh

* revert changes to test scripts

* genutils

* full implementation with testing, no disjunctive yet

* shifted docs

* passing all tests realistically ran locally

* removing accidentally included print statements

* fixed source of error in initial PR test

* fixing the get_device() vs device trap

* fixed documentation docstrings about constrained_beam_search

* fixed tests having failing for Speech2TextModel's floating point inputs

* fix cuda long tensor

* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search

* deleted accidentally added test halting code with assert False

* code reformat

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

* fixing based on comments on PR

* took out the testing code that should but work fails without the beam search moditification ; style changes

* fixing comments issues

* docstrings for ConstraintListState

* typo in PhrsalConstraint docstring

* docstrings improvements

* finished adding what is sort of an opinionated implementation of disjunctive generation, but it revealed errors in inner beam search logic during testing.

* fixed bug found in constrained beam search that used beam_idx that were not global across all the batches

* disjunctive constraint working 100% correctly

* passing all tests

* Accidentally included mlruns

* Update src/transformers/generation_beam_constraints.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/generation_beam_constraints.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* complete overhaul of type complexities and other nits

* strict type checks in generate()

* fixing second round of feedback by narsil

* fixed failing generation test because of type check overhaul

* generation test fail fix

* fixing test fails

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-04 18:18:34 +01:00
040c11f6da Tests for MaskFormerFeatureExtractor's post_process*** methods (#15929)
* proper tests for post_process*** methods in feature extractor

* mask th == 0

* Update tests/maskformer/test_feature_extraction_maskformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-04 18:04:19 +01:00
f0aacc140b Do not change the output from tuple to list - to match PT's version (#15918)
* Do not change the output from tuple to list - to match PT's version

* Fix the same issues for 5 other models and the template

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-04 17:50:24 +01:00
10b76987fc [FlaxT5 Example] fix flax t5 example pretraining (#15835) 2022-03-04 17:04:43 +01:00
01485ceec3 Add missing support for Flax XLM-RoBERTa (#15900)
* Adding Flax XLM-RoBERTa

* Add Flax to __init__

* Adding doc and dummy objects

* Add tests

* Add Flax XLM-R models autodoc

* Fix tests

* Add Flask XLM-RoBERTa to TEST_FILES_WITH_NO_COMMON_TESTS

* Update src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Remove test on large Flask XLM-RoBERTa

* Add tokenizer to the test

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-04 14:36:28 +01:00
89c7d9cfba Making MaskFormerForInstanceSegmentation. (#15934)
Small adjustments.

Adding in type hint.

Last fix ?

Only include the default dict thing, not the pipelines.
2022-03-04 13:56:15 +01:00
7ade7c1794 Updating the slow tests: (#15893)
Linked to https://github.com/huggingface/transformers/pull/15826
2022-03-04 12:32:19 +01:00
6b104c5bb0 Support CLIPTokenizerFast for CLIPProcessor (#15913)
* Fix to support fast tokenizer with `CLIPProcessor`

* Update CLIPProcessor test for fast tokenizer

* Fix Docstring Style

* Rename into meaningful Variable name in test code
2022-03-04 11:57:09 +01:00
b71474895d Update README.md 2022-03-04 09:58:45 +01:00
a6e3b17981 Re-enabling all fast pipeline tests. (#15924) 2022-03-04 09:53:00 +01:00
a7df656f03 Update README.md (#15926) 2022-03-04 00:22:38 +01:00
c0281feb50 Fix #15898 (#15928) 2022-03-03 14:41:03 -05:00
9251427c38 Add vision models to doc tests (#15905)
* Add vision models to doc tests

* Apply suggestions from code review

* Add more models

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-03 19:46:31 +01:00
742273a52a fix for the output from post_process_panoptic_segmentation (#15916) 2022-03-03 19:35:48 +01:00
7c45fe747f Mark slow tests as slow 2022-03-03 11:03:24 -05:00
3822e4a563 Enabling MaskFormer in pipelines (#15917)
* Enabling MaskFormer in ppipelines

No AutoModel though :(

* Ooops local file.
2022-03-03 16:31:41 +01:00
79d28e80b6 v4.18.0.dev.0 2022-03-03 10:19:58 -05:00
6cbfa7bf4c [Doctests] Fix ignore bug and add more doc tests (#15911)
* finish speech doc tests

* finish

* boom

* Update src/transformers/models/speech_to_text/modeling_speech_to_text.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-03 16:01:56 +01:00
b693cbf99c The tests were not updated after the addition of torch.diag (#15890)
in the scoring (which is more correct)
2022-03-03 15:33:49 +01:00
3c4fbc616f Freeze FlaxWav2Vec2 Feature Encoder (#15873)
* Freeze FlaxWav2Vec2 Feature Encoder

* add to all module apply

* add backprop test
2022-03-03 14:17:13 +01:00
7b3bd1f21a Fix and improve REALM fine-tuning (#15297)
* Draft

* Add test

* Update src/transformers/models/realm/modeling_realm.py

* Apply suggestion

* Add block_mask

* Update

* Update

* Add block_embedding_to

* Remove no_grad

* Use AutoTokenizer

* Remove model.to overridding
2022-03-03 14:10:15 +01:00
439de3f7f9 [Fix link in pipeline doc] (#15906) 2022-03-03 07:43:13 -05:00
4cd7ed4b3b Fix a TF Vision Encoder Decoder test (#15896)
* send PyTorch inputs to the correct device

* Fix: TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-03 13:21:31 +01:00
39249c9589 Fix doc links in release utils (#15903) 2022-03-02 18:06:31 -05:00
3d2242869d Update delete-dev-doc job to match build-dev-doc (#15891)
* Update delete-dev-doc job to match build-dev-doc

* More debug info

* More debug info

* Stash if needed

* Remove the comment update

* Fix paths

* Wtf is going on..

* Fix git status test

* Try another way

* I don't understand what's happening

* Bash shell

* What's happening now...

* What's happening now...

* Try like this

* Back to trying to use bash

* And like that?

* Refine tests

* Stash after adding new files

* Stash after adding new files

* Proper commit sha and PR number

* Address review comments
2022-03-02 16:18:54 -05:00
89be34c36c Fix SegformerForImageClassification (#15895)
* Fix reshape

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-02 21:57:39 +01:00
130b987880 [XGLM] run sampling test on CPU to be deterministic (#15892)
* run sampling test on CPU to be deterministic

* input_ids on CPU
2022-03-02 17:55:49 +01:00
baab5e7cdf TF generate refactor - Sample (#15793)
* Add TF logits wrappers 

* Add sample method

* add tests for TF logit wrappers

* TF generate sample tests now run on CPU

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-02 16:13:54 +00:00
96ae92be8c [SegFormer] Add deprecation warning (#15889)
* Add deprecation warning

* Remove from docs and hide in kwargs

* Improve implementation

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-02 16:20:47 +01:00
8fd4731072 Fix Bug in FlaxWav2Vec2 Slow Test (#15887) 2022-03-02 16:02:26 +01:00
d83d22f578 Maskformer (#15682)
* maskformer

* conflicts

* conflicts

* minor fixes

* feature extractor test fix

refactor MaskFormerLoss following conversation

MaskFormer related types should not trigger a module time import error

missed one

removed all the types that are not used

update config mapping

minor updates in the doc

resolved conversation that doesn't need a discussion

minor changes

resolved conversations

fixed DetrDecoder

* minor changes

minor changes

fixed mdx file

test feature_extractor return types

functional losses -> classes

removed the return type test for the feature extractor

minor changes + style + quality

* conflicts?

* rebase master

* readme

* added missing files

* deleded poolformers test that where in the wrong palce

* CI

* minor changes

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* resolved conversations

* minor changes

* conversations

[Unispeech] Fix slow tests (#15818)

* remove soundfile old way of loading audio

* Adapt slow test

[Barthez Tokenizer] Fix saving (#15815)

[TFXLNet] Correct tf xlnet generate (#15822)

* [TFXLNet] Correct tf xlnet

* adapt test comment

Fix the push run (#15807)

Fix semantic segmentation pipeline test (#15826)

Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776)

Add model specific output classes to PoolFormer model docs (#15746)

* Added model specific output classes to poolformer docs

* Fixed Segformer typo in Poolformer docs

Adding the option to return_timestamps on pure CTC ASR models. (#15792)

* Adding the option to return_timestamps on pure CTC ASR models.

* Remove `math.prod` which was introduced in Python 3.8

* int are not floats.

* Reworking the PR to support "char" vs "word" output.

* Fixup!

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Quality.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824)

Fix tf.concatenate + test past_key_values for TF models (#15774)

* fix wrong method name tf.concatenate

* add tests related to causal LM / decoder

* make style and quality

* clean-up

* Fix TFBertModel's extended_attention_mask when past_key_values is provided

* Fix tests

* fix copies

* More tf.int8 -> tf.int32 in TF test template

* clean-up

* Update TF test template

* revert the previous commit + update the TF test template

* Fix TF template extended_attention_mask when past_key_values is provided

* Fix some styles manually

* clean-up

* Fix ValueError: too many values to unpack in the test

* Fix more: too many values to unpack in the test

* Add a comment for extended_attention_mask when there is past_key_values

* Fix TFElectra extended_attention_mask when past_key_values is provided

* Add tests to other TF models

* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder

* Fix not passing training arg to lm_head in TFRobertaForCausalLM

* Fix tests (with past) for TF Roberta

* add testing for pask_key_values for TFElectra model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

[examples/summarization and translation] fix readme (#15833)

Add ONNX Runtime quantization for text classification notebook (#15817)

Re-enable doctests for the quicktour (#15828)

* Re-enable doctests for the quicktour

* Re-enable doctests for task_summary (#15830)

* Remove &

Framework split model report (#15825)

Add TFConvNextModel (#15750)

* feat: initial implementation of convnext in tensorflow.

* fix: sample code for the classification model.

* chore: added checked for  from the classification model.

* chore: set bias initializer in the classification head.

* chore: updated license terms.

* chore: removed ununsed imports

* feat: enabled  argument during using drop_path.

* chore: replaced tf.identity with layers.Activation(linear).

* chore: edited default checkpoint.

* fix: minor bugs in the initializations.

* partial-fix: tf model errors for loading pretrained pt weights.

* partial-fix: call method updated

* partial-fix: cross loading of weights (4x3 variables to be matched)

* chore: removed unneeded comment.

* removed playground.py

* rebasing

* rebasing and removing playground.py.

* fix: renaming TFConvNextStage conv and layer norm layers

* chore: added initializers and other minor additions.

* chore: added initializers and other minor additions.

* add: tests for convnext.

* fix: integration tester class.

* fix: issues mentioned in pr feedback (round 1).

* fix: how output_hidden_states arg is propoagated inside the network.

* feat: handling of  arg for pure cnn models.

* chore: added a note on equal contribution in model docs.

* rebasing

* rebasing and removing playground.py.

* feat: encapsulation for the convnext trunk.

* Fix variable naming; Test-related corrections; Run make fixup

* chore: added Joao as a contributor to convnext.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: corrected copyright year and added comment on NHWC.

* chore: fixed the black version and ran formatting.

* chore: ran make style.

* chore: removed from_pt argument from test, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* fix: tests in the convnext subclass, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: moved convnext test to the correct location

* fix: locations for the test file of convnext.

* fix: convnext tests.

* chore: applied  sgugger's suggestion for dealing w/ output_attentions.

* chore: added comments.

* chore: applied updated quality enviornment style.

* chore: applied formatting with quality enviornment.

* chore: revert to the previous tests/test_modeling_common.py.

* chore: revert to the original test_modeling_common.py

* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py

* fix: tests for convnext.

* chore: removed output_attentions argument from convnext config.

* chore: revert to the earlier tf utils.

* fix: output shapes of the hidden states

* chore: removed unnecessary comment

* chore: reverting to the right test_modeling_tf_common.py.

* Styling nits

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

* minor changes

* doc fix in feature extractor

* doc

* typose

* removed detr logic from config

* removed detr logic from config

* removed num_labels

* small fix in the config

* auxilary -> auxiliary

* make style

* some test is failing

* fix a weird char in config prevending doc-builder

* retry to fix the doc-builder issue

* make style

* new try to fix the doc builder

* CI

* change weights to facebook

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-03-02 15:48:20 +01:00
e535c389aa Fix tiny typo (#15884) 2022-03-02 15:37:05 +01:00
2eb7bb15e7 Updates in Trainer to support new features in SM Model Parallel library (#15877)
* Create optimizer after model creation for SMP

* update dp_rank to rdp_rank for opt_state_dict

* update world_size and process_index for smp

* Address comments

* Lint fix

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
2022-03-02 07:55:14 -05:00
05c237ea94 Update TF QA example (#15870) 2022-03-02 10:38:13 +00:00
6e57a56987 Adding timestamps for CTC with LM in ASR pipeline. (#15863)
* Adding timestamps for CTC with LM in ASR pipeline.

* iRemove print.

* Nit change.
2022-03-02 10:49:05 +01:00
8a133490bf Add TF generate sample tests with all logit processors (#15852)
* Add GPT2 TF generate sample test with all logits processor

* Add T5 generate sample test
2022-03-02 09:48:11 +00:00
40040727ab [Bart] Fix implementation note doc (#15879) 2022-03-02 10:24:32 +01:00
4bfe75bd08 M2M100 support for ONNX export (#15193)
* Add M2M100 support for ONNX export

* Delete useless imports

* Add M2M100 to tests

* Fix protobuf issue
2022-03-02 10:03:14 +01:00
d1a29078c0 Remove stash for now (#15882) 2022-03-01 22:36:19 -05:00
b842d7277a fix deepspeed tests (#15881)
* fix deepspeed tests

* style

* more fixes
2022-03-01 19:27:28 -08:00
6ccfa2170c Inference for multilingual models (#15836)
* 📝 first draft for multilingual models

* 🖍 make style
2022-03-01 15:10:31 -06:00
26426923b7 No self-hosted runner for dev documentation (#15710) 2022-03-01 14:05:54 -05:00
00eaffc81f Bump up doc node version to 16 (#15874) 2022-03-01 18:37:57 +01:00
afca0d5192 use python 3.7 for flax self-push tests (#15865)
* set python 3.7 for flax tests

* setup-python@v2

* python-dev

* install -y

* python3-dev

* install kenlm from source

* install cython

* cd to kenlm

* kenlm install

* don't install kenlm

* change flax pretrained to run flax tests

* cleanup

* remove python-dev
2022-03-01 18:26:30 +01:00
286fdc6b3c [vision] Add problem_type support (#15851)
* Add problem_type to missing models

* Fix deit test

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-01 18:09:52 +01:00
7ff9d450cd Scatter should run on CUDA (#15872) 2022-03-01 11:47:17 -05:00
c008afea3c Add link to notebooks (#15791)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-01 17:44:20 +01:00
e064f08150 Add time stamps for wav2vec2 with lm (#15854)
* [Wav2Vec2 With LM] add timestamps

* correct

* correct

* Apply suggestions from code review

* correct

* Update src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py

* make style

* Update src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* make style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-01 17:03:05 +01:00
3f2e636850 Update TF LM examples (#15855) 2022-03-01 14:12:58 +00:00
54f0db4066 Add PT + TF automatic builds (#15860)
* Add PT + TF automatic builds

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Wrap up

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-01 08:55:11 -05:00
9863f7d228 [Benchmark tools] Deprecate all (#15848)
* [Benchmark tools] Deprecate all

* up
2022-03-01 11:26:20 +01:00
df5a4094a6 Add Data2Vec (#15507)
* Add data2vec model cloned from roberta

* Add checkpoint conversion script

* Fix copies

* Update docs

* Add checkpoint conversion script

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update documentation

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* add inputs to logits to data2vec'

* correct autio models

* correct config auto

* correct tok auto

* Update utils/tests_fetcher.py

* delete unnecessary files

* delete unnecessary files

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix copies

* Update docs

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update documentation

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* add inputs to logits to data2vec'

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* correct autio models

* correct config auto

* correct tok auto

* delete unnecessary files

* delete unnecessary files

* Update utils/tests_fetcher.py

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Move data2vec tests to new structure

* Fix test imports for text tests

* Remove fairseq files

* Change paper link to arxiv

* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.

* Update text model checkpoint to be facebook/data2vec-text-base

* Add 'Copy from' statements and update paper links and docs

* fix copy from statements

* improve copied from

* correct more copied from statements

* finish copied from stuff

* make style

* add model to README

* add to master

Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-01 11:09:20 +01:00
ddbb485c41 [TF-PT-Tests] Fix PyTorch - TF tests for different GPU devices (#15846) 2022-02-28 15:46:46 -05:00
97f9b8a27b Fixing the timestamps with chunking. (#15843)
* Fixing the timestamps with chunking.

* The changes modified (and fixed) the striding tests.

* Adding a tokenizer test.

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Defense -> comment.

* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-28 21:00:21 +01:00
410e26c7ad Fix (deprecated) ONNX exporter to account for new tf2onnx API (#15856)
* Fix (deprecated) ONNX exporter to account for new tf2onnx API
2022-02-28 20:17:44 +01:00
e3342edc4e Flax Speech-Encoder-Decoder Model (#15613)
* rebase

* Delete shift tokens func

* downsample decoder input seq len for init

* correct attention mask

* add tests

* pt flax cross test

* make fixup

* init file for import

* change pt-flax cross test threshold

* pt-flax test logits only

* move tests

* make repo-consistency

* consistent indentation

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-28 12:22:36 +01:00
935a76d90d [UniSpeechSat] correct unispeech sat (#15847) 2022-02-28 11:23:13 +01:00
84eaa6acf5 Add TFConvNextModel (#15750)
* feat: initial implementation of convnext in tensorflow.

* fix: sample code for the classification model.

* chore: added checked for  from the classification model.

* chore: set bias initializer in the classification head.

* chore: updated license terms.

* chore: removed ununsed imports

* feat: enabled  argument during using drop_path.

* chore: replaced tf.identity with layers.Activation(linear).

* chore: edited default checkpoint.

* fix: minor bugs in the initializations.

* partial-fix: tf model errors for loading pretrained pt weights.

* partial-fix: call method updated

* partial-fix: cross loading of weights (4x3 variables to be matched)

* chore: removed unneeded comment.

* removed playground.py

* rebasing

* rebasing and removing playground.py.

* fix: renaming TFConvNextStage conv and layer norm layers

* chore: added initializers and other minor additions.

* chore: added initializers and other minor additions.

* add: tests for convnext.

* fix: integration tester class.

* fix: issues mentioned in pr feedback (round 1).

* fix: how output_hidden_states arg is propoagated inside the network.

* feat: handling of  arg for pure cnn models.

* chore: added a note on equal contribution in model docs.

* rebasing

* rebasing and removing playground.py.

* feat: encapsulation for the convnext trunk.

* Fix variable naming; Test-related corrections; Run make fixup

* chore: added Joao as a contributor to convnext.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: corrected copyright year and added comment on NHWC.

* chore: fixed the black version and ran formatting.

* chore: ran make style.

* chore: removed from_pt argument from test, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* fix: tests in the convnext subclass, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: moved convnext test to the correct location

* fix: locations for the test file of convnext.

* fix: convnext tests.

* chore: applied  sgugger's suggestion for dealing w/ output_attentions.

* chore: added comments.

* chore: applied updated quality enviornment style.

* chore: applied formatting with quality enviornment.

* chore: revert to the previous tests/test_modeling_common.py.

* chore: revert to the original test_modeling_common.py

* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py

* fix: tests for convnext.

* chore: removed output_attentions argument from convnext config.

* chore: revert to the earlier tf utils.

* fix: output shapes of the hidden states

* chore: removed unnecessary comment

* chore: reverting to the right test_modeling_tf_common.py.

* Styling nits

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-02-25 18:19:16 +01:00
0b5bf6abef Framework split model report (#15825) 2022-02-25 12:00:00 -05:00
0118c4f6a8 Re-enable doctests for the quicktour (#15828)
* Re-enable doctests for the quicktour

* Re-enable doctests for task_summary (#15830)

* Remove &
2022-02-25 17:46:38 +01:00
fd5b05eb81 Add ONNX Runtime quantization for text classification notebook (#15817) 2022-02-25 11:29:35 -05:00
bf1fe32824 [examples/summarization and translation] fix readme (#15833) 2022-02-25 17:28:16 +01:00
8635407bc7 Fix tf.concatenate + test past_key_values for TF models (#15774)
* fix wrong method name tf.concatenate

* add tests related to causal LM / decoder

* make style and quality

* clean-up

* Fix TFBertModel's extended_attention_mask when past_key_values is provided

* Fix tests

* fix copies

* More tf.int8 -> tf.int32 in TF test template

* clean-up

* Update TF test template

* revert the previous commit + update the TF test template

* Fix TF template extended_attention_mask when past_key_values is provided

* Fix some styles manually

* clean-up

* Fix ValueError: too many values to unpack in the test

* Fix more: too many values to unpack in the test

* Add a comment for extended_attention_mask when there is past_key_values

* Fix TFElectra extended_attention_mask when past_key_values is provided

* Add tests to other TF models

* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder

* Fix not passing training arg to lm_head in TFRobertaForCausalLM

* Fix tests (with past) for TF Roberta

* add testing for pask_key_values for TFElectra model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-25 17:11:46 +01:00
4818bf7aed HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824) 2022-02-25 15:54:45 +01:00
ad0d7d1745 Adding the option to return_timestamps on pure CTC ASR models. (#15792)
* Adding the option to return_timestamps on pure CTC ASR models.

* Remove `math.prod` which was introduced in Python 3.8

* int are not floats.

* Reworking the PR to support "char" vs "word" output.

* Fixup!

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Quality.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-25 14:06:45 +01:00
7566734d6f Add model specific output classes to PoolFormer model docs (#15746)
* Added model specific output classes to poolformer docs

* Fixed Segformer typo in Poolformer docs
2022-02-25 13:43:56 +01:00
7963578fc5 Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776) 2022-02-25 11:32:23 +01:00
074645e32a Fix semantic segmentation pipeline test (#15826) 2022-02-25 09:21:29 +01:00
b7e292aebd Fix the push run (#15807) 2022-02-24 19:30:17 +01:00
cbf4391177 [TFXLNet] Correct tf xlnet generate (#15822)
* [TFXLNet] Correct tf xlnet

* adapt test comment
2022-02-24 19:23:34 +01:00
2f0f9038e2 [Barthez Tokenizer] Fix saving (#15815) 2022-02-24 19:09:09 +01:00
ca57b45071 [Unispeech] Fix slow tests (#15818)
* remove soundfile old way of loading audio

* Adapt slow test
2022-02-24 19:08:54 +01:00
35ecf99cc4 Revert changes in logit size for semantic segmentation models (#15722)
* Revert changes in logit size for semantic segmentation models

* Address review comments
2022-02-24 15:52:52 +01:00
d1fcc90abf Fix from_pretrained with default base_model_prefix (#15814) 2022-02-24 11:43:51 +01:00
7f921bcf47 Fix add-new-model-like when old model checkpoint is not found (#15805)
* Fix add-new-model-like command when old checkpoint can't be recovered

* Style
2022-02-24 08:58:18 +01:00
bb7949b35a Fix model templates (#15806)
* Fix model templates

* Update paths
2022-02-23 18:27:29 -05:00
309e87e25e Docker images should only run on a daily basis 2022-02-23 18:01:44 -05:00
c475f3ce2d Scheduled tests should only run on a daily basis 2022-02-23 17:52:22 -05:00
6336017c15 Fix build_documentation CI (#15803) 2022-02-23 21:53:51 +01:00
a0e3480699 [Test refactor 5/5] Build docker images (#15729) 2022-02-23 15:48:19 -05:00
4c737f0e40 [Test refactor 4/5] Improve the scheduled tests (#15728) 2022-02-23 15:48:05 -05:00
d3ae2bd3cf [Test refactor 3/5] Notification service improvement (#15727)
* Per-folder tests reorganization

* Review comments

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-02-23 15:46:59 -05:00
0400b2263d [Test refactor 2/5] Tests fetcher (#15726)
* Tests fetcher

* Review comments

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Review comments
2022-02-23 15:46:37 -05:00
29c10a41d0 [Test refactor 1/5] Per-folder tests reorganization (#15725)
* Per-folder tests reorganization

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-02-23 15:46:28 -05:00
fecb08c2b8 🧼 NLP task guides (#15731)
* clean commit of changes to NLP tasks

* 🖍 apply feedback

* 📝 move tf data collator in multiple choice

Co-authored-by: Steven <stevhliu@gmail.com>
2022-02-23 13:58:33 -06:00
86636f52a9 Fix indent in doc-builder CI (#15798) 2022-02-23 20:01:33 +01:00
a1efc82362 HTML dev docs (#15678)
Co-authored-by: Pierric Cistac <Pierrci@users.noreply.github.com>
2022-02-23 19:43:22 +01:00
lsb
3f76bf54ff Align documentation with code defaults (#15468)
In the code, `do_normalize` defaults to True
2022-02-23 18:39:41 +01:00
32f5de10a0 [doc] custom_models: mention security features of the Hub (#15768)
* custom_models: tiny doc addition

* mention security feature earlier in the section

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-02-23 11:40:06 -05:00
9e71d46455 Enable image-segmentation on AutoModelForSemanticSegmentation (#15647)
* Enabling Beit SegFormer to `image-segmentation`.

* Fixing the score.

* Fix import ?

* Missing in type hint.

* Multiple test fixes:

- Add `raw_image` support. It should be the default IMHO since in Python
  world it doesn't make any sense to base64 encode the image (Sorry
  @mishig, didn't catch that in my review). I really think we should
  consider breaking BC here.
- Add support for Segformer tiny test (needed
  `SegformerModelTester.get_config` to enable TinyConfig
  @NielsRogge)
- Add the check that `batch_size` works correctly on that pipeline.
  Uncovered that it doesn't for Detr, which IMO is OK since images
  after `feature_extractor` don't have the same size. Comment should
  explain.

* Type hint as a string.

* Make fixup + update black.

* torch+vision protections.

* Don't use torchvision, use F.interpolate instead (no new dep).

* Last fixes for Segformer.

* Update test to reflect new image (which was broken)

* Update tests.

* Major BC modification:

- Removed the string compressed PNG string, that's a job for users
`transformers` stays in python land.
- Removed the `score` for semantic segmentation. It has hardly a meaning
  on its own in this context.
- Don't include the grayscale with logits for now (which could enable
  users to get a sense of confidence). Might be done later.
- Don't include the surface of the mask (could be used for sorting by
  users, to filter out small masks). It's already calculable, and
  it's easier to add later, than to add now and break later if we need.

* `make fixup`.

* Small changes.

* Rebase + doc fixup.
2022-02-23 17:20:26 +01:00
1b23979736 [ViLT] Fix checkpoint url in config (#15790)
* [ViLT] Fix checkpoint url in config

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-23 14:51:40 +01:00
de737866f2 [CLIP] fix grad ckpt (#15789) 2022-02-23 14:30:05 +01:00
a3e607d19e Supporting Merges.txt files than contain an endline. (#15782)
(`hf-internal-testing/tiny-clip` for instance)
2022-02-23 11:51:48 +01:00
24588c6731 [M2M100, XGLM] fix create_position_ids_from_inputs_embeds (#15751) 2022-02-23 10:46:42 +01:00
f9582c205a Adding ZeroShotImageClassificationPipeline (#12119)
* [Proposal] Adding ZeroShotImageClassificationPipeline

- Based on CLIP

* WIP, Resurection in progress.

* Resurrection... achieved.

* Reword handling different `padding_value` for `feature_extractor` and
`tokenizer`.

* Thanks doc-builder !

* Adding docs + global namespace `ZeroShotImageClassificationPipeline`.

* Fixing templates.

* Make the test pass and be robust to floating error.

* Adressing suraj's comments on docs mostly.

* Tf support start.

* TF support.

* Update src/transformers/pipelines/zero_shot_image_classification.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-02-23 09:41:42 +01:00
05a12a090d Fix HfArgumentParser when passing a generator (#15758)
* Fix `HfArgumentParser` when passing a generator

* Add missing import

* Always convert `dataclass_types` into a list
2022-02-23 00:16:38 +01:00
db57bb2b71 Cleanup transformers-cli (#15767) 2022-02-22 15:58:05 -05:00
3db2e8f92b Fix typo on examples/pytorch/question-answering (#15644)
cna -> can
2022-02-22 13:51:07 -05:00
2cdb6dbee5 fixed pipeline code (#15607)
Co-authored-by: Boumadane Abdelmoumene <moumene.boumadane@gmail.com>
2022-02-22 13:46:21 -05:00
c44d3675c2 Time stamps for CTC models (#15687)
* [Wav2Vec2 Time Stamps]

* Add first version

* add word time stamps

* Fix

* save intermediate space

* improve

* [Finish CTC Tokenizer]

* remove @

* remove @

* push

* continue with phonemes

* up

* finish PR

* up

* add example

* rename

* finish

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct split

* finalize

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-22 19:26:44 +01:00
32295b15a1 Gelu10 (#15676)
* Add GeLU10 (clipped version of GeLU) to transformers to improve quantization performances.

* Add unittests.

* Import tensorflow after `is_tf_available` check.

* Fix tensorflow wrong function `tf.tensor` to `tf.constant`

* style.

* use `tf.math.max`

* Fix tf tests.

* style.

* style style style style style style

* style style style style style style

* Address @sgugger comments.

* Fix wrong operator for raising ValueError for ClippedGELUActivation.
2022-02-22 18:21:16 +01:00
2c3fcc647a TF train_step docstring (#15755)
* TF train_step docstring
2022-02-22 11:18:35 +00:00
38bed912e3 added link to our writing-doc document (#15756) 2022-02-22 09:57:28 +01:00
0187c6f0ad revert temporary addition to test next version of CLIPTokenizerFast (#15717) 2022-02-21 18:30:11 +01:00
3956b133b6 TF text classification examples (#15704)
* Working example with to_tf_dataset

* updated text_classification

* more comments
2022-02-21 17:17:59 +00:00
142b69f24b Add layer_idx to CrossAttention of GPT2 model (#15730)
* Add layer_idx to CrossAttention

* Add layer_idx to crossattention of ImageGPT model
2022-02-21 17:31:39 +01:00
86119c1154 add VisionTextDualEncoder and CLIP fine-tuning script (#15701)
* begin script

* update script

* fix features and data args

* main

* add requirements

* add column name args

* fix captions

* don't jit transforms

* fix caption

* fix labels, handle attention mask

* convert pixel values to numpy

* labels => input_ids

* transform images on the fly

* use AutoModel class, create the hybird model outside of the script

* fix version message

* add readme

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adderss review comments

* add more comments

* allow freezing vision and text models

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-21 16:10:59 +01:00
5444687f0f Fix minor comment typos (#15740) 2022-02-21 12:41:27 +01:00
a63bd3675f Remove input and target reset after preprocessing (#15741)
Remove input and target reset after preprocessing
2022-02-21 11:10:15 +01:00
2c2a31ffbc Add missing PLBart entry in README (#15721)
* Add missing PLBart entry in index

* Fix README

* Fix README

* Fix style

* Change to master model doc
2022-02-18 21:11:42 +01:00
60ba48205e fix bug in PT speech-encoder-decoder (#15699)
* fix bug in PT speech-encoder-decoder

* add pt test for `inputs is not None`

* fix test

* new pt test

* Update tests/test_modeling_speech_encoder_decoder.py

* make fixup

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-18 18:20:24 +01:00
3de12906c8 fix: hfdeepspeed config argument (#15711)
`HfDeepSpeedConfig` accepts a dictionary or path to `.json` file containing DS configurations, not `TrainingArguments`.
2022-02-18 12:00:02 -05:00
83f45cd656 Fix auto (#15706) 2022-02-18 08:50:23 -05:00
d5083c333f style_doc handles decorators in examples (#15719) 2022-02-18 14:49:53 +01:00
ae1f835028 Add PLBart (#13269)
* Init PLBART

* Add missing configuration file

* Add conversion script and configurationf ile

* Fix style

* Update modeling and conversion scripts

* Fix scale embedding in config

* Add comment

* Fix conversion script

* Add classification option to conversion script

* Fix vocab size in config doc

* Add tokenizer files from MBart50

* Allow no lang code in regular tokenizer

* Add PLBart Tokenizer Converters

* Remove mask from multi tokenizer

* Remove mask from multi tokenizer

* Change from MBart-50 to MBart tokenizer

* Fix names and modify src/tgt behavior

* Fix imports for tokenizer

* Remove <mask> from multi tokenizer

* Fix style

* Change tokenizer_class to processor_class

* Add attribute map to config class

* Update modeling file to modified MBart code

* Update configuration file to MBart style configuration

* Fix tokenizer

* Separate tokenizers

* Fix error in tokenization auto

* Copy MBart tests

* Replace with MBart tokenization tests

* Fix style

* Fix language code in multi tokenizer

* Fix configuration docs

* Add entry for plbart_multi in transformers init

* Add dummy objects and fix imports

* Fix modeling tests

* Add TODO in config

* Fix copyright year

* Fix modeling docs and test

* Fix some tokenization tests and style

* Add changes from review

* Fix copies

* Fix docs

* Fix docs

* Fix style

* Fix year

* Add changes from review

* Remove extra changes

* Fix base tokenizer and doc

* Fix style

* Fix modeling and slow tokenizer tests

* Remove Multi-tokenizer Converter and Tests

* Delete QA model and Multi Tokenizer dummy objects

* Fix repo consistency and code quality issues

* Fix example documentation

* Fix style

* Remove PLBartTokenizer from type checking in init

* Fix consistency issue

* Add changes from review

* Fix style

* Remove PLBartTokenizerFast

* Remove FastTokenizer converter

* Fix AutoTokenzier mapping

* Add plbart to toctree and fix consistency issues

* Add language codes tokenizer test

* Fix styling and doc issues

* Add fixes for failing tests

* Fix copies

* Fix failing modeling test

* Change assert to assertTrue in modeling tests
2022-02-18 14:17:09 +01:00
2f2fefd6af Fix LongformerModel hidden states (#15537)
* add undo padding

* fix

* fix tuple issue

* make style and quality

* move unpad logic to LongformerEncoder + unpad attentions + update tests

* move unpad logic to TFLongformerEncoder

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-18 13:56:53 +01:00
68dec6bffd Fix DETR model deprecation warnings for int div (#15702) 2022-02-18 15:14:44 +03:00
f8ff3fad87 TF: add initializer_std with a small value in TFFunnelModelTester (#15684) 2022-02-18 11:20:07 +00:00
416dff736c Fix SiluActivation (#15718) 2022-02-18 11:57:39 +01:00
e93763d420 fix CLIP fast tokenizer and change some properties of the slow version (#15067)
Very big changes concerning the tokenizer fast of CLIP which did not correspond to the tokenizer slow of CLIP

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-18 10:21:30 +01:00
240cc6cbdc Adding a model, more doc for pushing to the hub (#15690)
* doc for adding a model to the hub

* run make style

* resolved conversation

* removed a line

* removed )

* Update docs/source/add_new_model.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/add_new_model.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-18 09:11:18 +01:00
57882177be Add SimMIM (#15586)
* Add first draft

* Make model importable

* Make SwinForMaskedImageModeling importable

* Fix imports

* Add missing inits

* Add support for Swin

* Fix bug

* Fix bug

* Fix another bug

* Fix Swin MIM implementation

* Fix default encoder stride

* Fix Swin

* Add print statements for debugging

* Add image_size data argument

* Fix Swin

* Fix image_size

* Add print statements for debugging

* Fix print statement

* Remove print statements

* Improve reshaping of bool_masked_pos

* Add support for DeiT, fix tests

* Improve docstrings

* Apply new black version

* Improve script

* Fix bug

* Improve README

* Apply suggestions from code review

* Remove DS_Store and add to gitignore

* Apply suggestions from code review + fix BEiT Flax

* Revert BEiT changes

* Improve README

* Fix code quality

* Improve README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-02-17 19:44:55 +01:00
426b96230a Fix shapes in model docstrings (#15696) 2022-02-17 08:42:14 -05:00
92a537d938 Minor fix on README.md (#15688)
* fix README

* fix more arxiv links

* make fix-copies

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-17 08:38:32 -05:00
f84e0dbd2a Add PoolFormer (#15531)
* Added all files, PoolFormerFeatureExtractor still failing tests

* Fixed PoolFormerFeatureExtractor not being able to import

* Completed Poolformer doc

* Applied Suggested fixes

* Fixed errors in modeling_auto.py

* Fix feature extractor, convert docs to Markdown, styling of code

* Remove PoolFormer from check_repo and fix integration test

* Remove Poolformer from check_repo

* Fixed configuration_poolformer.py docs and removed inference.py from poolformer

* Ran with black v22

* Added PoolFormer to _toctree.yml

* Updated poolformer doc

* Applied suggested fixes and added on README.md

* Did make fixup and make fix-copies, tests should pass now

* Changed PoolFormer weights conversion script name and fixed README

* Applied fixes in test_modeling_poolformer.py and modeling_poolformer.py

* Added PoolFormerFeatureExtractor to AutoFeatureExtractor API

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-17 13:16:37 +01:00
0e91f885c3 Add image classification notebook (#15667)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-02-17 13:14:01 +01:00
f65fe3663a Implementation of activations as pytorch modules (#15616)
* Implement activations as pytorch modules

* Apply fixup

* Add missing tests for activations

* Update docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-16 14:37:52 -05:00
66828a19b1 Fix Funnel configuration doc (#15686)
* fix doc

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-16 11:50:36 -05:00
3a4376d008 [Wav2Vec2ProcessorWithLM] Fix auto processor with lm (#15683) 2022-02-16 17:33:33 +01:00
cdc51ffd27 Add register method to AutoProcessor (#15669)
* Add push_to_hub method to processors

* Fix test

* The other one too!

* Add register method to AutoProcessor

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-02-16 09:13:33 -05:00
bc3379e12c 🔥 Remove build_doc_test github action (#15680) 2022-02-16 14:06:26 +01:00
d4692ad161 Fix dec_attn_mask in TFTransfoXLMainLayer (#15665)
* fix attn

* clean-up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-16 11:53:26 +00:00
b87c044c79 Usage examples for logger (#15657)
* logger

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-02-16 10:15:13 +01:00
2d02f7b29b Add push_to_hub method to processors (#15668)
* Add push_to_hub method to processors

* Fix test

* The other one too!
2022-02-15 21:14:04 -05:00
bee361c6f1 [t5/t0/mt5 models] faster/leaner custom layer norm (#14656)
* [t5] faster/leaner custom layer norm

* wip

* apex.normalization.FusedRMSNorm

* cleanup

* cleanup

* add doc

* add catch all

* Trigger CI

* expand
2022-02-15 16:49:57 -08:00
e3d1a8dabc Add a missing space in a deprecation message (#15651) 2022-02-15 19:12:30 -05:00
1ddf3c2b74 Fix vit test (#15671) 2022-02-15 18:55:38 -05:00
943e2aa036 Fix model equivalence tests (#15670)
* Fix model equivalence tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-15 18:55:22 -05:00
1690319217 Fix TFSequenceSummary's activation (#15643)
* fix TFSequenceSummary

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-15 19:15:42 +00:00
faf4ff5974 [pipeline doc] fix api (#15660)
* [pipeline doc] fix api

* remove duplicate
2022-02-15 10:13:08 -08:00
2e12b907ae TF generate refactor - Greedy Search (#15562)
* TF generate start refactor

* Add tf tests for sample generate

* re-organize

* boom boom

* Apply suggestions from code review

* re-add

* add all code

* make random greedy pass

* make encoder-decoder random work

* further improvements

* delete bogus file

* make gpt2 and t5 tests work

* finish logits tests

* correct logits processors

* correct past / encoder_outputs drama

* refactor some methods

* another fix

* refactor shape_list

* fix more shape list

* import shape
_list

* finish docs

* fix imports

* make style

* correct tf utils

* Fix TFRag as well

* Apply Lysandre's and Sylvais suggestions

* Update tests/test_generation_tf_logits_process.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/tf_utils.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* remove cpu according to gante

* correct logit processor

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-02-15 17:54:43 +01:00
a3dbbc3467 Add decoder_kwargs to send to LM on asr pipeline. (#15646)
Co-authored-by: Giuseppe Attanasio <giuseppeattanasio6@gmail.com>

Co-authored-by: Giuseppe Attanasio <giuseppeattanasio6@gmail.com>
2022-02-15 17:53:24 +01:00
cdf19c501d Re-export KeyDataset. (#15645)
* Re-export `KeyDataset`.

* Update the docs locations.
2022-02-15 17:49:38 +01:00
28e6155d8a add a network debug script and document it (#15652)
* add a network debug script and document it

* doc
2022-02-15 08:48:00 -08:00
5d8be090e0 Fix quality 2022-02-15 11:32:26 -05:00
f45ac11fb3 Add section about doc testing (#15659)
* Add doctesting section

* Improve

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-15 16:56:31 +01:00
80f1a59168 updated with latest PL and Ray (#15653) 2022-02-15 16:53:05 +01:00
7bc4a01cb5 Update bad_words_ids usage (#15641)
* Improve the parameter `bad_word_ids' usage

* Update the bad_words_ids strategy
2022-02-15 16:44:34 +01:00
67047b86ce add scores to Wav2Vec2WithLMOutput (#15413)
* add scores to Wav2Vec2WithLMOutput

* style fixup
2022-02-15 16:40:50 +01:00
45f56580a7 Allow custom code for Processors (#15649)
* Allow custom code for Processors

* Add more test

* Test all auto_map configs are properly set
2022-02-15 09:44:35 -05:00
86a7845c0c Fix typo in speech2text2 doc (#15617)
Forward looks for inputs, not input_ids
2022-02-15 13:54:34 +01:00
9eb7e9ba1d Fix ASR pipelines from local directories with wav2vec models that have language models attached (#15590)
* Fix loading pipelines with wav2vec models with lm when in local paths

* Adding tests

* Fix test

* Adding tests

* Flake8 fixes

* Removing conflict files :(

* Adding task type to test

* Remove unnecessary test and imports
2022-02-15 13:45:08 +01:00
e1cbc073bf Require tokenizers>=0.11.1 (#15266)
`tokenizers` version that supports the feature to choose the direction of truncation
2022-02-15 11:46:12 +01:00
fra
05a8580964 Revert "logger doc"
This reverts commit 41168a49ce61685ac5c9c38cd5b88fd883c0d811.
2022-02-15 10:46:45 +01:00
fra
41168a49ce logger doc 2022-02-15 10:03:28 +01:00
041fdc4a7e [SpeechEncoderDecoder] Make sure no EOS is generated in test (#15655) 2022-02-15 09:13:55 +01:00
e314c19a3f fix bug for the log of RNG states are not properly loaded exception. (#15638)
Co-authored-by: muz <muzhi1991@limuzhideMBP-2.lan>
2022-02-14 20:30:55 -05:00
2e11a04337 Register feature extractor (#15634)
* Rework AutoFeatureExtractor.from_pretrained internal

* Custom feature extractor

* Add more tests

* Add support for custom feature extractor code

* Clean up

* Add register API to AutoFeatureExtractor
2022-02-14 13:35:16 -05:00
0f71c29053 Remove redundant error logging in from_pretrained() method (#15631)
* Remove error logging in from_pretrained() method
2022-02-14 18:03:07 +01:00
b090b79022 Make Swin work with VisionEncoderDecoderModel (#15527)
* Add attribute_map

* Add mention in docs

* Set hidden_size attribute correctly

* Add note about Transformer-based models only

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-14 17:33:35 +01:00
ec15da2445 Report only the failed imports in requires_backends (#15636) 2022-02-14 10:35:20 -05:00
2b8599b2df Fix a bug that ignores max_seq_len in preprocess (#15238) 2022-02-14 13:18:40 +01:00
f52746d004 [Fix doc example] FlaxVisionEncoderDecoder (#15626)
* Fix wrong checkpoint name: vit

* Fix missing import

* Fix more missing import

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-14 12:48:23 +01:00
52d2e6f6e9 Add push to hub to feature extractor (#15632)
* Add push to hub to feature extractor

* Quality

* Clean up
2022-02-11 17:14:01 -05:00
4f403ea899 Fix grammar in tokenizer_summary (#15614)
"to make ensure" is redundant.
2022-02-11 16:51:30 -05:00
7a32e4722f Custom feature extractor (#15630)
* Rework AutoFeatureExtractor.from_pretrained internal

* Custom feature extractor

* Add more tests

* Add support for custom feature extractor code

* Clean up
2022-02-11 16:43:54 -05:00
fcb0f74397 [research_projects] deal with security alerts (#15594)
* [research_projects] deal with security alerts

* add a note of the original PL ver and warning
2022-02-11 14:31:09 -05:00
f15c99fabf [deepspeed docs] misc additions (#15585)
* [deepspeed docs] round_robin_gradients

* training and/or eval/predict loss is

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-11 10:54:04 -08:00
2dce350b33 Fix _configuration_file argument getting passed to model (#15629) 2022-02-11 13:46:08 -05:00
85aee09e9a 🖍 remove broken link (#15615) 2022-02-11 12:33:55 -06:00
2f40c728c9 TF MT5 embeddings resize (#15567)
* Fix TF MT5 vocab resize

* more assertive testing
2022-02-11 17:35:10 +00:00
8c03df1010 Rebase (#15606) 2022-02-11 12:02:02 -05:00
3fae83d23a TF: Add informative warning for inexistent CPU backprop ops (#15612)
* Add informative warning
2022-02-11 16:16:26 +00:00
7e4844fc2a Enable ONNX export when PyTorch and TensorFlow installed in the same environment (#15625) 2022-02-11 16:25:06 +01:00
6cf06d198c Mark "code in the Hub" API as experimental (#15624) 2022-02-11 09:55:31 -05:00
45c7b5b1c7 [Generate] Small refactor (#15611) 2022-02-10 18:29:27 +01:00
c0864d98ba Correct JSON format (#15600) 2022-02-10 09:02:03 -08:00
2e8b85f72e Add local and TensorFlow ONNX export examples to docs (#15604)
* Add local and TensorFlow ONNX export examples to docs

* Use PyTorch - TensorFlow split
2022-02-10 16:31:00 +01:00
3a2ed96714 Fix Seq2SeqTrainer (#15603)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-10 16:26:14 +01:00
724e51c6e6 Compute loss independent from decoder for TF EncDec models (as #14139) (#15175)
* Compute loss independent from decoder (as 14139)

* fix expected seq_len + style

* Apply the same change to TFVisionEncoderDecoderModel

* fix style

* Add case with labels in equivalence test

* uncomment

* Add case with labels in equivalence test

* add decoder_token_labels

* use hf_compute_loss

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add copied from

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-10 15:47:02 +01:00
3d5dea9bf0 Add example batch size to all commands (#15596) 2022-02-10 08:52:07 -05:00
cb7ed6e083 Add Tensorflow handling of ONNX conversion (#13831)
* Add TensorFlow support for ONNX export

* Change documentation to mention conversion with Tensorflow

* Refactor export into export_pytorch and export_tensorflow

* Check model's type instead of framework installation to choose between TF and Pytorch

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Alberto Bégué <alberto.begue@della.ai>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-02-10 11:18:41 +01:00
e923917cd9 Reformat tokenization_fnet 2022-02-09 22:23:32 -05:00
644ec05233 Make slow tests slow 2022-02-09 19:10:22 -05:00
c722753afd Expand tutorial for custom models (#15587)
* Expand tutorial for custom models

* Style

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-02-09 17:44:28 -05:00
a86ee2261e Add link (#15588)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-09 23:33:39 +01:00
dee17d5676 [trainer docs] document how to select specific gpus (#15551)
* [trainer docs] document how to select specific gpus

* expand

* add urls

* add accelerate launcher
2022-02-09 10:12:29 -08:00
258480864d update serving_output for some TF models (#15568)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-09 18:32:51 +01:00
315e67404d Fix tests hub failure (#15580)
* Expose hub test problem

* Fix tests
2022-02-09 12:27:59 -05:00
b1ba03e082 Fix quality 2022-02-09 12:06:59 -05:00
eed3186b79 Trigger doc build 2022-02-09 11:57:59 -05:00
2b5603f6ac Constrained Beam Search [without disjunctive decoding] (#15416)
* added classes to get started with constrained beam search

* in progress, think i can directly force tokens now but not yet with the round robin

* think now i have total control, now need to code the bank selection

* technically works as desired, need to optimize and fix design choices leading to undersirable outputs

* complete PR #1 without disjunctive decoding

* removed incorrect tests

* Delete k.txt

* Delete test.py

* Delete test.sh

* revert changes to test scripts

* genutils

* full implementation with testing, no disjunctive yet

* shifted docs

* passing all tests realistically ran locally

* removing accidentally included print statements

* fixed source of error in initial PR test

* fixing the get_device() vs device trap

* fixed documentation docstrings about constrained_beam_search

* fixed tests having failing for Speech2TextModel's floating point inputs

* fix cuda long tensor

* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search

* deleted accidentally added test halting code with assert False

* code reformat

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

* fixing based on comments on PR

* took out the testing code that should but work fails without the beam search moditification ; style changes

* fixing comments issues

* docstrings for ConstraintListState

* typo in PhrsalConstraint docstring

* docstrings improvements

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-09 16:59:26 +01:00
0113aae5b7 Add implementation of typical sampling (#15504)
* typical decoding

* changing arg name

* add test config params

* forgotten arg rename

* fix edge case where scores are same

* test for typical logits warper

* code quality fixes
2022-02-09 16:48:41 +01:00
f588cf4050 [Flax tests/FlaxBert] make from_pretrained test faster (#15561) 2022-02-09 16:48:08 +01:00
7029240927 Upgrade click version (#15579) 2022-02-09 10:28:43 -05:00
9e00566b9b Add Wav2Vec2 Adapter Weights to Flax (#15566)
* Add Wav2Vec2 Adapter Weights to Flax

* Suggested changes
2022-02-09 10:24:40 -05:00
1f60bc46f3 Make sure custom configs work with Transformers (#15569)
* Make sure custom configs work with Transformers

* Apply code review suggestions
2022-02-09 10:04:44 -05:00
7732d0fe7a Upgrade black to version ~=22.0 (#15565)
* Upgrade black to version ~=22.0

* Check copies

* Fix code
2022-02-09 09:28:57 -05:00
d923f76203 add model scaling section (#15119)
* add model scaling section

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* integrate reviewer feedback

* initialize GPU properly

* add note about BnB optimizer

* move doc from `scaling.mdx` to `performance.mdx`

* integrate reviewer feedback

* revert section levels

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-09 15:27:30 +01:00
b5c6fdecf0 PoC for a ProcessorMixin class (#15549)
* PoC for a ProcessorMixin class

* Documentation

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Roll out to other processors

* Add base feature extractor class in init

* Use args and kwargs

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-09 09:24:49 -05:00
ba3f9a71a1 logger.warn --> logger.warning (#15572)
* change logger.warn to logger.warning

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-09 08:20:05 -05:00
a6885db912 [Flax tests] fix test_model_outputs_equivalence (#15571)
* fix test_model_outputs_equivalence

* fix tuple outputs for blenderbot
2022-02-09 12:26:48 +01:00
fcb4f11c92 📝 Add codecarbon callback to docs (#15563) 2022-02-08 14:10:53 -05:00
077c00c0b2 feat(flax): allow encoder_outputs in generate (#15554)
* feat(flax): allow encoder_outputs in generate

* doc(flax): encoder_outputs in generate

* fix: style

* fix: style
2022-02-08 17:53:22 +01:00
8406fa6dd5 Add TFSpeech2Text (#15113)
* Add wrapper classes

* convert inner layers to tf

* Add TF Encoder and Decoder layers

* TFSpeech2Text models

* Loadable model

* TF model with same outputs as PT model

* test skeleton

* correct tests and run the fixup

* correct attention expansion

* TFSpeech2Text pask_key_values with TF format
2022-02-08 16:27:23 +00:00
6a5472a8e1 Force use_cache to be False in PyTorch (#15385)
* use_cache = False for PT models if labels is passed

* Fix for BigBirdPegasusForConditionalGeneration

* add warning if users specify use_cache=True

* Use logger.warning instead of warnings.warn

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-08 16:20:53 +01:00
0acd84f7cb [GPTJ] fix docs (#15558) 2022-02-08 15:54:19 +01:00
87d08afb16 electra is added to onnx supported model (#15084)
* electra is added to onnx supported model

* add google/electra-base-generator for test onnx module

Co-authored-by: Lewis Tunstall <lewis.c.tunstall@gmail.com>
2022-02-08 15:47:49 +01:00
0fe17f375a FX tracing improvement (#14321)
* Change the way tracing happens, enabling dynamic axes out of the box

* Update the tests and modeling xlnet

* Add the non recoding of leaf modules to avoid recording more values for the methods to record than what will be seen at tracing time (which would otherwise desynchronize the recorded values and the values that need to be given to the proxies during tracing, causing errors).

* Comments and making tracing work for gpt-j and xlnet

* Refactore things related to num_choices (and batch_size, sequence_length)

* Update fx to work on PyTorch 1.10

* Postpone autowrap_function feature usage for later

* Add copyrights

* Remove unnecessary file

* Fix issue with add_new_model_like

* Apply suggestions
2022-02-07 22:25:33 +01:00
552f8d3091 Create a custom model guide (#15489)
* 📝 add config section

* 📝 finish first draft

* 📝 add feature extractor and processor

* 🖍 apply feedback from review

* 📝 minor edits

* last review
2022-02-07 12:34:56 -06:00
ad1d3c4d4b Make TF Wav2Vec2 outputs the same as PT's version (#15530)
* fix outputs

* fix for CTC

* fix doc

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-07 18:09:57 +01:00
131e258411 Fix TF T5/LED missing cross attn in retrun values (#15511)
* add cross attn to outputs

* add cross attn to outputs for TFLED

* add undo padding

* remove unused import

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-07 17:41:48 +01:00
6775b211b6 Remove Longformers from ONNX-supported models (#15273) 2022-02-07 17:32:13 +01:00
7a1412e12b Wav2Vec2 models must either throw or deal with add_apater (#15409)
* Wav2Vec2 models must either throw or deal with add_apater

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add pre-add_adapter backwards compatibility

* Add pre-add_adapter backwards compatibility

* Fix issue in tests/test_modeling_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-07 17:03:12 +01:00
a459f7f97d Add ASR CTC streaming example (#15309)
* Single-epoch run

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Infinite dataset

* Trainer fix + distributed benchmark

* Benchmark fix

* unused import

* interleaved splits

* interleaved splits

* has_length util

* Move to research projects

* Leftover Sized checks

* Bump min version

* Unused import

* Revert trainer changes

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-07 18:35:37 +03:00
75b13f82e9 [Trainer] Deeper length checks for IterableDatasetShard (#15539)
* Unused import

* Make `has_length()` torch-independent to use in callbacks

* Update src/transformers/trainer_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-07 18:34:56 +03:00
84eec9e6ba Add ConvNeXT (#15277)
* First draft

* Add conversion script

* Improve conversion script

* Improve docs and implement tests

* Define model output class

* Fix tests

* Fix more tests

* Add model to README

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply more suggestions from code review

* Apply suggestions from code review

* Rename dims to hidden_sizes

* Fix equivalence test

* Rename gamma to gamma_parameter

* Clean up conversion script

* Add ConvNextFeatureExtractor

* Add corresponding tests

* Implement feature extractor correctly

* Make implementation cleaner

* Add ConvNextStem class

* Improve design

* Update design to also include encoder

* Fix gamma parameter

* Use sample docstrings

* Finish conversion, add center cropping

* Replace nielsr by facebook, make feature extractor tests smaller

* Fix integration test

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-07 16:11:37 +01:00
c47d259241 [torch_int_div] Correct true division in generation (#15498)
* [torch_int_div] Correct true division in generation

* up

* up
2022-02-07 16:04:18 +01:00
5f1918a4a8 [ASR pipeline] correct asr pipeline for seq2seq models (#15541) 2022-02-07 15:35:44 +01:00
e02bdce791 Revert "Handle PyTorch to Flax conversion of 1D convolutions (#15519)" (#15540)
This reverts commit 854a0d526c7a3b958a790e92272ac798ca3831f5.
2022-02-07 12:33:49 +01:00
8ce1330631 [deepspeed docs] DeepSpeed ZeRO Inference (#15486)
* [deepspeed docs] DeepSpeed ZeRO Inference

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* tweak

* deal with black

* extra cleanup, better comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-04 13:51:02 -08:00
ac6aa10f23 Standardize semantic segmentation models outputs (#15469)
* Standardize instance segmentation models outputs

* Rename output

* Update src/transformers/modeling_outputs.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add legacy argument to the config and model forward

* Update src/transformers/models/beit/modeling_beit.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Copy fix in Segformer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-02-04 14:52:07 -05:00
31be2f45a9 [deepspeed docs] Megatron-Deepspeed info (#15488) 2022-02-04 11:15:13 -08:00
bbe9c6981b Fix TFRemBertEncoder all_hidden_states (#15510)
* fix

* fix test

* remove expected_num_hidden_layers

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-04 16:32:14 +00:00
854a0d526c Handle PyTorch to Flax conversion of 1D convolutions (#15519) 2022-02-04 17:08:03 +01:00
486260c68e use kwargs (#15509)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-04 15:25:37 +00:00
525dbbf84a Remove loss from some flax models docs & examples (#15492)
* Remove return_loss from Flax models

* fix more

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 21:39:46 +01:00
21dcaec5d5 [deepspeed docs] memory requirements (#15506) 2022-02-03 10:55:14 -08:00
f1a4c4ead5 [WIP] Add preprocess_logits_for_metrics Trainer param (#15473)
* Add preprocess_logits_for_metrics Trainer param

* Compute accuracy in LM examples

* Improve comments
2022-02-03 12:07:20 -05:00
4f5faaf044 [deepspeed] fix a bug in a test (#15493)
* [deepspeed] fix a bug in a test

* consistency
2022-02-03 08:55:45 -08:00
90166121ee Add general vision docstrings (#15501)
* Add general docstrings

* Remove legacy docstrings

* Add BEiT

* Add DEiT

* Add SegFormer

* Fix beit output class

* Fix missing return_dict
2022-02-03 17:47:22 +01:00
e2b6e73fa2 [Flax tests] Disable scheduled GPU tests (#15503) 2022-02-03 17:12:14 +01:00
f5d98da29e fix load_weight_prefix (#15101)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 15:11:53 +00:00
71dccd0774 fix (#15494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 12:57:28 +01:00
5ec368d79e Correct eos_token_id settings in generate (#15403)
* Correct eos_token_id set in generate

* Set eos_token_id in test

* Correct eos_token_id set in generate

* Set eos_token_id in test
2022-02-03 00:24:40 +01:00
39b5d1a63a fix set truncation attribute in __init__ of PreTrainedTokenizerBase (#15456)
* change truncation_side in init of `PreTrainedTokenizerBase`

Co-authored-by: LSinev <LSinev@users.noreply.github.com>

* add test

* Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`"

This reverts commit 7a98b87962d2635c7e4d4f00db3948b694624843.

* fix kwargs

* Revert "fix kwargs"

This reverts commit 67b0a5270e8cf1dbf70e6b0232e94c0452b6946f.

* Update tests/test_tokenization_common.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* delete truncation_side variable

* reorganize test

* format

* complete doc

* Revert "Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`""

This reverts commit d5a10a7e2680539e5d9e98ae5d896c893d224b80.

* fix typo

* fix typos to render documentation

* Revert "Revert "Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`"""

This reverts commit 16cf58811943a08f43409a7c83eaa330686591d0.

* format

Co-authored-by: LSinev <LSinev@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-02-02 23:18:09 +01:00
45cac3fade Fix labels stored in model config for token classification examples (#15482)
* Playing

* Properly set labels in model config for token classification example

* Port to run_ner_no_trainer

* Quality
2022-02-02 14:23:43 -05:00
c74f3d4c48 Add W&B backend for hyperparameter sweep (#14582)
# Add support for W&B hyperparameter sweep
This PR:
* allows using wandb for running hyperparameter search.
* The runs are visualized on W&B sweeps dashboard
* This supports runnning sweeps on parallel devices, all reporting to the same central dashboard.

### Usage
**To run new a hyperparameter search:**
```
trainer.hyperparameter_search(
    backend="wandb", 
    project="transformers_sweep", # name of the project
    n_trials=5,
    metric="eval/loss", # metric to be optimized, default 'eval/loss'. A warning is raised if the passed metric is not found
)
```
This outputs a sweep id. Eg. `my_project/sweep_id`

**To run sweeps on parallel devices:**
Just pass sweep id which you want to run parallel
```
trainer.hyperparameter_search(
    backend="wandb", 
    sweep_id = "my_project/sweep_id"
)
```
2022-02-02 14:06:14 -05:00
13297ac71c Fic docstring of ASR pipeline (#15481) 2022-02-02 12:12:22 -05:00
dd360d58d9 fix error posted in issue #15448 (#15480)
* fix error posted in issue #15448

Signed-off-by: bugface <alexgre@ufl.edu>

* clean up - remove commented line

Signed-off-by: bugface <alexgre@ufl.edu>
2022-02-02 10:45:51 -05:00
44b21f117b Save code of registered custom models (#15379)
* Allow dynamic modules to use relative imports

* Work for configs

* Fix last merge conflict

* Save code of registered custom objects

* Map strings to strings

* Fix test

* Add tokenizer

* Rework tests

* Tests

* Ignore fixtures py files for tests

* Tokenizer test + fix collection

* With full path

* Rework integration

* Fix typo

* Remove changes in conftest

* Test for tokenizers

* Add documentation

* Update docs/source/custom_models.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add file structure and file content

* Add more doc

* Style

* Update docs/source/custom_models.mdx

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Address review comments

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-02-02 10:44:37 -05:00
623d8cb475 Adding support for microphone streaming within pipeline. (#15046)
* Adding support for `microphone` streaming within pipeline.

- Uses `ffmpeg` to get microphone data.
- Makes sure alignment is made to `size_of_sample`.
- Works by sending `{"raw": ..data.., "stride": (n, left, right),
"partial": bool}`
directly to the pipeline enabling to stream partial results and still
get inference.
- Let's `partial` information flow through the pipeline to enable caller
  to get it back and choose to display text or not.

- The striding reconstitution is bound to have errors since CTC does not
keep previous state. Currently most of the errors are we don't know if
there's a space or not between two chunks.
Since we have some left striding info, we could use that during decoding
to choose what to do with those spaces and even extra letters maybe (if
the stride is long enough, it's bound to cover at least a few symbols)

Fixing tests.

Protecting with `require_torch`.

`raw_ctc` support for nicer demo.

Post rebase fixes.

Revamp to split raw_mic_data from it's live chunking.

- Requires a refactor to make everything a bit cleaner.

Automatic resampling.

Small fix.

Small fix.

* Post rebase fix (need to let super handle more logic, reorder args.)

* Update docstrings

* Docstring format.

* Remove print.

* Prevent flow of `input_values`.

* Fixing `stride` too.

* Fixing the PR by removing `raw_ctc`.

* Better docstrings.

* Fixing init.

* Update src/transformers/pipelines/audio_utils.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update tests/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Quality.

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2022-02-02 15:12:12 +01:00
d718c0c3a8 [Wav2Vec2ProcessorWithLM] add alpha & beta to batch decode & decode (#15465) 2022-02-02 12:59:40 +01:00
1d94d57546 Add option to resize like torchvision's Resize (#15419)
* Add torchvision's resize

* Rename torch_resize to default_to_square

* Apply suggestions from code review

* Add support for default_to_square and tuple of length 1
2022-02-02 09:44:22 +01:00
b9418a1d97 Update tutorial docs (#15165)
* first draft of pipeline, autoclass, preprocess tutorials

* apply review feedback

* 🖍 apply feedback from patrick/niels

* 📝add output image to preprocessed image

* 🖍 apply feedback from patrick
2022-02-01 18:31:35 -06:00
c157c7e3fd Update fine-tune docs (#15259)
* add fine-tune tutorial

* make edits, fix style

* 📝 make edits

* 🖍 fix code format links to external libraries

* 🔄revert code formatting

* 🖍 use DefaultDataCollator instead of DataCollatorWithPadding
2022-02-01 18:28:12 -06:00
d0b5ed110a Harder check for IndexErrors in QA scripts (#15438)
* Harder check for IndexErrors in QA scripts

* Make test stronger
2022-02-01 15:49:13 -05:00
8e5d4e4906 Trainer.push_to_hub always tries to push to the Hub (#15463) 2022-02-01 15:49:04 -05:00
37800f1365 [BartTokenizer] remove inheritance on RobertaTokenizer (#15461)
* refactor bart tokenizers

* doc

* replace assert with ValueError
2022-02-01 20:59:24 +01:00
f427e75049 use mean instead of elementwise_mean in XLMPredLayer (#15436)
* use mean instead of elementwise_mean

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 19:08:17 +01:00
7b8bdd8601 fix the tokenizer_config.json file for the slow tokenizer when a fast version is available (#15319)
* add new test

* update test

* remove `tokenizer_file` from `additional_files_names` in `tokenization_utils_base.py`

* add `tokenizer_file` for the fast only tokenizer

* change global variables layoutxml

* remove `"tokenizer_file"` from DPR tokenizer's Global variables

* remove `tokenizer_file` from herbert slow tokenizer init

* `"tokenizer_file"` from LED tokenizer's Global variables

* remove `tokenizer_file` from mbart slow tokenizer init

* remove `tokenizer_file` from slow tokenizer template

* adapt to versioning

* adapt the `test_tokenizer_mismatch_warning` test

* clean test

* clarify `VOCAB_FILES_NAMES` in tokenization_utils_fast.py

* Revert "remove `tokenizer_file` from mbart slow tokenizer init"

This reverts commit 0dbb723fa9c7599d4640fe30b3647a74eb4a64e1.

* Revert "`"tokenizer_file"` from LED tokenizer's Global variables"

This reverts commit 5a3f879bdd651233f3d74a3d1146c34cde82b0c2.

* Revert "remove `tokenizer_file` from herbert slow tokenizer init"

This reverts commit f5e10007b7b0ec5345e015b9de7ffec72c5407fd.

* Revert "remove `"tokenizer_file"` from DPR tokenizer's Global variables"

This reverts commit da0895330bedfafc81ae3073470a9348c669f032.

* set `tokenizer_file` in super `__init__` of mbart
2022-02-01 16:48:25 +01:00
6d585fe0f0 replace assert with exception for padding_side arg in PreTrainedTokenizerBase __init__ (#15454)
* replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`

* add test

* fix kwargs

* reformat test

* format

* format

* fix typo to render the documentation
2022-02-01 16:13:58 +01:00
d2749cf72e Update README.md (#15462)
fix typo
2022-02-01 10:04:30 -05:00
1c9648c457 [M2M100, XGLM] fix positional emb resize (#15444) 2022-02-01 14:32:55 +01:00
2ca6268394 fix from_vision_text_pretrained doc example (#15453)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 12:20:22 +01:00
dc05dd539f Fix TF Causal LM models' returned logits (#15256)
* Fix TF Causal LM models' returned logits

* Fix expected shape in the tests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 11:04:07 +00:00
af5c3329d7 remove "inputs" in tf common test script (no longer required) (#15262)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 10:09:49 +00:00
d12ae81664 [generate] fix synced_gpus default (#15446) 2022-01-31 13:58:27 -08:00
d4f201b860 skip test for XGLM (#15445) 2022-01-31 16:53:16 -05:00
0c17e766cb Error when group_by_length is used with an IterableDataset (#15437) 2022-01-31 15:33:16 -05:00
125a2882b4 Update modeling_wav2vec2.py (#15423)
* Update modeling_wav2vec2.py

With very tiny sound files (less than 0.1 seconds) the num_masked_span can be too long. The issue is described in issue #15366 and discussed with @patrickvonplaten.

* correct errors with mask time indices

* remove bogus file

* make fix-copies

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-31 21:22:11 +01:00
d984b10335 Add 'with torch.no_grad()' to BEiT integration test forward passes (#14961)
* Add 'with torch.no_grad()' to BEiT integration test forward pass

* Fix inconsistent use of tabs and spaces in indentation
2022-01-31 15:12:10 -05:00
09f9d07271 Misfiring tf warnings (#15442)
* Fix spurious warning in TF TokenClassification models

* Fixing one last spurious warning

* Removing outdated warning altogether
2022-01-31 19:17:59 +00:00
6915174e68 [RobertaTokenizer] remove inheritance on GPT2Tokenizer (#15429)
* refactor roberta tokenizer

* refactor fast tokenizer

* remove old comment
2022-01-31 19:50:25 +01:00
a5ecbf7348 correct positionla emb size (#15441) 2022-01-31 19:47:49 +01:00
5a70987301 Fix TFLEDModel (#15356)
* fix tf led

* fix

* fix

* Add test_pt_tf_model_equivalence_extra for TFLED

* add a (temporary) test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-31 19:35:54 +01:00
87918d3221 [examples/Flax] add a section about GPUs (#15198)
* add a section about GPUs

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-31 19:20:53 +01:00
b8810847d0 [Trainer] suppress warning for length-related columns (#15421)
* [Trainer] suppress warning for length-related columns

* improve message

* Update src/transformers/trainer.py
2022-01-31 18:51:29 +01:00
3385ca2582 Change REALM checkpoint to new ones (#15439)
* Change REALM checkpoint to new ones

* Last checkpoint missing
2022-01-31 12:50:20 -05:00
7e56ba2864 Fix spurious warning in TF TokenClassification models (#15435) 2022-01-31 17:09:16 +00:00
554d333ece Fix loss calculation in TFXXXForTokenClassification models (#15294)
* Fix loss calculation in TFFunnelForTokenClassification

* revert the change in TFFunnelForTokenClassification

* fix FunnelForTokenClassification loss

* fix other TokenClassification loss

* fix more

* fix more

* add num_labels to ElectraForTokenClassification

* revert the change to research projects

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-31 11:43:08 -05:00
44c7857b87 [deepspeed doc] fix import, extra notes (#15400)
* [deepspeed doc] fix import, extra notes

* typo
2022-01-31 08:28:10 -08:00
47df0f2234 Add header (#15434) 2022-01-31 11:15:54 -05:00
7fc6f41d91 Add doc for add-new-model-like command (#15433) 2022-01-31 11:10:45 -05:00
282ae123e2 add t5 ner finetuning (#15432) 2022-01-31 17:03:06 +01:00
d4b3e56d64 [Hotfix] Fix Swin model outputs (#15414)
* Fix Swin model outputs

* Rename pooler
2022-01-31 16:32:14 +01:00
38dfb40ae3 import torch.utils.checkpoint (#15427) 2022-01-31 15:51:50 +01:00
f624249d8b [Robust Speech Challenge] Add missing LR parameter (#15428) 2022-01-31 15:50:56 +01:00
3254080d45 Update README.md (#15430)
fix typo
2022-01-31 09:48:20 -05:00
aa19f478ac Add (M)Luke model training for Token Classification in the examples (#14880)
* Add Luke training

* Fix true label tags

* Fix true label tags

* Fix true label tags

* Update the data collator for Luke

* Some training refactor for Luke

* Improve data collator for Luke

* Fix import

* Fix datasets concatenation

* Add the --max_entity_length argument for Luke models

* Remove unused code

* Fix style issues

* Fix style issues

* Move the Luke training into a separate folder

* Fix style

* Fix naming

* Fix filtering

* Fix filtering

* Fix filter

* Update some preprocessing

* Move luke to research_projects

* Checkstyle

* Address comments

* Fix style
2022-01-31 07:58:18 -05:00
0094eba363 Fix additional DataTrainingArguments documentation (#15408)
(This is an editorial change only)
2022-01-31 07:45:11 -05:00
ee5de66349 Add SegformerFeatureExtractor to Auto API (#15410) 2022-01-31 11:38:08 +01:00
0f69b924fb [XGLMTokenizer] fix init and add in AutoTokenizer (#15406) 2022-01-30 15:35:53 +01:00
f380bf2b61 Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel (#15298)
* Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel

* overwrite test_loss_computation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-29 15:08:35 +00:00
e09473a817 Add support for XLM-R XL and XXL models by modeling_xlm_roberta_xl.py (#13727)
* add xlm roberta xl

* add convert xlm xl fairseq checkpoint to pytorch

* fix init and documents for xlm-roberta-xl

* fix indention

* add test for XLM-R xl,xxl

* fix model hub name

* fix some stuff

* up

* correct init

* fix more

* fix as suggestions

* add torch_device

* fix default values of doc strings

* fix leftovers

* merge to master

* up

* correct hub names

* fix docs

* fix model

* up

* finalize

* last fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add copied from

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-29 13:42:37 +01:00
16d4acbfdb Get started docs (#15098)
* clean commit of changes

* apply review feedback, make edits

* fix backticks, minor formatting

* 🖍 make fixup and minor edits

* 🖍 fix # in header

* 📝 update code sample without from_pt

* 📝 final review
2022-01-28 19:01:37 -06:00
cabd6d26a2 Update model share tutorial (#15288)
* add model sharing tutorial

* 🖍 apply feedback from review

* 📝 make edits

* 🖍 fix formatting

* 📝 convert from pt checkpoint to flax

* 📝 final review
2022-01-28 18:49:26 -06:00
c98a6ac211 Use argument for preprocessing workers in run_summairzation (#15394) 2022-01-28 18:34:10 -05:00
db07956740 Fix missing eps arg for LayerNorm in ElectraGeneratorPredictions (#15332)
* fix missing eps

* Same fix for ConvBertGeneratorPredictions

* Same fix for AlbertMLMHead

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-28 18:32:26 -05:00
297602c7f4 [deepspeed] saving checkpoint fallback when fp16 weights aren't saved (#14948)
* [deepspeed] saving checkpoint fallback when fp16 weights aren't saved

* Bump required deepspeed version to match usage when saving checkpoints

* update version

Co-authored-by: Mihai Balint <balint.mihai@gmail.com>
2022-01-28 11:05:47 -08:00
d25e25ee2b Add XGLM models (#14876)
* add xglm

* update vocab size

* fix model name

* style and tokenizer

* typo

* no mask token

* fix pos embed compute

* fix args

* fix tokenizer

* fix positions

* fix tokenization

* style and dic fixes

* fix imports

* add fast tokenizer

* update names

* add pt tests

* fix tokenizer

* fix typo

* fix tokenizer import

* fix fast tokenizer

* fix tokenizer

* fix converter

* add tokenizer test

* update checkpoint names

* fix tokenizer tests

* fix slow tests

* add copied from comments

* rst -> mdx

* flax model

* update flax tests

* quality

* style

* doc

* update index and readme

* fix copies

* fix doc

* update toctrr

* fix indent

* minor fixes

* fix config doc

* don't save embed_pos weights

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address Sylvains commnets, few doc fixes

* fix check_repo

* align order of arguments

* fix copies

* fix labels

* remove unnecessary mapping

* fix saving tokenizer

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-28 18:55:23 +01:00
b6b79faa7e Make links explicit (#15395)
* Make links explicit

* Removing reference to compute_metrics() since it's kind of PyTorch-specific
2022-01-28 17:31:22 +00:00
6df29ba5e6 fix wrong tokenizer checkpoint name in flax marian (#15391)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-28 16:53:25 +01:00
507601a5cf Prepare deprecated ONNX exporter for torch v1.11 (#15388)
* Prepare deprecated ONNX exporter for PyTorch v1.11

* Add deprecation warning
2022-01-28 16:32:47 +01:00
4996922b6d [docs] fix wrong file name in pr_check (#15380) 2022-01-28 07:52:01 -05:00
8f5d62fdb1 Fix bad_words_ids not working with sentencepiece-based tokenizers (#15343)
* Fix `bad_word_ids` not working with sentencepiece-based tokenizers

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-28 12:39:55 +01:00
06107541d3 Fixing support batch_size and num_return_Sequences in text-generation pipeline (#15318)
* Fixing support `batch_size` and `num_return_Sequences` in
`text-generation` pipeline

And `text2text-generation` too.

The bug was caused by the batch_size containing both the incoming batch
**and** the generated `num_sequences`.

The fix simply consists into splitting both of these again into
different dimensions.

* TF support.

* Odd backward compatibility script in the way.
2022-01-28 12:15:30 +01:00
c4d1fd77fa Set syncfree AdamW as the default optimizer for xla:gpu device in amp mode (#15361)
* Use syncfree AdamW for xla:gpu device by default

* Make syncfree AdamW optional
2022-01-27 20:05:31 -05:00
2e4559fa37 Add init to BORT (#15378)
* Add init to BORT

* BORT should be in init
2022-01-27 15:16:54 -05:00
f5db6ce76a Fix code format for Accelerate doc (#15335)
* 🖍 fix code syntax to external libraries and replace image

* 🔄revert code formatting, replace image with code block

* 🖍 apply feedback
2022-01-27 13:49:04 -06:00
0b07230409 Allow relative imports in dynamic code (#15352)
* Allow dynamic modules to use relative imports

* Add tests

* Add one last test

* Changes
2022-01-27 14:47:59 -05:00
628b59e51d Bump numpy from 1.19.2 to 1.21.0 in /examples/research_projects/lxmert (#15369)
Bumps [numpy](https://github.com/numpy/numpy) from 1.19.2 to 1.21.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.19.2...v1.21.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-01-27 14:46:15 -05:00
ca0848b2ff Bump notebook in /examples/research_projects/visual_bert (#15368)
Bumps [notebook](http://jupyter.org) from 6.1.5 to 6.4.1.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-01-27 14:45:58 -05:00
7d45a2e81c Bump numpy in /examples/research_projects/visual_bert (#15367)
Bumps [numpy](https://github.com/numpy/numpy) from 1.19.2 to 1.21.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.19.2...v1.21.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-01-27 14:45:18 -05:00
a81fd35524 Fix tests_fetcher (#15376) 2022-01-27 14:17:48 -05:00
eab338104d Docs for version v4.16.0 2022-01-27 13:11:51 -05:00
f87db5e412 Release: v4.16.0 2022-01-27 13:06:33 -05:00
c43749289d Example script for PushToHubCallback (#15375)
* Example script for PushToHubCallback

* Expanding description slightly
2022-01-27 16:16:24 +00:00
8f6454bfac Add proper documentation for Keras callbacks (#15374)
* Add proper documentation for Keras callbacks

* Add dummies
2022-01-27 10:51:38 -05:00
2de90beeeb Super-small fix stops us confusing Keras console logging by modifying its logs (#15373) 2022-01-27 15:43:43 +00:00
fa6dce250f Implement fixes for TrainingArguments doc (#15370)
Co-authored-by: osanseviero <osanseviero@gmail.com>

Co-authored-by: osanseviero <osanseviero@gmail.com>
2022-01-27 10:25:43 -05:00
ade7371a41 improve saving strategy of sentencepiece tokenizer (#15328)
* add new test

* add a feature to same the sentencepiece tokenizer model when the init file was deleted

* update marian

* update m2m_100

* fix marian

* update speech to text

* override test for layoutxlm

* fix saving bartpho

* remove harcoded values bartpho

* special token string version

* finish bartpho

* override layoutxml test

* add mbart

* move special tokens list

* format

* Revert "format"

This reverts commit 37a40df37903a932c2f951cbd33acb684246bae7.

* simplify list of string of special tokens

* Re-write `self.fairseq_tokens_to_ids ` initialization logic with special tokens

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2022-01-27 16:24:51 +01:00
196cce6e9b Add a device argument to the eval script (#15371)
* Device argument for the eval script

* Default to none

* isort
2022-01-27 15:58:55 +01:00
6beae766ee Fix KerasMetricCallback prediction with generate() and inference of column names (#15351)
* Fix prediction with generate() and the inference of column names
Should now have very few differences with the PyTorch implementation

* Minor edit to parent class

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Explaining the dict conversion

* Putting main_input_name back

* Fixes to main_input_name

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-27 14:13:23 +00:00
da5ef25db9 Push to hub save (#15327)
* Adapt doc and push at every save

* style
2022-01-27 09:00:54 -05:00
9f831bdeaf [DocTests Speech] Add doc tests for all speech models (#15031)
* fix_torch_device_generate_test

* remove @

* doc tests

* up

* up

* fix doctests

* adapt files

* finish refactor

* up

* save intermediate

* add more logic

* new change

* improve

* next try

* next try

* next try

* next try

* fix final spaces

* fix final spaces

* improve

* renaming

* correct more bugs

* finish wavlm

* add comment

* run on test runner

* finish all speech models

* adapt

* finish
2022-01-27 14:29:31 +01:00
4df69506a8 Fix YosoConfig doc (#15353) 2022-01-26 21:06:27 +01:00
fc8fc400e3 [docs] post-PR merge fix (#15355)
* [docs] post-PR merge fix

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-26 11:23:32 -08:00
99a2771189 Add YOSO (#15091)
* Add cookiecutter files

* Add cuda kernels and cpp files

* Update modeling_yoso.py

* Add .h files

* Update configuration_yoso.py

* Updates

* Remove tokenizer

* Code quality

* Update modeling_yoso.py

* Update modeling_yoso.py

* Fix failing test

* Update modeling_yoso.py

* Fix code quality

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review and fix integration tests

* Update src/transformers/models/yoso/modeling_yoso.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Apply suggestions from code review

* Fix copied from statement

* Fix docstring

* Fix code quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions and fix mask

* Apply suggestions from code review

* Fix code quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings

* Fix code quality

* Remove trailing whitespace

* Update yoso.mdx

* Move kernel loading to YosoEncoder

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/yoso/modeling_yoso.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add short summary to docs

* Update docs/source/model_doc/yoso.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update yoso.mdx

* Update docs/source/model_doc/yoso.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove CausalLM model and add copied from

* Remove autoregressive code

* Remove unused imports

* add copied from for embeddings

* Fix code quality

* Update docs/source/model_doc/yoso.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestion from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-26 19:18:29 +01:00
6292532fd1 Update doc writing guide (#15350) 2022-01-26 12:54:11 -05:00
19732cc07a Fix 'eval_split_name' described as defaulting to 'train' (#15348)
The default is correct (`test`) but the description is not.
2022-01-26 10:19:38 -05:00
5d8b98608c Fix deepspeed docs (#15346) 2022-01-26 07:24:33 -05:00
96161ac408 make table into valid Markdown table syntax (#15337) 2022-01-26 07:10:00 -05:00
24e2fa1590 Fix encoder-decoder models when labels is passed (#15172)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-26 10:14:46 +01:00
e79a0faeae Added missing code in exemplary notebook - custom datasets fine-tuning (#15300)
* Added missing code in exemplary notebook - custom datasets fine-tuning

Added missing code in tokenize_and_align_labels function in the exemplary notebook on custom datasets - token classification.
The missing code concerns adding labels for all but first token in a single word.
The added code was taken directly from huggingface official example - this [colab notebook](https://github.com/huggingface/notebooks/blob/master/transformers_doc/custom_datasets.ipynb).

* Changes requested in the review - keep the code as simple as possible
2022-01-25 17:26:17 -05:00
0501beb846 Add 🤗 Accelerate tutorial (#15263)
* add accelerate tutorial

* 🖍 apply feedback from review

* 📝 make edits
2022-01-25 13:46:11 -06:00
637e81752a [Tests] Fix test (#15324)
* Fix Swin device

* Remove print statement
2022-01-25 15:48:25 +01:00
e695470794 Avoid using get_list_of_files (#15287)
* Avoid using get_list_of_files in config

* Wip, change tokenizer file getter

* Remove call in tokenizer files

* Remove last call to get_list_model_files

* Better tests

* Unit tests for new function

* Document bad API
2022-01-25 09:41:21 -05:00
e65bfc0971 Try without bad instruction 2022-01-24 15:55:29 -05:00
81156d20cd Add model like (#14992)
* Add new model like command

* Bad doc-styler

* black and doc-styler, stop fighting!

* black and doc-styler, stop fighting!

* At last

* Clean up

* Typo

* Bad doc-styler

* Bad doc-styler

* All good maybe?

* Use constants

* Add doc and type hints

* More cleaning

* Add doc

* Fix Copied from

* Doc template

* Use typing.Pattern instead

* Framework-specific files

* Fixes

* Select frameworks clean model init

* Deal with frameworks in main init

* fixes

* Last fix

* Prompt user for info

* Delete exemple config

* Last fixes

* Add test config

* Fix bug with model_type included in each other

* Fixes

* More fixes

* More fixes

* Adapt config

* Remove print statements

* Will fix tokenization later, leave it broken for now

* Add test

* Quality

* Try this way

* Debug

* Maybe by setting the path?

* Let's try another way

* It should go better when actually passing the arg...

* Remove debug statements and style

* Fix config

* Add tests

* Test require the three backends

* intermediate commit

* Revamp pattern replacements and start work on feature extractors

* Adapt model info

* Finalize code for processors

* Fix in main init additions

* Finish questionnaire for processing classes

* Fix file name

* Fix for real

* Fix patterns

* Style

* Remove needless warnings

* Copied from should work now.

* Include Copied form in blocks

* Add test

* More fixes and tests

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comment

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-01-24 15:25:10 -05:00
457dd4392b [Examples] Correct run ner label2id for fine-tuned models (#15017)
* up

* up

* make style

* apply sylvains suggestions

* apply changes to accelerate as well

* more changes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-24 21:18:04 +01:00
8d6acc6c29 [Beam Search] Correct returned beam scores (#14654)
* better

* save intermediate

* finish code

* up

* docs

* Apply suggestions from code review

* up

* add compute transition  beam scores function to model and make sure scores are correct with eos

* apply nicos comments

* Apply suggestions from code review

* another fix
2022-01-24 21:13:21 +01:00
e239fc3b0b Replace NystromformerTokenizer with AutoTokenizer (#15312) 2022-01-24 16:33:43 +01:00
dcaa5100c9 [LayoutLMV2 Tests] Make sure input is on GPU (#15314)
* [LayoutLMV2 Tests] Make sure input is on GPU

* correct empty line
2022-01-24 15:54:47 +01:00
c15bb3fe19 [Fix doc example] fix missing import jnp (#15291)
* fix missing import jnp

* Fix missing jax and k=1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-24 14:54:23 +01:00
eac4aecc3d Remove old debug code leftover. (#15306) 2022-01-24 07:27:45 -05:00
2390b2cf65 Fix a typo in tag addition (#15286)
* Fix a typo in tag addition

* Put it back again
2022-01-24 07:21:42 -05:00
c972433a85 Update CONTRIBUTING.md (#15290)
Fix typo in doc
2022-01-24 07:21:31 -05:00
4bf97415a4 Update eval.py (#15310) 2022-01-24 11:46:38 +01:00
b7cb126ccc [PyTorch-nightly-test] Fix Wav2Vec2 LM & Phoneme tests (#15272)
* [PyTorch-nightly-test] Fix Wav2Vec2 LM & Phoneme tests

* Update .github/workflows/self-nightly-scheduled.yml

* change lines

* Apply suggestions from code review
2022-01-24 10:53:53 +01:00
6ac77534bf Refine errors for pretrained objects (#15261)
* Refine errors for pretrained objects

* PoC to avoid using get_list_of_files

* Adapt tests to use new errors

* Quality + Fix PoC

* Revert "PoC to avoid using get_list_of_files"

This reverts commit cb93b7cae8504ef837c2a7663cb7955e714f323e.

* Revert "Quality + Fix PoC"

This reverts commit 3ba6d0d4ca546708b31d355baa9e68ba9736508f.

* Fix doc

* Revert PoC

* Add feature extractors

* More tests and PT model

* Adapt error message

* Feature extractor tests

* TF model

* Flax model and test

* Merge flax auto tests

* Add tokenization

* Fix test
2022-01-21 15:00:09 -05:00
80af1048cf [Wav2Vec2ProcessorWithLM] improve multi processing (#15247)
* [Wav2Vec2ProcessorWithLM] improve multi processing

* close pool
2022-01-21 18:30:10 +01:00
4cff3fae11 Second failing test 2022-01-21 12:19:28 -05:00
f6253147df Skip failing test 2022-01-21 12:03:21 -05:00
7799b6128f [Fix doc example] TFLayoutLMForTokenClassification: missing import tf (#15268)
* fix import

* remove import torch

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-21 11:18:11 -05:00
11afb709ec [Robust Speech Challenge] Add timeline (#15274) 2022-01-21 17:12:09 +01:00
3c3cf17a49 fix link (#15278) 2022-01-21 09:52:13 -05:00
95a75a715f Specify providers explicitly in ORT session initialization (#15235)
* Specify providers explicitly in ORT session initialization

Co-authored-by: Ubuntu <wy@linux-v100.aidmrjtolptuzevavgwhrapqcd.jx.internal.cloudapp.net>
2022-01-21 15:49:29 +01:00
833635e259 Move BART + ONNX example to research_projects (#15271)
* Move BART + ONNX example to research_projects

* Add author information
2022-01-21 14:47:34 +01:00
183ce067e0 Fix (#15276)
* Fix

* make style

* Remove trailing commas

* make style
2022-01-21 08:46:15 -05:00
b4ce313e6c Prepare ONNX export for torch v1.11 (#15270)
* Prepare ONNX export for torch v1.11
2022-01-21 14:28:19 +01:00
126bddd1ba Add module_spec to new model 2022-01-21 08:12:44 -05:00
c962c2adbf Adds missing module_specs for usages of _LazyModule (#15230)
* Add missing __spec__ for transformers.models.auto

* Moves the __spec__-test to the UnitTest class

* Adds module_spec to all instances of _LazyModule

* Refactors an old test from pytest to unittest
2022-01-21 07:30:12 -05:00
6c7b68d414 [ViTMAE] Add image pretraining script (#15242)
* Add script

* Improve script

* Fix data collator

* Update README

* Add label_names argument

* Apply suggestions from code review

* Add config parameters

* Update script

* Fix bug

* Improve README

* Improve README and add test

* Fix import

* Add image_column_name
2022-01-21 12:11:08 +01:00
d43e308e7f Add Swin Transformer (#15085)
* Add all files

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Updates

* Apply suggestions from review

* Fix failing tests

* Update __init__.py

* Update configuration_swin.py

* Update auto_factory.py

* Fix pytests

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix tests and default checkpoint

* Fix Recursion error

* Code quality

* Remove copied from

* Update modeling_swin.py

* Code quality

* Update modeling_swin.py

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

* Fix feature extractor

* Fix code quality

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

* Update configuration_swin.py

* Update default checkpoint

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/swin.mdx

Co-authored-by: Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu>

* Update conversion script

* Reformat conversion script

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu>
2022-01-21 12:10:41 +01:00
515ed3ad2a Fix doc examples (#15257) 2022-01-20 21:51:51 +01:00
ad7390636d Tentative workflow improvement (#15255) 2022-01-20 13:51:19 -05:00
57820456bd Fix crash when logs are empty because Keras has wiped them out of spite (#15258) 2022-01-20 18:40:48 +00:00
1fc0fa4617 Make sure to raise NotImplementedError with correct method name (#15253) 2022-01-20 10:37:35 -05:00
f00f22a3e2 Fixes tf_default_data_collator sometimes guessing the wrong dtype for labels (#15234)
* Fixes tf_default_data_collator sometimes guessing the wrong dtype for labels

* Add test for numpy scalar inputs
2022-01-20 14:26:51 +00:00
4a6a35bc65 [Fix doc example] missing import (#15240)
* fix import

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-20 08:47:24 -05:00
08b41b413a Update pipelines.mdx (#15243)
fix few spelling mistakes
2022-01-20 08:46:48 -05:00
85ea462c08 Update README.md (#15246)
Clarify OVH instruction
2022-01-20 13:40:26 +03:00
e57468b8a8 Update README.md (#15239)
Add an OVHcloud tutorial URL for the Robust Speech Challenge
2022-01-20 11:46:50 +03:00
baf1ebe9f0 Fix usage of additional kwargs in from_encoder_decoder_pretrained in encoder-decoder models (#15056)
* [EncoderDecoder] Add test for usage of extra kwargs

* [EncoderDecoder] Fix usage of extra kwargs in from pretrained

* [EncoderDecoder] apply suggested changes (passing **kwargs_encoder)

* [EncoderDecoder] create new test function and make sure it passes

Co-authored-by: jonas <jsnfly@gmx.de>
2022-01-19 23:00:33 +01:00
3fefee9910 Make chuking smartly (long files) work on asr ctc_with_lm. (#15219)
* [WIP] Make chuking smartly (long files) work on asr ctc_with_lm.

* Slow test with functionality.

* Fixing regular test.

* fix for batch size 1

* Handling batch outside `rescale_Stride`.

- Renamed to `rescale_stride`.

* Disable equality in the test.

* Remove print.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-19 21:04:26 +01:00
80f7296091 Update Trainer code example (#15070)
* Update code example

* Fix code quality

* Add comment
2022-01-19 20:15:12 +01:00
ac227093e4 Add ViLT (#14895)
* First commit

* Add conversion script

* Make conversion script work for base model

* More improvements

* Update conversion script, works for vqa

* Add indexing argument to meshgrid

* Make conversion script work for ViltForPreTraining

* Add ViltForPreTraining to docs

* Fix device issue

* Add processor

* Add MinMaxResize to feature extractor

* Implement call method of ViltProcessor

* Fix tests

* Add integration test

* Add loss calculation for VQA

* Improve tests

* Improve some more tests

* Debug tests

* Small improvements

* Add support for attention_mask

* Remove mask_it

* Add pixel_mask

* Add tests for ViltFeatureExtractor

* Improve tests

* Add ViltForNaturalLanguageVisualReasoning

* Add ViltForNaturalLanguageVisualReasoning to conversion script

* Minor fixes

* Add support for image_embeds, update docstrings to markdown

* Update docs to markdown

* Improve conversion script

* Rename ViltForPreTraining to ViltForMaskedLM

* Improve conversion script

* Convert docstrings to markdown

* Fix code example of retrieval model

* Properly convert masked language model

* Add integration test for nlvr

* Fix code quality

* Apply suggestions from code review

* Add copied from statements

* Fix pretrained_config_archive_map

* Fix docs

* Add model to README

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply more suggestions from code review

* Make code more readable

* Add ViltForNaturalLanguageVisualReasoning to the tests

* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering

* Replace pixel_values_2 by single tensor

* Add hidden_states and attentions

* Fix one more test

* Fix all tests

* Update year

* Fix rebase issues

* Fix another rebase issue

* Remove ViltForPreTraining from auto mapping

* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval

* Make it possible to use BertTokenizerFast in the processor

* Use BertTokenizerFast by default

* Rename ViltForNaturalLanguageVisualReasoning, define custom model output

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-19 19:51:59 +01:00
691878ee2f Update README.md (#15233) 2022-01-19 18:03:17 +01:00
f4b7420dfe Fix checkpoint for ViT Config 2022-01-19 11:22:54 -05:00
6a3c883c8b Fix PR number (#15231)
* Fix PR number

* Fix PR number
2022-01-19 11:00:16 -05:00
f778edb739 Fix typo in BERT tokenization file (#15228)
* Fix typo

* Fix copies
2022-01-19 10:16:19 -05:00
2a5a384970 fix speech event readme (#15227) 2022-01-19 15:30:03 +01:00
842298f84f [ViTMAE] Various fixes (#15221)
* Add MAE to AutoFeatureExtractor

* Add link to notebook

* Fix relative paths
2022-01-19 15:27:57 +01:00
6d92c429c7 Update README.md (#15226) 2022-01-19 15:23:00 +01:00
19c217b4b7 Update README.md 2022-01-19 15:21:03 +01:00
5439cda7f0 Update README.md 2022-01-19 15:19:57 +01:00
841d979190 Add FastTokenizer to REALM (#15211)
* Remove BertTokenizer abstraction

* Add FastTokenizer to REALM

* Fix config archive map

* Fix copies

* Update realm.mdx

* Apply suggestions from code review
2022-01-19 15:19:36 +01:00
021b52e7a8 fix name 'TFFunnelTokenizer' is not defined (#15225)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-19 09:06:00 -05:00
653379c094 Build dev documentation (#15210)
* Wrap up

* Remove secret

* Fix path

* Typo

Revert image switch

* Specific token for comments

* Cleaner comments

* Correct PR number

* Explicit master install

* Force uninstall
2022-01-19 08:47:34 -05:00
2708bfa127 Rename compute_loss in TF models (#15207)
* Rename compute_loss to hf_compute_loss to avoid conflicts with the new Keras method

* make style

* Adding deprecation warning to `compute_loss`

* Fix sneaky reference to compute_loss

* Replace logger.warning with warnings.warn

* Clarifying warning and deprecation timeline
2022-01-19 13:29:07 +00:00
d1f5ca1afd [FLAX] glue training example refactor (#13815)
* refactor run_flax_glue.py

* updated readme

* rm unused import and args typo fix

* refactor

* make consistent arg name across task

* has_tensorboard check

* argparse -> argument dataclasses

* refactor according to review

* fix
2022-01-19 12:04:51 +01:00
db3503949d Finish conversion of REALM doc to MDX 2022-01-18 18:00:30 -05:00
fe78fe98ca Enable tqdm toggling (#15167)
* feature: enable tqdm toggle

* test: add tqdm unit test

* style: run linter

* Update tests/test_tqdm_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* refactor: use tiny model, run linter

* docs: add tqdm to logging

* docs: add tqdm reference to `http_get`

* style: run linter

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* fix: use `AutoConfig` for framework agnostic testing

* chore: mv tqdm test to `test_logging.py`

* feature: implement enable/disable functions

* docs: mv docstring to comment

* chore: mv tqdm functions to `logging.py`

* docs: update docs to reference `enable/disable` funcs

* test: update test to use `enable/disable` func

* chore: update function reference in comment

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-01-18 17:52:35 -05:00
2c335037bd Trigger doc build 2022-01-18 17:46:29 -05:00
e118e085ea [Robust Speech Event] Add guides (#15155)
* up

* improve readme

* up

* up

* more info

* up

* up

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* add more stuff for eval

* update

* up

* Update README.md

* Update examples/research_projects/xls_r/README.md

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>

* apply omar's suggestions

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
2022-01-18 18:44:48 +01:00
1a354d53c4 Revert previous change - that was meant to be in a branch! 2022-01-18 17:34:26 +00:00
2085f20901 Fix a sneaky reference to compute_loss in the tests 2022-01-18 17:33:38 +00:00
979ca24e39 [Fix doc example] Wrong checkpoint name (#15079)
* fix doc example - MarianForCausalLM example

* try to keep copies

* fix copies

* fix more similar doc examples

* fix more

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-18 10:43:21 -05:00
7b3d4df47a fix: #14486 do not use BertPooler in DPR (#15068)
* fix: #14486 do not use BertPooler in DPR

* fix tf dpr as well

* finish

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-18 16:36:12 +01:00
74bec9865c Add MAE (#15120)
* First draft

* More improvements

* More improvements

* More improvements

* Fix embeddings

* Add conversion script

* Finish conversion script

* More improvements

* Fix forward pass

* Remove print statements

* Add weights initialization

* Add initialization of decoder weights

* Add support for other models in the conversion script

* Fix patch_size for huge model

* Fix most of the tests

* Fix integration test

* Fix docs

* Fix archive_list

* Apply suggestions from code review

* Improve documentation

* Apply more suggestions

* Skip some tests due to non-deterministic behaviour

* Fix test_initialization

* Remove unneccessary initialization of nn.Embedding

* Improve docs

* Fix dummies

* Remove ViTMAEFeatureExtractor from docs

* Add model to README and table of contents

* Delete inference file
2022-01-18 16:21:32 +01:00
2ae3be5442 [MBartTokenizer] remove dep on xlm-roberta tokenizer (#15201) 2022-01-18 16:02:56 +01:00
84c60a7b50 Ignore empty subfolders when identifying submodules (#15204)
* Ignore empty subfolders when identifying submodules

* Update utils/check_inits.py
2022-01-18 09:48:46 -05:00
6f0a9b41ef Remove dependency to quiet Dependabot (#15205) 2022-01-18 09:44:35 -05:00
497346d07e [ASR pipeline] correct with lm pipeline (#15200)
* [ASR pipeline] correct with lm pipeline

* improve error
2022-01-18 15:36:22 +01:00
1144d336b6 Copies and docstring styling (#15202)
* Style docstrings when making/checking copies

* Polish
2022-01-18 09:16:55 -05:00
531336bbfd Fix deprecation warnings for int div (#15180)
* Fix deprecation warnings for int div

Co-authored-by: mgoldey <matthew.goldey@gmail.com>

* Fix import

* ensure that tensor output is python scalar

* make backward compatible

* make code more readable

* adapt test functions

Co-authored-by: mgoldey <matthew.goldey@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-18 07:28:53 -05:00
f6d3fee855 Error when code examples are improperly closed (#15186) 2022-01-18 07:27:34 -05:00
22454ae492 Add REALM (#13292)
* REALM initial commit

* Retriever OK (Update new_gelu).

* Encoder prediction score OK

* Encoder pretrained model OK

* Update retriever comments

* Update docs, tests, and imports

* Prune unused models

* Make embedder as a module `RealmEmbedder`

* Add RealmRetrieverOutput

* Update tokenization

* Pass all tests in test_modeling_realm.py

* Prune RealmModel

* Update docs

* Add training test.

* Remove completed TODO

* Style & Quality

* Prune `RealmModel`

* Fixup

* Changes:
1. Remove RealmTokenizerFast
2. Update docstrings
3. Add a method to RealmTokenizer to handle candidates tokenization.

* Fix up

* Style

* Add tokenization tests

* Update `from_pretrained` tests

* Apply suggestions

* Style & Quality

* Copy BERT model

* Fix comment to avoid docstring copying

* Make RealmBertModel private

* Fix bug

* Style

* Basic QA

* Save

* Complete reader logits

* Add searcher

* Complete searcher & reader

* Move block records init to constructor

* Fix training bug

* Add some outputs to RealmReader

* Add finetuned checkpoint variable names parsing

* Fix bug

* Update REALM config

* Add RealmForOpenQA

* Update convert_tfrecord logits

* Fix bugs

* Complete imports

* Update docs

* Update naming

* Add brute-force searcher

* Pass realm model tests

* Style

* Exclude RealmReader from common tests

* Fix

* Fix

* convert docs

* up

* up

* more make style

* up

* upload

* up

* Fix

* Update src/transformers/__init__.py

* adapt testing

* change modeling code

* fix test

* up

* up

* up

* correct more

* make retriever work

* update

* make style

* finish main structure

* Resolve merge conflict

* Make everything work

* Style

* Fixup

* Fixup

* Update training test

* fix retriever

* remove hardcoded path

* Fix

* Fix modeling test

* Update model links

* Initial retrieval test

* Fix modeling test

* Complete retrieval tests

* Fix

* style

* Fix tests

* Fix docstring example

* Minor fix of retrieval test

* Update license headers and docs

* Apply suggestions from code review

* Style

* Apply suggestions from code review

* Add an example to RealmEmbedder

* Fix

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-18 07:24:13 -05:00
b25067d807 [Fix doc example] TFRagModel (#15187)
* fix doc example - NameError: name 'PATH' is not defined

* fix name 'TFRagModel' is not defined

* correct TFRagRagSequenceForGeneration

* fix name 'tf' is not defined

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-18 07:16:30 -05:00
dea563c943 is_ctc needs to be updated to `self.type == "ctc". (#15194)
* `is_ctc` needs to be updated to `self.type == "ctc".

* Adding fast test for this functionality.
2022-01-18 12:20:10 +01:00
32090c729f [Fix doc example] UniSpeechSatForPreTraining (#15152)
* fix doc example - cannot import name 'UniSpeechSatFeatureEncoder'

* fix ckpt name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-18 00:34:05 +01:00
6f8e644f09 Mark bad tokenizers version (#15188) 2022-01-17 15:20:58 -05:00
edd3fce2f7 [doc] new MoE paper (#15184)
add new paper
2022-01-17 09:10:51 -08:00
9a2dabae70 Fix dtype issue in TF BART (#15178) 2022-01-17 14:02:55 +00:00
0167edc854 Added forward pass of test_inference_image_classification_head with torch.no_grad() (#14777) 2022-01-17 07:22:41 -05:00
7a787c68c6 [Speech models] Disable non-existing chunking in tests (#15163) 2022-01-16 17:15:19 +01:00
669e3c50c9 [doc] performance: Efficient Software Prebuilds (#15147)
* Efficient Software Prebuilds

* improve
2022-01-14 18:25:20 -08:00
ebc4edfe7a update from keras2onnx to tf2onnx (#15162) 2022-01-14 17:35:39 +00:00
1b730c3d11 Better dummies (#15148)
* Better dummies

* See if this fixes the issue

* Fix quality

* Style

* Add doc for DummyObject
2022-01-14 10:59:41 -05:00
b212ff9f49 Fixing flaky test (hopefully). (#15154)
* Fixing flaky test (hopefully).

* tf compliant.
2022-01-14 16:47:03 +01:00
7d9a33fb5c TF Bert inference - support np.ndarray optional arguments (#15074)
* TF Bert inference - support np.ndarray optional arguments

* apply np input tests to all TF architectures
2022-01-14 15:19:04 +00:00
4663c609b9 Add "open in hf spaces" gradio button issue #73 (#15106)
* update XLMProphetNet link

* update DPR link

* change prophetnet link

* change link MBART

* change link GPT

* update gpt2 link

* ctrl update link

* update Transformer-XL link

* Update Reformer link

* update xlnet link

* bert update link

* udpate albert link

* roberta update link

* update distilbert link

* update convbert link

* update XLM link

* xlm roberta update link

* update Flaubert link

* update electra link

* update funnel transformer and longformer

* bart update link

* pegasus update link

* udpate marianmt link

* t5 update link

* mt5 update link
2022-01-14 10:12:30 -05:00
735d2bb69b Update test_configuration_common.py (#15160) 2022-01-14 08:54:01 -05:00
51d7ebf260 fix BertTokenizerFast tokenize_chinese_chars arg (#15158)
* add new test

* fix in init

* more relevant test
2022-01-14 14:22:03 +01:00
4aa16fce6c fix doc example - object has no attribute 'lm_logits' (#15143)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-14 13:42:13 +01:00
7cbf8429d9 Make sure all submodules are properly registered (#15144)
* Make sure all submodules are properly registered

* Try to fix tests

* Fix tests
2022-01-14 07:37:51 -05:00
c4f7eb124b add TF glu activation function (#15146) 2022-01-14 10:42:08 +00:00
5f3c57fc84 Check the repo consistency in model templates test (#15141)
* Check the repo consistency in model templates test

* Fix doc template

* Fix docstrings

* Fix last docstring
2022-01-14 04:52:38 -05:00
96881729ce Remove assert on optional arg 2022-01-13 17:34:41 -05:00
1eb40338ac [deepspeed tests] fix summarization (#15149) 2022-01-13 13:48:51 -08:00
6e058e84fd Enable AMP for xla:gpu device in trainer class (#15022)
* Multiple fixes of trainer class with XLA GPU

* Make fp16 valid for xla:gpu

* Add mark_step in should_log to reduce compilation overhead
2022-01-13 15:21:00 -05:00
3fc221d077 Update model_sharing.mdx (#15142)
Fix typo
2022-01-13 12:26:02 -05:00
7b83feb50a Deprecates AdamW and adds --optim (#14744)
* Add AdamW deprecation warning

* Add --optim to Trainer

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

* fix style

* fix

* Regroup adamws together

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Change --adafactor to --optim adafactor

* Use Enum for optimizer values

* fixup! Change --adafactor to --optim adafactor

* fixup! Change --adafactor to --optim adafactor

* fixup! Change --adafactor to --optim adafactor

* fixup! Use Enum for optimizer values

* Improved documentation for --adafactor

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Add mention of no_deprecation_warning

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename OptimizerOptions to OptimizerNames

* Use choices for --optim

* Move optimizer selection code to a function and add a unit test

* Change optimizer names

* Rename method

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename method

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Remove TODO comment

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename variable

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename variable

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename function

* Rename variable

* Parameterize the tests for supported optimizers

* Refactor

* Attempt to make tests pass on CircleCI

* Add a test with apex

* rework to add apex to parameterized; add actual train test

* fix import when torch is not available

* fix optim_test_params when torch is not available

* fix optim_test_params when torch is not available

* re-org

* small re-org

* fix test_fused_adam_no_apex

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove .value from OptimizerNames

* Rename optimizer strings s|--adam_|--adamw_|

* Also rename Enum options

* small fix

* Fix instantiation of OptimizerNames. Remove redundant test

* Use ExplicitEnum instead of Enum

* Add unit test with string optimizer

* Change optimizer default to string value

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-01-13 08:14:51 -08:00
762416ffa8 [examples/flax/language-modeling] set loglevel (#15129) 2022-01-13 15:17:28 +01:00
74837171ab fix doc example - AssertionError: has to be configured as a decoder. (#15124)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-13 06:45:30 -05:00
6950ccec1b doc-builder -> doc-build (#15134)
* Updated script

* Commit everything

* Ready for review!

* Update .github/workflows/build_documentation.yml

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-01-13 06:02:24 -05:00
9a94bb8e21 mBART support for run_summarization.py (#15125)
* Update run_summarization.py

* Fixed languages and added missing code

* fixed obj, docs, removed source_lang and target_lang

* make style, run_summarization.py reformatted
2022-01-12 16:39:33 -05:00
97f3beed36 Add with torch.no_grad() to DistilBERT integration test forward pass (#14979)
* refactor: wrap forward pass around no_grad context

* Update tests/test_modeling_distilbert.py

* fix: rm `no_grad` from non-integration tests

* chore: rm whitespace change
2022-01-12 10:42:39 -05:00
021f2ea987 Add ONNX configuration classes to docs (#15121)
* Add ONNX classes to main package

* Remove permalinks from ONNX guide

* Fix ToC entry

* Revert "Add ONNX classes to main package"

This reverts commit eb794a5b00d66b0b4eab234987301676d8357630.

* Add ONNX classes to main doc

* Fix syntax highlighting in doc

* Fix text

* Add FeaturesManager to doc

* Use paths to reference ONNX classes

* Add FeaturesManager to init

* Add missing ONNX paths
2022-01-12 16:33:32 +01:00
c425d60bb9 Fix link to deepspeed config 2022-01-12 09:32:53 -05:00
6820904454 Fix #14357 (#15001)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-12 14:29:09 +00:00
aa0135f2e0 fix: switch from slow to generic tokenizer class (#15122) 2022-01-12 09:12:43 -05:00
27b819b0e3 use block_size instead of max_seq_length in tf run_clm example (#15036)
* use block_size instead of max_seq_length

* fixup

* remove pad_to_block_size

Co-authored-by: Russell Klopfer <russell@kloper.us>
2022-01-12 08:57:00 -05:00
68cc4ccde2 Pipeline ASR with LM. (#15071)
* Pipeline ASR with LM.

* Revamped into `self.decoder`.

* Fixing.

* 2nd fix.

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fixing.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-12 09:28:19 +01:00
1a00863e95 Fix typo in doc template 2022-01-11 15:22:15 -05:00
44eaa2b303 Update TF test_step to match train_step (#15111)
* Update TF test_step to match train_step

* Update compile() warning to be clearer about what to pass
2022-01-11 19:05:39 +00:00
57b980a613 Fix saving FlaubertTokenizer configs (#14991)
All specific tokenizer config properties must be passed to its base
class (XLMTokenizer) in order to be saved. This was not the case for
do_lowercase config. Thus it was not saved by save_pretrained() method
and saving and reloading the tokenizer changed its behaviour.

This commit fixes it.
2022-01-11 19:19:33 +01:00
16f0b7d72c Update ONNX docs (#14904)
* Remove docs for deprecated ONNX export

* Tidy up the CLI help messages

* Revamp ONNX docs

* Update auto-config table

* Use DistilBERT as example for consistency

* Wrap up first pass at ONNX docs

* Fix table check

* Add tweaks and introduction

* Add cross-ref

* Fix missing import

* Fix style

* Add permalinks to ONNX configs

* Clarify role of OrderedDict

* Update docs/source/serialization.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add doctest syntax to code blocks

* Remove permalinks

* Revert "Remove permalinks"

This reverts commit 099701daf0db27823457867938efdb2d4f22a7c1.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-11 18:06:05 +01:00
704d1feca1 Doc styler tip (#15105)
* Add new lines before/after tips

* Check end of lines
2022-01-11 11:45:39 -05:00
68d925195e Merge branch 'master' into master 2022-01-11 11:11:29 -05:00
7480ded658 Fix failing test (#15104) 2022-01-11 15:57:34 +01:00
28e091430e Add Nystromformer (#14659)
* Initial commit

* Config and modelling changes

Added Nystromformer-specific attributes to config and removed all decoder functionality from modelling.

* Modelling and test changes

Added Nystrom approximation and removed decoder tests.

* Code quality fixes

* Modeling changes and conversion script

Initial commits to conversion script, modeling changes.

* Minor modeling changes and conversion script

* Modeling changes

* Correct modeling, add tests and documentation

* Code refactor

* Remove tokenizers

* Code refactor

* Update __init__.py

* Fix bugs

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/nystromformer.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/convert_nystromformer_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/nystromformer/configuration_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update modeling and test_modeling

* Code refactor

* .rst to .mdx

* doc changes

* Doc changes

* Update modeling_nystromformer.py

* Doc changes

* Fix copies

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update configuration_nystromformer.py

* Fix copies

* Update tests/test_modeling_nystromformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update test_modeling_nystromformer.py

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Fix code style

* Update modeling_nystromformer.py

* Update modeling_nystromformer.py

* Fix code style

* Reformat modeling file

* Update modeling_nystromformer.py

* Modify NystromformerForMultipleChoice

* Fix code quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Code style changes and torch.no_grad()

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-11 14:25:49 +01:00
444ea95a80 Print out durations of all scheduled tests (#15102) 2022-01-11 08:15:59 -05:00
285131bfb4 change metric_key_prefix in seq2seq_trainer.py (#15099)
It solves the problem that metric_key_prefix is different from trainer.
2022-01-11 07:44:29 -05:00
c4fa908fa9 Adds IBERT to models exportable with ONNX (#14868)
* Add IBertOnnxConfig and tests

* add all the supported features for IBERT and remove outputs in IbertOnnxConfig

* use OnnxConfig

* fix codestyle

* remove serialization.rst

* codestyle
2022-01-11 12:17:08 +01:00
efb35a4107 [Wav2Vec2ProcessorWithLM] improve decoder downlaod (#15040) 2022-01-11 05:59:38 -05:00
6ea6266625 Fix cookiecutter (#15100) 2022-01-11 05:57:26 -05:00
68810aa26c fix doc example - TypeError: forward() got an unexpected keyword argument 'input_ids' (#15092)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-11 04:04:23 -05:00
ca76618d6b Take gradient accumulation into account when defining samplers (#15095)
* Take gradient accumulation into account when defining samplers

* style
2022-01-11 03:16:39 -05:00
9dc8fb2fc7 Add test to check reported training loss (#15096)
* Add test

* Add tests for the reported train loss
2022-01-11 03:14:11 -05:00
5cd7086fdb XLM-ProphetNet Spaces badge 2022-01-11 00:11:31 -05:00
4e3208662e DPR Spaces badge 2022-01-10 13:50:40 -05:00
ac2c06d492 ProphetNet spaces badge 2022-01-10 13:43:34 -05:00
bf0201e184 MBART spaces badge 2022-01-10 13:37:17 -05:00
b67fd797be Add TFVisionEncoderDecoderModel (#14148)
* Start the work on TFVisionEncoderDecoderModel

* Expose TFVisionEncoderDecoderModel

* fix import

* Add modeling_tf_vision_encoder_decoder to _ignore_modules in get_model_modules()

* reorder

* Apply the fix for checkpoint loading as in #14016

* remove attention_mask + fix VISION_DUMMY_INPUTS

* A minimal change to make TF generate() work for vision models as encoder in encoder-decoder setting

* fix wrong condition: shape_list(input_ids) == 2

* add tests

* use personal TFViTModel checkpoint (for now)

* Add equivalence tests + projection layer

* style

* make sure projection layer can run

* Add examples

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean comments (need to work on TODOs for PyTorch models)

* Remove TF -> PT in check_pt_tf_equivalence for TFVisionEncoderDecoderModel

* fixes

* Revert changes in PT code.

* Update tests/test_modeling_tf_vision_encoder_decoder.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add test_inference_coco_en for TF test

* fix quality

* fix name

* build doc

* add main_input_name

* Fix ckpt name in test

* fix diff between master and this PR

* fix doc

* fix style and quality

* fix missing doc

* fix labels handling

* Delete auto.rst

* Add the changes done in #14016

* fix prefix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-10 13:30:14 -05:00
c9504b2f50 MT5 Spaces badge 2022-01-10 12:57:08 -05:00
daec528ca9 T5 Spaces badge 2022-01-10 12:51:39 -05:00
0554e4d5c5 MarianMT Spaces badge 2022-01-10 12:47:12 -05:00
7ec6aad23d Pegasus Spaces badge 2022-01-10 12:39:22 -05:00
03f8b9c9e0 BART Spaces badge 2022-01-10 12:33:59 -05:00
37bc0b4e53 [performance doc] Power and Cooling (#14935)
* [performance doc] Power and Cooling

* more docs

* Update docs/source/performance.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* reword

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-10 09:21:04 -08:00
20f169b523 Longformer Spaces badge 2022-01-10 12:14:18 -05:00
3e9fdcf019 [DOC] fix doc examples for bart-like models (#15093)
* fix doc examples

* remove double colons
2022-01-10 18:13:28 +01:00
4fbc924d0a Funnel Transformer spaces badge 2022-01-10 12:06:05 -05:00
61d18ae035 Happy New Year! (#15094) 2022-01-10 12:05:57 -05:00
222c09a635 ELECTRA Spaces badge 2022-01-10 11:53:23 -05:00
31838d3e11 [doc] normalize HF Transformers string (#15023) 2022-01-10 08:44:33 -08:00
84f360e862 FlauBERT spaces badge 2022-01-10 11:41:10 -05:00
9f33116898 XLM-Roberta Spaces badge 2022-01-10 10:54:18 -05:00
20fa9eb035 XLM Spaces badge 2022-01-10 10:48:06 -05:00
16b6df6fca ConvBERT spaces badge 2022-01-10 10:33:03 -05:00
f21bc4215a Use tqdm.auto in Pipeline docs (#14920)
It's better for e.g. notebook.
2022-01-10 10:28:34 -05:00
f012c00ada Model summary horizontal banners (#15058) 2022-01-10 10:06:14 -05:00
af9cb94974 Fix style 2022-01-10 09:40:20 -05:00
533624c5a9 fix doc example - AttributeError: type object 'RagModel' has no attribute 'from_question_encoder_generator_pretrained' (#15076)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-10 09:28:39 -05:00
b2c477fc6d support the trocr small models (#14893)
* support the trocr small models

* resolve conflict

* Update docs/source/model_doc/trocr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/trocr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/model_doc/trocr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix unexpected indent in processing_trocr.py

* Update src/transformers/models/trocr/processing_trocr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* update the docstring of processing_trocr

* remove extra space

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-01-10 09:28:03 -05:00
42d57549b8 Change assignee for tokenizers (#15088) 2022-01-10 09:22:48 -05:00
a54961c5f7 Make OpenAIGPTTokenizer work with SpaCy 2.x and 3.x (#15019)
* Make OpenAIGPTTokenizer work with SpaCy 3.x

SpaCy 3.x introduced an API change to creating the tokenizer that
breaks OpenAIGPTTokenizer. The old API for creating the tokenizer in
SpaCy 2.x no longer works under SpaCy 3.x, but the new API for creating
the tokenizer in SpaCy 3.x DOES work under SpaCy 2.x. Switching to the
new API should allow OpenAIGPTTokenizer to work under both SpaCy 2.x and
SpaCy 3.x versions.

* Add is_spacy_available and is_ftfy_available methods to file utils

* Add spacy and ftfy unittest decorator to testing utils

* Add tests for OpenAIGPTTokenizer that require spacy and ftfy

* Modify CircleCI config to run tests that require spacy and ftfy

* Remove unneeded unittest decorators are reuse test code

* Run make fixup
2022-01-10 07:53:20 -05:00
9fbf7c87c3 Update check_repo.py (#15014)
added new line
2022-01-10 06:55:43 -05:00
0a03a86813 fix model table cell text alignment (#14999)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-10 06:44:11 -05:00
d72343d2b8 [Wav2Vec2 Speech Event] Add speech event v2 (#15083)
* up

* up

* up

* up

* up

* up

* improve

* up

* up

* Update src/transformers/trainer.py

* up

* up

* up
2022-01-10 10:46:21 +01:00
768e6c1449 Fix convert for newer megatron-lm bert model (#14082)
* Fix convert for newer megatron-lm models

* Save megatron-bert config in a proper way

* Fix code style
2022-01-08 11:33:55 -08:00
623b4f7c63 [VisionTextDualEncoder] Add token_type_ids param (#15073)
* fix doc example - TypeError: get_text_features() got an unexpected keyword argument 'token_type_ids'

* add token_type_ids param

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-07 20:02:49 +01:00
5be1242ac0 Merge branch 'huggingface:master' into master 2022-01-07 11:48:22 -05:00
484e7a441f Distilbert spaces badge 2022-01-07 11:47:56 -05:00
ac224bb079 [Fix doc examples] Add missing from_pretrained (#15044)
* fix doc example - ValueError: Parameter config should be an instance of class `PretrainedConfig`

* Update src/transformers/models/segformer/modeling_segformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-01-07 16:55:59 +01:00
f18c6fa94c Resubmit changes after rebase to master (#14982) 2022-01-07 08:34:12 +01:00
1d71227295 Roberta spaces badge 2022-01-06 18:50:19 -05:00
e36a83d3a3 Merge branch 'huggingface:master' into master 2022-01-06 18:44:59 -05:00
cac877425c ALBERT spaces badge 2022-01-06 13:01:23 -05:00
794441c379 BERT spaces badge 2022-01-06 12:22:09 -05:00
f872f18dca XLNet spaces badge 2022-01-06 12:09:50 -05:00
8d187e7feb Reformer Spaces badge 2022-01-06 11:59:21 -05:00
cc406da4de [VisionTextDualEncoder] Fix doc example
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-06 17:59:06 +01:00
59fb636948 Transformer-XL badge 2022-01-06 11:47:41 -05:00
25b8b8a6f2 Merge branch 'huggingface:master' into master 2022-01-06 11:42:14 -05:00
b67f345d00 Update run_speech_recognition_seq2seq.py (#14967) 2022-01-06 19:26:45 +03:00
f71fb5c36e Add 'with torch.no_grad()' to BertGeneration integration test forward passes (#14963) 2022-01-06 10:39:13 -05:00
d2183a46fb Remove old asserts. (#15012) 2022-01-06 09:45:41 -05:00
83c552d390 Add detectron2 to Github actions (#15053) 2022-01-06 08:53:58 -05:00
5ab87cd4da wrapped forward passes in torch.no_grad() (#15037) 2022-01-06 08:48:49 -05:00
5a06118b39 Enabling TF on image-classification pipeline. (#15030) 2022-01-06 14:16:00 +01:00
9f89fa02ed Add Flax image captioning example (#14864)
* add image captioning example

* update README

* fix style & quality

* simplify

* apply review suggestions

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply review suggestions

* add comments about using np instead jax array

* remove unused lines

* add model creation script

* only support from_pretrained

* fix style

* fix

* not use cache_dir when creating model

* fix tokenizer creation

* update README

* fix quality

* apply suggestion

* simplify some blocks

* Update examples/flax/image-captioning/README.md


* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* apply suggestion

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-01-06 14:00:54 +01:00
2e9af29494 [CLIP] Fix TF test (#15042) 2022-01-05 16:58:42 +01:00
443fdaf29f [SpeechEncoderDecoder] Fix from pretrained (#15043) 2022-01-05 16:54:39 +01:00
ae929dcbbd [CLIP] Fix PT test (#15041) 2022-01-05 14:21:04 +01:00
65cb94ff77 Adding QoL for batch_size arg (like others enabled everywhere). (#15027)
* Adding QoL for `batch_size` arg (like others enabled everywhere).

* Typo.
2022-01-05 12:16:23 +01:00
e34dd055e9 Fix doc example: mask_time_indices (numpy) has no attribute 'to' (#15033)
* fix doc example - AttributeError: 'numpy.ndarray' object has no attribute 'to'

* fix more

* Apply suggestions from code review

* Update src/transformers/models/unispeech/modeling_unispeech.py

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-05 11:34:08 +01:00
927f654427 [megatron convert] PYTHONPATH requirements (#14956)
* [megatron convert] PYTHONPATH requirements

* more info
2022-01-05 04:09:52 -05:00
2380136722 add spaces badges 2022-01-04 16:13:57 -05:00
857ab55c01 [doc] Update parallelism.mdx (#15018)
* Update parallelism.mdx

* Update parallelism.mdx
2022-01-04 09:58:27 -08:00
19d37c2dd3 Hotfix chunk_length_s instead of _ms. (#15029)
* Hotfix `chunk_length_s` instead of `_ms`.

* Adding fix of `pad_token` which should be last/previous token for CTC

proper decoding

* Fixing ChunkPipeline unwrapping.

* Adding a PackIterator specific test.
2022-01-04 14:07:44 +01:00
21aecc0971 Add Flax RoFormer (#15005)
* Add FlaxRoFormer

* Clean code + make quality

* Fix output pooling for FlaxRoFormerForMultipleChoiceModule

* Apply suggestions from code review

* add flax model to repos

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-04 13:23:10 +01:00
9e1775dd23 Fix a little typo (#15002) 2022-01-04 12:59:47 +01:00
774ed4a027 Fix Code block (#14983) 2022-01-04 12:59:20 +01:00
f2ab21833f Update parallelism.mdx (#15013)
* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx

* Update parallelism.mdx
2022-01-03 11:49:27 -08:00
dbac8899fe [Tests] Correct Wav2Vec2 & WavLM tests (#15015)
* up

* up

* up
2022-01-03 20:19:04 +01:00
0b4c3a1a53 fix missing import (#15016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-03 19:11:47 +01:00
38f95d1846 Large audio chunking for the existing ASR pipeline (#14896)
* Naive ASR chunking

* Fixing batching for ASR.

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-01-03 16:54:17 +01:00
d33dc7966a Improve truncation_side (#14947)
* Enabling `truncation_side` for Slow and Fast tokenizer.

Co-Authored-by: Niels Rogge <48327001+NielsRogge@users.noreply.github.com>

* Disable failing tests.

* Layout xlm.

* assert -> assertEqual.

Co-authored-by: Niels Rogge <48327001+NielsRogge@users.noreply.github.com>
2022-01-03 16:18:39 +01:00
8c2618e6aa Fixing t2t pipelines lists outputs. (#15008)
Backward compatibility broken in
https://github.com/huggingface/transformers/pull/14988
2022-01-03 14:49:58 +01:00
8f6373c61c Map model_type and doc pages names (#14944)
* Map model_type and doc pages names

* Add script

* Fix typo

* Quality

* Manual check for Auto

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-01-03 05:08:55 -05:00
e68c3756fe Allow training to resume even if RNG states are not properly loaded (#14994)
* Allow training to resume even if RNG states are not properly loaded

* Proper f-string
2021-12-30 17:03:20 -05:00
08cb5718ec Enabling tokenizers upgrade. (#14941)
* Enabling `tokenizers` upgrade.

* Moved ugly comment.

* Tokenizers==0.11.1 needs an update to keep borrow checker

happy in highly contiguous calls.

* Support both 0.11.1 and 0.11.0
2021-12-30 17:30:58 +01:00
f8a989cfb2 Adding num_return_sequences support for text2text generation. (#14988)
* Adding `num_return_sequences` support for text2text generation.

Co-Authored-By: Enze <pu.miao@foxmail.com>

* Update tests/test_pipelines_text2text_generation.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_pipelines_text2text_generation.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Enze <pu.miao@foxmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-30 16:17:15 +01:00
c043ce6cfd [Generate] correct encoder_outputs are passed without attention_mask (#14980)
* [Generate] correct encoder_outputs are passed without attention_mask

* Apply suggestions from code review

* up
2021-12-30 10:16:03 +01:00
a1392883ce [AutoProcessor] Correct AutoProcessor and automatically add processor… (#14881)
* [AutoProcessor] Correct AutoProcessor and automatically add processor class

* up

* up

* up

* up

* up

* up

* up

* up

* continue tomorrow

* up

* up

* up

* make processor class private

* fix loop
2021-12-30 09:56:43 +01:00
d7d60df0ec Fixing a pathological case for slow tokenizers (#14981)
* Fixing a pathological case for slow tokenizers

* Update src/transformers/tokenization_utils.py
2021-12-30 09:10:34 +01:00
d1ba56d8d8 remove absl workaround as it's no longer needed (#14909)
the absl workaround hasn't been needed since 2019-04 https://github.com/abseil/abseil-py/issues/99 so it should be safe to remove it.
2021-12-29 17:18:03 -05:00
04cddaf402 refactor: replace assert with ValueError (#14970) 2021-12-29 10:09:54 -05:00
600496fa50 [Wav2Vec2] Rename model's feature extractor to feature encoder (#14959)
* rename classes

* clean up more namings

* remove bogus file

* Apply suggestions from code review

* Apply suggestions from code review

* replace more names

* more regex replace

* make style

* correct

* correct more

* make style

* finish

* correct more in wav2vec2

* make style

* improve freeze_extractor

* add aliases

* add tf aliases
2021-12-28 20:33:23 +01:00
1bfa347707 [Tests] Speed up tokenizer tests (#14964)
* speed up canine and mluke

* speed up mbart and mbart50 toks

* upload files
2021-12-28 17:02:50 +01:00
f80775df2b Update README.md (#14965) 2021-12-28 13:41:27 +01:00
1e847b40c0 [WavLM] give model for precision (#14958) 2021-12-28 11:07:05 +01:00
1c121916f3 Add Speech Seq2Seq Training script (#14792)
* start

* add gradient checkpointing and feature extractor freezing

* Apply suggestions from code review

* up

* up

* up

* correct

* up

* more changes

* up

* up

* up

* remove rst
2021-12-28 10:20:51 +01:00
10fd4fa1a6 [doc] :class: hunt (#14955)
* [doc] :class: hunt

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix the fix + style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-27 17:17:38 -08:00
2c5597f6c7 Style 2021-12-27 19:18:08 -05:00
b5e2b183af Doc styler examples (#14953)
* Fix bad examples

* Add black formatting to style_doc

* Use first nonempty line

* Put it at the right place

* Don't add spaces to empty lines

* Better templates

* Deal with triple quotes in docstrings

* Result of style_doc

* Enable mdx treatment and fix code examples in MDXs

* Result of doc styler on doc source files

* Last fixes

* Break copy from
2021-12-27 19:07:46 -05:00
e13f72fbff [doc] :obj: hunt (#14954)
* redo sans examples

* style
2021-12-27 15:49:48 -08:00
133c5e40c4 [doc] consistent True/False/None default format (#14951)
* [doc] consistent True/False/None default format

* Update src/transformers/models/xlnet/modeling_xlnet.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-27 14:31:40 -08:00
b2f500256e Convert last rst file (#14952) 2021-12-27 17:09:37 -05:00
87e6e4fe5c Doc styler v2 (#14950)
* New doc styler

* Fix issue with args at the start

* Code sample fixes

* Style code examples in MDX

* Fix more patterns

* Typo

* Typo

* More patterns

* Do without black for now

* Get more info in error

* Docstring style

* Re-enable check

* Quality

* Fix add_end_docstring decorator

* Fix docstring
2021-12-27 16:31:21 -05:00
c1138273d4 Fix duplicate call to save_checkpoint when using deepspeed (#14946)
* Fix duplicate call to save_checkpoint when using deepspeed / stage3_gather_fp16_weights_on_model_save

* Revert "Fix duplicate call to save_checkpoint when using deepspeed / stage3_gather_fp16_weights_on_model_save"

This reverts commit 6a3dec0397723a8417351dc38fdebf14ab17756c.

* Delete correct duplicate invocation of deepspeed save_checkpoint
2021-12-27 11:25:26 -08:00
03885a3f50 fix to issue #14833 in data_collator - consider no labels (#14930) 2021-12-27 11:48:48 -05:00
501307b58b Add ElectraForCausalLM -> Enable Electra encoder-decoder model (#14729)
* Add ElectraForCausalLM and cover some basic tests & need to fix a few tests

* Fix bugs

* make style

* make fix-copies

* Update doc

* Change docstring to markdown format

* Remove redundant update_keys_to_ignore
2021-12-27 12:37:52 +01:00
b058490ceb ChunkPipeline (batch_size enabled on zero-cls and qa pipelines. (#14225)
* Pipeline chunks.

* Batching for Chunking pipelines ?

* Batching for `question-answering` and `zero-shot-cls`.

* Fixing for FNet.

* Making ASR a chunk pipeline.

* Chunking ASR API.

* doc style.

* Fixing ASR test.

* Fixing QA eror (p_mask, padding is 1, not 0).

* Enable both vad and simple chunking.

* Max length for vad.

* remove inference mode, crashing on s2t.

* Revert ChunkPipeline for ASRpipeline.

Too many knobs for simple integration within the pipeline, better stick
to external convenience functions instead, more control to be had,
simpler pipeline and also easier to replace with other things later.

* Drop necessity for PT for these.

* Enabling generators.

* Add mic + cleanup.

* Typo.

* Typo2.

* Remove ASR work, it does not belong in this PR anymore.

* Update src/transformers/pipelines/pt_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/pipelines/zero_shot_classification.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Adding many comments.

* Doc quality.

* `hidden_states` handling.

* Adding doc.

* Bad rebase.

* Autofixing docs.

* Fixing CRITICAL bug in the new Zerocls pipeline.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-27 11:26:20 +01:00
705ca7f21b Fix Perceiver docs (#14917) 2021-12-24 11:28:47 +01:00
116829900a [WavLM] fix wavlm docs (#14910) 2021-12-23 23:17:20 +01:00
415810664b [doc] install - add jax (#14912)
As `jax` cuda requires special instructions to be installed correctly add a link to jax installation instructions. 

Note: Flax install page only covers cpu jax installation info.
2021-12-23 13:12:59 -08:00
676643c6d6 Better logic for getting tokenizer config in AutoTokenizer (#14906)
* Better logic for getting tokenizer config in AutoTokenizer

* Remove needless import

* Remove debug statement

* Address review comments
2021-12-23 14:18:07 -05:00
f566c6e3b7 Fix failing GPU trainer tests (#14903)
* Fix failing GPU trainer tests

* Remove print statements
2021-12-23 13:59:33 -05:00
fe4197ab11 [Generate] Remove attention_mask and integrate model_main_input_name (#14856)
* up

* save

* correct

* up

* correct more

* up

* up

* up

* up

* up

* correct

* fix tf

* fix

* remove tokenizer
2021-12-23 19:43:37 +01:00
86b40073e9 [doc] post-porting (#14890)
found a few oddities:

1. https://huggingface.co/docs/transformers/main_classes/logging#transformers.utils.logging.enable_explicit_format
has a :: - this PR fixes it

2.  this looks borked too:
https://huggingface.co/docs/transformers/main_classes/logging#transformers.utils.logging.set_verbosity
 has a <

but I'm not sure where this one is coming from
2021-12-23 10:19:34 -08:00
ee55ea692b Update diarization and WavLM tolerances (#14902) 2021-12-23 19:53:56 +03:00
ef47d4f848 [AutoTokenizer] Fix incorrect from pretrained (#14900) 2021-12-23 17:22:33 +01:00
8f2cc1c3ab Add TFCLIPModel (#13967)
* Start the work for TFCLIPModel

* Convert to TF code (TODO: loss + doc)

* Clean up

* Fix pooled_output for TFCLIPTextTransformer - using tf.gather_nd

* assert -> raise error

* Expose TFCLIPModel

* Deal with dummy_inputs

* Add tests

* Fix all tests. TODO: manual check weight loading + add more comments

* Fix pt tf equivalence test

* fixes

* update TFCLIPVisionEmbeddings's Conv2D

* Fix loss + overwrite test_pt_tf_model_equivalence from common

* Add a comment about the change about MainLayer in test_keras_save_load

* Set return_loss=True in TFCLIPModelTester + make tests pass

* overwrite test_pt_tf_model_equivalence from tf common

* fix base_model_prefix

* Fix examples

* remove unused

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply review suggestions

* change self.pre_layrnorm to self.pre_layernorm

* apply more review suggestions

* return attention probs before dropout (to align with PT)

* fix weight init

* fix

* build doc

* fix missing doc

* fix for test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-23 11:19:44 -05:00
2d30443cd3 Set run_name in MLflowCallback (#14894)
* Set run_name in MLflowCallback

* Update the docs for `run_name` argument
2021-12-23 10:53:33 -05:00
1d651868d6 add custom stopping criteria to human eval script (#14897) 2021-12-23 14:59:11 +01:00
6b655cc63f Add ONNX support for MarianMT models (#14586)
* First commit to add MarianMT to ONNX

* Now MarianModel.forward() automatically generates decoder_input_ids, like BartModel.forward()

* Adjusted MarianOnnxConfig.inputs and outputs to work with seq2seq-lm feature

* Style fix

* Added support for other features for already supported models

* Partial support for causal and seq2seq models

* Partial support for causal and seq2seq models

* Add default task for MarianMT ONNX

* Remove automatic creation of decoder_input_ids

* Extend inputs and outputs for MarianMT ONNX config

* Add MarianMT to ONNX unit tests

* Refactor

* OnnxSeq2SeqConfigWithPast to support seq2seq models

* Parameterized the onnx tests

* Restored run_mlm.py

* Restored run_mlm.py

* [WIP] BART update

* BART and MBART

* Add past_key_values and fix dummy decoder inputs

Using a sequence length of 1 in generate_dummy_outputs() produces large discrepancies, presumably due to some hidden optimisations.

* Refactor MarianOnnxConfig to remove custom past_key_values logic

* Fix quality

* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Refactor Marian export to account for base changes

* Fix copies

* Implemented suggestions

* Extend support for causal LM

* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Implemented suggestions

* Fixed __init__ to resolve conflict with master

* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Implemented suggestions

* Fixed __init__ to resolve conflict with master

* Remove commented import

* Remove ONNX model

* Remove redundant class method

* Tidy up imports

* Fix quality

* Refactor dummy input function

* Add copied from statements to Marian config functions

* Remove false copied from comments

* Fix copy from comment

Co-authored-by: Massimiliano Bruni <massimiliano.bruni@hcl.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2021-12-23 13:35:56 +01:00
6a7b9da2ae Add 'with torch.no_grad()' to integration test forward pass (#14808) 2021-12-23 04:23:39 -05:00
d8c09c6541 Fix AttributeError from PreTrainedTokenizerFast.decoder (#14691) 2021-12-23 04:19:25 -05:00
4210579522 Fix doc examples: ... takes no keyword arguments (#14701)
* Fix doc examples: ... takes no keyword arguments

* fix copies

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-23 04:07:21 -05:00
355dc0ce67 Fix installation instructions for BART ONNX example (#14885) 2021-12-23 04:05:32 -05:00
207594be81 Convert rst files (#14888)
* Convert all tutorials and guides

* Convert all remaining rst to mdx

* Track and fix bad links
2021-12-22 16:14:35 -05:00
b0c7d2ec58 Keras metric callback (#14867)
* Working on splitting out labels

* First working version

* Fixed concatenation of outputs and labels

* val_dataset -> eval_dataset

* Only pass input arrays in tokenizer.model_input_names

* Only pass input arrays in tokenizer.model_input_names

* Only remove unexpected keys when predict_with_generate is True

* Adding proper docstring

* Adding example to docstring

* Add a proper ROUGE metric example

* Add a proper ROUGE metric example

* Add version checking

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove requirement for tokenizer with predict_with_generate

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-22 20:35:39 +00:00
fa39ff9fc4 Docs for v4.16.0dev0 2021-12-22 20:39:44 +01:00
05fa1a7ac1 Release: v4.15.0 2021-12-22 18:43:15 +01:00
87a033d9fa Properly indent return block (#14887) 2021-12-22 12:28:45 -05:00
13504dcbea Onnx enable tasks for supported models (part 2) (#14700)
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"

This reverts commit 0f4e39c5599523c110cd713f60a3bfa145dad807.

* is_torch_available test to avoid failing imports

* sorting parameterize parameters to solve ERROR gw0 gw1

* tests fix

* tests fix

* GPT2 with past fix

* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially

* Removed onnx file

* Implemented suggestions

* Fixed __init__ to resolve conflict with master

* Remove commented import
2021-12-22 14:43:11 +01:00
1045a36c1f Fix pytorch image classification example (#14883)
* Update example

* Remove skip in tests
2021-12-22 14:42:19 +01:00
7df4b90c76 Fix Perceiver docs (#14879) 2021-12-22 14:18:03 +01:00
e37bc579fc Fix typo in error message 2021-12-22 08:19:36 -05:00
17efc806b4 IterableDatasetShard should use per device batch size instead of real batch size (#14714) 2021-12-22 07:52:07 -05:00
2a56edb321 Updated deberta attention (#14625)
* Removed unused p2p attention handling

* Updated DeBERTa configuration

* Updated TF DeBERTa attention

* Rolled back accidental comment deletion

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-22 07:36:08 -05:00
824fd44fc3 Feature/fix slow test in mluke (#14749)
* make MLukeTokenizerTest fast

* make LukeTokenizerTest fast

* add entry to _toctree.yaml
2021-12-22 06:35:59 -05:00
c94c1b8967 update the arguments add_prefix_space and trim_offsets in backend_tokenizer.post_processor of RobertaTokenizerFast (#14752)
* add tests

* change post-processor, pre-tokenizer and decoder (can't update decoder)

* update test (remove decoder which doesn't depend on trim and add_prefix)

* just update the post_processor

* fix change

* `trim_offsets` has no influence on `pre_tokenizer`

* remove a test that need some input from the `tokenizers` lib maintainers

* format

* add new test offsets roberta

* polish comments
2021-12-22 10:51:55 +01:00
ec3567fe20 Convert model files from rst to mdx (#14865)
* First pass

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-22 03:27:30 -05:00
d0422de563 Fix doc mistakes (#14874)
* Remove double returns

* Last fixes

* Quality

* Last fix for Lxmert
2021-12-21 18:54:41 -05:00
e846a56ca4 Fix FlaxMarianMTModel return block. (#14873)
* Fixes in marian doc

* Another time

* Add return block in FlaxMarianMTModel
2021-12-21 17:57:37 -05:00
a6b7b47a39 Fixes in marian doc (#14872)
* Fixes in marian doc

* Another time
2021-12-21 17:17:02 -05:00
eec9c8bbd7 Fix FLAX_MULTIPLE_CHOICE_SAMPLE typo (#14871) 2021-12-21 16:54:10 -05:00
e51c7b5872 Skip failing test 2021-12-21 15:15:17 -05:00
27b3031de2 Mass conversion of documentation from rst to Markdown (#14866)
* Convert docstrings of all configurations and tokenizers

* Processors and fixes

* Last modeling files and fixes to models

* Pipeline modules

* Utils files

* Data submodule

* All the other files

* Style

* Missing examples

* Style again

* Fix copies

* Say bye bye to rst docstrings forever
2021-12-21 15:06:33 -05:00
185876392c [doc porting] several docs (#14858)
* [doc porting] 2 docs

* [doc porting] 2 docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/main_classes/deepspeed.mdx

* cleanup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-21 09:55:25 -08:00
033c3ed95a [examples/summarization] deal with None in data records (#14816)
* [examples/summarization] deal with None in data records

* rewrite to use a simpler (slower) variant
2021-12-21 09:17:28 -08:00
c075fb7855 Replace commit sha by commit url for update jobs (#14852)
* Replace commit sha by commit url for update jobs

* Typo

* Update .github/workflows/build_documentation.yml

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Apply review comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2021-12-21 11:17:11 -05:00
5722d05831 Add custom stopping_criteria and logits_processor to generate (#14779)
* add custom `stopping_criteria` and `logits_processor` to `generate`

* add tests for custom `stopping_criteria` and `logits_processor`

* fix typo in RAG

* address reviewer comments

* improve custom logits processor/stopping criteria error message

* fix types in merge function signature

* change default for custom list from `None` to empty list

* fix rag generate

* add string split suggestion

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-12-21 16:47:41 +01:00
Zed
0062058399 Fix the value error typo of AdamW's betas' valid values checking (#14780)
* Fix the value error typo of AdamW's betas value check

* error fixed
2021-12-21 09:44:09 -05:00
7ae6f07004 [ASR example] Improve example + add more examples (#14848)
* up

* load up

* up
2021-12-21 13:12:22 +01:00
97ec17f73b Only create the model card on process 0 (#14857) 2021-12-21 06:34:47 -05:00
b513ec8bbd [Bart] better error message (#14854) 2021-12-21 11:57:42 +01:00
7af80f6618 Convert docstrings of modeling files (#14850)
* Convert file_utils docstrings to Markdown

* Test on BERT

* Return block indent

* Temporarily disable doc styler

* Remove from quality checks as well

* Remove doc styler mess

* Remove check from circleCI

* Fix typo

* Convert file_utils docstrings to Markdown

* Test on BERT

* Return block indent

* Temporarily disable doc styler

* Remove from quality checks as well

* Remove doc styler mess

* Remove check from circleCI

* Fix typo

* Let's go on all other model files

* Add templates too

* Styling and quality
2021-12-21 05:37:32 -05:00
2a33734606 Make the onnx submodule init lazy (#14855)
* Use lazy init for onnx submodule

* Remove debug statements
2021-12-21 03:11:25 -05:00
b6ec956976 [logging] implement warning_advice / TRANSFORMERS_NO_ADVISORY_WARNINGS (#14669)
* [logging] implement warning_advice / TRANSFORMERS_NO_ADVISORY_WARNINGS

* reword
2021-12-20 20:48:38 -08:00
c1125dc2ba [doc] typo (#14849)
fix small typo
2021-12-20 12:20:21 -05:00
33f36c869f Add a main_input_name attribute to all models (#14803)
* Add a main_input_name attribute to all models

* Fix tests

* Wtf Vs Code?

* Update src/transformers/models/imagegpt/modeling_imagegpt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Style

* Fix copies

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-12-20 11:19:08 -05:00
0940e9b242 Add 'with torch.no_grad()' to integration test forward pass (#14820) 2021-12-20 09:28:17 -05:00
b37cf7dee4 Add 'with torch.no_grad()' to integration test forward pass (#14821) 2021-12-20 09:25:34 -05:00
952a77b05d [Perceiver] Skip multi-gpu tests for now (#14813)
* [Perceiver] Skip multi-gpu tests for now

* Update tests/test_modeling_perceiver.py

* up

* up
2021-12-20 15:22:50 +01:00
8a818c26cb Fix dead link to benchmarks.ipynb (#14842)
Notebook has been updated here https://github.com/huggingface/notebooks/tree/master/examples/benchmark.ipynb
2021-12-20 09:08:05 -05:00
1b0ca7d270 Update CONTRIBUTING.md (#14835)
fix cmd typo
2021-12-20 08:42:03 -05:00
1531b31978 Add an argument to set bucket_cap_mb for PyTorch DDP (#14756)
* [trainer] Set bucket_cap_mb for DDP from arguments

* Put find_unused_parameters into kwargs
2021-12-20 08:41:40 -05:00
3883e3a75e Add SD and SV heads for WavLM (#14847)
* Add converted heads

* Add dummies
2021-12-20 16:40:56 +03:00
cd583bdaa5 [WavLM] Fix slow tests (#14845) 2021-12-20 12:06:42 +01:00
281e1fba75 up (#14829) 2021-12-20 11:47:32 +01:00
091693b494 [Seq2SeqTrainer] Remove model input name hack (#14802)
* [Seq2SeqTrainer] Remove model input name hack

* Update src/transformers/trainer_seq2seq.py

* make style

* finish
2021-12-20 10:53:48 +01:00
84ea427f46 [ImageGPT] Deprecate pixel_values input name to input_ids (#14801)
* [ImageGPT] Deprecate pixel_values input name to input_ids

* up

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* correct

* finish

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-12-17 20:05:22 +01:00
c4a96cecbc Wav2Vec2 meets phonemes (#14353)
* up

* add tokenizer

* improve more

* finish tokenizer

* finish

* adapt speech recognition script

* adapt convert

* more fixes

* more fixes

* update phonemizer wav2vec2

* better naming

* fix more tests

* more fixes swedish

* correct tests

* finish

* improve script

* remove file

* up

* lets get those 100 model architectures until the end of the month

* make fix-copies

* correct more

* correct script

* more fixes

* more fixes

* add to docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace assert

* fix copies

* fix docs

* new try docs

* boom boom

* update

* add phonemizer to audio tests

* make fix-copies

* up

* upload models

* some changes

* Update tests/test_tokenization_wav2vec2_phoneme.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* more fixes

* remove @

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2021-12-17 19:56:44 +01:00
77d6c826d8 Convert rst to mdx bert (#14806)
* BERT to mdx
mdx :)
c

* Update docs/source/model_doc/bert.mdx

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Remove all
Co-authored-by: sgugger <sylvain.gugger@gmail.com>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2021-12-17 11:13:34 -05:00
0b4ea79a0c Trigger doc building 2021-12-17 11:14:18 -05:00
ff066119ca Implement head_mask for Flax BERT and other models copied from BERT (#14620)
* Implement head_mask for Flax BERT and other models copied from BERT

* Remove `from jax._src.nn.functions import sigmoid`

Remove `from jax._src.nn.functions import sigmoid` unintentionally added by IDE

* Remove no more valid copy statement

* Apply patil-suraj's suggestions from code review

* Apply suggestions from the code review

* Update Flax template

* Fix a typo

* Also update template for CausalLM modules
2021-12-17 17:06:59 +01:00
95119ad7b0 [Generate] Correct input_ids detection (#14815)
* [Generate] Correct input_ids detection

* correct
2021-12-17 16:08:54 +01:00
bdbe3df869 [WavLM] Layerdrop is not allowed for first layer (#14811)
* [WavLM] Layerdrop is not allowed for first layer

* Apply suggestions from code review
2021-12-17 13:30:18 +01:00
cbf036f7ae Add test (#14810) 2021-12-17 04:33:27 -05:00
c4a0fb5199 [WavLM] Correct position bias computation (#14805) 2021-12-16 22:42:57 +01:00
d194d639ab Remove datasets requirement (#14795) 2021-12-16 14:34:14 -05:00
bef1e3e4a0 Add WavLM (#14354)
* first commit

* fix some stuff

* fix more readme

* Apply suggestions from code review

* update

* correct

* up

* attn layer works

* push code

* make modedls work

* Small change

* more refactor

* finish

* up

* fix convertsion

* fix position bias

* Fix style

* fix conversion

* make fix-copies

* add

* clean

* fix docs

* fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply final changes

* make fix-copies

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-16 18:57:05 +01:00
b18d8534ea [Generate] Make generate multi-modal (#14784)
* finish refactor

* refactor

* add tests

* add more tests

* up

* finish tests

* finish

* up

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* improve docstring

* fix docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-16 18:03:55 +01:00
48463ebb33 Add Speaker Diarization and Verification heads (#14723)
* Models

* Squashed commit of the following:

commit 72278e1e931a16d0879acc77f65762f3364833d0
Author: anton-l <aglozhkov@gmail.com>
Date:   Fri Dec 10 21:45:08 2021 +0300

* Add unispeech heads

* Add sd/sv automodels

* Docs cleanup

* Fix docstrings

* rename xvector classes

* examples

* Tests cleanup

* Style

* Better checkpoints for tests

* leftover docs

* apply review suggestions

* Style + init tests

* Update unispeech-sat tdnn downsampling
2021-12-16 19:22:14 +03:00
2e07180cba Train step fix (#14796)
* Fix for TF train step when no "labels" key in input

* make style
2021-12-16 16:08:13 +00:00
465a8b8d10 Update CONTRIBUTING.md (#14800)
fix pip installation cmd
2021-12-16 10:40:56 -05:00
8ae24e19b2 Update CONTRIBUTING.md (#14799)
typo
2021-12-16 10:24:26 -05:00
12e1b4c6df Fix the build documentation job (#14788)
* Fix the build documentation job

* Fix install

* Address review comment
2021-12-16 09:35:20 -05:00
5061a9fd55 Post sphinx-clean up and contributing guide updates (#14790)
* Clean up sphinx

* Update contributing guide

* Update docs README

* No example title

* Fix copies

* Update CONTRIBUTING.md

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-12-16 09:29:26 -05:00
8010fda9bf Removes images to put them in a dataset (#14781)
* First try

* Update instructions
2021-12-16 04:42:02 -05:00
459677aebe PoC for conserving old links (#14754)
* PoC for conserving old links

* Do the same for other links

* remap the redirects section

* add instructions on how to move sections

* improve

Co-authored-by: Stas Bekman <stas@stason.org>
2021-12-15 11:40:47 -08:00
c40ecfd740 Move import (#14787) 2021-12-15 13:34:42 -05:00
7c9c41f43c Docs for v4.14.0 2021-12-15 18:29:53 +01:00
960d8cb41d Release: v4.14.0 2021-12-15 18:20:35 +01:00
aece7badc1 Improve Perceiver docs (#14786)
* Fix docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Code quality

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-12-15 12:02:05 -05:00
50bc57cef8 Update Perceiver code examples (#14783)
* Fix code examples

* Fix code example
2021-12-15 11:06:38 -05:00
48d4827697 TF model cards (#14720)
* Initial commit for Keras model cards

* Revert accidental change

* make style

* make style

* make style

* Fix PR comments

* Move repo creation to __init__

* Fixes to README.md creation

* Partial progress for proper card creation on `push_to_hub`

* Proper card creation from `push_to_hub` plus fixes for malformed model cards

* Fixes for model card creation outside the callback

* Adding a model card creation test

* Putting the model card creation test in the right file.
Good job, Matt.

* make style

* Fix model card test temp dir usage

* Fix model card creation when no optimizer present

* Fixes for when training history not present

* Fix accidental edit to test_modeling_common
2021-12-15 14:57:52 +00:00
72c6e8b8bf Update t5.rst (#14776) 2021-12-15 14:59:11 +01:00
a94105f95f Fix preprocess_function in run_summarization_flax.py (#14769)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-15 11:36:28 +01:00
7e61d56a45 Fix the doc_build_test job (#14774)
* Fake new model

* Fix doc-building test job

* Is this the problem?

* Another try

* Typo

* Clean up

* Can we do without -e ?

* Clean setup
2021-12-15 03:40:17 -05:00
fdf3ce2827 [doc] performance: groups of operations by compute-intensity (#14757) 2021-12-14 19:01:23 -08:00
851a78978a Fix broken links to distillation on index page of documentation (#14722)
* Fix broken links to distillation on index page of documentation

* Fix broken link for distillation in main README

* Run make fixup
2021-12-14 21:55:33 -05:00
e7ed7ffdcb Adding support for multiple mask tokens. (#14716)
* Adding support for multiple mask tokens.

- Original implem: https://github.com/huggingface/transformers/pull/10222

Co-authored-by: njafer <naveen.jafer@oracle.com>

* In order to accomodate optionally multimodal models like Perceiver

we add information to the tasks to specify tasks where we know for sure
if we need the tokenizer/feature_extractor or not.

* Adding info in the documentation about multi masks.

+ marked as experimental.

* Add a copy() to prevent overriding the same tensor over and over.

* Fixup.

* Adding small test for multi mask with real values..

Co-authored-by: njafer <naveen.jafer@oracle.com>
2021-12-14 16:46:16 +01:00
2a606f9974 Make data shuffling in run_clm_flax.py respect global seed (#13410)
* use jax and jnp instead of numpy in data_loader

* return batches as np.ndarray
2021-12-14 11:04:43 +01:00
546a91abe9 Fixing tests for Perceiver (#14739)
* Adding some slow test to check for perceiver at least from a high level.

* Re-enabling fast tests for Perceiver ImageClassification.

* Perceiver might try to run without Tokenizer (Fast doesn't exist) and
with FeatureExtractor some text only pipelines.

* Oops.

* Adding a comment for `update_config_with_model_class`.

* Remove `model_architecture` to get `tiny_config`.

* Finalize rebase.

* Smarter way to handle undefined FastTokenizer.

* Remove old code.

* Addressing some nits.

* Don't instantiate `None`.
2021-12-14 09:43:07 +01:00
322d416916 Update Table of Contents (#14755) 2021-12-13 17:15:19 -05:00
7533d30acd Convert Trainer doc page to MarkDown (#14753)
* Convert Trainer doc page to MarkDown

* Fix repo consistency

* Fix the doc build test job
2021-12-13 13:09:50 -05:00
e926ea2bdd Improve perceiver (#14750)
* First draft

* Improve docstring + clean up tests

* Remove unused code

* Add check in case one doesn't provide a preprocessor
2021-12-13 18:46:49 +01:00
971e36667a Change how to load config of XLNetLMHeadModel (#14746) 2021-12-13 12:34:26 -05:00
15a9d01519 Avoid using tf.tile in embeddings for TF models (#14735)
* avoid tf.tile in embeddings

* remove more tf.tile in embeddings

* clean

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 17:30:46 +00:00
6ac0fac85a Mention no images added to repository (#14738)
* Mention no images added to repository

* Update CONTRIBUTING.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-12-13 12:21:26 -05:00
e4666bff06 Fix name 2021-12-13 12:01:37 -05:00
64e92ed224 Update transformers metadata (#14724)
* Wip on metadata update

* Most of the script

* Add a job to auto-update the transformers metadata

* Style
2021-12-13 11:46:03 -05:00
c3cd88a9ba Small fixes for the doc (#14751) 2021-12-13 11:17:01 -05:00
12d9b95723 Fix: change tooslow to slow (#14734)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 16:12:58 +00:00
ca0b82bbd7 Fix doc examples: cannot import name (#14698)
* Fix doc examples: cannot import name

* remove copy because of some necessary minor changes (maybe add copy to the individual methods instead)

* Keep copy with some modifications

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 10:36:50 -05:00
fc74c84537 Swap TF and PT code inside two blocks (#14742) 2021-12-13 10:31:11 -05:00
8362d07d63 [CI/pt-nightly] switch to cuda-11.3 (#14726) 2021-12-13 09:53:48 -05:00
6e05bb1c96 Fix the perceiver docs (#14748) 2021-12-13 09:29:47 -05:00
c17e7cde32 Add ability to get a list of supported pipeline tasks (#14732) 2021-12-13 08:31:50 -05:00
3d66146afc Fixing tests for Perceiver (#14745)
- Do not run image-classification pipeline (_CHECKPOINT_FOR_DOC uses the checkpoint for
langage, which cannot load a FeatureExtractor so current logic fails).
- Add a safeguard to not run tests when `tokenizer_class` or
`feature_extractor_class` **are** defined, but cannot be loaded
This happens for Perceiver for the "FastTokenizer" (which doesn't exist
so None) and FeatureExtractor (which does exist but cannot be loaded
because the checkpoint doesn't define one which is reasonable for the
said checkpoint)
- Added `get_vocab` function to `PerceiverTokenizer` since it is used by
`fill-mask` pipeline when the argument `targets` is used to narrow a
subset of possible values.

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2021-12-13 08:13:39 -05:00
4c99e553c1 Improve documentation of some models (#14695)
* Migrate docs to mdx

* Update TAPAS docs

* Remove lines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add pt/tf switch to code examples

* More improvements

* Improve docstrings

* More improvements

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-13 13:24:36 +01:00
32eb29fef9 Fix doc examples: modify config before super().__init__ (#14697)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-13 12:50:02 +01:00
48bf7e47a0 Code parrot minor fixes/niceties (#14666)
* Add some nicety flags for better controlling evaluation.

* Fix dependency issue with outdated requirement

* Add additional flag to example to ensure eval is done

* Wrap code into main function for accelerate launcher to find

* Fix valid batch size flag in readme

* Add note to install git-lfs when initializing/training the model

* Update examples/research_projects/codeparrot/scripts/arguments.py

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Revert "Wrap code into main function for accelerate launcher to find"

This reverts commit ff11df1c810d4df198d04b827538eb4572147ba3.

* Fix formatting issue

* Move git-lfs instructions to installation section

* Add a quick check before code generation for code evaluation

* Fix styling issue

* Update examples/research_projects/codeparrot/scripts/human_eval.py

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Make iterable dataset use passed in tokenizer rather than globally defined one

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: ncoop57 <nac33@students.uwf.edu>
2021-12-13 09:30:50 +01:00
91f3dfbfdd [Adafactor] Fix adafactor (#14713)
* correct changes

* add comment
2021-12-12 13:31:46 +01:00
86dd23bb8b Update bug-report.md (#14715) 2021-12-12 13:30:44 +01:00
6a025487a6 [Flax examples] remove dependancy on pytorch training args (#14636)
* use custom training arguments

* update tests
2021-12-12 09:19:12 +05:30
027074f4d0 [doc] document MoE model approach and current solutions (#14725)
* document MoE model approach

* additional info from Samyam

* fix
2021-12-10 18:24:38 -08:00
7cb1fdd4d1 Fixing tests for perceiver (texts) (#14719)
* Fixing tests for perceiver (texts)

* For MaskedLM
2021-12-10 19:38:59 -05:00
39fbb068be Empty commit to retrigger build doc 2021-12-10 17:55:16 -05:00
5eca742f6c Fix special character in MDX (#14721) 2021-12-10 16:02:48 -05:00
63c284c2d4 Prevent style_doc from tempering the config file 2021-12-10 15:31:43 -05:00
f46668282b Fix path for notebooks 2021-12-10 15:03:17 -05:00
3b2d1652e4 Fix typo in branch name 2021-12-10 14:38:21 -05:00
1b75d7238c Automatically build doc notebooks (#14718)
* Test workflow

* Build doc

* Make a clean build

* Add doc config

* Restore other workflows

* Final job

* Print something in else statements

* Pull before making changes
2021-12-10 14:20:56 -05:00
ae82ee6a48 Fix doc examples: unexpected keyword argument (#14689)
* Fix doc examples: unexpected keyword argument

* Don't delete token_type_ids from inputs

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-10 11:44:08 -05:00
5b00400198 Adding Perceiver to AutoTokenizer. (#14711) 2021-12-10 15:29:18 +01:00
59d684fa92 Fix examples: 'CausalLMOutputWithCrossAttentions' object has no attribute 'last_hidden_state' (#14678)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-10 14:55:54 +01:00
8395f14de6 Fix doc examples: KeyError (#14699)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-10 13:26:37 +05:30
bab1556456 Put back open in colab markers (#14684) 2021-12-09 12:00:06 -05:00
3bc7d70e9c Fix : wrong link in the documentation (ConvBERT vs DistilBERT) (#14705) 2021-12-09 11:35:22 -05:00
4701a1a182 Patch release script 2021-12-09 17:21:08 +01:00
ab31b3e41b Docs for v4.14.0dev0 2021-12-09 17:09:23 +01:00
4da3a696e4 Release: v4.13.0 2021-12-09 16:55:21 +01:00
60be4bf8ac Fix typo in toctree (#14704) 2021-12-09 09:25:31 -05:00
da7aabf2ca add str hub token to repository when provided else fallback to default (#14682)
* add str hub token to repository when provided else fallback to default True

* make style
2021-12-09 08:42:23 -05:00
7375758bee Fix tests (#14703) 2021-12-09 08:32:35 -05:00
68e53e6fcd Add a job to test doc building (for realsies this time) (#14662) 2021-12-09 07:01:03 -05:00
e9800122a6 Add kenlm dep to missing tests 2021-12-08 19:59:44 -05:00
ee6674d450 Fix doc examples: name '...' is not defined (#14687)
* Fix doc examples: name '...' is not defined

* remove >>> and ... in some docstrings in visual_bert

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-08 16:39:35 -05:00
e6219320b9 Make MLuke tokenizer tests slow (#14690) 2021-12-08 15:59:57 -05:00
13186d7152 Move pyctcdecode (#14686)
* Move pyctcdecode dep

* Fix doc and last objects

* Quality

* Style

* Ignore this black
2021-12-08 15:41:58 -05:00
d104dd46d9 [trainer] support UserDict inputs (torch-nightly) (#14688) 2021-12-08 12:21:43 -08:00
1228661285 [bf16 support] tweaks (#14580)
* [bf16 support] tweaks

* corrections

Co-authored-by: Manuel R. Ciosici <manuelrciosici@gmail.com>
2021-12-08 11:33:24 -08:00
16870d114b Fix wrong checkpoint paths in doc examples (#14685)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-08 14:25:48 -05:00
01b8cd5932 Revert open-in-colab and add perceiver (#14683) 2021-12-08 13:52:31 -05:00
f6b87c5f30 Fixes in init (#14681)
* Fixes in init

* Style
2021-12-08 13:42:22 -05:00
fe06f8dcac Improvements to Comet Integration (#14680)
* change args to address overwriting issue

* remove project name from args

* remove passing args as kwargs to experiment object

* remove passing args as kwargs to offline experiment

* fix offline directory assignment in experiment kwargs

* log checkpoint folder on training end

* log entire output_dir as asset folder

* log asset folder  recursively

* end experiment at the end of training

* clean up

* clean up

* Default to always log training assets to Comet when using CometCallback

* change logging training assets to be true when running callback setup

* fix so that experiment always ends when training ends

* styling and quality fixes

* update docstring for COMET_LOG_ASSETS environment variable

* run styling and quality checks

* clean up to docstring

* remove merge markers

* change asset logging to false to avoid hitting max assets per experiment limit

* update training asset description

* fix styling
2021-12-08 13:39:10 -05:00
4ea19de80c fix: verify jsonlines file in run_translation (#14660) (#14661)
* fix: verify jsonl in run_translation (#14660)

* fix(run_translation.py): json/jsonl validation

Both json and jsonl are to be accepted as valid jsonlines file extension

* fix(run_translation.py): make black happy

* Ran make style
2021-12-08 13:25:30 -05:00
cf36f4d7a8 Convert tutorials (#14665)
* Convert a few docs

* And another

* Last tutorials

* New syntax for colab links

* Convert a few docs

* And another

* Last tutorials

* New syntax for colab links
2021-12-08 13:19:46 -05:00
0f4e39c559 Revert "Added support for other features for already supported models (#14358)" (#14679)
This reverts commit 0c70f145d1ba79773f7fa532a5f05486e260200a.
2021-12-08 13:04:40 -05:00
0c70f145d1 Added support for other features for already supported models (#14358)
* Added support for other features for already supported models

* Partial support for causal and seq2seq models

* Partial support for causal and seq2seq models

* OnnxSeq2SeqConfigWithPast to support seq2seq models

* Parameterized the onnx tests

* Restored run_mlm.py

* Restored run_mlm.py

* [WIP] BART update

* BART and MBART

* Added comments

* Another sequence length of the past_key_values
2021-12-08 18:39:56 +01:00
ee4fa2e465 [AutoProcessor] Add Wav2Vec2WithLM & small fix (#14675)
* [AutoProcessor] Add Wav2Vec2WithLM & small fix

* revert line removal

* Update src/transformers/__init__.py

* add test

* up

* up

* small fix
2021-12-08 15:51:28 +01:00
2294071a0c Fix doc builder (#14676) 2021-12-08 09:14:36 -05:00
fab3b518ef fix deprecated tf method (#14671)
tf.matrix_band_part -> tf.linalg.band_part
2021-12-08 13:43:21 +00:00
65b20b739b Add Perceiver IO (#14487)
* First draft

* Style and remove mlm

* Make forward pass work

* More improvements

* More improvements

* Fix bug

* More improvements

* More improvements

* Add PerceiverTokenizer first draft

* Improve conversion script

* More improvements

* Make conversion script work for the encoder

* Make conversion script work with local pickle files

* Style & quality, fix-copies

* Add dummy input to conversion script

* Add absolute position embeddings to TextPreProcessor

* Make forward pass of encoder work

* More improvements

* Move text preprocessor to separate script

* More improvements

* More improvements

* Add post processor

* Make MLM model work

* Style

* Add PerceiverForMaskedLM

* Add PerceiverImagePreprocessor

* Make style

* Make PerceiverForImageClassification work

* More improvements

* More improvements

* Use tokenizer in conversion script

* Use PerceiverForMaskedLM in conversion script

* Define custom PerceiverModelOutput

* Improve PerceiverAttention to make it work for both MLM and image classification

* More improvements

* More improvements

* More improvements to the conversion script

* Make conversion script work for both MLM and image classification

* Add PerceiverFeatureExtractor

* More improvements

* Style and quality

* Add center cropping

* Fix bug

* Small fix

* Add print statement

* Fix bug in image preprocessor

* Fix bug with conversion script

* Make output position embeddings an nn.Parameter layer instead of nn.Embedding

* Comment out print statements

* Add position encoding classes

* More improvements

* Use position_encoding_kwargs

* Add PerceiverForImageClassificationFourier

* Make style & quality

* Add PerceiverForImageClassificationConvProcessing

* Style & quality

* Add flow model

* Move processors to modeling file

* Make position encodings modular

* Make basic decoder use modular position encodings

* Add PerceiverForOpticalFlow to conversion script

* Add AudioPreprocessor

* Make it possible for the basic decoder to use Fourier position embeddings

* Add PerceiverForMultimodalAutoencoding

* Improve model for optical flow

* Improve _build_network_inputs method

* Add print statement

* Fix device issue

* Fix device of Fourier embeddings

* Add print statements for debugging

* Add another print statement

* Add another print statement

* Add another print statement

* Add another print statement

* Improve PerceiverAudioPreprocessor

* Improve conversion script for multimodal modal

* More improvements

* More improvements

* Improve multimodal model

* Make forward pass multimodal model work

* More improvements

* Improve tests

* Fix some more tests

* Add output dataclasses

* Make more tests pass

* Add print statements for debuggin

* Add tests for image classification

* Add PerceiverClassifierOutput

* More improvements

* Make more tests pass for the optical flow model

* Make style & quality

* Small improvements

* Don't support training for optical flow model for now

* Fix _prepare_for_class for tests

* Make more tests pass, add some docs

* Add multimodal model to tests

* Minor fixes

* Fix tests

* Improve conversion script

* Make fixup

* Remove pos_dim argument

* Fix device issue

* Potential fix for OOM

* Revert previous commit

* Fix test_initialization

* Add print statements for debugging

* Fix print statement

* Add print statement

* Add print statement

* Add print statement

* Add print statement

* Add print statement

* Add print statement

* Remove need for output_shape

* Comment out output_shape

* Remove unnecessary code

* Improve docs

* Fix make fixup

* Remove PerceiverTextProcessor from init

* Improve docs

* Small improvement

* Apply first batch of suggestions from code review

* Apply more suggestions from code review

* Update docstrings

* Define dicts beforehand for readability

* Rename task to architecture in conversion script, include PerceiverModel in tests

* Add print statements for debugging

* Fix tests on GPU

* Remove preprocessors, postprocessors and decoders from main init

* Add integration test

* Fix docs

* Replace einops by torch

* Update for new docs frontend

* Rename PerceiverForImageClassification

* Improve docs

* Improve docs

* Improve docs of PerceiverModel

* Fix some more tests

* Improve center_crop

* Add PerceiverForSequenceClassification

* Small improvements

* Fix tests

* Add integration test for optical flow model

* Clean up

* Add tests for tokenizer

* Fix tokenizer by adding special tokens properly

* Fix CI
2021-12-08 14:20:34 +01:00
961732c276 [Wav2Vec2] PyCTCDecode Integration to support language model boosted decoding (#14339)
* up

* up

* up

* make it cleaner

* correct

* make styhahalal

* add more tests

* finish

* small fix

* make style

* up

* tryout to solve cicrle ci

* up

* fix more tests

* fix more tests

* apply sylvains suggestions

* fix import

* correct docs

* add pyctcdecode only to speech tests

* fix more tests

* add tf, flax and pt tests

* add pt

* fix last tests

* fix more tests

* Apply suggestions from code review

* change lines

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* correct tests

* correct tests

* add doc string

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2021-12-08 12:07:54 +01:00
2e12d90b9e Fixing Dataset for TQA + token-classification. (#14658)
* Fixing Dataset for TQA + token-classification.

* Fixing the tests.

* Making sure `offset_mappings` is a valid argument.
2021-12-08 09:54:24 +01:00
fae0b9faef [trainer] conditional ctx managers into one wrapper (#14663)
* [trainer] conditional ctx managers into one wrapper

* workaround for contextlib.nullcontext for py<3.7

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* one more autocast

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-07 13:04:18 -08:00
39f1dff5a0 Fix a Bug, trainer_seq2seq.py, in the else branch at Line 172, generation_inputs should be a dict (#14546)
* fix bug, trainer_seq2seq.py, Line 172, generation_inputs must be a dict before feeding into self.model.generation()

* fix bug, trainer_seq2seq.py, Line 172, generation_inputs must be a dict before feeding into self.model.generation()
2021-12-07 12:09:18 -05:00
2171695cc2 quick fix SummarizationPipeline error messages (#14618)
* quick fix SummarizationPipeline error messages

Fix error messages to avoid spam errors, and errors of type:
`Your max_length is set to 50, but you input_length is only 46. You might consider decreasing max_length manually, e.g. summarizer('...', max_length=50)`

* correcto SummarizationPipeline error messages fixes
2021-12-07 16:44:28 +01:00
b66c5ab20c [deepspeed] fix --load_best_model_at_end (#14652)
* [deepspeed] fix load_best_model_at_end

* try with pull_request_target

* revert: try with pull_request_target

* style

* add test

* cleanup
2021-12-06 21:57:47 -08:00
30646a0a3c Add mLUKE (#14640)
* implement MLukeTokenizer and LukeForMaskedLM

* update tests

* update docs

* add LukeForMaskedLM to check_repo.py

* update README

* fix test and specify the entity pad id in tokenization_(m)luke

* fix EntityPredictionHeadTransform
2021-12-07 00:25:28 -05:00
4cdb67caba Use cross_attention_hidden_size in Encoder-Decoder models (#14378)
* add cross_attention_hidden_size to text-2-text encoder-decoder models (PT/Flax)

* for TFEncoderDecoderModel

* add equivalence test for TFEncoderDecoderModel

* fix

* fix failed equivalence tests

* remove unused import

* add detailed comment

* Fix check_equivalence_tf_to_pt by using encoder/decoder

* cleaning

* Use cross_attention_hidden_size in speech-to-text

* clean fast init logging msg in encoder decoder models

* increase tol from 1e-5 to 1e-3 for tf test

* style

* style

* make sure projection layer can run

* remove type conversion + add check

* fix conflict (config.output_hidden_size)

* Remove TF -> PT in check_pt_tf_equivalence for TFEncoderDecoderModel

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-12-07 00:27:32 +01:00
381b05a3f5 Remove nonworking workflow for now 2021-12-06 17:25:28 -05:00
75ae287aec fix flax examples tests (#14646)
* make tensorboard optional

* update test_fetcher for flax examples

* make the tests slow
2021-12-07 00:34:27 +05:30
03fda7b743 Add a job to test the documentation build (#14645)
* Add a job to the documentation build

* Add caching

* Test cache
2021-12-06 13:55:59 -05:00
e513c16e82 Fix syntax for class references (#14644) 2021-12-06 13:31:27 -05:00
e9688875bf Auto processor fix (#14623)
* Add AutoProcessor class
Init and tests
Add doc
Fix init
Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Reverts to tokenizer or feature extractor when available
Adapt test

* Revert "Adapt test"

This reverts commit bbdde5fab02465f24b54b227390073082cb32093.

* Revert "Reverts to tokenizer or feature extractor when available"

This reverts commit 77659ff5d21b6cc0baf6f443017e35e056a525bb.

* Don't revert everything Lysandre!

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2021-12-06 12:49:50 -05:00
cbe6026536 fix flax example tests (#14643) 2021-12-06 23:14:37 +05:30
df085d8ea8 doc: mismatch between pooler/d_output (#14641)
The model outputs a pooler_output whereas the doctype examples were using a pooled_output.
2021-12-06 11:51:53 -05:00
0f3f045ebd Add GPTJForQuestionAnswering (#14503)
* Add GPTJForQuestionAnswering

* Reformat for GPTJForQuestionAnswering

* Fix isort error

* make style for GPTJForQA

* Add _keys_to_ignore_on_load_missing

* Change the sequence of qa and classification

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-12-06 11:44:10 -05:00
1ccc033c56 Update the example of exporting Bart + BeamSearch to ONNX module to resolve comments. (#14310)
* Update code to resolve comments left in previous PR.

* Add README.md file for this example.

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update README.md file to resolve comments.

* Add a section name.

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: Gary Miguel <garymm@garymm.org>

* Add more comments for _convert_past_list_to_tuple().

* Change the default file name to a consistent one.

* Fix a format issue.

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: Gary Miguel <garymm@garymm.org>

* Update examples/onnx/pytorch/translation/run_onnx_exporter.py

Co-authored-by: Gary Miguel <garymm@garymm.org>

* Update examples/onnx/pytorch/translation/README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Change the folder to summarization and address some other coments.

* Update the torch version.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Gary Miguel <garymm@garymm.org>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2021-12-06 14:01:51 +01:00
6cdc3a7844 [urls to hub] Replace outdated model tags with their now-canonical pipeline types (#14617)
* Replace outdated model tags with their now-canonical pipeline types

* spam the CI till it's green
2021-12-06 04:35:01 -05:00
c824d7ed48 add flax example tests in CI workflow (#14637) 2021-12-06 14:50:43 +05:30
bc8a9f415b fix typo (#14635) 2021-12-06 10:52:43 +05:30
c5bd732ac6 Add Flax example tests (#14599)
* add test for glue

* add tests for clm

* fix clm test

* add summrization tests

* more tests

* fix few tests

* add test for t5 mlm

* fix t5 mlm test

* fix tests for multi device

* cleanup

* ci job

* fix metric file name

* make t5 more robust
2021-12-06 10:48:58 +05:30
803a8cd18f updated readme with proper arguments (#14624) 2021-12-05 22:12:51 -05:00
3977b58437 fix a typo (#14626) 2021-12-05 11:31:23 +05:30
73ec4340ec Make DefaultDataCollator importable from root (#14588)
* Make DefaultDataCollator importable from root

* Add documentation for DefaultDataCollator and add return_tensors argument to all class docstrings

* make style

* Add DefaultDataCollator to data_collator.rst

* Add DefaultDataCollator to data_collator.rst
2021-12-03 15:15:09 -05:00
71b1bf7ea8 [trainer] add tf32-mode control (#14606)
* [trainer] add --tf32 support

* it's pt>=.17

* it's pt>=.17

* flip the default to True

* add experimental note

* simplify logic

* style

* switch to 3-state logic

* doc

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* re-style code

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-03 10:08:58 -08:00
aada989ad5 Fix doc builder (#14616)
* Fix doc builder

* Fix doc builder

* Fix doc builder
2021-12-03 12:09:25 -05:00
ec47baeba2 2022 is the year of multi-modality (#14610)
* 2022 is the year of multi-modality

* Small fix

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Apply suggestions from code review

* Apply to documentation index

* Apply suggestions from code review

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2021-12-03 11:35:44 -05:00
e62091d5a7 [CI] move env print to util, add pt, nccl versions (#14607)
* move env print to util, add pt, nccl versions

* style

* version

* align
2021-12-03 08:18:36 -05:00
66ea739168 Improve tokenizer tests (#13594)
* Use new method to acquire tokenizers

* Resolve TODOs.

* Style

* Fix

* Enable do_lower_case in test_tokenize_special_tokens

* Apply suggestion from code review

* Fix mask token handling

* Revert "Fix mask token handling"

This reverts commit daaa3f5291b1f71e5bc3604ca281c000000c4648.

* Fix FNet mask token tokenization

* Complete everything

* Apply suggestions from code review
2021-12-03 08:39:10 +01:00
Nik
6645eb61fa fix #14524 (IndexError when mask prob is too low) (#14525)
* fix #14524 (IndexError when mask prob is too low)

* fix formatting

* correct documentation, add option for setting min_num_masks

* change the semantic meaning of `mask_prob` in _compute_mask_indices

With this commit the meaing of `mask_prob` actually adhered to the probability for each
vector to be the start of a masked span of length.

* fix check_copies test

* fix documentation to semantic meaning of `upper bound of overall masking percentage`, revert changes to _compute_mask_indices

* fix typo
2021-12-02 17:05:31 +03:00
96cc02b51b change tf.math.divide with int(/) to remove dim_per_head from the TF graph (#14600)
Co-authored-by: yis <yis@graphcore.ai>
2021-12-02 13:13:42 +00:00
43f953cc2e Add CodeParrot 🦜 codebase (#14536)
* add readme skeleton

* update readme

* add initialization script

* add deduplication script

* add codeparrot training script

* add code generation evaluation

* add validation loss script

* add requirements

* update readme

* tweak readme

* make style

* add highlights to readme

* add CLIs to scripts

* add tokenizer training script

* add docstring to constant length dataset

* fix defaults in arguments

* update readme with cli

* move image to hub

* tweaks of readme

* fix cli commands

* add author

* explain env variables

* fix formatting

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Apply suggestions from code review

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* replace generic with gpt2 tokenizer

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2021-12-02 10:41:35 +01:00
e4c67d60ec Python 3.6 -> Python 3.7 for TF runs (#14598) 2021-12-02 04:09:17 -05:00
50d909be28 [Flax] Add FlaxBlenderbotSmall (#14576)
* [WIP] Add FlaxBlenderbotSmall

* Revert some unintentionally changed files

Revert some unintentionally files changed by improperly filled cookiecutter instructions.

* Fix repo consistency

* Fix Flax-PT equivalence

* Apply suggestions from code review

* Update index.mdx

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-12-02 14:21:48 +05:30
77d87e732e Adds a git pull instruction to the documentation builder (#14597)
* Adds a git pull instruction

* master -> main
2021-12-02 03:32:38 -05:00
275402bf2b Update doc img links (#14593)
* Update doc img links

* Rename toctree.yml -> _toctree.yml (#14594)

* Update doc img links

* Update performance.md img link
2021-12-02 09:01:35 +01:00
4f68de625c Rename toctree.yml -> _toctree.yml (#14594) 2021-12-02 08:58:39 +01:00
fbe278c76c [doc] bf16/tf32 guide (#14579)
* [doc] bf16/tf32 guide

* expand

* expand

* Update docs/source/performance.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-12-01 14:18:58 -08:00
934e2799da Fix mask token handling (#14364)
* Fix mask token handling

* Revert "Fix mask token handling"

This reverts commit daaa3f5291b1f71e5bc3604ca281c000000c4648.

* Fix FNet mask token tokenization
2021-12-01 20:16:52 +01:00
4df7d05a87 Doc new front (#14590)
* Convert PretrainedConfig doc to Markdown

* Use syntax

* Add necessary doc files (#14496)

* Doc fixes (#14499)

* Fixes for the new front

* Convert DETR file for table

* Title is needed

* Simplify a bit

* Even simpler

* Remove imports

* Fix typo in toctree (#14516)

* Fix checkpoints badge

* Update versions.yml format (#14517)

* Doc new front github actions (#14512)

* Doc new front github actions

* Fix docstring

* Fix feature extraction utils import (#14515)

* Address Julien's comments

* Push to doc-builder

* Ready for merge

* Remove old build and deploy

* Doc misc fixes (#14583)

* Rm versions.yml from doc

* Fix converting.rst

* Rm pretrained_models from toctree

* Fix index links (#14567)

* Fix links in README

* Localized READMEs

* Fix copy script

* Fix find doc script

* Update README_ko.md

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Adapt build command to new CLI tools (#14578)

* Fix typo

* Fix doc interlinks (#14589)

* Convert PretrainedConfig doc to Markdown

* Use syntax

* Rm pattern <[a-z]+(.html).*>

* Rm huggingface.co/transformers/master

* Rm .html

* Rm .html from index.mdx

* Rm .html from model_summary.rst

* Update index.mdx rm html

* Update remove .html

* Fix inner doc links

* Fix interlink in preprocssing.rst

* Update pr_checks

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Convert PretrainedConfig doc to Markdown

* Use syntax

* Add necessary doc files (#14496)

* Doc fixes (#14499)

* Fixes for the new front

* Convert DETR file for table

* Title is needed

* Simplify a bit

* Even simpler

* Remove imports

* Fix checkpoints badge

* Fix typo in toctree (#14516)

* Update versions.yml format (#14517)

* Doc new front github actions (#14512)

* Doc new front github actions

* Fix docstring

* Fix feature extraction utils import (#14515)

* Address Julien's comments

* Push to doc-builder

* Ready for merge

* Remove old build and deploy

* Doc misc fixes (#14583)

* Rm versions.yml from doc

* Fix converting.rst

* Rm pretrained_models from toctree

* Fix index links (#14567)

* Fix links in README

* Localized READMEs

* Fix copy script

* Fix find doc script

* Update README_ko.md

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Adapt build command to new CLI tools (#14578)

* Fix typo

* Fix doc interlinks (#14589)

* Convert PretrainedConfig doc to Markdown

* Use syntax

* Rm pattern <[a-z]+(.html).*>

* Rm huggingface.co/transformers/master

* Rm .html

* Rm .html from index.mdx

* Rm .html from model_summary.rst

* Update index.mdx rm html

* Update remove .html

* Fix inner doc links

* Fix interlink in preprocssing.rst

* Update pr_checks

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Styling

Co-authored-by: Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
2021-12-01 14:13:02 -05:00
14cc50d081 fix autocast for older pytorch 2021-12-01 09:32:52 -08:00
4c0dd199c8 FlaxGPTJ (#14396)
* add flax gptj

* no bias in attention dense

* no wpe

* fix rotary embeddings

* fix rotary embeds

* fix rotray embeds

* quality

* doc and quality

* fix equivalence tests
2021-12-01 10:57:39 +05:30
70996a5420 WIP: Support for Training with BF16 (#13207)
* started bf16 integration

* minor changes

* code now runs

* style

* lay foundation for bf16 testing

* lay foundation for bf16 testing

* start the tests

* better bf16 check

* style

* 2 separate checkers - one for bf16 support, another for bf16+autocast

* Update src/transformers/training_args.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* a couple of comment resolutions

* more comment resolutions

* resolved a small bug

* just some print statemtns

* added todo marking

* added a todo

* adjust for API change s/fast_dtype/dtype/

* fix style

* merge 2 bf16 util functions

* bf16 now does scaling too

* Add support for bfloat16

* Revert T5 layernorm to float32

This is based on the comment at https://github.com/huggingface/transformers/pull/14448/files#r752660929 and the PyTorch PR https://github.com/pytorch/pytorch/pull/66920 .

* Add comment about conversion to float32 before returning the numpy data

* Add comment about AMP-bfloat16 incompatibility

* Fix formatting

* typo

* reformer / bf16

* cleanup

* require at least pt-1.10

* fix

* will deal with deepspeed separately

* cleanup

* revert

* cleanup

* fp16_full_eval and bf16_full_eval are separate modes

* proper deprecation

* cleanup

* test and fixes

* spelling

* cleanup

* add a note that this API is experimental

Co-authored-by: jamie <jamie@cortx.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: suriya <suriya@cortx.com>
Co-authored-by: Manuel R. Ciosici <manuelrciosici@gmail.com>
2021-11-30 18:00:47 -08:00
fc1d97f29d VisionTextDualEncoder (#13511)
* init vision_text_dual_encoder

* fix merge

* remove extra heads

* fix tests

* remove VISION_TEXT_DUAL_ENCODER_PRETRAINED_CONFIG_ARCHIVE_MAP

* remove archive map

* fix imports

* fix more imports

* fix init

* delete tokenizers

* fix imports

* clean

* support clip's vision model

* handle None config

* begin tests

* more test and few fixes

* warn about newly init weights

* more tests

* add loss to model

* remove extra classes from doc

* add processor

* doc and small fixes

* add start docstr

* update flax model

* flax tests

* more flax tests

* doc

* quality

* doc and quality

* fix doc

* doc

* remove comments

* update warning

* quality

* fix docs

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* replace asserts, fix imports

* update imports

* fix import

* address some review comments

* fix check

* reduce tolerance

* fix test

* add flax integration test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address Sylvain's comments

* fix style

* add pt_flax_equivalence test in PT tests

* add pt integration test

* update test

* use pre-trained checkpoint in examples

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-30 22:21:48 +05:30
6ed9882ddb use functional interface for softmax in attention (#14198)
* use functional interface instead of instantiating module and immediately calling it

* fix torch.nn.functional to nn.functional. Thank you Stas!
2021-11-30 11:47:33 -05:00
4176bc161c Add documentation for multi-label classification (#14168)
* "update example docstring multilabel example

* update example docstring multilabel example
2021-11-30 11:34:41 -05:00
faacd74729 [Flax] Add FlaxBlenderbot (#13633)
* Init Flax implementation for Blenderbot

* Add a majority of stuff except for tests

* make style quality

* Add tests and fix some bugs

* Add tests

* Clean source code and fix some bugs

* Fix copies and docs

* Fix jax device condition for tests

* Fix layer norm in the encoder

* Fix a few typos in the test file

* make fix-copies

* make fix-copies

* fix layer norm

* Fix Flax params dtype (#13090)

* Fix PR reference (#13098)

* make fix-copies

* Update tests/test_modeling_flax_blenderbot.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-11-30 17:36:54 +05:30
254fef67cf Fix backend regex (#14566) 2021-11-30 05:32:20 -05:00
c468a87a69 Tapas tf (#13393)
* TF Tapas first commit

* updated docs

* updated logger message

* updated pytorch weight conversion
script to support scalar array

* added use_cache to tapas model config to
work properly with tf input_processing

* 1. rm embeddings_sum
2. added # Copied
3. + TFTapasMLMHead
4. and lot other small fixes

* updated docs

* + test for tapas

* updated testing_utils to check
is_tensorflow_probability_available

* converted model logits post processing using
numpy to work with both PT and TF models

* + TFAutoModelForTableQuestionAnswering

* added TF support

* added test for
TFAutoModelForTableQuestionAnswering

* added test for
TFAutoModelForTableQuestionAnswering pipeline

* updated auto model docs

* fixed typo in import

* added tensorflow_probability to run tests

* updated MLM head

* updated tapas.rst with TF  model docs

* fixed optimizer import in docs

* updated convert to np
data from pt model is not
`transformers.tokenization_utils_base.BatchEncoding`
after pipeline upgrade

* updated pipeline:
1. with torch.no_gard removed, pipeline forward handles
2. token_type_ids converted to numpy

* updated docs.

* removed `use_cache` from config

* removed floats_tensor

* updated code comment

* updated Copyright Year and
logits_aggregation Optional

* updated docs and comments

* updated docstring

* fixed model weight loading

* make fixup

* fix indentation

* added tf slow pipeline test

* pip upgrade

* upgrade python to 3.7

* removed from_pt from tests

* revert commit f18cfa9
2021-11-30 11:07:55 +01:00
6fc38adff2 Add model checkpointing to push_to_hub and PushToHubCallback (#14492)
* Add checkpointing to push_to_hub and PushToHubCallback

* Add checkpoint loading

* Add missing default value

* Correct method name

* make style

* Moving everything to the right location

* make style

* Revert changes to file_utils.py

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding docstrings and comments to clarify code

* make style

* Fix organization positional arg

* Fix load_repo_checkpoint to no longer accidentally create empty repos

* make style

* Remove unnecessary 'organization' argument in load_repo_checkpoint

* Avoid private `_create_or_get_repo` method

* make style

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-29 17:36:19 +00:00
8332327dca Fix sentinel token IDs in data collator for Flax T5 pretraining script (#14477) 2021-11-29 17:30:17 +01:00
2bd950ca47 [Flax] token-classification model steps enumerate start from 1 (#14547)
* step start from 1

* Updated cur_step calcualtion
2021-11-29 21:55:59 +05:30
cea17acd8c [Generate] Fix generate with inputs_embeds on GPU (#14564) 2021-11-29 16:10:19 +01:00
25156eb296 Rename ImageGPT (#14526)
* Rename

* Add MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING
2021-11-29 10:19:11 +01:00
4ee0b755bd LayoutLMv2FeatureExtractor now supports non-English languages when applying Tesseract OCR. (#14514)
* Added the lang argument to apply_tesseract in feature_extraction_layoutlmv2.py, which is used in pytesseract.image_to_data.

* Added ocr_lang argument to LayoutLMv2FeatureExtractor.__init__, which is used when calling apply_tesseract

* Updated the documentation of the LayoutLMv2FeatureExtractor

* Specified in the documentation of the LayoutLMv2FeatureExtractor that the ocr_lang argument should be a language code.

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Split comment into two lines to adhere to the max line size limit.

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-11-29 04:15:08 -05:00
ebbe8cc3fe Tokenizers docs: Specify which class contains __call__ method (#14379)
* Update tokenizer.rst

* Apply `make fixup`
2021-11-28 18:55:38 -05:00
69511cdcae unfreeze initial cache in gpt models (#14535) 2021-11-26 18:21:47 +05:30
2318bf77eb Fixes (#14534) 2021-11-26 04:35:08 -05:00
c15f4f203f Quicktour updates (#14533) 2021-11-26 04:09:31 -05:00
1bbd6fcdeb added save_directories for _psave_pretrained_pt and _tf, changed model to tf_model and pt_model, enable the notebook to run cleanly from top to bottom without error (#14529)
* added save_directories for _psave_pretrained_pt and _tf, changed model to tf_model and pt_model, enable the notebook to run cleanly from top to bottom without error

* Update quicktour.rst

* added >>>

* dependencies

* added space
2021-11-26 03:46:07 -05:00
04683c0659 Fix a slow test. (#14527) 2021-11-25 12:59:33 -05:00
d1fd64e7aa clear ~/.cache/torch_extensions between builds (#14520) 2021-11-25 03:15:35 -05:00
3772af49ce [Tests] Improve vision tests (#14458)
* Improve tests

* Install vision for tf tests
2021-11-24 15:22:20 +01:00
f2e90bcb8f Fix feature extraction utils import (#14515) 2021-11-24 09:03:21 -05:00
6c4d688ffa add cache_dir for tokenizer verification loading (#14508)
When loading a pretrained tokenizer, a verification is done to ensure
that the actual tokenizer class matches the class it was called from.
If the tokenizer is absent, its config file is loaded from the repo.

However, the cache_dir for downloading is not provided, which leads to
ignoring of the user-specified cache_dir, storing files in several
places and and may result in incorrect warnings when the default
cache_dir is unreachsble.

This commit fixes that.
2021-11-24 06:22:03 -05:00
956a483173 [deepspeed] zero inference (#14253)
* [deepspeed] zero inference

* only z3 makes sense for inference

* fix and style

* docs

* rework

* fix test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* responding to suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-23 14:09:15 -08:00
69e16abf98 Switch from using sum for flattening lists of lists in group_texts (#14472)
* remove sum for list flattening

* change to chain(*)

* make chain object a list

* delete empty lines

per sgugger's suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-22 16:17:26 -05:00
0b7d053c13 fixes some key names for in LayoutLMv2 / LayoutXLM tokenizers (#14493)
in case of left padding_side there was a copy/paste error
assigning the bbox data to the labels
2021-11-22 16:00:43 -05:00
204d251310 Auto processor (#14465)
* Add AutoProcessor class

* Init and tests

* Add doc

* Fix init

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverts to tokenizer or feature extractor when available

* Adapt test

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-11-22 12:17:38 -05:00
11f65d4158 [test] add test for --config_overrides (#14466)
* add test for --config_overrides

* remove unneeded parts of the test
2021-11-22 11:33:43 -05:00
e0e2da1194 Improve a add-new-pipeline docs a bit (#14485) 2021-11-22 10:35:49 -05:00
a4553e6c64 Moving pipeline tests from Narsil to hf-internal-testing. (#14463)
* Moving everything to `hf-internal-testing`.

* Fixing test values.

* Moving to other repo.

* Last touch?
2021-11-22 04:40:45 -05:00
1a92bc5788 Fix dummy objects for quantization (#14478)
* Fix dummy objects for quantization

* Add more models
2021-11-21 17:39:20 -05:00
c9d2cf855a add Tuple as possible type hint for EvalPredictions label_ids (#14473)
* Update trainer_utils.py

* add Tuple type hints to all label_ids outputs

affects EvalLoopOutput and PredicctionOutput
2021-11-21 10:31:09 -05:00
a59e7c1ed4 Add QDQBert model and quantization examples of SQUAD task (#14066)
* clean up branch for add-qdqbert-model

* README update for QAT example; update docstrings in modeling_qdqbert.py

* Update qdqbert.rst

* Update README.md

* Update README.md

* calibration data using traning set; QAT example runs in fp32

* re-use BERTtokenizer for qdqbert

* Update docs/source/model_doc/qdqbert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/qdqbert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/qdqbert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove qdqbert tokenizer

* Update qdqbert.rst

* update evaluate-hf-trt-qa.py

* update configuration_qdqbert.py

* update modeling_qdqbert.py: add copied statement; replace assert with ValueError

* update copied from statement

* add is_quantization_available; run make fix-copies

* unittest add require_quantization

* add backend dependency to qdqbert model

* update README; update evaluate script; make style

* lint

* docs qdqbert update

* circleci build_doc add pytorch-quantization for qdqbert

* update README

* update example readme with instructions to upgrade TensorRT to 8.2

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/qdqbert/configuration_qdqbert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* change quantization to pytorch_quantization for backend requirement

* feed_forward_chunking not supported in QDQBert

* make style

* update model docstrings and comments in testing scripts

* rename example to quantization-qdqbert; rename example scripts from qat to quant

* Update src/transformers/models/qdqbert/modeling_qdqbert.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* rm experimental functions in quant_trainer

* qa cleanup

* make fix-copies for docs index.rst

* fix doctree; use post_init() for qdqbert

* fix early device assignment for qdqbert

* fix CI:Model templates runner

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-19 13:33:39 -05:00
81fe8afaac Adding support for hidden_states and attentions in unbatching (#14420)
support.
2021-11-19 15:37:52 +01:00
f25a9332e8 [Generation] Allow inputs_embeds as an input (#14443)
* up

* finalize

* finalize

* finish

* Update src/transformers/generation_utils.py

* apply feedback
2021-11-19 15:35:06 +01:00
0490b98877 [ImageGPT] Small fixes (#14460)
* Add integration test

* Fix typo
2021-11-19 15:15:02 +01:00
331c3d2aa0 Add GitPython to quality tools (#14459)
* Update setup.py

* Update setup.py

* Update setup.py

* Remove GitPython install
2021-11-19 08:43:48 -05:00
efea0f868b [Speech Recognition] More examples
Add more XLS-R training runs to the official examples
2021-11-18 23:42:02 +01:00
72a6bf33c0 [Bert, et al] fix early device assignment (#14447)
* fix early device assignment

* more models
2021-11-18 11:47:49 -08:00
83ef8bcac2 Fix finite IterableDataset test on multiple GPUs (#14445) 2021-11-18 10:25:06 -05:00
da36c557f7 Add ImageGPT (#14240)
* First draft

* More improvements

* Improve conversion script

* Fix init weights for layer norm

* Fix correct model for conversion script

* Don't tie input and output embeddings

* Add print statements for debugging

* Add print statements for debugging

* Fix vocab size of model

* Improve documentation, remove fast tokenizer

* Add ImageGPTForImageClassification, improve docs

* Fix docs issue

* Set verbosity level back to info

* Improve tests

* Fix tests and add figure

* Delete tokenizer file

* Remove ImageGPTTokenizer from init files

* Remove ImageGPTLayer from init files

* Remove ImageGPT tokenizer from docs

* First draft of ImageGPTFeatureExtractor

* Fix typo

* Fix bug

* More improvements

* Apply suggestions from code review, add tests for feature extractor

* Fix layernorm

* Update save_pretrained method

* Fix issue

* Make all tests of ImageGPTFeatureExtractor pass

* Update code examples

* Rename model inputs to pixel_values

* Improve code examples

* Update init_weights to post_init

* Fix post_init
2021-11-18 16:24:34 +01:00
d83b0e0c07 Add a post init method to all models (#14431)
* Add a post init method to all models

* Fix tests

* Fix last tests

* Fix templates

* Add comment

* Forgot to save
2021-11-18 08:38:09 -05:00
08816de16a Fix code example (#14441) 2021-11-18 11:26:54 +01:00
01f8e639d3 Recover Deleted XNLI Instructions (#14437) 2021-11-17 20:16:47 -05:00
N
1991da07f7 [WIP] Ensure TF model configs can be converted to proper JSON (#14415)
* test: make sure model configs are jsonifiable

* fix: return python dict instead of config object

* fix: accept pretrained config and use correct class

* Re-enabling slow tests and applying them to core models only

* Re-enabling slow tests and applying them to core models only

* Add new test file to fetcher

* Remove tooslow tests from test_modeling_tf_common.py

* make style

* Style fixes

* Style fixes

* Style fixes

* Style fixes

* Adding core tests to GPT2 and BART

* Removing unused imports

Co-authored-by: niklas.fruehauf <niklas.fruehauf@sovanta.com>
Co-authored-by: matt <rocketknight1@gmail.com>
2021-11-17 20:24:39 +00:00
754202de4f [Bart] Fix docs (#14434) 2021-11-17 19:02:33 +01:00
7544efc92e [Gradient checkpoining] Update Wav2Vec scripts (#14036)
Co-authored-by: Stas Bekman <stas@stason.org>
2021-11-17 18:37:21 +01:00
c6c075544d Docs for version v4.12.5 2021-11-17 11:39:12 -05:00
a2864a50e7 Improve semantic segmentation models (#14355)
* Improve tests

* Improve documentation

* Add ignore_index attribute

* Add semantic_ignore_index to BEiT model

* Add segmentation maps argument to BEiTFeatureExtractor

* Simplify SegformerFeatureExtractor and corresponding tests

* Improve tests

* Apply suggestions from code review

* Minor docs improvements

* Streamline segmentation map tests of SegFormer and BEiT

* Improve reduce_labels docs and test

* Fix code quality

* Fix code quality again
2021-11-17 15:29:58 +01:00
700a748fe6 [Wav2Vec2] Add New Wav2Vec2 Translation (#14392)
* add new wav2vec2 translation

* correct

* up

* add tests

* correct end copy

* correct more

* up

* correct unispeech sat

* finish

* finalize

* finish

* up
2021-11-17 14:38:56 +01:00
b567510cff Debug doc (#14424)
* Create branch for tests

* Pin first upgrade

* Really pin

* Polish fix
2021-11-16 18:58:07 -05:00
888fb21159 Docs for v4.12.4 2021-11-16 17:40:58 -05:00
a33168aa78 Avoid looping when data exhausted (#14413)
* stop training when a finite IterableDataset is exhausted

when using an iterable dataset num_epochs is set to
sys.maxsize to make sure all data is consumed
likewise we want to set max_steps high enough
but still stop when all data is consumed

(cherry picked from commit 6f0e1d6363153da9051e93acffe1cbab3a3f3b12)

* fix typo flase -> false

* add test for stopping training on exhausted finite iterable dataset

* remove redundant gradient_accumulation_steps

* run make style

reformat training_args docstring
2021-11-16 16:50:04 -05:00
3e8d17e66d Add forward method to dummy models (#14419)
* Add forward method to dummy models

* Fix quality
2021-11-16 09:24:40 -05:00
040fd47162 Fix gradient_checkpointing backward compatibility (#14408)
* Fix gradient_checkpointing backward compatibility

* Remove needless line

* make sure mask prob is big enough and length small enough

* Fix tests

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-11-16 08:58:42 -05:00
1cc453d33c Allow per-version configurations (#14344)
* Allow per-version configurations

* Update tests/test_configuration_common.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_configuration_common.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-15 16:38:02 -05:00
76d0d41e51 [Wav2Vec2] Make sure that gradient checkpointing is only run if needed (#14407)
* [Wav2Vec2] Make sure that gradient checkpointing is only run if needed

* make fix-copies
2021-11-15 21:03:10 +01:00
9fd937ead1 Replace BertLayerNorm with LayerNorm (#14385)
Running Movement pruning experiments with the newest HuggingFace would crash due to non-existing BertLayerNorm.
2021-11-15 13:25:10 -05:00
a67d47b40c Fix weight loading issue (#14016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-11-15 17:48:40 +01:00
74e6111ba7 Fix test and docs (#14399) 2021-11-15 17:35:33 +01:00
4ce74edf51 [Speech2Text2] Enable tokenizers (#14390)
* [Speech2Text2] Enable tokenizers

* minor fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-15 16:34:11 +01:00
267867e851 Quick fix to TF summarization example (#14401) 2021-11-15 13:45:51 +00:00
29dfb2dbb1 [doc] performance and parallelism updates (#14391)
* [doc] performance and parallelism doc update

* improve

* improve
2021-11-14 17:19:15 -08:00
790cdc2e55 Raise exceptions instead of using asserts in modeling_openai #12789 (#14386)
* Raise exceptions instead of using asserts for control flow in modeling_openai #12789

* reformatted file
2021-11-13 21:34:34 -05:00
2e60276b38 [M2M100Tokenizer] fix _build_translation_inputs (#14382)
* add return_tensors paramter

* fix test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-13 20:57:12 +05:30
3165930402 support wmt21 tokenizer in m2m100 tokenizer (#14376) 2021-11-13 14:21:58 +05:30
280a811ecb Use AlbertConverter for FNet instead of using FNet's own converter (#14365)
* Add normalizer to FNetConverter

* Style

* Directly use AlbertConverter
2021-11-12 19:46:40 +01:00
55f49c5f4b [Wav2Vec2 Example] Improve fine-tuning script (#14373)
* improve some stuff

* finish

* correct last
2021-11-12 16:35:57 +01:00
21546e59a6 fix docs (#14377) 2021-11-12 15:56:41 +05:30
ed5d15518b Adding support for raw python generator in addition to Dataset for pipelines (#14352)
* Adding support for raw python `generator` in addition to `Dataset`

The main goal is to ease the create of streaming data to the pipe.

`Dataset` is more involved and pytorch specific.

This PR, provides a way to use a python iterator too.
This enabled #14250 but can be proposed as a standalone PR.

```python
from transformers import pipeline

def read_data(filename):
    with open(filename, 'r') as f:
        for line in f:
            yield f

pipe = pipeline("text-classification")
for classified in pipe(read_data("large_file.txt")):
    print("Success ! ", classified)
```

The main caveat of this, is the interaction with `DataLoader` with
`num_workers>1`. When you have multiple workers, each receive a copy
of the generator (like `IterableDataset`). That means the naive Iterator
will fail since all workers iterate on all items of the generator.

There are ways to do clever "skipping", but it could be bad still
because all workers still do have to pass through all items of the
generator (they just ignore items they don't handle), depending on
the case it might be bad.

Using `num_workers=1` is the simplest fix and if the cost of loading
your data is small enough should be good enough. In the above example
trying to do smart tricks to skip some lines is unlikely to be a net
positive for instance.

If there are better ways to do "jumps" on some data, then using
`Dataset` is more advised (since then differents workers can just jump
themselves).

* Adding iterator support for `tf` too.
2021-11-12 09:20:40 +01:00
77262ef750 fix --gradient_checkpointing (#13964) 2021-11-11 17:50:21 +01:00
3d607df8f4 fix loading flax bf16 weights in pt (#14369)
* fix loading flax bf16 weights in pt

* fix clip test

* fix t5 test

* add logging statement

* Update src/transformers/modeling_flax_pytorch_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* switch back to native any

* fix check for bf16 weights

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-11 21:20:49 +05:30
7f20bf0d43 Fixing requirements for TF LM models and use correct model mappings (#14372)
* Fixing requirements for TF LM models and use correct model mappings

* make style
2021-11-11 15:34:00 +00:00
4c35c8d89c Experimenting with adding proper get_config() and from_config() methods (#14361)
* Experimenting with adding proper get_config() and from_config() methods

* Adding a test for get/from config

* Fix test for get/from config
2021-11-11 14:21:50 +00:00
b1dbdf22ef pass params to encode (#14370) 2021-11-11 17:16:24 +05:30
e92190c0f8 Fix Flax params dtype (#13098)
* fix inits

* fix embed dtype

* fix embed dtype

* add test to check default dtype

* quality

* add type conversion methods for flax models

* more robust casting

* cast sinusoidal positions

* update pegasus

* update albert

* update test

* make sure dtype is passed to every module

* style

* fix electra dense

* fix t5

* quality

* add more tests

* better name

* use the dtype for lm head computation

* fix albert

* style

* fix albert embed dtype

* more tests

* fix vision enc-dec

* cleanup

* fix embed dtype pegasus

* fix default param test

* doc

* update template

* fix final_logits_bias dtype

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix doc

* fix doc

* add detailed docstring for dtype parameter

* remove un-necessary import

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-11 14:45:20 +05:30
1c76a51615 solve the port conflict (#14362) 2021-11-10 19:11:45 -08:00
9e37c5cdf8 Fix list index out of range when padding nested empty lists (#13876)
* Fix index out of range when padding

* Apply suggestions from code review

* Style
2021-11-10 21:34:52 +01:00
bec02ff209 enhance rewrite state_dict missing _metadata (#14348) 2021-11-10 07:25:41 -05:00
2b0d9389f8 Add notebook INC quantization for text classification tasks (#14293)
* Add notebook applying Intel Neural Compressor quantization for text classification tasks

* Add Optimum notebooks section
2021-11-10 12:49:43 +01:00
ea163d0948 Fix fast tokenization problems (#13930)
* Fix albert mask token tokenization.

* Ensure special tokans sanitized.

* Style

* Fix

* Apply suggestions from code review
2021-11-10 11:16:45 +01:00
5c153079e2 Adding some quality of life for pipeline function. (#14322)
* Adding some quality of life for `pipeline` function.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Improve the tests.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-10 10:18:35 +01:00
321eb56222 BatchFeature: Convert List[np.ndarray] to np.ndarray before converting to pytorch tensors (#14306)
* update

* style fix

* retrigger checks

* check first element

* fix syntax error

* Update src/transformers/feature_extraction_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove import

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-09 22:23:08 -05:00
46d0cdae40 Support for TF >= 2.7 (#14345) 2021-11-09 18:49:29 -05:00
e81d8d7fa9 [Bert2Bert] allow bert2bert + relative embeddings (#14324)
* [Bert2Bert] allow bert2bert + relative embeddings

* up

* Update README_ko.md

* up

* up
2021-11-09 14:26:58 -05:00
e4d8f517b9 Rewrite guides for fine-tuning with Datasets (#13923)
* rewrite guides for fine-tuning with datasets

* simple qa code example

* use anonymous rST links

* style
2021-11-09 14:12:50 -05:00
85a4bda4f4 bump flax version (#14343) 2021-11-09 22:15:22 +05:30
babd0b9a5e remove test_model_various_embeddings (#14341)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-11-09 11:30:17 -05:00
4f24058c58 Update Seq2Seq QA example script to use SQuAD metric. (#14335)
* Update postporcessing accordingly to use SQuAD metric.

* Update assets accordingly based on SQuAD metrics.

* Fix function naming error.
2021-11-09 08:04:23 -05:00
be4a6c64dc Add TFViTModel (#13778)
* Start the work for TFViTModel

* Convert to TF code - need to check in the follow up commits

* Clean up model code

* Expose TFViTModel

* make style

* make quality

* Add test

* make style & quality

* Fix some imports

* fix wrong usage - *kwargs => ** kwargs

* Fix Conv2D weight loading (PT->TF) issue

* Add tests for images with different sizes + fix model

* Fix some common tests for TFViTModel

* Use inputs instead of input_ids in test_compile_tf_model

* Add a comment about transpose and Conv2D in convert_tf_weight_name_to_pt_weight_name

* Avoid transpose in TFViT call

* Fix Conv2D issue in load_tf2_weights_in_pytorch_model

* Use tf.keras.layers.Conv2D instead of tf.nn.conv2d

* Using simpler heuristic to detect Conv2D layer

* Change convert_tf_weight_name_to_pt_weight_name to return TransposeType

* Check tf_weight_shape is not None before using it

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix missing comma

* fix input dtype

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-11-09 07:54:37 -05:00
6326aa4bf0 Correct order of overflowing tokens for LayoutLmV2 tokenizer (#13495)
* correct order of overflowing tokens for LayoutLmV2 tokenizer

* test to check order of overflowing_tokens for a seq of input_ids

* fix up quality

* added suggested changes

* check that tests the bbox sequence

* pair_input test added

* pass quality test

* check bbox sequence added

* unittest method

* comments added

* add overflowing bbox test

* improved "seq_1"

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* improve code quality

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2021-11-09 07:49:53 -05:00
95b3ec3bc9 Add FlaxVisionEncoderDecoderModel (#13359)
* Start the work on FlaxVisionEncoderDecoderModel

* Add FlaxVisionEncoderDecoderModel

* Add VisionEncoderDecoderConfig

* Make FlaxVisionEncoderDecoderModel visible to transformers

* Add test

* Fix wrong getattr usage

* Fix tests

* Add FlaxAutoModelForVision2Seq

* Expose FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING

* clean-up

* add integration test

* update expected logits

* update expected scores

* Add ViT2GPT2ModelIntegrationTest + some cleaning

* Add projection layer + PT/Flax equivalence tests

* Fix import

* minor changes

* make test slow again

* Apply suggestions

* Add modeling_flax_vision_encoder_decoder to _ignore_modules in get_model_modules()

* fix copies

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* split long strings in multiple lines

* decoder_input_ids can't be None

* Add back test_configuration_tie

* Remove attention_mask parameter

* fix test - encoder_last_hidden_state should be encoder_outputs.last_hidden_state instead of the projected vector

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Remove more encoder_attention_mask

* remove encoder_attention_mask when calling self.decode (in FlaxVisionEncoderDecoderModule)

* Fix style + pass 1s instead of None as encoder_attention_mask

* fix init_weights

* pass None for encoder_attention_mask

* pass 1s instead of None as encoder_attention_mask

* Fix doc style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-09 15:14:28 +05:30
a503012275 Small change to Wav2Vec2 model to support Tensor-Parallelism with DeepSpeed (#14298)
* minor modification to the wav2vec2 modeling file to support tensor-parallelism with DeepSpeed on this HuggingFace model

* refine the comments

* synch changes

* fix comments

* refine comments

* fix format
2021-11-08 21:00:05 -05:00
d0e96c6de6 [deepspeed] Enable multiple test runs on single box, defer to DS_TEST_PORT if set (#14331)
* defer to DS_TEST_PORT if set

* style

Co-authored-by: Stas Bekman <stas@stason.org>
2021-11-08 12:40:29 -08:00
dfb00bf644 Expand dynamic supported objects to configs and tokenizers (#14296)
* Dynamic configs

* Add config test

* Better tests

* Add tokenizer and test

* Add to from_config

* With save
2021-11-08 15:28:25 -05:00
de635af3f1 Changed relative imports to absolute to allow convert_graph_to_onnx.py to run as a script. (#14325)
* Changed relative imports to absolute to allow convert_graph_to_onnx.py to be run as a script

* isorted code
2021-11-08 10:56:44 -05:00
a3ded170e2 Fixing mutable default argument in pipeline. (#14316)
* Fixing mutable default argument.

* XX.

* Revert "XX."

This reverts commit 61d4bb333f6d39a7fbe31d161b8bd14787ceec2e.
2021-11-08 16:22:28 +01:00
9b78b070ef Fixing tests on master. (#14317)
* Fixing tests on master.

* Better fix.

* Lxmert doesn't have feature extractor but is bimodal.
2021-11-08 08:28:26 -05:00
df1f94eb4a [TFWav2Vec2Model] Fix input shapes in TFWav2Vec2WeightNormConv1D (#14319)
* Add paddings to input shapes

* Add padding comment
2021-11-08 15:58:28 +03:00
e30078b544 [Tests] Update audio classification tests to support torch 1.10 (#14318) 2021-11-08 14:15:56 +03:00
b48faae364 [Marian Conversion] Fix eos_token_id conversion in conversion script (#14320) 2021-11-08 11:42:34 +01:00
c016dbdbda Fix execution PATH for PPLM Example (#14287) 2021-11-06 10:33:47 -04:00
34307bb358 Fix tests (#14289) 2021-11-06 10:08:58 -04:00
24b30d4d2f Handle long answer needs to be updated. (#14279)
`start_` and `end_` tensors now contain a batch_size at this point.
2021-11-06 10:04:30 -04:00
843c326ee1 Update dpr.rst (#14300) 2021-11-06 09:41:02 -04:00
08a5f57567 Add new LFS prune API (#14294) 2021-11-05 18:58:51 -04:00
4be78c22c9 [Hubert Docs] Make sure example uses a fine-tuned model (#14291) 2021-11-05 14:09:57 +01:00
a14d62b0b1 Pin TF until tests are fixed (#14283)
* Pin TF until tests are fixed

* Also pin TF CPU
2021-11-04 21:15:42 -04:00
b90a48f654 Removing Keras version pinning (#14280)
* Removing Keras version pinning

* make fixup
2021-11-04 17:58:28 +00:00
fd8136fa75 improve rewrite state_dict missing _metadata (#14276) 2021-11-04 10:13:23 -04:00
d29baf69bb Fixing mishandling of ignore_labels. (#14274)
Fixes #14272
2021-11-04 09:47:52 -04:00
68427c9beb Fixing slow pipeline tests (#14260)
* Fiixng slow pipeline tests

* Remove the image-segmentaiton override.

* Fixing clamping only in training.

* Wav2vec2.

* Remove last mention of `no_grad`.

* Fixing copies.

* Rename.
2021-11-04 09:49:55 +01:00
1a674ce679 Add more instructions to the release guide (#14263)
* Add more instructions to the release guide

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comment

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-11-03 17:45:41 -04:00
f0d6e952c0 Quality explain (#14264)
* Start PR doc

* Cleanup the quality checks and document them

* Add reference in the contributing guide

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename file as per review suggestion

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-11-03 17:43:19 -04:00
a1c15ea855 Pin Keras cause they messed their release (#14262)
* Pin Keras cause they messed their release

* Put != instead of <

* Try this way

* Back to the beginning but more agressive
2021-11-03 15:03:09 -04:00
1149243184 Fixing typo in error message. (#14226) 2021-11-03 19:28:57 +01:00
2c8957feea Fix of issue #13327: Wrong weight initialization for TF t5 model (#14241)
* Fix of issue #13327: Wrong weight initialization for TF t5 model

* run black formatter

* fix typo

* remove my name tag from comments

Co-authored-by: Shirron <dan.shirron@intel.com>
2021-11-03 16:20:48 +00:00
dec759e7e8 Adding support for truncation parameter on feature-extraction pipeline. (#14193)
* Adding support for `truncation` parameter on `feature-extraction`
pipeline.

Fixes #14183

* Fixing tests on ibert, longformer, and roberta.

* Rebase fix.
2021-11-03 15:48:00 +01:00
27b1516d32 minimal fixes to run DataCollatorForWholeWordMask with return_tensors="np" and return_tensors="tf" (#13891)
* minimal fixes to run DataCollatorForWholeWordMask with return_tensors="np" and return_tensors="tf"

* more consinstent implementation for numpy_mask_tokens
2021-11-03 10:36:41 -04:00
671569ddf7 Put load_image function in image_utils.py & fix image rotation issue (#14062)
* Fix img load rotation

* Add `load_image` to `image_utils.py`

* Implement LoadImageTester

* Use hf-internal-testing dataset

* Add img utils comments

* Refactor LoadImageTester

* Import load_image under is_vision_available
2021-11-03 14:53:05 +01:00
89766b3d44 up (#14258) 2021-11-03 11:31:40 +01:00
bd21ed4099 Add cross attentions to TFGPT2Model (#14038)
* Add cross attentions to TFGPT2Model

* change to is_pt_tf_cross_test

* A minor correction to a comment

* Remove n_ctx when creating self.crossattention

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-03 09:54:34 +01:00
5f789a687a Add LayoutXLMProcessor (and LayoutXLMTokenizer, LayoutXLMTokenizerFast) (#14115)
* Add LayoutXLMTokenizer and LayoutXLMTokenizerFast

* Fix styling issues

* Fix more styling issues

* Fix more styling issues

* Fix docstring

* Fix unit tests

* Fix docs

* Fix unit tests

* Fix typos and styling issues

* Fix styling issues

* Fix docstring

* Make all tests of test_tokenization_layoutxlm pass

* Add LayoutXLMProcessor

* Make fixup

* Make all LayoutXLMProcessor tests pass

* Minor fixes

* Leave LayoutLMv2Processor tests unchanged

* Fix code quality

* Move LayoutXLM tokenizers and processor to separate folder

* Fix code quality

* Apply suggestions from code review

* Replace assertions by value errors

* Remove methods from fast tokenizer

Co-authored-by: King Yiu Suen <kingyiusuen@gmail.com>
2021-11-03 08:59:44 +01:00
558f8543ba Update Transformers to huggingface_hub >= 0.1.0 (#14251)
* Update Transformers to huggingface_hub >= 0.1.0

* Forgot to save...

* Style

* Fix test
2021-11-02 18:58:42 -04:00
519a677e87 Added Beit model output class (#14133)
* add Beit model ouput class

* inherting from BaseModelOuputWithPooling

* updated docs if use_mean_pooling is False

* added beit specific outputs in model docs

* changed the import path

* Fix docs

Co-authored-by: Niels Rogge <niels.rogge1@gmail.com>
2021-11-02 18:29:14 +01:00
bbaa3effbd Fixes Beit training for PyTorch 1.10+ (#14249) 2021-11-02 13:07:20 -04:00
ad3e560bc7 Add PushToHubCallback in main init (#14246) 2021-11-02 12:15:15 -04:00
ce01122a3b [Tests] Fix DistilHubert path (#14245)
* Add audio-classification benchmarking results

* fix distilhubert path
2021-11-02 17:53:50 +03:00
4a394cf53f Fix test_configuration_tie in FlaxEncoderDecoderModelTest (#14076)
* check test_configuration_tie

* Fix test_configuration_tie

* make test slow again

* Remove property and use model.module.bind

* revert to slow test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-11-02 15:32:41 +05:30
a767276fdd Fix generation docstring (#14216)
* Fix generation docstring

* Style
2021-11-02 09:22:45 +01:00
e20faa6f03 Add BeitForSemanticSegmentation (#14096)
* Add first draft

* Make forward pass work

* Improve conversion script

* Add notebook that checks if it works

* Add BeitForSemanticSegmentation to the tests

* More improvements

* Make BeitForSemanticSegmentation consistent with Segformer

* Small bug fix

* Add BeitForSemanticSegmentation to docs

* Make sure model doesn't output hidden states when the user doesn't want to

* Make it possible to convert the large model

* Fix issue

* Fix conversion script for large model

* Add auxiliary_head option to semantic segmentation model

* Apply suggestions from @sgugger's review

* Apply suggestions from code review

* Fix failing test

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-11-01 19:55:45 +01:00
8b32578119 improving efficiency of mlflow metric logging (#14232)
Signed-off-by: Walter Martin <wamartin@microsoft.com>
2021-11-01 13:46:11 -04:00
ce91bf9a34 [GPTJ] enable common tests and few fixes (#14190)
* enable common tests, small fixes

* don't tie word embeds

* don't ignore lm_head
2021-11-01 22:38:52 +05:30
70d5711848 Fix a writing issue in the comments of trainer.py (#14202) 2021-11-01 09:24:03 -04:00
33fb98338e Raising exceptions instead of using assertions for few models (#14219)
* raising exceptions instead of using assertions for few models

* fixed formatting issues

* fixing copy inconsistencies
2021-11-01 08:53:13 -04:00
999540dfe0 Tensor location is already handled (#14224)
in `base.py` not in subclasses.
2021-11-01 08:42:27 -04:00
323f28dce2 Fixing image-segmentation tests. (#14223) 2021-11-01 08:25:34 -04:00
7396095af7 Update README of QA examples (#14172) 2021-11-01 12:52:22 +01:00
9450bfcc6c Add more missing models to models/__init__.py (#14177)
* Add missing models to models/__init__.py

* Fix issues previously undetected

* Add UniSpeechSatForPreTraining to all_model_classes

* fix unispeech sat

* fix

* Add check_model_list() to check_repo.py

* Remove _ignore_models = ["bort"]

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-11-01 10:52:36 +00:00
9fc1951711 Docs for v4.12.2 2021-10-29 14:51:05 -04:00
513fa30a63 Docs for v4.12.1 2021-10-29 13:49:50 -04:00
63d91f449c Torch 1.10 (#14169)
* Torch 1.10

* torch scatter for 1.10

* style

* Skip tests
ok
2021-10-29 13:43:43 -04:00
e823d8198a Add a condition for checking labels (#14211) 2021-10-29 13:12:10 -04:00
b338596346 Fixing image segmentation with inference mode. (#14204)
* Fixing image segmentation for inference mode.

* Update src/transformers/pipelines/base.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-10-29 11:24:09 -04:00
c28bc80bbb Generalize problem_type to all sequence classification models (#14180)
* Generalize problem_type to all classification models

* Missing import

* Deberta BC and fix tests

* Fix template

* Missing imports

* Revert change to reformer test

* Fix style
2021-10-29 10:32:56 -04:00
4ab6a4a086 Fix pipeline tests env and fetch (#14209)
* Fix pipeline tests env and fetch

* Fix quality
2021-10-29 09:35:05 -04:00
dc540dd316 Adding handle_long_generation paramters for text-generation pipeline. (#14118)
* Adding `handle_long_generation` paramters for `text-generation` pipeline.

* More error handling

* Fixing tests by dropping tf support on this functionality, it needs

`max_new_tokens` to make it possible to understand user's intent.
Otherwise, `max_length` == `tokenizer.model_max_length` <
input_ids.shape[0].

* Fixing doc ?

* Doc ?

* Remove link from doc.

* Catched an issue on roberta.

* Damn doc.

* Non BC proposal ?

* Cleaning the fix ?

* Finally using only a test override.

* Don't need to modify this.

* Bad print.
2021-10-29 15:29:28 +02:00
d37f1fb8ba Add BlenderbotTokenizerFast (#13720)
* Add the support for the fast (rust) implementation of BlenbderbotTokenizer

* Fix a converter and a typo in a doc

* Apply the patil-suraj's suggestion

* (Nitpick) Fast tokenization -> Fast Tokenization in doc

* Apply the SaulLu's suggestion

* Apply Narsil's suggestion to fix test pipelines

* Add encoder_no_repeat_ngram_size according to the Narsil's suggestion

* Revert the last (unnecessary) commit

* Override pipeline config for Blenderbot to allow for larger pos. emb.

* make fix-copies
2021-10-29 09:19:01 -04:00
5b45422b58 Remove n_ctx from configs (#14165)
* Remove n_ctx from configs

* Fix GPTJ and OpenAIGPT, both are acceptable breaking changes as there are no configs such that it breaks

* Remove unecessary n_positions from TFOpenAIGPT
2021-10-29 11:50:25 +02:00
be236361f1 Adding batch_size support for (almost) all pipelines (#13724)
* Tentative enabling of `batch_size` for pipelines.

* Add systematic test for pipeline batching.

* Enabling batch_size on almost all pipelines

- Not `zero-shot` (it's already passing stuff as batched so trickier)
- Not `QA` (preprocess uses squad features, we need to switch to real
tensors at this boundary.

* Adding `min_length_for_response` for conversational.

* Making CTC, speech mappings avaiable regardless of framework.

* Attempt at fixing automatic tests (ffmpeg not enabled for fast tests)

* Removing ffmpeg dependency in tests.

* Small fixes.

* Slight cleanup.

* Adding docs

and adressing comments.

* Quality.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/zero_shot_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Improving docs.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>

* N -> oberved_batch_size

softmax trick.

* Follow `padding_side`.

* Supporting image pipeline batching (and padding).

* Rename `unbatch` -> `loader_batch`.

* unbatch_size forgot.

* Custom padding for offset mappings.

* Attempt to remove librosa.

* Adding require_audio.

* torchaudio.

* Back to using datasets librosa.

* Adding help to set a pad_token on the tokenizer.

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Quality.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
2021-10-29 11:34:18 +02:00
4469010c1b Replace assertions with RuntimeError exceptions (#14186) 2021-10-28 17:17:43 -04:00
ba71f1b57f Update README.md 2021-10-28 19:43:05 +02:00
b8fad022a0 v4.13.0.dev0 2021-10-28 12:56:46 -04:00
62bf536631 Release v4.12.0 2021-10-28 12:09:49 -04:00
5f3bf65111 Fix EncoderDecoderModel docs (#14197)
* Fix docs

* Apply suggestions from review + fix bug
2021-10-28 18:01:00 +02:00
ac12a5ae47 Fix EncoderDecoderModel classes to be more like BART and T5 (#14139)
* First draft

* Make tuple output more readable

* Replace assertions by value errors

* Make it possible to predict_with_generate for vision and speech models

* Adapt Seq2SeqTrainer to work with VisionEncoderDecoder/SpeechEncoderDecoder

* Add deprecation warning

* Add copied from statements to vision and speech encoder decoders

* Fix failing test

* Apply @patrickvonplaten's suggestion

* Use reshape instead of view for consistency
2021-10-28 15:29:04 +02:00
1251072f46 Fix SEW-D implementation differences (#14191)
* Fix SEW-D

* Update tests

* isort
2021-10-28 16:22:18 +03:00
78b6a2ecbd Add audio-classification benchmarking results (#14192) 2021-10-28 15:59:18 +03:00
1dc96a760d Add SegFormer (#14019)
* First draft

* Make style & quality

* Improve conversion script

* Add print statement to see actual slice

* Make absolute tolerance smaller

* Fix image classification models

* Add post_process_semantic method

* Disable padding

* Improve conversion script

* Rename to ForSemanticSegmentation, add integration test, remove post_process methods

* Improve docs

* Fix code quality

* Fix feature extractor tests

* Fix tests for image classification model

* Delete file

* Add is_torch_available to feature extractor

* Improve documentation of feature extractor methods

* Apply suggestions from @sgugger's code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions of code review

* Rebase with master

* Fix rebase issues

* Make sure model only outputs hidden states when the user wants to

* Apply suggestions from code review

* Add pad method

* Support padding of 2d images

* Add print statement

* Add print statement

* Move padding method to SegformerFeatureExtractor

* Fix issue

* Add casting of segmentation maps

* Add test for padding

* Add small note about padding

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-28 08:23:52 -04:00
123cce6ffc [modeling_utils] respect original dtype in _get_resized_lm_head (#14181)
* respect dtype in _get_resized_lm_head

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* consistency

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-27 19:01:50 -07:00
88cd82e801 Update README.md 2021-10-28 02:35:01 +02:00
e118db15d6 Update README.md 2021-10-28 01:59:27 +02:00
01b1466983 [TPU tests] Enable first TPU examples pytorch (#14121)
* up

* up

* fix

* up

* Update examples/pytorch/test_xla_examples.py

* correct labels

* up

* up

* up

* up

* up

* up
2021-10-28 01:22:28 +02:00
232822f36d Add DistilHuBERT (#14174)
* Add conversion

* Rename

* Add an integration test and remove layer_norm

* Remove layer_norm from the converter

* wording

* Fix imports
2021-10-27 20:17:31 +03:00
e5b8ffb848 Replace assert of data/data_collator.py by ValueError (#14131)
* Replace assert of data_collator.py by ValueError

* Replace assert of data_collator.py by ValueError
2021-10-27 12:19:10 -04:00
25ceb81871 [Pipelines] Fix ASR model types check (#14178) 2021-10-27 17:17:47 +03:00
6200fd7bbc [Gradient checkpointing] Enable for Deberta + DebertaV2 + SEW-D (#14175)
* up

* up

* finish

* up

* final changes
2021-10-27 15:47:20 +02:00
e1dc5afd28 Add SEW CTC models (#14158)
* Add SEW CTC models

* Update paths

* Update paths
2021-10-27 12:21:09 +03:00
1e53faeb2e Fix gelu test for torch 1.10 (#14167) 2021-10-26 22:20:51 -04:00
8ddbfe9752 switch to inference_mode from no_gard (#13667)
* switch to inference_mode from no_gard
faster inference

* added switch to support older version of pytorch
2021-10-26 18:02:58 -04:00
ebd48c6de5 Replace assertions with ValueError exception (#14142)
Updated masked-language modeling examples in pytorch
with convention defined by #12789
2021-10-26 17:14:29 -04:00
42bfb83d74 fix typos in error messages in speech recognition example and modelcard.py (#14166)
* specify the text column name in the error message

* pluralize the word fields
2021-10-26 16:36:26 -04:00
41dad89f70 chore: typo on ner accelerate example code (#14150) 2021-10-26 16:23:41 -04:00
27c888db6c Fix copies 2021-10-26 15:48:28 -04:00
3f23634a17 [ONNX] Add symbolic function for XSoftmax op for exporting to ONNX. (#14013)
* Add symbolic function for XSoftmax op for exporting to ONNX.

* Fix format issues.

* Fix a CI issue relative to copies.
2021-10-26 15:25:02 -04:00
9f3aa46f45 Add Unispeech & Unispeech-SAT (#13963)
* unispeech

* add copy from

* remove hubert copy from

* finish for today

* add unispeech-sat

* adapt more

* up

* up

* up

* up

* add modeling

* add tests

* up

* up

* finish

* up

* Apply suggestions from code review

* up

* up

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* up

* up

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-26 18:59:58 +02:00
9799f4e150 Update README.md 2021-10-26 18:59:25 +02:00
bfd8176636 [megatron_gpt2] dynamic gelu, add tokenizer, save config (#13928)
* [megatron_gpt2] dynamic gelu, add tokenizer, save config

* cleanup

* Update src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-26 09:09:54 -07:00
919a964b8f Include Keras tensor in the allowed types (#14155)
* Include KerasTensor in allowed types

- This allows propagating symbolic tensors through TFBert models and layers' call(),
  which allows converting the subclass models to functional models.

* Style pass

Co-authored-by: Sergio Valcarcel Macua <sergiov@graphcore.ai>
Co-authored-by: matt <rocketknight1@gmail.com>
2021-10-26 15:08:59 +01:00
f5ed19f57d [Speech Recognition] - Distributed training: Make sure vocab file removal and creation don't interfer (#14161)
* up

* better
2021-10-26 15:59:33 +02:00
840fc8dbca Add vision_encoder_decoder to models/__init__.py (#14151)
* Add vision_encoder_decoder

* Update _ignore_modules in get_model_modules()

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-10-26 07:36:17 -04:00
e248e9b042 up (#14154) 2021-10-26 13:08:18 +02:00
1f60df81b2 Add Camembert to models exportable with ONNX (#14059)
Add Camembert to models exportable with ONNX

Co-authored-by: Thomas.Chaigneau <thomas.chaigneau@arkea.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2021-10-26 11:22:22 +02:00
0c3174c758 Add TF<>PT and Flax<>PT everywhere (#14047)
* up

* up

* up

* up

* up

* up

* up

* add clip

* fix clip PyTorch

* fix clip PyTorch

* up

* up

* up

* up

* up

* up

* up
2021-10-25 23:55:08 +02:00
8560b55b5e Fix lazy init to stop hiding errors in import (#14124) 2021-10-25 16:53:47 -04:00
c99a2832ed Update README.md 2021-10-25 19:50:36 +02:00
1a9381c60d Update README.md 2021-10-25 19:49:51 +02:00
3e8761ab80 Enable DefaultDataCollator class (#14141) 2021-10-25 15:04:54 +01:00
84b9579da7 Remove unneeded to_tensor() in TF inline example (#14140) 2021-10-25 15:04:36 +01:00
1967c43eb9 BartEnocder add set_input_embeddings (#13960)
* BartEnocder add set_input_embeddings

To unify the interface, add set_input_embeddings to BartEncoder.

* BartEnocder add get_input_embeddings
2021-10-25 13:58:29 +02:00
3e04a41a9b Fix some writing issues in the docs (#14136)
* Fix some writing issues in the docs

* Run code quality check
2021-10-25 07:48:02 -04:00
2ac65551ea Fix rendering of examples version links (#14134) 2021-10-25 07:45:44 -04:00
1b871e091b Supporting Seq2Seq model for question answering task (#13432)
* Add seq2seq example for QnA on SQuAD Dataset.

* Changes from review - Fixing styling mistakes.

* Added how to example in README, simplified the access to dataset's preprocess function.

* Added tests for the seq2seq QA example.

* Change dataset column name to fix tests.

* Fix test command mistake.

* Add missing argument 'ignore_pad_token_for_loss' from DataTrainingArguments.

* Add missing argument 'num_beams' from DataTrainingArguments.

* Fix processing of output predicted token ids so that tokenizer decode gets appropriate input. Updated assertion conditions on the tests.
2021-10-25 07:42:53 -04:00
6b83090e80 Fix some typos in the docs (#14126)
* Fix some typos in the docs

* Fix a styling issue

* Fix code quality check error
2021-10-25 07:40:44 -04:00
95bab53868 Update TP parallel GEMM image (#14112)
* Update TP parallel GEMM image

* Delete parallelism-tp-parallel_gemm.png

* Update parallelism-tp-parallel_gemm.png
2021-10-22 12:57:48 -07:00
62ccbe0960 Rename variables with unclear naming (#14122)
* Rename var

* Add comments
2021-10-22 19:05:45 +02:00
05a2afc252 Add missing --validation_split_percentage data args (#14119) 2021-10-22 19:04:54 +02:00
c7ccb2e779 Fix assertion in models (#14090)
* replace assertions in src/transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py

* replace assertions in src/transformers/models/marian/convert_marian_to_pytorch.py

* Update src/transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/marian/convert_marian_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: skpig <1900012999@pku.edu.cn>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-22 10:03:09 -04:00
16d7b70b80 Update Korean README to master 2021-10-22 08:13:04 -04:00
fa4abdb3ea Replace assertions with valueError Exeptions (#14117)
* Replace assertions with valueError Exeptions

* Reformatted
2021-10-22 07:45:32 -04:00
9f53f049c6 Translate README.md to Korean (#14015)
* Create README_ko.md

* Update README.md

* Update README_zh-hans.md

* Update README_zh-hant.md

* Update README_ko.md

* Update check_copies.py

* Update README_ko.md

* typo

* match with readme_ko
2021-10-22 07:42:31 -04:00
f5a49bfa4d Replace assert statements with exceptions (#13871) (#13901)
* Replace assert statements with exceptions (#13871)

* Change f-strings when not needed (flake8)

* Replace assert statements with exceptions (#13871)

* Change f-strings when not needed (flake8)

* Improve error message as suggested by reviewer

* Fix identation bug

* Fix style errors
2021-10-22 13:11:40 +02:00
70f186f61e up (#14116) 2021-10-22 11:01:26 +02:00
ca2ef7dfcd Changed asserts to ValueError (#14091) 2021-10-21 18:07:18 -04:00
7888914edd Fix a typo in preprocessing docs (#14108) 2021-10-21 17:00:26 -04:00
d432a654f6 fix typo in license docstring (#14094)
last line: "# limitations under the License." is missing
2021-10-21 15:31:32 -04:00
7af55d3a1c Replace assertion with ValueError exception (#14098) 2021-10-21 15:31:00 -04:00
f00bceab8d Fix typo in comment (#14102) 2021-10-21 15:29:17 -04:00
234cfefbb0 Fix ignore_mismatched_sizes (#14085)
* Fix

* Style

* Name

* Fix tests

* Style

* Remove embed sizes checking

* Disable some tests

* Fix

* Apply suggestion
2021-10-21 12:31:29 -04:00
e03544a138 [Examples] Add audio classification notebooks (#14099)
* Update SEW integration test tolerance

* Add audio classification notebooks
2021-10-21 19:15:46 +03:00
0f502682fb Pin PyTorch to make CI green 2021-10-21 11:59:23 -04:00
f9c16b02e3 Replace "Masked" with "Causal" in TF CLM example (#14014) 2021-10-21 16:19:30 +01:00
3187228206 Replace assertions with ValueError exceptions (#14061)
* Replace assertions with ValueError exceptions

* Format error messages as suggested
2021-10-21 07:32:27 -04:00
9e4ea25175 Change asserts in src/transformers/models/xlnet/ to raise ValueError (#14088)
* Change asserts in src/transformers/models/xlnet/ to raise ValueError

* Update src/transformers/models/xlnet/modeling_tf_xlnet.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-21 07:27:32 -04:00
e9d2a639f4 up (#14093) 2021-10-21 10:30:02 +02:00
49155d2431 Fix broken link in translation section (#14087) 2021-10-20 15:10:57 -04:00
0270d44f57 Context managers (#13900)
* add `ContextManagers` for lists of contexts

* fix import sorting

* add `ContextManagers` tests
2021-10-20 14:15:47 +02:00
f875fb0e5f Fix label attribution in token classification examples (#14055) 2021-10-20 07:55:14 -04:00
31560f6397 Fix assert in src/transformers/data/datasets/language_modeling.py (#14077)
* replace assertion with ValueError

* fix code style

Co-authored-by: skpig <1900012999@pku.edu.cn>
2021-10-20 07:54:39 -04:00
0106826a65 Fix missing autocast() in Trainer.prediction_step() (#14075)
Co-authored-by: jonas <jonas@hpcnt.com>
2021-10-20 07:51:30 -04:00
a43d9352a9 replace assert with exception in src/transformers/utils/model_pararallel_utils.py (#14072)
* replace assert with exception in src/transformers/utils/model_parallel_utils.py

* fix some code style

* fix typo

Co-authored-by: skpig <1900012999@pku.edu.cn>
2021-10-20 07:43:45 -04:00
53dc39d821 up (#14079) 2021-10-20 13:01:42 +02:00
0bc2e54f00 Add ASR colabs (#14067)
* up

* Update notebooks/README.md
2021-10-20 11:51:41 +02:00
dbaf49203e [Examples] Use Audio feature in speech classification (#14052)
* Update SEW integration test tolerance

* Update audio classification

* Update test

* Remove torchaudio

* Add dataset revision

* Hub branch naming

* Revert dataset revisions

* Update datasets
2021-10-20 12:22:43 +03:00
3fefa292c1 Trainer._load_rng_state() path fix (#14069) (#14071) 2021-10-19 22:06:19 -04:00
3892d09f4f update to_py_obj to support np.number (#14064)
Co-authored-by: 眸浩 <mouhao.zm@alibaba-inc.com>
2021-10-19 14:30:53 -04:00
122c2f81b7 TF Model train and eval step metrics for seq2seq models. (#14009)
* TF Model train and eval step metrics for seq2seq models.

When using a model with a seq2seq output compute metrics against logits.

* Removing vestigial code

Co-authored-by: matt <rocketknight1@gmail.com>
2021-10-19 12:14:21 +01:00
fde4867f97 Fix passing None as concrete args (#14022) 2021-10-19 10:56:17 +02:00
9eda0d156d Fix typo (#14056) 2021-10-18 18:03:39 -04:00
7a3147e9b8 fix typo (#14049) 2021-10-18 18:03:11 -04:00
d5ff69fce9 [Speech] Refactor Examples (#14040)
* adapt_examples

* up

* up

* up

* up

* add auto models

* finish
2021-10-18 17:43:35 +02:00
2024faf171 Fix save when laod_best_model_at_end=True (#14054) 2021-10-18 10:22:57 -04:00
2c60ff2fe2 Add an API to register objects to Auto classes (#13989)
* Add API to register a new object in auto classes

* Fix test

* Documentation

* Add to tokenizers and test

* Add cleanup after tests

* Be more careful

* Move import

* Move import

* Cleanup in TF test too

* Add consistency check

* Add documentation

* Style

* Update docs/source/model_doc/auto.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/auto/auto_factory.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-10-18 10:22:46 -04:00
3d587c5343 Add BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese (#13788)
* Add the pre-trained BARTpho model

* Add the pre-trained BARTpho model

* Add the pre-trained BARTpho model

* Fix incorrectly sorted and/or formatted imports

* Fix incorrectly sorted and/or formatted style

* Fix check_dummies

* Fix check_dummies

* Fix check_dummies

* Update docs/source/model_doc/bartpho.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/bartpho/__init__.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/bartpho/tokenization_bartpho.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/test_tokenization_bartpho.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/bartpho/tokenization_bartpho.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/test_tokenization_bartpho.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/bartpho.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/bartpho.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/bartpho/__init__.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Add the pre-trained BARTpho model

* Add Tips section in doc and details of monolingual_vocab_file

* Fix conflicts

* Add another tip related to monolingual_vocab_file

* Readd dependency_versions_table.py

* Handle failing checks

* Remove test_list.txt

* Remove md5sum.saved

* Revise Readme.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-18 10:16:46 -04:00
7c6cd0ac28 up (#14046) 2021-10-18 12:59:18 +02:00
82b62fa607 Update SEW integration test tolerance (#14048) 2021-10-18 13:58:59 +03:00
bdf31d6e0a [Speech] Move all examples to new audio feature (#14045)
* up

* up

* up

* finish
2021-10-18 12:52:40 +02:00
4334095c32 Fix typo (#14044) 2021-10-18 04:24:25 -04:00
37c5759cbe [Speech Examples] Add new audio feature (#14027)
* finish

* up

* finish all

* up
2021-10-17 23:01:03 +02:00
cde0c750af Replace assertions with ValueError exceptions (#14018)
* Replace assertions with ValueError exceptions

* Change length check for a more explicit one
2021-10-15 20:28:13 -04:00
968ae57c60 Don't duplicate the elements in dir (#14023) 2021-10-15 20:09:54 -04:00
84ad6af49a minor fixes (#14026) 2021-10-15 20:08:57 -04:00
f5af873617 [Docs] More general docstrings (#14028)
* up

* finish

* up

* up

* finish
2021-10-16 00:48:37 +02:00
47489a6974 Fix: replace asserts statements with exception (#14029) 2021-10-15 15:56:07 -04:00
cd3166a8ed Add the SEW and SEW-D speech models (#13962)
* Working encoder

* SEW-D and tests

* Further conv fixes

* Automodels and conv inits

* Update integration tests, add docs

* Docs cleanup, resolve todos

* Conf fix

* Fix docs

* Fix tests, apply suggestions

* Update src/transformers/models/sew/modeling_sew.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Model conversion and updated no-mask tests

* Remove copy of feature_proj

* Style

* Update src/transformers/models/auto/feature_extraction_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/auto/feature_extraction_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Move orgs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-10-15 18:26:26 +03:00
d5b82bb70c Fixed horizon_length for PPLM (#13886)
* fixed horizon_length

* fixed horizon_length

* fix style
2021-10-14 21:46:09 -04:00
5b317f7ea4 Scatter dummies + skip pipeline tests (#13996)
* Scatter dummies + skip pipeline tests

* Add torch scatter to build docs
2021-10-14 15:30:27 -04:00
b65c389769 Raise exceptions instead of asserts in src/transformers/models/bart/modeling_flax_[bart, marian, mbart, pegasus].py (#13939)
* Raise exceptions instead of asserts

* fix: fixed failing quality check with copies

* fix: fixed max line length

* rerun github ci, failed to install dependencies
2021-10-14 10:12:32 -04:00
7fb2a8b3d9 up (#14008) 2021-10-14 15:46:22 +02:00
7604557e44 Fix FNet tokenizer tests (#13995) 2021-10-14 09:07:51 -04:00
f2002fea11 Add strong test for configuration attributes (#14000)
* Add strong test for configuration attributes

* Add fake modif to trigger all tests

* Add a better fake modif

* Ignore is_encoder_decoder

* Fix faulty configs

* Remove fake modif
2021-10-14 09:07:08 -04:00
0ef61d392c Revert "Skip faulty test"
This reverts commit 5b6bd4e7880cd51375c2d6c33bbd8173acfd920b.
2021-10-14 09:02:41 -04:00
a5be95413f Replace assertion with ValueError exception (#14006) 2021-10-14 08:57:12 -04:00
cc36064960 up (#13988) 2021-10-14 10:54:20 +02:00
5b6bd4e788 Skip faulty test 2021-10-13 22:04:40 -04:00
51ee20fc26 Remove wrong model_args supplied (#13937)
* Remove wrong model_args of config.from_pretrained

* Fix tf & flax
2021-10-13 21:28:11 -04:00
408b2d2bd0 Add TrOCR + VisionEncoderDecoderModel (#13874)
* First draft

* Update self-attention of RoBERTa as proposition

* Improve conversion script

* Add TrOCR decoder-only model

* More improvements

* Make forward pass with pretrained weights work

* More improvements

* Some more improvements

* More improvements

* Make conversion work

* Clean up print statements

* Add documentation, processor

* Add test files

* Small improvements

* Some more improvements

* Make fix-copies, improve docs

* Make all vision encoder decoder model tests pass

* Make conversion script support other models

* Update URL for OCR image

* Update conversion script

* Fix style & quality

* Add support for the large-printed model

* Fix some issues

* Add print statement for debugging

* Add print statements for debugging

* Make possible fix for sinusoidal embedding

* Further debugging

* Potential fix v2

* Add more print statements for debugging

* Add more print statements for debugging

* Deubg more

* Comment out print statements

* Make conversion of large printed model possible, address review comments

* Make it possible to convert the stage1 checkpoints

* Clean up code, apply suggestions from code review

* Apply suggestions from code review, use Microsoft models in tests

* Rename encoder_hidden_size to cross_attention_hidden_size

* Improve docs
2021-10-13 10:28:56 +02:00
61f6426269 [parallel doc] dealing with layers larger than one gpu (#13980) 2021-10-12 15:37:55 -07:00
8b240a0661 Add TFEncoderDecoderModel + Add cross-attention to some TF models (#13222)
* Add cross attentions to TFGPT2Model

* Add TFEncoderDecoderModel

* Add TFBaseModelOutputWithPoolingAndCrossAttentions

* Add cross attentions to TFBertModel

* Fix past or past_key_values argument issue

* Fix generation

* Fix save and load

* Add some checks and comments

* Clean the code that deals with past keys/values

* Add kwargs to processing_inputs

* Add serving_output to TFEncoderDecoderModel

* Some cleaning + fix use_cache value issue

* Fix tests + add bert2bert/bert2gpt2 tests

* Fix more tests

* Ignore crossattention.bias when loading GPT2 weights into TFGPT2

* Fix return_dict_in_generate in tf generation

* Fix is_token_logit_eos_token bug in tf generation

* Finalize the tests after fixing some bugs

* Fix another is_token_logit_eos_token bug in tf generation

* Add/Update docs

* Add TFBertEncoderDecoderModelTest

* Clean test script

* Add TFEncoderDecoderModel to the library

* Add cross attentions to TFRobertaModel

* Add TFRobertaEncoderDecoderModelTest

* make style

* Change the way of position_ids computation

* bug fix

* Fix copies in tf_albert

* Remove some copied from and apply some fix-copies

* Remove some copied

* Add cross attentions to some other TF models

* Remove encoder_hidden_states from TFLayoutLMModel.call for now

* Make style

* Fix TFRemBertForCausalLM

* Revert the change to longformer + Remove copies

* Revert the change to albert and convbert + Remove copies

* make quality

* make style

* Add TFRembertEncoderDecoderModelTest

* make quality and fix-copies

* test TFRobertaForCausalLM

* Fixes for failed tests

* Fixes for failed tests

* fix more tests

* Fixes for failed tests

* Fix Auto mapping order

* Fix TFRemBertEncoder return value

* fix tf_rembert

* Check copies are OK

* Fix missing TFBaseModelOutputWithPastAndCrossAttentions is not defined

* Add TFEncoderDecoderModelSaveLoadTests

* fix tf weight loading

* check the change of use_cache

* Revert the change

* Add missing test_for_causal_lm for TFRobertaModelTest

* Try cleaning past

* fix _reorder_cache

* Revert some files to original versions

* Keep as many copies as possible

* Apply suggested changes - Use raise ValueError instead of assert

* Move import to top

* Fix wrong require_torch

* Replace more assert by raise ValueError

* Add test_pt_tf_model_equivalence (the test won't pass for now)

* add test for loading/saving

* finish

* finish

* Remove test_pt_tf_model_equivalence

* Update tf modeling template

* Remove pooling, added in the prev. commit, from MainLayer

* Update tf modeling test template

* Move inputs["use_cache"] = False to modeling_tf_utils.py

* Fix torch.Tensor in the comment

* fix use_cache

* Fix missing use_cache in ElectraConfig

* Add a note to from_pretrained

* Fix style

* Change test_encoder_decoder_save_load_from_encoder_decoder_from_pt

* Fix TFMLP (in TFGPT2) activation issue

* Fix None past_key_values value in serving_output

* Don't call get_encoderdecoder_model in TFEncoderDecoderModelTest.test_configuration_tie until we have a TF checkpoint on Hub

* Apply review suggestions - style for cross_attns in serving_output

* Apply review suggestions - change assert + docstrings

* break the error message to respect the char limit

* deprecate the argument past

* fix docstring style

* Update the encoder-decoder rst file

* fix Unknown interpreted text role "method"

* fix typo

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-10-13 00:10:34 +02:00
26b6ef79d6 Fixing the lecture values by making sure defaults are not changed (#13976)
384 // 4 < 128 would break `doc_stride`.
2021-10-12 18:18:19 +02:00
58bf882579 [Wav2Vec2] Make sure tensors are always bool for mask_indices (#13977)
* correct long to bool

* up

* correct code
2021-10-12 18:17:06 +02:00
11c043d27d Specify im-seg mask greyscole mode (#13974) 2021-10-12 16:26:18 +02:00
85d69a7dd1 Fix missing tpu variable in benchmark_args_tf.py (#13968) 2021-10-11 23:30:03 -04:00
990de2c17c Remove pip 21.3 from installation candidates for model templates 2021-10-11 23:21:37 -04:00
d45fc7da3d [Speech Examples] Add pytorch speech pretraining (#13877)
* adapt wav2vec2

* add example

* add files

* adapt

* remove bogus file

* Apply suggestions from code review

* adapt files more

* upload changes

* del old files

* up

* up

* up

* up

* up

* correct gradient checkpoitning

* add readme

* finish

* finish

* up

* more fixes

* up

* up

* add demo run to readme

* up
2021-10-12 00:46:32 +02:00
3499728dc4 Replace assert by ValueError of src/transformers/models/electra/modeling_{electra,tf_electra}.py and all other models that had copies (#13955)
* Replace all assert by ValueError in src/transformers/models/electra

* Reformat with black to pass check_code_quality test

* Change some assert to ValueError of modeling_bert & modeling_tf_albert

* Change some assert in multiples models

* Change multiples models assertion to ValueError in order to validate
  check_code_style test and models template test.

* Black reformat

* Change some more asserts in multiples models

* Change assert to ValueError in modeling_layoutlm.py to fix copy error in code_style_check

* Add proper message to ValueError in modeling_tf_albert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Simplify logic in models/bert/modeling_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add ValueError message to models/convbert/modeling_tf_convbert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add error message for ValueError to modeling_tf_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Simplify logic in models/tapas/modeling_tapas.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Simplify logic in models/electra/modeling_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add ValueError message in src/transformers/models/bert/modeling_tf_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Simplify logic in src/transformers/models/rembert/modeling_rembert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Simplify logic in src/transformers/models/albert/modeling_albert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-11 13:58:09 -04:00
64743d0abe Raise exceptions instead of asserts (#13938) 2021-10-11 12:21:49 -04:00
32634bce33 Make username optional in hub_model_id (#13940) 2021-10-11 12:03:58 -04:00
708ffff665 Raise exceptions instead of asserts in xnli.py (#13945) 2021-10-11 10:22:35 -04:00
e1bb2ebd92 Replace assert with unittest assertions (#13957) 2021-10-11 10:21:46 -04:00
6e4c8f683c change to apply pad_to_multiple_of to labels (#13949) 2021-10-11 09:35:20 -04:00
dca6796876 [Gradient checkpoining] Correct disabling find_unused_parameters in Trainer when gradient checkpointing is enabled (#13961)
* up

* correct test
2021-10-11 15:34:01 +02:00
4a18337bae Honor existing attention mask in tokenzier.pad (#13926)
* Honor existing attention mask in tokenzier.pad

* Fix initialization of attention mask

* Roll the implem on all subclasses

* Fix tests
2021-10-11 09:12:09 -04:00
3c0c699ffd Raise ValueError instead of asserts in src/transformers/benchmark/benchmark.py (#13951)
* Raise ValueError exception instead of assert

* Remove f unnecessary f-strings

* Remove unused f-strings
2021-10-11 10:59:16 +02:00
91758e399f fix issue 13904 -attribute does not exist- by change self_.mapping to self._model_mapping (#13942) 2021-10-09 09:07:39 -04:00
239bd61b99 Update bug-report.md (#13934)
* Update bug-report.md

* Update .github/ISSUE_TEMPLATE/bug-report.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update .github/ISSUE_TEMPLATE/bug-report.md

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2021-10-08 14:41:51 -04:00
46dfe99e44 Fix typo in README.md (#13883) 2021-10-08 14:25:32 -04:00
3e218523e8 Merge remote-tracking branch 'origin/master' 2021-10-08 11:30:39 -04:00
9e15b511c3 Move to TF only 2021-10-08 11:30:29 -04:00
cb911e5bc1 Style 2021-10-08 11:29:10 -04:00
c8b07612a1 [Generation] Fix max_new_tokens (#13919)
* up

* Update src/transformers/generation_stopping_criteria.py

* finish
2021-10-08 17:28:18 +02:00
5a1b5e4b1d Register keras_callbacks as a submodule 2021-10-08 11:00:48 -04:00
23ee06ed55 Fixed typo: herBERT -> HerBERT (#13936) 2021-10-08 10:27:32 -04:00
de344815ed Adds PreTrainedModel.framework attribute (#13817)
* Added `framework` attribute

* Update modeling_utils.py

* Update modeling_flax_utils.py

* Update modeling_tf_utils.py

* Update modeling_utils.py

* Update modeling_tf_utils.py

* Update modeling_tf_utils.py

* Update modeling_flax_utils.py

* Update modeling_tf_utils.py

* Update modeling_utils.py

* Update modeling_utils.py

* Update modeling_tf_utils.py

* Update modeling_flax_utils.py

* string -> str

* Update modeling_tf_utils.py

* string -> str

* fixup

* make flake happy

Co-authored-by: patil-suraj <surajp815@gmail.com>
2021-10-08 19:37:09 +05:30
d70919e6d5 Adding support for tokens being suffixes or part of each other. (#13918)
* Adding support for tokens being suffixes or part of each other.

* Better test name.
2021-10-08 10:10:38 +02:00
026866df92 Image Segmentation pipeline (#13828)
* Implement img seg pipeline

* Update src/transformers/pipelines/image_segmentation.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/image_segmentation.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update output shape with individual masks

* Rm dev change

* Remove loops in test

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-10-08 09:59:53 +02:00
be71ac3bcb [trainer] memory metrics: add memory at the start report (#13915)
* [trainer] memory metrics: add memory at start

* fix for no-gpu
2021-10-07 10:29:01 -07:00
61cf2ea9c0 Fix incorrect output shapes for TF/PT LED (#13882)
* Fix issues with LED model

* Style pass

* Bugfixes

* correct attentions as well

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-10-07 17:30:15 +01:00
5f34163b88 Add missing character (#13922) 2021-10-07 18:10:19 +02:00
0f5488f79f [Wav2Vec2] Fix mask_feature_prob (#13921)
* up

* overwrite hubert
2021-10-07 19:07:32 +03:00
57420b103e Add missing whitespace to multiline strings (#13916) 2021-10-07 09:22:11 -04:00
319beb64eb #12789 Replace assert statements with exceptions (#13909)
* #12789 Replace assert statements with exceptions

* fix-copies: made copy changes to utils_qa.py in examples/pytorch/question-answering and examples/tensorflow/question-answering

* minor refactor for clarity
2021-10-07 09:09:01 -04:00
279ce5b705 Add an example of exporting BartModel + BeamSearch to ONNX module. (#13765)
* Add all example files.

* Reformat files by black.

* Style.

* Remove unused imports.

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
2021-10-07 12:07:02 +02:00
0d309ce39a Raise exceptions instead of asserts (#13907) 2021-10-07 12:44:23 +05:30
5be59a3649 Deploy docs for v4.11.3 2021-10-06 12:58:47 -04:00
5d390e9ee5 Fix nan-loss condition (#13911) 2021-10-06 12:40:51 -04:00
8f2c07d3cf Fix hp search for non sigopt backends (#13897) 2021-10-06 11:52:28 -04:00
77770ec798 Fix trainer logging_nan_inf_filter in torch_xla mode (#13896)
* Fix logging_nan_inf_filter in torch_xla mode

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix format

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-06 07:54:54 -04:00
aea7c5b0c8 T5ForConditionalGeneration: enabling using past_key_values and labels in training (#13805)
* enabling using past_key_values together with labels when training in T5ForConditionalGeneration

* test

* Enable past_key_values in T5ForconditionalGeneration while training.

* delete comments
2021-10-06 12:50:41 +05:30
dac7798144 Update run_qa.py (#13857) 2021-10-05 23:10:24 -04:00
013bdc6d65 Fixing Backward compatiblity for zero-shot (#13855)
Fixes #13846
2021-10-05 23:06:47 -04:00
9f58becc8d Replace assert statements with exceptions (#13871) 2021-10-05 23:02:44 -04:00
155b23008e Update FSNER code in examples->research_projects->fsner (#13864)
* Add example use of few-shot named entity recognition model in research_projects folder.

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update fsner example README.md.

- Change wrong import FSNERTokenizerWrapper to FSNERTokenizerUtils in the example code
- Add a link to the model identifier

* Update examples/research_projects/fsner/src/fsner/model.py

Fix spelling mistake in the default parameter of pretrained model name.

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Add example use of few-shot named entity recognition model in research_projects folder.

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update fsner example README.md.

- Change wrong import FSNERTokenizerWrapper to FSNERTokenizerUtils in the example code
- Add a link to the model identifier

* Update examples/research_projects/fsner/src/fsner/model.py

Fix spelling mistake in the default parameter of pretrained model name.

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Run Checking/fixing examples/flax/language-modeling/run_clm_flax.py examples/flax/question-answering/run_qa.py examples/flax/question-answering/utils_qa.py examples/flax/token-classification/run_flax_ner.py examples/legacy/multiple_choice/utils_multiple_choice.py examples/legacy/seq2seq/seq2seq_trainer.py examples/legacy/token-classification/utils_ner.py examples/pytorch/image-classification/run_image_classification.py examples/pytorch/language-modeling/run_clm.py examples/pytorch/language-modeling/run_clm_no_trainer.py examples/pytorch/language-modeling/run_mlm.py examples/pytorch/language-modeling/run_mlm_no_trainer.py examples/pytorch/language-modeling/run_plm.py examples/pytorch/multiple-choice/run_swag.py examples/pytorch/multiple-choice/run_swag_no_trainer.py examples/pytorch/question-answering/run_qa.py examples/pytorch/question-answering/run_qa_beam_search.py examples/pytorch/question-answering/run_qa_beam_search_no_trainer.py examples/pytorch/question-answering/run_qa_no_trainer.py examples/pytorch/summarization/run_summarization.py examples/pytorch/summarization/run_summarization_no_trainer.py examples/pytorch/test_examples.py examples/pytorch/text-classification/run_glue.py examples/pytorch/text-classification/run_glue_no_trainer.py examples/pytorch/text-classification/run_xnli.py examples/pytorch/token-classification/run_ner.py examples/pytorch/token-classification/run_ner_no_trainer.py examples/pytorch/translation/run_translation.py examples/pytorch/translation/run_translation_no_trainer.py examples/research_projects/adversarial/utils_hans.py examples/research_projects/distillation/grouped_batch_sampler.py examples/research_projects/fsner/setup.py examples/research_projects/fsner/src/fsner/__init__.py examples/research_projects/fsner/src/fsner/model.py examples/research_projects/fsner/src/fsner/tokenizer_utils.py examples/research_projects/jax-projects/big_bird/evaluate.py examples/research_projects/jax-projects/hybrid_clip/run_hybrid_clip.py examples/tensorflow/language-modeling/run_clm.py examples/tensorflow/multiple-choice/run_swag.py examples/tensorflow/question-answering/run_qa.py examples/tensorflow/summarization/run_summarization.py examples/tensorflow/text-classification/run_glue.py examples/tensorflow/translation/run_translation.py src/transformers/__init__.py src/transformers/commands/add_new_model.py src/transformers/configuration_utils.py src/transformers/convert_slow_tokenizer.py src/transformers/data/__init__.py src/transformers/data/data_collator.py src/transformers/data/datasets/glue.py src/transformers/data/datasets/language_modeling.py src/transformers/data/datasets/squad.py src/transformers/deepspeed.py src/transformers/dependency_versions_table.py src/transformers/feature_extraction_sequence_utils.py src/transformers/file_utils.py src/transformers/generation_flax_utils.py src/transformers/generation_logits_process.py src/transformers/generation_tf_utils.py src/transformers/generation_utils.py src/transformers/integrations.py src/transformers/modelcard.py src/transformers/modeling_flax_utils.py src/transformers/modeling_outputs.py src/transformers/modeling_tf_utils.py src/transformers/modeling_utils.py src/transformers/models/__init__.py src/transformers/models/albert/__init__.py src/transformers/models/albert/modeling_albert.py src/transformers/models/albert/modeling_flax_albert.py src/transformers/models/albert/tokenization_albert_fast.py src/transformers/models/auto/__init__.py src/transformers/models/auto/auto_factory.py src/transformers/models/auto/configuration_auto.py src/transformers/models/auto/dynamic.py src/transformers/models/auto/feature_extraction_auto.py src/transformers/models/auto/modeling_auto.py src/transformers/models/auto/modeling_flax_auto.py src/transformers/models/auto/modeling_tf_auto.py src/transformers/models/auto/tokenization_auto.py src/transformers/models/bart/configuration_bart.py src/transformers/models/bart/modeling_bart.py src/transformers/models/bart/modeling_flax_bart.py src/transformers/models/bart/modeling_tf_bart.py src/transformers/models/barthez/tokenization_barthez_fast.py src/transformers/models/beit/__init__.py src/transformers/models/beit/configuration_beit.py src/transformers/models/beit/modeling_beit.py src/transformers/models/beit/modeling_flax_beit.py src/transformers/models/bert/configuration_bert.py src/transformers/models/bert/modeling_bert.py src/transformers/models/bert/modeling_flax_bert.py src/transformers/models/bert_generation/configuration_bert_generation.py src/transformers/models/bert_generation/modeling_bert_generation.py src/transformers/models/big_bird/configuration_big_bird.py src/transformers/models/big_bird/modeling_big_bird.py src/transformers/models/big_bird/modeling_flax_big_bird.py src/transformers/models/big_bird/tokenization_big_bird_fast.py src/transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py src/transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py src/transformers/models/blenderbot/configuration_blenderbot.py src/transformers/models/blenderbot/modeling_blenderbot.py src/transformers/models/blenderbot/modeling_tf_blenderbot.py src/transformers/models/blenderbot_small/configuration_blenderbot_small.py src/transformers/models/blenderbot_small/modeling_blenderbot_small.py src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py src/transformers/models/byt5/tokenization_byt5.py src/transformers/models/camembert/tokenization_camembert_fast.py src/transformers/models/canine/configuration_canine.py src/transformers/models/canine/modeling_canine.py src/transformers/models/clip/configuration_clip.py src/transformers/models/clip/convert_clip_original_pytorch_to_hf.py src/transformers/models/clip/modeling_clip.py src/transformers/models/clip/modeling_flax_clip.py src/transformers/models/clip/tokenization_clip.py src/transformers/models/convbert/modeling_convbert.py src/transformers/models/ctrl/configuration_ctrl.py src/transformers/models/deberta/modeling_tf_deberta.py src/transformers/models/deberta_v2/__init__.py src/transformers/models/deberta_v2/modeling_deberta_v2.py src/transformers/models/deberta_v2/modeling_tf_deberta_v2.py src/transformers/models/deit/configuration_deit.py src/transformers/models/deit/modeling_deit.py src/transformers/models/detr/configuration_detr.py src/transformers/models/detr/modeling_detr.py src/transformers/models/distilbert/__init__.py src/transformers/models/distilbert/configuration_distilbert.py src/transformers/models/distilbert/modeling_distilbert.py src/transformers/models/distilbert/modeling_flax_distilbert.py src/transformers/models/dpr/configuration_dpr.py src/transformers/models/dpr/modeling_dpr.py src/transformers/models/electra/modeling_electra.py src/transformers/models/electra/modeling_flax_electra.py src/transformers/models/encoder_decoder/__init__.py src/transformers/models/encoder_decoder/modeling_encoder_decoder.py src/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py src/transformers/models/flaubert/configuration_flaubert.py src/transformers/models/flaubert/modeling_flaubert.py src/transformers/models/fnet/__init__.py src/transformers/models/fnet/configuration_fnet.py src/transformers/models/fnet/convert_fnet_original_flax_checkpoint_to_pytorch.py src/transformers/models/fnet/modeling_fnet.py src/transformers/models/fnet/tokenization_fnet.py src/transformers/models/fnet/tokenization_fnet_fast.py src/transformers/models/fsmt/configuration_fsmt.py src/transformers/models/fsmt/modeling_fsmt.py src/transformers/models/funnel/configuration_funnel.py src/transformers/models/gpt2/__init__.py src/transformers/models/gpt2/configuration_gpt2.py src/transformers/models/gpt2/modeling_flax_gpt2.py src/transformers/models/gpt2/modeling_gpt2.py src/transformers/models/gpt2/modeling_tf_gpt2.py src/transformers/models/gpt_neo/configuration_gpt_neo.py src/transformers/models/gpt_neo/modeling_gpt_neo.py src/transformers/models/gptj/__init__.py src/transformers/models/gptj/configuration_gptj.py src/transformers/models/gptj/modeling_gptj.py src/transformers/models/herbert/tokenization_herbert_fast.py src/transformers/models/hubert/__init__.py src/transformers/models/hubert/configuration_hubert.py src/transformers/models/hubert/convert_hubert_original_s3prl_checkpoint_to_pytorch.py src/transformers/models/hubert/modeling_hubert.py src/transformers/models/hubert/modeling_tf_hubert.py src/transformers/models/ibert/modeling_ibert.py src/transformers/models/layoutlm/__init__.py src/transformers/models/layoutlm/configuration_layoutlm.py src/transformers/models/layoutlm/modeling_layoutlm.py src/transformers/models/layoutlmv2/__init__.py src/transformers/models/layoutlmv2/configuration_layoutlmv2.py src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py src/transformers/models/layoutlmv2/modeling_layoutlmv2.py src/transformers/models/layoutlmv2/processing_layoutlmv2.py src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py src/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py src/transformers/models/led/configuration_led.py src/transformers/models/led/modeling_led.py src/transformers/models/longformer/modeling_longformer.py src/transformers/models/luke/configuration_luke.py src/transformers/models/luke/modeling_luke.py src/transformers/models/luke/tokenization_luke.py src/transformers/models/lxmert/configuration_lxmert.py src/transformers/models/m2m_100/configuration_m2m_100.py src/transformers/models/m2m_100/modeling_m2m_100.py src/transformers/models/m2m_100/tokenization_m2m_100.py src/transformers/models/marian/configuration_marian.py src/transformers/models/marian/modeling_flax_marian.py src/transformers/models/marian/modeling_marian.py src/transformers/models/marian/modeling_tf_marian.py src/transformers/models/mbart/configuration_mbart.py src/transformers/models/mbart/modeling_flax_mbart.py src/transformers/models/mbart/modeling_mbart.py src/transformers/models/mbart/tokenization_mbart.py src/transformers/models/mbart/tokenization_mbart_fast.py src/transformers/models/mbart50/tokenization_mbart50.py src/transformers/models/mbart50/tokenization_mbart50_fast.py src/transformers/models/megatron_bert/configuration_megatron_bert.py src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py src/transformers/models/megatron_bert/modeling_megatron_bert.py src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py src/transformers/models/openai/configuration_openai.py src/transformers/models/pegasus/__init__.py src/transformers/models/pegasus/configuration_pegasus.py src/transformers/models/pegasus/modeling_flax_pegasus.py src/transformers/models/pegasus/modeling_pegasus.py src/transformers/models/pegasus/modeling_tf_pegasus.py src/transformers/models/pegasus/tokenization_pegasus_fast.py src/transformers/models/prophetnet/configuration_prophetnet.py src/transformers/models/prophetnet/modeling_prophetnet.py src/transformers/models/rag/modeling_rag.py src/transformers/models/rag/modeling_tf_rag.py src/transformers/models/reformer/configuration_reformer.py src/transformers/models/reformer/tokenization_reformer_fast.py src/transformers/models/rembert/configuration_rembert.py src/transformers/models/rembert/modeling_rembert.py src/transformers/models/rembert/tokenization_rembert_fast.py src/transformers/models/roberta/modeling_flax_roberta.py src/transformers/models/roberta/modeling_roberta.py src/transformers/models/roberta/modeling_tf_roberta.py src/transformers/models/roformer/configuration_roformer.py src/transformers/models/roformer/modeling_roformer.py src/transformers/models/speech_encoder_decoder/__init__.py src/transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py src/transformers/models/speech_encoder_decoder/convert_speech_to_text_wav2vec2_seq2seq_original_to_pytorch.py src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py src/transformers/models/speech_to_text/configuration_speech_to_text.py src/transformers/models/speech_to_text/feature_extraction_speech_to_text.py src/transformers/models/speech_to_text/modeling_speech_to_text.py src/transformers/models/speech_to_text_2/__init__.py src/transformers/models/speech_to_text_2/configuration_speech_to_text_2.py src/transformers/models/speech_to_text_2/modeling_speech_to_text_2.py src/transformers/models/speech_to_text_2/processing_speech_to_text_2.py src/transformers/models/speech_to_text_2/tokenization_speech_to_text_2.py src/transformers/models/splinter/configuration_splinter.py src/transformers/models/splinter/modeling_splinter.py src/transformers/models/t5/configuration_t5.py src/transformers/models/t5/modeling_flax_t5.py src/transformers/models/t5/modeling_t5.py src/transformers/models/t5/modeling_tf_t5.py src/transformers/models/t5/tokenization_t5_fast.py src/transformers/models/tapas/__init__.py src/transformers/models/tapas/configuration_tapas.py src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py src/transformers/models/tapas/modeling_tapas.py src/transformers/models/tapas/tokenization_tapas.py src/transformers/models/transfo_xl/configuration_transfo_xl.py src/transformers/models/visual_bert/modeling_visual_bert.py src/transformers/models/vit/configuration_vit.py src/transformers/models/vit/convert_dino_to_pytorch.py src/transformers/models/vit/modeling_flax_vit.py src/transformers/models/vit/modeling_vit.py src/transformers/models/wav2vec2/__init__.py src/transformers/models/wav2vec2/configuration_wav2vec2.py src/transformers/models/wav2vec2/convert_wav2vec2_original_s3prl_checkpoint_to_pytorch.py src/transformers/models/wav2vec2/feature_extraction_wav2vec2.py src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py src/transformers/models/wav2vec2/modeling_wav2vec2.py src/transformers/models/wav2vec2/tokenization_wav2vec2.py src/transformers/models/xlm/configuration_xlm.py src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py src/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py src/transformers/models/xlnet/configuration_xlnet.py src/transformers/models/xlnet/tokenization_xlnet_fast.py src/transformers/onnx/convert.py src/transformers/onnx/features.py src/transformers/optimization.py src/transformers/pipelines/__init__.py src/transformers/pipelines/audio_classification.py src/transformers/pipelines/automatic_speech_recognition.py src/transformers/pipelines/base.py src/transformers/pipelines/conversational.py src/transformers/pipelines/feature_extraction.py src/transformers/pipelines/fill_mask.py src/transformers/pipelines/image_classification.py src/transformers/pipelines/object_detection.py src/transformers/pipelines/question_answering.py src/transformers/pipelines/table_question_answering.py src/transformers/pipelines/text2text_generation.py src/transformers/pipelines/text_classification.py src/transformers/pipelines/text_generation.py src/transformers/pipelines/token_classification.py src/transformers/pipelines/zero_shot_classification.py src/transformers/testing_utils.py src/transformers/tokenization_utils.py src/transformers/tokenization_utils_base.py src/transformers/tokenization_utils_fast.py src/transformers/trainer.py src/transformers/trainer_callback.py src/transformers/trainer_pt_utils.py src/transformers/trainer_seq2seq.py src/transformers/trainer_utils.py src/transformers/training_args.py src/transformers/training_args_seq2seq.py src/transformers/utils/dummy_detectron2_objects.py src/transformers/utils/dummy_flax_objects.py src/transformers/utils/dummy_pt_objects.py src/transformers/utils/dummy_tf_objects.py src/transformers/utils/dummy_tokenizers_objects.py src/transformers/utils/dummy_vision_objects.py tests/deepspeed/test_deepspeed.py tests/sagemaker/conftest.py tests/sagemaker/test_multi_node_data_parallel.py tests/test_configuration_auto.py tests/test_configuration_common.py tests/test_data_collator.py tests/test_feature_extraction_auto.py tests/test_feature_extraction_layoutlmv2.py tests/test_feature_extraction_speech_to_text.py tests/test_feature_extraction_wav2vec2.py tests/test_file_utils.py tests/test_modeling_auto.py tests/test_modeling_bart.py tests/test_modeling_beit.py tests/test_modeling_bert.py tests/test_modeling_clip.py tests/test_modeling_common.py tests/test_modeling_convbert.py tests/test_modeling_deit.py tests/test_modeling_distilbert.py tests/test_modeling_encoder_decoder.py tests/test_modeling_flaubert.py tests/test_modeling_flax_albert.py tests/test_modeling_flax_bart.py tests/test_modeling_flax_beit.py tests/test_modeling_flax_distilbert.py tests/test_modeling_flax_encoder_decoder.py tests/test_modeling_flax_gpt2.py tests/test_modeling_flax_gpt_neo.py tests/test_modeling_flax_mt5.py tests/test_modeling_flax_pegasus.py tests/test_modeling_fnet.py tests/test_modeling_gpt2.py tests/test_modeling_gpt_neo.py tests/test_modeling_gptj.py tests/test_modeling_hubert.py tests/test_modeling_layoutlmv2.py tests/test_modeling_pegasus.py tests/test_modeling_rag.py tests/test_modeling_reformer.py tests/test_modeling_speech_encoder_decoder.py tests/test_modeling_speech_to_text.py tests/test_modeling_speech_to_text_2.py tests/test_modeling_tf_auto.py tests/test_modeling_tf_deberta_v2.py tests/test_modeling_tf_hubert.py tests/test_modeling_tf_pytorch.py tests/test_modeling_tf_wav2vec2.py tests/test_modeling_wav2vec2.py tests/test_onnx_v2.py tests/test_pipelines_audio_classification.py tests/test_pipelines_automatic_speech_recognition.py tests/test_pipelines_common.py tests/test_pipelines_conversational.py tests/test_pipelines_feature_extraction.py tests/test_pipelines_fill_mask.py tests/test_pipelines_image_classification.py tests/test_pipelines_object_detection.py tests/test_pipelines_question_answering.py tests/test_pipelines_summarization.py tests/test_pipelines_table_question_answering.py tests/test_pipelines_text2text_generation.py tests/test_pipelines_text_classification.py tests/test_pipelines_text_generation.py tests/test_pipelines_token_classification.py tests/test_pipelines_translation.py tests/test_pipelines_zero_shot.py tests/test_processor_layoutlmv2.py tests/test_processor_wav2vec2.py tests/test_sequence_feature_extraction_common.py tests/test_tokenization_auto.py tests/test_tokenization_byt5.py tests/test_tokenization_canine.py tests/test_tokenization_common.py tests/test_tokenization_fnet.py tests/test_tokenization_layoutlmv2.py tests/test_tokenization_luke.py tests/test_tokenization_mbart.py tests/test_tokenization_mbart50.py tests/test_tokenization_speech_to_text_2.py tests/test_tokenization_t5.py tests/test_tokenization_tapas.py tests/test_tokenization_xlm_roberta.py tests/test_trainer.py tests/test_trainer_distributed.py tests/test_trainer_tpu.py tests/test_utils_check_copies.py utils/check_copies.py utils/check_repo.py utils/notification_service.py utils/release.py utils/tests_fetcher.py
python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119
running deps_table_update
updating src/transformers/dependency_versions_table.py
python utils/check_copies.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
Checking all models are public.
Checking all models are properly tested.
Checking all objects are properly documented.
Checking all models are in at least one auto class.
python utils/check_inits.py
python utils/tests_fetcher.py --sanity_check and fix suggested changes.

* Run black examples tests src utils
isort examples tests src utils
Skipped 1 files
make autogenerate_code
make[1]: Entering directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers'
running deps_table_update
updating src/transformers/dependency_versions_table.py
make[1]: Leaving directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers'
make extra_style_checks
make[1]: Entering directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers'
python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119
make[1]: Leaving directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers' for reformatting code.

* Add installation dependencies for examples/research_projects/fsner.

* Add support to pass in variable numbers of examples to FSNER model.

* Retrieve start_token_id and end_token_id from tokenizer instead of hardcoding in the FSNER model.

* Run black examples tests src utils
isort examples tests src utils
Skipped 1 files
make autogenerate_code
make[1]: Entering directory '/home/saif/transformers'
running deps_table_update
updating src/transformers/dependency_versions_table.py
make[1]: Leaving directory '/home/saif/transformers'
make extra_style_checks
make[1]: Entering directory '/home/saif/transformers'
python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119
make[1]: Leaving directory '/home/saif/transformers' for FSNER

* Update FSNER readme.md with a header image.

* Update FSNER readme

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
2021-10-05 22:47:11 -04:00
e7b16f33ae Fixing GPU for token-classification in a better way. (#13856)
Co-authored-by:  Pierre Snell <pierre.snell@botpress.com>

Co-authored-by: Pierre Snell <pierre.snell@botpress.com>
2021-10-05 22:44:31 -04:00
7d83655da9 Autodocument the list of ONNX-supported models (#13884) 2021-10-05 22:43:16 -04:00
36fc401621 Update parallelism.md (#13892)
* Update parallelism.md

* Update docs/source/parallelism.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/parallelism.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/parallelism.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/parallelism.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/parallelism.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/parallelism.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-10-05 17:42:12 -07:00
7af7d7ce05 fix: replace asserts by error (#13894) 2021-10-05 18:08:48 -04:00
f099249cf1 fix(integrations): consider test metrics (#13888) 2021-10-05 16:27:22 -04:00
0ddadbf0a8 Fixing question-answering with long contexts (#13873)
* Tmp.

* Fixing BC for question answering with long context.

* Capping model_max_length to avoid tf overflow.

* Bad workaround bugged roberta.

* Fixing name.
2021-10-05 16:08:58 +02:00
1b74af76b7 Allow dataset to be an optional argument for (Distributed)LengthGroupedSampler (#13820)
* Allow dataset to be an optional argument for (Distributed)LengthGroupedSampler

* Fix
2021-10-05 09:04:39 -04:00
d4e4efce68 Initial support for symbolic tracing with torch.fx allowing dynamic axes (#13579)
* Symbolic trace dynamic axes support for BERT like models (albert, bert, distilbert, mobilebert, electra, megatron-bert)
* Sanity checks before tracing that make sure the model to trace is supported
* Adapted to PyTorch 1.9

Co-authored-by: Michael Benayoun <michael@huggingface.co>
2021-10-05 14:19:47 +02:00
46efc58024 Improve error message when loading models from Hub (#13836)
* Improve error message when loading models from Hub

* Adjust error message wording
2021-10-05 08:09:10 -04:00
3a9c0f23b4 Fixing empty prompts for text-generation when BOS exists. (#13859)
* Fixing empty prompts for text-generation when BOS exists.

* Fixing odd case with Pegasus.

* Fixing Bert is Assertion Error.
2021-10-05 13:46:10 +02:00
a6ea244f99 Fix: save checkpoint after each epoch and push checkpoint to the hub (#13872)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-10-05 16:30:13 +05:30
7079a99e76 Fixing 1-length special tokens cut. (#13862) 2021-10-05 12:26:54 +02:00
7051b89267 Update Tatoeba conversion (#13757)
* Update Tatoeba conversion
2021-10-05 14:45:18 +05:30
12b4d66a80 Update no_* argument (HfArgumentParser) (#13865)
* update no_* argument

Changes the order so that the no_* argument is created after the original argument AND sets the default for this no_* argument to False

* import copy

* update test

* make style

* Use kwargs to set default=False

* make style
2021-10-04 16:28:52 -04:00
cc0a415e2f update image classification example (#13824)
*  update image classification example

* 📌 update reqs
2021-10-04 11:49:51 -07:00
6c08840628 Fix broken link to distill models in docs (#13848)
* Fix broken link to distill models

* Missing symbol

* Fix spaces
2021-10-04 11:57:54 -04:00
3a8de58c51 Add Mistral GPT-2 Stability Tweaks (#13573)
* Add layer-wise scaling

* Add reorder & upcasting argument

* Add OpenAI GPT-2 weight initialization scheme

* start `layer_idx` count at zero for consistency

* disentangle attn and reordered and upscaled attn function

* rename `scale_attn_by_layer` to `scale_attn_by_layer_id`

* make autocast from amp compatible with pytorch<1.6

* fix docstring

* style fixes

* Add fixes from PR feedback, style tweaks

* Fix doc whitespace

* Reformat

* First pass scale_attn_by_layer_idx and reorder_and_upcast_attn tests

* Rename scale_attn_by_layer_idx, add tip

* Remove extra newline

* add test for weight initialization

* update code format

* add assert check weights are fp32

* remove assert

* Fix incorrect merge

* Fix shape mismatch in baddbmm

* Add generation test for Mistral flags

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
Co-authored-by: Keshav Santhanam <keshav2@stanford.edu>
Co-authored-by: J38 <jebolton@stanford.edu>
2021-10-04 07:37:09 -04:00
955fd4fea9 [docs/gpt-j] fix typo (#13851) 2021-10-04 12:30:50 +02:00
de948350c2 Delete convert_multiberts_checkpoint_to_pytorch.py (#13852) 2021-10-04 12:30:21 +02:00
bcc3f7b656 include megatron_gpt2 in installed modules (#13834) 2021-10-01 11:42:08 -07:00
707f7eb181 Bart: check if decoder_inputs_embeds is set (#13800)
In BartForConditionalGeneration.forward, if labels are provided,
   decoder_input_ids are set to the labels shifted to the right.
   This is problematic: if decoder_inputs_embeds is also set,
   the call to self.model, which eventually gets to BartDecoder.forward,
   will raise an error.
   The fix is quite simple, similar to what is there already in
   BartModel.forward. Mainly, we should not
   compute decoder_input_ids if decoder_inputs_embeds is provided.

Co-authored-by: Silviu Vlad Oprea <silviuvo@amazon.co.uk>
2021-10-01 19:36:57 +02:00
4213728067 [Examples] Add an official audio classification example (#13722)
* Restore broken merge

* Additional args, DDP, remove CommonLanguage

* Update examples for V100, add training results

* Style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove custom datasets for simplicity, apply suggestions from code review

* Add the attention_mask flag, reorganize README

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-01 18:52:45 +02:00
c4113721f8 Update CITATION.cff (#13833) 2021-10-01 10:41:27 -04:00
90f980ed35 Fix warning situation: UserWarning: max_length is ignored when padding=True" (#13829)
* Removed wrong warning

* Raise a warning when `max_length` is given with wrong `truncation`

* Update the error message

* Update the warning message

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-10-01 09:29:08 -04:00
8bbb53e20b skip gptj slow generate tests for now (#13809) 2021-09-30 15:44:33 -04:00
41436d3dfb [DPR] Correct init (#13796)
* update

* add to docs and init

* make fix-copies
2021-09-30 18:55:20 +02:00
44eb8bdeea map only on one process (#13810) 2021-09-30 18:52:53 +02:00
9a9805fccf Add MultiBERTs conversion script (#13077)
* Init multibert checkpoint conversion script

* Rename conversion script

* Fix MultiBerts Conversion Script

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-09-30 18:48:56 +02:00
e1d1c7c087 [testing] auto-replay captured streams (#13803) 2021-09-30 09:26:49 -07:00
5f25855b3e Update doc for v4.11.2 2021-09-30 11:58:33 -04:00
269c3d1400 Fix gather for TPU (#13813) 2021-09-30 11:32:40 -04:00
7db2a79b38 [examples/flax] use Repository API for push_to_hub (#13672)
* use Repository for push_to_hub

* update readme

* update other flax scripts

* update readme

* update qa example

* fix push_to_hub call

* fix typo

* fix more typos

* update readme

* use abosolute path to get repo name

* fix glue script
2021-09-30 16:38:07 +05:30
b90096fe14 [examples run_glue.py] missing requirements scipy, sklearn (#13768)
* missing requirement

* list both
2021-09-29 13:45:19 -07:00
bf6118e70c [docs/gpt-j] addd instructions for how minimize CPU RAM usage (#13795)
* add a note about tokenizer

* add  tips to load model is less RAM

* fix link

* fix more links
2021-09-29 23:43:46 +05:30
55695df0f7 Merge remote-tracking branch 'origin/master' 2021-09-29 12:09:54 -04:00
cf4aa3597f Update doc for v4.11.1 2021-09-29 12:09:40 -04:00
2a51b15518 Add TF notebooks (#13793) 2021-09-29 17:07:10 +01:00
63cc5bda60 Fix length of IterableDatasetShard and add test (#13792)
* Fix length of IterableDatasetShard and add test

* Add comments
2021-09-29 11:48:48 -04:00
7d84c3a488 Enable readme link synchronization (#13785)
* Enable readme link synchronization

* Style

* Reuse regex pattern

* Apply suggestions

* Update
2021-09-29 11:18:59 -04:00
a1ea3adb28 Fix LayoutLM ONNX test error (#13710)
Fix LayoutLM ONNX test error
2021-09-29 06:50:15 -07:00
3a8a8013ad Keras callback to push to hub each epoch, or after N steps (#13773)
* Keras callback to push to hub each epoch, or after N steps

* Reworked the callback to use Repository

* Use an Enum for save_strategy

* Style pass

* Correct type for tokenizer

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding print message to the final upload

* Adding print message to the final upload

* Change how we wait for the last process to finish

* is_done is a property, not a method, derp

* Docstrings and documentation

* Style pass

* Style edit

* Docstring reformat

* Docstring rewrite

* Replacing print with internal logger

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-29 12:47:35 +01:00
aa018a795d up (#13777) 2021-09-29 10:30:00 +02:00
a21ee1f990 Implement len in IterableDatasetShard (#13780) 2021-09-28 18:22:37 -04:00
83d3dc0f6f Fix warning for gradient_checkpointing (#13767) 2021-09-28 14:21:17 -04:00
5e3b4a70d3 Fix filtering in test fetcher utils (#13766) 2021-09-27 15:26:54 -04:00
11c69b8045 Docs for version v4.11.0 2021-09-27 14:19:38 -04:00
dc193c906d Release: v4.11.0 2021-09-27 14:14:09 -04:00
1c96500088 Fix gather for SageMaker model parallel 2021-09-27 13:11:58 -04:00
4e0410e927 Fix in gather for SM distributed 2021-09-27 11:57:18 -04:00
367c2ef53b Modified TF train_step (#13678)
Allows models to be compiled without a loss, and to use the internal loss computations for training with fit()
2021-09-27 14:47:07 +01:00
e00bc7cd2f Silence warning in gradient checkpointing when it's False (#13734) 2021-09-27 07:43:38 -04:00
3ffd18a617 Fix loss computation in Trainer (#13760)
Co-authored-by: quantitative-technologies <james.hirschorn@quantitative-technologies.com>

Co-authored-by: quantitative-technologies <james.hirschorn@quantitative-technologies.com>
2021-09-27 07:33:08 -04:00
3ccc27019a Fix type annotations for distributed_concat() (#13746)
* Fix type annotations for `distributed_concat()`

* Use Any
2021-09-27 06:29:12 -04:00
e0d31a8982 [Tests] Cast Hubert test models to fp16 (#13755) 2021-09-26 22:58:23 +03:00
400c5a158b [megatron gpt checkpoint conversion] causal mask requires pos_embed dimension (#13735) 2021-09-26 09:51:40 -07:00
91df45516c [Trainer] Make sure shown loss in distributed training is correctly averaged over all workers (#13681)
* push

* improve tr loss gather
2021-09-26 09:03:45 +02:00
044eff5bf0 Update requirements for speech example (#13745) 2021-09-26 09:02:45 +02:00
067413fb73 finish (#13743) 2021-09-25 21:20:21 +02:00
a8ec002926 Update test dependence for torch examples (#13738) 2021-09-25 18:47:39 +02:00
469b80d4e7 Update README.md 2021-09-24 18:53:58 +02:00
493643fff8 up (#13733) 2021-09-24 18:32:35 +02:00
38580455de Add model card creation snippet to example scripts (#13730)
* Update run_glue.py

* Update run_glue.py

* Add model creation snippet to other scripts

* Fix style
2021-09-24 15:51:46 +02:00
66b01ce864 Warn for unexpected argument combinations (#13509)
* Warn for unexpected argument combinations

* Updated the waning message for pad_to_max_length
2021-09-24 09:14:23 -04:00
e579f855fa up (#13729) 2021-09-24 08:57:49 -04:00
0eabe49204 Fixing zero-shot backward compatiblity (#13725)
Fixes #13697
2021-09-24 07:38:17 -04:00
a2ef9c5446 Use torch.unique_consecutive to check same element (#13637)
We use `torch.unique` here only to check whether every elements have
the same value.
Therefore, we can use `torch.unique_consecutive` here.

This function eliminates all but the first element from every consecutive
group of equivalent elements.
Like, if we apply this function to `[1, 2, 2, 1]`, it will result in
`[1, 2, 1]`.

As you could see, this is enough for checking whether every elements
have the same value.

Since `torch.unique_consecutive` do less thing, it is much more faster.
On my computer, it is 25x faster on GPU and 15x faster on CPU.
2021-09-24 10:31:23 +02:00
95f888fd6a Update README.md 2021-09-24 09:53:37 +02:00
678bb248d0 Make assertions only if actually chunking forward (#13598)
This moves the assertion on checking input dimensions into a block that will only be called if the function is actually going to do chunking forward. This is often not the case at inference time and PyTorch tracing a model with this assertion in it leads to a tracing warning.

TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  input_tensor.shape[chunk_dim] == tensor_shape for input_tensor in input_tensors
2021-09-24 08:52:15 +02:00
4a320f6c9a [ASR] Add official ASR CTC example to examples/pytorch/speech-recognition (#13620)
* up

* rename

* add asr example

* add auto feature extractor

* some more fixes

* correct layerdrop

* correct for multi-gpu dist

* clean up

* refactor

* refactor

* more fixes

* more fixes

* clean-up

* finish

* up

* Apply suggestions from code review

* fix isort

* update

* up

* add note

* apply surajs suggestions

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* isort

* small change

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Apply suggestions from code review

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* add hubert

* Update examples/pytorch/speech-recognition/run_speech_recognition_ctc.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2021-09-24 07:01:11 +02:00
41c186d2a4 Replace torch.set_grad_enabled by torch.no_grad (#13703) 2021-09-23 17:08:29 -04:00
f888e5c372 Add FSNER example in research_projects (#13712)
* Add example use of few-shot named entity recognition model in research_projects folder.

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update fsner example README.md.

- Change wrong import FSNERTokenizerWrapper to FSNERTokenizerUtils in the example code
- Add a link to the model identifier

* Update examples/research_projects/fsner/src/fsner/model.py

Fix spelling mistake in the default parameter of pretrained model name.

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Add example use of few-shot named entity recognition model in research_projects folder.

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update fsner example README.md.

- Change wrong import FSNERTokenizerWrapper to FSNERTokenizerUtils in the example code
- Add a link to the model identifier

* Update examples/research_projects/fsner/src/fsner/model.py

Fix spelling mistake in the default parameter of pretrained model name.

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Run Checking/fixing examples/flax/language-modeling/run_clm_flax.py examples/flax/question-answering/run_qa.py examples/flax/question-answering/utils_qa.py examples/flax/token-classification/run_flax_ner.py examples/legacy/multiple_choice/utils_multiple_choice.py examples/legacy/seq2seq/seq2seq_trainer.py examples/legacy/token-classification/utils_ner.py examples/pytorch/image-classification/run_image_classification.py examples/pytorch/language-modeling/run_clm.py examples/pytorch/language-modeling/run_clm_no_trainer.py examples/pytorch/language-modeling/run_mlm.py examples/pytorch/language-modeling/run_mlm_no_trainer.py examples/pytorch/language-modeling/run_plm.py examples/pytorch/multiple-choice/run_swag.py examples/pytorch/multiple-choice/run_swag_no_trainer.py examples/pytorch/question-answering/run_qa.py examples/pytorch/question-answering/run_qa_beam_search.py examples/pytorch/question-answering/run_qa_beam_search_no_trainer.py examples/pytorch/question-answering/run_qa_no_trainer.py examples/pytorch/summarization/run_summarization.py examples/pytorch/summarization/run_summarization_no_trainer.py examples/pytorch/test_examples.py examples/pytorch/text-classification/run_glue.py examples/pytorch/text-classification/run_glue_no_trainer.py examples/pytorch/text-classification/run_xnli.py examples/pytorch/token-classification/run_ner.py examples/pytorch/token-classification/run_ner_no_trainer.py examples/pytorch/translation/run_translation.py examples/pytorch/translation/run_translation_no_trainer.py examples/research_projects/adversarial/utils_hans.py examples/research_projects/distillation/grouped_batch_sampler.py examples/research_projects/fsner/setup.py examples/research_projects/fsner/src/fsner/__init__.py examples/research_projects/fsner/src/fsner/model.py examples/research_projects/fsner/src/fsner/tokenizer_utils.py examples/research_projects/jax-projects/big_bird/evaluate.py examples/research_projects/jax-projects/hybrid_clip/run_hybrid_clip.py examples/tensorflow/language-modeling/run_clm.py examples/tensorflow/multiple-choice/run_swag.py examples/tensorflow/question-answering/run_qa.py examples/tensorflow/summarization/run_summarization.py examples/tensorflow/text-classification/run_glue.py examples/tensorflow/translation/run_translation.py src/transformers/__init__.py src/transformers/commands/add_new_model.py src/transformers/configuration_utils.py src/transformers/convert_slow_tokenizer.py src/transformers/data/__init__.py src/transformers/data/data_collator.py src/transformers/data/datasets/glue.py src/transformers/data/datasets/language_modeling.py src/transformers/data/datasets/squad.py src/transformers/deepspeed.py src/transformers/dependency_versions_table.py src/transformers/feature_extraction_sequence_utils.py src/transformers/file_utils.py src/transformers/generation_flax_utils.py src/transformers/generation_logits_process.py src/transformers/generation_tf_utils.py src/transformers/generation_utils.py src/transformers/integrations.py src/transformers/modelcard.py src/transformers/modeling_flax_utils.py src/transformers/modeling_outputs.py src/transformers/modeling_tf_utils.py src/transformers/modeling_utils.py src/transformers/models/__init__.py src/transformers/models/albert/__init__.py src/transformers/models/albert/modeling_albert.py src/transformers/models/albert/modeling_flax_albert.py src/transformers/models/albert/tokenization_albert_fast.py src/transformers/models/auto/__init__.py src/transformers/models/auto/auto_factory.py src/transformers/models/auto/configuration_auto.py src/transformers/models/auto/dynamic.py src/transformers/models/auto/feature_extraction_auto.py src/transformers/models/auto/modeling_auto.py src/transformers/models/auto/modeling_flax_auto.py src/transformers/models/auto/modeling_tf_auto.py src/transformers/models/auto/tokenization_auto.py src/transformers/models/bart/configuration_bart.py src/transformers/models/bart/modeling_bart.py src/transformers/models/bart/modeling_flax_bart.py src/transformers/models/bart/modeling_tf_bart.py src/transformers/models/barthez/tokenization_barthez_fast.py src/transformers/models/beit/__init__.py src/transformers/models/beit/configuration_beit.py src/transformers/models/beit/modeling_beit.py src/transformers/models/beit/modeling_flax_beit.py src/transformers/models/bert/configuration_bert.py src/transformers/models/bert/modeling_bert.py src/transformers/models/bert/modeling_flax_bert.py src/transformers/models/bert_generation/configuration_bert_generation.py src/transformers/models/bert_generation/modeling_bert_generation.py src/transformers/models/big_bird/configuration_big_bird.py src/transformers/models/big_bird/modeling_big_bird.py src/transformers/models/big_bird/modeling_flax_big_bird.py src/transformers/models/big_bird/tokenization_big_bird_fast.py src/transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py src/transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py src/transformers/models/blenderbot/configuration_blenderbot.py src/transformers/models/blenderbot/modeling_blenderbot.py src/transformers/models/blenderbot/modeling_tf_blenderbot.py src/transformers/models/blenderbot_small/configuration_blenderbot_small.py src/transformers/models/blenderbot_small/modeling_blenderbot_small.py src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py src/transformers/models/byt5/tokenization_byt5.py src/transformers/models/camembert/tokenization_camembert_fast.py src/transformers/models/canine/configuration_canine.py src/transformers/models/canine/modeling_canine.py src/transformers/models/clip/configuration_clip.py src/transformers/models/clip/convert_clip_original_pytorch_to_hf.py src/transformers/models/clip/modeling_clip.py src/transformers/models/clip/modeling_flax_clip.py src/transformers/models/clip/tokenization_clip.py src/transformers/models/convbert/modeling_convbert.py src/transformers/models/ctrl/configuration_ctrl.py src/transformers/models/deberta/modeling_tf_deberta.py src/transformers/models/deberta_v2/__init__.py src/transformers/models/deberta_v2/modeling_deberta_v2.py src/transformers/models/deberta_v2/modeling_tf_deberta_v2.py src/transformers/models/deit/configuration_deit.py src/transformers/models/deit/modeling_deit.py src/transformers/models/detr/configuration_detr.py src/transformers/models/detr/modeling_detr.py src/transformers/models/distilbert/__init__.py src/transformers/models/distilbert/configuration_distilbert.py src/transformers/models/distilbert/modeling_distilbert.py src/transformers/models/distilbert/modeling_flax_distilbert.py src/transformers/models/dpr/configuration_dpr.py src/transformers/models/dpr/modeling_dpr.py src/transformers/models/electra/modeling_electra.py src/transformers/models/electra/modeling_flax_electra.py src/transformers/models/encoder_decoder/__init__.py src/transformers/models/encoder_decoder/modeling_encoder_decoder.py src/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py src/transformers/models/flaubert/configuration_flaubert.py src/transformers/models/flaubert/modeling_flaubert.py src/transformers/models/fnet/__init__.py src/transformers/models/fnet/configuration_fnet.py src/transformers/models/fnet/convert_fnet_original_flax_checkpoint_to_pytorch.py src/transformers/models/fnet/modeling_fnet.py src/transformers/models/fnet/tokenization_fnet.py src/transformers/models/fnet/tokenization_fnet_fast.py src/transformers/models/fsmt/configuration_fsmt.py src/transformers/models/fsmt/modeling_fsmt.py src/transformers/models/funnel/configuration_funnel.py src/transformers/models/gpt2/__init__.py src/transformers/models/gpt2/configuration_gpt2.py src/transformers/models/gpt2/modeling_flax_gpt2.py src/transformers/models/gpt2/modeling_gpt2.py src/transformers/models/gpt2/modeling_tf_gpt2.py src/transformers/models/gpt_neo/configuration_gpt_neo.py src/transformers/models/gpt_neo/modeling_gpt_neo.py src/transformers/models/gptj/__init__.py src/transformers/models/gptj/configuration_gptj.py src/transformers/models/gptj/modeling_gptj.py src/transformers/models/herbert/tokenization_herbert_fast.py src/transformers/models/hubert/__init__.py src/transformers/models/hubert/configuration_hubert.py src/transformers/models/hubert/convert_hubert_original_s3prl_checkpoint_to_pytorch.py src/transformers/models/hubert/modeling_hubert.py src/transformers/models/hubert/modeling_tf_hubert.py src/transformers/models/ibert/modeling_ibert.py src/transformers/models/layoutlm/__init__.py src/transformers/models/layoutlm/configuration_layoutlm.py src/transformers/models/layoutlm/modeling_layoutlm.py src/transformers/models/layoutlmv2/__init__.py src/transformers/models/layoutlmv2/configuration_layoutlmv2.py src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py src/transformers/models/layoutlmv2/modeling_layoutlmv2.py src/transformers/models/layoutlmv2/processing_layoutlmv2.py src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py src/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py src/transformers/models/led/configuration_led.py src/transformers/models/led/modeling_led.py src/transformers/models/longformer/modeling_longformer.py src/transformers/models/luke/configuration_luke.py src/transformers/models/luke/modeling_luke.py src/transformers/models/luke/tokenization_luke.py src/transformers/models/lxmert/configuration_lxmert.py src/transformers/models/m2m_100/configuration_m2m_100.py src/transformers/models/m2m_100/modeling_m2m_100.py src/transformers/models/m2m_100/tokenization_m2m_100.py src/transformers/models/marian/configuration_marian.py src/transformers/models/marian/modeling_flax_marian.py src/transformers/models/marian/modeling_marian.py src/transformers/models/marian/modeling_tf_marian.py src/transformers/models/mbart/configuration_mbart.py src/transformers/models/mbart/modeling_flax_mbart.py src/transformers/models/mbart/modeling_mbart.py src/transformers/models/mbart/tokenization_mbart.py src/transformers/models/mbart/tokenization_mbart_fast.py src/transformers/models/mbart50/tokenization_mbart50.py src/transformers/models/mbart50/tokenization_mbart50_fast.py src/transformers/models/megatron_bert/configuration_megatron_bert.py src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py src/transformers/models/megatron_bert/modeling_megatron_bert.py src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py src/transformers/models/openai/configuration_openai.py src/transformers/models/pegasus/__init__.py src/transformers/models/pegasus/configuration_pegasus.py src/transformers/models/pegasus/modeling_flax_pegasus.py src/transformers/models/pegasus/modeling_pegasus.py src/transformers/models/pegasus/modeling_tf_pegasus.py src/transformers/models/pegasus/tokenization_pegasus_fast.py src/transformers/models/prophetnet/configuration_prophetnet.py src/transformers/models/prophetnet/modeling_prophetnet.py src/transformers/models/rag/modeling_rag.py src/transformers/models/rag/modeling_tf_rag.py src/transformers/models/reformer/configuration_reformer.py src/transformers/models/reformer/tokenization_reformer_fast.py src/transformers/models/rembert/configuration_rembert.py src/transformers/models/rembert/modeling_rembert.py src/transformers/models/rembert/tokenization_rembert_fast.py src/transformers/models/roberta/modeling_flax_roberta.py src/transformers/models/roberta/modeling_roberta.py src/transformers/models/roberta/modeling_tf_roberta.py src/transformers/models/roformer/configuration_roformer.py src/transformers/models/roformer/modeling_roformer.py src/transformers/models/speech_encoder_decoder/__init__.py src/transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py src/transformers/models/speech_encoder_decoder/convert_speech_to_text_wav2vec2_seq2seq_original_to_pytorch.py src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py src/transformers/models/speech_to_text/configuration_speech_to_text.py src/transformers/models/speech_to_text/feature_extraction_speech_to_text.py src/transformers/models/speech_to_text/modeling_speech_to_text.py src/transformers/models/speech_to_text_2/__init__.py src/transformers/models/speech_to_text_2/configuration_speech_to_text_2.py src/transformers/models/speech_to_text_2/modeling_speech_to_text_2.py src/transformers/models/speech_to_text_2/processing_speech_to_text_2.py src/transformers/models/speech_to_text_2/tokenization_speech_to_text_2.py src/transformers/models/splinter/configuration_splinter.py src/transformers/models/splinter/modeling_splinter.py src/transformers/models/t5/configuration_t5.py src/transformers/models/t5/modeling_flax_t5.py src/transformers/models/t5/modeling_t5.py src/transformers/models/t5/modeling_tf_t5.py src/transformers/models/t5/tokenization_t5_fast.py src/transformers/models/tapas/__init__.py src/transformers/models/tapas/configuration_tapas.py src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py src/transformers/models/tapas/modeling_tapas.py src/transformers/models/tapas/tokenization_tapas.py src/transformers/models/transfo_xl/configuration_transfo_xl.py src/transformers/models/visual_bert/modeling_visual_bert.py src/transformers/models/vit/configuration_vit.py src/transformers/models/vit/convert_dino_to_pytorch.py src/transformers/models/vit/modeling_flax_vit.py src/transformers/models/vit/modeling_vit.py src/transformers/models/wav2vec2/__init__.py src/transformers/models/wav2vec2/configuration_wav2vec2.py src/transformers/models/wav2vec2/convert_wav2vec2_original_s3prl_checkpoint_to_pytorch.py src/transformers/models/wav2vec2/feature_extraction_wav2vec2.py src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py src/transformers/models/wav2vec2/modeling_wav2vec2.py src/transformers/models/wav2vec2/tokenization_wav2vec2.py src/transformers/models/xlm/configuration_xlm.py src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py src/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py src/transformers/models/xlnet/configuration_xlnet.py src/transformers/models/xlnet/tokenization_xlnet_fast.py src/transformers/onnx/convert.py src/transformers/onnx/features.py src/transformers/optimization.py src/transformers/pipelines/__init__.py src/transformers/pipelines/audio_classification.py src/transformers/pipelines/automatic_speech_recognition.py src/transformers/pipelines/base.py src/transformers/pipelines/conversational.py src/transformers/pipelines/feature_extraction.py src/transformers/pipelines/fill_mask.py src/transformers/pipelines/image_classification.py src/transformers/pipelines/object_detection.py src/transformers/pipelines/question_answering.py src/transformers/pipelines/table_question_answering.py src/transformers/pipelines/text2text_generation.py src/transformers/pipelines/text_classification.py src/transformers/pipelines/text_generation.py src/transformers/pipelines/token_classification.py src/transformers/pipelines/zero_shot_classification.py src/transformers/testing_utils.py src/transformers/tokenization_utils.py src/transformers/tokenization_utils_base.py src/transformers/tokenization_utils_fast.py src/transformers/trainer.py src/transformers/trainer_callback.py src/transformers/trainer_pt_utils.py src/transformers/trainer_seq2seq.py src/transformers/trainer_utils.py src/transformers/training_args.py src/transformers/training_args_seq2seq.py src/transformers/utils/dummy_detectron2_objects.py src/transformers/utils/dummy_flax_objects.py src/transformers/utils/dummy_pt_objects.py src/transformers/utils/dummy_tf_objects.py src/transformers/utils/dummy_tokenizers_objects.py src/transformers/utils/dummy_vision_objects.py tests/deepspeed/test_deepspeed.py tests/sagemaker/conftest.py tests/sagemaker/test_multi_node_data_parallel.py tests/test_configuration_auto.py tests/test_configuration_common.py tests/test_data_collator.py tests/test_feature_extraction_auto.py tests/test_feature_extraction_layoutlmv2.py tests/test_feature_extraction_speech_to_text.py tests/test_feature_extraction_wav2vec2.py tests/test_file_utils.py tests/test_modeling_auto.py tests/test_modeling_bart.py tests/test_modeling_beit.py tests/test_modeling_bert.py tests/test_modeling_clip.py tests/test_modeling_common.py tests/test_modeling_convbert.py tests/test_modeling_deit.py tests/test_modeling_distilbert.py tests/test_modeling_encoder_decoder.py tests/test_modeling_flaubert.py tests/test_modeling_flax_albert.py tests/test_modeling_flax_bart.py tests/test_modeling_flax_beit.py tests/test_modeling_flax_distilbert.py tests/test_modeling_flax_encoder_decoder.py tests/test_modeling_flax_gpt2.py tests/test_modeling_flax_gpt_neo.py tests/test_modeling_flax_mt5.py tests/test_modeling_flax_pegasus.py tests/test_modeling_fnet.py tests/test_modeling_gpt2.py tests/test_modeling_gpt_neo.py tests/test_modeling_gptj.py tests/test_modeling_hubert.py tests/test_modeling_layoutlmv2.py tests/test_modeling_pegasus.py tests/test_modeling_rag.py tests/test_modeling_reformer.py tests/test_modeling_speech_encoder_decoder.py tests/test_modeling_speech_to_text.py tests/test_modeling_speech_to_text_2.py tests/test_modeling_tf_auto.py tests/test_modeling_tf_deberta_v2.py tests/test_modeling_tf_hubert.py tests/test_modeling_tf_pytorch.py tests/test_modeling_tf_wav2vec2.py tests/test_modeling_wav2vec2.py tests/test_onnx_v2.py tests/test_pipelines_audio_classification.py tests/test_pipelines_automatic_speech_recognition.py tests/test_pipelines_common.py tests/test_pipelines_conversational.py tests/test_pipelines_feature_extraction.py tests/test_pipelines_fill_mask.py tests/test_pipelines_image_classification.py tests/test_pipelines_object_detection.py tests/test_pipelines_question_answering.py tests/test_pipelines_summarization.py tests/test_pipelines_table_question_answering.py tests/test_pipelines_text2text_generation.py tests/test_pipelines_text_classification.py tests/test_pipelines_text_generation.py tests/test_pipelines_token_classification.py tests/test_pipelines_translation.py tests/test_pipelines_zero_shot.py tests/test_processor_layoutlmv2.py tests/test_processor_wav2vec2.py tests/test_sequence_feature_extraction_common.py tests/test_tokenization_auto.py tests/test_tokenization_byt5.py tests/test_tokenization_canine.py tests/test_tokenization_common.py tests/test_tokenization_fnet.py tests/test_tokenization_layoutlmv2.py tests/test_tokenization_luke.py tests/test_tokenization_mbart.py tests/test_tokenization_mbart50.py tests/test_tokenization_speech_to_text_2.py tests/test_tokenization_t5.py tests/test_tokenization_tapas.py tests/test_tokenization_xlm_roberta.py tests/test_trainer.py tests/test_trainer_distributed.py tests/test_trainer_tpu.py tests/test_utils_check_copies.py utils/check_copies.py utils/check_repo.py utils/notification_service.py utils/release.py utils/tests_fetcher.py
python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119
running deps_table_update
updating src/transformers/dependency_versions_table.py
python utils/check_copies.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
Checking all models are public.
Checking all models are properly tested.
Checking all objects are properly documented.
Checking all models are in at least one auto class.
python utils/check_inits.py
python utils/tests_fetcher.py --sanity_check and fix suggested changes.

* Run black examples tests src utils
isort examples tests src utils
Skipped 1 files
make autogenerate_code
make[1]: Entering directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers'
running deps_table_update
updating src/transformers/dependency_versions_table.py
make[1]: Leaving directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers'
make extra_style_checks
make[1]: Entering directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers'
python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119
make[1]: Leaving directory '/mnt/c/Users/Admin/Desktop/Home/Projects/transformers' for reformatting code.

* Add installation dependencies for examples/research_projects/fsner.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
2021-09-23 17:04:15 -04:00
1988849bbf Handle UnicodeDecodeError (#13717) 2021-09-23 16:56:34 -04:00
8632a60d33 Add cpu distributed fine-tuning support for transformers Trainer API (#13574)
* update trainer with cpu distributed fine-tuning support.

Signed-off-by: Ding, Ke <ke.ding@intel.com>

* Style.

* refinement on cpu dist training check.

Signed-off-by: Ding, Ke <ke.ding@intel.com>

* style.

Signed-off-by: Ding, Ke <ke.ding@intel.com>

* Test over private field not public one.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Funtowicz Morgan <mfuntowicz@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-23 18:15:27 +02:00
6a3a197fcd Add SigOpt HPO to transformers trainer api (#13572)
* add sigopt hpo to transformers.

Signed-off-by: Ding, Ke <ke.ding@intel.com>

* extend sigopt changes to test code and others..

Signed-off-by: Ding, Ke <ke.ding@intel.com>

* Style.

* fix style for sigopt integration.

Signed-off-by: Ding, Ke <ke.ding@intel.com>

* Add necessary information to run unittests on SigOpt.

Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
2021-09-23 17:01:51 +02:00
62832c962f 1x model size CPU memory usage for from_pretrained (#13466)
* one possible solution

* low mem from_pretrained

* edge cases

* solve the persistent buffers

* style

* parametrize

* for later

* proper solution

* cleanup

* refactor; rework based on suggestions

* revert splitting into 2 parts, move checks into main func
2021-09-22 19:33:09 -07:00
ca257a06cc Fix torchscript tests (#13701) 2021-09-22 19:02:54 -04:00
5b57075449 Add BlenderBot small tokenizer to the init (#13367)
* Add BlenderBot small tokenizer to the init

* Update src/transformers/__init__.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Style

* Bugfix

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-09-22 19:00:47 -04:00
9e0fd78051 Fix reference to tpu short seq length (#13686) 2021-09-22 18:36:24 -04:00
6dc41d9f8e add a note about tokenizer (#13696) 2021-09-22 17:18:13 -04:00
7c7d2ec952 [GPT-J] Use the float16 checkpoints in integration tests (#13676)
* Use fp16 checkpoints

* Style

* Fix outputs and disable OOM tests

* Correct another output

* Use a random smaller model for generation tests

* repo quickfix

* fix gradient checkpointing
2021-09-22 23:17:57 +03:00
0ecdf6de03 Patch training arguments issue (#13700)
* Patch training arguments issue

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-22 15:33:18 -04:00
50c746eeb7 Allow only textual inputs to VisualBert (#13687) 2021-09-22 21:21:53 +05:30
93624bfee9 Fix non-negligible difference between GPT2 and TFGP2 (#13679)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-09-22 09:14:55 -04:00
a0c08aa36c Assertions to exceptions (#13692)
* Raise exceptions instead of using assertions for control flow #12789

* # coding=utf-8

* Raise exceptions instead of using assertions for control flow

* Raise exceptions instead of using assertions for control flow

* Update src/transformers/tokenization_utils.py

Raise exceptions instead of using assertions for control flow

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/tokenization_utils.py

Raise exceptions instead of using assertions for control flow

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Raise exceptions instead of using assertions for control flow

* test

* Raise exceptions instead of using assertions for control flow

Co-authored-by: MocktaiLEngineer <kavinarasu22@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-22 09:14:29 -04:00
27d4639779 Make gradient_checkpointing a training argument (#13657)
* Make gradient_checkpointing a training argument

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/configuration_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix tests

* Style

* document Gradient Checkpointing as a performance feature

* Small rename

* PoC for not using the config

* Adapt BC to new PoC

* Forgot to save

* Rollout changes to all other models

* Fix typo

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2021-09-22 07:51:38 -04:00
75f6641eaf [Wav2Vec2FeatureExtractor] Fix extractor.pad() dtype backwards compatibility (#13693)
* Force dtype, add tests

* Local torch imports

* Remove unused logic (always ndarray)
2021-09-22 11:02:54 +02:00
8e908c8c74 [AutoTokenizer] Allow creation of tokenizers by tokenizer type (#13668)
* up

* up
2021-09-22 00:29:38 +02:00
2608944dc2 up (#13688) 2021-09-22 00:28:43 +02:00
8565d38f30 Update modeling_flax_wav2vec2.py (#13680)
conv kernel_size to Tuple,
Flax Version 0.3.5 breaking change, https://github.com/google/flax/releases/tag/v0.3.5
2021-09-21 23:36:13 +02:00
d16bec9530 Skip FlaxWav2Vec2 test until fixed 2021-09-21 16:17:01 -04:00
ddd4d02f30 Layoutlm onnx support (Issue #13300) (#13562)
* Add support for exporting PyTorch LayoutLM to ONNX

* Added tests for converting LayoutLM to ONNX

* Add support for exporting PyTorch LayoutLM to ONNX

* Added tests for converting LayoutLM to ONNX

* cleanup

* Removed regression/ folder

* Add support for exporting PyTorch LayoutLM to ONNX

* Added tests for converting LayoutLM to ONNX

* cleanup

* Fixed import error

* Remove unnecessary import statements

* Changed max_2d_positions from class variable to instance variable of the config class

* Add support for exporting PyTorch LayoutLM to ONNX

* Added tests for converting LayoutLM to ONNX

* cleanup

* Add support for exporting PyTorch LayoutLM to ONNX

* cleanup

* Fixed import error

* Changed max_2d_positions from class variable to instance variable of the config class

* Use super class generate_dummy_inputs method

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Add support for Masked LM, sequence classification and token classification

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Removed uncessary import and method

* Fixed code styling

* Raise error if PyTorch is not installed

* Remove unnecessary import statement

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2021-09-21 15:39:37 -04:00
b7d264be0d Add push_to_hub to no_trainer examples (#13659)
* Add push_to_hub to no_trainer examples

* Quality

* Document integration

* Roll out to other examples
2021-09-21 13:13:30 -04:00
a722c301bf [SinusoidalPositionalEmbedding] incorrect dtype when make_weights in forward (#13665) 2021-09-21 09:05:05 -07:00
1417978cd4 [SequenceFeatureExtractor] Rewrite padding logic from pure python to numpy (#13650)
* Test np padding

* Pass feature extraction tests

* Update type hints

* Fix flaky integration tests

* Try a more stable waveform

* Add to_numpy jax support

* int32 attention masks

* Refactor normalization tests
2021-09-21 17:10:13 +03:00
8d533e6ad6 Typo "UNKWOWN" -> "UNKNOWN" (#13675) 2021-09-21 09:11:26 -04:00
78807d86eb [FLAX] Question Answering Example (#13649)
* flax qa example

* Updated README:  Added Large model

* added utils_qa.py FULL_COPIES

* Updates:
1. Copyright Year updated
2. added dtype arg
3. passing seed and dtype to load model
4. Check eval flag before running eval

* updated README

* updated code comment
2021-09-21 18:34:48 +05:30
a2dec768a2 beit-flax (#13515)
* beit-flax

* updated FLAX_BEIT_MLM_DOCSTRING

* removed bool_masked_pos from classification

* updated Copyright

* code refactoring: x -> embeddings

* updated test: rm from_pt

* Update docs/source/model_doc/beit.rst

* model code dtype updates and
other changes according to review

* relative_position_bias
revert back to pytorch design
2021-09-21 13:34:19 +02:00
48fa42e5d5 Add Speech AutoModels (#13655)
* upload

* correct

* correct

* correct

* finish

* up

* up

* up again
2021-09-21 08:50:33 +02:00
ea92136597 Fix typo distilbert doc (#13643) 2021-09-20 15:10:33 -04:00
28d5700aae fix research_projects/mlm_wwm readme.md examples (#13646)
the variables of run example is not correct
2021-09-20 15:01:35 -04:00
002a078aff Dynamically load model code from the Hub (#13467)
* Dynamic model

* Use defensive flag

* Style

* Doc and arg rename

* Arg rename

* Add tests

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comments

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-09-20 13:59:21 -04:00
aeb2dac04d Change https:/ to https:// (#13644) 2021-09-20 12:31:46 -04:00
0af901e83f [megatron_gpt2] checkpoint v3 (#13508)
* [megatron_gpt2] checkpoint v3

* bug fix

* fixes

* switch to default  from  - which is what the current megatron-lm uses

* cleanup

* back compat
2021-09-20 08:50:54 -07:00
936b3fdeaa Update modeling_tf_deberta.py (#13654)
Fixed expand_dims axis
2021-09-20 11:11:04 -04:00
04976a32dc Fix mT5 documentation (#13639)
* Fix MT5 documentation

The abstract is incomplete

* MT5 -> mT5
2021-09-20 07:53:31 -04:00
fe379f856b [Fix]Make sure the args tb_writer passed to the TensorBoardCallback works (#13636) 2021-09-20 07:50:03 -04:00
d8049331dc Add FNet (#13045)
* Init FNet

* Update config

* Fix config

* Update model classes

* Update tokenizers to use sentencepiece

* Fix errors in model

* Fix defaults in config

* Remove position embedding type completely

* Fix typo and take only real numbers

* Fix type vocab size in configuration

* Add projection layer to embeddings

* Fix position ids bug in embeddings

* Add minor changes

* Add conversion script and remove CausalLM vestiges

* Fix conversion script

* Fix conversion script

* Remove CausalLM Test

* Update checkpoint names to dummy checkpoints

* Add tokenizer mapping

* Fix modeling file and corresponding tests

* Add tokenization test file

* Add PreTraining model test

* Make style and quality

* Make tokenization base tests work

* Update docs

* Add FastTokenizer tests

* Fix fast tokenizer special tokens

* Fix style and quality

* Remove load_tf_weights vestiges

* Add FNet to  main README

* Fix configuration example indentation

* Comment tokenization slow test

* Fix style

* Add changes from review

* Fix style

* Remove bos and eos tokens from tokenizers

* Add tokenizer slow test, TPU transforms, NSP

* Add scipy check

* Add scipy availabilty check to test

* Fix tokenizer and use correct inputs

* Remove remaining TODOs

* Fix tests

* Fix tests

* Comment Fourier Test

* Uncomment Fourier Test

* Change to google checkpoint

* Add changes from review

* Fix activation function

* Fix model integration test

* Add more integration tests

* Add comparison steps to MLM integration test

* Fix style

* Add masked tokenization fix

* Improve mask tokenization fix

* Fix index docs

* Add changes from review

* Fix issue

* Fix failing import in test

* some more fixes

* correct fast tokenizer

* finalize

* make style

* Remove additional tokenization logic

* Set do_lower_case to False

* Allow keeping accents

* Fix tokenization test

* Fix FNet Tokenizer Fast

* fix tests

* make style

* Add tips to FNet docs

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-09-20 13:24:30 +02:00
87d5057d86 fix typo (#13647) 2021-09-20 13:22:26 +05:30
b518aaf193 Fix GPT2Config parameters in GPT2ModelTester (#13630) 2021-09-17 15:36:23 -04:00
300ee0c7b2 Updated tiny distilbert models (#13631) 2021-09-17 15:35:34 -04:00
afb07a79ab fix some docstring in encoder-decoder models (#13611)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-09-17 17:39:35 +02:00
19b7acdd61 Cloned tensors after indexing in _compute_attn_output_with_global_indices (#13613)
Co-authored-by: Alessandro Suglia <asuglia@fb.com>
2021-09-17 17:05:49 +02:00
ce32c69c0b Use config_dict_or_path for deepspeed.zero.Init (#13614) 2021-09-17 07:57:27 -07:00
0eb02871dd Removed console spam from misfiring warnings (#13625)
* Removed misfiring warnings

* Revert "Removed misfiring warnings"

This reverts commit cea90de325056b9c1cbcda2bd2613a785c1639ce.

* Retain the warning, but only when the user actually overrides things

* Fix accidentally breaking just about every model on the hub simultaneously

* Style pass
2021-09-17 15:44:33 +01:00
da8beaaf76 Fix special tokens not correctly tokenized (#13489)
* Fix special tokens not correctly tokenized

* Add testing

* Fix

* Fix

* Use user workflows instead of directly assigning variables

* Enable test of fast tokenizers

* Update test of canine tokenizer
2021-09-17 10:28:28 -04:00
1f9dcfc1ef [Trainer] Add nan/inf logging filter (#13619)
* finish

* add test

* push

* remove unnecessary code

* up

* correct test

* Update src/transformers/training_args.py
2021-09-17 16:21:59 +02:00
eae7a96b7d Optimize Token Classification models for TPU (#13096)
* Optimize Token Classification models for TPU

As per the XLA document XLA cannot handle masked indexing well. So token classification
models for BERT and others use an implementation based on `torch.where`. This implementation
works well on TPU. 

ALBERT token classification model uses the masked indexing which causes performance issues
on TPU. This PR fixes this issue by following the BERT implementation.

* Same fix for ELECTRA

* Same fix for LayoutLM
2021-09-17 10:07:52 -04:00
e02ed0ee7e XLMR tokenizer is fully picklable (#13577)
* made tokenizer fully picklable

* remove whitespace

* added testcase
2021-09-16 16:30:05 -04:00
af5c6ae5ed Properly use test_fetcher for examples (#13604)
* Properly use test_fetcher for examples

* Fake example modification

* Fake modeling file modification

* Clean fake modifications

* Run example tests for any modification.
2021-09-16 15:13:00 -04:00
bec2e3f55c [deepspeed] replaced deprecated init arg (#13587)
* [deepspeed] replaced deprecated init arg

* Trigger CI
2021-09-16 12:12:16 -07:00
4d5b4c7863 Feature Extractor: Wav2Vec2 & Speech2Text - Allow truncation + padding=longest (#13600)
* correct

* add tests

* Update src/transformers/feature_extraction_sequence_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-16 20:02:54 +02:00
e59041684e DataCollatorForTokenClassification numpy fix (#13609)
* Fix issue when labels are supplied as Numpy array instead of list

* Fix issue when labels are supplied as Numpy array instead of list

* Fix same issue in the `TokenClassification` data collator

* Style pass
2021-09-16 18:00:59 +01:00
88dbbfb2d6 Fix make fix-copies with type annotations (#13586) 2021-09-16 11:55:37 -04:00
cec1c63642 Fix test (#13608) 2021-09-16 11:33:08 -04:00
5c5937182a Fix DataCollatorForSeq2Seq when labels are supplied as Numpy array instead of list (#13582)
* Fix issue when labels are supplied as Numpy array instead of list

* Fix issue when labels are supplied as Numpy array instead of list
2021-09-16 15:35:57 +01:00
421929b556 finish (#13593) 2021-09-16 10:07:47 +02:00
b5bab710f7 correct (#13585) 2021-09-16 09:07:20 +02:00
89da1bfeac [ci] nightly: add deepspeed master (#13589) 2021-09-15 20:18:34 -04:00
95f933ea85 [Pretrained Model] Add resize_position_embeddings (#13559)
* finish

* delete bogus file

* correct some stuff

* finish

* finish
2021-09-15 19:03:56 +02:00
c783e14887 upgrade sentencepiece version (#13564) 2021-09-15 15:25:03 +02:00
e86c02ea90 Fix GPTNeo onnx export (#13524)
Update GPT Neo ONNX config to match the changes implied by the simplification of the local attention

Co-authored-by: Michael Benayoun <michael@huggingface.co>
2021-09-15 13:08:41 +02:00
3fbb55c757 [Flax] Fixes typo in Bart based Flax Models (#13565) 2021-09-15 11:03:52 +05:30
7bd16b8776 Fix test_fetcher when setup is updated (#13566)
* Fix test_fetcher when setup is updated

* Remove example
2021-09-14 13:33:41 -04:00
054b6013c2 separate model card git push from the rest (#13514)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-14 18:07:36 +02:00
9f318be3d3 Fix yml syntax error 2021-09-14 11:31:17 -04:00
801ec115cf Add checks to build cleaner model cards (#13542)
* Add checks to build cleaner model cards

* Address review comments
2021-09-14 11:27:32 -04:00
c1e47bf4fe [Flax] Addition of FlaxPegasus (#13420)
* added initial files

* fixes pipeline

* fixes style and quality

* fixes doc issue and positional encoding

* fixes layer norm and test

* fixes quality issue

* fixes code quality

* removed extra layer norm

* added layer norm back in encoder and decoder

* added more code copy quality checks

* update tests

* Apply suggestions from code review

* fix import

* fix test

Co-authored-by: patil-suraj <surajp815@gmail.com>
2021-09-14 17:15:19 +02:00
fc3551a6d7 add flax mbart in auto seq2seq lm (#13560) 2021-09-14 19:06:41 +05:30
3081d3868e Push to hub when saving checkpoints (#13503)
* Push to hub when saving checkpoints

* Add model card

* Revert partial model card

* Small fix for checkpoint

* Add tests

* Add documentation

* Fix tests

* Bump huggingface_hub

* Fix test
2021-09-14 08:02:15 -04:00
51e5eca612 Add long overdue link to the Google TRC project (#13501)
* Add long-overdue link to the Google TRC project

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
2021-09-14 13:41:55 +05:30
3ab0185b06 Nightly torch ci (#13550)
* Nightly CI torch

* Version

* Reformat

* Only subset
Fix

* Revert

* Better formatting

* New channel
2021-09-13 16:17:29 -04:00
5c14fceac0 return attention mask in int32 (#13543) 2021-09-13 14:02:23 +02:00
149c833b75 Small changes in perplexity.rstto make the notebook executable on google collaboratory (#13541)
* add imports

* Update docs/source/perplexity.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-13 13:32:32 +02:00
f1c22dae7d [tokenizer] use use_auth_token for config (#13523)
* [tokenizer] use use_auth_token for config

* args order
2021-09-13 07:31:35 -04:00
d2904264ab up (#13538) 2021-09-13 13:07:59 +02:00
65ee1a43e5 fixing BC in fill-mask (wasn't tested in theses test suites (#13540)
apparently).
2021-09-13 12:48:54 +02:00
9d60eebeb5 up (#13536) 2021-09-13 11:30:10 +02:00
a2045067c5 Fix attention mask size checking for CLIP (#13535) 2021-09-13 13:38:38 +05:30
68b0baeedc Ignore past_key_values during GPT-Neo inference (#13521) 2021-09-13 03:06:07 -04:00
07c2607d4d fix use_cache value assign (#13532)
fix use_cache value assign
2021-09-13 11:18:50 +05:30
010965dcde [GPT-Neo] Simplify local attention (#13491)
* simplify local attention

* update tests

* add a comment and use torch.bitwise_xor
2021-09-10 22:52:20 +05:30
a57d784df5 [Wav2Vec2] Fix dtype 64 bug (#13517)
* fix

* 2nd fix
2021-09-10 18:19:10 +02:00
72ec2f3eb5 Docs for v4.10.1 2021-09-10 16:45:19 +02:00
26d9212e3c TF multiple choice loss fix (#13513)
Fix issues with `TFMultipleChoiceLoss` if the choices dimension is None when `build()` is called.
2021-09-10 14:49:17 +01:00
d7b3b709d0 [Wav2Vec2] Fix normalization for non-padded tensors (#13512)
* finalize

* Apply suggestions from code review

* finish cleaner implementation

* more tests

* small fix

* finish

* up
2021-09-10 15:27:16 +02:00
c63fcabfe9 [Large PR] Entire rework of pipelines. (#13308)
* Enabling dataset iteration on pipelines.

Enabling dataset iteration on pipelines.

Unifying parameters under `set_parameters` function.

Small fix.

Last fixes after rebase

Remove print.

Fixing text2text `generate_kwargs`

No more `self.max_length`.

Fixing tf only conversational.

Consistency in start/stop index over TF/PT.

Speeding up drastically on TF (nasty bug where max_length would increase
a ton.)

Adding test for support for non fast tokenizers.

Fixign GPU usage on zero-shot.

Fix working on Tf.

Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Small cleanup.

Remove all asserts + simple format.

* Fixing audio-classification for large PR.

* Overly explicity null checking.

* Encapsulating GPU/CPU pytorch manipulation directly within `base.py`.

* Removed internal state for parameters of the  pipeline.

Instead of overriding implicitly internal state, we moved
to real named arguments on every `preprocess`, `_forward`,
`postprocess` function.

Instead `_sanitize_parameters` will be used to split all kwargs
of both __init__ and __call__ into the 3 kinds of named parameters.

* Move import warnings.

* Small fixes.

* Quality.

* Another small fix, using the CI to debug faster.

* Last fixes.

* Last fix.

* Small cleanup of tensor moving.

* is not None.

* Adding a bunch of docs + a iteration test.

* Fixing doc style.

* KeyDataset = None guard.

* RRemoving the Cuda test for pipelines (was testing).

* Even more simple iteration test.

* Correct import .

* Long day.

* Fixes in docs.

* [WIP] migrating object detection.

* Fixed the target_size bug.

* Fixup.

* Bad variable name.

* Fixing `ensure_on_device` respects original ModelOutput.
2021-09-10 14:47:48 +02:00
09549aa18c examples: minor fixes in flax example readme (#13502) 2021-09-10 11:45:57 +05:30
aacd2123ee Fixing #13381 (#13400)
* Fixing #13381

* Enabling automatic LED models.
2021-09-09 14:23:52 -04:00
db514a75d0 Fixing backward compatiblity for non prefixed tokens (B-, I-). (#13493) 2021-09-09 13:36:09 -04:00
e59d4d0147 Refactor internals for Trainer push_to_hub (#13486) 2021-09-09 13:04:37 -04:00
3dd538c4d3 [Tentative] Moving slow tokenizer to the Trie world. (#13220)
* Moving slow tokenizer to the Trie world.

* Adding more docstrings to the Trie.

* Fixing doctest (incompatible wiht our format? )

* Update src/transformers/tokenization_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding a lot more comment into the internals of this algorithm.

* Cleaner doc.

* Fixing the namings.

* Update src/transformers/tokenization_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* quality.

* Fixing longest first match.

* Small improvements to cuts + more test + canine resistant test.

* Fixing fast test.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-09-09 17:26:16 +02:00
b8385d8a11 TF Seq2Seq int dtype fix (#13496)
Fixes problems with passing int64 input to TF Seq2Seq models.
2021-09-09 15:54:08 +01:00
008c2d0b7a Fix typo in documentation (#13494)
* Fix typo in deepspeed documentation

* Add missing import in deepspeed configuration

* Fix path in translation examples
2021-09-09 08:00:05 -04:00
1c191efc3a flax ner example (#13365)
* flax ner example

* added task to README

* updated readme

* 1. ArgumentParser -> HfArgumentParser
2. step-wise logging,eval and save

* added requirements.txt

* added progress bar

* updated README

* added check_min_version

* updated training data permuattion with JAX

* added metric lib to requirements

* updated readme table

* fixed imports
2021-09-09 10:12:57 +05:30
c37573806a Fix typo in deepspeed documentation (#13482)
* Fix typo in deepspeed documentation

* Add missing import in deepspeed configuration
2021-09-08 11:24:10 -07:00
e1f6e4903a Fix integration tests for TFWav2Vec2 and TFHubert 2021-09-08 19:51:51 +03:00
41cd52a768 fixed document (#13414) 2021-09-08 11:48:00 -04:00
330d83fdbd Typo in "end_of_word_suffix" (#13477)
But does it really work?
2021-09-08 11:26:07 -04:00
2a15e8ccfb Object detection pipeline (#12886)
* Implement object-detection pipeline

* Define threshold const

* Add `threshold` argument

* Refactor

* Uncomment test inputs

* `rm

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix typo

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix typo

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Chore better doc

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Rm unnecessary lines

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Chore better naming

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix typo

* Add `detr-tiny` for tests

* Add `ObjectDetectionPipeline` to `trnsfrmrs/init`

* Implement new bbox format

* Update detr post_process

* Update `load_img` method obj det pipeline

* make style

* Implement new testing format for obj det pipeln

* Add guard pytorch specific code in pipeline

* Add doc

* Make pipeline_obj_tet tests deterministic

* Revert some changes to `post_process` COCO api

* Chore

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/pipelines/object_detection.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Rm timm requirement

* make fixup

* Add timm requirement to test

* Make fixup

* Guard torch.Tensor

* Chore

* Delete unnecessary comment

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-09-08 17:17:32 +02:00
707105290b Fix Tensorflow T5 with int64 input (#13479)
* Fix Tensorflow T5 with int64 input

* Style pass
2021-09-08 15:06:04 +01:00
361b6df36a Throw ValueError for mirror downloads (#13478) 2021-09-08 09:09:22 -04:00
99029ab6b0 Better error raised when cloned without lfs (#13401)
* Better error raised when cloned without lfs

* add from e
2021-09-08 08:28:22 -04:00
18447c206d Enable automated model list copying for localized READMEs (#13465)
* Complete basic mechanism

* Save

* Complete everything

* Style & Quality

* Update READMEs

* Add testing

* Fix README.md format

* Apply suggestions

* Fix format

* Update utils/check_copies.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-08 08:03:35 -04:00
cd66539662 Don't modify labels inplace in LabelSmoother (#13464) 2021-09-08 07:45:36 -04:00
c164c651dc [CLIP] fix logit_scale init (#13436)
* fix logit_scale init

* add logit_scale_init_value as config param
2021-09-08 14:21:13 +05:30
f667d5b260 Deprecate Mirror for Downloading (#13470)
* Deprecated Mirror

* revert

* revert

* revert

* fix
2021-09-08 16:09:44 +08:00
f5d3bb1dd2 fix CLIP conversion script (#13474) 2021-09-08 12:57:18 +05:30
4be082ce39 [docs] update dead quickstart link on resuing past for GPT2 (#13455)
* [docs] update dead quickstart link on resuing past for GPT2

Thed dead link have been replaced by two links of forward and call methods of the GPT2 class for torch and tensorflow respectively.

* [docs] fix formatting for gpt2 page update
2021-09-07 16:57:58 -04:00
2146833767 Add unit_divisor to downloads (#13468) 2021-09-07 13:47:52 -07:00
63b90a51aa Optimized bad word ids (#13433)
* Optimized bad word ids generation

* Fixed optimized bad token ids

* Updated style
2021-09-07 16:51:04 +02:00
5c7789d416 Fixing by correctly raising UnicodeDecodeError. (#13449) 2021-09-07 16:45:45 +02:00
79815090ea Fix img classification tests (#13456)
*  Update image-classification example's tests

* 🔥 remove cats_and_dogs test samples

* 💄 fix flake8
2021-09-07 05:58:45 -04:00
92d4ef9ab0 Update setup.py (#13421) 2021-09-06 17:32:24 -04:00
75858ca156 Update version of packaging package (#13454) 2021-09-06 17:19:02 -04:00
f8363e49f9 Install libsndfile (#13403) 2021-09-06 17:12:43 -04:00
5642a555ae Add TAPAS MLM-only models (#13408)
* Add conversion of TapasForMaskedLM

* Add copied from statements
2021-09-06 19:19:30 +02:00
2dd975b235 skip image classification test (#13451) 2021-09-06 21:46:25 +05:30
c8be8a9adb Update model configs - Allow setters for common properties (#13026)
* refactor GPT Config to allow dyn. properties

* make attribute_map a class attribute

* remove old code

* update unit test to test config: Add test for common properties setter

* update unit test to test config: Add test for common properties passed as parameters to __init__

* update to black code format

* Allow that setters are not defined for certain config classes

* update config classes to implement attribute_map

* bugfix lxmert config - id2labels was not defined when num_labels was set

* update broken configs - add attribute_maps

* update bart config

* update black codestyle

* update documentation on common config attributes

* update GPTJ config to new attribute map

* update docs on common attributes

* gptj config: add max_position_embeddings

* gptj config: format with black

* update speech to text 2 config

* format doc file to max_len 119

* update config template
2021-09-06 16:30:13 +02:00
cf4eb8b3f9 Adding a test for multibytes unicode. (#13447)
* Adding a test for multibytes unicode.

* Adding some accents.

* Making sure decoding works.

* Make tests passing by being cheesy.
2021-09-06 16:11:23 +02:00
607611f240 up (#13448) 2021-09-06 16:09:24 +02:00
6b29bff852 add torchvision in example test requirements (#13438) 2021-09-06 15:17:54 +02:00
26700a9516 Fix scheduled tests for SpeechEncoderDecoderModel (#13422)
* Add inputs to pretrained tests

* Make style
2021-09-06 14:55:13 +02:00
73ad258806 Fix tests without any real effect (#13406)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-09-06 14:51:45 +02:00
76c4d8bf26 Add PyTorch image classification example (#13134)
*  add pytorch image classification example

* 🔥 remove utils.py

* 💄 fix flake8 style issues

* 🔥 remove unnecessary line

*  limit dataset sizes

* 📌 update reqs

* 🎨 restructure - use datasets lib

* 🎨 import transforms directly

* 📝 add comments

* 💄 style

* 🔥 remove flag

* 📌 update requirement warning

* 📝 add vision README.md

* 📝 update README.md

* 📝 update README.md

* 🎨 add image-classification tag to model card

* 🚚 rename vision ➡️ image-classification

* 📝 update image-classification README.md
2021-09-02 13:29:42 -06:00
9bd5d97cdd up (#13396) 2021-09-02 18:47:09 +02:00
efa4f5f0ea fix (#13395) 2021-09-02 18:11:26 +02:00
596bb85f2f [docs] Update perplexity.rst to use negative log likelihood (#13386)
* [docs] Update perplexity.rst to use negative log likelihood

Model `forward` returns the negative log likelihood. The document correctly defines and calculates perplexity, but the description and variable names are inconsistent, which might cause confusion.

* [docs] restyle perplexity.rst
2021-09-02 07:49:12 -04:00
b91e65afe0 Correct order of overflowing_tokens for slow tokenizer (#13179)
* correct order of overflowing_tokens for slow tokenizer (issue fix #13148)

* python 3.9 requires sentencepiece version 0.1.94 or above

* slicing of ids fixed in truncated_sequence()

* Update setup.py

* Correct order of overflowing tokens for pair of sentences

* code reformatted

* Update tokenization_utils_base.py

* reformatting file

* test to check single_input added

* missing function restored

* test to check pair_input overflowing tokens order

* test to check pair_input overflowing tokens order

* test to check pair_input overflowing tokens order

* added an error message for pair of seq and longest_first strategy

* test for pair_input modified

* variable name corrected

* fixed a typo in error message

* requested changes implemented

* required test added

* Corrected the message to match test message

* added error message for Luke Tokenizer

* lost test recovered

* docstring for truncate_sequences and prepare_for_model updated

* docstring for luke tokenizer updated

* updated ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING

* aligned text and fixed puncuatations

* improved style and quality of code

* fixed error_msg in truncate_sequences

* replaced encode_plus method with regular call method

* clean up

* rephrased the docstring
2021-09-02 05:58:23 -04:00
c9184a2e03 Enabling automatic loading of tokenizer with pipeline for (#13376)
`audio-classification`.
2021-09-02 05:37:42 -04:00
e92140c567 fix example (#13387) 2021-09-02 11:32:18 +02:00
4114c9a75b Add tokenizer docs (#13373) 2021-09-02 09:46:05 +02:00
872e6be03d Update clip loss calculation (#13217)
* Update clip loss calculation

Hello, I'm the author of the blog you took the snippet from. I think this way of calculating is possibly slightly more accurate for calculation.

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-09-02 12:15:56 +05:30
0a22335e66 [Flax/run_hybrid_clip] Fix duplicating images when captions_per_image exceeds the number of captions, enable truncation 2021-09-02 11:19:49 +05:30
c1c2d68d37 Fix name and get_class method in AutoFeatureExtractor (#13385) 2021-09-01 20:54:49 -04:00
a105c9b776 fix (#13383) 2021-09-01 23:12:01 +02:00
4475f1dc2a [Flax] Fix BigBird (#13380)
* finish

* finish
2021-09-01 18:33:54 +02:00
ecd5397106 Fix RemBERT (#13375) 2021-09-01 11:11:32 -04:00
33b7c9a8aa Add missing feature extractors (#13374) 2021-09-01 11:10:49 -04:00
2406892a2e Add Hubert to the AutoFeatureExtractor (#13366)
* Add Hubert to the auto feature extractor

* Fix import structure
2021-09-01 18:09:02 +03:00
6b3532643f Properly register missing submodules in main init (#13372) 2021-09-01 10:57:43 -04:00
4b7988eb49 Fix assertion (#13369) 2021-09-01 16:42:59 +02:00
c4d78f01de Fix tokenizer saving during training with Trainer (#12806)
* add test in trainer and test tokenizer saving wi
th trainer

* quality

* reverse trainer changes

* replace test in test_trainer by a test for all the tokenizers

* format

* add can_save_slow_tokenizer attribute to all tokenizers

* fix Herbert

* format

* Change comment in error

* add comments and a new assert

* Update src/transformers/models/albert/tokenization_albert_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* change ValueError barthez

* change ValueError BigBird

* change ValueError Camembert

* change ValueError Mbart50

* change ValueError Pegasus

* change ValueError ReFormer

* change ValueError T5

* change ValueError RoBERTa

* XLNET fast

* Update tests/test_tokenization_common.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* change `assert` into `self.assertIn`

* format

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-01 16:32:56 +02:00
c1b20e42f5 Redeploy stable documentation 2021-09-01 09:21:50 -04:00
85cb447766 Revert "Correct wrong function signatures on the docs website (#13198)"
This reverts commit ffecfea9495d4aa788e1c05d0612a40bc4b460fc.
2021-09-01 09:17:08 -04:00
4766e009b0 Improve T5 docs (#13240)
* Remove disclaimer

* First draft

* Fix rebase

* Improve docs some more

* Add inference section

* Improve example scripts section

* Improve code examples of modeling files

* Add docs regarding task prefix

* Address @craffel's comments

* Apply suggestions from @patrickvonplaten's review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add suggestions from code review

* Apply @sgugger's suggestions

* Fix Flax code examples

* Fix index.rst

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-09-01 15:05:40 +02:00
ba1b3db709 fix wrong 'cls' masking for bigbird qa model output (#13143) 2021-09-01 14:03:16 +02:00
7a26307e31 Fixes for the documentation (#13361) 2021-09-01 07:54:28 -04:00
0b8c84e110 Add SpeechEncoderDecoder & Speech2Text2 (#13186)
* fix_torch_device_generate_test

* remove @

* up

* correct some bugs

* correct model

* finish speech2text extension

* up

* up

* up

* up

* Update utils/custom_init_isort.py

* up

* up

* update with tokenizer

* correct old tok

* correct old tok

* fix bug

* up

* up

* add more tests

* up

* fix docs

* up

* fix some more tests

* add better config

* correct some more things
"

* fix tests

* improve docs

* Apply suggestions from code review

* Apply suggestions from code review

* final fixes

* finalize

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* apply suggestions Lysandre and Sylvain

* apply nicos suggestions

* upload everything

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: your_github_username <your_github_email>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-09-01 13:33:31 +02:00
9396b40433 Fix GPT-J _CHECKPOINT_FOR_DOC typo (#13368) 2021-09-01 06:57:43 -04:00
53ee995ac9 Fix for the issue of device-id getting hardcoded for token_type_ids during Tracing for ConvBert (#12287)
* added token_type_ids buffer to fix the issue #5664

* Handling the case that position_id buffer is not registered

* added token_type_ids buffer to fix the issue #5664

* modified to support device conversion when the model is traced
2021-09-01 04:47:58 -04:00
5adf5cab2f Fix for the issue of device-id getting hardcoded for position-ids during Tracing for Distillbert (#12290)
* registered buffer for position-ids to address issues similar to issue#5664

* added comment

* added the flag to prevent from adding the buffer into the state_dict
2021-09-01 04:47:25 -04:00
5d1a3d135c Fix for the issue of device-id getting hardcoded for position-ids during Tracing for Flaubert (#12292)
* adding position_ids buffer to fix the issue simialr to #5664

* adding position-id buffer to address similar issues to #5664
2021-09-01 04:46:58 -04:00
58e999b7e6 Torchscript test for Flaubert (#13353)
* Torchscript test for Flaubert

* Update tests/test_modeling_flaubert.py

* Update tests/test_modeling_flaubert.py
2021-09-01 04:44:31 -04:00
d07c771dd9 Torchscript test for ConvBERT (#13352)
* Torchscript test for ConvBERT

* Apply suggestions from code review
2021-09-01 04:43:09 -04:00
680733a7c4 Torchscript test for DistilBERT (#13351)
* Torchscript test for DistilBERT

* Update tests/test_modeling_distilbert.py
2021-09-01 04:42:21 -04:00
73a0381282 Torchscript test (#13350)
* Torchscript test

* Remove print statement
2021-09-01 04:41:46 -04:00
b9c6a97694 Add the AudioClassificationPipeline (#13342)
* Add the audio classification pipeline

* Remove autoconfig exception

* Mark ffmpeg test as slow

* Rearrange pipeline tests

* Add small test

* Replace asserts with ValueError
2021-09-01 11:03:48 +03:00
02039352b2 Update README.md 2021-09-01 09:50:21 +02:00
d160782a53 Add template for adding flax models (#12441)
* Add option to add flax

* Add flax template for __init__.py

* Add flax template for .rst

* Copy TF modeling template

* Add a missing line in modeling_tf_... template

* Update first half of modeling_flax_..

* Update encoder flax template

* Copy test_modeling_tf... as test_modeling_flax...

* Replace some TF to Flax in test_modeling_flax_...

* Replace tf to np

some function might not work, like _assert_tensors_equal

* Replace remaining tf to np (might not work)

* Fix cookiecutter

* Add Flax in to_replace_... template

* Update transformers-cli add-new-model

* Save generate_flax in configuration.json

This will be read by transformers-cli

* Fix to_replace_... and cli

* Fix replace cli

* Fix cookiecutter name

* Move docstring earlier to avoid not defined error

* Fix a missing Module

* Add encoder-decoder flax template from bart

* Fix flax test

* Make style

* Fix endif

* Fix replace all "utf-8 -> unp-8"

* Update comment

* Fix flax template (add missing ..._DOCSTRING)

* Use flax_bart imports in template (was t5)

* Fix unp

* Update templates/adding_a_new_model/tests

* Revert "Fix unp"

This reverts commit dc9002a41d902c4f9b07343eab1cb350c8b7fd57.

* Remove one line of copied from to suppress CI error

* Use generate_tensorflow_pytorch_and_flax

* Add a missing part

* fix typo

* fix flax config

* add examples for flax

* small rename

* correct modeling imports

* correct auto loading

* corrects some flax tests

* correct small typo

* correct as type

* finish modif

* correct more templates

* final fixes

* add file testers

* up

* make sure tests match template regex

* correct pytorch

* correct tf

* correct more tf

* correct imports

* minor error

* minor error

* correct init

* more fixes

* correct more flax tests

* correct flax test

* more fixes

* correct docs

* update

* fix

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-09-01 09:49:03 +02:00
8e20887886 Update self-push.yml (#13364) 2021-09-01 03:37:51 -04:00
c02cd95c56 GPT-J-6B (#13022)
* Test GPTJ implementation

* Fixed conflicts

* Update __init__.py

* Update __init__.py

* change GPT_J to GPTJ

* fix missing imports and typos

* use einops for now
(need to change to torch ops later)

* Use torch ops instead of einsum

* remove einops deps

* Update configuration_auto.py

* Added GPT J

* Update gptj.rst

* Update __init__.py

* Update test_modeling_gptj.py

* Added GPT J

* Changed configs to match GPT2 instead of GPT Neo

* Removed non-existent sequence model

* Update configuration_auto.py

* Update configuration_auto.py

* Update configuration_auto.py

* Update modeling_gptj.py

* Update modeling_gptj.py

* Progress on updating configs to agree with GPT2

* Update modeling_gptj.py

* num_layers -> n_layer

* layer_norm_eps -> layer_norm_epsilon

* attention_layers -> num_hidden_layers

* Update modeling_gptj.py

* attention_pdrop -> attn_pdrop

* hidden_act -> activation_function

* Update configuration_gptj.py

* Update configuration_gptj.py

* Update configuration_gptj.py

* Update configuration_gptj.py

* Update configuration_gptj.py

* Update modeling_gptj.py

* Update modeling_gptj.py

* Update modeling_gptj.py

* Update modeling_gptj.py

* Update modeling_gptj.py

* Update modeling_gptj.py

* fix layernorm and lm_head size
delete attn_type

* Update docs/source/model_doc/gptj.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* removed claim that GPT J uses local attention

* Removed GPTJForSequenceClassification

* Update src/transformers/models/gptj/configuration_gptj.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Removed unsupported boilerplate

* Update tests/test_modeling_gptj.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update tests/test_modeling_gptj.py

Co-authored-by: Eric Hallahan <eric@hallahans.name>

* Update tests/test_modeling_gptj.py

Co-authored-by: Eric Hallahan <eric@hallahans.name>

* Update tests/test_modeling_gptj.py

Co-authored-by: Eric Hallahan <eric@hallahans.name>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update __init__.py

* Update configuration_gptj.py

* Update modeling_gptj.py

* Corrected indentation

* Remove stray backslash

* Delete .DS_Store

* Delete .DS_Store

* Delete .DS_Store

* Delete .DS_Store

* Delete .DS_Store

* Update docs to match

* Remove tf loading

* Remove config.jax

* Remove stray `else:` statement

* Remove references to `load_tf_weights_in_gptj`

* Adapt tests to match output from GPT-J 6B

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Default `activation_function` to `gelu_new`

- Specify the approximate formulation of GELU to ensure parity with the default setting of `jax.nn.gelu()`

* Fix part of the config documentation

* Revert "Update configuration_auto.py"

This reverts commit e9860e9c043b6ebf57a0e705044e9ec9ba2263bb.

* Revert "Update configuration_auto.py"

This reverts commit cfaaae4c4dc70f1fbe9abd60fc8bd0b863b8c011.

* Revert "Update configuration_auto.py"

This reverts commit 687788954fd0cfbc567fa1202d56a4ff9271944f.

* Revert "Update configuration_auto.py"

This reverts commit 194d024ea87d4fcef0dcb08e57f52c47511a9fc6.

* Hyphenate GPT-J

* Undid sorting of the models alphabetically

* Reverting previous commit

* fix style and quality issues

* Update docs/source/model_doc/gptj.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/configuration_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/configuration_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/configuration_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Replaced GPTJ-specific code with generic code

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Made the code always use rotary positional encodings

* Update index.rst

* Fix documentation

* Combine attention classes

- Condense all attention operations into `GPTJAttention`
- Replicate GPT-2 and improve code clarity by renaming `GPTJAttention.attn_pdrop` and `GPTJAttention.resid_pdrop` to `GPTJAttention.attn_dropout` and `GPTJAttention.resid_dropout`

* Removed `config.rotary_dim` from tests

* Update test_modeling_gptj.py

* Update test_modeling_gptj.py

* Fix formatting

* Removed depreciated argument `layer_id` to `GPTJAttention`

* Update modeling_gptj.py

* Update modeling_gptj.py

* Fix code quality

* Restore model functionality

* Save `lm_head.weight` in checkpoints

* Fix crashes when loading with reduced precision

* refactor self._attn(...)` and rename layer weights"

* make sure logits are in fp32 for sampling

* improve docs

* Add `GPTJForCausalLM` to `TextGenerationPipeline` whitelist

* Added GPT-J to the README

* Fix doc/readme consistency

* Add rough parallelization support

- Remove unused imports and variables
- Clean up docstrings
- Port experimental parallelization code from GPT-2 into GPT-J

* Clean up loose ends

* Fix index.rst

Co-authored-by: kurumuz <kurumuz1@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Eric Hallahan <eric@hallahans.name>
Co-authored-by: Leo Gao <54557097+leogao2@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: your_github_username <your_github_email>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-08-31 17:53:02 +02:00
e53af030c0 Re-deploy documentation 2021-08-31 16:18:14 +02:00
20677b22fe Adjust documentation index 2021-08-31 16:15:49 +02:00
5ee67a4412 Docs for v4.10.0 2021-08-31 16:02:31 +02:00
d12bbe4942 Release: v4.10.0 2021-08-31 15:53:10 +02:00
642e1936e3 [GitHub Runner] Fix flax runner (#13357)
* correct

* also comment out multi-gpu test push
2021-08-31 09:01:35 -04:00
c76de1053e Add generate kwargs to Seq2SeqTrainingArguments (#13339)
* Add generate kwargs to Seq2SeqTrainingArguments

* typo

* Address review comments + doc

* Style
2021-08-31 08:42:00 -04:00
702f4a49cd Fixed CLM model still using MODEL_FOR_MASKED_LM_MAPPING (#13002) 2021-08-31 13:21:39 +01:00
aa08a34669 [Flax tests] NVIDIA-SMI failure should continue 2021-08-31 14:18:20 +02:00
854260ca44 TF/Numpy variants for all DataCollator classes (#13105)
* Adding a TF variant of the DataCollatorForTokenClassification to get feedback

* Added a Numpy variant and a post_init check to fail early if a missing import is found

* Fixed call to Numpy variant

* Added a couple more of the collators

* Update src/transformers/data/data_collator.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fixes, style pass, finished DataCollatorForSeqToSeq

* Added all the LanguageModeling DataCollators, except SOP and PermutationLanguageModeling

* Adding DataCollatorForPermutationLanguageModeling

* Style pass

* Add missing `__call__` for PLM

* Remove `post_init` checks for frameworks because the imports inside them were making us fail code quality checks

* Remove unused imports

* First attempt at some TF tests

* A second attempt to make any of those tests actually work

* TF tests, round three

* TF tests, round four

* TF tests, round five

* TF tests, all enabled!

* Style pass

* Merging tests into `test_data_collator.py`

* Merging tests into `test_data_collator.py`

* Fixing up test imports

* Fixing up test imports

* Trying shuffling the conditionals around

* Commenting out non-functional old tests

* Completed all tests for all three frameworks

* Style pass

* Fixed test typo

* Style pass

* Move standard `__call__` method to mixin

* Rearranged imports for `test_data_collator`

* Fix data collator typo "torch" -> "pt"

* Fixed the most embarrassingly obvious bug

* Update src/transformers/data/data_collator.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Renaming mixin

* Updating docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dalton Walker <dalton_walker@icloud.com>
Co-authored-by: Andrew Romans <andrew.romans@hotmail.com>
2021-08-31 13:06:48 +01:00
74b3344fbc Clean up test file 2021-08-31 07:06:49 -04:00
ef8d6f2b4a Set missing seq_length variable when using inputs_embeds with ALBERT & Remove code duplication (#13152)
* Set seq_length variable when using inputs_embeds

* remove code duplication
2021-08-31 06:51:25 -04:00
180c6de6a6 docs: fix minor typo (#13289)
`at` should be `a1`
2021-08-31 06:49:05 -04:00
066fd047cc correct TP implementation resources (#13248)
fix a few implementation links
2021-08-31 06:47:23 -04:00
4d10474fa5 Handle nested dict/lists of tensors as inputs in the Trainer (#13338) 2021-08-31 06:34:31 -04:00
3efcfeab67 Deberta_v2 tf (#13120)
* Deberta_v2 tf

* added new line at the end of file, make style

* +V2, typo

* remove never executed branch of code

* rm cmnt and fixed typo in url filter

* cleanup according to review comments

* added #Copied from
2021-08-31 06:32:47 -04:00
286ccefb48 doc mismatch fixed (#13345) 2021-08-31 06:28:37 -04:00
41c559415a Add GPT2ForTokenClassification (#13290)
* Add GPT2ForTokenClassification

* Fix dropout exception for GPT2 NER

* Remove sequence label in test

* Change TokenClassifierOutput to TokenClassifierOutputWithPast

* Fix for black formatter

* Remove dummy

* Update docs for GPT2ForTokenClassification

* Fix check_inits ci fail

* Update dummy_pt_objects after make fix-copies

* Remove TokenClassifierOutputWithPast

* Fix tuple input issue

Co-authored-by: danielsejong55@gmail.com <danielsejong55@gmail.com>
2021-08-31 12:19:04 +02:00
11fbc32e3e Fixing a typo in the data_collator documentation (#13309) 2021-08-31 06:01:12 -04:00
062300ba7f [Testing] Add Flax Tests on GPU, Add Speech and Vision to Flax & TF tests (#13313)
* up

* finish

* Apply suggestions from code review

* apply Lysandres suggestions

* adapt circle ci as well

* finish

* Update setup.py
2021-08-31 11:08:22 +02:00
8b2de0e483 Tests fetcher tests (#13340)
* Incorporate tests dependencies in tests_fetcher

* Harder modif

* Debug

* Loop through all files

* Last modules

* Remove debug statement
2021-08-31 03:57:01 -04:00
42f359d015 Use DS callable API to allow hf_scheduler + ds_optimizer (#13216)
* Use DS callable API to allow hf_scheduler + ds_optimizer

* Preserve backward-compatibility

* Restore backward compatibility

* Tweak arg positioning

* Tweak arg positioning

* bump the required version

* Undo indent

* Update src/transformers/trainer.py

* style

Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-08-30 10:01:06 -07:00
35236b870e Add missing module __spec__ (#13321)
* added missing __spec__ to _LazyModule

* test __spec__ is not None after module import

* changed module_spec arg to be optional in _LazyModule

* fix style issue

* added module spec test to test_file_utils
2021-08-30 12:39:05 -04:00
4ebe798ff2 Fix release utils (#13337)
* Fix release utils

* Update docs/source/conf.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-08-30 12:09:14 -04:00
c4ecd234f2 Fix AutoTokenizer when no fast tokenizer is available (#13336)
* Fix AutoTokenizer when a tokenizer has no fast version

* Add test
2021-08-30 11:55:18 -04:00
ffecfea949 Correct wrong function signatures on the docs website (#13198)
* Correct outdated function signatures on website.

* Upgrade sphinx to 3.5.4 (latest 3.x)

* Test

* Test

* Test

* Test

* Test

* Test

* Revert unnecessary changes.

* Change sphinx version to 3.5.4"

* Test python 3.7.11
2021-08-30 11:40:25 -04:00
98e409abb3 albert flax (#13294)
* albert flax

* year -> 2021

* docstring updated for flax

* removed head_mask

* removed from_pt

* removed passing attention_mask to embedding layer
2021-08-30 17:29:27 +02:00
ee5b24573b the use_auth_token has not been set up early enough in the model_kwargs. Fixes #12941 (#13205) 2021-08-30 11:19:50 -04:00
0305673098 Fall back to observed_batch_size when the dataloader does not know the batch_size. (#13188) 2021-08-30 11:12:35 -04:00
ce6add8ecc 🐛 fix small model card bugs (#13310)
* 🐛 fix small model card bugs

* 💄 style
2021-08-30 08:45:57 -06:00
139e830158 Update label2id in the model config for run_glue (#13334) 2021-08-30 10:35:09 -04:00
6f3c99acca add ability to connect a neptune.ai run (#13319)
when `NEPTUNE_RUN_ID` environmetnt variable is set, neptune will log into the previous run with id `NEPTUNE_RUN_ID`
2021-08-30 09:59:17 -04:00
f4f4e6b2d3 Use existing functionality for #13251 (#13333) 2021-08-30 09:43:23 -04:00
d50649531f Check None before going through iteration (#13250)
* Check None before going through iteration

* Format
2021-08-30 08:18:51 -04:00
774760e6f3 distilbert-flax (#13324)
* distilbert-flax

* added missing self

* docs fix

* removed tied kernal extra init

* updated docs

* x -> hidden states

* removed head_mask

* removed from_pt, +FLAX

* updated year
2021-08-30 14:16:18 +02:00
01977466f4 fix: typo spelling grammar (#13212)
* fix: typo spelling grammar

* fix: make fixup
2021-08-30 08:09:14 -04:00
ef83dc4f0c Improve documentation of pooler_output in ModelOutput (#13228)
* update documentation of pooler_output in modeling_outputs, making it more clear and available for generic usage

* Update src/transformers/modeling_outputs.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_outputs.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* run make style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-30 08:08:16 -04:00
7828194ebe add citation file (#13214) 2021-08-30 07:46:55 -04:00
b6ddb08a66 Add LayoutLMv2 + LayoutXLM (#12604)
* First commit

* Make style

* Fix dummy objects

* Add Detectron2 config

* Add LayoutLMv2 pooler

* More improvements, add documentation

* More improvements

* Add model tests

* Add clarification regarding image input

* Improve integration test

* Fix bug

* Fix another bug

* Fix another bug

* Fix another bug

* More improvements

* Make more tests pass

* Make more tests pass

* Improve integration test

* Remove gradient checkpointing and add head masking

* Add integration test

* Add LayoutLMv2ForSequenceClassification to the tests

* Add LayoutLMv2ForQuestionAnswering

* More improvements

* More improvements

* Small improvements

* Fix _LazyModule

* Fix fast tokenizer

* Move sync_batch_norm to a separate method

* Replace dummies by requires_backends

* Move calculation of visual bounding boxes to separate method + update README

* Add models to main init

* First draft

* More improvements

* More improvements

* More improvements

* More improvements

* More improvements

* Remove is_split_into_words

* More improvements

* Simply tesseract - no use of pandas anymore

* Add LayoutLMv2Processor

* Update is_pytesseract_available

* Fix bugs

* Improve feature extractor

* Fix bug

* Add print statement

* Add truncation of bounding boxes

* Add tests for LayoutLMv2FeatureExtractor and LayoutLMv2Tokenizer

* Improve tokenizer tests

* Make more tokenizer tests pass

* Make more tests pass, add integration tests

* Finish integration tests

* More improvements

* More improvements - update API of the tokenizer

* More improvements

* Remove support for VQA training

* Remove some files

* Improve feature extractor

* Improve documentation and one more tokenizer test

* Make quality and small docs improvements

* Add batched tests for LayoutLMv2Processor, remove fast tokenizer

* Add truncation of labels

* Apply suggestions from code review

* Improve processor tests

* Fix failing tests and add suggestion from code review

* Fix tokenizer test

* Add detectron2 CI job

* Simplify CI job

* Comment out non-detectron2 jobs and specify number of processes

* Add pip install torchvision

* Add durations to see which tests are slow

* Fix tokenizer test and make model tests smaller

* Frist draft

* Use setattr

* Possible fix

* Proposal with configuration

* First draft of fast tokenizer

* More improvements

* Enable fast tokenizer tests

* Make more tests pass

* Make more tests pass

* More improvements

* Addd padding to fast tokenizer

* Mkae more tests pass

* Make more tests pass

* Make all tests pass for fast tokenizer

* Make fast tokenizer support overflowing boxes and labels

* Add support for overflowing_labels to slow tokenizer

* Add support for fast tokenizer to the processor

* Update processor tests for both slow and fast tokenizers

* Add head models to model mappings

* Make style & quality

* Remove Detectron2 config file

* Add configurable option to label all subwords

* Fix test

* Skip visual segment embeddings in test

* Use ResNet-18 backbone in tests instead of ResNet-101

* Proposal

* Re-enable all jobs on CI

* Fix installation of tesseract

* Fix failing test

* Fix index table

* Add LayoutXLM doc page, first draft of code examples

* Improve documentation a lot

* Update expected boxes for Tesseract 4.0.0 beta

* Use offsets to create labels instead of checking if they start with ##

* Update expected boxes for Tesseract 4.1.1

* Fix conflict

* Make variable names cleaner, add docstring, add link to notebooks

* Revert "Fix conflict"

This reverts commit a9b46ce9afe47ebfcfe7b45e6a121d49e74ef2c5.

* Revert to make integration test pass

* Apply suggestions from @LysandreJik's review

* Address @patrickvonplaten's comments

* Remove fixtures DocVQA in favor of dataset on the hub

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-08-30 12:35:42 +02:00
439e7abd2d use float 16 in causal mask and masked bias (#13194) 2021-08-30 06:09:24 -04:00
8be921f9de Announcing the default model used by the pipeline (with a link). (#13276) 2021-08-30 06:04:30 -04:00
a75db353c4 [Slow tests] Disable Wav2Vec2 pretraining test for now (#13303)
* fix_torch_device_generate_test

* remove @

* wav2vec2 pretraining

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-08-30 06:03:02 -04:00
4362ee298a correct (#13304) 2021-08-30 06:02:08 -04:00
4046e66e40 examples: only use keep_linebreaks when reading TXT files (#13320)
* examples: only use keep_linebreaks when reading TXT files for all CLM examples

* examples: only use keep_linebreaks when reading TXT files for all CLM examples

* examples: only use keep_linebreaks when reading TXT files for all CLM examples
2021-08-28 16:22:29 +02:00
b6f332ecaf Add Wav2Vec2 & Hubert ForSequenceClassification (#13153)
* Add hubert classifier + tests

* Add hubert classifier + tests

* Dummies for all classification tests

* Wav2Vec2 classifier + ER test

* Fix hubert integration tests

* Add hubert IC

* Pass tests for all classification tasks on Hubert

* Pass all tests + copies

* Move models to the SUPERB org
2021-08-27 20:52:51 +03:00
2bef3433e5 [Flax] Correct all return tensors to numpy (#13307)
* fix_torch_device_generate_test

* remove @

* finish find and replace
2021-08-27 17:38:34 +02:00
8aa67fc192 Fixing mbart50 with return_tensors argument too. (#13301)
* Fixing mbart50 with `return_tensors` argument too.

* Adding mbart50 tokenization tests.
2021-08-27 17:22:06 +02:00
b89a964d3f Moving zero-shot-classification pipeline to new testing. (#13299)
* Moving `zero-shot-classification` pipeline to new testing.

* Cleaning up old mixins.

* Fixing tests
`sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english` is
corrupted in PT.

* Adding warning.
2021-08-27 15:46:11 +02:00
cc27ac1a87 Fix BeitForMaskedImageModeling (#13275)
* First pass

* Fix docs of bool_masked_pos

* Add integration script

* Fix docstring

* Add integration test for BeitForMaskedImageModeling

* Remove file

* Fix docs
2021-08-27 09:09:57 -04:00
a3f96f366a Moving translation pipeline to new testing scheme. (#13297)
* Moving `translation` pipeline to new testing scheme.

* Update tokenization mbart tests.
2021-08-27 12:26:17 +02:00
319d840b46 examples: add keep_linebreaks option to CLM examples (#13150)
* examples: add keep_linebreaks option to text dataset loader for all CLM examples

* examples: introduce new keep_linebreaks option as data argument in CLM examples
2021-08-27 11:35:45 +02:00
45a8eb66bb Moving token-classification pipeline to new testing. (#13286)
* Moving `token-classification` pipeline to new testing.

* Fix tests.
2021-08-27 11:24:56 +02:00
a6e36558ef Moving text-generation pipeline to new testing framework. (#13285)
* Moving `text-generation` pipeline to new testing framework.

* Keep check_model_type but log instead of raise Exception.

* warning -> error.
2021-08-26 17:30:03 +02:00
0759f2510c Add DINO conversion script (#13265)
* First commit

* Add interpolation of patch embeddings

* Comment out code

* Fix bug

* Fix another bug

* Fix bug

* Fix another bug

* Remove print statements

* Update conversion script

* Use the official vit implementation

* Add support for converting dino_vits8

* Add DINO to docs of ViT

* Remove assertion

* Add interpolation of position encodings

* Fix bug

* Add align_corners

* Add interpolate_pos_encoding option to forward pass of ViTModel

* Improve interpolate_pos_encoding method

* Add docstring
2021-08-26 17:25:20 +02:00
14e52783f6 Moving text2text-generation to new pipeline testing mecanism. (#13283) 2021-08-26 16:26:58 +02:00
662b143b71 Hotfixing master tests. (#13282) 2021-08-26 10:09:53 -04:00
59c378d069 Moving text2text-generation to new pipeline testing mecanism. (#13281) 2021-08-26 16:09:48 +02:00
0ebda5382b Moving table-question-answering pipeline to new testing. (#13280) 2021-08-26 09:09:57 -04:00
879fe8fa75 Moving summarization pipeline to new testing format. (#13279)
* Moving `summarization` pipeline to new testing format.

* Remove generate_kwargs from __init__ args.
2021-08-26 14:47:11 +02:00
55fb88d369 Moving question_answering tests to the new testing scheme. Had to tweak a little some ModelTesterConfig for pipelines. (#13277)
* Moving question_answering tests to the new testing scheme. Had to tweak
a little some ModelTesterConfig for pipelines.

* Removing commented code.
2021-08-26 12:37:55 +02:00
4fa1cd995c Fixing the test (warnings was incorrect.) (#13278) 2021-08-26 06:13:48 -04:00
6b586ed18c Move image-classification pipeline to new testing (#13272)
- Enforce `test_small_models_{tf,pt}` methods to exist (enforce checking
actual values in small tests)
- Add support for non RGB image for the pipeline.
2021-08-26 05:52:49 -04:00
401377e679 Add error message concerning revision (#13266)
* add error message concerning revision

* Update src/transformers/configuration_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* re-add double line endings

* is not None instead of implicit bool casting

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-08-26 04:32:57 -04:00
40d60e1536 fix tokenizer_class_from_name for models with - in the name (#13251)
* fix tokenizer_class_from_name

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* add test

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-08-26 04:29:14 -04:00
83bfdbdd75 Migrating conversational pipeline tests to new testing format (#13114)
* New test format for conversational.

* Putting back old mixin.

* Re-enabling auto tests with LazyLoading.

* Feature extraction tests.

* Remove feature-extraction.

* Feature extraction with feature_extractor (No pun intended).

* Update check_model_type for fill-mask.
2021-08-26 03:50:43 -04:00
72eefb34a9 Add require flax to test (#13260) 2021-08-25 12:56:25 -04:00
5af8df5afb Some model_types cannot be in the mapping (#13259)
* Some tokenizers cannot be in the mapping

* Style
2021-08-25 12:56:16 -04:00
68b6907290 Add CLIP tokenizer to AutoTokenizer (#13258) 2021-08-25 12:56:07 -04:00
3bbe68f837 Hubert test fix (#13261) 2021-08-25 18:41:26 +02:00
3bb4466260 Better notification service (#13267) 2021-08-25 12:14:44 -04:00
225de5ccbb Replace assert statement with if condition and ValueError (#13263) 2021-08-25 12:14:03 -04:00
46554fc12f Grad enabled typo 2021-08-25 11:39:45 +02:00
0e4f727069 Remove side effects of disabling gradient computaiton (#13257) 2021-08-25 05:32:51 -04:00
b1198a8440 Update generation_logits_process.py (#12671)
If you're using type hints, then passing an `int` where a `float` is annotated is acceptable as per [PEP 484](https://www.python.org/dev/peps/pep-0484/#the-numeric-tower).

This makes life a little nicer.
2021-08-25 02:34:05 +08:00
0245cee469 Bump notebook from 6.1.5 to 6.4.1 in /examples/research_projects/lxmert (#13226)
Bumps [notebook](http://jupyter.org) from 6.1.5 to 6.4.1.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2021-08-24 09:52:39 -04:00
0512bfe79e Custom errors and BatchSizeError (#13184)
* Adding custom errors and BatchSizeError for GPT2

* Adding custom errors and BatchSizeError for GPT2

* Changing Exception to BaseException

* Exception

* Adding args to Custom Exception

* Adding args to Custom Exception

* Changing from BaseException to Exception

* Changing Conditional loop syntax

* Adding Copyright info

* Handling check_code_quality

* Handling check_code_quality pt2

* Handling check_code_quality pt3

* Handling check_code_quality pt4

* Handling check_code_quality pt5

* Handling check_code_quality pt6

* Handling check_code_quality pt6

* Using black for check_code_quality

* sorting import style

* Changing

* Changing

* verified through style_doc.py

* verified through style_doc.py

* applying isort

* Removing indentation

* Changing

* Changing

* Changing

* Used ValueError

* Using ValueError

* Reformatted Style doc

* Using style doc on modeling_gp2.py

* Adding indentation

* Changing
2021-08-24 09:01:01 -04:00
cf57447648 Fix broken links in Splinter documentation (#13237) 2021-08-24 07:55:21 -04:00
5c6eca71a9 fix AutoModel.from_pretrained(..., torch_dtype=...) (#13209)
* fix AutoModel.from_pretrained(..., torch_dtype=...)

* fix to_diff_dict

* add better test

* torch is not always available when a model has self.torch_dtype
2021-08-24 11:43:41 +02:00
39db2f3c19 Allow local_files_only for fast pretrained tokenizers (#13225)
* allow local_files_only for fast pretrained tokenizers

* make style
2021-08-24 03:05:33 -04:00
2772d3e79d Add RemBert to AutoTokenizer (#13224) 2021-08-23 13:16:48 -04:00
f1bb6f0839 Fix load tf alias in Albert. (#13159) 2021-08-23 12:08:33 -04:00
0b54046ff8 remove unwanted code (#13145) 2021-08-23 12:07:41 -04:00
2e20c0f34a Make Flax GPT2 working with cross attention (#13008)
* make flax gpt2 working with cross attention

* Remove encoder->decoder projection layer

* A draft (incomplete) for FlaxEncoderDecoderModel

* Add the method from_encoder_decoder_pretrained + the docstrings

* Fix the mistakes of using EncoderDecoderModel

* Fix style

* Add FlaxEncoderDecoderModel to the library

* Fix cyclic imports

* Add FlaxEncoderDecoderModel to modeling_flax_auto.py

* Remove question comments

* add tests for FlaxEncoderDecoderModel

* add flax_encoder_decoder to the lists of ignored entries in check_repo.py

* fix missing required positional arguments

* Remove **kwargs when creating FlaxEncoderDecoderModel in from_encoder_decoder_pretrained()

Also fix generation eos/pad tokens issue

* Fix: Use sequences from the generated_output

* Change a check from assert to raise ValueError

* Fix examples and token ids issues

* Fix missing all_cross_attentions when outputting tuple in modeling_gpt2

* Remove the changes in configuration docstrings.

* allow for bert 2 gpt2

* make fix-copies

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Change remaining examples to bert2gpt2

* Change the test to Bert2GPT2

* Fix examples

* Fix import

* Fix unpack bug

* Rename to FlaxEncoderDecoderModelTest and change the test to bert2gpt2

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix: NotImplentedError -> NotImplementedError

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* up

* finalize

Co-authored-by: ydshieh <ydshieh@user.noreply>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-08-23 17:57:29 +02:00
7223844df9 Change how "additional_special_tokens" argument in the ".from_pretrained" method of the tokenizer is taken into account (#13056)
* add test

* add change in PretrainedTokenizerBase

* change Luke

* deactivate

* add the possibility to add additional special tokens for M2M100

* format

* add special test for canine

* proposed changes for mbart

* proposed changes for mbart50

* proposed changes for byt5

* proposed changes for canine

* proposed changes for t5

* test fast and slow

* remove comment

* remove comment

* add fast version for all tests

* replace break by continue

* add more comments

* add check to avoid duplicates

* remove comment

* format

* proposed change for wave2vec2

* reverse changes mbart

* uncomment

* format
2021-08-23 14:35:18 +02:00
b13c6c18d0 correcting group beam search function output score bug (#13211) 2021-08-23 13:27:24 +02:00
f689743e74 SageMaker: Fix sagemaker DDP & metric logs (#13181)
* Barrier -> barrier

* added logger for metrics

* removed stream handler in trainer

* moved handler

* removed streamhandler from trainer

* updated test image and instance type added datasets version to test

* Update tests/sagemaker/scripts/pytorch/requirements.txt

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-08-23 10:18:07 +02:00
8679bd7144 Add min and max question length options to TapasTokenizer (#12803)
* Add min and max question length option to the tokenizer

* Add corresponding test
2021-08-23 03:44:42 -04:00
588e6caa15 Overwrite get_clean_sequence as this was causing a bottleneck (#13183) 2021-08-23 03:41:35 -04:00
143738214c Fix the loss calculation of ProphetNet (#13132)
* Fix the loss calculation of ProphetNet

* Fix the loss calculation of ProphetNet

Fix the loss calculation of ProphetNet and remove warning
2021-08-20 11:01:54 +02:00
91ff480e26 Update namespaces inside torch.utils.data to the latest. (#13167)
* Update torch.utils.data namespaces to the latest.

* Format

* Update Dataloader.

* Style
2021-08-19 14:29:51 +02:00
1fec32adc6 Fix generation docstrings regarding input_ids=None (#12823) 2021-08-18 16:51:54 +02:00
ecfa7eb260 [AutoFeatureExtractor] Fix loading of local folders if config.json exists (#13166)
* up

* up
2021-08-18 16:18:13 +02:00
439a43b6b4 Add splinter (#12955)
* splinter template

* initialize splinter classes

* Splinter Tokenizer

* splinter.rst

* tokenization fixes

* Documentation & some minor variable name changes

* bug fix (added back question_token_id to config) + variable names

* Minor bug fixes + variable name changes

* Fix Splinter references after merge with new transformers

* changes after running make style & quality

* Fix documentation unindent

* Fix doc indentation in tokenization_splinter

* Fix also SplinterTokenizerFast

* Add Splinter to index.rst and README

* Fixdouble whitespace from index.rst

* Fixed index.rst with 'make fix-copies'

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update src/transformers/models/splinter/__init__.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Added "copied from BERT" comments

* Removing unnexessary code from modeling_splinter

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/splinter/configuration_splinter.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Remove references to TF modeling from splinter

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove unnecessary check

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add differences between Splinter and Bert tokenizers

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/splinter/tokenization_splinter_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove unnecessary check

* Doc formatting

* Update src/transformers/models/splinter/tokenization_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/splinter/tokenization_splinter.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* bug fix: remove load_tf_weights attribute

* Some minor quality changes

* Update docs/source/model_doc/splinter.rst

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/splinter/configuration_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Change FullyConnectedLayer to SplinterFullyConnectedLayer

* Variable naming

* Reove gather_positions function

* Remove ClassificationHead as it's outdated

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Remove hardcoded 102 token id

* Minor style change

* Added "tau" organization to all model identifiers & URLS

* Added tau to the tests as well

* Copy-from comments

* Removed all unnecessary classes (e.g. SplinterForMaskedLM)

* Running make fix-copies

* Bug fix: Further removed unnecessary classes

* Add Splinter to AutoTokenization

* Add an integration test for Splinter

* Removed initialize_new_qass from config - It will be done through different checkpoints

* Removed `initialize_new_qass` from documentation as well

* Added new checkpoint names (`tau/splinter-base-qass` and same for large) in the code

* Minor change to test

* SplinterTokenizer now doesn't abstract from BertTokenizer

* SplinterTokenizerFast also dosn't abstract from Bert

* style and quality

* bug fix: import ing torch in tests only if it's available

* Auto mappings

* Changed copyrights in Splinter's files

* Update src/transformers/models/splinter/configuration_splinter.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: yuvalkirstain <kirstain.yuval@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-08-17 08:29:01 -04:00
6626d8a62f Optimizes ByT5 tokenizer (#13119)
* Starting to optimize ByT5.

* Making ByT5Tokenizer faster.

* Even faster.

* Cleaning up.
2021-08-17 10:11:58 +02:00
14e9d2954c compute seq_len from inputs_embeds (#13128) 2021-08-16 18:36:08 +02:00
e2f07c01e9 Ci continue through smi failure (#13140)
* Continue on error

* Specific

* Temporary patch
2021-08-16 11:40:38 -04:00
73caccde3f fix bug (#13051) 2021-08-16 16:02:34 +02:00
c066598c23 Fix frameworks table so it's alphabetical (#13118)
* Fix frameworks table so it's alphabetical

* Update index.rst

* Don't differentiate when sorting between upper and lower case
2021-08-16 15:45:19 +02:00
62ba3b6b43 Depend on hidden_dropout_prob 2021-08-16 10:52:28 +02:00
3c6d73bc5c Fix BERT/MobileBERT classifier dropout 2021-08-16 10:43:59 +02:00
7d2feb3a3b Update modeling_bert.py (#13129) 2021-08-16 04:17:37 -04:00
a13c8145bc Fix docstring of train_new_from_iterator 2021-08-13 17:38:02 +02:00
86a154722f Fix omitted lazy import for xlm-prophetnet (#13052)
* Fix omitted lazy import for xlm-prophetnet

* Update src/transformers/models/xlm_prophetnet/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix style using black

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-13 12:24:53 +02:00
d58926ab1d Moving fill-mask pipeline to new testing scheme (#12943)
* Fill mask pipelines test updates.

* Model eval !!

* Adding slow test with actual values.

* Making all tests pass (skipping quite a bit.)

* Doc styling.

* Better doc cleanup.

* Making an explicit test with no pad token tokenizer.

* Typo.
2021-08-13 12:04:18 +02:00
a04d4bf2d7 Fix flax gpt2 hidden states (#13109)
* Fix inconsistency of the last element in hidden_states between PyTorch/Flax GPT2(Neo) (#13102)

* Fix missing elements in outputs tuple

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Fix local variable 'all_hidden_states' referenced before assignment

* Fix by returning tuple containing None values

* Fix quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-08-13 14:15:53 +05:30
d8fb278a2c Create py.typed (#12893)
* Create py.typed

This creates a [py.typed as per PEP 561](https://www.python.org/dev/peps/pep-0561/#packaging-type-information) that should be distributed to mark that the package includes (inline) type annotations.

* Update setup.py

Include py.typed as package data

* Update setup.py

Call `setup(...)` with `zip_safe=False`.
2021-08-13 04:12:59 -04:00
b0a917c48a Fix CircleCI nightly tests (#13113) 2021-08-13 08:57:30 +02:00
bda1cb0236 Fix VisualBERT docs (#13106)
* Fix VisualBERT docs

* Show example notebooks as lists

* Fix style
2021-08-13 11:44:04 +05:30
e46ad22cd6 Improve type checker performance (#13094)
* conditional declare `TOKENIZER_MAPPING_NAMES` within a `if TYPE_CHECKING` block so that type checkers dont need to evaluate the RHS of the assignment.

this improves performance of the pylance/pyright type checkers

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* adding missing import

* format

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-12 18:45:54 +02:00
b9962b8656 Ci last fix (#13103)
* Only report failures on failures

* Fix typo

* Put it everywhere
2021-08-12 10:45:06 -04:00
f5cd27694a [FlaxCLIP] allow passing params to image and text feature methods (#13099)
* allow passing params to image and text feature method

* ifx for hybrid clip as well
2021-08-12 18:35:01 +05:30
9a498c37a2 Rely on huggingface_hub for common tools (#13100)
* Remove hf_api module and use hugginface_hub

* Style

* Fix to test_fetcher

* Quality
2021-08-12 14:59:02 +02:00
6900dded49 [Flax/JAX] Run jitted tests at every commit (#13090)
* up

* up

* up
2021-08-12 14:49:46 +02:00
773d386041 Change a parameter name in FlaxBartForConditionalGeneration.decode() (#13074)
* Change FlaxBartForConditionalGeneration.decode() argument: deterministic -> train

* Also change the parameter name to train for flax marian and mbart

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2021-08-12 17:49:48 +05:30
f176fbf588 Fix doc building error 2021-08-12 05:49:02 -04:00
be323d5152 Reactive test fecthers on scheduled test with proper git install (#13097)
* Reactive test fecthers on scheduled test with proper git install

* Proper fetch-depth
2021-08-12 11:38:14 +02:00
ea8ffe36d3 Proper import for unittest.mock.patch (#13085) 2021-08-12 11:23:00 +02:00
d329b63369 Deberta tf (#12972)
* TFDeberta

moved weights to build and fixed name scope

added missing ,

bug fixes to enable graph mode execution

updated setup.py

fixing typo

fix imports

embedding mask fix

added layer names avoid autmatic incremental names

+XSoftmax

cleanup

added names to layer

disable keras_serializable
Distangled attention output shape hidden_size==None
using symbolic inputs

test for Deberta tf

make style

Update src/transformers/models/deberta/modeling_tf_deberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/models/deberta/modeling_tf_deberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/models/deberta/modeling_tf_deberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/models/deberta/modeling_tf_deberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/models/deberta/modeling_tf_deberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/models/deberta/modeling_tf_deberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/models/deberta/modeling_tf_deberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

removed tensorflow-probability

removed blank line

* removed tf experimental api
+torch_gather tf implementation from @Rocketknight1

* layername DeBERTa --> deberta

* copyright fix

* added docs for TFDeberta & make style

* layer_name change to fix load from pt model

* layer_name change as pt model

* SequenceClassification layername change,
to same as pt model

* switched to keras built-in LayerNormalization

* added `TFDeberta` prefix most layer classes

* updated to tf.Tensor in the docstring
2021-08-12 05:01:26 -04:00
c4e1586db8 Fix VisualBert Embeddings (#13017) 2021-08-12 03:57:34 -04:00
53b38d6269 Doctests job (#13088)
* Doctests

* Limit to 4 decimals

* Try with separate PT/TF tests

* Remove test for TF

* Ellips the predictions

* Doctest continue on failure

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2021-08-12 03:42:25 -04:00
3f52c685c1 Fix classifier dropout in AlbertForMultipleChoice (#13087)
Classification head of AlbertForMultipleChoice uses `hidden_dropout_prob` instead of `classifier_dropout_prob`.  This
is not desirable as we cannot change classifer head dropout probability without changing the dropout probabilities of
the whole model.
2021-08-12 03:37:31 -04:00
c89180a9de Install git (#13091)
* Install git

* Add TF tests

* And last TF test

* Add in commented code too

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2021-08-11 18:09:41 +02:00
c71f73f438 Add VisualBERT demo notebook (#12263)
* Initialize VisualBERT demo

* Update demo

* Add commented URL

* Update README

* Update README
2021-08-11 10:10:59 -04:00
83424ade1a [Doctest] Setup, quicktour and task_summary (#13078)
* Fix doctests for quicktour

* Adapt causal LM exemple

* Remove space

* Fix until summarization

* End of task summary

* Style

* With last changes in quicktour
2021-08-11 13:45:25 +02:00
bfc885091b Fix last one 2021-08-10 13:48:26 -04:00
29dada00c4 Use original key for label in DataCollatorForTokenClassification (#13057)
* Use original key for label in DataCollatorForTokenClassification

DataCollatorForTokenClassification accepts either `label` or `labels` as key for label in it's input. However after padding the label it assigns the padded labels to key `labels`. If originally `label` was used as key than the original upadded labels still remains in the batch. Then at line 192 when we try to convert the batch elements to torch tensor than these original unpadded labels cannot be converted as the labels for different samples have different lengths.

* Fixed style.
2021-08-10 18:39:48 +02:00
95e2e14f9d Revert to all tests whil we debug what's wrong (#13072) 2021-08-10 18:37:01 +02:00
477480ce2a Trigger GPU tests 2021-08-10 10:26:06 -04:00
0dad5d825d Fix fallback of test_fetcher (#13071) 2021-08-10 16:17:06 +02:00
4dd857244c Merge branch 'master' of github.com:huggingface/transformers 2021-08-10 09:40:38 -04:00
bd5593b6c4 Try fecthing the last two commits 2021-08-10 09:40:16 -04:00
9e9b8f1d99 Roll out the test fetcher on push tests (#13055)
* Use test fetcher for push tests as well

* Force diff with last commit for circleCI on master

* Fix syntax error

* Style

* Schedule nightly tests
2021-08-10 14:54:52 +02:00
2e0d767ab2 Pin sacrebleu 2021-08-10 06:27:49 -04:00
0454e4bd8b Fix ModelOutput instantiation form dictionaries (#13067)
* Fix ModelOutput instantiation form dictionaries

* Style
2021-08-10 12:20:04 +02:00
3157fa3c53 docs: add HuggingArtists to community notebooks (#13050)
* Adding HuggingArtists to Community Notebooks

* Adding HuggingArtists to Community Notebooks

* Adding HuggingArtists to Community Notebooks

* docs: add HuggingArtists to community notebooks

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-10 09:36:44 +02:00
ab7551cd7f Add try-except for torch_scatter (#13040)
* Add try-catch for torch_scatter

* Update modeling_tapas.py
2021-08-10 15:29:35 +08:00
76cadb7943 replace tgt_lang by tgt_text (#13061) 2021-08-09 22:47:05 +05:30
a8bf2fa76e Documentation for patch v4.9.2 2021-08-09 16:14:17 +02:00
5008e08885 Add to ONNX docs (#13048)
* Add to ONNX docs

* Add MBART example

* Update docs/source/serialization.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-09 09:51:49 -04:00
6f5ab9daf1 Add MBART to models exportable with ONNX (#13049)
* Add MBART to models exportable with ONNX

* unittest mock

* Add tests

* Misc fixes
2021-08-09 08:56:04 -04:00
13a9c9a354 [Flax] Refactor gpt2 & bert example docs (#13024)
* fix_torch_device_generate_test

* remove @

* improve docs for clm

* speed-ups

* correct t5 example as well

* push final touches

* Update examples/flax/language-modeling/README.md

* correct docs for mlm

* Update examples/flax/language-modeling/README.md

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-08-09 13:37:50 +02:00
3ff2cde5ca tfhub.de -> tfhub.dev (#12565) 2021-08-09 08:11:17 +02:00
24cbf6bc5a Update README.md 2021-08-08 17:11:19 +02:00
7390d9de63 Use min version for huggingface-hub dependency (#12961)
* Use min version for huggingface-hub dependency

* Update dependency version table
2021-08-08 09:06:05 -05:00
7fcee113c1 Tpu tie weights (#13030)
* Fix tied weights on TPU

* Manually tie weights in no trainer examples

* Fix for test

* One last missing

* Gettning owned by my scripts

* Address review comments

* Fix test

* Fix tests

* Fix reformer tests
2021-08-06 20:41:39 +02:00
1bf38611a4 Put smaller ALBERT model (#13028) 2021-08-06 12:41:33 -04:00
dc420b0eb1 T5 with past ONNX export (#13014)
T5 with past ONNX export, and more explicit past_key_values inputs and outputs names for ONNX model

Authored-by: Michael Benayoun <michael@huggingface.co>
2021-08-06 15:46:26 +02:00
ee11224611 FX submodule naming fix (#13016)
Changed the way dynamically inserted submodules are named and the method used to insert them

Authored-by: Michael Benayoun <michael@huggingface.co>
2021-08-06 15:37:29 +02:00
9870093f7b [WIP] Disentangle auto modules from other modeling files (#13023)
* Initial work

* All auto models

* All tf auto models

* All flax auto models

* Tokenizers

* Add feature extractors

* Fix typos

* Fix other typo

* Use the right config

* Remove old mapping names and update logic in AutoTokenizer

* Update check_table

* Fix copies and check_repo script

* Fix last test

* Add back name

* clean up

* Update template

* Update template

* Forgot a )

* Use alternative to fixup

* Fix TF model template

* Address review comments

* Address review comments

* Style
2021-08-06 13:12:30 +02:00
2e4082364e [Flax T5] Speed up t5 training (#13012)
* fix_torch_device_generate_test

* remove @

* update

* up

* fix

* remove f-stings

* correct readme

* up

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-08-06 11:21:37 +02:00
60e448c87e [Flax] Correct pt to flax conversion if from base to head (#13006)
* finish PR

* add tests

* correct tests

* finish

* correct other flax tests

* better naming

* correct naming

* finish

* apply sylvains suggestions
2021-08-05 18:38:50 +02:00
33929448a1 Replace // operator with / operator + long() (#13013) 2021-08-05 15:55:14 +02:00
a6d62aaba0 GPT-Neo ONNX export (#12911)
GPT-Neo ONNX export and task / feature refactoring

Authored-by: Michael Benayoun <michael@huggingface.co>
2021-08-05 10:12:13 +02:00
8aa01d2a6d Create perplexity.rst (#13004)
Updating the import for load_dataset
2021-08-05 02:56:13 -04:00
83e5a10603 Add BEiT (#12994)
* First pass

* Make conversion script work

* Improve conversion script

* Fix bug, conversion script working

* Improve conversion script, implement BEiTFeatureExtractor

* Make conversion script work based on URL

* Improve conversion script

* Add tests, add documentation

* Fix bug in conversion script

* Fix another bug

* Add support for converting masked image modeling model

* Add support for converting masked image modeling

* Fix bug

* Add print statement for debugging

* Fix another bug

* Make conversion script finally work for masked image modeling models

* Move id2label for datasets to JSON files on the hub

* Make sure id's are read in as integers

* Add integration tests

* Make style & quality

* Fix test, add BEiT to README

* Apply suggestions from @sgugger's review

* Apply suggestions from code review

* Make quality

* Replace nielsr by microsoft in tests, add docs

* Rename BEiT to Beit

* Minor fix

* Fix docs of BeitForMaskedImageModeling

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-04 18:29:23 +02:00
0dd1152c18 Skip ProphetNet test (#12462) 2021-08-04 18:24:54 +02:00
f82653874b create tensors on device (#12846) 2021-08-04 17:58:30 +02:00
fbf468b057 [Flax] Correct flax docs (#12782)
* fix_torch_device_generate_test

* remove @

* fix flax docs

* correct more docs in flax

* another correction

* fix flax docs

* Apply suggestions from code review
2021-08-04 16:31:23 +02:00
a317e6c3be [Flax] Correctly Add MT5 (#12988)
* finish PR

* finish mt5

* push

* up

* Update tests/test_modeling_flax_mt5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-08-04 16:03:13 +02:00
da9754a3a0 [Flax] Align jax flax device name (#12987)
* [Flax] Align device name in docs

* make style

* fix import error
2021-08-04 16:00:09 +02:00
07df5578d9 pad_to_multiple_of added to DataCollatorForWholeWordMask (#12999)
* pad_to_multiple_of added to DataCollatorForWholeWordMask

* pad_to_multiple_of added to DataCollatorForWholeWordMask

Co-authored-by: Цвигун Аким Олегович <AOTsvigun@sberbank.ru>
2021-08-04 15:49:21 +02:00
3f44a66cb6 Return raw outputs in TextClassificationPipeline (#8328)
* Return raw outputs in TextClassificationPipeline

* Style

* Support for problem type

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply Nicolas' comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-04 08:42:47 -04:00
d4c834d2e0 Fix from_pretrained with corrupted state_dict (#12939)
* Fix from_pretrained with corrupted state_dict

* Adapt test

* Use better checkpoint

* Style

* Clean up
2021-08-04 11:48:39 +02:00
a28da4c490 Replace nielsr by google namespace in tests (#12453) 2021-08-04 03:29:34 -04:00
f064e0a43d Cast logits to fp32 at the end of TF_T5 (#12332)
This change enables tf.keras.mixed_precision with bf16
2021-08-03 20:02:59 +01:00
b7439675b8 fix Trainer.train(resume_from_checkpoint=False) is causing an exception (#12981)
* fix #12970

* Update tests/test_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove unnecessary issue link

* fix test formatting

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-08-03 10:10:33 +02:00
790f1c9545 Fix template for inputs docstrings (#12976) 2021-08-03 08:28:25 +02:00
75b8990d90 fix typo in example/text-classification README (#12974)
* fix typo in example/text-classification README

* add space to align the table
2021-08-02 12:58:43 +02:00
c1a65385a1 Place BigBirdTokenizer in sentencepiece-only objects (#12975) 2021-08-02 08:26:38 +02:00
b5995badc9 Fix typo in example of DPRReader (#12954) 2021-08-02 08:08:57 +02:00
a4340d3b85 Set tb_writer to None in TensorBoardCallback.on_train_end() (#12963) 2021-08-01 08:35:47 +02:00
3d4b3bc3fd examples: use correct way to get vocab size in flax lm readme (#12947) 2021-07-30 21:57:53 +05:30
23d6761f30 Fix division by zero in NotebookProgressPar (#12953) 2021-07-30 09:31:29 -04:00
8ff619d95e Add multilingual documentation support (#12952)
* Add multilingual documentation support

* Add multilingual documentation support

* make style

* make style

* revert
2021-07-30 20:56:14 +08:00
fe6ff4a920 Add substep callbacks (#12951)
Co-authored-by: Lukas Wutschitz <lukas.wutschitz@microsoft.com>
2021-07-30 08:20:38 -04:00
f84226b7a1 Log Azure ML metrics only for rank 0 (#12766)
* minor change to log azureml only for rank 0

* fix typo
2021-07-30 15:11:31 +08:00
5c673efad7 fix typo in gradient_checkpointing arg (#12855)
help for `ModelArguments.gradient_checkpointing` should be
"If True, use gradient checkpointing to save memory
at the expense of slower backward pass."
not "Whether to freeze the feature extractor layers of the model."
(which is duplicated from `freeze_feature_extractor` arg)
2021-07-30 15:06:33 +08:00
fd0255b41d Add CpmTokenizerFast (#12938)
* Add CpmTokenizerFast

* Fix isort

* Overwrite _batch_encode_plus
2021-07-30 03:05:16 +08:00
e2d22eef14 Moving feature-extraction pipeline to new testing scheme (#12843)
* Update feature extraction pipelilne.

* Leaving 1 small model for actual values check.

* Fixes tests

- Better support for tokenizer with no pad token
- Increasing PegasusModelTesterConfig for pipelines
- Test of feature extraction are more permissive + don't test Multimodel
models + encoder-decoder.

* Fixing model loading with incorrect shape (+ model with HEAD).

* Update tests/test_pipelines_common.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Revert modeling_utils modification.

* Some corrections.

* Update tests/test_pipelines_common.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_pipelines_feature_extraction.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Syntax.

* Fixing text-classification tests.

* Don't modify this file.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-29 19:35:55 +02:00
640421c0ec ONNX v2 raises an Exception when using PyTorch < 1.8.0 (#12933)
* Raise an issue if the pytorch version is < 1.8.0

* Attempt to add a test to ensure it correctly raises.

* Missing docstring.

* Second attempt, patch with string absolute import.

* Let's do the call before checking it was called ...

* use the correct function ... 🤦

* Raise ImportError and AssertionError respectively when unable to find torch and torch version is not sufficient.

* Correct path mock patching

* relax constraint for torch_onnx_dict_inputs to ge instead of eq.

* Style.

* Split each version requirements for torch.

* Let's compare version directly.

* Import torch_version after checking pytorch is installed.

* @require_torch
2021-07-29 18:02:29 +02:00
9160d81c98 Fix docstring typo in tokenization_auto.py (#12891)
Change `PreTrainedConfig` -> `PretrainedConfig` in the docstring for `AutoTokenizer.from_pretrained(...)`.
2021-07-29 02:19:34 +08:00
0d00c08da0 Fix typo in tokenization_auto.py (#12896)
Fix `config.decoder.__class` -> `config.decoder.__class__`
2021-07-29 02:17:57 +08:00
c3287ebd31 Update typing in generation_logits_process.py (#12900)
Change `torch.Tensor` -> `torch.FloatTensor` in `TemperatureLogitsWarper` to be consistent with the `LogitsWarper` ABC signature annotation.
2021-07-29 02:17:20 +08:00
df55c2b9b1 Update typing in generation_logits_process.py (#12901)
While `Iterable[Iterable[int]]` is a nicer annotation (it's covariant!), the defensive statements parsing out `bad_words_ids` in `__init__(...)` force the caller to pass in `List[List[int]]`. I've changed the annotation to make that clear.
2021-07-29 02:16:34 +08:00
c164064eef Fix distiller.py (#12910)
* fix distiller

* fix style
2021-07-29 02:11:38 +08:00
1da782cb28 Add missing classmethod decorators (#12927)
`_BaseAutoModelClass` was missing `classmethod` decorators on the `from_config(...)` and `from_pretrained(...)` methods.
2021-07-29 01:01:38 +08:00
bf78f523aa Fix StoppingCriteria ABC signature (#12918)
Change `score` -> `scores` because the argument is not positional-only, so you need consistently named parameters for the subclasses. The subclasses appear to favor `scores` over `score`.
2021-07-29 00:47:15 +08:00
63f2b9ab33 Print defaults when using --help for scripts (#12930) 2021-07-28 11:37:20 -04:00
3ec851dc5e Fix QA examples for roberta tokenizer (#12928) 2021-07-28 09:47:49 -04:00
fd85734e0e Add option to set max_len in run_ner (#12929) 2021-07-28 09:38:12 -04:00
1486fb8108 Fix typo in the example of MobileBertForPreTraining (#12919) 2021-07-28 19:45:30 +08:00
f3d0866ed9 Correct validation_split_percentage argument from int (ex:5) to float (0.05) (#12897)
* Fixed train_test_split test_size argument

* `Seq2SeqTrainer` set max_length and num_beams only when non None  (#12899)

* set max_length and num_beams only when non None

* fix instance variables

* fix code style

* [FLAX] Minor fixes in CLM example (#12914)

* readme: fix retrieval of vocab size for flax clm example

* examples: fix flax clm example when using training/evaluation files

* Fix module path for symbolic_trace example

Co-authored-by: cchen-dialpad <47165889+cchen-dialpad@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2021-07-27 21:01:40 -04:00
68a441fa4c Fix module path for symbolic_trace example 2021-07-27 13:47:22 -04:00
d3c3e722d6 [FLAX] Minor fixes in CLM example (#12914)
* readme: fix retrieval of vocab size for flax clm example

* examples: fix flax clm example when using training/evaluation files
2021-07-27 19:48:04 +05:30
12e02e339f Seq2SeqTrainer set max_length and num_beams only when non None (#12899)
* set max_length and num_beams only when non None

* fix instance variables

* fix code style
2021-07-27 08:37:46 -04:00
ba15fe7995 Fix push_to_hub for TPUs (#12895) 2021-07-26 17:10:34 -04:00
b3f95dceca Merge remote-tracking branch 'origin/master' 2021-07-26 10:27:25 -04:00
a492aec82d Update doc 2021-07-26 10:27:14 -04:00
a3bd763732 Better heuristic for token-classification pipeline. (#12611)
* Better heuristic for token-classification pipeline.

Relooking at the problem makes thing actually much simpler,
when we look at ids from a tokenizer, we have no way in **general**
to recover if some substring is part of a word or not.

However, within the pipeline, with offsets we still have access to the
original string, so we can simply look if previous character (if it
exists) of a token, is actually a space. This will obviously be wrong
for tokenizers that contain spaces within tokens, tokenizers where
offsets include spaces too (Don't think there are a lot).

This heuristic hopefully is fully bc and still can handle non-word based
tokenizers.

* Updating test with real values.

* We still need the older "correct" heuristic to prevent fusing
punctuation.

* Adding a real warning when important.
2021-07-26 16:21:26 +02:00
569f61a760 Add TF multiple choice example (#12865)
* Add new multiple-choice example, remove old one
2021-07-26 15:15:51 +01:00
4f19881f88 Fix documentation of BigBird tokenizer (#12889) 2021-07-26 10:11:25 -04:00
303989de0e Add accelerate to examples requirements (#12888) 2021-07-26 09:57:34 -04:00
5f43623843 Add possibility to ignore imports in test_fecther (#12801)
* Add possibility to ignore imports in test_fecther

* Style
2021-07-26 09:48:19 -04:00
7c300d6d42 Fix barrier for SM distributed (#12853) 2021-07-26 08:30:53 -04:00
0c1c42c120 add classifier_dropout to classification heads (#12794)
* add classifier_dropout to Electra

* no type annotations yet

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add classifier_dropout to Electra

* add classifier_dropout to Electra ForTokenClass.

* add classifier_dropout to bert

* add classifier_dropout to roberta

* add classifier_dropout to big_bird

* add classifier_dropout to mobilebert

* empty commit to trigger CI

* add classifier_dropout to reformer

* add classifier_dropout to ConvBERT

* add classifier_dropout to Albert

* add classifier_dropout to Albert

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-26 08:30:05 -04:00
9ff672fc4d BaseLazyModule -> LazyModule in RemBERT 2021-07-24 17:37:58 +02:00
434022adac Add RemBERT model code to huggingface (#10692)
* Faster list concat for trainer_pt_utils.get_length_grouped_indices() (#11825)

get_length_grouped_indices() in LengthGroupedSampler and DistributedLengthGroupedSampler
is prohibitively slow for large number of megabatches (in test case takes hours for ~270k
megabatches with 100 items each) due to slow list concatenation with sum(megabatches, []).

Resolves: #11795

Co-authored-by: ctheodoris <cvtheodo@ds.dfci.harvard.edu>

* Replace double occurrences as the last step (#11367)

* [Flax] Fix PyTorch import error (#11839)

* fix_torch_device_generate_test

* remove @

* change pytorch import to flax import

* Fix reference to XLNet (#11846)

* Switch mem metrics flag (#11851)

* Switch mem metrics flag

* Update src/transformers/training_args.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix flos single node (#11844)

* fixing flos bug/typo in non-distributed setting

* storing flos every logging_interval

* Fix two typos in docs (#11852)

* typo2

* fix typo

* [Trainer] Report both steps and num samples per second (#11818)

* [Trainer] Report both steps and num samples per second

* Fix batch number

* Update src/transformers/trainer_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Address review comments

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Add some tests to the slow suite #11860

* Enable memory metrics in tests that need it (#11859)

* fixed a small typo in the doc (#11856)

* typo (#11858)

* Add option to log only once in multinode training (#11819)

* Add option to long only once in multinode training

* Use an alternate property

* [Wav2Vec2] SpecAugment Fast (#11764)

* first try

* finish

* [lm examples] fix overflow in perplexity calc (#11855)

* fix overflow in perplexity calc

* use inf

* fix

* [Examples] create model with custom config on the fly (#11798)

* create custom model on the flight

* better wording

* add update_from_string

* cleanup

* cleanup

* Update src/transformers/configuration_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* more bool options

* style

* fix logger

* add test

* add the doc

* assert on conflict of options

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [Wav2Vec2ForCTC] example typo fixed (#11878)

* Ensure input tensor are on device. (#11874)

The feature extractor does not create tensors on the appropriate device,
so we call `ensure_tensor_on_device` before feeding the processed inputs
to the model.

* Fix usage of head masks by TF encoder-decoder models' `generate()` function (#11775)

* Fix Bart

* Fix Blenderbot{,_small}

* Fix LED

* Fix Marian

* Fix MBart

* Fix Pegasus

* Fix T5

* Add test for generation with head_mask

* Add a common TF test

* Override a test for the LED model as head masking is not yet properly implemented

* Remove all head_masks from input preparation for LED

* Drop masking for T5 as it needs a bit of refactor

* Correcting comments in T5Stack to reflect correct tuple order  (#11330)

* Correcting comments to reflect correct tuple order

In order to match the actual order (line 513 and 516, and as accessed in 968), I've changed the order mentioned in comments L962 and L966-967.

* Update modeling_t5.py

Updating another comment as well

* Removing extra space

* Fixing style and quality

* style & quality

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Flax] Allow dataclasses to be jitted (#11886)

* fix_torch_device_generate_test

* remove @

* change dataclasses to flax ones

* fix typo

* fix jitted tests

* fix bert & electra

* changing find_batch_size to work with tokenizer outputs (#11890)

* changing find_batch_size to work with tokenizer outputs

trainer_pt_utils.find_batch_size does not recognize the batch size of BatchEncoding objects. This can cause an error when a trainer relies on find_batch_size to report the number of observed examples in the evaluation loop.

* Trigger CI

Co-authored-by: jrenner <joseph.renner@inria.fr>

* Link official Cloud TPU JAX docs (#11892)

* Flax Generate (#11777)

* fix_torch_device_generate_test

* remove @

* add

* indexing

* correct a couple of tests

* fix tests

* add logits processor

* finish top_k, top_p, temp

* add docs

* correct flax prng key default

* improve generate

* add generation docs

* add docs

* make style

* revert model outputs change

* make style

* correct typo

* fix tests

* fix slow test

* add raise

* finish generation

Co-authored-by: Patrick von Platen <patrick@huggingface.co>

* Add Emotion Speech Noteboook (#11900)

* Update deepspeed config to reflect hyperparameter search parameters (#11896)

* rebuild deepspeed config for hyperparameter search

* reformat code to fix style issues

* Adding new argument `max_new_tokens` for generate. (#11476)

* Adding new argument `max_new_tokens` for generate.

This is a proposal to add a new argument `max_new_tokens` to `generate`.
This include a `MaxNewTokensCriteria` that enables callers that don't
know about the token length ahead (like pipelines callers) to manage
more easily the length of their generated output.

* Adding a test for the user warning when both`max_length` and
`max_new_tokens` are used together.

* Removed redundant `no_grad`.

* Added Sequence Classification class in GPTNeo (#11906)

* seq classification changes

* fix tests

* [Flax] Return Attention from BERT, ELECTRA, RoBERTa and GPT2 (#11918)

* Added logic to return attention from flax-bert model and added test cases to check that

* Added new line at the end of file to test_modeling_flax_common.py

* fixing code style

* Fixing Roberta and Elextra models too from cpoying bert

* Added temporary hack to not run test_attention_outputs for FlaxGPT2

* Returning attention weights from GPT2 and changed the tests accordingly.

* last fixes

* bump flax dependency

Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Test optuna and ray (#11924)

* Remove `datasets` submodule

* fix assert (#11935)

* Remove redundant `nn.log_softmax` in `run_flax_glue.py` (#11920)

* Remove redundant `nn.log_softmax` in `run_flax_glue.py`

`optax.softmax_cross_entropy` expects unnormalized logits, and so it already calls `nn.log_softmax`, so I believe it is not needed here. `nn.log_softmax` is idempotent so mathematically it shouldn't have made a difference.

* Remove unused 'flax.linen' import

* Add MT5ForConditionalGeneration as supported arch. to summarization README (#11961)

* Add MT5ForConditionalGeneration as supported arch.

* Update README.md

* Add FlaxCLIP (#11883)

* add flax CLIP

* default input_shape

* add tests

* fix test

* fix name

* fix docs

* fix shapes

* attend at least 1 token

* flax conv to torch conv

* return floats

* fix equivalence tests

* fix import

* return attention_weights and update tests

* fix dosctrings

* address patricks comments

* input_shape arg

* add tests for get_image_features and get_text_features methods

* fix tests

* RAG-2nd2end-revamp (#11893)

* initial

* code quality test

* code quality

* added test functions in test_modeling_rag.py and test_retrieval_rag.py to test end2end retreiver

* minor change in test_modeling_rag

* fixed tests

* Update examples/research_projects/rag-end2end-retriever/README.md

typo corrected as suggested by lhoestq

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* Update examples/research_projects/rag-end2end-retriever/finetune_rag.py

type change suggested by lhoestq

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* Update src/transformers/models/rag/retrieval_rag.py

Adding this change as mentioned by lhoestq.

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* completed the minor changes suggested by the reviewers

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* modify qa-trainer (#11872)

* modify qa-trainer

* fix flax model

* bugfixes training_args.py (#11922)

modified according to:
https://pytorch.org/xla/release/1.8.1/_modules/torch_xla/core/xla_model.html

* reinitialize wandb config for each hyperparameter search run (#11945)

* Add regression tests for slow sentencepiece tokenizers.  (#11737)

* add test_vocab_size for sentencepiece tok.

* add test_get_vocab for sentencepiece tok.

* add test_convert_token_and_id for sentencepiece tok.

* add test_tokenize_and_convert_tokens_to_string for all tok.

* improve test_tokenize_and_convert_tokens_to_string for sp. tok.

* add common tokenizer integration tests
- for albert
- for barthez

* add tokenizer integration tests to bert gen.

* add most tokenizer integration tests

* fix camembert tokenizer integration test

* add tokenizer integration test to marian

* add tokenizer integration test to reformer

* add typing and doc to tokenizer_integration_test_util

* fix tokenizer integration test of reformer

* improve test_sentencepiece_tokenize_and_convert_tokens_to_string

* empty commit to trigger CI

* fix tokenizer integration test of reformer

* remove code not needed anymore

* empty commit to trigger CI

* empty commit to trigger CI

* Authorize args when instantiating an AutoModel (#11956)

* Neptune.ai integration (#11937)

An option that turns on neptune.ai logging
--report_to 'neptune'

Additional ENV variables:
	NEPTUNE_PROJECT
	NEPTUNE_API_TOKEN
	NEPTUNE_RUN_NAME (optional)
	NEPTUNE_STOP_TIMEOUT (optional)

* Run the integration tests on schedule tests instead of master tests

* [deepspeed] docs (#11940)

* deepspeed docs

* cleanup

* cleanup

* typo correction (#11973)

* typo correction

* type corrections

* ByT5 model (#11971)

* allow tf to use uneven num of layers

* add tokenizer

* finish docs

* finish docs

* Apply suggestions from code review

* include in index

* finish

* Update docs/source/model_doc/byt5.rst

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* apply sylvais suggestions

* make style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Typo in usage example, changed to device instead of torch_device (#11979)

* [DeepSpeed] decouple `DeepSpeedConfigHF` from `Trainer` (#11966)

* decouple DeepSpeedConfigHF from Trainer

* add LoggingLevel ctx manager; add new test

* cleanup

* add docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* implemented suggested renames

* formatter workaround

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [Trainer] add train loss and flops metrics reports (#11980)

* add train loss and flops metrics reports

* consistency

* add train_loss to skip keys

* restore on_train_end call timing

* Bump urllib3 from 1.25.8 to 1.26.5 in /examples/research_projects/lxmert (#11983)

Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.25.8 to 1.26.5.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.25.8...1.26.5)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* [RAG] Fix rag from pretrained question encoder generator behavior (#11962)

* fix_torch_device_generate_test

* remove @

* fix rag from pretrained loading

* add test

* uplaod

* finish

* VisualBERT (#10534)

* Init VisualBERT

* Add cookie-cutter, Config, and Embeddings

* Add preliminary Model

* Add Bert analogous classes

* Add basic code for NLVR, VQA, Flickr

* Update Init

* Fix VisualBert Downstream Models

* Rename classifier to cls

* Comment position_ids buffer

* Remove sentence image predictor output

* Update output dicts

* Remove unnecessary files

* Fix Auto Modeling

* Fix transformers init

* Add conversion script

* Add conversion script

* Fix docs

* Update visualbert modelling

* Update configuration

* Style fixes

* Add model and integration tests

* Add all tests

* Update model mapping

* Add simple detector from original repository

* Update docs and configs

* Fix style

* Fix style

* Update docs

* Fix style

* Fix import issues in style

* Fix style

* Add changes from review

* Fix style

* Fix style

* Update docs

* Fix style

* Fix style

* Update docs/source/model_doc/visual_bert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add changes from review

* Remove convert run script

* Add changes from review

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add changes from review

* Add changes from review

* Add visual embedding example in docs

* Fix "copied from" comments

* Add changes from review

* Fix error, style, checkpoints

* Update docs

* Fix integration tests

* Fix style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix examples (#11990)

* [docs] fix xref to `PreTrainedModel.generate` (#11049)

* fix xref to generate

* do the same for search methods

* style

* style

* Update return introduction (#11976)

Make it clear that the `forward` method now returns a dict instead of tuple.

Fix style

* [deepspeed] Move code and doc into standalone files (#11984)

* move code and docs

* style

* moved

* restore

* [deepspeed] add nvme test skip rule (#11997)

* add nvme skip rule

* fix

* Fix weight decay masking in `run_flax_glue.py` (#11964)

* Fix weight decay masking in `run_flax_glue.py`

Issues with the previous implementation:
- The `dict` from `traverse_util.flatten_dict` has keys which are tuples of strings, not one long string with the path separated by periods.
- `optax.masked` applies the transformation wherever the mask is True, so the masks are flipped.
- Flax's LayerNorm calls the scale parameter `scale` not `weight`

* Fix formatting with black

* adapt results

Co-authored-by: Patrick von Platen <patrick@huggingface.co>

* [Flax] Refactor MLM  (#12013)

* fix_torch_device_generate_test

* remove @

* finish refactor

Co-authored-by: Patrick von Platen <patrick@huggingface.co>

* [Deepspeed] Assert on mismatches between ds and hf args (#12021)

* wip

* add mismatch validation + test

* renames

* Update docs/source/main_classes/deepspeed.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* renames

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [TrainerArguments] format and sort __repr__, add __str__ (#12018)

* format and sort __repr__, add __str__

* typo

* use __str__ directly

* alias __repr__ = __str__

* Fixed Typo in modeling_bart.py (#12035)

* Fixed Typo in modeling_bart.py - Issue #11895

* Fixed Typo in modeling_bart.py

* fix deberta 2 tokenizer integration test (#12017)

* fix docs of past_key_values (#12049)

* [JAX] Bump jax lib (#12053)

* fix_torch_device_generate_test

* remove @

* bump up jax lib

* Fixes bug that appears when using QA bert and distilation. (#12026)

* Fixing bug that appears when using distilation (and potentially other uses).
During backward pass Pytorch complains with:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
This happens because the QA model code modifies the start_positions and end_positions input tensors, using clamp_ function: as a consequence the teacher and the student both modifies the inputs, and backward pass fails.

* Fixing all models QA clamp_ bug.

* Extend pipelines for automodel tupels (#12025)

* fix_torch_device_generate_test

* remove @

* finish

* refactor

* add test

* fix test

* Attempt at simplification.

* Small fix.

* Fixing non existing AutoModel for TF.

* Naming.

* Remove extra condition.

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>

* Add optional grouped parsers description to HfArgumentParser (#12042)

* Adding optional argument group to HfArgumentParser

* Minor

* remove whitespace

* Minor styling

* adds metric prefix. (#12057)

* adds metric prefix.

* update tests to include prefix

* skip failing test (#12059)

* Fix integration tests (#12066)

* Fix tapas issue (#12063)

* Fix scatter function to be compatible with torch-scatter 2.7.0

* Allow test again

* updated the original RAG implementation to be compatible with latest Pytorch-Lightning (#11806)

* updated the original RAG implementation to be compatible with the latest PL version

* updated the requirements.txt file

* execute make style

* code quality test

* code quality

* conflix resolved in requirement.txt

* code quality

* changed the MyDDP class name to CustomDDP

* Replace legacy tensor.Tensor with torch.tensor/torch.empty (#12027)

* Replace legacy torch.Tensor constructor with torch.{tensor, empty}

* Remove torch.Tensor in examples

* Add torch to requirements.txt in language-modeling (#12040)

* Add torch to requirements.txt in language-modeling

* Update examples/pytorch/language-modeling/requirements.txt

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Properly indent block_size (#12070)

* [Deepspeed] various fixes (#12058)

* replace deprecated config

* sub_group_size was too big

* complete deprecation removal

* [Deepspeed Wav2vec2] integration (#11638)

* wip

* wip - but working with https://github.com/microsoft/DeepSpeed/pull/1044

* cleanup

* workaround

* working 5/8 modes

* solve fp32 distributed zero3

* style

* sync

* sync

* rework

* deprecation

* cleanup

* https://github.com/microsoft/DeepSpeed/pull/1044 pr was merged

* clean up

* add a guide

* more prose

* more prose

* fix

* more prose

* sub_group_size was too big

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor

* bug fix

* make the true check explicit

* new deepspeed release

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* typo

* Update run_ner.py with id2label config (#12001)

* sync LayerDrop for Wav2Vec2Encoder + tests (#12076)

* Add DETR (#11653)

* Squash all commits of modeling_detr_v7 branch into one

* Improve docs

* Fix tests

* Style

* Improve docs some more and fix most tests

* Fix slow tests of ViT, DeiT and DETR

* Improve replacement of batch norm

* Restructure timm backbone forward

* Make DetrForSegmentation support any timm backbone

* Fix name of output

* Address most comments by @LysandreJik

* Give better names for variables

* Conditional imports + timm in setup.py

* Address additional comments by @sgugger

* Make style, add require_timm and require_vision to testsé

* Remove train_backbone attribute of DetrConfig, add methods to freeze/unfreeze backbone

* Add png files to fixtures

* Fix type hint

* Add timm to workflows

* Add `BatchNorm2d` to the weight initialization

* Fix retain_grad test

* Replace model checkpoints by Facebook namespace

* Fix name of checkpoint in test

* Add user-friendly message when scipy is not available

* Address most comments by @patrickvonplaten

* Remove return_intermediate_layers attribute of DetrConfig and simplify Joiner

* Better initialization

* Scipy is necessary to get sklearn metrics

* Rename TimmBackbone to DetrTimmConvEncoder and rename DetrJoiner to DetrConvModel

* Make style

* Improve docs and add 2 community notebooks

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>

* [test] support more than 2 gpus (#12074)

* support more than 2 gpus

* style

* Wav2Vec2 Pretraining (#11306)

* Working quantizer forward

* Working quantizer forward

* Clean up unused model parts, test reproducibility

* Working quantizer forward

* Clean up unused model parts, test reproducibility

* Remove custom outputs from the shared ones

* correct conversion

* correct bug

* add first pretrain script

* save intermediate

* static shapes

* save intermediate

* finish first pretrain script version

* more refactor

* remove wanddb

* refactor more

* improve test

* correct perplexity compute bug

* finish model implementation

* add to docs

* finish docs

* finish pretraining script

* finish pretraining script

* remove wandb

* finish PR for merge

* finish config

* finish

* make deepspeed work

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

* fix flaky test

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* pass decay_mask fn to optimizer (#12087)

* rm require_version_examples (#12088)

* [Wav2Vec2ForPretraining] Correct checkpoints wav2vec2 & fix tests (#12089)

* fix_torch_device_generate_test

* remove @

* fix tests

* Add text_column_name and label_column_name to run_ner and run_ner_no_trainer args (#12083)

* Add text_column_name and label_column_name to run_ner args

* Minor fix: grouping for text and label column name

* CLIPFeatureExtractor should resize images with kept aspect ratio (#11994)

* Resize with kept aspect ratio

* Fixed failed test

* Overload center_crop and resize methods instead

* resize should handle non-PIL images

* update slow test

* Tensor => tensor

Co-authored-by: patil-suraj <surajp815@gmail.com>

* New TF GLUE example (#12028)

* Pushing partially-complete new GLUE example

* First draft of the new TF GLUE example! Needs a little more testing to be sure but it's almost ready.

* Fix to the fit() call

* Bugfixes, making sure TPU and multi-GPU support is ready

* Remove logger line that depends on Pytorch

* Style pass

* Deleting old TF GLUE example

* Include label2id and id2label in the saved model config

* Don't clobber the existing model.config.label2id

* Style fixes

* Update examples/tensorflow/text-classification/run_glue.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix quality

* Update README.md to cover the TF GLUE example.

* Minor style edits

* Appending label2id and id2label to models to ensure inference works properly (#12102)

* Fix a condition in test_generate_with_head_masking (#11911)

* Fix a condition in test_generate_with_head_masking

* Fix usage of head_mask in bigbirg_pegasus

* Fix head masking for speech2text

* Resolve copy mismatch + drop unwanted print statement

* Fix the condition

* Flax VisionTransformer (#11951)

* adding vit for flax

* added test for Flax-vit and some bug-fixes

* overrided methods where variable changes were necessary for flax_vit test

* added FlaxViTForImageClassification for test

* Update src/transformers/models/vit/modeling_flax_vit.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* made changes suggested in PR

* Adding jax-vit models for autoimport

* swapping num_channels and height,width dimension

* fixing the docstring for torch-like inputs for VIT

* add model to main init

* add docs

* doc, fix-copies

* docstrings

* small test fixes

* fix docs

* fix docstr

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add relevant description to tqdm in examples (#11927)

* add relevant `desc` in examples

* require_version datasets>=1.8.0

* Fix head masking generate tests (#12110)

* fix_torch_device_generate_test

* remove @

* fix tests

* Flax CLM script (#12023)

* first draft

* max_seq_length => block_size

* fix arg names

* fix typos

* fix loss calculation

* add max examples, fix  train eval steps, metrics

* optimizer mask

* fix perpelexity, metric logging

* fix logging

* data_collator = > data_loader

* refactor loss_fn

* support single GPU

* pass distributed to write_metric

* fix jitting

* fix single device training

* fix single device metrics

* close inner progress bars once finished

* add overwrite_cache arg

* ifx dataset caching issue

* add more logs

* few small fixes,

* address nicholas suggestions

* fix docstr

* address patricks suggestions

* make flake happy

* pass new new_dropout_rng to apply_gradients

* reset train metrics after every epoc

* remove distributed logis, small fixes

* Add from_pretrained to dummy timm objects (#12097)

* Add from_pretrained to dummy timm

* Fix at the source

* Update utils/check_dummies.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Missing pretrained dummies

* Style

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix t5 error message (#12136)

* Fix t5 error message

* Fix again

* Fix megatron_gpt2 attention block's causal mask (#12007)

* Fix megatron_gpt2 attention block's causal mask.

* compatibility with checkpoints created with recent versions of Megatron-LM

* added integration test for the released Megatron-GPT2 model

* code style changes

* added option to megatron conversion script to read from config file

Co-authored-by: Guido Novati <gnovati@nvidia.com>

* Add mlm pretraining xla torch readme (#12011)

* fix_torch_device_generate_test

* remove @

* upload

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Update examples/flax/language-modeling/README.md

* add more info

* finish

* fix

Co-authored-by: Patrick von Platen <patrick@huggingface.co>

* add readme for flax clm (#12111)

* add readme for flax clm

* use section link for tokenizer

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update metrics

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* FlaxBart (#11537)

* Start working on FlaxBart

* Create modeling_flax_bart.py

* Write FlaxBartAttention

* Add FlaxBartEncoderLayer

* Add FlaxBartDecoderLayer and some typing

* Add helepr function for FlaxBart

* shift_tokens_right

* _make_causal_mask

* _expand_mask

* Add PositionalEmbedding and fix init_std naming

* Add FlaxBartPretrainedModel

* Add FlaxBartEncoder

* Add FlaxBartEncoder

* Add FlaxBartEncoder among modules to be imported

* YET WE CANNOT INITIALIZE THAT!! :(

* Make BartEncoder working

Change BartEncoder to instance of nn.Module so far

* Add FlaxBartDecoder

* Add FlaxBartModel

* TODO to make model run -> Prepapre model inputs

* Resolve padding

* Add FlaxBartModel

* Add FlaxBartModel into importable modules

* Remove FlaxBartEncoder and FlaxBartDecoder from importable modules

* make style; not properly working

* make style; make quality not pass due to some import I left

* Remove TODO for padding_idx in nn.Embed so far

* Add FlaxBartForConditionalGeneration

* Incorporate Flax model output classes, i.e. return_dict

* Add another models and incorporate use_cache arg

* Add FlaxBartForSequenceClassification and FlaxBartForQuestionAnswering

* Incorporate use_cache arg from PyTorch implementation

* Add all necessary Flax output utils

* Add FlaxBartForCausalLM; not working yet'

* Add minor improvements; still lacks some functionality

* Update docs, src and tests

* Add support of FlaxBart to docs/source

* Fix some bugs in FlaxBart souce code

* Add some neccessary tests for FlaxBart models - jit_compilation not passing

* Fix tests and add test_head_masking

* Fix tests for @jax.jit computation

* Add test_head_masking

* Migrate FlaxBart tests from jax.numpy to numpy

* Remove FlaxBartForCausalLM

* Clean repo

* fix bart model weight structure

* Fix FlaxBartForSequenceClassification

Slicing is not possible to use below jit, therefore, selecting sentence
representation from hidden_states must be changed.

* Allow FlaxBartForSequenceClassification for testing pt_flax equivalence

* Allow testing for FlaxBartForQA for pt_flax equivalence

* Add a comment to FlaxBartForSequenceClassification + change noise from 1e-3 to 1e-6

* remove past_key_values

* remove inputs_mebeds and make input_ids required

* add position ids

* re-write attention layer

* fix dataclass

* fix pos embeds and attention output

* fix pos embeds

* expose encode method

* expose decode method

* move docstring to top

* add cache for causal attn layer

* remove head masking for now

* s2s greedy search first pass

* boom boom

* fix typos

* fix greedy generate for bart

* use encoder, decoder layers instead of num_hidden_layers

* handle encoder_outputs

* cleanup

* simplify decoding

* more clean-up

* typos

* Change header + add {decoder_,}position_ids into 2 models

* add BartConfig

* fix existing tests

* add encode, decode methods

* Fix shift_tokens_right for JIT compilation + clarify one condition

* fix decode

* encoder => encode

* simplify generate

* add tests for encode and decode

* style

* add tests for cache

* fix equivalence tests

* sample generate now works with seq2seq

* generation tests

* initialize dense layers

* docstring and cleanup

* quality

* remove get/set input_embeddings

* address Patricks suggestions

* decode for every model, remove encoder_outputs from call

* update tests accordingly

* decode returns only decoder outputs and logits

* fix arguments

* doc encode, decode methods

* correct base_model_prefix

* fix test for seq classif model

* fix docs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Feature to use the PreTrainedTokenizerFast class as a stand-alone tokenizer (#11810)

* feature for tokenizer without slow/legacy version

* format

* modify common test

* add tests

* add PreTrainedTokenizerFast to AutoTokenizer

* format

* change tokenizer common test in order to be able to run test without a slow version

* update tokenizer fast test in order to use `rust_tokenizer_class` attribute instead of `tokenizer_class`

* add autokenizer test

* replace  `if self.tokenizer_class is not None` with ` if self.tokenizer_class is None`

* remove obsolete change in comment

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* change `get_main_tokenizer` into `get_tokenizers`

* clarify `get_tokenizers` method

* homogenize with `test_slow_tokenizer` and `test_rust_tokenizer`

* add `test_rust_tokenizer = False` to tokenizer which don't define a fast version

* `test_rust_tokenizer = False` for BertJapaneseTokenizer

* `test_rust_tokenizer = False` for BertJapaneseCharacterTokenizationTest

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [Flax] Add links to google colabs (#12146)

* fix_torch_device_generate_test

* remove @

* add colab links

* Don't log anything before logging is setup in examples (#12121)

* Don't log anything before logging is setup in examples

* Last example

* Use text_column_name variable instead of "text" (#12132)

* Use text_column_name variable instead of "text"

`text_column_name` was already defined above where I made the changes and it was also used below where I made changes.

This is a very minor change. If a dataset does not use "text" as the column name, then the `tokenize_function` will now use whatever column is assigned to `text_column_name`. `text_column_name` is just the first column name if "text" is not a column name. It makes the function a little more robust, though I would assume that 90% + of datasets use "text" anyway.

* black formatting

* make style

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>

* [lm examples] Replicate --config_overrides addition to other LM examples (#12135)

* [lm examples] Replicate --config_overrides addition to other LM examples

* Removing no trainer files changes

* Update README

Co-authored-by: Kumar Abhishek <kabhishek@expedia.com>

* fix error message (#12148)

* [optim] implement AdafactorSchedule (#12123)

* implement AdafactorSchedule

* typo

* fix

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [style] consistent nn. and nn.functional (#12124)

* consistent nn. and nn.functional

* fix glitch

* fix glitch #2

* Adding TFWav2Vec2Model (#11617)

* [WIP] Add TFWav2Vec2Model

Work in progress for adding a tensorflow version of Wav2Vec2

* feedback changes

* small fix

* Test Feedback Round 1

* Add SpecAugment and CTC Loss

* correct spec augment mask creation

* docstring and correct copyright

* correct bugs

* remove bogus file

* finish tests correction

* del unnecessary layers

* Update src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* correct final bug

* Feedback Changes

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Flax] Fix flax pt equivalence tests (#12154)

* fix_torch_device_generate_test

* remove @

* upload

* consistent nn. and nn.functional: p2 templates (#12153)

* Flax Big Bird (#11967)

* add flax bert

* bert -> bigbird

* original_full ported

* add debugger

* init block sparse

* fix copies ; gelu_fast -> gelu_new

* block sparse port

* fix block sparse

* block sparse working

* all ckpts working

* fix-copies

* make quality

* init tests

* temporary fix for FlaxBigBirdForMultipleChoice

* skip test_attention_outputs

* fix

* gelu_fast -> gelu_new ; fix multiple choice model

* remove nsp

* fix sequence classifier

* fix

* make quality

* make fix-copies

* finish

* Delete debugger.ipynb

* Update src/transformers/models/big_bird/modeling_flax_big_bird.py

* make style

* finish

* bye bye jit flax tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [style] consistent nn. and nn.functional: part 3 `tests` (#12155)

* consistent nn. and nn.functional: p3 templates

* restore

* [style] consistent nn. and nn.functional: part 4 `examples` (#12156)

* consistent nn. and nn.functional: p4 examples

* restore

* consistent nn. and nn.functional: part 5 docs (#12161)

* Add video links to the documentation (#12162)

* [Flax generate] Add params to generate (#12171)

* fix_torch_device_generate_test

* remove @

* add params as input

* finish

* Use a released version of optax rather than installing from Git. (#12173)

Use a released version of optax rather than installing from Git

* Have dummy processors have a `from_pretrained` method (#12145)

* Add course banner (#12157)

* Add course banner

* Update course banner

* Adjust banner width

* Enable add_prefix_space if model_type is roberta or gpt2 (#12116)

* Update AutoModel classes in summarization example (#12178)

- Convert use of deprecated AutoModelWithLMHead to AutoModelForSeq2SeqLM
- Add newly required `truncation=True` to `tokenizer.encode` with `max_length`

This silences all warnings.

* Ray Tune Integration Updates (#12134)

* fix

* fixes

* add back to scheduled tests

* formatting

* Update integrations.py

* [testing] ensure concurrent pytest workers use a unique port for torch.dist (#12166)

* ensure concurrent pytest workers use a unique port for torch.distributed.launch

* reword

* Model card defaults (#12122)

* [WIP] Model card defaults

* finetuned_from default value

* Add all mappings to the mapping file

* Be more defensive on finetuned_from arg

* Add default task tag

* Separate tags from tasks

* Edge case for dataset

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Temporarily deactivate torch-scatter while we wait for new release (#12181)

* Temporarily deactivate torch-scatter while we wait for new release

* torch-1.8.1 binary for scatter

* Revert to 1.8.0

* Pin torch dependency

* torchaudio and torchvision

* Temporarily deactivate torchhub test (#12184)

* [Flax] Add Beam Search (#12131)

* fix_torch_device_generate_test

* remove @

* push new logit processors

* add processors

* save first working version

* save intermediate

* finish

* make style

* make fix-copies

* finish

* Update tests/test_modeling_flax_bart.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Hubert (#11889)

* fix_torch_device_generate_test

* remove @

* add hubert

* add first test file

* more docs

* fix bugs

* fix bug

* finish

* finish

* finish docstring

* fix

* fix

* finalize

* add to ignored

* finish

* Apply suggestions from code review

* correct naming

* finish

* fix auto config

* finish

* correct convert script

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* apply suggestions lysandre & suraj

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* updated DLC images and sample notebooks (#12191)

* Enabling AutoTokenizer for HubertConfig. (#12198)

* Use yaml to create metadata (#12185)

* Use yaml to create metadata

* Fix typo

* Remove pin

* [Docs] fixed broken link (#12205)

* fixed broken link

* Update docs/source/benchmarks.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/benchmarks.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Pipeline update & tests (#12207)

* Improve detr (#12147)

* Remove unused variables

* Improve docs

* Fix docs of segmentation masks

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add link to the course (#12229)

* Support for torch 1.9.0 (#12224)

* Support for torch 1.9.0

* Torch scatter for 1.9.0

* Github Actions run on 1.9.0

* fix pt-1.9.0 `add_` deprecation (#12217)

* fix pt-1.9.0 add_ deprecation

* add () for clarity

* Trigger CI

* require_version(torch

* Release: v4.7.0

* Docs for v4.8.0

* AutoTokenizer: infer the class from the tokenizer config if possible (#12208)

* AutoTokenizer: infer the class from the tokenizer config if possible

* Add tests

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update desc for map in all examples (#12226)

* update desc for map in all examples

* added plm

* suggestions

* [Flax] FlaxAutoModelForSeq2SeqLM (#12228)

* add FlaxAutoModelForSeq2SeqLM

* [FlaxBart] few small fixes (#12247)

* boom boom

* remove flax clip example

* few small fixes

* Depreciate pythonic Mish and support PyTorch 1.9 version of Mish (#12240)

* Moved Mish to Torch 1.9 version

* Run black formatting

* [t5 doc] make the example work out of the box (#12239)

* [run_clm.py] restore caching

* style

* [t5 doc] make the example work out of the box

This PR expands the training example to include the correct model type for the example to work, e.g. with `T5Model` this example will break.

* Update docs/source/model_doc/t5.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* expand the other example

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Fix the scheduled CI

* Better CI feedback (#12279)

* Better run ID

* Only part of CI

* Revert "Only part of CI"

This reverts commit 29f7f248d21e0f5792e0670ba8705b31ad8967b7.

* Fix for making student ProphetNet for Seq2Seq Distillation (#12130)

* make_student.py: fix to make student ProphetNet

* reformat

* [FlaxClip] fix test from/save pretrained test (#12284)

* boom boom

* remove flax clip example

* fix from_save_pretrained

* [Flax] [WIP] allow loading head model with base model weights (#12255)

* boom boom

* remove flax clip example

* allow loading head model with base model weights

* add test

* fix imports

* disable save, load test for clip

* add test_save_load_to_base

* [DeepSpeed] don't ignore --adafactor (#12257)

* [Flax] Fix flax test save pretrained (#12256)

* fix_torch_device_generate_test

* remove @

* fix flax save pretrained test

* Tensorflow QA example (#12252)

* New Tensorflow QA example!

* Style pass

* Updating README.md for the new example

* flake8 fixes

* Update examples/tensorflow/question-answering/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [Flax] Add jax flax to env command (#12251)

* fix_torch_device_generate_test

* remove @

* add commands for flax/jax

* reset report_to to none, avoid deprecation warning (#12293)

* [trainer + examples] set log level from CLI (#12276)

* set log level from CLI

* add log_level_replica + test + extended docs

* cleanup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* rename datasets objects to allow datasets module

* improve the doc

* style

* doc improve

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* [tests] multiple improvements (#12294)

* [tests] multiple improvements

* cleanup

* style

* todo to investigate

* fix

* Fix for the issue of device-id getting hardcoded for token_type_ids during Tracing [WIP] (#11252)

* registering a buffer for token_type_ids, to pass the error of device-id getting hardcoded when tracing

* sytle format

* adding persistent flag to the resgitered buffers that prevent from adding them to the state_dict and addresses the Backward compatibility issue

* adding the try catch to the fix as persistent flag is only available from PT >1.6

* adding version check

* added the condition to only use the token_type_ids buffer when its autogenerated not passed by user

* adding comments and making the conidtion where token_type_ids are None to use the registered buffer

* taking out position-embeddding from the if block

* adding comments

* handling the case if buffer for position_ids was not registered

* reverted the changes on position_ids, fix the issue with size of token_type_ids buffer, moved the modification for generated token_type_ids to Bertmodel, instead of Embeddings

* reverting the token_type_ids in case of None to the previous version

* reverting changes on position_ids adding back the if block

* changes added by running make fix-copies

* changes added by running make fix-copies and added the import version as it was getting used

* changes added by running make fix-copies

* changes added by running make fix-copies

* fixing the import format

* fixing the import format

* modified to use temp tensor for trimed and expanded token_type_ids buffer

* changes made by fix-copies after temp tensor modifications

* changes made by fix-copies after temp tensor modifications

* changes made by fix-copies after temp tensor modifications

* clean up

* clean up

* clean up

* clean up

* Nit

* Nit

* Nit

* modified according to support device conversion on traced models

* modified according to support device conversion on traced models

* modified according to support device conversion on traced models

* modified according to support device conversion on traced models

* changes based on latest in master

* Adapt templates

* Add version import

Co-authored-by: Ubuntu <ubuntu@ip-172-31-32-81.us-west-2.compute.internal>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>

* trainer_tf: adjust wandb installation command (#12291)

* add FlaxAutoModelForImageClassification in main init (#12298)

* Fix and improve documentation for LEDForConditionalGeneration (#12303)

* Replace conditional generation example (fixes #12268)

* Replace model in summarization example with finetuned checkpoint, adapt example text

* Fix typo in new summarization example

* Fix docstring formatting, add missing import statement to example

* [Flax] Main doc for event orga (#12305)

* fix_torch_device_generate_test

* remove @

* push

* finish

* some typos

* add more info on communication

* add suggestions

* [trainer] 2 bug fixes and a rename (#12309)

* bug fixes and a rename

* add extended DDP test

* FlaxBartPretrainedModel -> FlaxBartPreTrainedModel (#12313)

* [docs]  performance  (#12258)

* initial performance document

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* rewrites based on suggestions

* 8x multiple is for AMP only

* add contribute section

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add CodeCarbon Integration (#12304)

* Add optional dependency

* Add CodeCarbon integration

* Add CodeCarbon integration

* Add CodeCarbon integration

* typo

* Optimizing away the `fill-mask` pipeline. (#12113)

* Optimizing away the `fill-mask` pipeline.

- Don't send anything to the tokenizer unless needed. Vocab check is
much faster
- Keep BC by sending data to the tokenizer when needed. User handling warning messages will see performance benefits again
- Make `targets` and `top_k` work together better `top_k` cannot be
higher than `len(targets)` but can be smaller still.
- Actually simplify the `target_ids` in case of duplicate (it can happen
because we're parsing raw strings)
- Removed useless code to fail on empty strings. It works only if empty
string is in first position, moved to ignoring them instead.
- Changed the related tests as only the tests would fail correctly
(having incorrect value in first position)

* Make tests compatible for 2 different vocabs... (at the price of a
warning).

Co-authored-by: @EtaoinWu

* ValueError working globally

* Update src/transformers/pipelines/fill_mask.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* `tokenizer.vocab` -> `tokenizer.get_vocab()` for more compatiblity +
fallback.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add output in a dictionary for TF `generate` method (#12139)

* Add output args to greedy search

* Fix critical typo + make style quality

* Handle generate_beam_search

* Add dict_specific tests and fix the placement of encoder outputs

* Add  specific outputs

* Update doc

* Fix typo

* Adjust handling encoder_outputs + Fix generating for T5

* Fix generate for RAG

* Fix handling ouptut_attentions when target_mapping is not None

Take care of situations when target_mapping is provided
as there are 2-tuple of attentions

Change from:
if inputs["output_attentions"]:
    attentions = tuple(tf.transpose(t, perm(2, 3, 0, 1)) for t in attentions)

to:
if inputs["output_attentions"]:
    if inputs["target_mapping"] is not None:
        # when target_mapping is provided, there are 2-tuple of attentions
         attentions = tuple(
             tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions
        )
    else:
        attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions)

* Rename kwargs to model_kwargs

* make style quality

* Move imports in test_modeling_tf_common.py

Move ModelOutput-related imports in test_modeling_tf_common.py
into the `is_tf_available():` statement.

* Rewrite nested if-statements

* Fix added tests

* Flax summarization script  (#12230)

* add summrization script

* fix arguments, preprocessing, metrics

* add generation and metrics

* auto model, prediction loop

* prettify

* label smoothing

* adress Sylvain and Patricks suggestions

* dynamically import shift_tokens_right

* fix shift_tokens_right_fn call

* Rewrite ProphetNet to adapt converting ONNX friendly (#11981)

* Rewrite

* [ONNX] rewrite

* Flax T5 (#12150)

* copy pytorch-t5

* init

* boom boom

* forward pass same

* make generation work

* add more tests

* make test work

* finish normal tests

* make fix-copies

* finish quality

* correct slow example

* correct slow test

* version table

* upload models

* Update tests/test_modeling_flax_t5.py

* correct incorrectly deleted line

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick@huggingface.co>

* Add mention of the huggingface_hub methods for offline mode (#12320)

* [Flax/JAX] Add how to propose projects markdown (#12311)

* fix_torch_device_generate_test

* remove @

* finish

* make style

* [TFWav2Vec2] Fix docs (#12283)

* fix error

* make style check happy

Co-authored-by: chenhaitao <chenhaitao@qiyi.com>

* Clean push to hub API (#12187)

* Clean push to hub API

* Create working dir if it does not exist

* Different tweak

* New API + all models + test Flax

* Adds the Trainer clean up

* Update src/transformers/file_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comments

* (nit) output types

* No need to set clone_from when folder exists

* Update src/transformers/trainer.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Add generated_from_trainer tag

* Update to new version

* Fixes

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>

* Add all XxxPreTrainedModel to the main init (#12314)

* Add all XxxPreTrainedModel to the main init

* Add to template

* Add to template bis

* Add FlaxT5

* Conda build (#12323)

* Temporarily revert the `fill-mask` improvements.

* changed modeling_fx_utils.py to utils/fx.py for clarity (#12326)

Co-authored-by: Michael Benayoun <michael@huggingface.co>

* Pin good version of huggingface_hub

* [Flax T5] Fix weight initialization and fix docs (#12327)

* finish t5 flax fixes

* improve naming

* Release: v4.8.0

* v4.9.0.dev0

* Update training_args.py (#12328)

mention in `save_strategy` param description that `load_best_model_at_end` can override

* [Deepspeed] new docs (#12077)

* document sub_group_size

* style

* install + issues reporting

* style

* style

* Update docs/source/main_classes/deepspeed.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* indent 4

* restore

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix default to logging_dir lost in merge conflict

* try-this (#12338)

Signed-off-by: Richard Liaw <rliaw@berkeley.edu>

* [examples/Flax] move the examples table up (#12341)

* Fix torchscript tests (#12336)

* Fix torchscript tests

* Better test

* Remove bogus print

* Document patch release v4.8.1

* Add flax/jax quickstart (#12342)

* Update README.md

* fixed typo (#12356)

* Fix exception in prediction loop occurring for certain batch sizes (#12350)

* fix distributed_concat for scalar outputs

* Update README.md

* fixed typo (#12356)

* simplify fix with terser syntax

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Trigger CI

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: michal pitr <21157924+MichalPitr@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add FlaxBigBird QuestionAnswering script (#12233)

* port bigbird script

* adapt script a bit

* change location

* adapt more

* save progress

* init commit

* style

* dataset script tested

* readme add

* Replace NotebookProgressReporter by ProgressReporter in Ray Tune run (#12357)

* Replace NotebookProgressReporter by ProgressReporter in Ray Tune run

* Move to local import

* Style

* remove extra white space from log format (#12360)

* fixed multiplechoice tokenization (#12362)

* fixed multiplechoice tokenization

The model would have seen two sequences:
1. [CLS]prompt[SEP]prompt[SEP]
2. [CLS]choice0[SEP]choice1[SEP]
that is not correct as we want a contextualized embedding of prompt and choice

* removed outer brackets for proper sequence generation

* [trainer] add main_process_first context manager (#12351)

* main_process_first context manager

* handle multi-node, add context description

* sync desc

* [Examples] Replicates the new --log_level feature to all trainer-based pytorch (#12359)

* added log_level

* fix comment

* fixed log_level

* Trigger CI

* Unfied logging

* simplified args for log_level

* updated example template (#12365)

* replace print with logger (#12368)

* [Documentation] Warn that DataCollatorForWholeWordMask is limited to BertTokenizer-like tokenizers (#12371)

* Notify users that DataCollatorForWholeWordMask is limited to BertTokenier-like tokenizers

* Fix code formatting

* Update run_mlm.py (#12344)

Before the code could not be used for validation only because of this line:
extension = data_args.train_file.split(".")[-1]
was assuming that extension must be extracted from the training dataset. This line would run regardless of the training or validation options of the user. This would lead to an error if the user only wants to run an evaluation only and does not want to do train (because the training file does not exist). I modified it to extract extension from the training file if the user wants to do train and extract it from the validation file if the user wants to run eval. This way the code can be used for both training and validation separately.

* Add possibility to maintain full copies of files (#12312)

* [CI] add dependency table sync verification (#12364)

* add dependency table sync verification

* improve the message

* improve the message

* revert

* ready to merge

* [Examples] Added context manager to datasets map (#12367)

* added cotext manager to datasets map

* fixed style and spaces

* fixed warning of deprecation

* changed desc

* [Flax community event] Add more description to readme (#12398)

* fix_torch_device_generate_test

* remove @

* boom boom

* correct typos

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suzana Ilić <io.suzanai@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Suzana Ilić <io.suzanai@gmail.com>

* Update README.md

* Fix copies

* Remove the need for `einsum` in Albert's attention computation (#12394)

* debug albert einsum

* Fix matmul computation

* Let's use torch linear layer.

* Style.

* [Flax] Adapt flax examples to include `push_to_hub` (#12391)

* fix_torch_device_generate_test

* remove @

* finish

* correct summary writer

* correct push to hub

* fix indent

* finish

* finish

* finish

* finish

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>

* Tensorflow LM examples (#12358)

* Tensorflow MLM example

* Add CLM example

* Style fixes, adding missing checkpoint code from the CLM example

* Fix TPU training, avoid massive dataset warnings

* Fix incorrect training length calculation for multi-GPU training

* Fix incorrect training length calculation for multi-GPU training

* Refactors and nitpicks from the review

* Style pass

* Adding README

* pass the matching trainer log level to deepspeed (#12401)

* [Flax] Add T5 pretraining script (#12355)

* fix_torch_device_generate_test

* remove @

* add length computatan

* finish masking

* finish

* upload

* fix some bugs

* finish

* fix dependency table

* correct tensorboard

* Apply suggestions from code review

* correct processing

* slight change init

* correct some more mistakes

* apply suggestions

* improve readme

* fix indent

* Apply suggestions from code review

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* correct tokenizer

* finish

* finish

* finish

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* [models] respect dtype of the model when instantiating it (#12316)

* [models] respect dtype of the model when instantiating it

* cleanup

* cleanup

* rework to handle non-float dtype

* fix

* switch to fp32 tiny model

* improve

* use dtype.is_floating_point

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix the doc

* recode to use explicit torch_dtype_auto_detect, torch_dtype args

* docs and tweaks

* docs and tweaks

* docs and tweaks

* merge 2 args, add docs

* fix

* fix

* better doc

* better doc

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Rename detr targets to labels (#12280)

* Rename target to labels in DetrFeatureExtractor

* Update DetrFeatureExtractor tests accordingly

* Improve docs of DetrFeatureExtractor

* Improve docs

* Make style

* Add out of vocabulary error to ASR models (#12288)

* Add OOV error to ASR models

* Feedback changes

* Fix TFWav2Vec2 SpecAugment (#12289)

* Fix TFWav2Vec2 SpecAugment

* Invert masks

* Feedback changes

* [example/flax] add summarization readme (#12393)

* add readme

* update readme and add requirements

* Update examples/flax/summarization/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Flax] Example scripts - correct weight decay  (#12409)

* fix_torch_device_generate_test

* remove @

* finish

* finish

* correct style

* fix ids_to_tokens naming error in tokenizer of deberta v2 (#12412)

Co-authored-by: Jipeng Huang <jihuan@microsoft.com>

* minor fixes in original RAG training (#12395)

* Added talks (#12415)

* Easily train a new fast tokenizer from a given one (#12361)

* [WIP] Easily train a new fast tokenizer from a given one

* Fix test

* Roll out to other tokenizers and add tests

* Fix bug with unk id and add emoji to test

* Really use something different in test

* Implement special tokens map

* Map special tokens in the Transformers tokenizers

* Fix test

* Make test more robust

* Fix test for BPE

* More robust map and test

Co-authored-by SaulLu

* Test file

* Stronger tests

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>

* Map unk token for Wordpiece and address review comment

* Fix lowercase test and address review comment

* Fix all tests

* Simplify test

* Fix tests for realsies

* Easily train a new fast tokenizer from a given one - tackle the special tokens format (str or AddedToken) (#12420)

* Propose change in tests regarding lower case

* add new test for special tokens types

* put back the test part about decoding

* add feature: the AddedToken is re-build with the different mapped content

* Address review comment: simplify AddedToken building

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* [modelcard] fix (#12422)

this PR is fixing an incorrect attribute - probably some tests are needed?

* Add option to save on each training node (#12421)

* Add option to save on each training node

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Address review comments

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Added to talks section (#12433)

Added one more confirmed speaker, zoom links and gcal event links

* Fix default bool in argparser (#12424)

* Fix default bool in argparser

* Add more to test

* Add default bos_token and eos_token for tokenizer of deberta_v2 (#12429)

* fix ids_to_tokens naming error in tokenizer of deberta v2

* Update tokenization_deberta_v2.py

Add bos_token and eos_token.

* format code

Co-authored-by: Jipeng Huang <jihuan@microsoft.com>

* Add CANINE (#12024)

* First pass

* More progress

* Add support for local attention

* More improvements

* More improvements

* Conversion script working

* Add CanineTokenizer

* Make style & quality

* First draft of integration test

* Remove decoder test

* Improve tests

* Add documentation

* Mostly docs improvements

* Add CanineTokenizer tests

* Fix most tests on GPU, improve upsampling projection

* Address most comments by @dhgarrette

* Remove decoder logic

* Improve Canine tests, improve docs of CanineConfig

* All tokenizer tests passing

* Make fix-copies and fix tokenizer tests

* Fix test_model_outputs_equivalence test

* Apply suggestions from @sgugger's review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Address some more comments

* Add support for hidden_states and attentions of shallow encoders

* Define custom CanineModelOutputWithPooling, tests pass

* First pass

* More progress

* Add support for local attention

* More improvements

* More improvements

* Conversion script working

* Add CanineTokenizer

* Make style & quality

* First draft of integration test

* Remove decoder test

* Improve tests

* Add documentation

* Mostly docs improvements

* Add CanineTokenizer tests

* Fix most tests on GPU, improve upsampling projection

* Address most comments by @dhgarrette

* Remove decoder logic

* Improve Canine tests, improve docs of CanineConfig

* All tokenizer tests passing

* Make fix-copies and fix tokenizer tests

* Fix test_model_outputs_equivalence test

* Apply suggestions from @sgugger's review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Address some more comments

* Make conversion script work for Canine-c too

* Fix tokenizer tests

* Remove file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Document patch release v4.8.2

* fix typo in mt5 configuration docstring (#12432)

* Add to talks section (#12442)

* [JAX/Flax readme] add philosophy doc (#12419)

* add philosophy doc

* fix typos

* update doc

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address Patricks suggestions

* add a training example and fix typos

* jit the training step

* jit train step

* fix example code

* typo

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [Flax] Add wav2vec2 (#12271)

* fix_torch_device_generate_test

* remove @

* start flax wav2vec2

* save intermediate

* forward pass has correct shape

* add weight norm

* add files

* finish ctc

* make style

* finish gumbel quantizer

* correct docstrings

* correct some more files

* fix vit

* finish quality

* correct tests

* correct docstring

* correct tests

* start wav2vec2 pretraining script

* save intermediate

* start pretraining script

* finalize pretraining script

* finish

* finish

* small typo

* finish

* correct

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* make style

* push

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Add missing Copied from statements

* Reference model uploaded under Google org

* Fix various duplicates from merging

* Rembert-large -> rembert, fix overeager Copied from, return type

* Incorporate PR comments from Patrick and Sylvain

Co-authored-by: ctheodoris <seanymphoceana@yahoo.com>
Co-authored-by: ctheodoris <cvtheodo@ds.dfci.harvard.edu>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Teven <teven.lescao@gmail.com>
Co-authored-by: Nick Lane-Smith <nlanesmith@gmail.com>
Co-authored-by: Shiro T <stsuchi@users.noreply.github.com>
Co-authored-by: Wang Ran (汪然) <wrran@outlook.com>
Co-authored-by: Ahmet Akkoç <themadprogramer@gmail.com>
Co-authored-by: francescorubbo <francescorubbo@users.noreply.github.com>
Co-authored-by: Daniel Stancl <46073029+stancld@users.noreply.github.com>
Co-authored-by: talkhaldi <tareq.alkhaldi@gmail.com>
Co-authored-by: joerenner <joepeterrenner@gmail.com>
Co-authored-by: jrenner <joseph.renner@inria.fr>
Co-authored-by: Avital Oliver <avitalo@google.com>
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: Josh Tanner <mindful.jt@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Bhadresh Savani <bhadreshpsavani@gmail.com>
Co-authored-by: Jayendra <jayendra0parmar@gmail.com>
Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Philip May <philip@may.la>
Co-authored-by: Nicholas Vadivelu <nicholas.vadivelu@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Shamane Siri <shamane@ahlab.org>
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
Co-authored-by: Fan Zhang <zhangfan.tju@gmail.com>
Co-authored-by: Riccardo Bassani <48254418+BassaniRiccardo@users.noreply.github.com>
Co-authored-by: Volodymyr Byno <volodymyr.byno@gmail.com>
Co-authored-by: Jeoung-Minju <51041861+JminJ@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Alberto Villa <a.villa.diez@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Gunjan Chhablani <chhablani.gunjan@gmail.com>
Co-authored-by: Kou Yong Kang <kou.yongkang@dhs.sg>
Co-authored-by: Shiva Pundir <36535845+ceevaaa@users.noreply.github.com>
Co-authored-by: François Lagunas <francois.lagunas@gmail.com>
Co-authored-by: Peter Izsak <232524+peteriz@users.noreply.github.com>
Co-authored-by: Russell Klopfer <russell@klopfer.us>
Co-authored-by: Mario Šaško <mariosasko777@gmail.com>
Co-authored-by: cdleong <4109253+cdleong@users.noreply.github.com>
Co-authored-by: Koichi Yasuoka <yasuoka@kanji.zinbun.kyoto-u.ac.jp>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: kumapo <kumapo@users.noreply.github.com>
Co-authored-by: Tobias Norlund <tobias@norlund.se>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Bhavitvya Malik <bhavitvya.malik@gmail.com>
Co-authored-by: Jonathan Chang <31893406+cccntu@users.noreply.github.com>
Co-authored-by: Guido Novati <16716298+novatig@users.noreply.github.com>
Co-authored-by: Guido Novati <gnovati@nvidia.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Nicholas Broad <nbroad94@gmail.com>
Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
Co-authored-by: Kumar Abhishek <kr.abhish@gmail.com>
Co-authored-by: Kumar Abhishek <kabhishek@expedia.com>
Co-authored-by: Will Rice <will@spokestack.io>
Co-authored-by: Vasudev Gupta <7vasudevgupta@gmail.com>
Co-authored-by: Kilian Kluge <32523967+ionicsolutions@users.noreply.github.com>
Co-authored-by: Amog Kamsetty <amogkam@users.noreply.github.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
Co-authored-by: Xa9aX ツ <mishradiganta91@gmail.com>
Co-authored-by: Vishal Burman <vishal.a.burman23@gmail.com>
Co-authored-by: Hamid Shojanazeri <hamid.nazeri2010@gmail.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-32-81.us-west-2.compute.internal>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Kevin Canwen Xu <canwenxu@126.com>
Co-authored-by: David Fan <30608893+jiafatom@users.noreply.github.com>
Co-authored-by: chenht2010 <chenht2010@yahoo.com>
Co-authored-by: chenhaitao <chenhaitao@qiyi.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Michael Benayoun <michael@huggingface.co>
Co-authored-by: Sam Havens <47401552+sam-qordoba@users.noreply.github.com>
Co-authored-by: Richard Liaw <rliaw@berkeley.edu>
Co-authored-by: Marc van Zee <marcvanzee@gmail.com>
Co-authored-by: michal pitr <21157924+MichalPitr@users.noreply.github.com>
Co-authored-by: jglaser <glaserj@ornl.gov>
Co-authored-by: Kai Fricke <krfricke@users.noreply.github.com>
Co-authored-by: cronoik <johannes.schaffrath@mail.de>
Co-authored-by: Taha ValizadehAslani <47432410+TahaAslani@users.noreply.github.com>
Co-authored-by: Suzana Ilić <io.suzanai@gmail.com>
Co-authored-by: Funtowicz Morgan <mfuntowicz@users.noreply.github.com>
Co-authored-by: Will Rice <wrice20@gmail.com>
Co-authored-by: Jabin Huang <huangjipengnju@gmail.com>
Co-authored-by: Jipeng Huang <jihuan@microsoft.com>
Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: fcakyon <34196005+fcakyon@users.noreply.github.com>
2021-07-24 11:31:42 -04:00
f6e254474c [Sequence Feature Extraction] Add truncation (#12804)
* fix_torch_device_generate_test

* remove @

* add truncate

* finish

* correct test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* clean tests

* correct normalization for truncation

* remove casting

* up

* save intermed

* finish

* finish

* correct

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-23 17:53:30 +02:00
98364ea74f [tests] fix logging_steps requirements (#12860) 2021-07-23 08:05:48 -07:00
e218249b02 Pin git python to <3.10.0 (#12858)
* fix_torch_device_generate_test

* remove @

* pin git python

* make style

* typo
2021-07-23 14:16:04 +02:00
795c1444e9 Improving pipeline tests (#12784)
* Proposal

* Testing pipelines slightly better.

- Overall same design
- Metaclass to get proper different tests instead of subTest (not well
supported by Pytest)
- Added ANY meta object to make output checking more readable.
- Skipping architectures either without tiny_config or without
architecture.

* Small fix.

* Fixing the tests in case of None value.

* Oups.

* Rebased with more architectures.

* Fixing reformer tests (no override anymore).

* Adding more options for model tester config.

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-07-22 15:19:35 +02:00
40de2d5a4f Docs for v4.10.0dev0 2021-07-22 12:52:25 +02:00
72aee83ced Release: v4.9.0 2021-07-22 12:11:55 +02:00
fcf83011df Fix type of max_seq_length arg in run_swag.py (#12832) 2021-07-22 02:14:14 -04:00
27a8c9e4f1 [parallelism doc] document Deepspeed-Inference and parallelformers (#12836)
* document Deepspeed-Inference and parallelformers

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-21 15:11:02 -07:00
807b6bd160 [Deepspeed] warmup_ratio docs (#12830)
* [Deepspeed] warmup_ratio docs

* Update docs/source/main_classes/deepspeed.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

* Update docs/source/main_classes/deepspeed.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-21 10:49:29 -07:00
8c2384d8e2 Raise warning in HP search when hp is not in args (#12831) 2021-07-21 12:44:41 -04:00
cf0755aa6e [debug] DebugUnderflowOverflow doesn't work with DP (#12816) 2021-07-21 09:36:02 -07:00
ac3cb660ca Add _CHECKPOINT_FOR_DOC to all models (#12811)
* Add _CHECKPOINT_FOR_DOC

* Update src/transformers/models/funnel/modeling_funnel.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-21 08:29:43 -04:00
786ced3639 Add versioning system to fast tokenizer files (#12713)
* Add versioning system to fast tokenizer files

* Deal with offline mode

* Use staging env in tests

* Style

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Style

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-07-21 08:24:36 -04:00
037bdf82d3 Refer warmup_ratio when setting warmup_num_steps. (#12818)
* Refer warmup_ratio when setting warmup_num_steps.

* Add a method to get number of warmup steps to TrainerArguments class.

* Fix.

* Fix.
2021-07-21 06:37:49 -04:00
15d19ecfda fix convert_tokens_to_string calls (#11716) 2021-07-21 04:28:30 -04:00
c3d9ac7607 Expose get_config() on ModelTesters (#12812)
* Expose get_config() on ModelTesters

* Typo
2021-07-21 04:13:11 -04:00
cabcc75171 [trainer] sanity checks for save_steps=0|None and logging_steps=0 (#12796)
* [trainer] fix % 0

* sanity checks

* fix logging_strategy

* correction

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-20 09:05:26 -07:00
acdd78db08 Update README.md 2021-07-20 16:48:37 +02:00
b5b4e54920 add and fix examples (#12810) 2021-07-20 09:28:50 -04:00
31d06729f4 Update README.md 2021-07-20 14:19:37 +02:00
2955d50e0c [Longformer] Correct longformer docs (#12809)
* fix_torch_device_generate_test

* remove @

* correct longformer docs

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-07-20 14:17:21 +02:00
13fefdf340 Update README.md
cc @patil-suraj
2021-07-20 13:51:15 +02:00
66197adc98 Flax MLM: Allow validation split when loading dataset from local file (#12689)
* Allow validation split when loading dataset from local file

* Flax clm & t5, enable validation split for datasets loaded from local file
2021-07-20 13:38:25 +02:00
6f8e367ae9 Fix Padded Batch Error 12282 (#12487)
This fixes the padded batch [issue](https://github.com/huggingface/transformers/issues/12282). The error was generated due to the maximum sequence length of the attention mask not matching the padded sequence length of the hidden_states. `np.allclose` now passes with a 1e-2 absolute tolerance.

This change fixes
2021-07-20 13:36:47 +02:00
7fae535052 add troubleshooting docs (#12791) 2021-07-20 03:32:02 -04:00
0118ef89ee Enforce eval and save strategies are compatible when --load_best_model_at_end (#12786)
* Enforce eval and save strategies are compatible when --load_best_model_at_end

* Update doc

* Fix typos

* Fix tests
2021-07-19 19:50:47 +02:00
546dc24e08 Longer timeout for slow tests (#12779) 2021-07-19 04:55:40 -04:00
cab3b86892 [ray] Fix datasets_modules ImportError with Ray Tune (#12749)
* Fix dynamic_modules ImportError with Ray Tune

* Nit
2021-07-19 04:32:40 -04:00
534f6eb9f1 Create README.md 2021-07-17 19:22:37 +02:00
c6b9095cb2 Update README.md 2021-07-17 19:22:26 +02:00
da72ac6e26 Fix push_to_hub docstring and make it appear in doc (#12770) 2021-07-17 15:52:33 +02:00
08d609bfb8 Add tokenizers class mismatch detection between cls and checkpoint (#12619)
* Detect mismatch by analyzing config

* Fix comment

* Fix import

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Revise based on reviews

* remove kwargs

* Fix exception

* Fix handling exception again

* Disable mismatch test in PreTrainedTokenizerFast

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2021-07-17 15:52:21 +02:00
b4b562d834 [Wav2Vec2] Padded vectors should not allowed to be sampled (#12764)
* fix_torch_device_generate_test

* remove @

* finish

* correct script

* correct script
2021-07-16 19:07:08 +02:00
6e87010060 Preserve list type of additional_special_tokens in special_token_map (#12759)
* preserve type of `additional_special_tokens` in `special_token_map`

* format

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-16 18:26:54 +02:00
fbf1397bf8 Turn on eval mode when exporting to ONNX (#12758)
* Set model in eval mode when exporting to ONNX.

* Disable t5 for now.

* Disable T5 with past too.

* Style.
2021-07-16 15:09:15 +02:00
8ef3f36561 fix typos (#12757) 2021-07-16 16:44:59 +05:30
c07334c12e add intel-tensorflow-avx512 to the candidates (#12751) 2021-07-16 05:54:49 -04:00
6989264963 [doc] testing: how to trigger a self-push workflow (#12724)
* [testing] details of how to start self-push workflow

* style

* fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-15 16:18:56 -07:00
a76dd7ee82 Update README.md 2021-07-16 00:16:30 +01:00
2e9fb13fb1 [Wav2Vec2] Correctly pad mask indices for PreTraining (#12748)
* fix_torch_device_generate_test

* remove @

* start adding tests

* correct wav2vec2 pretraining

* up

* up

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-07-15 21:40:25 +01:00
5f2791c7c1 Replace specific tokenizer in log message by AutoTokenizer (#12745) 2021-07-15 12:59:48 -04:00
31cfcbd3e2 [doc] performance: batch sizes (#12725) 2021-07-15 09:39:34 -07:00
68605e9db1 [doc] parallelism: Which Strategy To Use When (#12712) 2021-07-15 09:38:51 -07:00
eb4d7ef97b Remove framework mention (#12731) 2021-07-15 11:49:02 -04:00
959d448b3f Fix led torchscript (#12735)
* Don't test LED on torchscript

* Typo
2021-07-15 11:48:50 -04:00
f03580fb02 Fix DETR integration test (#12734) 2021-07-15 11:48:37 -04:00
f42d9dcc0e Patch T5 device test (#12742) 2021-07-15 16:40:17 +01:00
370be9cc38 Fix MBart failing test (#12737) 2021-07-15 16:39:35 +01:00
2349ac58c4 Translate README.md to Traditional Chinese (#12701)
* Add README_zh-tw.md

* Add links to each README.

* Fix a mismatched term.

* Minor improvements.

* Rename language code to be more inclusive.

* Polish terms to make them fluent.

* Remove redundant spaces.

* Fix typo.
2021-07-15 23:35:39 +08:00
eb2e006b35 Skip test while the model is not available (#12740) 2021-07-15 09:14:12 -04:00
8c7bd1b97b Skip test while the model is not available (#12739) 2021-07-15 09:06:47 -04:00
3290315a2a Fix AutoModel tests (#12733) 2021-07-15 09:06:12 -04:00
01cb2f25e3 LXMERT integration test typo (#12736) 2021-07-15 08:29:49 -04:00
199b4c5264 Init adds its own files as impacted (#12709) 2021-07-15 04:17:47 -04:00
6fb58d30b9 Fix typo in example (#12716) 2021-07-15 12:14:03 +05:30
8244c5ad4f [Flax] Correct shift labels for seq2seq models in Flax (#12720)
* fix_torch_device_generate_test

* remove @

* push

* fix marian

* fix

* up
2021-07-15 12:12:36 +05:30
1a3deae820 [trainer] release tmp memory in checkpoint load (#12718)
* [trainer] release tmp memory in checkpoint load

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-14 15:18:02 -07:00
a18a17d2b6 [test] split test into 4 sub-tests to avoid timeout (#12710)
* split the test into 4 sub-tests to avoid timeout

* fix decorator order
2021-07-14 13:04:58 -07:00
44f5b260fe flax model parallel training (#12590)
* update scripts

* add copyright

* add logging

* cleanup

* add z loss

* add readme

* shard description

* update readme
2021-07-14 22:55:44 +05:30
79c57e1a07 Deprecate TFTrainer (#12706)
* Deprecate TFTrainer

* Style pass
2021-07-14 15:59:14 +01:00
084873b025 Only test the files impacted by changes in the diff (#12644)
* Base test

* More test

* Fix mistake

* Add a docstring change

* Add doc ignore

* Add changes

* Add recursive dep search

* Add recursive dep search

* save

* Finalize test mapping

* Fix bug

* Print prettier

* Ignore comments and empty lines

* Make script runnable from anywhere

* Need dev install

* Like that

* Adapt

* Add as artifact

* Try on torch tests

* Fix yaml error

* Install GitPython

* Apply everywhere

* Be more defensive

* Revert to all tests if something is wrong

* Install GitPython

* Test if there are tests before launching.

* Fixes

* Fixes

* Fixes

* Fixes

* Bash syntax is horrible

* Be less stupid

* Try differently

* Typo

* Typo

* Typo

* Style

* Better name

* Escape quotes

* Ignore black unhelpful re-formatting

* Not a docstring

* Deal with inits in dependency map

* Run all tests once PR is merged.

* Add last job

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Stronger dependencies gather

* Ignore empty lines too!

* Clean up

* Fix quality

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-07-14 10:56:55 -04:00
11edecd753 Fix uninitialized variables when config.mask_feature_prob > 0 (#12705) 2021-07-14 15:30:19 +01:00
f9ac677eba Update TF examples README (#12703)
* Update Transformers README, rename token_classification example to token-classification to be consistent with the others

* Update examples/tensorflow/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add README for TF token classification

* Update examples/tensorflow/token-classification/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update examples/tensorflow/token-classification/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-14 15:15:25 +01:00
f4399ec570 Update README.md 2021-07-14 12:54:31 +01:00
d94773e685 Provide mask_time_indices to _mask_hidden_states to avoid double masking (#12692)
* We need to provide mask_time_indices to `_mask_hidden_states` to avoid applying the mask two times

* apply the same to wav2vec2

* Uniformize the style between hubert and wav2vec2

* fix tf as well

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-07-14 12:17:33 +01:00
144cea253f Fix multiple choice doc examples (#12679) 2021-07-14 03:35:18 -04:00
5dd0c956a8 non-native optimizers are mostly ok with zero-offload (#12690) 2021-07-13 20:18:51 -07:00
4cdb7ee51d fix #11724 (#11897) 2021-07-13 22:18:54 +01:00
83f025125d Add timeout to CI. (#12684)
* Global 60-300 seconds timeout

* Add verbose option

* [skip ci] typo
2021-07-13 15:13:18 -04:00
78f5fe1416 [Deepspeed] adapt multiple models, add zero_to_fp32 tests (#12477)
* zero_to_fp32 tests

* args change

* remove unnecessary work

* use transformers.trainer_utils.get_last_checkpoint

* document the new features

* cleanup

* wip

* fix fsmt

* add bert

* cleanup

* add xlm-roberta

* electra works

* cleanup

* sync

* split off the model zoo tests

* cleanup

* cleanup

* cleanup

* cleanup

* reformat

* cleanup

* casing

* deepspeed>=0.4.3

* adjust distilbert

* Update docs/source/main_classes/deepspeed.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-13 12:07:32 -07:00
65bf05cd18 Adding TF translation example (#12667)
* Adding TF translation example

* Fixes and style pass for TF translation example

* Remove unused postprocess_text copied from run_summarization

* Adding README

* Review fixes

* Move changes to model.config to after we've initialized the model
2021-07-13 19:08:25 +01:00
cee2d2135f [Flax Generation] Correct inconsistencies PyTorch/Flax (#12662)
* fix_torch_device_generate_test

* remove @

* correct greedy search

* save intertmed

* add final logits bias

* correct

* up

* add more tests

* fix another bug

* finish tests

* finish marian tests

* up

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-07-13 18:53:30 +01:00
7a22a02a70 [tokenizer.prepare_seq2seq_batch] change deprecation to be easily actionable (#12669)
* change deprecation to be easily actionable

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* rework as suggested

* one warning together

* fix format

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-13 09:19:04 -07:00
711d901c49 Fix minor docstring typos. (#12682) 2021-07-13 12:08:15 -04:00
90178b0cef Add option to load a pretrained model with mismatched shapes (#12664)
* Add option to load a pretrained model with mismatched shapes

* Fail at loading when mismatched shapes in Flax

* Fix tests

* Update src/transformers/modeling_flax_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Address review comments

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-07-13 10:15:15 -04:00
7f6d375029 [Blenderbot] Fix docs (#12227)
* fix_torch_device_generate_test

* remove @

* fix docs
2021-07-13 14:17:31 +01:00
9519f0cd63 Wrong model is used in example, should be character instead of subword model (#12676)
* Wrong model is used, should be character instead of subword

In the original Google repo for CANINE there was mixup in the model names in the README.md, which was fixed 2 weeks ago. Since this transformer model was created before, it probably resulted in wrong use in this example.

s = subword, c = character

* canine.rst style fix

* Update docs/source/model_doc/canine.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Styling canine.rst

* Added links to model cards.

* Fixed links to model cards.

Co-authored-by: Jeroen Steggink <978411+jsteggink@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-13 08:40:27 -04:00
5803a2a7ac Add ByT5 option to example run_t5_mlm_flax.py (#12634)
* Allow ByT5 type in Flax T5 script

* use T5TokenizerFast

* change up tokenizer config

* model_args

* reorder imports

* Update run_t5_mlm_flax.py
2021-07-13 13:39:57 +01:00
9da1acaea2 **encode_plus() shouldn't run for W2V2CTC (#12655)
* **encode_plus() shouldn't run for  W2V2CTC

* Typo
2021-07-13 06:31:56 -04:00
a6938c4721 Patch BigBird tokenization test (#12653) 2021-07-13 02:53:06 -04:00
c523b241c2 Update timeline for Flax event evaluation 2021-07-12 21:24:58 +02:00
dc06e43580 Fix typo in README_zh-hans.md (#12663) 2021-07-13 01:50:12 +08:00
9d771c5472 Translate README.md to Simplified Chinese (#12596)
* README Translation for Chinese (Simplified)

* update link

* h3->h4

* html refactor

* update model list

* fix

* Add a translation guide

* format

* update

* typo

* Refine wording
2021-07-13 01:19:54 +08:00
21a81c1e3c fix typo in modeling_t5.py docstring (#12640) 2021-07-12 12:24:32 -04:00
b90d499372 fixed docs (#12646) 2021-07-12 12:03:13 -04:00
da0e9ee697 remove documentation (#12657) 2021-07-12 18:02:51 +02:00
b189226e8c Fix transfo xl integration test (#12652)
* Cleanup test

* Skip TF TransfoXL test
2021-07-12 11:51:35 -04:00
fd41e2daf4 Pipeline should be agnostic (#12656) 2021-07-12 11:42:59 -04:00
9b3aab2cce Pickle auto models (#12654)
* PoC, it pickles!

* Remove old method.

* Apply to every auto object
2021-07-12 11:15:54 -04:00
379f649434 TF summarization example (#12617)
* Adding a TF summarization example

* Style pass

* Style fixes

* Updates for review comments

* Adding README

* Style pass

* Remove unused import
2021-07-12 15:58:38 +01:00
0f43e742d9 Fix typo 2021-07-12 10:32:51 -04:00
9adff7a0f4 Fix syntax in conda file 2021-07-12 09:57:54 -04:00
ad42054278 Minimum requirement for pyyaml 2021-07-12 09:55:36 -04:00
fb5665b5ad The extended trainer tests should require torch (#12650) 2021-07-12 09:47:05 -04:00
0af8579bbe Skip TestMarian_MT_EN (#12649)
* Skip TestMarian_MT_EN

* Skip EN_ZH and EN_ROMANCE

* Skip EN_ROMANCE pipeline
2021-07-12 09:11:32 -04:00
a882b9facb Add tokenizer_file parameter to PreTrainedTokenizerFast docstring (#12624)
Co-authored-by: Lewis Bails <Lewis.Bails@infomedia.dk>
2021-07-12 07:51:58 -04:00
f8f9a679a0 fix type check (#12638) 2021-07-12 10:48:43 +01:00
2dd9440d08 Point to the right file for hybrid CLIP (#12599) 2021-07-12 12:16:22 +05:30
de23ecea36 added test file (#12630) 2021-07-12 12:15:14 +05:30
9ee66adadb fix anchor (#12620) 2021-07-09 18:48:28 -07:00
0dcc3c86e4 [doc] DP/PP/TP/etc parallelism (#12524)
* wip

* complete the doc

* missing img

* improve

* correction

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-09 17:39:09 -07:00
4cdbf63c03 [debugging utils] minor doc improvements (#12525) 2021-07-09 17:38:28 -07:00
fb65f65ea6 Add TFHubertModel (#12206)
* TFHubert

* Update with TFWav2Vec Bug Fixes

* Add OOV Error

* Feedback changes

* Fix kwargs call
2021-07-09 18:55:25 +01:00
934222e3c5 [FLax] Fix marian docs 2 (#12615)
* fix_torch_device_generate_test

* remove @

* up
2021-07-09 18:28:57 +01:00
165606e5b4 [Flax Marian] Add marian flax example (#12614)
* fix_torch_device_generate_test

* remove @

* finish better examples for marian flax
2021-07-09 18:01:58 +01:00
51eb6d3457 [Flax] Fix mt5 auto (#12612)
* fix_torch_device_generate_test

* remove @

* fix mt5 auto
2021-07-09 17:33:04 +01:00
e7f33e8cb3 Pass model_kwargs when loading a model in pipeline() (#12449)
* Pass model_kwargs when loading a model in pipeline

* Add test for model_kwargs parameter of pipeline()

* Rewrite test to not download model

* Fix failing style checks
2021-07-09 09:24:55 -04:00
18ca59e1d3 Fix arg count for partial functions (#12609) 2021-07-09 09:24:42 -04:00
0cc2dc2456 Simplify unk token (#12582)
* Base test

* More test

* Fix mistake

* Add a docstring change

* Add doc ignore

* Simplify logic for unk token in Unigram tokenizers

* Remove changes from otehr branch
2021-07-09 09:02:34 -04:00
deecdd4939 [Flax] Fix cur step flax examples (#12608)
* fix_torch_device_generate_test

* remove @

* fix save problem
2021-07-09 13:51:28 +01:00
65e27215ba [Flax] Add flax marian (#12595)
* fix_torch_device_generate_test

* remove @

* add marian

* finish make style

* add model

* add docs

* add test

* add integration tests

* up

* solve bug

* correct tests

* correct some tests

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct adapt marian

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-09 11:42:13 +01:00
cc12e1dbf6 This will reduce "Already borrowed error": (#12550)
* This will reduce "Already borrowed error":

Original issue https://github.com/huggingface/tokenizers/issues/537

The original issue is caused by transformers calling many times
mutable functions on the rust tokenizers.
Rust needs to guarantee that only 1 agent has a mutable reference
to memory at a given time (for many reasons which don't need explaining
here). Usually, the rust compiler can guarantee that this property is
true at compile time.

Unfortunately, this is impossible for Python to do that, so PyO3, the
bridge between rust and python used by `tokenizers`, will change the
compile guarantee for a dynamic guarantee, so if multiple agents try
to have multiple mutable borrows at the same time, then the runtime will
yell with "Already borrowed".

The proposed fix here in transformers, is simply to reduce the actual
number of calls that really need mutable borrows. By reducing them,
we reduce the risk of running into "Already borrowed" error.
The caveat is now we add a call to read the current configuration of the
`_tokenizer`, so worst case we have 2 calls instead of 1, and best case
we simply have 1 + a Python comparison of a dict (should be negligible).

* Adding a test.

* trivial error :(.

* Update tests/test_tokenization_fast.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Adding reference to original issues in the tests.

* Update the tests with fast tokenizer.

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2021-07-09 09:36:05 +02:00
8fe836af5a Add Flax sprint project evaluation section (#12592) 2021-07-09 08:52:30 +02:00
ce111feed1 [doc] fix broken ref (#12597) 2021-07-08 14:11:01 -07:00
f0dde60127 [model.from_pretrained] raise exception early on failed load (#12574)
* [model.from_pretrained] raise exception early on failed load

Currently if `load` pretrained weights fails in `from_pretrained`, we first print a whole bunch of successful messages and then fail - this PR puts the exception first to avoid all the misleading messages.

* style

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-07-08 08:17:51 -07:00
75e63dbf70 Fix MT5 init (#12591) 2021-07-08 11:12:18 -04:00
4da568c152 Fixing the pipeline optimization by reindexing targets (V2) (#12330)
* Fixing the pipeline optimization by rescaling the logits first.

* Add test for target equivalence

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-07-08 16:58:15 +02:00
2aa3cd935d [RFC] Laying down building stone for more flexible ONNX export capabilities (#11786)
* Laying down building stone for more flexible ONNX export capabilities

* Ability to provide a map of config key to override before exporting.

* Makes it possible to export BART with/without past keys.

* Supports simple mathematical syntax for OnnxVariable.repeated

* Effectively apply value override from onnx config for model

* Supports export with additional features such as with-past for seq2seq

* Store the output path directly in the args for uniform usage across.

* Make BART_ONNX_CONFIG_* constants and fix imports.

* Support BERT model.

* Use tokenizer for more flexibility in defining the inputs of a model.

* Add TODO as remainder to provide the batch/sequence_length as CLI args

* Enable optimizations to be done on the model.

* Enable GPT2 + past

* Improve model validation with outputs containing nested structures

* Enable Roberta

* Enable Albert

* Albert requires opset >= 12

* BERT-like models requires opset >= 12

* Remove double printing.

* Enable XLM-Roberta

* Enable DistilBERT

* Disable optimization by default

* Fix missing setattr when applying optimizer_features

* Add value field to OnnxVariable to define constant input (not from tokenizers)

* Add T5 support.

* Simplify model type retrieval

* Example exporting token_classification pipeline for DistilBERT.

* Refactoring to package `transformers.onnx`

* Solve circular dependency & __main__

* Remove unnecessary imports in `__init__`

* Licences

* Use @Narsil's suggestion to forward the model's configuration to the ONNXConfig to avoid interpolation.

* Onnx export v2 fixes (#12388)

* Tiny fixes
Remove `convert_pytorch` from onnxruntime-less runtimes
Correct reference to model

* Style

* Fix Copied from

* LongFormer ONNX config.

* Removed optimizations

* Remvoe bad merge relicas.

* Remove unused constants.

* Remove some deleted constants from imports.

* Fix unittest to remove usage of PyTorch model for onnx.utils.

* Fix distilbert export

* Enable ONNX export test for supported model.

* Style.

* Fix lint.

* Enable all supported default models.

* GPT2 only has one output

* Fix bad property name when overriding config.

* Added unittests and docstrings.

* Disable with_past tests for now.

* Enable outputs validation for default export.

* Remove graph opt lvls.

* Last commit with on-going past commented.

* Style.

* Disabled `with_past` for now

* Remove unused imports.

* Remove framework argument

* Remove TFPreTrainedModel reference

* Add documentation

* Add onnxruntime tests to CircleCI

* Add test

* Rename `convert_pytorch` to `export`

* Use OrderedDict for dummy inputs

* WIP Wav2Vec2

* Revert "WIP Wav2Vec2"

This reverts commit f665efb04c92525c3530e589029f0ae7afdf603e.

* Style

* Use OrderedDict for I/O

* Style.

* Specify OrderedDict documentation.

* Style :)

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-07-08 10:54:42 -04:00
0085e712dd Don't stop at num_epochs when using IterableDataset (#12561) 2021-07-08 07:24:46 -04:00
6f1adc4334 Fix group_lengths for short datasets (#12558) 2021-07-08 07:23:41 -04:00
0a6b9048d1 Init pickle (#12567)
* Try to pickle transformers

* Deal with special objs better

* Make picklable
2021-07-08 07:20:46 -04:00
b29c394586 raise exception when arguments to pipeline are incomplete (#12548)
* raise exception when arguments are incomplete

* change exception to runtime error
2021-07-08 04:17:34 -04:00
122d7dc34f Remove logging of GPU count etc logging. (#12569)
Successfully logging this requires Pytorch. For the purposes of this script we are not using Pytorch.
2021-07-07 23:05:47 +01:00
d7e156bd1a fix loading clip vision model (#12566) 2021-07-07 22:50:27 +05:30
b86826099b Double check for attribute num_examples (#12562)
* Double check for attribute

* Use right name
2021-07-07 12:50:41 -04:00
0d2bffad31 Remove tf.roll wherever not needed (#12512)
It was used in shift_right.
After this change TF code is more similar to Pytorch implementations
Also, TF graphs are optimized (one node less)
2021-07-07 16:17:30 +01:00
95425d546d Adding prepare_decoder_input_ids_from_labels methods to all ConditionalGeneration TF models (#12560) 2021-07-07 15:30:47 +01:00
ebc69afc30 Adding support for pipeline("automatic-speech-recognition"). (#11525)
* Adding support for `pipeline("automatic-speech-recognition")`.

- Ugly `"config"` choice for AutoModel. It would be great to have the
possibility to have something like `AutoModelFor` that would implement
the same logic (Load the config, check Architectures and load the first
one)

* Remove `model_id` was not needed in the end.

* Rebased !

* Remove old code.

* Rename `nlp`.
2021-07-07 16:06:48 +02:00
7d321b7689 [Flax] Allow retraining from save checkpoint (#12559)
* fix_torch_device_generate_test

* remove @

* finish
2021-07-07 19:13:43 +05:30
1d6623c6a2 MLM training fails with no validation file(same as #12406 for pytorch now) (#12517)
* Validation split percentage to be used for custom data files also

Issue same as https://github.com/huggingface/transformers/issues/12406 fixed for pytorch branch run_mlm.py

* Validation split added in the right place

* Update run_clm.py

* validation split added for custom files

* Validation split added for custom files

* Update run_plm.py

* fixed validation split for custom files as input for pytorch examples in lm

* Update run_clm_no_trainer.py

* args modified
2021-07-07 09:05:44 -04:00
3488ef5a92 [trainer] add option to ignore keys for the train function too (#11719) (#12551) 2021-07-07 08:07:46 -04:00
45dcfdec52 Add a warning for broken ProphetNet fine-tuning (#12511) 2021-07-07 16:32:48 +08:00
61400e1ec7 [Flax] Add FlaxMBart (#12236)
* Copy BART to MBart and rename some stuff

* Add copy statements pointing to FlaxBart

* Update/add some common files

* Update shift_tokens_rigth + fix imports

* Fix shift_tokens_right method according to MBart implementation

* Update shift_tokens_right in tests accordingly

* Fix the import issue and update docs file
* make style quality

* Do some minor changes according to patil-suraj suggestions

* Change the order of normalization layer and attention

* Add some copu statementes

* Update generate method and add integration test for mBart

* Make a few updates after a review

Besides, add `lang_code_to_id` to MBartTokenizeFast

* fix-copies; make style quality

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* fix output type, style

* add copied from

* resolve conflicts

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-07-07 12:20:38 +05:30
2d42915abe [examples/flax] add adafactor optimizer (#12544)
* add adafactor

* Update examples/flax/language-modeling/run_mlm_flax.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-07-07 11:50:30 +05:30
208df208bf [Flax] Adapt examples to be able to use eval_steps and save_steps (#12543)
* fix_torch_device_generate_test

* remove @

* up

* up

* correct

* upload

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-07-06 19:41:51 +01:00
2870fd198f Bump CircleCI machine sizes 2021-07-06 17:46:39 +02:00
3fd85777ea implementing tflxmertmodel integration test (#12497)
* implementing tflxmertmodel integration test

* move import

* revert and fix
2021-07-06 11:44:47 -04:00
09af5bdea3 Replace nn.Moudle by nn.Module (#12541) 2021-07-06 11:31:45 -04:00
f42a0abf4b Update README.md 2021-07-06 15:14:48 +01:00
029b9d3f40 Update README (#12540) 2021-07-06 16:12:16 +02:00
7a259c190c FlaxGPTNeo (#12493)
* flax gpt neo

* fix query scaling

* update generation test

* use flax model for test
2021-07-06 18:55:18 +05:30
626a0a0147 [RoFormer] Fix some issues (#12397)
* add RoFormerTokenizerFast into AutoTokenizer

* fix typo in roformer docs

* make onnx export happy

* update RoFormerConfig embedding_size

* use jieba not rjieba

* fix 12244 and make test_alignement passed

* update ARCHIVE_MAP

* make style & quality & fixup

* update

* make style & quality & fixup

* make style quality fixup

* update

* suggestion from LysandreJik

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* make style

* use rjieba

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-07-06 03:31:57 -04:00
f5b0c1ecf0 [Flax] Fix hybrid clip (#12519)
* fix saving and loading

* update readme
2021-07-06 11:12:47 +05:30
7d6285a921 [Wav2Vec2] Flax - Adapt wav2vec2 script (#12520)
* fix_torch_device_generate_test

* remove @

* adapt flax pretrain script
2021-07-05 23:49:47 +01:00
4605b2b8ec [Flax] Fix another bug in logging steps (#12516)
* fix_torch_device_generate_test

* remove @

* up
2021-07-05 18:35:22 +01:00
d0f7508abe [Flax] Correct logging steps flax (#12515)
* fix_torch_device_generate_test

* remove @

* push
2021-07-05 18:21:00 +01:00
bb4ac2b5a8 [Flax] Correct flax training scripts (#12514)
* fix_torch_device_generate_test

* remove @

* add logging steps

* correct training scripts

* correct readme

* correct
2021-07-05 18:14:50 +01:00
ea55675024 NER example for Tensorflow (#12469)
* NER example for Tensorflow

* Style pass

* Style pass

* Added metric computation on the evaluation set

* Style pass

* Fixed label masking

* Style pass

* Style pass
2021-07-05 15:42:18 +01:00
9b90810558 [Flax] Dataset streaming example (#12470)
* fix_torch_device_generate_test

* remove @

* upload

* finish dataset streaming

* adapt readme

* finish

* up

* up

* up

* up

* Apply suggestions from code review

* finish

* make style

* make style2

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-07-05 15:13:10 +01:00
eceb1042c1 flax.linen.apply takes state as the first param, followed by the input (#12510) 2021-07-05 19:33:14 +05:30
f1c81d6b92 [Flax] ViT training example (#12300)
* begin script

* clean example, add readme

* update readme

* remove decay mask

* remove masking

* update readme & make flake happy
2021-07-05 18:23:03 +05:30
e799e0f1ed [Flax] Fix wav2vec2 pretrain arguments (#12498) 2021-07-05 13:35:20 +01:00
0e1718afb6 create LxmertModelIntegrationTest Pytorch (#9989)
* create LxmertModelIntegrationTest

* implementation using numpy seeding to fix inputs params.

* fix code quality

* isort check
2021-07-05 05:21:25 -04:00
23ab0b6980 [examples/flax] clip style image-text training example (#12491)
* clip style example

* fix post init

* add requirements

* update readme, few small fixes
2021-07-05 13:26:44 +05:30
89a8739f0c Add Repository import to the FLAX example script (#12501) 2021-07-05 03:51:11 -04:00
2df63282e0 Update README.md 2021-07-04 13:16:29 +01:00
a76eebfc80 Add guide on how to build demos for the Flax sprint (#12468) 2021-07-02 20:35:17 +02:00
b21905e03d Update README.md 2021-07-02 14:12:47 +01:00
d24a523130 Update README.md 2021-07-02 13:41:14 +01:00
e3fce2f868 Update README.md
Thanks a lot @BirgerMoell
2021-07-02 12:12:54 +01:00
b889d3f6c4 Fix TAPAS test uncovered by #12446 (#12480) 2021-07-02 04:35:10 -04:00
b4ecc6bef2 fixed typo in flax-projects readme (#12466) 2021-07-02 12:27:39 +05:30
e52288a140 Rework notebooks and move them to the Notebooks repo (#12471) 2021-07-02 02:29:51 -04:00
2d1d92181a [roberta] fix lm_head.decoder.weight ignore_key handling (#12446)
* fix lm_head.decoder.weight ignore_key handling

* fix the mutable class variable

* Update src/transformers/models/roberta/modeling_roberta.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* replicate the comment

* make deterministic

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-07-01 10:31:19 -07:00
7f0027db30 Fixing bug with param count without embeddings (#12461)
* fixing bug with param count without embeddings

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-01 13:25:40 -04:00
d5b8fe3b90 Validation split added: custom data files @sgugger, @patil-suraj (#12407)
* Validation split added: custom data files

Validation split added in case of no validation file and loading custom data

* Updated documentation with custom file usage

Updated documentation with custom file usage

* Update README.md

* Update README.md

* Update README.md

* Made some suggested stylistic changes

* Used logger instead of print.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Made similar changes to add validation split

In case of a missing validation file, a validation split will be used now.

* max_train_samples to be used for training only

max_train_samples got misplaced, now corrected so that it is applied on training data only, not whole data.

* styled

* changed ordering

* Improved language of documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Improved language of documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fixed styling issue

* Update run_mlm.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-07-01 13:22:42 -04:00
f929462b25 Import check_inits handling of duplicate definitions. (#12467)
* Import fix_inits handling of duplicate definitions.

* Style fix
2021-07-01 12:52:00 -04:00
7f87bfc910 Add TPU README (#12463)
* Add TPU README

* Apply suggestions from code review

* Update examples/research_projects/jax-projects/README.md

* Update examples/research_projects/jax-projects/README.md

Co-authored-by: Stefan Schweter <stefan@schweter.it>

Co-authored-by: Stefan Schweter <stefan@schweter.it>
2021-07-01 17:11:54 +01:00
1457839fc5 Update README.md 2021-07-01 15:52:11 +01:00
c18af5d40c Added talk details (#12465) 2021-07-01 16:19:23 +02:00
6c5b20aa09 Fix training_args.py barrier for torch_xla (#12464)
torch_xla currently has its own synchronization primitives, so use
xm.rendezvous(tag) instead.
2021-07-01 10:17:38 -04:00
2a501ac954 Comment fast GPU TF tests (#12452) 2021-07-01 09:26:46 -04:00
27d348f2fe [Wav2Vec2, Hubert] Fix ctc loss test (#12458)
* fix_torch_device_generate_test

* remove @

* fix test
2021-07-01 08:59:32 -04:00
b655f16d4e [Flax community event] How to use hub during training (#12447)
* fix_torch_device_generate_test

* remove @

* upload

* finish doc

* Apply suggestions from code review

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Chaumond <chaumond@gmail.com>

* finish

Co-authored-by: Omar Sanseviero <osanseviero@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
2021-07-01 11:41:22 +01:00
3aa37b945e Add test for a WordLevel tokenizer model (#12437)
* add a test for a WordLevel tokenizer

* adapt common test to new tokenizer
2021-07-01 12:37:07 +02:00
0d1f67e651 [Flax] Add wav2vec2 (#12271)
* fix_torch_device_generate_test

* remove @

* start flax wav2vec2

* save intermediate

* forward pass has correct shape

* add weight norm

* add files

* finish ctc

* make style

* finish gumbel quantizer

* correct docstrings

* correct some more files

* fix vit

* finish quality

* correct tests

* correct docstring

* correct tests

* start wav2vec2 pretraining script

* save intermediate

* start pretraining script

* finalize pretraining script

* finish

* finish

* small typo

* finish

* correct

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* make style

* push

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-06-30 18:44:23 +01:00
3f36a2c064 [JAX/Flax readme] add philosophy doc (#12419)
* add philosophy doc

* fix typos

* update doc

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address Patricks suggestions

* add a training example and fix typos

* jit the training step

* jit train step

* fix example code

* typo

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-06-30 21:40:12 +05:30
1ad1c4a864 Add to talks section (#12442) 2021-06-30 16:58:03 +02:00
42477d68fa fix typo in mt5 configuration docstring (#12432) 2021-06-30 15:24:06 +01:00
89073a95ba Document patch release v4.8.2 2021-06-30 14:39:52 +02:00
6e68597877 Add CANINE (#12024)
* First pass

* More progress

* Add support for local attention

* More improvements

* More improvements

* Conversion script working

* Add CanineTokenizer

* Make style & quality

* First draft of integration test

* Remove decoder test

* Improve tests

* Add documentation

* Mostly docs improvements

* Add CanineTokenizer tests

* Fix most tests on GPU, improve upsampling projection

* Address most comments by @dhgarrette

* Remove decoder logic

* Improve Canine tests, improve docs of CanineConfig

* All tokenizer tests passing

* Make fix-copies and fix tokenizer tests

* Fix test_model_outputs_equivalence test

* Apply suggestions from @sgugger's review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Address some more comments

* Add support for hidden_states and attentions of shallow encoders

* Define custom CanineModelOutputWithPooling, tests pass

* First pass

* More progress

* Add support for local attention

* More improvements

* More improvements

* Conversion script working

* Add CanineTokenizer

* Make style & quality

* First draft of integration test

* Remove decoder test

* Improve tests

* Add documentation

* Mostly docs improvements

* Add CanineTokenizer tests

* Fix most tests on GPU, improve upsampling projection

* Address most comments by @dhgarrette

* Remove decoder logic

* Improve Canine tests, improve docs of CanineConfig

* All tokenizer tests passing

* Make fix-copies and fix tokenizer tests

* Fix test_model_outputs_equivalence test

* Apply suggestions from @sgugger's review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Address some more comments

* Make conversion script work for Canine-c too

* Fix tokenizer tests

* Remove file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-30 08:05:44 -04:00
69f570156e Add default bos_token and eos_token for tokenizer of deberta_v2 (#12429)
* fix ids_to_tokens naming error in tokenizer of deberta v2

* Update tokenization_deberta_v2.py

Add bos_token and eos_token.

* format code

Co-authored-by: Jipeng Huang <jihuan@microsoft.com>
2021-06-30 08:03:58 -04:00
c9486fd0f5 Fix default bool in argparser (#12424)
* Fix default bool in argparser

* Add more to test
2021-06-30 07:57:05 -04:00
90d69456eb Added to talks section (#12433)
Added one more confirmed speaker, zoom links and gcal event links
2021-06-30 13:14:11 +02:00
31a8110918 Add option to save on each training node (#12421)
* Add option to save on each training node

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Address review comments

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-06-30 02:41:47 -04:00
990540b72d [modelcard] fix (#12422)
this PR is fixing an incorrect attribute - probably some tests are needed?
2021-06-29 17:59:03 -04:00
dc42e770b8 Easily train a new fast tokenizer from a given one (#12361)
* [WIP] Easily train a new fast tokenizer from a given one

* Fix test

* Roll out to other tokenizers and add tests

* Fix bug with unk id and add emoji to test

* Really use something different in test

* Implement special tokens map

* Map special tokens in the Transformers tokenizers

* Fix test

* Make test more robust

* Fix test for BPE

* More robust map and test

Co-authored-by SaulLu

* Test file

* Stronger tests

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>

* Map unk token for Wordpiece and address review comment

* Fix lowercase test and address review comment

* Fix all tests

* Simplify test

* Fix tests for realsies

* Easily train a new fast tokenizer from a given one - tackle the special tokens format (str or AddedToken) (#12420)

* Propose change in tests regarding lower case

* add new test for special tokens types

* put back the test part about decoding

* add feature: the AddedToken is re-build with the different mapped content

* Address review comment: simplify AddedToken building

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2021-06-29 15:00:08 -04:00
b440b8d1ce Added talks (#12415) 2021-06-29 16:01:16 +01:00
5257818e68 minor fixes in original RAG training (#12395) 2021-06-29 13:39:48 +01:00
e3f39a2952 fix ids_to_tokens naming error in tokenizer of deberta v2 (#12412)
Co-authored-by: Jipeng Huang <jihuan@microsoft.com>
2021-06-29 08:15:35 -04:00
813328682e [Flax] Example scripts - correct weight decay (#12409)
* fix_torch_device_generate_test

* remove @

* finish

* finish

* correct style
2021-06-29 12:01:08 +01:00
aecae53377 [example/flax] add summarization readme (#12393)
* add readme

* update readme and add requirements

* Update examples/flax/summarization/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-06-29 14:02:33 +05:30
3886104574 Fix TFWav2Vec2 SpecAugment (#12289)
* Fix TFWav2Vec2 SpecAugment

* Invert masks

* Feedback changes
2021-06-29 09:15:57 +01:00
bc084938f2 Add out of vocabulary error to ASR models (#12288)
* Add OOV error to ASR models

* Feedback changes
2021-06-29 08:57:46 +01:00
1fc6817a30 Rename detr targets to labels (#12280)
* Rename target to labels in DetrFeatureExtractor

* Update DetrFeatureExtractor tests accordingly

* Improve docs of DetrFeatureExtractor

* Improve docs

* Make style
2021-06-29 03:07:46 -04:00
7682e97702 [models] respect dtype of the model when instantiating it (#12316)
* [models] respect dtype of the model when instantiating it

* cleanup

* cleanup

* rework to handle non-float dtype

* fix

* switch to fp32 tiny model

* improve

* use dtype.is_floating_point

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix the doc

* recode to use explicit torch_dtype_auto_detect, torch_dtype args

* docs and tweaks

* docs and tweaks

* docs and tweaks

* merge 2 args, add docs

* fix

* fix

* better doc

* better doc

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-28 20:11:21 -07:00
31c3e7e75b [Flax] Add T5 pretraining script (#12355)
* fix_torch_device_generate_test

* remove @

* add length computatan

* finish masking

* finish

* upload

* fix some bugs

* finish

* fix dependency table

* correct tensorboard

* Apply suggestions from code review

* correct processing

* slight change init

* correct some more mistakes

* apply suggestions

* improve readme

* fix indent

* Apply suggestions from code review

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* correct tokenizer

* finish

* finish

* finish

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2021-06-28 20:11:29 +01:00
e277074889 pass the matching trainer log level to deepspeed (#12401) 2021-06-28 11:43:24 -07:00
7e22609e0f Tensorflow LM examples (#12358)
* Tensorflow MLM example

* Add CLM example

* Style fixes, adding missing checkpoint code from the CLM example

* Fix TPU training, avoid massive dataset warnings

* Fix incorrect training length calculation for multi-GPU training

* Fix incorrect training length calculation for multi-GPU training

* Refactors and nitpicks from the review

* Style pass

* Adding README
2021-06-28 19:31:44 +01:00
2d70c91206 [Flax] Adapt flax examples to include push_to_hub (#12391)
* fix_torch_device_generate_test

* remove @

* finish

* correct summary writer

* correct push to hub

* fix indent

* finish

* finish

* finish

* finish

* finish

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-06-28 19:23:35 +01:00
a7d0b288fa Remove the need for einsum in Albert's attention computation (#12394)
* debug albert einsum

* Fix matmul computation

* Let's use torch linear layer.

* Style.
2021-06-28 18:30:05 +02:00
276bc149d2 Fix copies 2021-06-28 12:26:40 -04:00
27b6ac4611 Update README.md 2021-06-28 17:22:10 +01:00
89b57a6669 [Flax community event] Add more description to readme (#12398)
* fix_torch_device_generate_test

* remove @

* boom boom

* correct typos

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suzana Ilić <io.suzanai@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Suzana Ilić <io.suzanai@gmail.com>
2021-06-28 17:18:42 +01:00
04dbea31a9 [Examples] Added context manager to datasets map (#12367)
* added cotext manager to datasets map

* fixed style and spaces

* fixed warning of deprecation

* changed desc
2021-06-28 09:14:00 -07:00
d25ad34c82 [CI] add dependency table sync verification (#12364)
* add dependency table sync verification

* improve the message

* improve the message

* revert

* ready to merge
2021-06-28 08:55:59 -07:00
57461ac0b4 Add possibility to maintain full copies of files (#12312) 2021-06-28 10:02:53 -04:00
9490d668d2 Update run_mlm.py (#12344)
Before the code could not be used for validation only because of this line:
extension = data_args.train_file.split(".")[-1]
was assuming that extension must be extracted from the training dataset. This line would run regardless of the training or validation options of the user. This would lead to an error if the user only wants to run an evaluation only and does not want to do train (because the training file does not exist). I modified it to extract extension from the training file if the user wants to do train and extract it from the validation file if the user wants to run eval. This way the code can be used for both training and validation separately.
2021-06-28 07:49:22 -04:00
c7faf2ccc0 [Documentation] Warn that DataCollatorForWholeWordMask is limited to BertTokenizer-like tokenizers (#12371)
* Notify users that DataCollatorForWholeWordMask is limited to BertTokenier-like tokenizers

* Fix code formatting
2021-06-28 07:39:56 -04:00
ff5cdc086b replace print with logger (#12368) 2021-06-26 09:31:25 -07:00
9a7545943d updated example template (#12365) 2021-06-25 20:50:30 -07:00
539ee456d4 [Examples] Replicates the new --log_level feature to all trainer-based pytorch (#12359)
* added log_level

* fix comment

* fixed log_level

* Trigger CI

* Unfied logging

* simplified args for log_level
2021-06-25 14:58:42 -07:00
64e6098094 [trainer] add main_process_first context manager (#12351)
* main_process_first context manager

* handle multi-node, add context description

* sync desc
2021-06-25 14:58:03 -07:00
f866425898 fixed multiplechoice tokenization (#12362)
* fixed multiplechoice tokenization

The model would have seen two sequences:
1. [CLS]prompt[SEP]prompt[SEP]
2. [CLS]choice0[SEP]choice1[SEP]
that is not correct as we want a contextualized embedding of prompt and choice

* removed outer brackets for proper sequence generation
2021-06-25 17:41:08 -04:00
4a872caef4 remove extra white space from log format (#12360) 2021-06-25 13:20:14 -07:00
a3daabfe14 Style 2021-06-25 15:54:31 -04:00
238521b0b6 Replace NotebookProgressReporter by ProgressReporter in Ray Tune run (#12357)
* Replace NotebookProgressReporter by ProgressReporter in Ray Tune run

* Move to local import
2021-06-25 14:12:03 -04:00
332a245861 Add FlaxBigBird QuestionAnswering script (#12233)
* port bigbird script

* adapt script a bit

* change location

* adapt more

* save progress

* init commit

* style

* dataset script tested

* readme add
2021-06-25 18:05:48 +01:00
55bb4c06f7 Fix exception in prediction loop occurring for certain batch sizes (#12350)
* fix distributed_concat for scalar outputs

* Update README.md

* fixed typo (#12356)

* simplify fix with terser syntax

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Trigger CI

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: michal pitr <21157924+MichalPitr@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-25 10:55:15 -04:00
d4ce31e839 fixed typo (#12356) 2021-06-25 07:49:29 -04:00
aa550c4a11 Update README.md 2021-06-25 11:55:51 +01:00
f2c4ce7e33 Add flax/jax quickstart (#12342) 2021-06-24 17:04:18 +01:00
5b1b5635d3 Document patch release v4.8.1 2021-06-24 10:15:15 -04:00
8ef62ec9e1 Fix torchscript tests (#12336)
* Fix torchscript tests

* Better test

* Remove bogus print
2021-06-24 09:52:28 -04:00
aef3823e1a [examples/Flax] move the examples table up (#12341) 2021-06-24 16:03:37 +05:30
7875b638cd try-this (#12338)
Signed-off-by: Richard Liaw <rliaw@berkeley.edu>
2021-06-24 04:13:17 -04:00
cf3c9198aa Fix default to logging_dir lost in merge conflict 2021-06-23 16:22:29 -04:00
07ae6103c3 [Deepspeed] new docs (#12077)
* document sub_group_size

* style

* install + issues reporting

* style

* style

* Update docs/source/main_classes/deepspeed.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* indent 4

* restore

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-23 11:07:37 -07:00
3694484d0a Update training_args.py (#12328)
mention in `save_strategy` param description that `load_best_model_at_end` can override
2021-06-23 13:39:43 -04:00
2150dfed31 v4.9.0.dev0 2021-06-23 13:31:19 -04:00
9252a5127f Release: v4.8.0 2021-06-23 13:25:56 -04:00
468cda20f2 [Flax T5] Fix weight initialization and fix docs (#12327)
* finish t5 flax fixes

* improve naming
2021-06-23 17:39:21 +01:00
12a4457c56 Pin good version of huggingface_hub 2021-06-23 12:30:15 -04:00
986ac03e37 changed modeling_fx_utils.py to utils/fx.py for clarity (#12326)
Co-authored-by: Michael Benayoun <michael@huggingface.co>
2021-06-23 18:16:24 +02:00
941b4442ba Temporarily revert the fill-mask improvements. 2021-06-23 17:46:24 +02:00
4bdff2cdbe Conda build (#12323) 2021-06-23 11:07:07 -04:00
9eda6b52e2 Add all XxxPreTrainedModel to the main init (#12314)
* Add all XxxPreTrainedModel to the main init

* Add to template

* Add to template bis

* Add FlaxT5
2021-06-23 10:40:54 -04:00
53c60babe4 Clean push to hub API (#12187)
* Clean push to hub API

* Create working dir if it does not exist

* Different tweak

* New API + all models + test Flax

* Adds the Trainer clean up

* Update src/transformers/file_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comments

* (nit) output types

* No need to set clone_from when folder exists

* Update src/transformers/trainer.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Add generated_from_trainer tag

* Update to new version

* Fixes

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-06-23 10:11:19 -04:00
625f512d5e [TFWav2Vec2] Fix docs (#12283)
* fix error

* make style check happy

Co-authored-by: chenhaitao <chenhaitao@qiyi.com>
2021-06-23 14:51:31 +01:00
44739c8180 [Flax/JAX] Add how to propose projects markdown (#12311)
* fix_torch_device_generate_test

* remove @

* finish

* make style
2021-06-23 14:50:35 +01:00
ef3dceff4a Add mention of the huggingface_hub methods for offline mode (#12320) 2021-06-23 09:45:30 -04:00
e98233dde1 Flax T5 (#12150)
* copy pytorch-t5

* init

* boom boom

* forward pass same

* make generation work

* add more tests

* make test work

* finish normal tests

* make fix-copies

* finish quality

* correct slow example

* correct slow test

* version table

* upload models

* Update tests/test_modeling_flax_t5.py

* correct incorrectly deleted line

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-06-23 13:13:32 +01:00
7d4cfa3b47 Rewrite ProphetNet to adapt converting ONNX friendly (#11981)
* Rewrite

* [ONNX] rewrite
2021-06-23 11:34:18 +01:00
c0fe3c9a7a Flax summarization script (#12230)
* add summrization script

* fix arguments, preprocessing, metrics

* add generation and metrics

* auto model, prediction loop

* prettify

* label smoothing

* adress Sylvain and Patricks suggestions

* dynamically import shift_tokens_right

* fix shift_tokens_right_fn call
2021-06-23 15:49:30 +05:30
26a2e36595 Add output in a dictionary for TF generate method (#12139)
* Add output args to greedy search

* Fix critical typo + make style quality

* Handle generate_beam_search

* Add dict_specific tests and fix the placement of encoder outputs

* Add  specific outputs

* Update doc

* Fix typo

* Adjust handling encoder_outputs + Fix generating for T5

* Fix generate for RAG

* Fix handling ouptut_attentions when target_mapping is not None

Take care of situations when target_mapping is provided
as there are 2-tuple of attentions

Change from:
if inputs["output_attentions"]:
    attentions = tuple(tf.transpose(t, perm(2, 3, 0, 1)) for t in attentions)

to:
if inputs["output_attentions"]:
    if inputs["target_mapping"] is not None:
        # when target_mapping is provided, there are 2-tuple of attentions
         attentions = tuple(
             tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions
        )
    else:
        attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions)

* Rename kwargs to model_kwargs

* make style quality

* Move imports in test_modeling_tf_common.py

Move ModelOutput-related imports in test_modeling_tf_common.py
into the `is_tf_available():` statement.

* Rewrite nested if-statements

* Fix added tests
2021-06-23 10:52:11 +01:00
d4be498441 Optimizing away the fill-mask pipeline. (#12113)
* Optimizing away the `fill-mask` pipeline.

- Don't send anything to the tokenizer unless needed. Vocab check is
much faster
- Keep BC by sending data to the tokenizer when needed. User handling warning messages will see performance benefits again
- Make `targets` and `top_k` work together better `top_k` cannot be
higher than `len(targets)` but can be smaller still.
- Actually simplify the `target_ids` in case of duplicate (it can happen
because we're parsing raw strings)
- Removed useless code to fail on empty strings. It works only if empty
string is in first position, moved to ignoring them instead.
- Changed the related tests as only the tests would fail correctly
(having incorrect value in first position)

* Make tests compatible for 2 different vocabs... (at the price of a
warning).

Co-authored-by: @EtaoinWu

* ValueError working globally

* Update src/transformers/pipelines/fill_mask.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* `tokenizer.vocab` -> `tokenizer.get_vocab()` for more compatiblity +
fallback.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-06-23 10:38:04 +02:00
037e466b10 Add CodeCarbon Integration (#12304)
* Add optional dependency

* Add CodeCarbon integration

* Add CodeCarbon integration

* Add CodeCarbon integration

* typo
2021-06-23 14:53:09 +08:00
bfd5da8e28 [docs] performance (#12258)
* initial performance document

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* rewrites based on suggestions

* 8x multiple is for AMP only

* add contribute section

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-06-22 15:34:19 -07:00
1562c04e41 FlaxBartPretrainedModel -> FlaxBartPreTrainedModel (#12313) 2021-06-22 16:37:05 -04:00
ebe5413589 [trainer] 2 bug fixes and a rename (#12309)
* bug fixes and a rename

* add extended DDP test
2021-06-22 11:13:23 -07:00
64029abe4c [Flax] Main doc for event orga (#12305)
* fix_torch_device_generate_test

* remove @

* push

* finish

* some typos

* add more info on communication

* add suggestions
2021-06-22 18:02:52 +01:00
032d56a435 Fix and improve documentation for LEDForConditionalGeneration (#12303)
* Replace conditional generation example (fixes #12268)

* Replace model in summarization example with finetuned checkpoint, adapt example text

* Fix typo in new summarization example

* Fix docstring formatting, add missing import statement to example
2021-06-22 09:58:13 -04:00
1498eb9888 add FlaxAutoModelForImageClassification in main init (#12298) 2021-06-22 18:26:05 +05:30
2affeb2905 trainer_tf: adjust wandb installation command (#12291) 2021-06-22 08:47:31 -04:00
af6e01c5bc Fix for the issue of device-id getting hardcoded for token_type_ids during Tracing [WIP] (#11252)
* registering a buffer for token_type_ids, to pass the error of device-id getting hardcoded when tracing

* sytle format

* adding persistent flag to the resgitered buffers that prevent from adding them to the state_dict and addresses the Backward compatibility issue

* adding the try catch to the fix as persistent flag is only available from PT >1.6

* adding version check

* added the condition to only use the token_type_ids buffer when its autogenerated not passed by user

* adding comments and making the conidtion where token_type_ids are None to use the registered buffer

* taking out position-embeddding from the if block

* adding comments

* handling the case if buffer for position_ids was not registered

* reverted the changes on position_ids, fix the issue with size of token_type_ids buffer, moved the modification for generated token_type_ids to Bertmodel, instead of Embeddings

* reverting the token_type_ids in case of None to the previous version

* reverting changes on position_ids adding back the if block

* changes added by running make fix-copies

* changes added by running make fix-copies and added the import version as it was getting used

* changes added by running make fix-copies

* changes added by running make fix-copies

* fixing the import format

* fixing the import format

* modified to use temp tensor for trimed and expanded token_type_ids buffer

* changes made by fix-copies after temp tensor modifications

* changes made by fix-copies after temp tensor modifications

* changes made by fix-copies after temp tensor modifications

* clean up

* clean up

* clean up

* clean up

* Nit

* Nit

* Nit

* modified according to support device conversion on traced models

* modified according to support device conversion on traced models

* modified according to support device conversion on traced models

* modified according to support device conversion on traced models

* changes based on latest in master

* Adapt templates

* Add version import

Co-authored-by: Ubuntu <ubuntu@ip-172-31-32-81.us-west-2.compute.internal>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-06-22 05:21:30 -04:00
0d97ba8a98 [tests] multiple improvements (#12294)
* [tests] multiple improvements

* cleanup

* style

* todo to investigate

* fix
2021-06-21 19:51:36 -07:00
dad414d5f9 [trainer + examples] set log level from CLI (#12276)
* set log level from CLI

* add log_level_replica + test + extended docs

* cleanup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* rename datasets objects to allow datasets module

* improve the doc

* style

* doc improve

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-21 19:30:50 -07:00
a4ed074d4b reset report_to to none, avoid deprecation warning (#12293) 2021-06-21 16:50:12 -07:00
7ef309ca10 [Flax] Add jax flax to env command (#12251)
* fix_torch_device_generate_test

* remove @

* add commands for flax/jax
2021-06-21 17:12:12 +01:00
e3cb7a0b60 Tensorflow QA example (#12252)
* New Tensorflow QA example!

* Style pass

* Updating README.md for the new example

* flake8 fixes

* Update examples/tensorflow/question-answering/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-21 16:37:28 +01:00
4e9a6796c7 [Flax] Fix flax test save pretrained (#12256)
* fix_torch_device_generate_test

* remove @

* fix flax save pretrained test
2021-06-21 16:37:13 +01:00
b75b5605c9 [DeepSpeed] don't ignore --adafactor (#12257) 2021-06-21 08:17:00 -07:00
eb881674f2 [Flax] [WIP] allow loading head model with base model weights (#12255)
* boom boom

* remove flax clip example

* allow loading head model with base model weights

* add test

* fix imports

* disable save, load test for clip

* add test_save_load_to_base
2021-06-21 15:56:42 +01:00
8d5b7f36e5 [FlaxClip] fix test from/save pretrained test (#12284)
* boom boom

* remove flax clip example

* fix from_save_pretrained
2021-06-21 15:54:34 +01:00
b53bc55ba9 Fix for making student ProphetNet for Seq2Seq Distillation (#12130)
* make_student.py: fix to make student ProphetNet

* reformat
2021-06-21 09:36:44 -04:00
b76850a808 Better CI feedback (#12279)
* Better run ID

* Only part of CI

* Revert "Only part of CI"

This reverts commit 29f7f248d21e0f5792e0670ba8705b31ad8967b7.
2021-06-21 02:52:12 -04:00
30a5521c0b Fix the scheduled CI 2021-06-21 08:27:25 +02:00
2e5dbdf2db [t5 doc] make the example work out of the box (#12239)
* [run_clm.py] restore caching

* style

* [t5 doc] make the example work out of the box

This PR expands the training example to include the correct model type for the example to work, e.g. with `T5Model` this example will break.

* Update docs/source/model_doc/t5.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* expand the other example

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-06-18 10:00:19 -07:00
f3558bbcfd Depreciate pythonic Mish and support PyTorch 1.9 version of Mish (#12240)
* Moved Mish to Torch 1.9 version

* Run black formatting
2021-06-18 09:13:45 -04:00
47a9768334 [FlaxBart] few small fixes (#12247)
* boom boom

* remove flax clip example

* few small fixes
2021-06-18 10:29:42 +01:00
f74655cd9b [Flax] FlaxAutoModelForSeq2SeqLM (#12228)
* add FlaxAutoModelForSeq2SeqLM
2021-06-18 13:20:09 +05:30
e43e11260f update desc for map in all examples (#12226)
* update desc for map in all examples

* added plm

* suggestions
2021-06-17 15:37:31 -04:00
adb70eda4d AutoTokenizer: infer the class from the tokenizer config if possible (#12208)
* AutoTokenizer: infer the class from the tokenizer config if possible

* Add tests

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-06-17 12:39:22 -04:00
0daadc1919 Docs for v4.8.0 2021-06-17 18:17:42 +02:00
7a6c9fab8e Release: v4.7.0 2021-06-17 17:57:42 +02:00
d6ea91c96a fix pt-1.9.0 add_ deprecation (#12217)
* fix pt-1.9.0 add_ deprecation

* add () for clarity

* Trigger CI

* require_version(torch
2021-06-17 08:53:59 -07:00
3a960c4857 Support for torch 1.9.0 (#12224)
* Support for torch 1.9.0

* Torch scatter for 1.9.0

* Github Actions run on 1.9.0
2021-06-17 11:29:01 -04:00
afdd9e3663 Add link to the course (#12229) 2021-06-17 11:14:53 -04:00
29b0aef871 Improve detr (#12147)
* Remove unused variables

* Improve docs

* Fix docs of segmentation masks

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-06-17 10:37:54 -04:00
b56848c8c8 Pipeline update & tests (#12207) 2021-06-17 09:41:16 +02:00
700cee3446 [Docs] fixed broken link (#12205)
* fixed broken link

* Update docs/source/benchmarks.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/benchmarks.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-16 15:14:53 -04:00
255a17a089 Use yaml to create metadata (#12185)
* Use yaml to create metadata

* Fix typo

* Remove pin
2021-06-16 13:17:45 -04:00
15ef0dc5c6 Enabling AutoTokenizer for HubertConfig. (#12198) 2021-06-16 15:28:46 +01:00
afa414d060 updated DLC images and sample notebooks (#12191) 2021-06-16 07:24:00 -04:00
ccca510276 Hubert (#11889)
* fix_torch_device_generate_test

* remove @

* add hubert

* add first test file

* more docs

* fix bugs

* fix bug

* finish

* finish

* finish docstring

* fix

* fix

* finalize

* add to ignored

* finish

* Apply suggestions from code review

* correct naming

* finish

* fix auto config

* finish

* correct convert script

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>

* apply suggestions lysandre & suraj

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-06-16 12:14:12 +01:00
c3c39f7e84 [Flax] Add Beam Search (#12131)
* fix_torch_device_generate_test

* remove @

* push new logit processors

* add processors

* save first working version

* save intermediate

* finish

* make style

* make fix-copies

* finish

* Update tests/test_modeling_flax_bart.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-06-16 09:43:54 +01:00
802ffaff0d Temporarily deactivate torchhub test (#12184) 2021-06-15 16:16:51 -04:00
52c7ca0488 Temporarily deactivate torch-scatter while we wait for new release (#12181)
* Temporarily deactivate torch-scatter while we wait for new release

* torch-1.8.1 binary for scatter

* Revert to 1.8.0

* Pin torch dependency

* torchaudio and torchvision
2021-06-15 16:03:58 -04:00
7d7ceca396 Model card defaults (#12122)
* [WIP] Model card defaults

* finetuned_from default value

* Add all mappings to the mapping file

* Be more defensive on finetuned_from arg

* Add default task tag

* Separate tags from tasks

* Edge case for dataset

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-06-15 16:01:37 -04:00
6e7cc5cc51 [testing] ensure concurrent pytest workers use a unique port for torch.dist (#12166)
* ensure concurrent pytest workers use a unique port for torch.distributed.launch

* reword
2021-06-15 11:12:59 -07:00
b9d66f4c4b Ray Tune Integration Updates (#12134)
* fix

* fixes

* add back to scheduled tests

* formatting

* Update integrations.py
2021-06-15 14:11:29 -04:00
a79585bbf9 Update AutoModel classes in summarization example (#12178)
- Convert use of deprecated AutoModelWithLMHead to AutoModelForSeq2SeqLM
- Add newly required `truncation=True` to `tokenizer.encode` with `max_length`

This silences all warnings.
2021-06-15 10:36:10 -04:00
d6c929e200 Merge remote-tracking branch 'origin/master' 2021-06-15 09:37:46 -04:00
a8694b8850 Adjust banner width 2021-06-15 09:37:15 -04:00
955b2b97a6 Enable add_prefix_space if model_type is roberta or gpt2 (#12116) 2021-06-15 09:33:21 -04:00
60b1d6b45b Add course banner (#12157)
* Add course banner

* Update course banner
2021-06-15 09:25:49 -04:00
d07b540a37 Have dummy processors have a from_pretrained method (#12145) 2021-06-15 08:39:05 -04:00
9b393240a2 Use a released version of optax rather than installing from Git. (#12173)
Use a released version of optax rather than installing from Git
2021-06-15 16:42:51 +05:30
9bc9e59869 [Flax generate] Add params to generate (#12171)
* fix_torch_device_generate_test

* remove @

* add params as input

* finish
2021-06-15 11:50:12 +01:00
a55dc157e3 Add video links to the documentation (#12162) 2021-06-15 06:37:37 -04:00
040283170c consistent nn. and nn.functional: part 5 docs (#12161) 2021-06-14 13:34:32 -07:00
88e84186e5 [style] consistent nn. and nn.functional: part 4 examples (#12156)
* consistent nn. and nn.functional: p4 examples

* restore
2021-06-14 12:28:24 -07:00
372ab9cd6d [style] consistent nn. and nn.functional: part 3 tests (#12155)
* consistent nn. and nn.functional: p3 templates

* restore
2021-06-14 12:18:22 -07:00
d9c0d08f9a Flax Big Bird (#11967)
* add flax bert

* bert -> bigbird

* original_full ported

* add debugger

* init block sparse

* fix copies ; gelu_fast -> gelu_new

* block sparse port

* fix block sparse

* block sparse working

* all ckpts working

* fix-copies

* make quality

* init tests

* temporary fix for FlaxBigBirdForMultipleChoice

* skip test_attention_outputs

* fix

* gelu_fast -> gelu_new ; fix multiple choice model

* remove nsp

* fix sequence classifier

* fix

* make quality

* make fix-copies

* finish

* Delete debugger.ipynb

* Update src/transformers/models/big_bird/modeling_flax_big_bird.py

* make style

* finish

* bye bye jit flax tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-06-14 20:01:03 +01:00
a156da9a23 consistent nn. and nn.functional: p2 templates (#12153) 2021-06-14 11:41:24 -07:00
007be9e402 [Flax] Fix flax pt equivalence tests (#12154)
* fix_torch_device_generate_test

* remove @

* upload
2021-06-14 19:19:10 +01:00
d438eee030 Adding TFWav2Vec2Model (#11617)
* [WIP] Add TFWav2Vec2Model

Work in progress for adding a tensorflow version of Wav2Vec2

* feedback changes

* small fix

* Test Feedback Round 1

* Add SpecAugment and CTC Loss

* correct spec augment mask creation

* docstring and correct copyright

* correct bugs

* remove bogus file

* finish tests correction

* del unnecessary layers

* Update src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style

* correct final bug

* Feedback Changes

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-06-14 18:58:54 +01:00
1ed2ebf60d [style] consistent nn. and nn.functional (#12124)
* consistent nn. and nn.functional

* fix glitch

* fix glitch #2
2021-06-14 09:44:28 -07:00
ff7c81687a [optim] implement AdafactorSchedule (#12123)
* implement AdafactorSchedule

* typo

* fix

* Update src/transformers/optimization.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-14 09:43:48 -07:00
fe3576488a fix error message (#12148) 2021-06-14 14:12:18 +01:00
9de62cfbce [lm examples] Replicate --config_overrides addition to other LM examples (#12135)
* [lm examples] Replicate --config_overrides addition to other LM examples

* Removing no trainer files changes

* Update README

Co-authored-by: Kumar Abhishek <kabhishek@expedia.com>
2021-06-14 08:12:22 -04:00
cd7961b632 Use text_column_name variable instead of "text" (#12132)
* Use text_column_name variable instead of "text"

`text_column_name` was already defined above where I made the changes and it was also used below where I made changes.

This is a very minor change. If a dataset does not use "text" as the column name, then the `tokenize_function` will now use whatever column is assigned to `text_column_name`. `text_column_name` is just the first column name if "text" is not a column name. It makes the function a little more robust, though I would assume that 90% + of datasets use "text" anyway.

* black formatting

* make style

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
2021-06-14 08:11:13 -04:00
b8ab541340 Don't log anything before logging is setup in examples (#12121)
* Don't log anything before logging is setup in examples

* Last example
2021-06-14 08:03:33 -04:00
7566fefa69 [Flax] Add links to google colabs (#12146)
* fix_torch_device_generate_test

* remove @

* add colab links
2021-06-14 11:00:29 +01:00
476ba679dd Feature to use the PreTrainedTokenizerFast class as a stand-alone tokenizer (#11810)
* feature for tokenizer without slow/legacy version

* format

* modify common test

* add tests

* add PreTrainedTokenizerFast to AutoTokenizer

* format

* change tokenizer common test in order to be able to run test without a slow version

* update tokenizer fast test in order to use `rust_tokenizer_class` attribute instead of `tokenizer_class`

* add autokenizer test

* replace  `if self.tokenizer_class is not None` with ` if self.tokenizer_class is None`

* remove obsolete change in comment

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/tokenization_utils_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* change `get_main_tokenizer` into `get_tokenizers`

* clarify `get_tokenizers` method

* homogenize with `test_slow_tokenizer` and `test_rust_tokenizer`

* add `test_rust_tokenizer = False` to tokenizer which don't define a fast version

* `test_rust_tokenizer = False` for BertJapaneseTokenizer

* `test_rust_tokenizer = False` for BertJapaneseCharacterTokenizationTest

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-14 11:58:44 +02:00
4a51b1dd9b FlaxBart (#11537)
* Start working on FlaxBart

* Create modeling_flax_bart.py

* Write FlaxBartAttention

* Add FlaxBartEncoderLayer

* Add FlaxBartDecoderLayer and some typing

* Add helepr function for FlaxBart

* shift_tokens_right

* _make_causal_mask

* _expand_mask

* Add PositionalEmbedding and fix init_std naming

* Add FlaxBartPretrainedModel

* Add FlaxBartEncoder

* Add FlaxBartEncoder

* Add FlaxBartEncoder among modules to be imported

* YET WE CANNOT INITIALIZE THAT!! :(

* Make BartEncoder working

Change BartEncoder to instance of nn.Module so far

* Add FlaxBartDecoder

* Add FlaxBartModel

* TODO to make model run -> Prepapre model inputs

* Resolve padding

* Add FlaxBartModel

* Add FlaxBartModel into importable modules

* Remove FlaxBartEncoder and FlaxBartDecoder from importable modules

* make style; not properly working

* make style; make quality not pass due to some import I left

* Remove TODO for padding_idx in nn.Embed so far

* Add FlaxBartForConditionalGeneration

* Incorporate Flax model output classes, i.e. return_dict

* Add another models and incorporate use_cache arg

* Add FlaxBartForSequenceClassification and FlaxBartForQuestionAnswering

* Incorporate use_cache arg from PyTorch implementation

* Add all necessary Flax output utils

* Add FlaxBartForCausalLM; not working yet'

* Add minor improvements; still lacks some functionality

* Update docs, src and tests

* Add support of FlaxBart to docs/source

* Fix some bugs in FlaxBart souce code

* Add some neccessary tests for FlaxBart models - jit_compilation not passing

* Fix tests and add test_head_masking

* Fix tests for @jax.jit computation

* Add test_head_masking

* Migrate FlaxBart tests from jax.numpy to numpy

* Remove FlaxBartForCausalLM

* Clean repo

* fix bart model weight structure

* Fix FlaxBartForSequenceClassification

Slicing is not possible to use below jit, therefore, selecting sentence
representation from hidden_states must be changed.

* Allow FlaxBartForSequenceClassification for testing pt_flax equivalence

* Allow testing for FlaxBartForQA for pt_flax equivalence

* Add a comment to FlaxBartForSequenceClassification + change noise from 1e-3 to 1e-6

* remove past_key_values

* remove inputs_mebeds and make input_ids required

* add position ids

* re-write attention layer

* fix dataclass

* fix pos embeds and attention output

* fix pos embeds

* expose encode method

* expose decode method

* move docstring to top

* add cache for causal attn layer

* remove head masking for now

* s2s greedy search first pass

* boom boom

* fix typos

* fix greedy generate for bart

* use encoder, decoder layers instead of num_hidden_layers

* handle encoder_outputs

* cleanup

* simplify decoding

* more clean-up

* typos

* Change header + add {decoder_,}position_ids into 2 models

* add BartConfig

* fix existing tests

* add encode, decode methods

* Fix shift_tokens_right for JIT compilation + clarify one condition

* fix decode

* encoder => encode

* simplify generate

* add tests for encode and decode

* style

* add tests for cache

* fix equivalence tests

* sample generate now works with seq2seq

* generation tests

* initialize dense layers

* docstring and cleanup

* quality

* remove get/set input_embeddings

* address Patricks suggestions

* decode for every model, remove encoder_outputs from call

* update tests accordingly

* decode returns only decoder outputs and logits

* fix arguments

* doc encode, decode methods

* correct base_model_prefix

* fix test for seq classif model

* fix docs

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-06-14 15:16:08 +05:30
d36fce8237 add readme for flax clm (#12111)
* add readme for flax clm

* use section link for tokenizer

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update metrics

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-06-14 15:03:55 +05:30
16c0efca2c Add mlm pretraining xla torch readme (#12011)
* fix_torch_device_generate_test

* remove @

* upload

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Update examples/flax/language-modeling/README.md

* add more info

* finish

* fix

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-06-14 10:31:21 +01:00
ecd6efe7cb Fix megatron_gpt2 attention block's causal mask (#12007)
* Fix megatron_gpt2 attention block's causal mask.

* compatibility with checkpoints created with recent versions of Megatron-LM

* added integration test for the released Megatron-GPT2 model

* code style changes

* added option to megatron conversion script to read from config file

Co-authored-by: Guido Novati <gnovati@nvidia.com>
2021-06-14 04:57:55 -04:00
783b0dd589 Fix t5 error message (#12136)
* Fix t5 error message

* Fix again
2021-06-13 12:02:57 +01:00
3b1f5caff2 Add from_pretrained to dummy timm objects (#12097)
* Add from_pretrained to dummy timm

* Fix at the source

* Update utils/check_dummies.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Missing pretrained dummies

* Style

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-11 12:27:10 -04:00
15b498f3b8 Flax CLM script (#12023)
* first draft

* max_seq_length => block_size

* fix arg names

* fix typos

* fix loss calculation

* add max examples, fix  train eval steps, metrics

* optimizer mask

* fix perpelexity, metric logging

* fix logging

* data_collator = > data_loader

* refactor loss_fn

* support single GPU

* pass distributed to write_metric

* fix jitting

* fix single device training

* fix single device metrics

* close inner progress bars once finished

* add overwrite_cache arg

* ifx dataset caching issue

* add more logs

* few small fixes,

* address nicholas suggestions

* fix docstr

* address patricks suggestions

* make flake happy

* pass new new_dropout_rng to apply_gradients

* reset train metrics after every epoc

* remove distributed logis, small fixes
2021-06-11 15:16:20 +05:30
e47765d884 Fix head masking generate tests (#12110)
* fix_torch_device_generate_test

* remove @

* fix tests
2021-06-11 04:04:07 -04:00
d2753dcbec add relevant description to tqdm in examples (#11927)
* add relevant `desc` in examples

* require_version datasets>=1.8.0
2021-06-10 15:59:55 -04:00
9a9314f6d9 Flax VisionTransformer (#11951)
* adding vit for flax

* added test for Flax-vit and some bug-fixes

* overrided methods where variable changes were necessary for flax_vit test

* added FlaxViTForImageClassification for test

* Update src/transformers/models/vit/modeling_flax_vit.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* made changes suggested in PR

* Adding jax-vit models for autoimport

* swapping num_channels and height,width dimension

* fixing the docstring for torch-like inputs for VIT

* add model to main init

* add docs

* doc, fix-copies

* docstrings

* small test fixes

* fix docs

* fix docstr

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* style

Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-06-10 21:17:13 +05:30
0eaeae2e36 Fix a condition in test_generate_with_head_masking (#11911)
* Fix a condition in test_generate_with_head_masking

* Fix usage of head_mask in bigbirg_pegasus

* Fix head masking for speech2text

* Resolve copy mismatch + drop unwanted print statement

* Fix the condition
2021-06-10 15:28:07 +01:00
bebbdd0fc9 Appending label2id and id2label to models to ensure inference works properly (#12102) 2021-06-10 15:25:04 +01:00
4cda08decb Minor style edits 2021-06-10 15:10:57 +01:00
7f08dbd10a Update README.md to cover the TF GLUE example. 2021-06-10 14:33:42 +01:00
d72e5a3a6d Fix quality 2021-06-10 09:27:11 -04:00
73a532651a New TF GLUE example (#12028)
* Pushing partially-complete new GLUE example

* First draft of the new TF GLUE example! Needs a little more testing to be sure but it's almost ready.

* Fix to the fit() call

* Bugfixes, making sure TPU and multi-GPU support is ready

* Remove logger line that depends on Pytorch

* Style pass

* Deleting old TF GLUE example

* Include label2id and id2label in the saved model config

* Don't clobber the existing model.config.label2id

* Style fixes

* Update examples/tensorflow/text-classification/run_glue.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-10 14:14:37 +01:00
9d2cee8b48 CLIPFeatureExtractor should resize images with kept aspect ratio (#11994)
* Resize with kept aspect ratio

* Fixed failed test

* Overload center_crop and resize methods instead

* resize should handle non-PIL images

* update slow test

* Tensor => tensor

Co-authored-by: patil-suraj <surajp815@gmail.com>
2021-06-10 18:40:41 +05:30
472a867626 Add text_column_name and label_column_name to run_ner and run_ner_no_trainer args (#12083)
* Add text_column_name and label_column_name to run_ner args

* Minor fix: grouping for text and label column name
2021-06-10 08:03:20 -04:00
bc6f51e539 [Wav2Vec2ForPretraining] Correct checkpoints wav2vec2 & fix tests (#12089)
* fix_torch_device_generate_test

* remove @

* fix tests
2021-06-09 20:41:59 +01:00
61e191987d rm require_version_examples (#12088) 2021-06-09 11:02:52 -07:00
d1500d9151 pass decay_mask fn to optimizer (#12087) 2021-06-09 18:49:27 +01:00
d472bd7b18 Wav2Vec2 Pretraining (#11306)
* Working quantizer forward

* Working quantizer forward

* Clean up unused model parts, test reproducibility

* Working quantizer forward

* Clean up unused model parts, test reproducibility

* Remove custom outputs from the shared ones

* correct conversion

* correct bug

* add first pretrain script

* save intermediate

* static shapes

* save intermediate

* finish first pretrain script version

* more refactor

* remove wanddb

* refactor more

* improve test

* correct perplexity compute bug

* finish model implementation

* add to docs

* finish docs

* finish pretraining script

* finish pretraining script

* remove wandb

* finish PR for merge

* finish config

* finish

* make deepspeed work

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

* fix flaky test

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-09 18:40:56 +01:00
b1a8aa94f0 [test] support more than 2 gpus (#12074)
* support more than 2 gpus

* style
2021-06-09 09:23:47 -07:00
d3eacbb829 Add DETR (#11653)
* Squash all commits of modeling_detr_v7 branch into one

* Improve docs

* Fix tests

* Style

* Improve docs some more and fix most tests

* Fix slow tests of ViT, DeiT and DETR

* Improve replacement of batch norm

* Restructure timm backbone forward

* Make DetrForSegmentation support any timm backbone

* Fix name of output

* Address most comments by @LysandreJik

* Give better names for variables

* Conditional imports + timm in setup.py

* Address additional comments by @sgugger

* Make style, add require_timm and require_vision to testsé

* Remove train_backbone attribute of DetrConfig, add methods to freeze/unfreeze backbone

* Add png files to fixtures

* Fix type hint

* Add timm to workflows

* Add `BatchNorm2d` to the weight initialization

* Fix retain_grad test

* Replace model checkpoints by Facebook namespace

* Fix name of checkpoint in test

* Add user-friendly message when scipy is not available

* Address most comments by @patrickvonplaten

* Remove return_intermediate_layers attribute of DetrConfig and simplify Joiner

* Better initialization

* Scipy is necessary to get sklearn metrics

* Rename TimmBackbone to DetrTimmConvEncoder and rename DetrJoiner to DetrConvModel

* Make style

* Improve docs and add 2 community notebooks

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-06-09 11:51:13 -04:00
d14e0af274 sync LayerDrop for Wav2Vec2Encoder + tests (#12076) 2021-06-09 13:21:03 +01:00
82a2b76c95 Update run_ner.py with id2label config (#12001) 2021-06-09 07:27:05 -04:00
0e82f0cbc2 typo 2021-06-08 12:55:17 -07:00
11d86d3de4 [Deepspeed Wav2vec2] integration (#11638)
* wip

* wip - but working with https://github.com/microsoft/DeepSpeed/pull/1044

* cleanup

* workaround

* working 5/8 modes

* solve fp32 distributed zero3

* style

* sync

* sync

* rework

* deprecation

* cleanup

* https://github.com/microsoft/DeepSpeed/pull/1044 pr was merged

* clean up

* add a guide

* more prose

* more prose

* fix

* more prose

* sub_group_size was too big

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor

* bug fix

* make the true check explicit

* new deepspeed release

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-08 12:32:03 -07:00
32290d87f6 [Deepspeed] various fixes (#12058)
* replace deprecated config

* sub_group_size was too big

* complete deprecation removal
2021-06-08 08:36:15 -07:00
fd6902838a Properly indent block_size (#12070) 2021-06-08 10:27:02 -04:00
49bee0aea4 Add torch to requirements.txt in language-modeling (#12040)
* Add torch to requirements.txt in language-modeling

* Update examples/pytorch/language-modeling/requirements.txt

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-08 09:02:35 -04:00
f5eec0d8e9 Replace legacy tensor.Tensor with torch.tensor/torch.empty (#12027)
* Replace legacy torch.Tensor constructor with torch.{tensor, empty}

* Remove torch.Tensor in examples
2021-06-08 13:58:38 +01:00
e33085d648 updated the original RAG implementation to be compatible with latest Pytorch-Lightning (#11806)
* updated the original RAG implementation to be compatible with the latest PL version

* updated the requirements.txt file

* execute make style

* code quality test

* code quality

* conflix resolved in requirement.txt

* code quality

* changed the MyDDP class name to CustomDDP
2021-06-08 13:42:49 +01:00
70f88eeccc Fix tapas issue (#12063)
* Fix scatter function to be compatible with torch-scatter 2.7.0

* Allow test again
2021-06-08 05:22:31 -04:00
e56e3140dd Fix integration tests (#12066) 2021-06-08 05:21:38 -04:00
4abc6dd690 skip failing test (#12059) 2021-06-07 20:48:41 -07:00
e363e1d936 adds metric prefix. (#12057)
* adds metric prefix.

* update tests to include prefix
2021-06-07 22:34:10 -04:00
8994c1e472 Add optional grouped parsers description to HfArgumentParser (#12042)
* Adding optional argument group to HfArgumentParser

* Minor

* remove whitespace

* Minor styling
2021-06-07 11:47:12 -04:00
2056f26e85 Extend pipelines for automodel tupels (#12025)
* fix_torch_device_generate_test

* remove @

* finish

* refactor

* add test

* fix test

* Attempt at simplification.

* Small fix.

* Fixing non existing AutoModel for TF.

* Naming.

* Remove extra condition.

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-06-07 17:41:27 +02:00
f8bd8c6c7e Fixes bug that appears when using QA bert and distilation. (#12026)
* Fixing bug that appears when using distilation (and potentially other uses).
During backward pass Pytorch complains with:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
This happens because the QA model code modifies the start_positions and end_positions input tensors, using clamp_ function: as a consequence the teacher and the student both modifies the inputs, and backward pass fails.

* Fixing all models QA clamp_ bug.
2021-06-07 11:21:59 -04:00
59f75d538b [JAX] Bump jax lib (#12053)
* fix_torch_device_generate_test

* remove @

* bump up jax lib
2021-06-07 13:04:18 +01:00
185122ef22 fix docs of past_key_values (#12049) 2021-06-07 15:24:03 +05:30
3857f2b4e3 fix deberta 2 tokenizer integration test (#12017) 2021-06-07 04:55:55 -04:00
20b6f3b80c Fixed Typo in modeling_bart.py (#12035)
* Fixed Typo in modeling_bart.py - Issue #11895

* Fixed Typo in modeling_bart.py
2021-06-07 11:44:25 +05:30
1f335aef3b [TrainerArguments] format and sort __repr__, add __str__ (#12018)
* format and sort __repr__, add __str__

* typo

* use __str__ directly

* alias __repr__ = __str__
2021-06-04 09:39:38 -07:00
2c73b93099 [Deepspeed] Assert on mismatches between ds and hf args (#12021)
* wip

* add mismatch validation + test

* renames

* Update docs/source/main_classes/deepspeed.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* renames

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-04 08:58:23 -07:00
242ec31aa5 [Flax] Refactor MLM (#12013)
* fix_torch_device_generate_test

* remove @

* finish refactor

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-06-03 16:31:32 +01:00
4674061b2a Fix weight decay masking in run_flax_glue.py (#11964)
* Fix weight decay masking in `run_flax_glue.py`

Issues with the previous implementation:
- The `dict` from `traverse_util.flatten_dict` has keys which are tuples of strings, not one long string with the path separated by periods.
- `optax.masked` applies the transformation wherever the mask is True, so the masks are flipped.
- Flax's LayerNorm calls the scale parameter `scale` not `weight`

* Fix formatting with black

* adapt results

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-06-03 11:35:26 +01:00
61c5063491 [deepspeed] add nvme test skip rule (#11997)
* add nvme skip rule

* fix
2021-06-02 12:06:37 -07:00
640318befa [deepspeed] Move code and doc into standalone files (#11984)
* move code and docs

* style

* moved

* restore
2021-06-02 09:56:00 -07:00
d6d747cb28 Update return introduction (#11976)
Make it clear that the `forward` method now returns a dict instead of tuple.

Fix style
2021-06-02 12:53:09 -04:00
d406a2729a [docs] fix xref to PreTrainedModel.generate (#11049)
* fix xref to generate

* do the same for search methods

* style

* style
2021-06-02 09:21:05 -07:00
123b597f5d Fix examples (#11990) 2021-06-02 10:12:52 -04:00
88ca6a231d VisualBERT (#10534)
* Init VisualBERT

* Add cookie-cutter, Config, and Embeddings

* Add preliminary Model

* Add Bert analogous classes

* Add basic code for NLVR, VQA, Flickr

* Update Init

* Fix VisualBert Downstream Models

* Rename classifier to cls

* Comment position_ids buffer

* Remove sentence image predictor output

* Update output dicts

* Remove unnecessary files

* Fix Auto Modeling

* Fix transformers init

* Add conversion script

* Add conversion script

* Fix docs

* Update visualbert modelling

* Update configuration

* Style fixes

* Add model and integration tests

* Add all tests

* Update model mapping

* Add simple detector from original repository

* Update docs and configs

* Fix style

* Fix style

* Update docs

* Fix style

* Fix import issues in style

* Fix style

* Add changes from review

* Fix style

* Fix style

* Update docs

* Fix style

* Fix style

* Update docs/source/model_doc/visual_bert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add changes from review

* Remove convert run script

* Add changes from review

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/visual_bert/modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add changes from review

* Add changes from review

* Add visual embedding example in docs

* Fix "copied from" comments

* Add changes from review

* Fix error, style, checkpoints

* Update docs

* Fix integration tests

* Fix style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-02 18:13:08 +05:30
43f46aa7fd [RAG] Fix rag from pretrained question encoder generator behavior (#11962)
* fix_torch_device_generate_test

* remove @

* fix rag from pretrained loading

* add test

* uplaod

* finish
2021-06-02 09:17:14 +01:00
6db3a87de2 Bump urllib3 from 1.25.8 to 1.26.5 in /examples/research_projects/lxmert (#11983)
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.25.8 to 1.26.5.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.25.8...1.26.5)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2021-06-02 03:40:20 -04:00
4ba203d9d3 [Trainer] add train loss and flops metrics reports (#11980)
* add train loss and flops metrics reports

* consistency

* add train_loss to skip keys

* restore on_train_end call timing
2021-06-01 15:58:31 -07:00
7ec596ecda [DeepSpeed] decouple DeepSpeedConfigHF from Trainer (#11966)
* decouple DeepSpeedConfigHF from Trainer

* add LoggingLevel ctx manager; add new test

* cleanup

* add docs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* implemented suggested renames

* formatter workaround

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-06-01 13:24:52 -07:00
1c3ab3e5d6 Typo in usage example, changed to device instead of torch_device (#11979) 2021-06-01 14:58:49 -04:00
47a98fc4cb ByT5 model (#11971)
* allow tf to use uneven num of layers

* add tokenizer

* finish docs

* finish docs

* Apply suggestions from code review

* include in index

* finish

* Update docs/source/model_doc/byt5.rst

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* apply sylvais suggestions

* make style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2021-06-01 19:07:37 +01:00
1eb58b4560 typo correction (#11973)
* typo correction

* type corrections
2021-06-01 12:24:59 -04:00
79712e7e7a [deepspeed] docs (#11940)
* deepspeed docs

* cleanup

* cleanup
2021-06-01 09:21:21 -07:00
985d708842 Run the integration tests on schedule tests instead of master tests 2021-06-01 15:58:31 +02:00
9996558bff Neptune.ai integration (#11937)
An option that turns on neptune.ai logging
--report_to 'neptune'

Additional ENV variables:
	NEPTUNE_PROJECT
	NEPTUNE_API_TOKEN
	NEPTUNE_RUN_NAME (optional)
	NEPTUNE_STOP_TIMEOUT (optional)
2021-06-01 09:40:52 -04:00
ae6ce28f31 Authorize args when instantiating an AutoModel (#11956) 2021-06-01 09:27:54 -04:00
fcad801825 Add regression tests for slow sentencepiece tokenizers. (#11737)
* add test_vocab_size for sentencepiece tok.

* add test_get_vocab for sentencepiece tok.

* add test_convert_token_and_id for sentencepiece tok.

* add test_tokenize_and_convert_tokens_to_string for all tok.

* improve test_tokenize_and_convert_tokens_to_string for sp. tok.

* add common tokenizer integration tests
- for albert
- for barthez

* add tokenizer integration tests to bert gen.

* add most tokenizer integration tests

* fix camembert tokenizer integration test

* add tokenizer integration test to marian

* add tokenizer integration test to reformer

* add typing and doc to tokenizer_integration_test_util

* fix tokenizer integration test of reformer

* improve test_sentencepiece_tokenize_and_convert_tokens_to_string

* empty commit to trigger CI

* fix tokenizer integration test of reformer

* remove code not needed anymore

* empty commit to trigger CI

* empty commit to trigger CI
2021-06-01 09:24:39 -04:00
c3d958b2c0 reinitialize wandb config for each hyperparameter search run (#11945) 2021-06-01 09:18:33 -04:00
99dbbdb91e bugfixes training_args.py (#11922)
modified according to:
https://pytorch.org/xla/release/1.8.1/_modules/torch_xla/core/xla_model.html
2021-06-01 09:04:51 -04:00
7e73601f32 modify qa-trainer (#11872)
* modify qa-trainer

* fix flax model
2021-06-01 08:28:41 -04:00
9ec0f01b6c RAG-2nd2end-revamp (#11893)
* initial

* code quality test

* code quality

* added test functions in test_modeling_rag.py and test_retrieval_rag.py to test end2end retreiver

* minor change in test_modeling_rag

* fixed tests

* Update examples/research_projects/rag-end2end-retriever/README.md

typo corrected as suggested by lhoestq

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* Update examples/research_projects/rag-end2end-retriever/finetune_rag.py

type change suggested by lhoestq

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* Update src/transformers/models/rag/retrieval_rag.py

Adding this change as mentioned by lhoestq.

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>

* completed the minor changes suggested by the reviewers

Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
2021-06-01 07:32:26 +01:00
ad25fd62bd Add FlaxCLIP (#11883)
* add flax CLIP

* default input_shape

* add tests

* fix test

* fix name

* fix docs

* fix shapes

* attend at least 1 token

* flax conv to torch conv

* return floats

* fix equivalence tests

* fix import

* return attention_weights and update tests

* fix dosctrings

* address patricks comments

* input_shape arg

* add tests for get_image_features and get_text_features methods

* fix tests
2021-06-01 09:44:31 +05:30
cfca638acb Add MT5ForConditionalGeneration as supported arch. to summarization README (#11961)
* Add MT5ForConditionalGeneration as supported arch.

* Update README.md
2021-05-31 21:24:33 +05:30
1ab147d648 Remove redundant nn.log_softmax in run_flax_glue.py (#11920)
* Remove redundant `nn.log_softmax` in `run_flax_glue.py`

`optax.softmax_cross_entropy` expects unnormalized logits, and so it already calls `nn.log_softmax`, so I believe it is not needed here. `nn.log_softmax` is idempotent so mathematically it shouldn't have made a difference.

* Remove unused 'flax.linen' import
2021-05-31 15:29:04 +01:00
fb60c309c6 fix assert (#11935) 2021-05-31 04:02:10 -04:00
04a9709c27 Remove datasets submodule 2021-05-31 09:18:49 +02:00
8d171628fe Test optuna and ray (#11924) 2021-05-28 07:52:01 -04:00
af1a10bff4 [Flax] Return Attention from BERT, ELECTRA, RoBERTa and GPT2 (#11918)
* Added logic to return attention from flax-bert model and added test cases to check that

* Added new line at the end of file to test_modeling_flax_common.py

* fixing code style

* Fixing Roberta and Elextra models too from cpoying bert

* Added temporary hack to not run test_attention_outputs for FlaxGPT2

* Returning attention weights from GPT2 and changed the tests accordingly.

* last fixes

* bump flax dependency

Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-28 16:16:56 +05:30
e1205e478a Added Sequence Classification class in GPTNeo (#11906)
* seq classification changes

* fix tests
2021-05-28 06:27:02 -04:00
80d712fac6 Adding new argument max_new_tokens for generate. (#11476)
* Adding new argument `max_new_tokens` for generate.

This is a proposal to add a new argument `max_new_tokens` to `generate`.
This include a `MaxNewTokensCriteria` that enables callers that don't
know about the token length ahead (like pipelines callers) to manage
more easily the length of their generated output.

* Adding a test for the user warning when both`max_length` and
`max_new_tokens` are used together.

* Removed redundant `no_grad`.
2021-05-27 14:22:58 +02:00
2dd6fb2585 Update deepspeed config to reflect hyperparameter search parameters (#11896)
* rebuild deepspeed config for hyperparameter search

* reformat code to fix style issues
2021-05-27 07:53:33 -04:00
42fe0dc23e Add Emotion Speech Noteboook (#11900) 2021-05-27 10:46:10 +01:00
996a315e76 Flax Generate (#11777)
* fix_torch_device_generate_test

* remove @

* add

* indexing

* correct a couple of tests

* fix tests

* add logits processor

* finish top_k, top_p, temp

* add docs

* correct flax prng key default

* improve generate

* add generation docs

* add docs

* make style

* revert model outputs change

* make style

* correct typo

* fix tests

* fix slow test

* add raise

* finish generation

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-27 00:18:17 +01:00
2df546918e Link official Cloud TPU JAX docs (#11892) 2021-05-26 15:44:40 -04:00
1530384e5b changing find_batch_size to work with tokenizer outputs (#11890)
* changing find_batch_size to work with tokenizer outputs

trainer_pt_utils.find_batch_size does not recognize the batch size of BatchEncoding objects. This can cause an error when a trainer relies on find_batch_size to report the number of observed examples in the evaluation loop.

* Trigger CI

Co-authored-by: jrenner <joseph.renner@inria.fr>
2021-05-26 11:59:06 -04:00
d5a72b6e19 [Flax] Allow dataclasses to be jitted (#11886)
* fix_torch_device_generate_test

* remove @

* change dataclasses to flax ones

* fix typo

* fix jitted tests

* fix bert & electra
2021-05-26 15:01:13 +01:00
e6126e1932 Correcting comments in T5Stack to reflect correct tuple order (#11330)
* Correcting comments to reflect correct tuple order

In order to match the actual order (line 513 and 516, and as accessed in 968), I've changed the order mentioned in comments L962 and L966-967.

* Update modeling_t5.py

Updating another comment as well

* Removing extra space

* Fixing style and quality

* style & quality

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-26 14:07:23 +01:00
0b93358447 Fix usage of head masks by TF encoder-decoder models' generate() function (#11775)
* Fix Bart

* Fix Blenderbot{,_small}

* Fix LED

* Fix Marian

* Fix MBart

* Fix Pegasus

* Fix T5

* Add test for generation with head_mask

* Add a common TF test

* Override a test for the LED model as head masking is not yet properly implemented

* Remove all head_masks from input preparation for LED

* Drop masking for T5 as it needs a bit of refactor
2021-05-26 14:02:44 +01:00
0b0a598452 Ensure input tensor are on device. (#11874)
The feature extractor does not create tensors on the appropriate device,
so we call `ensure_tensor_on_device` before feeding the processed inputs
to the model.
2021-05-26 04:19:37 -04:00
a9c797f93d [Wav2Vec2ForCTC] example typo fixed (#11878) 2021-05-25 17:06:14 -04:00
1b6530104d [Examples] create model with custom config on the fly (#11798)
* create custom model on the flight

* better wording

* add update_from_string

* cleanup

* cleanup

* Update src/transformers/configuration_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* more bool options

* style

* fix logger

* add test

* add the doc

* assert on conflict of options

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-05-25 10:40:49 -07:00
6287c929c1 [lm examples] fix overflow in perplexity calc (#11855)
* fix overflow in perplexity calc

* use inf

* fix
2021-05-25 08:11:26 -07:00
7630c11f32 [Wav2Vec2] SpecAugment Fast (#11764)
* first try

* finish
2021-05-25 13:59:52 +01:00
f086652b16 Add option to log only once in multinode training (#11819)
* Add option to long only once in multinode training

* Use an alternate property
2021-05-25 08:03:43 -04:00
b8344a274f typo (#11858) 2021-05-25 04:23:46 -04:00
f9880f62ad fixed a small typo in the doc (#11856) 2021-05-25 04:18:55 -04:00
6da129cb31 Enable memory metrics in tests that need it (#11859) 2021-05-25 04:06:19 -04:00
db0b2477cc Add some tests to the slow suite #11860 2021-05-25 04:06:06 -04:00
afe479adb5 [Trainer] Report both steps and num samples per second (#11818)
* [Trainer] Report both steps and num samples per second

* Fix batch number

* Update src/transformers/trainer_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Address review comments

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-05-24 19:51:42 -04:00
eaab9397cd Fix two typos in docs (#11852)
* typo2

* fix typo
2021-05-24 14:26:02 -04:00
8a2a3a25af Fix flos single node (#11844)
* fixing flos bug/typo in non-distributed setting

* storing flos every logging_interval
2021-05-24 20:15:52 +02:00
adb785b0fe Switch mem metrics flag (#11851)
* Switch mem metrics flag

* Update src/transformers/training_args.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-05-24 13:30:39 -04:00
fcdb85e9d2 Fix reference to XLNet (#11846) 2021-05-24 09:26:40 -04:00
f580604157 [Flax] Fix PyTorch import error (#11839)
* fix_torch_device_generate_test

* remove @

* change pytorch import to flax import
2021-05-24 10:41:10 +01:00
0cbddfb190 Replace double occurrences as the last step (#11367) 2021-05-24 03:38:59 -04:00
73fde1defe Faster list concat for trainer_pt_utils.get_length_grouped_indices() (#11825)
get_length_grouped_indices() in LengthGroupedSampler and DistributedLengthGroupedSampler
is prohibitively slow for large number of megabatches (in test case takes hours for ~270k
megabatches with 100 items each) due to slow list concatenation with sum(megabatches, []).

Resolves: #11795

Co-authored-by: ctheodoris <cvtheodo@ds.dfci.harvard.edu>
2021-05-22 10:27:20 -04:00
da22245ed9 Add flax text class colab (#11824)
* fix_torch_device_generate_test

* remove @

* add flax glue link
2021-05-21 23:11:58 +01:00
a26f4d6208 [Deepspeed] support zero.Init in from_config (#11805)
* support zero.Init in from_config

* no need for eval test
2021-05-21 09:07:46 -07:00
82335185fe [Flax] Small fixes in run_flax_glue.py (#11820)
* fix_torch_device_generate_test

* remove @

* correct best seed for flax fine-tuning

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-21 16:52:23 +01:00
b8697bc622 Avoid TensorFlow import in Trainer 2021-05-21 09:23:31 -04:00
e2c1dd0966 fix roformer config doc (#11813) 2021-05-21 08:06:11 -04:00
1b652295c5 Patch recursive import (#11812) 2021-05-21 06:50:01 -04:00
bd9871657b [Flax] Align GLUE training script with mlm training script (#11778)
* speed up flax glue

* remove unnecessary line

* remove folder

* remove run in loop

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-21 09:36:56 +01:00
223943872e Fix failing test on Windows Platform (#11589)
* add separator for windows

* fixes test_is_copy_consistent on Windows

* fixing writing encoding issue on extended test (for Windows)

* resolving comments
2021-05-20 19:54:23 -04:00
f4a0d6ff86 A cleaner and more scalable implementation of symbolic tracing (#11763)
Cleaner and more scalable implementation of symbolic tracing with torch.fx, and provides support for new architectures:
- ALBERT
- DistilBERT
- MobileBERT
- MegatronBERT
- GPT2
- GPT Neo

Co-authored-by: Michael Benayoun <michael@huggingface.co>
2021-05-20 18:02:29 +02:00
469384a777 Fix regression in regression (#11785)
* Fix regression in regression

* Add test
2021-05-20 09:55:13 -04:00
5ad5cc7198 Fix pattern in conf.py (#11784) 2021-05-20 09:30:31 -04:00
206f06f2dd Add new model RoFormer (use rotary position embedding ) (#11684)
* add roformer

* Update docs/source/model_doc/roformer.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update docs/source/model_doc/roformer.rst

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* update

* add TFRoFormerSinusoidalPositionalEmbedding and fix TFMarianSinusoidalPositionalEmbedding

* update docs

* make style and make quality

* roback

* unchanged

* rm copies from , this is a error in TFMarianSinusoidalPositionalEmbedding

* update Copyright year

* move # Add modeling imports here to the correct position

* max_position_embeddings can be set to 1536

* # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->RoFormer

* # Copied from transformers.models.bert.modeling_bert.BertLayer.__init__ with Bert->RoFormer

* update tokenization_roformer

* make style

* add staticmethod apply_rotary_position_embeddings

* add TF staticmethod apply_rotary_position_embeddings

* update torch apply_rotary_position_embeddings

* fix tf apply_rotary_position_embeddings error

* make style

* add pytorch RoFormerSelfAttentionRotaryPositionEmbeddingTest

* add TF rotary_position_embeddings test

* update test_modeling_rofomer

* Update docs/source/model_doc/roformer.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/roformer/convert_roformer_original_tf_checkpoint_to_pytorch.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/roformer/modeling_roformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/roformer/modeling_roformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/roformer/modeling_tf_roformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refact roformer tokenizer

* add RoFormerTokenizerFast

* add RoFormerTokenizationTest

* add require_jieba

* update Copyright

* update tokenizer & add copy from

* add option rotary_value

* use rust jieba

* use rjieba

* use rust jieba

* fix test_alignement_methods

* slice normalized_string is too slow

* add config.embedding_size when embedding_size!=hidden_size

* fix pickle tokenizer

* Update docs/source/model_doc/roformer.rst

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* make style and make quality

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-20 08:00:34 -04:00
075fdab4fe Deprecate commands from the transformers-cli that are in the hf-cli (#11779) 2021-05-20 03:16:03 -04:00
2582e59a57 Add DOI badge to README (#11771) 2021-05-19 09:48:56 -04:00
00440e350f [Flax MLM] Refactor run mlm with optax (#11745)
* refactor

* update

* update

* update

* refactor run mlm

* finalize

* refactor more

* fix typo

* update

* finish refactor

* modify run mlm

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* small fixes

* upload

* upload

* finish run mlm script

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-19 12:00:58 +01:00
43891be19b [T5 failing CI] Fix generate test (#11770)
* fix_torch_device_generate_test

* remove @
2021-05-19 05:31:17 -04:00
680d181ce8 Fix usage of head masks by PT encoder-decoder models' generate() function (#11621)
* Add missing head masking for generate() function

* Add head_mask, decoder_head_mask and cross_attn_head_mask
into prepare_inputs_for_generation for generate() function
for multiple encoder-decoder models.

* Add test_genereate_with_head_masking

* [WIP] Update the new test and handle special cases

* make style

* Omit ProphetNet test so far

* make fix-copies
2021-05-19 00:44:53 +01:00
ca33278fdb FlaxGPT2 (#11556)
* flax gpt2

* combine masks

* handle shared embeds

* add causal LM sample

* style

* add tests

* style

* fix imports, docs, quality

* don't use cache

* add cache

* add cache 1st version

* make use cache work

* start adding test for generation

* finish generation loop compilation

* rewrite test

* finish

* update

* update

* apply sylvains suggestions

* update

* refactor

* fix typo

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-18 22:50:51 +01:00
eb3e072a3b Fix a small error in summarization example (#11762) 2021-05-18 14:38:36 -04:00
77f9bd18af Add Flax Examples and Cloud TPU README (#11753)
* Add Flax Examples README

* Apply suggestions from code review

* Update examples/flax/README.md

* add nice table

* fix

* fix

* apply suggestions

* upload

* finish flax readme.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-18 17:45:16 +01:00
04e25c6286 add dataset_name to data_args and added accuracy metric (#11760)
* add `dataset_name` to data_args and added accuracy metric

* added documentation for dataset_name

* spelling correction
2021-05-18 16:27:29 +02:00
fd3b12e8c3 Fixed: Better names for nlp variables in pipelines' tests and docs. (#11752)
* Fixed: Better names for nlp variables in pipelines' tests and docs.

* Fixed: Better variable names
2021-05-18 09:47:28 -04:00
cebb96f53a Add more subsections to main doc (#11758)
* add headers to main doc

* Apply suggestions from code review

* update

* upload
2021-05-18 14:38:56 +01:00
da7e73b721 Fix incorrect newline in #11650 (#11757) 2021-05-18 15:28:13 +02:00
a515caa331 Fix checkpoint deletion (#11748) 2021-05-18 07:42:39 -04:00
b88e0e016d [TokenClassification] Label realignment for subword aggregation (#11680)
* [TokenClassification] Label realignment for subword aggregation

Tentative to replace https://github.com/huggingface/transformers/pull/11622/files

- Added `AggregationStrategy`
- `ignore_subwords` and `grouped_entities` arguments are now fused
  into `aggregation_strategy`. It makes more sense anyway because
  `ignore_subwords=True` with `grouped_entities=False` did not have a
  meaning anyway.
- Added 2 new ways to aggregate which are MAX, and AVERAGE
- AVERAGE requires a bit more information than the others, for now this
case is slightly specific, we should keep that in mind for future
changes.
- Testing has been modified to reflect new argument, and to check the
correct deprecation and the new aggregation_strategy.
- Put the testing argument and testing results for aggregation_strategy,
close together, so that readers can understand what is supposed to
happen.
- `aggregate` is now only tested on a small model as it does not mean
anything to test it globally for all models.
- Previous tests are unchanged in desired output.
- Added a new test case that showcases better the difference between the
  FIRST, MAX and AVERAGE strategies.

* Wrong framework.

* Addressing three issues.

1- Tags might not follow B-, I- convention, so any tag should work now
(assumed as B-TAG)
2- Fixed an issue with average that leads to a substantial code change.
3- The testing suite was not checking for the "index" key for "none"
strategy. This is now fixed.

The issue is that "O" could not be chosen by AVERAGE strategy because
those tokens were filtered out beforehand, so their relative scores were
not counted in the average. Now filtering on
ignore_labels will happen at the very end of the pipeline fixing
that issue.
It's a bit hard to make sure this stays like that because we do
not have a end-to-end test for that behavior

* Formatting.

* Adding formatting to code + cleaner handling of B-, I- tags.

Co-authored-by: Francesco Rubbo <rubbo.francesco@gmail.com>
Co-authored-by: elk-cloner <rezakakhki.rk@gmail.com>

* Typo.

Co-authored-by: Francesco Rubbo <rubbo.francesco@gmail.com>
Co-authored-by: elk-cloner <rezakakhki.rk@gmail.com>
2021-05-18 09:53:20 +02:00
c73e35323d push (#11750) 2021-05-17 19:54:33 +01:00
936b57158a Use new evaluation loop in TrainerQA (#11746) 2021-05-17 10:10:13 -04:00
73893fc771 [BigBird Pegasus] Make tests faster (#11744)
* improve tests

* remove bogus file

* make style

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-17 06:30:53 -04:00
a0531c8a24 fixed shape issue for T5 tracing (#11742)
Co-authored-by: Michael Benayoun <michael@huggingface.co>
2021-05-17 06:17:31 -04:00
0fc56df5fb Add visual + link to Premium Support webpage (#11740)
* Update README.md

* Update index.rst
2021-05-17 05:28:56 -04:00
2f88bd9c4c Remove tapas model card (#11739) 2021-05-17 04:42:37 -04:00
726e953d44 Improvements to Flax finetuning script (#11727)
* Add Cloud details to README

* Flax script and readme updates

* Some simplifications of Flax script
2021-05-17 09:26:33 +01:00
86d5fb0b36 Experimental symbolic tracing feature with torch.fx for BERT, ELECTRA and T5 (#11475)
Symbolic tracing feature for BERT, ELECTRA and T5

Co-authored-by: Michael Benayoun <michael@huggingface.co>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-05-14 20:57:30 +02:00
94a2348706 Add Cloud details to README (#11706)
* Add Cloud details to README

* Flax script and readme updates
2021-05-14 14:51:25 +01:00
113eaa7575 correct example script (#11726) 2021-05-14 12:02:57 +01:00
bd3b599c12 Fix T5 beam search using parallelize (#11717) 2021-05-14 10:44:03 +01:00
218d552f30 Fix loading the best model on the last stage of training (#11718) 2021-05-13 16:11:12 -04:00
252082001d Fix v4.6.0 doc 2021-05-13 10:45:28 -04:00
cbbf49f644 Fix doc deployment 2021-05-13 10:34:14 -04:00
91cf29153b [T5] Add 3D attention mask to T5 model (2) (#9643) (#11197)
* Add 3D attention mask to T5 model (#9643)

Added code for 3D attention mask in T5 model. Similar to BERT model.

* Add test for 3D attention mask

Added test for 3D attention mask: test_decoder_model_past_with_3d_attn_mask()
3D attention mask of the shape [Batch_size, Seq_length, Seq_length] both for
attention mask and decoder attention mask. Test is passing.
2021-05-13 12:02:27 +01:00
6ee1a4fd3e add everything (#11651) 2021-05-13 11:51:30 +01:00
57b6a80de8 [Flax] Fix BERT initialization & token_type_ids default (#11695)
* fix some stuff

* fix roberta & electra as well

* del run bug

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-13 10:58:19 +01:00
daf0d6a97b Fix gpt-2 warnings (#11709) 2021-05-13 03:35:44 -04:00
37ed3ab719 Enable option for subword regularization in more tokenizers. (#11417)
* improve slow class tok usage at xlm rob

* add subword regularization for barthez

* improve barthez tok. test

* fix tokenizer tests

* add subword regularization for camembert

* add subword regularization for deberta v2 tokenizer

* add more doc to deberta v2 tokenizer

* add subword regularization for speech to text tok.

* fix sp_model_kwargs type in speech 2 text tok.

* add subword regularization for M2M100 tok.

* add more concrete type hints

* fix tests for m2m100 and s2t tok.

* add missing Any import

* fix syntax error in m2m100 tok.

* fix unpickle of m2m100 and s2t tok.

* fix test of m2m100 and s2t tok.

* improve unpickle of deberta v2 tok.

* add test for pickle of barthez & camembert

* fix pickle of barthez & camembert

* add test for deberta v2 tok. pickle

* fix m2m100 tok. pickle

* fix s2t tok. pickle

* add subword regularization to albert tok.

* refactor subword reg. test into TokenizerTesterMixin

improve albert tok. test

remove sample argument form albert tok.

check subword reg. using TokenizerTesterMixin

improve tok. tests

improve xlm roberta tok. tests

improve xlm roberta tok. tests

* add subword regularization for big bird t.

* improve xlm roberta tok. test

* add subword regularization for mbart50 tok.

* add subword regularization for pegasus tok.

* add subword regularization for reformer tok.

* add subword regularization for T5 tok.

* fix t5 tok. test formatting

* add subword regularization for xlm_proph. tok.

* add subword regularization for xlnet tok.

* add subword regularization for gert_gen tok.

* add typing to tokenizers

* add typing to xlm rob. tok

* add subword regularization for marian tok.

* add reverse tok. test

* fix marian tok test

* fix marian tok test

* fix casing in tok. tests

* fix style of tok. common test

* fix deberta v2 tok test

* add type annotations to tok. tests

* add type annotations to tok. __init__

* add typing to kokenizer

* add type annotations to tok. __init__

* don't specify the default when it's None

* fix barthez tok. doc

* move sentencepiece tok. tests to TokenizerTesterMixin

* fix unused imports

* fix albert tok. test

* add comment to sentencepiece test options

* fix Any import at big bird tok.

* fix Any import at xlm prophetnet tok.

* empty commit to trigger CI
2021-05-13 02:44:55 -04:00
fa84540e98 Vit deit fixes (#11309)
* Improve docs of DeiT and ViT, add community notebook

* Add gitignore for test_samples

* Add notebook with Trainer

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-05-12 11:46:02 -04:00
d77eb0cf92 Docs for v4.7.0.dev0 2021-05-12 17:08:35 +02:00
64e78564a5 Release: v4.6.0 2021-05-12 17:03:03 +02:00
fd6204b2a7 [Lazy init] Force fall back to slow init for composite models (#11705)
* fix encoder-decoder & RAG

* finalize

* Update src/transformers/models/encoder_decoder/modeling_encoder_decoder.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/rag/modeling_rag.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-05-12 10:52:54 -04:00
5c1cda9d3c fix example in config doc (#11696) 2021-05-12 09:48:52 -04:00
77f4c46b50 remove defaults to None if optional (#11703) 2021-05-12 09:11:10 -04:00
6797cdc077 Updates README and fixes bug (#11701) 2021-05-12 13:52:52 +01:00
f063c56d94 Fix clip docs (#11694)
* fix doc url

* fix example
2021-05-12 15:28:30 +05:30
8719afa1ad CLIP (#11445)
* begin second draft

* fix import, style

* add loss

* fix embeds, logits_scale, and projection

* fix imports

* add conversion script

* add feature_extractor and processor

* style

* add tests for tokenizer, extractor and processor

* add vision model tests

* add weight init

* add more tests

* fix save_load  test

* model output, dosstrings, causal mask

* config doc

* add clip model tests

* return dict

* bigin integration test

* add integration tests

* fix-copies

* fix init

* Clip => CLIP

* fix module name

* docs

* fix doc

* output_dim => projection_dim

* fix checkpoint names

* remoe fast tokenizer file

* fix conversion script

* fix tests, quality

* put causal mask on device

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix attribute test

* style

* address sylvains comments

* style

* fix docstrings

* add qucik_gelu in activations, docstrings

* clean-up attention test

* fix act fun

* fix config

* fix torchscript tests

* even batch_size

* remove comment

* fix ouput tu_tuple

* fix save load tests

* fix add tokens test

* add fast tokenizer

* update copyright

* new processor API

* fix docs

* docstrings

* docs

* fix doc

* fix doc

* fix tokenizer

* fix import in doc example

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* check types of config

* valhalla => openai

* load image using url

* fix test

* typo

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-05-12 13:48:15 +05:30
4ce6bcc310 Adds Flax BERT finetuning example on GLUE (#11564)
* Adds Flax BERT finetuning example

* fix traced jax tensor type

* Use Optax losses and learning schedulers

* Add 1GPU training results

* merge into master & make style

* fix input

* del file

* Fix bug in loss and add torch runs

* finish bert flax fine-tune

* Update examples/flax/text-classification/README.md

* Update examples/flax/text-classification/run_flax_glue.py

* add requirements

* finalize

* finalize

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-11 19:02:59 +01:00
f13f1f8fb8 Test checkpointing (#11682)
* Add test and see where CI is unhappy

* Load with strict=False
2021-05-11 12:02:48 -04:00
d9b286272c Fix TF Roberta for mixed precision training (#11675) 2021-05-11 12:01:03 -04:00
a135f59536 Auto modelcard (#11599)
* Autogenerate model cards from the Trainer

* ModelCard deprecated

* Fix test

* Style

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Address review comments

* Quality

* With all metadata

* Metadata

* Post-merge conflict mess

* Data args and all examples

* Default license and languages when possible

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-11 11:30:34 -04:00
b3429ab678 Grammar and style edits for the frontpage README (#11679)
* Grammar and style edits for the frontpage README

* Going all-in on em-dashes because you only live once

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-05-11 15:49:34 +01:00
901153c61e Fix docstring of description about input_ids (#11672) 2021-05-11 08:12:02 -04:00
64232bc0df Add --text_column to run_summarization_no_trainer (#11673) 2021-05-11 07:58:38 -04:00
024cd19bb7 Add MacOS TF version (#11674)
Co-authored-by: Julien Plu <jplu@argos.local>
2021-05-11 05:42:21 -04:00
9120ae7d66 Fixes NoneType exception when topk is larger than one coupled with a small context in the Question-Answering pipeline (#11628)
* added fix to decode function. added test to qa pipeline tests

* completed topk docstring

* fixed formatting with black

* applied style_doc to fix line length
2021-05-10 13:28:10 -04:00
dcb0e61430 push (#11667) 2021-05-10 17:38:17 +01:00
05a930671f Save scaler state dict when checkpointing (#11663) 2021-05-10 10:58:30 -04:00
ef8d32c5ea Fix suggested by @bhadreshpsavani (#11660) 2021-05-10 14:28:04 +01:00
575c979144 Update community.md (#11654) 2021-05-10 09:48:21 +01:00
f7f872955d Big Bird Fast Tokenizer implementation (#11075)
* Added Big Bird Fast Tokenizer initial file

* style fixes

* flake fixes

* Added big bird fast tokenizer to init files

* Added big bird fast to Auto tokenization

* fix styles

* minor quality fixes

* Added initial test code

* Fix SpmConverter when precompiled_charsmap doesn't exist

* fixed post processor

* minor style fix

* minor fix input names

* Actually fix identity normalization

* style

* Added token type ids to fast tokenizer

* style

* flake fix

* fix copies

Co-authored-by: Anthony MOI <m.anthony.moi@gmail.com>
2021-05-10 03:01:23 -04:00
80da304a0f updated user permissions based on umask (#11119)
* updated user permissions based on umask

* updated user permissions based on umask

* changes as per suggestions

* minor changes
2021-05-10 02:45:29 -04:00
1a0b41781d Update requirements.txt (#11634) 2021-05-10 11:19:52 +05:30
f785c51692 Update code example (#11631)
* Update code example

* Code review
2021-05-10 11:18:43 +05:30
7e406f4a65 [Examples] Fix invalid links after reorg (#11650) 2021-05-10 11:16:48 +05:30
f2ffcaf49f [Examples] Check key exists in datasets first (#11503) 2021-05-09 15:42:38 -04:00
ba0d50f214 [examples] fix sys.path in conftest.py (#11636)
* restore conftest.py

* fix conftest and make copies

* remove unneeded parts

* remove unwanted files
2021-05-07 14:44:22 -07:00
cd9b8d7efe [self-push CI] sync with self-scheduled (#11637)
forgot to add the missing `libaio-dev` to this workflow
2021-05-07 14:06:33 -07:00
da37eb8e43 Reduce to 1 worker and set timeout for GPU TF tests (#11633) 2021-05-07 11:55:20 -04:00
39084ca663 Add the ImageClassificationPipeline (#11598)
* Add the ImageClassificationPipeline

* Code review

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>

* Have `load_image` at the module level

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
2021-05-07 08:08:40 -04:00
e7bff0aabe make fix copy (#11627) 2021-05-07 07:48:51 -04:00
dc3f6758cf Add BigBirdPegasus (#10991)
* init bigbird pegasus

* add debugging nb ; update config

* init conversion

* update conversion script

* complete conversion script

* init forward()

* complete forward()

* add tokenizer

* add some slow tests

* commit current

* fix copies

* add docs

* add conversion script for bigbird-roberta-summarization

* remove TODO

* small fixups

* correct tokenizer

* add bigbird core for now

* fix config

* fix more

* revert pegasus-tokenizer back

* make style

* everything working for pubmed; yayygit status

* complete tests finally

* remove bigbird pegasus tok

* correct tokenizer

* correct tests

* add tokenizer files

* finish make style

* fix test

* update

* make style

* fix tok utils base file

* make fix-copies

* clean a bit

* small update

* fix some suggestions

* add to readme

* fix a bit, clean tests

* fix more tests

* Update src/transformers/__init__.py

* Update src/transformers/__init__.py

* make fix-copies

* complete attn switching, auto-padding left

* make style

* fix auto-padding test

* make style

* fix batched attention tests

* put tolerance at 1e-1 for stand-alone decoder test

* fix docs

* fix tests

* correct slow tokenizer conversion

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* complete remaining suggestions

* fix test

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-05-07 09:27:43 +02:00
6f40e31766 Fix comment in run_clm_no_trainer.py (#11624) 2021-05-07 12:32:30 +05:30
33fd83bc01 Fix RNG saves in distributed mode. (#11620)
* Fix RNG saves in distributed mode.

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-05-06 17:14:12 -04:00
619200cc42 [cuda ext tests] fixing tests (#11619)
* fixing tests

* cleanup
2021-05-06 13:35:28 -07:00
44c5621db0 fix tests (#11615) 2021-05-06 20:42:51 +02:00
7eee950ac3 Re-styling in seq2seq attention (#11613) 2021-05-06 14:24:19 -04:00
cf409e5594 Fix docstring typo (#11611) 2021-05-06 17:09:28 +05:30
f594090a93 fix typo in command (#11605) 2021-05-06 12:32:54 +05:30
079557c1c5 Fix Python version (#11607) 2021-05-06 02:50:11 -04:00
c1780ce7a4 fix head_mask for albert encoder part(AlbertTransformer) (#11596)
* fix head mask for albert encoder part

* fix head_mask for albert encoder part
2021-05-06 02:18:02 -04:00
864c1dfe34 Accept tensorflow-rocm package when checking TF availability (#11595) 2021-05-05 14:44:29 -04:00
3e3e41ae20 Pytorch - Lazy initialization of models (#11471)
* lazy_init_weights

* remove ipdb

* save int

* add necessary code

* remove unnecessary utils

* Update src/transformers/models/t5/modeling_t5.py

* clean

* add tests

* correct

* finish tests

* finish tests

* fix some more tests

* fix xlnet & transfo-xl

* fix more tests

* make sure tests are independent

* fix tests more

* finist tests

* final touches

* Update src/transformers/modeling_utils.py

* Apply suggestions from code review

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* clean tests

* give arg positive name

* add more mock weights to xlnet

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-05-05 17:22:20 +02:00
8fa8e19429 Skip Funnel test 2021-05-05 12:38:01 +02:00
83e59d8e0b add importlib_metadata and huggingface_hub as dependency in the conda recipe (#11591)
* add importlib_metadata as dependency (#11490)

Co-authored-by: Deepali Chourasia <deepch23@us.ibm.com>

* add huggingface_hub dependency

Co-authored-by: Deepali Chourasia <deepch23@us.ibm.com>
2021-05-05 03:36:18 -04:00
bf0dfa98d3 copies need to be fixed too (#11585) 2021-05-05 03:35:15 -04:00
c065025c47 [trainer] document resume randomness (#11588)
* document resume randomness

* fix link

* reword

* fix

* reword

* style
2021-05-04 14:17:11 -07:00
6b241e0e3b Reproducible checkpoint (#11582)
* Set generator in dataloader

* Use generator in all random samplers

* Checkpoint all RNG states

* Final version

* Quality

* Test

* Address review comments

* Quality

* Remove debug util

* Add python and numpy RNGs

* Split states in different files in distributed

* Quality

* local_rank for TPUs

* Only use generator when accepted

* Add test

* Set seed to avoid flakiness

* Make test less flaky

* Quality
2021-05-04 16:20:56 -04:00
0afe4a90f9 [Flax] Add Electra models (#11426)
* add electra model to flax

* Remove Electra Next Sentence Prediction model added by mistake

* fix parameter sharing and loosen equality threshold

* fix styling issues

* add mistaken removen imports

* fix electra table

* Add FlaxElectra to automodels and fixe docs

* fix issues pointed out the PR

* fix flax electra to comply with latest changes

* remove stale class

* add copied from

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-04 20:56:09 +02:00
226e74b610 Removes SageMakerTrainer code but keeps class as wrapper (#11587)
* removed all old code

* make quality
2021-05-04 14:31:18 -04:00
084a187da3 [FlaxRoberta] Add FlaxRobertaModels & adapt run_mlm_flax.py (#11470)
* add flax roberta

* make style

* correct initialiazation

* modify model to save weights

* fix copied from

* fix copied from

* correct some more code

* add more roberta models

* Apply suggestions from code review

* merge from master

* finish

* finish docs

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-04 19:57:59 +02:00
2ce0fb84cc Make quality scripts work when one backend is missing. (#11573)
* Make quality scripts work when one backend is missing.

* Check env variable is properly set

* Add default

* With print statements

* Fix typo

* Set env variable

* Remove debug code
2021-05-04 09:53:44 -04:00
09b0bcfea9 Enable added tokens (#11325)
* Fix tests

* Reorganize

* Update tests/test_modeling_mobilebert.py

* Remove unnecessary addition
2021-05-04 08:13:57 -04:00
c40c7e213b Add multi-class, multi-label and regression to transformers (#11012)
* add to  bert

* review comments

* Update src/transformers/configuration_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/configuration_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* self.config.problem_type

* fix style

* fix

* fin

* fix

* update doc

* fix

* test

* Test more problem types

* Update src/transformers/configuration_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix

* remove

* fix

* quality

* make fix-copies

* remove test

Co-authored-by: abhishek thakur <abhishekkrthakur@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-05-04 02:23:40 -04:00
7c622482e8 fix resize_token_embeddings (#11572) 2021-05-03 13:12:06 -07:00
fe82b1bfa0 Update training tutorial (#11533)
* Update training tutorial

* Apply suggestions from code review

Co-authored-by: Hamel Husain <hamelsmu@github.com>

* Address review comments

* Update docs/source/training.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* More review comments

* Last review comments

Co-authored-by: Hamel Husain <hamelsmu@github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-05-03 13:18:46 -04:00
f4c9a7e62e Accumulate opt state dict on do_rank 0 (#11481) 2021-05-03 13:18:27 -04:00
1e8e06862f Fixes a useless warning. (#11566)
Fixes #11525
2021-05-03 18:48:13 +02:00
87dd1a00ef Fix metric computation in run_glue_no_trainer (#11569) 2021-05-03 11:42:55 -04:00
a721a5eefd [Wav2vec2] Fixed tokenization mistakes while adding single-char tokens to tokenizer (#11538)
* Fixed tokenization mistakes while adding single-char tokens to tokenizer

* Added tests and Removed unnecessary comments.

* finalize wav2vec2 tok

* add more aggressive tests

* Apply suggestions from code review

* fix useless import

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-05-03 17:19:12 +02:00
f3cf8ae7b3 Add LUKE (#11223)
* Rebase with master

* Minor bug fix in docs

* Copy files from adding_luke_v2 and improve docs

* change the default value of use_entity_aware_attention to True

* remove word_hidden_states

* fix head models

* fix tests

* fix the conversion script

* add integration tests for the pretrained large model

* improve docstring

* Improve docs, make style

* fix _init_weights for pytorch 1.8

* improve docs

* fix tokenizer to construct entity sequence with [MASK] entity when entities=None

* Make fix-copies

* Make style & quality

* Bug fixes

* Add LukeTokenizer to init

* Address most comments by @patil-suraj and @LysandreJik

* rename _compute_extended_attention_mask to get_extended_attention_mask

* add comments to LukeSelfAttention

* fix the documentation of the tokenizer

* address comments by @patil-suraj, @LysandreJik, and @sgugger

* improve docs

* Make style, quality and fix-copies

* Improve docs

* fix docs

* add "entity_span_classification" task

* update example code for LukeForEntitySpanClassification

* improve docs

* improve docs

* improve the code example in luke.rst

* rename the classification layer in LukeForEntityClassification from typing to classifier

* add bias to the classifier in LukeForEntitySpanClassification

* update docs to use fine-tuned hub models in code examples of the head models

* update the example sentences

* Make style & quality

* Add require_torch to tokenizer tests

* Add require_torch to tokenizer tests

* Address comments by @sgugger and add community notebooks

* Make fix-copies

Co-authored-by: Ikuya Yamada <ikuya@ikuya.net>
2021-05-03 09:07:29 -04:00
6a11e4c2ad fix the mlm longformer example by changing [MASK] to <mask> (#11559) 2021-05-03 12:43:30 +01:00
1c86157d9d Remove datasets submodule. (#11563) 2021-05-03 06:02:33 -04:00
c448c01f25 [Wav2Vec2] Fix convert (#11562)
* push

* small change

* correct other typo
2021-05-03 11:53:30 +02:00
623281aa12 [Flax BERT/Roberta] few small fixes (#11558)
* small fixes

* style
2021-05-03 10:35:06 +02:00
a5d2967bd8 Fix examples in M2M100 docstrings (#11540)
Replaces `tok` with `tokenizer` so examples can run with copy-paste
2021-05-03 10:56:31 +05:30
980208650a Fixed docs for the shape of scores in generate() (#10057)
* Fixed the doc for the shape of return scores tuples in generation_utils.py.

* Fix the output shape of `scores` for `DecoderOnlyOutput`.

* style fix
2021-05-02 10:10:47 +02:00
4e7bf94e72 [DeepSpeed] fp32 support (#11499)
* prep for deepspeed==0.3.16

* new version

* too soon

* support and test fp32 mode

* troubleshooting doc start

* workaround no longer needed

* add fp32 doc

* style

* cleanup, add tf32 note

* clarify

* release was made
2021-04-30 12:51:48 -07:00
282f3ac3ef [debug utils] activation/weights underflow/overflow detector (#11274)
* sync

* add activation overflow debug utility

* cleanup

* document detect_overflow

* import torch

* add deprecation warning

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* convert to rst, add note

* add class

* fix docs

* improve the doc

* rework to dump a lot more info about each frame

* complete expansion

* cleanup

* format

* cleanup

* doesn't have to be transformers

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* wrap long line

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-30 11:15:46 -07:00
804c2974d5 Improve task summary docs (#11513)
* fix task summary docs

* refactor to use model.config.id2label instead of list

* fix nit

* Update docs/source/task_summary.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-30 09:06:47 -04:00
bc80f8bc37 Add Stas and Suraj as authors (#11526) 2021-04-30 09:03:13 -04:00
84326a28f8 [Examples] Added support for test-file in QA examples with no trainer (#11510)
* added support for test-file

* fixed typo

* added suggested changes

* reformatted code

* modifed files

* fix post processing error

* Trigger CI

* removed extra lines
2021-04-30 09:02:50 -04:00
af0692a2ca Run model templates on master (#11527) 2021-04-30 08:47:12 -04:00
57c8e822f7 reszie token embeds (#11524) 2021-04-30 08:47:01 -04:00
20d6931e32 Update TF text classification example (#11496)
Big refactor, fixes and multi-GPU/TPU support
2021-04-30 13:45:33 +01:00
8b945ef03e Fix do_eval default value in training_args.py (#11511)
* Fix do_eval default value in training_args.py

* Update PULL_REQUEST_TEMPLATE.md
2021-04-30 08:35:12 -04:00
c2cd02ac62 Accepts BatchEncoding in LengthSampler (#11431) 2021-04-30 08:27:46 -04:00
30ede8994e Implement Fast Tokenization for Deberta (#11387) 2021-04-30 08:08:15 -04:00
db9dd09cf9 Adding AutomaticSpeechRecognitionPipeline. (#11337)
* Adding `AutomaticSpeechRecognitionPipeline`.

- Because we added everything to enable this pipeline, we probably
should add it to `transformers`.
- This PR tries to limit the scope and focuses only on the pipeline part
(what should go in, and out).
- The tests are very specific for S2T and Wav2vec2 to make sure both
architectures are supported by the pipeline. We don't use the mixin for
tests right now, because that requires more work in the `pipeline`
function (will be done in a follow up PR).
- Unsure about the "helper" function `ffmpeg_read`. It makes a lot of
  sense from a user perspective, it does not add any additional
dependencies (as in hard dependency, because users can always use their
own load mechanism). Meanwhile, it feels slightly clunky to have so much
optional preprocessing.
- The pipeline is not done to support streaming audio right now.

Future work:

- Add `automatic-speech-recognition` as a `task`. And add the
FeatureExtractor.from_pretrained within `pipeline` function.
- Add small models within tests
- Add the Mixin to tests.
- Make the logic between ForCTC vs ForConditionalGeneration better.

* Update tests/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Adding docs + main import + type checking + LICENSE.

* Doc style !.

* Fixing TYPE_HINT.

* Specifying waveform shape in the docs.

* Adding asserts + specify in the documentation the shape of the input
np.ndarray.

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Adding require to tests + move the `feature_extractor` doc.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-04-30 11:54:08 +02:00
76116f479b T5 Gradient Checkpointing (#11353)
* Implement gradient checkpoinging for T5Stack

* A bit more robust type checking

* Add `gradient_checkpointing` to T5Config

* Formatting

* Set requires_grad only when training

* None return value will only cause problems when training

* Change the output tuple according to `use_cache`

* Enable gradient checkpointing for the decoder

Squashed commit of the following:

commit 658bdd0bd1215353a8770f558bda2ea69a0ad0c7
Author: Ceshine Lee <shuanck@gmail.com>
Date:   Sat Apr 24 14:08:17 2021 +0800

    Only set `require_grad` for gradient checkpointing

commit acaeee6b2e675045fb28ce2176444c1d63e908bd
Author: Ceshine Lee <shuanck@gmail.com>
Date:   Sat Apr 24 13:59:35 2021 +0800

    Make gradient checkpointing work with the decoder

* Formatting
2021-04-30 14:13:55 +05:30
58c789e3d2 Update README.md (#11489)
Add link to code
2021-04-30 04:29:59 -04:00
022a1e9e67 make style (#11520) 2021-04-30 09:54:58 +02:00
e0db8276a6 add sp_model_kwargs to unpickle of xlm roberta tok (#11430)
add test for pickle

simplify test

fix test code style

add missing pickle import

fix test

fix test

fix test
2021-04-30 03:44:58 -04:00
b43e3f93ac correct the dimension comment of matrix multiplication (#11494)
Co-authored-by: Frederik Bode <frederik@paperbox.ai>
2021-04-30 09:42:13 +02:00
f37f2adb68 Pin HuggingFace Hub dependency (#11502) 2021-04-30 02:57:50 -04:00
60d5bda4fd Patch notification service 2021-04-30 08:56:18 +02:00
b29eb247d3 Split checkpoint from model_name_or_path in examples (#11492)
* Split checkpoint from model_name_or_path in examples

* Address review comments

* Address review comments
2021-04-29 18:33:47 -04:00
d6ec54ba36 solved coefficient issue for the TF version of gelu_fast (#11514)
Co-authored-by: Michael Benayoun <michael@huggingface.co>
2021-04-29 21:47:26 +02:00
ad1f7bef13 Reformat to make code clearer in tokenizer call (#11497)
* Reformat to make code clearer

* Reformat to make code clearer
2021-04-29 07:51:09 -04:00
f748bd4242 [Flax] Add docstrings & model outputs (#11498)
* add attentions & hidden states

* add model outputs + docs

* finish docs

* finish tests

* finish impl

* del @

* finish

* finish

* correct test

* apply sylvains suggestions

* Update src/transformers/models/bert/modeling_flax_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* simplify more

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-29 12:04:51 +02:00
3f6add8bab fix #1149 (#11493) 2021-04-28 11:16:41 -04:00
c0eb218a55 Update PreTrainedTokenizerBase to check/handle batch length for text_pair parameter (#11486)
* Update tokenization_utils_base.py

* add assertion

* check batch len

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add error message

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-28 10:11:17 -04:00
2d27900b5d Update min versions in README and add Flax (#11472)
* Update min versions in README and add Flax

* Adapt index
2021-04-28 09:10:06 -04:00
8d43c71a1c fix docs for decoder_input_ids (#11466)
* fix docs for decoder_input_ids

* revert the changes for bart and mbart
2021-04-27 19:36:36 +05:30
7ceff67e1a Finish Making Quick Tour respect the model object (#11467)
* finish quicktour

* fix import

* fix print

* explain config default better

* Update docs/source/quicktour.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-27 10:04:12 -04:00
88ac60f7b5 update QuickTour docs to reflect model output object (#11462)
* update docs to reflect model output object

* run make style`
2021-04-26 22:18:37 -04:00
741d48f5c7 Remove max length beam scorer (#11378)
* removed max_len

* removed max_length from BeamSearchScorer

* correct max length

* finish

* del vim

* finish & add test

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-04-27 00:28:40 +02:00
bc2571e61c [Deepspeed] ZeRO-Infinity integration plus config revamp (#11418)
* adding Z-inf

* revamp config process

* up version requirement

* wip

* massive rewrite

* cleanup

* cleanup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* consistent json commas

* act on suggestions

* leave this feature for 0.3.16

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-26 10:40:32 -07:00
0661abc545 Variable Correction for Consistency in Distillation Example (#11444)
As the error comes from the inconsistency of variable meaning number of gpus in parser and its actual usage in the train.py script, 'gpus' and 'n_gpu' respectively,  the correction makes the example work
2021-04-26 13:30:48 -04:00
1d30ec95c7 [Examples] Fixes inconsistency around eval vs val and predict vs test (#11380)
* added changes for uniformity

* modified files

* corrected typo

* fixed qa scripts

* fix typos

* fixed predict typo in qa no trainer

* fixed test file

* reverted trainer changes

* reverted trainer changes in custom exmaples

* updated readme

* added changes in deepspeed test

* added changes for predict and eval
2021-04-26 09:24:31 -07:00
7959d83599 Give each test a different repo name (#11453) 2021-04-26 11:52:23 -04:00
b03b2a653d Style 2021-04-26 11:45:04 -04:00
ce11318e7e make sure to test against the local checkout (#11437) 2021-04-26 08:42:43 -07:00
a753cafdc0 [docs] fix invalid class name (#11438)
* fix invalid class name

* proper ref

* proper ref
2021-04-26 08:37:32 -07:00
6715e3b6a1 Clarify description of the is_split_into_words argument (#11449)
* Improve documentation for is_split_into_words argument

* Change description wording
2021-04-26 11:29:36 -04:00
ab2cabb964 Pass along seed to DistributedSampler (#11406)
* Pass along seed to DistributedSampler

* Add seed to DistributedLengthGroupedSampler
2021-04-26 10:26:52 -04:00
b24ead87e1 fix some typos in docs, comments, logging/errors (#11432) 2021-04-26 09:14:25 -04:00
e3e70f9551 docs(examples): fix link to TPU launcher script (#11427) 2021-04-26 09:08:43 -04:00
d7633a4e46 Add basic support for FP16 in SageMaker model parallelism (#11407)
* Add FP16 support for SageMaker MP

* Add print debugs

* Squeeze

* Remove debug statements

* Add defensive check

* Typo
2021-04-26 08:55:14 -04:00
38a716cd41 TF BART models - Add cross_attentions to model output and fix cross-attention head masking (#10699)
* Add cross_attn_head_mask to BART

* Fix cross_attentions in TFBart-like models

* This commit enables returning of `cross_attentions`
for TFBart-like models

* It also fixes attention head masking in cross-attenion module

* Update TF model templates

* Fix missing , in TF model templates

* Fix typo: congig -> config
2021-04-26 14:16:21 +02:00
4bd6b54fa4 Pin black to 21.4b0 2021-04-26 08:12:54 -04:00
c1625b3261 With style 2021-04-26 08:07:29 -04:00
4b72cfd958 Pin black to 20.8.b1 2021-04-26 08:06:50 -04:00
32dbb2d954 make style (#11442) 2021-04-26 13:50:34 +02:00
04ab2ca639 add pooling layer support (#11439) 2021-04-26 09:05:53 +02:00
30f065890e updating the checkpoint for GPT2ForSequence Classification to one with classification head (#11434) 2021-04-26 10:28:51 +05:30
35cd8eed88 EncoderDecoderConfigs should not create new objects (#11300)
* removes the creation of separate config objects and uses the existing ones instead+overwrite resize_token_embeddings from parent class because it is not working for the EncoderDecoderModel

* rollback to current version of the huggingface master branch

* reworked version that ties the encoder and decoder config of the parent encoderdecoder instance

* overwrite of resize_token_embeddings throws an error now

* review comment suggestion

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* implemented warning in case encoderdecoder is created with differing configs of encoderdecoderconfig and decoderconfig or encoderconfig

* added test to avoid diverging configs of wrapper class and wrapped classes

* Update src/transformers/models/encoder_decoder/modeling_encoder_decoder.py

* make style

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-04-25 11:45:46 +02:00
f45cb66bf6 Add head_mask, decoder_head_mask, cross_head_mask to ProphetNet (#9964)
* Add head_mask & decoder_head_mask + some corrections

* Fix head masking for N-grams

* Enable test_headmasking for encoder and decod

* Fix one typo regarding in modeling_propgetnet.py

* Enable test_headmasking for ProphetNetStandaloneDecoderModelTest
and ProphetNetStandaloneEncoderModelTest in test_modeling_prophetnet.py

* make style

* Fix cross_head_mask

* Fix attention head mask naming

* `cross_head_mask` -> `cross_attn_head_mask`

* `cross_layer_head_mask` -> `cross_attn_layer_head_mask`

* Still need to merge #10605 to master to pass the tests
2021-04-25 11:06:16 +02:00
52166f672e Style 2021-04-23 20:40:17 -04:00
9cac4fab07 documentation linked to the parent class PreTrainedTokenizerFast but it should be the slow tokenizer (#11410) 2021-04-23 20:19:15 -04:00
b7fc043fce Merge branch 'master' of github.com:huggingface/transformers 2021-04-23 18:47:55 -04:00
81a6c7cd39 Use 3 workers for torch tests 2021-04-23 18:47:46 -04:00
195bfd118a Enable option for subword regularization in XLMRobertaTokenizer (#11149)
* enable subword regularization.

* fix tokenizer storage

* fix docstring formatting

* Update src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* fix docstring formatting

* add test for subword regularization tokenizer

* improve comments of test

* add sp_model_kwargs

* reformat docstring to match the style

* add some more documentation

* Update src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* improve docstring

* empty commit to trigger CI

* Update src/transformers/models/xlm_roberta/tokenization_xlm_roberta.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix docstring formatting for sphinx

Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-23 17:52:31 -04:00
1ef152eb48 Default to accuracy metric (#11405) 2021-04-23 14:49:59 -04:00
e3ff165aa5 Fix cross-attention head mask for Torch encoder-decoder models (#10605)
* Fix cross-attention head mask for Torch BART models

* Fix head masking for cross-attention module for the following
models: BART, Blenderbot, Blenderbot_small, M2M_100, Marian, MBart,
Pegasus

* Enable test_headmasking for M2M_100 model

* Fix cross_head_mask for FSMT, LED and T5

* This commit fixes `head_mask` for cross-attention modules
in the following models: FSMT, LED, T5

* It also contains some smaller changes in doc so that
it is be perfectly clear the shape of `cross_head_mask`
is the same as of `decoder_head_mask`

* Update template

* Fix template for BartForCausalLM

* Fix cross_head_mask for Speech2Text models

* Fix cross_head_mask in templates

* Fix args order in BartForCausalLM template

* Fix doc in BART templates

* Make more explicit naming

* `cross_head_mask` -> `cross_attn_head_mask`

* `cross_layer_head_mask` -> `cross_attn_layer_head_mask`

* Fix doc

* make style quality

* Fix speech2text docstring
2021-04-23 18:58:06 +02:00
ca6b80cadb Wrong branch Sylvain... 2021-04-23 12:46:54 -04:00
3951fc55ee Try to trigger failure more 2021-04-23 12:44:54 -04:00
bd41a0f74d Style 2021-04-23 12:32:37 -04:00
1811883e80 Fixing bug in generation (#11297)
When passing `inputs_embeds` and not `input_ids=None` the generation function fails because `input_ids` is created but the function but it should not.
2021-04-23 18:24:26 +02:00
5c00918681 added support for exporting of t5 to onnx with past_key_values (#10651) 2021-04-23 18:14:20 +02:00
50f4539b82 push (#11400) 2021-04-23 15:36:27 +02:00
bf2e0cf70b Trainer push to hub (#11328)
* Initial support for upload to hub

* push -> upload

* Fixes + examples

* Fix torchhub test

* Torchhub test I hate you

* push_model_to_hub -> push_to_hub

* Apply mixin to other pretrained models

* Remove ABC inheritance

* Add tests

* Typo

* Run tests

* Install git-lfs

* Change approach

* Add push_to_hub to all

* Staging test suite

* Typo

* Maybe like this?

* More deps

* Cache

* Adapt name

* Quality

* MOAR tests

* Put it in testing_utils

* Docs + torchhub last hope

* Styling

* Wrong method

* Typos

* Update src/transformers/file_utils.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address review comments

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-04-23 09:17:37 -04:00
7bc86bea68 Fixed trainer total_flos relaoding in distributed mode (#11383)
* Fixed trainer total_flos relaoding in distributed mode

* logging flos at the end of training
2021-04-23 07:53:33 -04:00
74e84f1fa6 make blenderbot test slow (#11395) 2021-04-23 07:49:09 -04:00
c3d6f33918 fixed typos (#11391) 2021-04-23 07:48:42 -04:00
a90d3f1862 Fix typo in text (#11396) 2021-04-23 07:37:19 -04:00
2dc2d79ac7 correct conversion (#11394) 2021-04-23 11:59:34 +02:00
b48cf7124c correct typo (#11393) 2021-04-23 11:34:59 +02:00
8c9b5fcbaf [Flax] Big FlaxBert Refactor (#11364)
* improve flax

* refactor

* typos

* Update src/transformers/modeling_flax_utils.py

* Apply suggestions from code review

* Update src/transformers/modeling_flax_utils.py

* fix typo

* improve error tolerance

* typo

* correct nasty saving bug

* fix from pretrained

* correct tree map

* add note

* correct weight tying
2021-04-23 09:53:09 +02:00
3ed5e97ba0 Fix Trainer with remove_unused_columns=False (#11382)
* Fix Trainer with remove_unused_columns=False

* Typo
2021-04-22 11:16:24 -04:00
0f3ad1507e Fix typo (#11369) 2021-04-22 10:10:16 -04:00
2617396094 Correctly cast num_train_epochs to int (#11379) 2021-04-22 13:49:59 +01:00
881945c0b5 Add space (#11373) 2021-04-22 17:48:58 +05:30
5b5e4ca366 [run_translation.py] fix typo (#11372)
fix typo

Co-authored-by: johnson <johnson@github.com>
2021-04-22 17:47:11 +05:30
58d8795d74 [Flax] Correct typo (#11374)
* finish

* fix copy
2021-04-22 13:11:44 +02:00
880154d2e1 [Wav2Vec2] Fix special tokens for Wav2Vec2 tokenizer (#11349)
* fix wav2vec2 tok

* up
2021-04-22 12:23:08 +02:00
6f14eab50b Add in torchhub 2021-04-21 19:17:29 -04:00
ff26f8ee3a Add huggingface_hub dep for #11328 2021-04-21 19:12:58 -04:00
5e04d70868 Fix token_type_ids error for big_bird model. (#11355)
* MOD: fit chinese wwm to new datasets

* MOD: move wwm to new folder

* MOD: formate code

* Styling

* MOD add param and recover trainer

* MOD: add token_type_ids method for big bird

* MOD: format code

* MOD: format code

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2021-04-21 19:37:57 +02:00
5aaf5aac0b [contributing doc] explain/link to good first issue (#11346)
* explain/link to good first issue

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-21 10:10:11 -07:00
6fe79e57d7 Move old TF text classification script to legacy (#11361)
And update README to explain the work-in-progress!
2021-04-21 17:36:18 +01:00
50595a3336 Remove boiler plate code (#11340)
* remove boiler plate code

* adapt roberta

* correct docs

* finish refactor
2021-04-21 18:34:38 +02:00
ac588594e2 Merge new TF example script (#11360)
First of the new and more idiomatic TF examples!
2021-04-21 17:04:55 +01:00
9f72e8f4e1 [testing doc] bring doc up to date (#11359)
* bring doc up to date

* fix
2021-04-21 08:51:00 -07:00
41f3133a3a Extract metric_key_prefix during NotebookProgressCallback.on_evaluate (#11347)
* Pass metric_key_prefix as kwarg to on_evaluate

* Replace eval_loss with metric_key_prefix_loss

* Default to "eval" if metric_key_prefix not in kwargs

* Add kwargs to CallbackHandler.on_evaluate signature

* Revert "Add kwargs to CallbackHandler.on_evaluate signature"

This reverts commit 8d4c85ed512f558f7579d36771e907b3379947b7.

* Revert "Pass metric_key_prefix as kwarg to on_evaluate"

This reverts commit 7766bfe2718601230ae593d37b1317bd53cfc075.

* Extract metric_key_prefix from metrics
2021-04-21 11:12:09 -04:00
dabeb15292 Examples reorg (#11350)
* Base move

* Examples reorganization

* Update references

* Put back test data

* Move conftest

* More fixes

* Move test data to test fixtures

* Update path

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Address review comments and clean

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-04-21 11:11:20 -04:00
ca7ff64f5b [deepspeed] fix resume from checkpoint (#11352)
This PR fixes a bug that most likely somehow got exposed (not caused) by https://github.com/huggingface/transformers/pull/11318 - surprisingly the same test worked just fine before that other PR.
2021-04-21 07:48:15 -07:00
74712e22f3 Honor contributors to models (#11329)
* Honor contributors to models

* Fix typo

* Address review comments

* Add more authors
2021-04-21 09:47:27 -04:00
aad95c7cde Removed max_length from being mandatory within generate. (#11314)
* Removed `max_length` from being mandatory within `generate`.

- Moving on to fully using `StoppingCriteria` for `greedy` and `sample`
modes.
- `max_length` still used for `beam_search` and `group_beam_search`
(Follow up PR)
- Fixes a bug with MaxLengthStoppingCriteria (we should stop as soon a
we hit the max_length, the comparison needs to be or equal, that affects
the tests).
- Added options to use `logits_processor` and `stopping_criteria`
directly within `generate` function (so some users can define their own
`logits_processor` and `stopping_criteria`).
- Modified the backward compat tests to make sure we issue a warning.

* Fix `max_length` argument in `generate`.

* Moving validate to being functional.

- Renamed `smax_length` to `stoppping_max_length`.

* Removing `logits_processor` and `stopping_criteria` from `generate`
arguments.

* Deepcopy.

* Fix global variable name.
2021-04-21 11:56:45 +02:00
95dab34d55 Add an error message that fires when Reformer is not in training mode, but one runs .backward() (#11117) 2021-04-21 00:23:37 +02:00
f1b938fda8 Update to use datasets remove_cloumns method (#11343)
* Update to use datasets remove_cloumns method

* Quality
2021-04-20 14:12:01 -04:00
cfd2eaa8cf [GPTNeo] create local attention mask ones (#11335)
* create local attention mask ones

* remove old method, address patricks comment
2021-04-20 18:37:44 +05:30
f464f10a2c [Generate] Remove outdated code (#11331)
* remove update function

* update

* refactor more

* refactor
2021-04-20 15:16:02 +03:00
bfd83c17a7 Added translation example script (#11196)
* initial changes

* modified evaluation

* updated evaluation

* updated evaluation on text translation example script

* added translation example script

* Formatted translation example script

* Reformatted translation example

* Fixed evaluation bug and added support for other tokenisers

* Fixed evaluation bug and added support for other tokenisers

* Added translation example script

* Formatted summarization example script

* Removed typos from summarization example script
2021-04-20 07:18:47 -04:00
c0328a6c26 Load checkpoint without re-creating the model (#11318) 2021-04-19 20:31:29 -04:00
95037a169f [Trainer] Add a progress bar for batches skipped (#11324) 2021-04-19 19:04:52 -04:00
95ffbe1686 [Trainer] fix the placement on device with fp16_full_eval (#11322)
* fix the placement on device with fp16_full_eval

* deepspeed never goes on device
2021-04-19 11:55:33 -07:00
3981ce3dd2 modify double considering special tokens in language_modeling.py (#11275)
* Update language_modeling.py

in "class TextDatasetForNextSentencePrediction(Dataset)", double considering "self.tokenizer.num_special_tokens_to_add(pair=True)" 

so, i remove self.block_size, and add parameter for "def create_examples_from_document". like "class LineByLineWithSOPTextDataset" do

* Update language_modeling.py
2021-04-19 11:24:43 -04:00
e
5a34d8d982 move device statements outside if statements (#11292) 2021-04-19 08:25:40 -04:00
d9c62047a8 Trainer support for IterableDataset for evaluation and predict (#11286)
* Bulk of the work

* Polish and tests

* Update QA Trainer

* Avoid breaking the predict method

* Deprecation warnings

* Store real eval dataloder

* Get eval dataset reference before wrap
2021-04-16 16:01:58 -04:00
e783ea7304 Fix failing workflows 2021-04-16 08:09:51 -04:00
92970c0cb9 Enabling multilingual models for translation pipelines. (#10536)
* [WIP] Enabling multilingual models for translation pipelines.

* decoder_input_ids -> forced_bos_token_id

* Improve docstring.

* Rebase

* Fixing 2 bugs

- Type token_ids coming from `_parse_and_tokenize`
- Wrong index from tgt_lang.

* Fixing black version.

* Adding tests for _build_translation_inputs and add them for all
tokenizers.

* Mbart actually puts the lang code at the end.

* Fixing m2m100.

* Adding TF support to `deep_round`.

* Update src/transformers/pipelines/text2text_generation.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding one line comment.

* Fixing M2M100 `_build_translation_input_ids`, and fix the call site.

* Fixing tests + deep_round -> nested_simplify

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-16 11:31:35 +02:00
5254220e7f Workflow fixes (#11270) 2021-04-15 23:21:17 -04:00
dfc6dd8584 update dependency_versions_table (#11273)
missed this updating when bumped the version.
2021-04-15 19:10:29 -07:00
2550b41aa2 Tokenizer fast save (#11234)
* Save fast tokenizers in both formats

* Fix for HerBERT

* Proper fix

* Properly test new behavior
2021-04-15 09:32:32 -04:00
6e1ee47b36 Support for set_epoch (#11258) 2021-04-15 07:36:32 -04:00
c3fcba3219 Adding pipeline task aliases. (#11247)
* Adding task aliases and adding `token-classification` and
`text-classification` tasks.

* Cleaning docstring.
2021-04-15 09:51:24 +02:00
aaaed56ffc Trainer iterable dataset (#11254)
* IterableDatasetShard

* Test and integration in Trainer

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Style

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-04-14 17:02:26 -04:00
83206ca6a8 [deepspeed] test on one node 2 gpus max (#11237)
* test on one node 2 gpus max

* fix the other place

* refactor

* fix

* cleanup

* more exact version
2021-04-14 11:06:59 -07:00
25e1af36e0 Fix #10128 (#11248) 2021-04-14 11:47:54 -04:00
63ca402380 [troubleshooting] add 2 points of reference to the offline mode (#11236)
* add 2 points of reference to the offline mode

* link the new doc

* add error message

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* style

* rename

* Trigger CI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-14 08:39:23 -07:00
075e821d1d Add prefix to examples in model_doc rst (#11226)
* Add prefix to examples in model_doc rst

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-14 10:58:55 -04:00
4670b57ce9 Fix dimention misspellings. (#11238)
* Update modeling_gpt_neo.py

dimention -> dimension

* Update configuration_speech_to_text.py

dimention -> dimension
2021-04-14 10:39:37 -04:00
f25444cb22 Close open files to suppress ResourceWarning (#11240)
Co-authored-by: Sudharsan Thirumalai <sudharsan.t@sprinklr.com>
2021-04-14 10:31:04 -04:00
7fe5aaa8b0 Stale bot updated (#10562)
* Updated stale bot

* Specify issue number

* Remove particular handling of assignees

* Unleash the stalebot

* Remove debug branch
2021-04-14 10:24:31 -04:00
9337c6c668 make embeddings plural in warning message (#11228) 2021-04-14 10:13:25 -04:00
653076ca30 Save the Wav2Vec2 processor before training starts (#10910)
Co-authored-by: nithin19 <nithin@amberscript.com>
2021-04-14 14:52:06 +03:00
3d339ee659 [Deepspeed] zero3 tests band aid (#11235)
* temp band-aid

* style
2021-04-13 17:58:09 -04:00
1ad7b0398c Run CI on deepspeed and fairscale (#11172)
* Run CI on deepspeed and fairscale

* Test it on this branch :)

* Rename

* Update the CI image
2021-04-13 15:47:06 -04:00
f38cd4373f Indent code block in the documentation (#11233)
* Indent code block

* Indent code blocks version 2

* Quality
2021-04-13 15:36:36 -04:00
9d8e8a8703 Avoid using no_sync on SageMaker DP (#11229) 2021-04-13 15:34:00 -04:00
9fa2995993 added cache_dir=model_args.cache_dir to all example with cache_dir arg (#11220) 2021-04-13 18:35:18 +02:00
3312e96bfb Doc check: a bit of clean up (#11224) 2021-04-13 12:14:25 -04:00
edca520d0f Refactor GPT2 (#11225)
* refactor GPT2

* fix mlp and head pruning

* address Sylvains comments

* apply suggestion from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-04-13 21:15:24 +05:30
893e51a53f Document v4.5.1 2021-04-13 11:28:17 -04:00
81009b7a5c Replace error by warning when loading an architecture in another (#11207)
* Replace error by warning when loading an architecture in another

* Style

* Style again

* Add a test

* Adapt old test
2021-04-13 10:33:52 -04:00
22fa0a6004 Add documentation for BertJapanese (#11219)
* Start writing BERT-Japanese doc

* Fix typo, Update toctree

* Modify model file to use comment for document, Add examples

* Clean bert_japanese by make style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Split a big code block into two

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add prefix >>> to all lines in code blocks

* Clean bert_japanese by make fixup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-13 09:49:15 -04:00
896d7be974 fix docstrings (#11221) 2021-04-13 08:58:08 -04:00
823df93955 Fix GPT-2 warnings (#11213)
* Fix GPT-2 warnings

* Update src/transformers/models/gpt2/modeling_gpt2.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2021-04-13 08:53:03 -04:00
0cd89d8c83 Add Matt as the TensorFlow reference (#11212) 2021-04-13 08:52:30 -04:00
7c205bf40c wav2vec2 converter: create the proper vocab.json while converting fairseq wav2vec2 finetuned model (#11041)
* add vocab while converting wav2vec2 original finetuned model

* check save directory exists

* return_attention_mask fix

* quality
2021-04-13 15:54:33 +05:30
d49d3cf6d6 Use MSELoss in (M)BartForSequenceClassification (#11178) 2021-04-13 15:24:46 +05:30
f243a5ec0d Sagemaker test docs update for framework upgrade (#11206)
* increased train_runtime for model parallelism

* added documentation for framework upgrade
2021-04-12 19:08:33 -04:00
74d7c24d8d Import torch.utils.checkpoint in ProphetNet (#11214) 2021-04-12 18:56:17 -04:00
38a10c6b52 Replaced which with who (#11183) 2021-04-12 18:08:28 -04:00
9f1260971f Add DeiT (PyTorch) (#11056)
* First draft of deit

* More improvements

* Remove DeiTTokenizerFast from init

* Conversion script works

* Add DeiT to ViT conversion script

* Add tests, add head model, add support for deit in vit conversion script

* Update model checkpoint names

* Update image_mean and image_std, set resample to bicubic

* Improve docs

* Docs improvements

* Add DeiTForImageClassificationWithTeacher to init

* Address comments by @sgugger

* Improve feature extractors

* Make fix-copies

* Minor fixes

* Address comments by @patil-suraj

* All models uploaded

* Fix tests

* Remove labels argument from DeiTForImageClassificationWithTeacher

* Fix-copies, style and quality

* Fix tests

* Fix typo

* Multiple docs improvements

* More docs fixes
2021-04-12 18:07:10 -04:00
cb251ba619 Fix typo (#11188) 2021-04-12 17:35:32 -04:00
0c6fcd3034 Added documentation for data collator. (#10941)
* Added documentation for data collator.

* Update docs/source/data_collator.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Added documentation for data collator.

* Added documentation for the data collator.

* Merge branch 'doc_DataCollator' of C:\Users\mahii\PycharmProjects\transformers with conflicts.

* Update documentation for the data collator.

* Update documentation for the data collator.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Amna <A.A.Ahmad@student.tudelft.nl>
2021-04-12 11:59:46 -04:00
ef102c4886 model_path should be ignored as the checkpoint path (#11157)
* model_path is refered as the path of the trainer, and should be ignored as the checkpoint path.

* Improved according to Sgugger's comment.
2021-04-12 09:06:41 -04:00
623cd6aef9 Fix style 2021-04-12 08:14:29 -04:00
a99f7f5c75 Minor typos fixed (#11182) 2021-04-12 07:55:40 -04:00
26212c14e5 Reactivate Megatron tests an use less workers 2021-04-09 18:09:53 -04:00
716120cbd6 Fix Typo 2021-04-09 17:46:52 -04:00
6f90c29eaa added json dump and extraction of train run time (#11167)
* added json dump and extraction of train run time

* make style happy
2021-04-09 15:18:00 -04:00
07f0bb691d [examples run_clm] fix _LazyModule hasher error (#11168)
* fix _LazyModule hasher error

* reword
2021-04-09 11:39:12 -07:00
c161dd56df [examples/translation] support mBART-50 and M2M100 fine-tuning (#11170)
* keep a list of multilingual tokenizers

* add forced_bos_token argument
2021-04-09 23:58:42 +05:30
fb41f9f50c Add a special tokenizer for CPM model (#11068)
* Add a special tokenizer for CPM model

* make style

* fix

* Add docs

* styles

* cpm doc

* fix ci

* fix the overview

* add test

* make style

* typo

* Custom tokenizer flag

* Add REAMDE.md

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-04-10 02:07:47 +08:00
45fc8c7951 Make get_special_tokens_mask consider all tokens (#11163) 2021-04-09 11:57:44 -04:00
6060746570 Update README.md (#11161)
Corrected a typo ('Downlowd' to 'Download')
2021-04-09 11:52:21 -04:00
b9b60c1630 Fix LogitsProcessor documentation (#11130)
* Change duplicated LogitsProcessor to LogitsWarper in LogitsProcessorList document

* Write more detailed information about LogitsProcessor's scores argument

* apply suggestion from review

* style

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-04-09 12:39:44 +05:30
8b78a32be1 [Community notebooks] Add Wav2Vec notebook for creating captions for YT Clips (#11142)
* Add Wav2Vec Inference notebook

* Update docs/source/community.md

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-04-09 12:10:37 +05:30
0311ba2153 typo (#11152)
* typo

* style
2021-04-08 19:47:31 -07:00
269c9638df Merge branch 'master' of github.com:huggingface/transformers 2021-04-08 21:14:56 -04:00
d31c7b104e Skip Megatron tests for now 2021-04-08 21:14:43 -04:00
c2e0fd5283 [setup] make fairscale and deepspeed setup extras (#11151)
* make fairscale and deepspeed setup extras

* fix default

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* no reason not to ask for the good version

* update the CIs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-08 15:46:54 -07:00
ba8b1f4754 Add support for multiple models for one config in auto classes (#11150)
* Add support for multiple models for one config in auto classes

* Use get_values everywhere

* Prettier doc
2021-04-08 18:41:36 -04:00
97ccf67bb3 [setup] extras[docs] must include 'all' (#11148)
* extras[doc] must include 'all'

* fix

* better

* regroup
2021-04-08 18:10:44 -04:00
66446909b2 [tests] relocate core integration tests (#11146)
* relocate core integration tests

* add sys.path context manager

* cleanup

* try

* try2

* fix path

* doc

* style

* add dep

* add 2 more deps
2021-04-08 13:13:17 -07:00
6c40e49712 Run mlm pad to multiple for fp16 (#11128)
* Add mlm collator pad to multiple option (#10627)

* Use padding to 8x in run mlm (#10627)
2021-04-08 16:12:49 -04:00
dfed4ec263 Don't duplicate logs in TensorBoard and handle --use_env (#11141) 2021-04-08 16:12:36 -04:00
9c9b8e707b Updates SageMaker docs for updating DLCs (#11140) 2021-04-08 16:05:53 -04:00
ba2cf5f90d Add fairscale and deepspeed back to the CI (#11147)
* Add fairscale and deepspeed back to the CI

* Add deepspeed to single GPU tests
2021-04-08 11:36:45 -07:00
1ed24afe91 [trainer] solve "scheduler before optimizer step" warning (#11144)
* solve "scheduler before optimizer step" warning

* style

* correct the state evaluation test
2021-04-08 11:28:48 -07:00
02ec02d6d3 Add nvidia megatron models (#10911)
* Add support for NVIDIA Megatron models

* Add support for NVIDIA Megatron GPT2 and BERT

Add the megatron_gpt2 model. That model reuses the existing GPT2 model. This
commit includes a script to convert a Megatron-GPT2 checkpoint downloaded
from NVIDIA GPU Cloud. See examples/megatron-models/README.md for details.

Add the megatron_bert model. That model is implemented as a modification of
the existing BERT model in Transformers. This commit includes a script to
convert a Megatron-BERT checkpoint downloaded from NVIDIA GPU Cloud. See
examples/megatron-models/README.md for details.

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Remove model.half in tests + add "# Copied ..."

Remove the model.half() instruction which makes tests fail on the CPU.

Add a comment "# Copied ..." before many classes in the model to enable automatic
tracking in CI between the new Megatron classes and the original Bert ones.

* Fix issues

* Fix Flax/TF tests

* Fix copyright

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update docs/source/model_doc/megatron_bert.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/megatron_gpt2.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Resolve most of 'sgugger' comments

* Fix conversion issue + Run make fix-copies/quality/docs

* Apply suggestions from code review

* Causal LM & merge

* Fix init

* Add CausalLM to last auto class

Co-authored-by: Julien Demouth <jdemouth@nvidia.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2021-04-08 14:09:11 -04:00
c6d664849b [DeepSpeed] ZeRO Stage 3 (#10753)
* synced gpus

* fix

* fix

* need to use t5-small for quality tests

* notes

* complete merge

* fix a disappearing std stream problem

* start zero3 tests

* wip

* tune params

* sorting out the pre-trained model loading

* reworking generate loop wip

* wip

* style

* fix tests

* split the tests

* refactor tests

* wip

* parameterized

* fix

* workout the resume from non-ds checkpoint pass + test

* cleanup

* remove no longer needed code

* split getter/setter functions

* complete the docs

* suggestions

* gpus and their compute capabilities link

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* style

* remove invalid paramgd

* automatically configure zero3 params that rely on hidden size

* make _get_resized_embeddings zero3-aware

* add test exercising resize_token_embeddings()

* add docstring

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2021-04-08 09:53:01 -07:00
acc851e1ff [run_clm] clarify why we get the tokenizer warning on long input (#11145)
* clarify why we get the warning here

* Update examples/language-modeling/run_clm.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* wording

* style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-08 09:46:28 -07:00
5bf5d50c8d Typo fix of the name of BertLMHeadModel in BERT doc (#11133) 2021-04-08 08:22:58 -04:00
f8e90d6fb9 Fix typing error in Trainer class (prediction_step) (#11138)
* fix: docstrings in prediction_step

* ci: Satisfy line length requirements

* ci: character length requirements
2021-04-08 08:22:25 -04:00
ffe0761777 Fix and refactor check_repo (#11127) 2021-04-07 17:56:21 -04:00
3fd7eee18f Adds use_auth_token with pipelines (#11123)
* added model_kwargs to infer_framework_from_model

* added model_kwargs to tokenizer

* added use_auth_token as named parameter

* added dynamic get for use_auth_token
2021-04-07 20:32:59 +02:00
1c15128312 [versions] handle version requirement ranges (#11110)
* handle version requirement ranges

* add mixed requirement test

* cleanup
2021-04-07 09:09:38 -07:00
7442801df5 fix tests (#11109) 2021-04-07 10:07:26 -04:00
c0d97cee13 Adds a note to resize the token embedding matrix when adding special … (#11120)
* Adds a note to resize the token embedding matrix when adding special tokens

* Remove superfluous space
2021-04-07 10:06:45 -04:00
02f7c2fe66 Some styling of the training table in Notebooks (#11118) 2021-04-07 10:00:33 -04:00
11505fa139 Dummies multi backend (#11100)
* Replaces requires_xxx by one generic method

* Quality and update check_dummies

* Fix inits check

* Post-merge cleanup
2021-04-07 09:56:40 -04:00
424419f549 [examples] fix white space (#11099)
these get concatenated without whitespace, so fix it
2021-04-07 09:20:58 -04:00
c9035e4537 fix: The 'warn' method is deprecated (#11105)
* The 'warn' method is deprecated

* fix test
2021-04-07 09:20:06 -04:00
247bed3857 GPTNeo: handle padded wte (#11079)
* GPTNeo: handle padded wte

* Switch to config.vocab_size

* apply review suggestion

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2021-04-07 17:35:20 +05:30
083ad7d46c dead link fixed (#11103) 2021-04-07 07:50:47 -04:00
fd338abdeb Style 2021-04-06 19:54:13 -04:00
aef4cf8c52 accelerate question answering examples with no trainer (#11091)
* accelerate question answering examples with no trainer

* removed train and eval flags also fixed fill np array function

* Update examples/question-answering/run_qa_beam_search_no_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update examples/question-answering/run_qa_no_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-06 19:35:21 -04:00
403d530eec Auto feature extractor (#11097)
* AutoFeatureExtractor

* Init and first tests

* Tests

* Damn you gitignore

* Quality

* Defensive test for when not all backends are here

* Use pattern for Speech2Text models
2021-04-06 19:20:08 -04:00
520198f56f [doc] gpt-neo (#11098)
make the example work
2021-04-06 16:42:06 -04:00
9853c5dd58 Development on v4.6.0dev0 2021-04-06 12:53:25 -04:00
2347 changed files with 556495 additions and 104899 deletions

View File

@ -0,0 +1,7 @@
# Troubleshooting
This is a document explaining how to deal with various issues on Circle-CI. The entries may include actually solutions or pointers to Issues that cover those.
## Circle CI
* pytest worker runs out of resident RAM and gets killed by `cgroups`: https://github.com/huggingface/transformers/issues/11408

View File

@ -65,7 +65,7 @@ jobs:
run_tests_torch_and_tf:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
RUN_PT_TF_CROSS_TESTS: yes
@ -78,15 +78,60 @@ jobs:
keys:
- v0.4-torch_and_tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs
- run: git lfs install
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
- run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install tensorflow_probability
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_torch_and_tf ./tests/ -m is_pt_tf_cross_test --durations=0 | tee tests_output.txt
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_torch_and_tf $(cat test_list.txt) -m is_pt_tf_cross_test --durations=0 | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_torch_and_tf_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
RUN_PT_TF_CROSS_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch_and_tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs
- run: git lfs install
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install tensorflow_probability
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_torch_and_tf tests -m is_pt_tf_cross_test --durations=0 | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -95,7 +140,7 @@ jobs:
run_tests_torch_and_flax:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
RUN_PT_FLAX_CROSS_TESTS: yes
@ -108,15 +153,56 @@ jobs:
keys:
- v0.4-torch_and_flax-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,flax,torch,testing,sentencepiece,speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
- run: pip install .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_torch_and_flax ./tests/ -m is_pt_flax_cross_test --durations=0 | tee tests_output.txt
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_torch_and_flax $(cat test_list.txt) -m is_pt_flax_cross_test --durations=0 | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_torch_and_flax_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
RUN_PT_FLAX_CROSS_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch_and_flax-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_torch_and_flax tests -m is_pt_flax_cross_test --durations=0 | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -137,15 +223,55 @@ jobs:
keys:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time
- run: pip install --upgrade pip
- run: pip install .[sklearn,torch,testing,sentencepiece,speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
- run: pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -n 8 --dist=loadfile -s --make-reports=tests_torch ./tests/ | tee tests_output.txt
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 3 --max-worker-restart=0 --dist=loadfile -s --make-reports=tests_torch $(cat test_list.txt) | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_torch_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- run: pip install git+https://github.com/huggingface/accelerate
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 3 --max-worker-restart=0 --dist=loadfile -s --make-reports=tests_torch tests | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -166,13 +292,53 @@ jobs:
keys:
- v0.4-tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece]
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]
- run: pip install tensorflow_probability
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- save_cache:
key: v0.4-tf-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_tf ./tests/ | tee tests_output.txt
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_tf $(cat test_list.txt) | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_tf_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]
- run: pip install tensorflow_probability
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- save_cache:
key: v0.4-tf-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_tf tests | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -193,13 +359,51 @@ jobs:
keys:
- v0.4-flax-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: sudo pip install .[flax,testing,sentencepiece]
- run: pip install .[flax,testing,sentencepiece,flax-speech,vision]
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- save_cache:
key: v0.4-flax-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_flax ./tests/ | tee tests_output.txt
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_flax $(cat test_list.txt) | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_flax_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-flax-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[flax,testing,sentencepiece,vision,flax-speech]
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- save_cache:
key: v0.4-flax-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_flax tests | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -221,15 +425,54 @@ jobs:
keys:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,torch,testing,sentencepiece,speech,vision]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
- run: pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_pipelines_torch -m is_pipeline_test ./tests/ | tee tests_output.txt
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_pipelines_torch -m is_pipeline_test $(cat test_list.txt) | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_pipelines_torch_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
RUN_PIPELINE_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.11.0+cpu.html
- run: pip install https://github.com/kpu/kenlm/archive/master.zip
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_pipelines_torch -m is_pipeline_test tests | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -253,11 +496,48 @@ jobs:
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece]
- run: pip install tensorflow_probability
- save_cache:
key: v0.4-tf-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -n 8 --dist=loadfile -rA -s --make-reports=tests_pipelines_tf ./tests/ -m is_pipeline_test | tee tests_output.txt
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_pipelines_tf $(cat test_list.txt) -m is_pipeline_test | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_pipelines_tf_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
RUN_PIPELINE_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-tf-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install .[sklearn,tf-cpu,testing,sentencepiece]
- run: pip install tensorflow_probability
- save_cache:
key: v0.4-tf-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -rA -s --make-reports=tests_pipelines_tf tests -m is_pipeline_test | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -277,13 +557,20 @@ jobs:
- v0.4-custom_tokenizers-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install .[ja,testing,sentencepiece]
- run: pip install .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]
- run: python -m unidic download
- save_cache:
key: v0.4-custom_tokenizers-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python -m pytest -s --make-reports=tests_custom_tokenizers ./tests/test_tokenization_bert_japanese.py | tee tests_output.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest --max-worker-restart=0 -s --make-reports=tests_custom_tokenizers ./tests/test_tokenization_bert_japanese.py ./tests/test_tokenization_openai.py | tee tests_output.txt
fi
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 1 --max-worker-restart=0 tests/test_tokenization_clip.py --dist=loadfile -s --make-reports=tests_tokenization_clip --durations=100 | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
@ -292,7 +579,7 @@ jobs:
run_examples_torch:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
@ -304,84 +591,258 @@ jobs:
keys:
- v0.4-torch_examples-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,torch,sentencepiece,testing]
- run: pip install -r examples/_tests_requirements.txt
- run: pip install .[sklearn,torch,sentencepiece,testing,torch-speech]
- run: pip install -r examples/pytorch/_tests_requirements.txt
- save_cache:
key: v0.4-torch_examples-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: TRANSFORMERS_IS_CI=1 python -m pytest -n 8 --dist=loadfile -s --make-reports=examples_torch ./examples/ | tee examples_output.txt
- run: python utils/tests_fetcher.py --filters examples tests | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -s --make-reports=examples_torch ./examples/pytorch/ | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/examples_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_git_lfs:
run_examples_torch_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch_examples-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng
- run: pip install --upgrade pip
- run: pip install .[sklearn,torch,sentencepiece,testing,torch-speech]
- run: pip install -r examples/pytorch/_tests_requirements.txt
- save_cache:
key: v0.4-torch_examples-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
TRANSFORMERS_IS_CI=1 python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -s --make-reports=examples_torch ./examples/pytorch/ | tee examples_output.txt
- store_artifacts:
path: ~/transformers/examples_output.txt
- store_artifacts:
path: ~/transformers/reports
run_examples_flax:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-flax_examples-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: sudo pip install .[flax,testing,sentencepiece]
- run: pip install -r examples/flax/_tests_requirements.txt
- save_cache:
key: v0.4-flax_examples-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python utils/tests_fetcher.py --filters examples tests | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -s --make-reports=examples_flax ./examples/flax/ | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/flax_examples_output.txt
- store_artifacts:
path: ~/transformers/reports
run_examples_flax_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-flax_examples-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: sudo pip install .[flax,testing,sentencepiece]
- run: pip install -r examples/flax/_tests_requirements.txt
- save_cache:
key: v0.4-flax_examples-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
TRANSFORMERS_IS_CI=1 python -m pytest -n 8 --max-worker-restart=0 --dist=loadfile -s --make-reports=examples_flax ./examples/flax/ | tee examples_output.txt
- store_artifacts:
path: ~/transformers/flax_examples_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_hub:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
HUGGINGFACE_CO_STAGING: yes
RUN_GIT_LFS_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-hub-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get install git-lfs
- run: |
git config --global user.email "ci@dummy.com"
git config --global user.name "ci"
- run: pip install --upgrade pip
- run: pip install .[testing]
- run: python -m pytest -sv ./tests/test_hf_api.py -k "HfLargefilesTest"
build_doc:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
steps:
- checkout
- restore_cache:
keys:
- v0.4-build_doc-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
- run: pip install --upgrade pip
- run: pip install ."[all, docs]"
- run: pip install .[torch,sentencepiece,testing]
- save_cache:
key: v0.4-build_doc-{{ checksum "setup.py" }}
key: v0.4-hub-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: cd docs && make html SPHINXOPTS="-W -j 4"
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ./docs/_build
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest --max-worker-restart=0 -sv --make-reports=tests_hub $(cat test_list.txt) -m is_staging_test | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
deploy_doc:
run_tests_hub_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
- image: circleci/python:3.7
environment:
HUGGINGFACE_CO_STAGING: yes
RUN_GIT_LFS_TESTS: yes
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- add_ssh_keys:
fingerprints:
- "5b:7a:95:18:07:8c:aa:76:4c:60:35:88:ad:60:56:71"
- checkout
- restore_cache:
keys:
- v0.4-deploy_doc-{{ checksum "setup.py" }}
- v0.4-hub-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install ."[all,docs]"
- run: sudo apt-get install git-lfs
- run: |
git config --global user.email "ci@dummy.com"
git config --global user.name "ci"
- run: pip install --upgrade pip
- run: pip install .[torch,sentencepiece,testing]
- save_cache:
key: v0.4-deploy_doc-{{ checksum "setup.py" }}
key: v0.4-hub-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: ./.circleci/deploy.sh
- run: |
python -m pytest --max-worker-restart=0 -sv --make-reports=tests_hub tests -m is_staging_test | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_onnxruntime:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install .[torch,testing,sentencepiece,onnxruntime,vision,rjieba]
- save_cache:
key: v0.4-onnx-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s --make-reports=tests_onnx $(cat test_list.txt) -k onnx | tee tests_output.txt
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
run_tests_onnxruntime_all:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install .[torch,testing,sentencepiece,onnxruntime,vision]
- save_cache:
key: v0.4-onnx-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: |
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s --make-reports=tests_onnx tests -k onnx | tee tests_output.txt
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
check_code_quality:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
resource_class: medium
- image: circleci/python:3.7
resource_class: large
environment:
TRANSFORMERS_IS_CI: yes
parallelism: 1
steps:
- checkout
@ -390,38 +851,90 @@ jobs:
- v0.4-code_quality-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install isort
- run: pip install .[all,quality]
- save_cache:
key: v0.4-code_quality-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: black --check examples tests src utils
- run: black --check --preview examples tests src utils
- run: isort --check-only examples tests src utils
- run: python utils/custom_init_isort.py --check_only
- run: python utils/sort_auto_mappings.py --check_only
- run: flake8 examples tests src utils
- run: python utils/style_doc.py src/transformers docs/source --max_len 119 --check_only
- run: doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source
- run: python utils/check_doc_toc.py
check_repository_consistency:
working_directory: ~/transformers
docker:
- image: circleci/python:3.7
resource_class: large
environment:
TRANSFORMERS_IS_CI: yes
parallelism: 1
steps:
- checkout
- restore_cache:
keys:
- v0.4-repository_consistency-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: pip install --upgrade pip
- run: pip install .[all,quality]
- save_cache:
key: v0.4-repository_consistency-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python utils/check_copies.py
- run: python utils/check_table.py
- run: python utils/check_dummies.py
- run: python utils/check_repo.py
- run: python utils/check_inits.py
- run: python utils/check_config_docstrings.py
- run: make deps_table_check_updated
- run: python utils/tests_fetcher.py --sanity_check
check_repository_consistency:
run_tests_layoutlmv2_and_v3:
working_directory: ~/transformers
docker:
- image: circleci/python:3.6
resource_class: small
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
resource_class: xlarge
parallelism: 1
steps:
- checkout
- run: pip install requests
- run: python ./utils/link_tester.py
- restore_cache:
keys:
- v0.4-torch-{{ checksum "setup.py" }}
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
- run: pip install --upgrade pip
- run: pip install .[torch,testing,vision]
- run: pip install torchvision
- run: python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
- run: sudo apt install tesseract-ocr
- run: pip install pytesseract
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}
paths:
- '~/.cache/pip'
- run: python utils/tests_fetcher.py | tee test_preparation.txt
- store_artifacts:
path: ~/transformers/test_preparation.txt
- run: |
if [ -f test_list.txt ]; then
python -m pytest -n 1 --max-worker-restart=0 tests/models/*layoutlmv* --dist=loadfile -s --make-reports=tests_layoutlmv2_and_v3 --durations=100
fi
- store_artifacts:
path: ~/transformers/tests_output.txt
- store_artifacts:
path: ~/transformers/reports
# TPU JOBS
run_examples_tpu:
docker:
- image: circleci/python:3.6
- image: circleci/python:3.7
environment:
OMP_NUM_THREADS: 1
TRANSFORMERS_IS_CI: yes
@ -441,7 +954,7 @@ jobs:
cleanup-gke-jobs:
docker:
- image: circleci/python:3.6
- image: circleci/python:3.7
steps:
- gcp-gke/install
- gcp-gke/update-kubeconfig-with-credentials:
@ -453,7 +966,7 @@ workflow_filters: &workflow_filters
filters:
branches:
only:
- master
- main
workflows:
version: 2
build_and_test:
@ -461,6 +974,7 @@ workflows:
- check_code_quality
- check_repository_consistency
- run_examples_torch
- run_examples_flax
- run_tests_custom_tokenizers
- run_tests_torch_and_tf
- run_tests_torch_and_flax
@ -469,9 +983,30 @@ workflows:
- run_tests_flax
- run_tests_pipelines_torch
- run_tests_pipelines_tf
- run_tests_git_lfs
- build_doc
- deploy_doc: *workflow_filters
- run_tests_onnxruntime
- run_tests_hub
- run_tests_layoutlmv2_and_v3
nightly:
triggers:
- schedule:
cron: "0 0 * * *"
filters:
branches:
only:
- main
jobs:
- run_examples_torch_all
- run_examples_flax_all
- run_tests_torch_and_tf_all
- run_tests_torch_and_flax_all
- run_tests_torch_all
- run_tests_tf_all
- run_tests_flax_all
- run_tests_pipelines_torch_all
- run_tests_pipelines_tf_all
- run_tests_onnxruntime_all
- run_tests_hub_all
# tpu_testing_jobs:
# triggers:
# - schedule:
@ -480,7 +1015,7 @@ workflows:
# filters:
# branches:
# only:
# - master
# - main
# jobs:
# - cleanup-gke-jobs
# - run_examples_tpu

View File

@ -1,63 +0,0 @@
cd docs
function deploy_doc(){
echo "Creating doc at commit $1 and pushing to folder $2"
git checkout $1
pip install -U ..
if [ ! -z "$2" ]
then
if [ "$2" == "master" ]; then
echo "Pushing master"
make clean && make html && scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir/$2/
cp -r _build/html/_static .
elif ssh -oStrictHostKeyChecking=no $doc "[ -d $dir/$2 ]"; then
echo "Directory" $2 "already exists"
scp -r -oStrictHostKeyChecking=no _static/* $doc:$dir/$2/_static/
else
echo "Pushing version" $2
make clean && make html
rm -rf _build/html/_static
cp -r _static _build/html
scp -r -oStrictHostKeyChecking=no _build/html $doc:$dir/$2
fi
else
echo "Pushing stable"
make clean && make html
rm -rf _build/html/_static
cp -r _static _build/html
scp -r -oStrictHostKeyChecking=no _build/html/* $doc:$dir
fi
}
# You can find the commit for each tag on https://github.com/huggingface/transformers/tags
deploy_doc "master" master
deploy_doc "b33a385" v1.0.0
deploy_doc "fe02e45" v1.1.0
deploy_doc "89fd345" v1.2.0
deploy_doc "fc9faa8" v2.0.0
deploy_doc "3ddce1d" v2.1.1
deploy_doc "3616209" v2.2.0
deploy_doc "d0f8b9a" v2.3.0
deploy_doc "6664ea9" v2.4.0
deploy_doc "fb560dc" v2.5.0
deploy_doc "b90745c" v2.5.1
deploy_doc "fbc5bf1" v2.6.0
deploy_doc "6f5a12a" v2.7.0
deploy_doc "11c3257" v2.8.0
deploy_doc "e7cfc1a" v2.9.0
deploy_doc "7cb203f" v2.9.1
deploy_doc "10d7239" v2.10.0
deploy_doc "b42586e" v2.11.0
deploy_doc "7fb8bdf" v3.0.2
deploy_doc "4b3ee9c" v3.1.0
deploy_doc "3ebb1b3" v3.2.0
deploy_doc "0613f05" v3.3.1
deploy_doc "eb0e0ce" v3.4.0
deploy_doc "818878d" v3.5.1
deploy_doc "c781171" v4.0.1
deploy_doc "bfa4ccf" v4.1.1
deploy_doc "7d9a9d0" v4.2.2
deploy_doc "bae0c79" v4.3.3
deploy_doc "c988db5" v4.4.0
deploy_doc "c5d6a28" v4.4.1
deploy_doc "6bc89ed" # v4.4.2 Latest stable release

3
.gitattributes vendored
View File

@ -1,3 +1,4 @@
*.py eol=lf
*.rst eol=lf
*.md eol=lf
*.md eol=lf
*.mdx eol=lf

View File

@ -1,22 +0,0 @@
---
name: "\U0001F5A5 New benchmark"
about: Benchmark a part of this library and share your results
title: "[Benchmark]"
labels: ''
assignees: ''
---
# 🖥 Benchmarking `transformers`
## Benchmark
Which part of `transformers` did you benchmark?
## Set-up
What did you run your benchmarks on? Please include details, such as: CPU, GPU? If using multiple GPUs, which parallelization did you use?
## Results
Put your results here!

View File

@ -1,20 +0,0 @@
---
name: "\U0001F31F New model addition"
about: Submit a proposal/request to implement a new Transformer-based model
title: ''
labels: New model
assignees: ''
---
# 🌟 New model addition
## Model description
<!-- Important information -->
## Open source status
* [ ] the model implementation is available: (give details)
* [ ] the model weights are available: (give details)
* [ ] who are the authors: (mention them, if possible by @gh-username)

View File

@ -1,94 +0,0 @@
---
name: "\U0001F41B Bug Report"
about: Submit a bug report to help us improve transformers
title: ''
labels: ''
assignees: ''
---
## Environment info
<!-- You can run the command `transformers-cli env` and copy-and-paste its output below.
Don't forget to fill out the missing fields in that output! -->
- `transformers` version:
- Platform:
- Python version:
- PyTorch version (GPU?):
- Tensorflow version (GPU?):
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
### Who can help
<!-- Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
Please tag fewer than 3 people.
Models:
- albert, bert, xlm: @LysandreJik
- blenderbot, bart, marian, pegasus, encoderdecoder, t5: @patrickvonplaten, @patil-suraj
- longformer, reformer, transfoxl, xlnet: @patrickvonplaten
- fsmt: @stas00
- funnel: @sgugger
- gpt2: @patrickvonplaten, @LysandreJik
- rag: @patrickvonplaten, @lhoestq
- tensorflow: @LysandreJik
Library:
- benchmarks: @patrickvonplaten
- deepspeed: @stas00
- ray/raytune: @richardliaw, @amogkam
- text generation: @patrickvonplaten
- tokenizers: @LysandreJik
- trainer: @sgugger
- pipelines: @LysandreJik
Documentation: @sgugger
Model hub:
- for issues with a model report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- datasets: [different repo](https://github.com/huggingface/datasets)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Examples:
- maintained examples (not research project or legacy): @sgugger, @patil-suraj
- research_projects/bert-loses-patience: @JetRunner
- research_projects/distillation: @VictorSanh
-->
## Information
Model I am using (Bert, XLNet ...):
The problem arises when using:
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## To reproduce
Steps to reproduce the behavior:
1.
2.
3.
<!-- If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.-->
## Expected behavior
<!-- A clear and concise description of what you would expect to happen. -->

119
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@ -0,0 +1,119 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve transformers
labels: [ "bug" ]
body:
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
placeholder: transformers version, platform, python version, ...
validations:
required: true
- type: textarea
id: who-can-help
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
Please tag fewer than 3 people.
Models:
- ALBERT, BERT, XLM, DeBERTa, DeBERTa-v2, ELECTRA, MobileBert, SqueezeBert: `@LysandreJik`
- T5, Pegasus, EncoderDecoder: `@patrickvonplaten`
- Blenderbot, MBART, BART, Marian, Pegasus: `@patil-suraj`
- Reformer, TransfoXL, XLNet, FNet: `@patrickvonplaten`
- Longformer, BigBird: `@ydshieh`
- FSMT: `@stas00`
- Funnel: `@sgugger`
- GPT-2, GPT: `@patil-suraj`, `@patrickvonplaten`, `@LysandreJik`
- RAG, DPR: `@patrickvonplaten`, `@lhoestq`
- TensorFlow: `@Rocketknight1`
- JAX/Flax: `@patil-suraj`
- TAPAS, LayoutLM, LayoutLMv2, LUKE, ViT, BEiT, DEiT, DETR, CANINE: `@NielsRogge`
- GPT-Neo, GPT-J, CLIP: `@patil-suraj`
- Wav2Vec2, HuBERT, UniSpeech, UniSpeechSAT, SEW, SEW-D: `@patrickvonplaten`, `@anton-l`
- SpeechEncoderDecoder, Speech2Text, Speech2Text2: `@sanchit-gandhi`, `@patrickvonplaten`, `@anton-l`
If the model isn't in the list, ping `@LysandreJik` who will redirect you to the correct contributor.
Library:
- Benchmarks: `@patrickvonplaten`
- Deepspeed: `@stas00`
- Ray/raytune: `@richardliaw`, `@amogkam`
- Text generation: `@patrickvonplaten`, `@Narsil`, `@gante`
- Tokenizers: `@SaulLu`
- Trainer: `@sgugger`
- Pipelines: `@Narsil`
- Speech: `@patrickvonplaten`, `@anton-l`, `@sanchit-gandhi`
- Vision: `@NielsRogge`, `@sgugger`
Documentation: `@sgugger`, `@stevhliu`
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- datasets: [different repo](https://github.com/huggingface/datasets)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Examples:
- maintained examples (not research project or legacy): `@sgugger`, `@patil-suraj`
For research projetcs, please ping the contributor directly. For example, on the following projects:
- research_projects/bert-loses-patience: `@JetRunner`
- research_projects/distillation: `@VictorSanh`
placeholder: "@Username ..."
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "The official example scripts"
- label: "My own modified scripts"
- type: checkboxes
id: information-tasks
attributes:
label: Tasks
description: "The tasks I am working on are:"
options:
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

12
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1,12 @@
blank_issues_enabled: true
version: 2.1
contact_links:
- name: Model checkpoints on the Hugging Face Hub
url: https://huggingface.co/models
about: Open a Pull request / Discussion related to a specific model checkpoint directly on the Hugging Face Hub
- name: Website Related
url: https://github.com/huggingface/hub-docs/issues
about: Feature requests and bug reports related to the website
- name: Forum
url: https://discuss.huggingface.co/
about: General usage questions and community discussions

View File

@ -1,25 +0,0 @@
---
name: "\U0001F680 Feature request"
about: Submit a proposal/request for a new transformers feature
title: ''
labels: ''
assignees: ''
---
# 🚀 Feature request
<!-- A clear and concise description of the feature proposal.
Please provide a link to the paper and code in case they exist. -->
## Motivation
<!-- Please outline the motivation for the proposal. Is your feature request
related to a problem? e.g., I'm always frustrated when [...]. If this is related
to another GitHub issue, please link here too. -->
## Your contribution
<!-- Is there any way that you could help, e.g. by submitting a PR?
Make sure to read the CONTRIBUTING.MD readme:
https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md -->

View File

@ -0,0 +1,31 @@
name: "\U0001F680 Feature request"
description: Submit a proposal/request for a new transformers feature
labels: [ "feature" ]
body:
- type: textarea
id: feature-request
validations:
required: true
attributes:
label: Feature request
description: |
A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist.
- type: textarea
id: motivation
validations:
required: true
attributes:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution
validations:
required: true
attributes:
label: Your contribution
description: |
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md)

View File

@ -1,58 +0,0 @@
---
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
about: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers
to transformers
title: ''
labels: Migration
assignees: ''
---
# 📚 Migration
## Information
<!-- Important information -->
Model I am using (Bert, XLNet ...):
Language I am using the model on (English, Chinese ...):
The problem arises when using:
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## Details
<!-- A clear and concise description of the migration issue.
If you have code snippets, please provide it here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
-->
## Environment info
<!-- You can run the command `python transformers-cli env` and copy-and-paste its output below.
Don't forget to fill out the missing fields in that output! -->
- `transformers` version:
- Platform:
- Python version:
- PyTorch version (GPU?):
- Tensorflow version (GPU?):
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
<!-- IMPORTANT: which version of the former library do you use? -->
* `pytorch-transformers` or `pytorch-pretrained-bert` version (or branch):
## Checklist
- [ ] I have read the migration guide in the readme.
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))
- [ ] I checked if a related official extension example runs on my machine.

72
.github/ISSUE_TEMPLATE/migration.yml vendored Normal file
View File

@ -0,0 +1,72 @@
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
description: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers to transformers
labels: [ "migration" ]
body:
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
render: shell
placeholder: transformers version, platform, python version, ...
validations:
required: true
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "The official example scripts"
- label: "My own modified scripts"
- type: checkboxes
id: information-tasks
attributes:
label: Tasks
description: "The tasks I am working on are:"
options:
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."
render: shell
- type: checkboxes
id: checklist
attributes:
label: Checklist
options:
- label: "I have read the migration guide in the readme.
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))"
required: true
- label: "I checked if a related official extension example runs on my machine."
required: true

View File

@ -0,0 +1,31 @@
name: "\U0001F31F New model addition"
description: Submit a proposal/request to implement a new model
labels: [ "New model" ]
body:
- type: textarea
id: description-request
validations:
required: true
attributes:
label: Model description
description: |
Put any and all important information relative to the model
- type: checkboxes
id: information-tasks
attributes:
label: Open source status
description: |
Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `transformers`.
options:
- label: "The model implementation is available"
- label: "The model weights are available"
- type: textarea
id: additional-info
attributes:
label: Provide useful links for the implementation
description: |
Please provide information regarding the implementation, the weights, and the authors.
Please mention the authors by @gh-username if you're aware of their usernames.

View File

@ -1,26 +0,0 @@
---
name: "❓ Questions & Help"
about: Post your general questions on the Hugging Face forum: https://discuss.huggingface.co/
title: ''
labels: ''
assignees: ''
---
# ❓ Questions & Help
<!-- The GitHub issue tracker is primarly intended for bugs, feature requests,
new models, benchmarks, and migration questions. For all other questions,
we direct you to the Hugging Face forum: https://discuss.huggingface.co/ .
-->
## Details
<!-- Description of your issue -->
<!-- You should first ask your question on the forum, and only if
you didn't get an answer after a few days ask it here on GitHub. -->
**A link to original question on the forum**:
<!-- Your issue will be closed if you don't fill this part. -->

View File

@ -17,20 +17,20 @@ Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#start-contributing-pull-requests),
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/master/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/master/docs#writing-source-documentation).
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors which may be interested in your PR.
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @

View File

@ -16,6 +16,8 @@ requirements:
- pip
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock
- requests
@ -23,11 +25,14 @@ requirements:
- sacremoses
- regex !=2019.12.17
- protobuf
- tokenizers >=0.10.1,<0.11.0
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
run:
- python
- numpy >=1.17
- dataclasses
- importlib_metadata
- huggingface_hub
- packaging
- filelock
- requests
@ -35,7 +40,8 @@ requirements:
- sacremoses
- regex !=2019.12.17
- protobuf
- tokenizers >=0.10.1,<0.11.0
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
test:
imports:

9
.github/workflows/TROUBLESHOOT.md vendored Normal file
View File

@ -0,0 +1,9 @@
# Troubleshooting
This is a document explaining how to deal with various issues on github-actions self-hosted CI. The entries may include actually solutions or pointers to Issues that cover those.
## GitHub Actions (self-hosted CI)
* Deepspeed
- if jit build hangs, clear out `rm -rf ~/.cache/torch_extensions/` reference: https://github.com/huggingface/transformers/pull/12723

78
.github/workflows/add-model-like.yml vendored Normal file
View File

@ -0,0 +1,78 @@
name: Add model like runner
on:
push:
branches:
- main
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
types: [opened, synchronize, reopened]
jobs:
run_tests_templates_like:
name: "Add new model like template tests"
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Install dependencies
run: |
sudo apt -y update && sudo apt install -y libsndfile1-dev
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v4-tests_model_like-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip!=21.3
pip install -e .[dev]
- name: Check transformers location
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
run: |
. ~/venv/bin/activate
python setup.py develop
transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-)
transformer_repo_loc=$(pwd .)
if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then
echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
- name: Create model files
run: |
. ~/venv/bin/activate
transformers-cli add-new-model-like --config_file tests/fixtures/add_distilbert_like_config.json --path_to_repo .
make style
make fix-copies
- name: Run all PyTorch modeling test
run: |
. ~/venv/bin/activate
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_new_models tests/bert_new/test_modeling_bert_new.py
- name: Run style changes
run: |
. ~/venv/bin/activate
make style && make quality && make repo-consistency
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_new_models/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_new_models_test_reports
path: reports/tests_new_models

View File

@ -0,0 +1,196 @@
name: Build docker images (scheduled)
on:
push:
branches:
- docker-image*
repository_dispatch:
workflow_call:
schedule:
- cron: "0 1 * * *"
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
latest-docker:
name: "Latest PyTorch + TensorFlow [dev]"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
PYTORCH=pre
push: true
tags: huggingface/transformers-all-latest-torch-nightly-gpu
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-pytorch-deepspeed-nightly-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu
doc-builder:
name: "Doc builder"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-doc-builder
push: true
tags: huggingface/transformers-doc-builder
latest-pytorch:
name: "Latest PyTorch [dev]"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-gpu
latest-tensorflow:
name: "Latest TensorFlow [dev]"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-tensorflow-gpu

View File

@ -0,0 +1,108 @@
name: Build docker images (Past CI)
on:
push:
branches:
- past-ci-docker-image*
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
past-pytorch-docker:
name: "Past PyTorch Docker"
strategy:
fail-fast: false
matrix:
version: ["1.10", "1.9", "1.8", "1.7", "1.6", "1.5", "1.4"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
FRAMEWORK=pytorch
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-pytorch-past-${{ matrix.version }}-gpu
past-tensorflow-docker:
name: "Past TensorFlow Docker"
strategy:
fail-fast: false
matrix:
version: ["2.8", "2.7", "2.6", "2.5"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
FRAMEWORK=tensorflow
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu
past-tensorflow-docker-2-4:
name: "Past TensorFlow Docker"
strategy:
fail-fast: false
matrix:
version: ["2.4"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
BASE_DOCKER_IMAGE=nvidia/cuda:11.0.3-cudnn8-devel-ubuntu20.04
FRAMEWORK=tensorflow
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu

View File

@ -0,0 +1,20 @@
name: Build documentation
on:
push:
branches:
- main
- doc-builder*
- v*-release
- use_templates
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: en es it pt
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@ -0,0 +1,17 @@
name: Build PR Documentation
on:
pull_request:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: en es it pt

View File

@ -0,0 +1,13 @@
name: Delete dev documentation
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
with:
pr_number: ${{ github.event.number }}
package: transformers

78
.github/workflows/doctests.yml vendored Normal file
View File

@ -0,0 +1,78 @@
name: Doctests
on:
push:
branches:
- doctest*
repository_dispatch:
schedule:
- cron: "0 0 * * *"
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
run_doctests:
runs-on: [self-hosted, doc-tests-gpu]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: GPU visibility
run: |
python3 utils/print_env.py
- name: Prepare files for doctests
run: |
python3 utils/prepare_for_doc_test.py src docs
- name: Run doctests
run: |
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
- name: Clean files after doctests
run: |
python3 utils/prepare_for_doc_test.py src docs --remove_new_line
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat reports/doc_tests_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: doc_tests_gpu_test_reports
path: reports/doc_tests_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [run_doctests]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
run: |
pip install slack_sdk
python utils/notification_service_doc_tests.py

View File

@ -1,46 +0,0 @@
name: Torch hub integration
on:
push:
branches:
- "*"
jobs:
torch_hub_integration:
runs-on: ubuntu-latest
env:
# TODO quickfix but may need more investigation
ACTIONS_ALLOW_UNSECURE_COMMANDS: True
steps:
# no checkout necessary here.
- name: Extract branch name
run: echo "::set-env name=BRANCH::${GITHUB_REF#refs/heads/}"
- name: Check branch name
run: echo $BRANCH
- name: Set up Python
uses: actions/setup-python@v1
with:
python-version: 3.7
- name: Loading cache
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v0-torch_hub-${{ hashFiles('setup.py') }}
- name: Install dependencies
run: |
pip install --upgrade pip
# install torch-hub specific dependencies
pip install -e git+https://github.com/huggingface/transformers.git#egg=transformers[torchhub]
# no longer needed
pip uninstall -y transformers
- name: Torch hub list
run: |
python -c "import torch; print(torch.hub.list('huggingface/transformers:$BRANCH'))"
- name: Torch hub help
run: |
python -c "import torch; print(torch.hub.help('huggingface/transformers:$BRANCH', 'modelForSequenceClassification'))"

View File

@ -1,68 +1,81 @@
name: Model templates runner
on:
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
types: [assigned, opened, synchronize, reopened]
repository_dispatch:
schedule:
- cron: "0 2 * * *"
jobs:
run_tests_templates:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v1
- name: Install Python
uses: actions/setup-python@v1
with:
python-version: 3.6
- name: Loading cache.
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1.2-tests_templates
restore-keys: |
v1.2-tests_templates-${{ hashFiles('setup.py') }}
v1.2-tests_templates
uses: actions/checkout@v2
- name: Install dependencies
run: |
pip install --upgrade pip
pip install .[dev]
sudo apt -y update && sudo apt install -y libsndfile1-dev
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v4-tests_templates-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip!=21.3
pip install -e .[dev]
- name: Check transformers location
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
run: |
. ~/venv/bin/activate
python setup.py develop
transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-)
transformer_repo_loc=$(pwd .)
if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then
echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
- name: Create model files
run: |
. ~/venv/bin/activate
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/tf-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/flax-seq-2-seq-bart-tokenizer.json --path=templates/adding_a_new_model
make style
python utils/check_table.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
python utils/check_copies.py --fix_and_overwrite
- name: Run all non-slow tests
run: |
. ~/venv/bin/activate
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_templates tests/*template*
- name: Run style changes
run: |
git fetch origin master:master
make fixup
. ~/venv/bin/activate
make style && make quality && make repo-consistency
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_templates_failures_short.txt
run: cat reports/tests_templates/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_templates_test_reports
path: reports
path: reports/tests_templates

View File

@ -4,6 +4,8 @@ on:
push:
tags:
- v*
branches:
- conda_*
env:
ANACONDA_API_TOKEN: ${{ secrets.ANACONDA_API_TOKEN }}
@ -24,6 +26,7 @@ jobs:
with:
auto-update-conda: true
auto-activate-base: false
python-version: 3.8
activate-environment: "build-transformers"
channels: huggingface

View File

@ -0,0 +1,236 @@
name: Self-hosted runner (nightly)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
repository_dispatch:
schedule:
- cron: "0 16 * * *"
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
setup:
name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "::set-output name=matrix::$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')"
- name: NVIDIA-SMI
run: |
nvidia-smi
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Run all tests on GPU
working-directory: /workspace/transformers
run: |
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [setup, run_tests_single_gpu, run_tests_multi_gpu, run_all_tests_torch_cuda_extensions_gpu]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
CI_EVENT: nightly-build
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

126
.github/workflows/self-past-caller.yml vendored Normal file
View File

@ -0,0 +1,126 @@
name: Self-hosted runner (past-ci-caller)
on:
push:
branches:
- run-past-ci*
jobs:
run_past_ci_pytorch_1-10:
name: PyTorch 1.10
if: always()
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.10"
secrets: inherit
run_past_ci_pytorch_1-9:
name: PyTorch 1.9
if: always()
needs: [run_past_ci_pytorch_1-10]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.9"
secrets: inherit
run_past_ci_pytorch_1-8:
name: PyTorch 1.8
if: always()
needs: [run_past_ci_pytorch_1-9]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.8"
secrets: inherit
run_past_ci_pytorch_1-7:
name: PyTorch 1.7
if: always()
needs: [run_past_ci_pytorch_1-8]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.7"
secrets: inherit
run_past_ci_pytorch_1-6:
name: PyTorch 1.6
if: always()
needs: [run_past_ci_pytorch_1-7]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.6"
secrets: inherit
run_past_ci_pytorch_1-5:
name: PyTorch 1.5
if: always()
needs: [run_past_ci_pytorch_1-6]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.5"
secrets: inherit
run_past_ci_pytorch_1-4:
name: PyTorch 1.4
if: always()
needs: [run_past_ci_pytorch_1-5]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.4"
secrets: inherit
run_past_ci_tensorflow_2-8:
name: TensorFlow 2.8
if: always()
needs: [run_past_ci_pytorch_1-4]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.8"
secrets: inherit
run_past_ci_tensorflow_2-7:
name: TensorFlow 2.7
if: always()
needs: [run_past_ci_tensorflow_2-8]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.7"
secrets: inherit
run_past_ci_tensorflow_2-6:
name: TensorFlow 2.6
if: always()
needs: [run_past_ci_tensorflow_2-7]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.6"
secrets: inherit
run_past_ci_tensorflow_2-5:
name: TensorFlow 2.5
if: always()
needs: [run_past_ci_tensorflow_2-6]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.5"
secrets: inherit
run_past_ci_tensorflow_2-4:
name: TensorFlow 2.4
if: always()
needs: [run_past_ci_tensorflow_2-5]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.4"
secrets: inherit

179
.github/workflows/self-past.yml vendored Normal file
View File

@ -0,0 +1,179 @@
name: Self-hosted runner (past)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
setup:
name: Setup
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: Cleanup
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- id: set-matrix
name: Identify models to test
run: |
cd tests
echo "::set-output name=matrix::$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')"
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [setup, run_tests_single_gpu, run_tests_multi_gpu]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

52
.github/workflows/self-push-caller.yml vendored Normal file
View File

@ -0,0 +1,52 @@
# Used to trigger self-push CI
name: Self-hosted runner (push-caller)
on:
push:
branches:
- main
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
check-for-setup:
runs-on: ubuntu-latest
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v22.2
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` = "setup.py" ]; then
echo ::set-output name=changed::"1"
fi
done
build-docker-containers:
needs: check-for-setup
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
uses: ./.github/workflows/build-docker-images.yml
secrets: inherit
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-latest
if: ${{ always() }}
needs: build-docker-containers
steps:
- name: Trigger push CI via workflow_run
run: echo "Trigger push CI via workflow_run"

View File

@ -1,15 +1,20 @@
name: Self-hosted runner (push)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- master
- ci_*
- ci-*
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
repository_dispatch:
env:
@ -17,190 +22,484 @@ env:
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
run_tests_torch_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
setup:
name: Setup
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Fetch the tests to run
# TODO: add `git-python` in the docker images
run: |
pip install --upgrade git-python
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- id: set-matrix
name: Organize tests into models
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "::set-output name=matrix::$keys"
echo "::set-output name=test_map::$test_map"
run_tests_single_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: pytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /transformers
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech]
python3 utils/print_env.py
- name: Are GPUs recognized by our DL frameworks
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())"
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Run all non-slow tests on GPU
run: |
python -m pytest -n 2 --dist=loadfile --make-reports=tests_torch_gpu tests
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_gpu_failures_short.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_tf_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
run_tests_multi_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece]
- name: Are GPUs recognized by our DL frameworks
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all non-slow tests on GPU
env:
TF_NUM_INTRAOP_THREADS: 8
TF_NUM_INTEROP_THREADS: 1
run: |
python -m pytest -n 2 --dist=loadfile --make-reports=tests_tf_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_gpu_test_reports
path: reports
run_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: pytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /transformers
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech]
python3 utils/print_env.py
- name: Are GPUs recognized by our DL frameworks
run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())"
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
- name: Run all non-slow tests on GPU
- name: Run all non-slow selected tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
working-directory: /transformers
run: |
python -m pytest -n 2 --dist=loadfile --make-reports=tests_torch_multi_gpu tests
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_multi_gpu_failures_short.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_tf_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
run_tests_torch_cuda_extensions_single_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /workspace/transformers
run: |
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece]
python utils/print_env.py
- name: Are GPUs recognized by our DL frameworks
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all non-slow tests on GPU
env:
TF_NUM_INTRAOP_THREADS: 8
TF_NUM_INTEROP_THREADS: 1
run: |
python -m pytest -n 2 --dist=loadfile --make-reports=tests_tf_multi_gpu tests
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_multi_gpu_failures_short.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_multi_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_tests_torch_cuda_extensions_multi_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [run_tests_torch_gpu, run_tests_tf_gpu, run_tests_torch_multi_gpu, run_tests_tf_multi_gpu]
needs: [
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_tests_torch_cuda_extensions_single_gpu,
run_tests_torch_cuda_extensions_multi_gpu
]
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_EVENT: push
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py push
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -1,267 +1,362 @@
name: Self-hosted runner (scheduled)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
push:
branches:
- multi_ci_*
repository_dispatch:
schedule:
- cron: "0 0 * * *"
- cron: "0 2 * * *"
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
run_all_tests_torch_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
setup:
name: Setup
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: pytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "::set-output name=matrix::$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')"
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech]
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Are GPUs recognized by our DL frameworks
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())"
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
run: |
python -m pytest -n 1 --dist=loadfile --make-reports=tests_torch_gpu tests
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
run: cat reports/tests_torch_gpu_failures_short.txt
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_examples_gpu:
name: Examples directory
runs-on: [self-hosted, single-gpu-docker]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run examples tests on GPU
if: ${{ always() }}
env:
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
RUN_SLOW: yes
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
working-directory: /transformers
run: |
pip install -r examples/_tests_requirements.txt
python -m pytest -n 1 --dist=loadfile --make-reports=examples_torch_gpu examples
pip install -r examples/pytorch/_tests_requirements.txt
python3 -m pytest -v --make-reports=examples_gpu examples/pytorch
- name: Failure short reports
if: ${{ always() }}
run: cat reports/examples_torch_gpu_failures_short.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_gpu_failures_short.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/examples_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
name: run_examples_gpu
path: /transformers/reports/examples_gpu
run_all_tests_tf_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
run_pipelines_torch_gpu:
name: PyTorch pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /transformers
run: |
pip install --upgrade pip
pip install .[sklearn,testing,onnx,sentencepiece]
- name: Are GPUs recognized by our DL frameworks
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all tests on GPU
env:
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_gpu_failures_short.txt
python3 utils/print_env.py
- name: Run all pipeline tests on GPU
if: ${{ always() }}
working-directory: /transformers
env:
RUN_PIPELINE_TESTS: yes
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 --dist=loadfile -m is_pipeline_test --make-reports=tests_tf_pipeline_gpu tests
python3 -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_gpu_failures_short.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
run_all_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
run_pipelines_tf_gpu:
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: pytorch/pytorch:1.8.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all pipeline tests on GPU
working-directory: /transformers
env:
RUN_PIPELINE_TESTS: yes
run: |
python3 -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: |
cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /workspace/transformers
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech]
- name: Are GPUs recognized by our DL frameworks
run: |
python -c "import torch; print('Cuda available:', torch.cuda.is_available())"
python -c "import torch; print('Cuda version:', torch.version.cuda)"
python -c "import torch; print('CuDNN version:', torch.backends.cudnn.version())"
python -c "import torch; print('Number of GPUs available:', torch.cuda.device_count())"
python utils/print_env.py
- name: Run all tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
working-directory: /workspace/transformers
run: |
python -m pytest -n 1 --dist=loadfile --make-reports=tests_torch_multi_gpu tests
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_multi_gpu_failures_short.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_multi_gpu_failures_short.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
run_all_tests_tf_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
pip install --upgrade pip
pip install .[sklearn,testing,onnx,sentencepiece]
- name: Are GPUs recognized by our DL frameworks
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all tests on GPU
env:
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_multi_gpu_failures_short.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 --dist=loadfile -m is_pipeline_test --make-reports=tests_tf_pipeline_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_multi_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_multi_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [run_all_tests_torch_gpu, run_all_tests_tf_gpu, run_all_tests_torch_multi_gpu, run_all_tests_tf_multi_gpu]
needs: [setup, run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_tf_gpu, run_pipelines_torch_gpu, run_all_tests_torch_cuda_extensions_gpu]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_EVENT: scheduled
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py scheduled
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -2,7 +2,7 @@ name: Stale Bot
on:
schedule:
- cron: "0 0 * * *"
- cron: "0 15 * * *"
jobs:
close_stale_issues:

40
.github/workflows/update_metdata.yml vendored Normal file
View File

@ -0,0 +1,40 @@
name: Update Transformers metadata
on:
push:
branches:
- main
- update_transformers_metadata
jobs:
build_and_package:
runs-on: ubuntu-latest
defaults:
run:
shell: bash -l {0}
steps:
- uses: actions/checkout@v2
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v3-metadata-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip
- name: Setup environment
run: |
. ~/venv/bin/activate
pip install git+https://github.com/huggingface/transformers#egg=transformers[dev]
- name: Update metadata
run: |
. ~/venv/bin/activate
python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }}

8
.gitignore vendored
View File

@ -9,8 +9,7 @@ __pycache__/
*.so
# tests and logs
tests/fixtures/*
!tests/fixtures/sample_text_no_unicode.txt
tests/fixtures/cached_*_text.txt
logs/
lightning_logs/
lang_code_data/
@ -161,4 +160,7 @@ tags
.pre-commit*
# .lock
*.lock
*.lock
# DS_Store (MacOS)
.DS_Store

82
CITATION.cff Normal file
View File

@ -0,0 +1,82 @@
cff-version: "1.2.0"
date-released: 2020-10
message: "If you use this software, please cite it using these metadata."
title: "Transformers: State-of-the-Art Natural Language Processing"
url: "https://github.com/huggingface/transformers"
authors:
- family-names: Wolf
given-names: Thomas
- family-names: Debut
given-names: Lysandre
- family-names: Sanh
given-names: Victor
- family-names: Chaumond
given-names: Julien
- family-names: Delangue
given-names: Clement
- family-names: Moi
given-names: Anthony
- family-names: Cistac
given-names: Perric
- family-names: Ma
given-names: Clara
- family-names: Jernite
given-names: Yacine
- family-names: Plu
given-names: Julien
- family-names: Xu
given-names: Canwen
- family-names: "Le Scao"
given-names: Teven
- family-names: Gugger
given-names: Sylvain
- family-names: Drame
given-names: Mariama
- family-names: Lhoest
given-names: Quentin
- family-names: Rush
given-names: "Alexander M."
preferred-citation:
type: conference-paper
authors:
- family-names: Wolf
given-names: Thomas
- family-names: Debut
given-names: Lysandre
- family-names: Sanh
given-names: Victor
- family-names: Chaumond
given-names: Julien
- family-names: Delangue
given-names: Clement
- family-names: Moi
given-names: Anthony
- family-names: Cistac
given-names: Perric
- family-names: Ma
given-names: Clara
- family-names: Jernite
given-names: Yacine
- family-names: Plu
given-names: Julien
- family-names: Xu
given-names: Canwen
- family-names: "Le Scao"
given-names: Teven
- family-names: Gugger
given-names: Sylvain
- family-names: Drame
given-names: Mariama
- family-names: Lhoest
given-names: Quentin
- family-names: Rush
given-names: "Alexander M."
booktitle: "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations"
month: 10
start: 38
end: 45
title: "Transformers: State-of-the-Art Natural Language Processing"
year: 2020
publisher: "Association for Computational Linguistics"
url: "https://www.aclweb.org/anthology/2020.emnlp-demos.6"
address: "Online"

View File

@ -26,7 +26,7 @@ on the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you".
Whichever way you choose to contribute, please be mindful to respect our
[code of conduct](https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md).
[code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways!
@ -36,6 +36,13 @@ There are 4 ways you can contribute to transformers:
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
In particular there is a special [Good First
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
open Issues that are open to anybody to work on. Just comment in the issue that you'd like to work
on it. In that same listing you will also find some Issues with `Good Second Issue` label. These are
typically slightly more complicated than the Issues with just `Good First Issue` label. But if you
feel you know what you're doing, go for it.
*All are equally valuable to the community.*
## Submitting a new issue or feature request
@ -46,7 +53,7 @@ feedback.
### Did you find a bug?
The transformers are robust and reliable thanks to the users who notify us of
The 🤗 Transformers library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not
@ -85,7 +92,7 @@ If you are willing to contribute the model yourself, let us know so we can best
guide you.
We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them
in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates) folder.
in the [`templates`](https://github.com/huggingface/transformers/tree/main/templates) folder.
### Do you want a new feature (that is not a model)?
@ -107,7 +114,7 @@ If your issue is well written we're already 80% of the way there by the time you
post it.
We have added **templates** to guide you in the process of adding a new example script for training or testing the
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates)
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/main/templates)
folder.
## Start contributing! (Pull Requests)
@ -117,7 +124,7 @@ issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
`transformers`. `git` is not the easiest tool to use but it has the greatest
🤗 Transformers. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
@ -141,7 +148,7 @@ Follow these steps to start contributing:
$ git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `master` branch.
**Do not** work on the `main` branch.
4. Set up a development environment by running the following command in a virtual environment:
@ -168,34 +175,26 @@ Follow these steps to start contributing:
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes:
passes. You should run the tests impacted by your changes like this:
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
You can also run the full suite with the following command, but it takes
a beefy machine to produce a result in a decent amount of time now that
Transformers has grown a lot. Here is the command for it:
```bash
$ make test
```
Note, that this command uses `-n auto` pytest flag, therefore, it will start as many parallel `pytest` processes as the number of your computer's CPU-cores, and if you have lots of those and a few GPUs and not a great amount of RAM, it's likely to overload your computer. Therefore, to run the test suite, you may want to consider using this command instead:
For more information about tests, check out the
[dedicated documentation](https://huggingface.co/docs/transformers/testing)
```bash
$ python -m pytest -n 3 --dist=loadfile -s -v ./tests/
```
Adjust the value of `-n` to fit the load your hardware can support.
`transformers` relies on `black` and `isort` to format its source code
consistently. After you make changes, format them with:
```bash
$ make style
```
`transformers` also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
```bash
$ make quality
```
You can do the automatic style corrections and code verifications that can't be automated in one go:
🤗 Transformers relies on `black` and `isort` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
```bash
$ make fixup
@ -203,16 +202,55 @@ Follow these steps to start contributing:
This target is also optimized to only work with files modified by the PR you're working on.
If you're modifying documents under `docs/source`, make sure to validate that
they can still be built. This check also runs in CI. To run a local check
make sure you have installed the documentation builder requirements, by
running `pip install .[tf,torch,docs]` once from the root of this repository
and then run:
If you prefer to run the checks one after the other, the following command apply the
style corrections:
```bash
$ make docs
$ make style
```
🤗 Transformers also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
```bash
$ make quality
```
Finally we have a lot of scripts that check we didn't forget to update
some files when adding a new model, that you can run with
```bash
$ make repo-consistency
```
To learn more about those checks and how to fix any issue with them, check out the
[documentation](https://huggingface.co/docs/transformers/pr_checks)
If you're modifying documents under `docs/source`, make sure to validate that
they can still be built. This check also runs in CI. To run a local check
make sure you have installed the documentation builder requirements. First you will need to clone the
repository containing our tools to build the documentation:
```bash
$ pip install git+https://github.com/huggingface/doc-builder
```
Then, make sure you have all the dependencies to be able to build the doc with:
```bash
$ pip install ".[docs]"
```
Finally run the following command from the root of the repository:
```bash
$ doc-builder build transformers docs/source/ --build_dir ~/tmp/test-build
```
This will build the documentation in the `~/tmp/test-build` folder where you can inspect the generated
Markdown files with your favorite editor. You won't be able to see the final rendering on the website
before your PR is merged, we are actively working on adding a tool for this.
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
@ -229,7 +267,7 @@ Follow these steps to start contributing:
```bash
$ git fetch upstream
$ git rebase upstream/master
$ git rebase upstream/main
```
Push the changes to your account using:
@ -266,14 +304,21 @@ Follow these steps to start contributing:
- If you are adding a new tokenizer, write tests, and make sure
`RUN_SLOW=1 python -m pytest tests/test_tokenization_{your_model_name}.py` passes.
CircleCI does not run the slow tests, but github actions does every night!
6. All public methods must have informative docstrings that work nicely with sphinx. See `modeling_ctrl.py` for an
6. All public methods must have informative docstrings that work nicely with sphinx. See `modeling_bert.py` for an
example.
7. Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
See more about the checks run on a pull request in our [PR guide](pr_checks)
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the
[examples folder](https://github.com/huggingface/transformers/tree/master/examples).
the [tests folder](https://github.com/huggingface/transformers/tree/main/tests) and examples tests in the
[examples folder](https://github.com/huggingface/transformers/tree/main/examples).
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library:
@ -285,7 +330,7 @@ $ python -m pytest -n auto --dist=loadfile -s -v ./tests/
and for the examples:
```bash
$ pip install -r examples/requirements.txt # only needed the first time
$ pip install -r examples/xxx/requirements.txt # only needed the first time
$ python -m pytest -n auto --dist=loadfile -s -v ./examples/
```
In fact, that's how `make test` and `make test-examples` are implemented (sans the `pip install` line)!
@ -319,12 +364,11 @@ $ python -m unittest discover -s examples -t examples -v
### Style guide
For documentation strings, `transformers` follows the [google style](https://google.github.io/styleguide/pyguide.html).
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/master/docs#writing-documentation---specification)
For documentation strings, 🤗 Transformers follows the [google style](https://google.github.io/styleguide/pyguide.html).
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification)
for more information.
#### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
### Develop on Windows
@ -341,15 +385,15 @@ One way one can run the make command on Window is to pass by MSYS2:
You can now use `make` from any terminal (Powershell, cmd.exe, etc) 🎉
### Syncing forked master with upstream (HuggingFace) master
### Syncing forked main with upstream (HuggingFace) main
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnessary notifications to the developers involved in these PRs,
when syncing the master branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked master.
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
when syncing the main branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```
$ git checkout -b your-branch-for-syncing
$ git pull --squash --no-commit upstream master
$ git pull --squash --no-commit upstream main
$ git commit -m '<your message without GitHub references>'
$ git push --set-upstream origin your-branch-for-syncing
```

View File

@ -71,8 +71,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
from .utils import is_tokenizers_available
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
```
@ -124,8 +124,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
from .utils import is_tokenizers_available
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
```
@ -205,7 +205,7 @@ You are not required to read the following guidelines before opening an issue. H
If you really tried to make a short reproducible code but couldn't figure it out, it might be that having a traceback will give the developer enough information to know what's going on. But if it is not enough and we can't reproduce the problem, we can't really solve it.
Do not dispair if you can't figure it out from the begining, just share what you can and perhaps someone else will be able to help you at the forums.
Do not despair if you can't figure it out from the beginning, just share what you can and perhaps someone else will be able to help you at the forums.
If your setup involves any custom datasets, the best way to help us reproduce the problem is to create a [Google Colab notebook](https://colab.research.google.com/) that demonstrates the issue and once you verify that the issue still exists, include a link to that notebook in the Issue. Just make sure that you don't copy and paste the location bar url of the open notebook - as this is private and we won't be able to open it. Instead, you need to click on `Share` in the right upper corner of the notebook, select `Get Link` and then copy and paste the public link it will give to you.

View File

@ -1,5 +1,7 @@
.PHONY: deps_table_update modified_only_fixup extra_quality_checks quality style fixup fix-copies test test-examples docs
.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src
check_dirs := examples tests src utils
@ -7,7 +9,7 @@ modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \
black $(modified_py_files); \
black --preview $(modified_py_files); \
isort $(modified_py_files); \
flake8 $(modified_py_files); \
else \
@ -19,44 +21,57 @@ modified_only_fixup:
deps_table_update:
@python setup.py deps_table_update
deps_table_check_updated:
@md5sum src/transformers/dependency_versions_table.py > md5sum.saved
@python setup.py deps_table_update
@md5sum -c --quiet md5sum.saved || (printf "\nError: the version dependency table is outdated.\nPlease run 'make fixup' or 'make style' and commit the changes.\n\n" && exit 1)
@rm md5sum.saved
# autogenerating code
autogenerate_code: deps_table_update
python utils/class_mapping_update.py
# Check that source code meets quality standards
# Check that the repo is in a good state
extra_quality_checks:
repo-consistency:
python utils/check_copies.py
python utils/check_table.py
python utils/check_dummies.py
python utils/check_repo.py
python utils/check_inits.py
python utils/check_config_docstrings.py
python utils/tests_fetcher.py --sanity_check
# this target runs checks on all files
quality:
black --check $(check_dirs)
black --check --preview $(check_dirs)
isort --check-only $(check_dirs)
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
flake8 $(check_dirs)
${MAKE} extra_quality_checks
doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source
python utils/check_doc_toc.py
# Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks:
python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
# this target runs checks on all files and potentially modifies some of them
style:
black $(check_dirs)
black --preview $(check_dirs)
isort $(check_dirs)
${MAKE} autogenerate_code
${MAKE} extra_style_checks
# Super fast fix and check target that only works on relevant modified files since the branch was made
fixup: modified_only_fixup extra_style_checks autogenerate_code extra_quality_checks
fixup: modified_only_fixup extra_style_checks autogenerate_code repo-consistency
# Make marked copies of snippets of codes conform to the original
@ -73,7 +88,7 @@ test:
# Run tests for examples
test-examples:
python -m pytest -n auto --dist=loadfile -s -v ./examples/
python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/
# Run tests for SageMaker DLC release
@ -81,11 +96,6 @@ test-sagemaker: # install sagemaker dependencies in advance with pip install .[s
TEST_SAGEMAKER=True python -m pytest -n auto -s -v ./tests/sagemaker
# Check that docs can build
docs:
cd docs && make html SPHINXOPTS="-W -j 4"
# Release stuff
pre-release:

317
README.md
View File

@ -16,42 +16,66 @@ limitations under the License.
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/transformers/master/docs/source/imgs/transformers_logo_name.png" width="400"/>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/transformers/index.html">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/transformers/index.html.svg?down_color=red&down_message=offline&up_message=online">
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<b>English</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a>
<p>
</h4>
<h3 align="center">
<p>State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0
<p>State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow</p>
</h3>
🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. Its aim is to make cutting-edge NLP easier to use for everyone.
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture can be used as a standalone and modified to enable quick research experiments.
🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
🤗 Transformers is backed by the two most popular deep learning libraries, [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/), with a seamless integration between them, allowing you to train your models with one then load it for inference with the other.
These models can be applied on:
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our [model hub](https://huggingface.co/models). At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
🤗 Transformers is backed by the three most popular deep learning libraries — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.
## Online demos
You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) to use those models.
You can test most of our models directly on their pages from the [model hub](https://huggingface.co/models). We also offer [private model hosting, versioning, & an inference API](https://huggingface.co/pricing) for public and private models.
Here are a few examples:
In Natural Language Processing:
- [Masked word completion with BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Name Entity Recognition with Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Text generation with GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
@ -60,24 +84,39 @@ Here are a few examples:
- [Question answering with DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Translation with T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
In Computer Vision:
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Image Segmentation with DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
In Audio:
- [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repos text generation capabilities.
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Quick tour
To immediately use a model on a given text, we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model training. Here is how to quickly use a pipeline to classify positive versus negative texts
To immediately use a model on a given input (text, image, audio, ...), we provide the `pipeline` API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to include pipeline into the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9978193640708923}]
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
The second line of code downloads and caches the pretrained model used by the pipeline, the third line evaluates it on the given text. Here the answer is "positive" with a confidence of 99.8%.
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
This is another example of pipeline used for that can extract question answers from some context:
Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context:
``` python
>>> from transformers import pipeline
@ -86,15 +125,15 @@ This is another example of pipeline used for that can extract question answers f
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline have been included in the huggingface/transformers repository'
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.5135612454720828, 'start': 35, 'end': 59, 'answer': 'huggingface/transformers'}
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
On top of the answer, the pretrained model used here returned its confidence score, along with the start position and its end position in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/transformers/task_summary.html).
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
To download and use any of the pretrained models on your given task, you just need to use those three lines of codes (PyTorch version):
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
```python
>>> from transformers import AutoTokenizer, AutoModel
@ -104,7 +143,7 @@ To download and use any of the pretrained models on your given task, you just ne
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
or for TensorFlow:
And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
@ -115,14 +154,14 @@ or for TensorFlow:
>>> outputs = model(**inputs)
```
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on one (or list) of texts (as we can see on the fourth line of both code examples). It will output a dictionary you can directly pass to your model (which is done on the fifth line).
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. For instance, [this tutorial](https://huggingface.co/transformers/training.html) explains how to integrate such a model in classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune the on a new dataset.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
## Why should I use transformers?
1. Easy-to-use state-of-the-art models:
- High performance on NLU and NLG tasks.
- High performance on natural language understanding & generation, computer vision, and audio tasks.
- Low barrier to entry for educators and practitioners.
- Few user-facing abstractions with just three classes to learn.
- A unified API for using all our pretrained models.
@ -130,44 +169,44 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 2,000 pretrained models, some in more than 100 languages.
- Dozens of architectures with over 20,000 pretrained models, some in more than 100 languages.
1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch frameworks at will.
- Seamlessly pick the right framework for training, evaluation, production.
- Move a single model between TF2.0/PyTorch/JAX frameworks at will.
- Seamlessly pick the right framework for training, evaluation and production.
1. Easily customize a model or an example to your needs:
- Examples for each architecture to reproduce the results by the official authors of said architecture.
- Expose the models internal as consistently as possible.
- We provide examples for each architecture to reproduce the results published by its original authors.
- Model internals are exposed as consistently as possible.
- Model files can be used independently of the library for quick experiments.
## Why shouldn't I use transformers?
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving in additional abstractions/files.
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
## Installation
### With pip
This repository is tested on Python 3.6+, PyTorch 1.0.0+ (PyTorch 1.3.1+ for [examples](https://github.com/huggingface/transformers/tree/master/examples)) and TensorFlow 2.0.
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of TensorFlow 2.0, PyTorch or Flax.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/pip#tensorflow-2.0-rc-is-available), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform and/or [Flax installation page](https://github.com/google/flax#quick-install).
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific install command for your platform.
When TensorFlow 2.0 and/or PyTorch has been installed, 🤗 Transformers can be installed using pip as follows:
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
```bash
pip install transformers
```
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/transformers/installation.html#installing-from-source).
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must [install the library from source](https://huggingface.co/docs/transformers/installation#installing-from-source).
### With conda
@ -179,86 +218,164 @@ Since Transformers version v4.0.0, we now have a conda channel: `huggingface`.
conda install -c huggingface transformers
```
Follow the installation pages of TensorFlow, PyTorch or Flax to see how to install them with conda.
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
## Models architectures
## Model architectures
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/transformers/model_summary.html) for a high-level summary of each them):
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them):
1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/transformers/model_doc/bart.html)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/transformers/model_doc/barthez.html)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BERT](https://huggingface.co/transformers/model_doc/bert.html)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/transformers/model_doc/bertgeneration.html)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BigBird-RoBERTa](https://huggingface.co/transformers/model_doc/bigbird.html)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/transformers/model_doc/blenderbot.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/transformers/model_doc/blenderbot_small.html)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BORT](https://huggingface.co/transformers/model_doc/bort.html)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[CamemBERT](https://huggingface.co/transformers/model_doc/camembert.html)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[ConvBERT](https://huggingface.co/transformers/model_doc/convbert.html)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[CTRL](https://huggingface.co/transformers/model_doc/ctrl.html)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval
for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon
Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[I-BERT](https://huggingface.co/transformers/model_doc/ibert.html)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer
1. **[LayoutLM](https://huggingface.co/transformers/model_doc/layoutlm.html)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LED](https://huggingface.co/transformers/model_doc/led.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[Longformer](https://huggingface.co/transformers/model_doc/longformer.html)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M2M100](https://huggingface.co/transformers/model_doc/m2m_100.html)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RoBERTa](https://huggingface.co/transformers/model_doc/roberta.html)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[SpeechToTextTransformer](https://huggingface.co/transformers/model_doc/speech_to_text.html)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SqueezeBert](https://huggingface.co/transformers/model_doc/squeezebert.html)** released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[T5](https://huggingface.co/transformers/model_doc/t5.html)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/transformers/model_doc/tapas.html)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[Transformer-XL](https://huggingface.co/transformers/model_doc/transformerxl.html)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[Vision Transformer (ViT)](https://huggingface.co/transformers/model_doc/vit.html)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[Wav2Vec2](https://huggingface.co/transformers/model_doc/wav2vec2.html)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[XLM](https://huggingface.co/transformers/model_doc/xlm.html)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/transformers/model_doc/xlmprophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/transformers/model_doc/xlmroberta.html)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLNet](https://huggingface.co/transformers/model_doc/xlnet.html)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLSR-Wav2Vec2](https://huggingface.co/transformers/model_doc/xlsr_wav2vec2.html)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
To check if each model has an implementation in PyTorch/TensorFlow/Flax or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/transformers/index.html#bigtable)
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations. You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://huggingface.co/docs/transformers/examples).
## Learn more
| Section | Description |
|-|-|
| [Documentation](https://huggingface.co/transformers/) | Full API documentation and tutorials |
| [Task summary](https://huggingface.co/transformers/task_summary.html) | Tasks supported by 🤗 Transformers |
| [Preprocessing tutorial](https://huggingface.co/transformers/preprocessing.html) | Using the `Tokenizer` class to prepare data for the models |
| [Training and fine-tuning](https://huggingface.co/transformers/training.html) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/master/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/transformers/model_sharing.html) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/transformers/migration.html) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
| [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials |
| [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers |
| [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/docs/transformers/migration) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |
## Citation

375
README_ko.md Normal file
View File

@ -0,0 +1,375 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<b>한국어</b>
<p>
</h4>
<h3 align="center">
<p> Jax, Pytorch, TensorFlow를 위한 최첨단 자연어처리</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers는 분류, 정보 추출, 질문 답변, 요약, 번역, 문장 생성 등을 100개 이상의 언어로 수행할 수 있는 수천개의 사전학습된 모델을 제공합니다. 우리의 목표는 모두가 최첨단의 NLP 기술을 쉽게 사용하는 것입니다.
🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
## 온라인 데모
대부분의 모델을 [모델 허브](https://huggingface.co/models) 페이지에서 바로 테스트해볼 수 있습니다. 공개 및 비공개 모델을 위한 [비공개 모델 호스팅, 버전 관리, 추론 API](https://huggingface.co/pricing)도 제공합니다.
예시:
- [BERT로 마스킹된 단어 완성하기](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Electra를 이용한 개체명 인식](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [GPT-2로 텍스트 생성하기](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [RoBERTa로 자연어 추론하기](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [BART를 이용한 요약](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
## Hugging Face 팀의 커스텀 지원을 원한다면
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## 퀵 투어
원하는 텍스트에 바로 모델을 사용할 수 있도록, 우리는 `pipeline` API를 제공합니다. Pipeline은 사전학습 모델과 그 모델을 학습할 때 적용한 전처리 방식을 하나로 합칩니다. 다음은 긍정적인 텍스트와 부정적인 텍스트를 분류하기 위해 pipeline을 사용한 간단한 예시입니다:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
코드의 두번째 줄은 pipeline이 사용하는 사전학습 모델을 다운로드하고 캐시로 저장합니다. 세번째 줄에선 그 모델이 주어진 텍스트를 평가합니다. 여기서 모델은 99.97%의 확률로 텍스트가 긍정적이라고 평가했습니다.
많은 NLP 과제들을 `pipeline`으로 바로 수행할 수 있습니다. 예를 들어, 질문과 문맥이 주어지면 손쉽게 답변을 추출할 수 있습니다:
``` python
>>> from transformers import pipeline
# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
답변뿐만 아니라, 여기에 사용된 사전학습 모델은 확신도와 토크나이즈된 문장 속 답변의 시작점, 끝점까지 반환합니다. [이 튜토리얼](https://huggingface.co/docs/transformers/task_summary)에서 `pipeline` API가 지원하는 다양한 과제를 확인할 수 있습니다.
코드 3줄로 원하는 과제에 맞게 사전학습 모델을 다운로드 받고 사용할 수 있습니다. 다음은 PyTorch 버전입니다:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
다음은 TensorFlow 버전입니다:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
토크나이저는 사전학습 모델의 모든 전처리를 책임집니다. 그리고 (위의 예시처럼) 1개의 스트링이나 리스트도 처리할 수 있습니다. 토크나이저는 딕셔너리를 반환하는데, 이는 다운스트림 코드에 사용하거나 언패킹 연산자 ** 를 이용해 모델에 바로 전달할 수도 있습니다.
모델 자체는 일반적으로 사용되는 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)나 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)입니다. [이 튜토리얼](https://huggingface.co/transformers/training.html)은 이러한 모델을 표준적인 PyTorch나 TensorFlow 학습 과정에서 사용하는 방법, 또는 새로운 데이터로 fine-tune하기 위해 `Trainer` API를 사용하는 방법을 설명해줍니다.
## 왜 transformers를 사용해야 할까요?
1. 손쉽게 사용할 수 있는 최첨단 모델:
- NLU와 NLG 과제에서 뛰어난 성능을 보입니다.
- 교육자 실무자에게 진입 장벽이 낮습니다.
- 3개의 클래스만 배우면 바로 사용할 수 있습니다.
- 하나의 API로 모든 사전학습 모델을 사용할 수 있습니다.
1. 더 적은 계산 비용, 더 적은 탄소 발자국:
- 연구자들은 모델을 계속 다시 학습시키는 대신 학습된 모델을 공유할 수 있습니다.
- 실무자들은 학습에 필요한 시간과 비용을 절약할 수 있습니다.
- 수십개의 모델 구조, 2,000개 이상의 사전학습 모델, 100개 이상의 언어로 학습된 모델 등.
1. 모델의 각 생애주기에 적합한 프레임워크:
- 코드 3줄로 최첨단 모델을 학습하세요.
- 자유롭게 모델을 TF2.0나 PyTorch 프레임워크로 변환하세요.
- 학습, 평가, 공개 등 각 단계에 맞는 프레임워크를 원하는대로 선택하세요.
1. 필요한 대로 모델이나 예시를 커스터마이즈하세요:
- 우리는 저자가 공개한 결과를 재현하기 위해 각 모델 구조의 예시를 제공합니다.
- 모델 내부 구조는 가능한 일관적으로 공개되어 있습니다.
- 빠른 실험을 위해 모델 파일은 라이브러리와 독립적으로 사용될 수 있습니다.
## 왜 transformers를 사용하지 말아야 할까요?
- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다.
- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요.
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
## 설치
### pip로 설치하기
이 저장소는 Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+, TensorFlow 2.3+에서 테스트 되었습니다.
[가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Transformers를 설치하세요. Python 가상 환경에 익숙하지 않다면, [사용자 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 확인하세요.
우선, 사용할 Python 버전으로 가상 환경을 만들고 실행하세요.
그 다음, Flax, PyTorch, TensorFlow 중 적어도 하나는 설치해야 합니다.
플랫폼에 맞는 설치 명령어를 확인하기 위해 [TensorFlow 설치 페이지](https://www.tensorflow.org/install/), [PyTorch 설치 페이지](https://pytorch.org/get-started/locally/#start-locally), [Flax 설치 페이지](https://github.com/google/flax#quick-install)를 확인하세요.
이들 중 적어도 하나가 설치되었다면, 🤗 Transformers는 다음과 같이 pip을 이용해 설치할 수 있습니다:
```bash
pip install transformers
```
예시들을 체험해보고 싶거나, 최최최첨단 코드를 원하거나, 새로운 버전이 나올 때까지 기다릴 수 없다면 [라이브러리를 소스에서 바로 설치](https://huggingface.co/docs/transformers/installation#installing-from-source)하셔야 합니다.
### conda로 설치하기
Transformers 버전 v4.0.0부터, conda 채널이 생겼습니다: `huggingface`.
🤗 Transformers는 다음과 같이 conda로 설치할 수 있습니다:
```shell script
conda install -c huggingface transformers
```
Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 방법을 확인하세요.
## 모델 구조
**🤗 Transformers가 제공하는 [모든 모델 체크포인트](https://huggingface.co/models)** 는 huggingface.co [모델 허브](https://huggingface.co)에 완벽히 연동되어 있습니다. [개인](https://huggingface.co/users)과 [기관](https://huggingface.co/organizations)이 모델 허브에 직접 업로드할 수 있습니다.
현재 사용 가능한 모델 체크포인트의 개수: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers는 다음 모델들을 제공합니다 (각 모델의 요약은 [여기](https://huggingface.co/docs/transformers/model_summary)서 확인하세요):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.
이 구현은 여러 데이터로 검증되었고 (예시 스크립트를 참고하세요) 오리지널 구현의 성능과 같아야 합니다. [도큐먼트](https://huggingface.co/docs/transformers/examples)의 Examples 섹션에서 성능에 대한 자세한 설명을 확인할 수 있습니다.
## 더 알아보기
| 섹션 | 설명 |
|-|-|
| [도큐먼트](https://huggingface.co/transformers/) | 전체 API 도큐먼트와 튜토리얼 |
| [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 |
| [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 |
| [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 |
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
| [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 |
| [마이그레이션](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기|
## 인용
🤗 Transformers 라이브러리를 인용하고 싶다면, 이 [논문](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)을 인용해 주세요:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

400
README_zh-hans.md Normal file
View File

@ -0,0 +1,400 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Chinese translation of Hugging Face documentation
- Add space around English words and numbers when they appear between Chinese characters. E.g., 共 100 多种语言; 使用 transformers 库。
- Use square quotes, e.g.,「引用」
Dictionary
Hugging Face: 抱抱脸
token: 词符(并用括号标注原英文)
tokenize: 词符化(并用括号标注原英文)
tokenizer: 词符化器(并用括号标注原英文)
transformer: transformer不翻译
pipeline: 流水线
API: API (不翻译)
inference: 推理
Trainer: 训练器。当作为类名出现时不翻译。
pretrained/pretrain: 预训练
finetune: 微调
community: 社区
example: 当特指仓库中 example 目录时翻译为「用例」
Python data structures (e.g., list, set, dict): 翻译为列表,集合,词典,并用括号标注原英文
NLP/Natural Language Processing: 以 NLP 出现时不翻译,以 Natural Language Processing 出现时翻译为自然语言处理
checkpoint: 检查点
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<b>简体中文</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a>
<p>
</h4>
<h3 align="center">
<p>为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 [model hub](https://huggingface.co/models) 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/) — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。
## 在线演示
你可以直接在模型页面上测试大多数 [model hub](https://huggingface.co/models) 上的模型。 我们也提供了 [私有模型托管、模型版本管理以及推理API](https://huggingface.co/pricing)。
这里是一些例子:
- [用 BERT 做掩码填词](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [用 Electra 做命名实体识别](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [用 RoBERTa 做自然语言推理](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [用 DistilBERT 做问答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [用 T5 做翻译](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,由抱抱脸团队打造,是一个文本生成的官方 demo。
## 如果你在寻找由抱抱脸团队提供的定制化支持服务
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## 快速上手
我们为快速使用模型提供了 `pipeline` 流水线API。流水线聚合了预训练模型和对应的文本预处理。下面是一个快速使用流水线去判断正负面情绪的例子
```python
>>> from transformers import pipeline
# 使用情绪分析流水线
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
第二行代码下载并缓存了流水线使用的预训练模型,而第三行代码则在给定的文本上进行了评估。这里的答案“正面” (positive) 具有 99 的置信度。
许多的 NLP 任务都有开箱即用的预训练流水线。比如说,我们可以轻松的从给定文本中抽取问题答案:
``` python
>>> from transformers import pipeline
# 使用问答流水线
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
除了给出答案,预训练模型还给出了对应的置信度分数、答案在词符化 (tokenized) 后的文本中开始和结束的位置。你可以从[这个教程](https://huggingface.co/docs/transformers/task_summary)了解更多流水线API支持的任务。
要在你的任务上下载和使用任意预训练模型也很简单,只需三行代码。这里是 PyTorch 版的示例:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
这里是等效的 TensorFlow 代码:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
词符化器 (tokenizer) 为所有的预训练模型提供了预处理,并可以直接对单个字符串进行调用(比如上面的例子)或对列表 (list) 调用。它会输出一个你可以在下游代码里使用或直接通过 `**` 解包表达式传给模型的词典 (dict)。
模型本身是一个常规的 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) 或 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(取决于你的后端),可以常规方式使用。 [这个教程](https://huggingface.co/transformers/training.html)解释了如何将这样的模型整合到经典的 PyTorch 或 TensorFlow 训练循环中,或是如何使用我们的 `Trainer` 训练器API 来在一个新的数据集上快速微调。
## 为什么要用 transformers
1. 便于使用的先进模型:
- NLU 和 NLG 上表现优越
- 对教学和实践友好且低门槛
- 高级抽象,只需了解三个类
- 对所有模型统一的API
1. 更低计算开销,更少的碳排放:
- 研究人员可以分享亿训练的模型而非次次从头开始训练
- 工程师可以减少计算用时和生产环境开销
- 数十种模型架构、两千多个预训练模型、100多种语言支持
1. 对于模型生命周期的每一个部分都面面俱到:
- 训练先进的模型,只需 3 行代码
- 模型在不同深度学习框架间任意转移,随你心意
- 为训练、评估和生产选择最适合的框架,衔接无缝
1. 为你的需求轻松定制专属模型和用例:
- 我们为每种模型架构提供了多个用例来复现原论文结果
- 模型内部结构保持透明一致
- 模型文件可单独使用,方便魔改和快速实验
## 什么情况下我不该用 transformers
- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。
- `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
## 安装
### 使用 pip
这个仓库已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下经过测试。
你可以在[虚拟环境](https://docs.python.org/3/library/venv.html)中安装 🤗 Transformers。如果你还不熟悉 Python 的虚拟环境,请阅此[用户说明](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
首先,用你打算使用的版本的 Python 创建一个虚拟环境并激活。
然后,你需要安装 Flax、PyTorch 或 TensorFlow 其中之一。关于在你使用的平台上安装这些框架,请参阅 [TensorFlow 安装页](https://www.tensorflow.org/install/), [PyTorch 安装页](https://pytorch.org/get-started/locally/#start-locally) 或 [Flax 安装页](https://github.com/google/flax#quick-install)。
当这些后端之一安装成功后, 🤗 Transformers 可依此安装:
```bash
pip install transformers
```
如果你想要试试用例或者想在正式发布前使用最新的开发中代码,你得[从源代码安装](https://huggingface.co/docs/transformers/installation#installing-from-source)。
### 使用 conda
自 Transformers 4.0.0 版始,我们有了一个 conda 频道: `huggingface`。
🤗 Transformers 可以通过 conda 依此安装:
```shell script
conda install -c huggingface transformers
```
要通过 conda 安装 Flax、PyTorch 或 TensorFlow 其中之一,请参阅它们各自安装页的说明。
## 模型架构
🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。
目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers 目前支持如下的架构(模型概述请阅[这里](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (来自 Google Research and the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (来自 Facebook) 伴随论文 [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) 由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer 发布。
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (来自 École polytechnique) 伴随论文 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) 由 Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis 发布。
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (来自 VinAI Research) 伴随论文 [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) 由 Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen 发布。
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (来自 Microsoft) 伴随论文 [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) 由 Hangbo Bao, Li Dong, Furu Wei 发布。
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (来自 Google) 伴随论文 [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) 由 Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova 发布。
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (来自 Google) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (来自 VinAI Research) 伴随论文 [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) 由 Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen 发布。
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (来自 ASAPP) 伴随论文 [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) 由 Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi 发布。
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器tokenizer敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
这些实现均已于多个数据集测试(请参看用例脚本)并应于原版实现表现相当。你可以在用例文档的[此节](https://huggingface.co/docs/transformers/examples)中了解表现的细节。
## 了解更多
| 章节 | 描述 |
|-|-|
| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 |
| [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 |
| [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers |
## 引用
我们已将此库的[论文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式发表,如果你使用了 🤗 Transformers 库,请引用:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

412
README_zh-hant.md Normal file
View File

@ -0,0 +1,412 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!---
A useful guide for English-Traditional Chinese translation of Hugging Face documentation
- Add space around English words and numbers when they appear between Chinese characters. E.g., 共 100 多種語言; 使用 transformers 函式庫。
- Use square quotes, e.g.,「引用」
- Some of terms in the file can be found at National Academy for Educational Research (https://terms.naer.edu.tw/), an official website providing bilingual translations between English and Traditional Chinese.
Dictionary
API: API (不翻譯)
add: 加入
checkpoint: 檢查點
code: 程式碼
community: 社群
confidence: 信賴度
dataset: 資料集
documentation: 文件
example: 基本翻譯為「範例」,或依語意翻為「例子」
finetune: 微調
Hugging Face: Hugging Face不翻譯
implementation: 實作
inference: 推論
library: 函式庫
module: 模組
NLP/Natural Language Processing: 以 NLP 出現時不翻譯,以 Natural Language Processing 出現時翻譯為自然語言處理
online demos: 線上Demo
pipeline: pipeline不翻譯
pretrained/pretrain: 預訓練
Python data structures (e.g., list, set, dict): 翻譯為串列,集合,字典,並用括號標註原英文
repository: repository不翻譯
summary: 概覽
token-: token-(不翻譯)
Trainer: Trainer不翻譯
transformer: transformer不翻譯
tutorial: 教學
user: 使用者
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<b>繁體中文</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a>
<p>
</h4>
<h3 align="center">
<p>為 Jax、PyTorch 以及 TensorFlow 打造的先進自然語言處理函式庫</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers 提供了數以千計的預訓練模型,支援 100 多種語言的文本分類、資訊擷取、問答、摘要、翻譯、文本生成。它的宗旨是讓最先進的 NLP 技術人人易用。
🤗 Transformers 提供了便於快速下載和使用的API讓你可以將預訓練模型用在給定文本、在你的資料集上微調然後經由 [model hub](https://huggingface.co/models) 與社群共享。同時,每個定義的 Python 模組架構均完全獨立,方便修改和快速研究實驗。
🤗 Transformers 支援三個最熱門的深度學習函式庫: [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) 以及 [TensorFlow](https://www.tensorflow.org/) — 並與之完美整合。你可以直接使用其中一個框架訓練你的模型,然後用另一個載入和推論。
## 線上Demo
你可以直接在 [model hub](https://huggingface.co/models) 上測試大多數的模型。我們也提供了 [私有模型託管、模型版本管理以及推論API](https://huggingface.co/pricing)。
這裡是一些範例:
- [用 BERT 做遮蓋填詞](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [用 Electra 做專有名詞辨識](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [用 GPT-2 做文本生成](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [用 RoBERTa 做自然語言推論](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [用 BART 做文本摘要](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [用 DistilBERT 做問答](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [用 T5 做翻譯](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Write With Transformer](https://transformer.huggingface.co)**,由 Hugging Face 團隊所打造,是一個文本生成的官方 demo。
## 如果你在尋找由 Hugging Face 團隊所提供的客製化支援服務
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## 快速上手
我們為快速使用模型提供了 `pipeline` API。 Pipeline 包含了預訓練模型和對應的文本預處理。下面是一個快速使用 pipeline 去判斷正負面情緒的例子:
```python
>>> from transformers import pipeline
# 使用情緒分析 pipeline
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
第二行程式碼下載並快取 pipeline 使用的預訓練模型,而第三行程式碼則在給定的文本上進行了評估。這裡的答案“正面” (positive) 具有 99.97% 的信賴度。
許多的 NLP 任務都有隨選即用的預訓練 `pipeline`。例如,我們可以輕鬆地從給定文本中擷取問題答案:
``` python
>>> from transformers import pipeline
# 使用問答 pipeline
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
```
除了提供問題解答,預訓練模型還提供了對應的信賴度分數以及解答在 tokenized 後的文本中開始和結束的位置。你可以從[這個教學](https://huggingface.co/docs/transformers/task_summary)了解更多 `pipeline` API支援的任務。
要在你的任務中下載和使用任何預訓練模型很簡單,只需三行程式碼。這裡是 PyTorch 版的範例:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
這裡是對應的 TensorFlow 程式碼:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換單一字串(比如上面的例子)或串列 (list)。它會輸出一個的字典 (dict) 讓你可以在下游程式碼裡使用或直接藉由 `**` 運算式傳給模型。
模型本身是一個常規的 [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) 或 [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model)(取決於你的後端),可依常規方式使用。 [這個教學](https://huggingface.co/transformers/training.html)解釋了如何將這樣的模型整合到一般的 PyTorch 或 TensorFlow 訓練迴圈中,或是如何使用我們的 `Trainer` API 在一個新的資料集上快速進行微調。
## 為什麼要用 transformers
1. 便於使用的先進模型:
- NLU 和 NLG 上性能卓越
- 對教學和實作友好且低門檻
- 高度抽象,使用者只須學習 3 個類別
- 對所有模型使用的制式化API
1. 更低的運算成本,更少的碳排放:
- 研究人員可以分享預訓練的模型而非從頭開始訓練
- 工程師可以減少計算時間以及生產成本
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援
1. 對於模型生命週期的每一個部分都面面俱到:
- 訓練先進的模型,只需 3 行程式碼
- 模型可以在不同深度學習框架之間任意轉換
- 為訓練、評估和生產選擇最適合的框架,並完美銜接
1. 為你的需求輕鬆客製化專屬模型和範例:
- 我們為每種模型架構提供了多個範例來重現原論文結果
- 一致的模型內部架構
- 模型檔案可單獨使用,便於修改和快速實驗
## 什麼情況下我不該用 transformers
- 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。
- `Trainer` API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。
- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/main/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
## 安裝
### 使用 pip
這個 Repository 已在 Python 3.6+、Flax 0.3.2+、PyTorch 1.3.1+ 和 TensorFlow 2.3+ 下經過測試。
你可以在[虛擬環境](https://docs.python.org/3/library/venv.html)中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此[使用者指引](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)。
首先,用你打算使用的版本的 Python 創建一個虛擬環境並進入。
然後,你需要安裝 Flax、PyTorch 或 TensorFlow 其中之一。對於該如何在你使用的平台上安裝這些框架,請參閱 [TensorFlow 安裝頁面](https://www.tensorflow.org/install/), [PyTorch 安裝頁面](https://pytorch.org/get-started/locally/#start-locally) 或 [Flax 安裝頁面](https://github.com/google/flax#quick-install)。
當其中一個後端安裝成功後,🤗 Transformers 可依此安裝:
```bash
pip install transformers
```
如果你想要試試範例或者想在正式發布前使用最新開發中的程式碼,你必須[從原始碼安裝](https://huggingface.co/docs/transformers/installation#installing-from-source)。
### 使用 conda
自 Transformers 4.0.0 版始,我們有了一個 conda channel `huggingface`。
🤗 Transformers 可以藉由 conda 依此安裝:
```shell script
conda install -c huggingface transformers
```
要藉由 conda 安裝 Flax、PyTorch 或 TensorFlow 其中之一,請參閱它們各自安裝頁面的說明。
## 模型架構
**🤗 Transformers 支援的[所有的模型檢查點](https://huggingface.co/models)**,由[使用者](https://huggingface.co/users)和[組織](https://huggingface.co/organizations)上傳,均與 huggingface.co [model hub](https://huggingface.co) 完美結合。
目前的檢查點數量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers 目前支援以下的架構(模型概覽請參閱[這裡](https://huggingface.co/docs/transformers/model_summary)
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
這些實作均已於多個資料集測試(請參閱範例腳本)並應與原版實作表現相當。你可以在範例文件的[此節](https://huggingface.co/docs/transformers/examples)中了解實作的細節。
## 了解更多
| 章節 | 描述 |
|-|-|
| [文件](https://huggingface.co/transformers/) | 完整的 API 文件和教學 |
| [任務概覽](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支援的任務 |
| [預處理教學](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 來為模型準備資料 |
| [訓練和微調](https://huggingface.co/docs/transformers/training) | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/main/examples) | 為各種任務提供的範例腳本 |
| [模型分享和上傳](https://huggingface.co/docs/transformers/model_sharing) | 上傳並與社群分享你微調的模型 |
| [遷移](https://huggingface.co/docs/transformers/migration) | 從 `pytorch-transformers` 或 `pytorch-pretrained-bert` 遷移到 🤗 Transformers |
## 引用
我們已將此函式庫的[論文](https://www.aclweb.org/anthology/2020.emnlp-demos.6/)正式發表。如果你使用了 🤗 Transformers 函式庫,可以引用:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

78
conftest.py Normal file
View File

@ -0,0 +1,78 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
git_repo_path = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def pytest_configure(config):
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipeline are tested")
config.addinivalue_line(
"markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested"
)
config.addinivalue_line(
"markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested"
)
config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment")
def pytest_addoption(parser):
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(parser)
def pytest_terminal_summary(terminalreporter):
from transformers.testing_utils import pytest_terminal_summary_main
make_reports = terminalreporter.config.getoption("--make-reports")
if make_reports:
pytest_terminal_summary_main(terminalreporter, id=make_reports)
def pytest_sessionfinish(session, exitstatus):
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
session.exitstatus = 0
# Doctest custom flag to ignore output.
IGNORE_RESULT = doctest.register_optionflag('IGNORE_RESULT')
OutputChecker = doctest.OutputChecker
class CustomOutputChecker(OutputChecker):
def check_output(self, want, got, optionflags):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self, want, got, optionflags)
doctest.OutputChecker = CustomOutputChecker

View File

@ -0,0 +1,50 @@
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='1.12.0'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='1.11.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu113'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# TODO: Handle these in a python utility script
RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
# TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI).
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow
RUN python3 -m pip uninstall -y flax jax
# Use installed torch version for `torch-scatter` to avid to deal with PYTORCH='pre'.
# If torch is nightly version, the link is likely to be invalid, but the installation falls back to the latest torch-scatter
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+$CUDA.html
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://software.intel.com/ipex-whl-stable
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -0,0 +1,20 @@
FROM python:3.8
LABEL maintainer="Hugging Face"
RUN apt update
RUN git clone https://github.com/huggingface/transformers
RUN python3 -m pip install --no-cache-dir --upgrade pip && python3 -m pip install --no-cache-dir git+https://github.com/huggingface/doc-builder ./transformers[dev]
RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y tesseract-ocr
# Torch needs to be installed before deepspeed
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python -c "from torch import version; print(version.__version__.split('+')[0])")+cpu.html
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install --no-cache-dir pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# Test if the image could successfully build the doc. before publishing the image
RUN doc-builder build transformers transformers/docs/source/en --build_dir doc-build-dev --notebook_dir notebooks/transformers_doc --clean
RUN rm -rf doc-build-dev

View File

@ -0,0 +1,43 @@
ARG BASE_DOCKER_IMAGE="nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04"
FROM $BASE_DOCKER_IMAGE
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
ARG FRAMEWORK
ARG VERSION
# Remove all frameworks
# (`accelerate` requires `torch`, and this causes import issues for TF-only testing)
RUN python3 -m pip uninstall -y torch torchvision torchaudio accelerate tensorflow jax flax
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
# Install the target framework
RUN echo "INSTALL_CMD = $INSTALL_CMD"
RUN $INSTALL_CMD
# Having installation problems for torch-scatter with torch <= 1.6. Disable so we have the same set of tests.
# (This part will be removed once the logic of using `past_ci_versions.py` is used in other Dockerfile files.)
# # Use installed torch version for `torch-scatter`.
# # (The env. variable $CUDA is defined in `past_ci_versions.py`)
# RUN [ "$FRAMEWORK" = "pytorch" ] && python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+$CUDA.html || echo "torch-scatter not to be installed"
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -0,0 +1,35 @@
FROM nvcr.io/nvidia/pytorch:21.03-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='1.12.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu113'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -0,0 +1,35 @@
FROM nvcr.io/nvidia/pytorch:21.03-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu113'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Disable for now as deepspeed is not installed above. To be enabled once the issue is fixed.
# RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -1,30 +1,31 @@
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
ARG DEBIAN_FRONTEND=noninteractive
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
torch
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
RUN git clone https://github.com/NVIDIA/apex
RUN cd apex && \
python3 setup.py install && \
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing]
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
# If set to nothing, will install the latest version
ARG PYTORCH='1.12.0'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
CMD ["/bin/bash"]
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+cu113.html
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,7 +1,7 @@
FROM google/cloud-sdk:slim
# Build args.
ARG GITHUB_REF=refs/heads/master
ARG GITHUB_REF=refs/heads/main
# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7
# wheels available; see below.
@ -53,7 +53,7 @@ RUN git clone https://github.com/huggingface/transformers.git && \
git checkout CI && \
cd .. && \
pip install ./transformers && \
pip install -r ./transformers/examples/requirements.txt && \
pip install -r ./transformers/examples/pytorch/_test_requirements.txt && \
pip install pytest
RUN python -c "import torch_xla; print(torch_xla.__version__)"

View File

@ -27,7 +27,7 @@ local bertBaseCased = base.BaseTest {
},
command: utils.scriptCommand(
|||
python -m pytest -s transformers/examples/test_xla_examples.py -v
python -m pytest -s transformers/examples/pytorch/test_xla_examples.py -v
test_exit_code=$?
echo "\nFinished running commands.\n"
test $test_exit_code -eq 0

View File

@ -1,25 +1,23 @@
FROM nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
ARG DEBIAN_FRONTEND=noninteractive
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
tensorflow
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
CMD ["/bin/bash"]
# If set to nothing, will install the latest version
ARG TENSORFLOW=''
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,19 +0,0 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
SOURCEDIR = source
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

View File

@ -23,6 +23,12 @@ you can install them with the following command, at the root of the code reposit
pip install -e ".[docs]"
```
Then you need to install our special tool that builds the documentation:
```bash
pip install git+https://github.com/huggingface/doc-builder
```
---
**NOTE**
@ -31,99 +37,88 @@ check how they look like before committing for instance). You don't have to comm
---
## Packages installed
Here's an overview of all the packages installed. If you ran the previous command installing all packages from
`requirements.txt`, you do not need to run the following commands.
Building it requires the package `sphinx` that you can
install using:
```bash
pip install -U sphinx
```
You would also need the custom installed [theme](https://github.com/readthedocs/sphinx_rtd_theme) by
[Read The Docs](https://readthedocs.org/). You can install it using the following command:
```bash
pip install sphinx_rtd_theme
```
The third necessary package is the `recommonmark` package to accept Markdown as well as Restructured text:
```bash
pip install recommonmark
```
## Building the documentation
Once you have setup `sphinx`, you can build the documentation by running the following command in the `/docs` folder:
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
make html
doc-builder build transformers docs/source/ --build_dir ~/tmp/test-build
```
A folder called ``_build/html`` should have been created. You can now open the file ``_build/html/index.html`` in your
browser.
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
---
**NOTE**
If you are adding/removing elements from the toc-tree or from any structural item, it is recommended to clean the build
directory before rebuilding. Run the following command to clean and build:
```bash
make clean && make html
```
It's not possible to see locally how the final documentation will look like for now. Once you have opened a PR, you
will see a bot add a comment to a link where the documentation with your changes lives.
---
It should build the static app that will be available under `/docs/_build/html`
## Adding a new element to the navigation bar
## Adding a new element to the tree (toc-tree)
Accepted files are Markdown (.md or .mdx).
Accepted files are reStructuredText (.rst) and Markdown (.md). Create a file with its extension and put it
in the source directory. You can then link it to the toc-tree by putting the filename without the extension.
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/_toctree.yml) file.
## Preview the documentation in a pull request
## Renaming section headers and moving sections
Once you have made your pull request, you can check what the documentation will look like after it's merged by
following these steps:
It helps to keep the old links working when renaming section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums and Social media and it'd be make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course if you moved it to another file, then:
```
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
```
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved sections set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/main_classes/trainer.mdx).
- Look at the checks at the bottom of the conversation page of your PR (you may need to click on "show all checks" to
expand them).
- Click on "details" next to the `ci/circleci: build_doc` check.
- In the new window, click on the "Artifacts" tab.
- Locate the file "docs/_build/html/index.html" (or any specific page you want to check) and click on it to get a
preview.
## Writing Documentation - Specification
The `huggingface/transformers` documentation follows the
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style. It is
mostly written in ReStructuredText
([Sphinx simple documentation](https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html),
[Sourceforge complete documentation](https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html)).
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings,
although we can write them directly in Markdown.
### Adding a new tutorial
Adding a new tutorial or section is done in two steps:
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `./source/index.rst` on the correct toc-tree.
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users or researchers) it should go in section two, three or
four.
### Translating
When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md).
### Adding a new model
When adding a new model:
- Create a file `xxx.rst` under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Link that file in `./source/index.rst` on the `model_doc` toc-tree.
- Create a file `xxx.mdx` or under `./source/model_doc` (don't hesitate to copy an existing file as template).
- Link that file in `./source/_toctree.yml`.
- Write a short overview of the model:
- Overview with paper & authors
- Paper abstract
@ -137,64 +132,82 @@ When adding a new model:
- PyTorch head models
- TensorFlow base model
- TensorFlow head models
- Flax base model
- Flax head models
These classes should be added using our Markdown syntax. Usually as follows:
These classes should be added using the RST syntax. Usually as follows:
```
XXXConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## XXXConfig
.. autoclass:: transformers.XXXConfig
:members:
[[autodoc]] XXXConfig
```
This will include every public method of the configuration that is documented. If for some reason you wish for a method
not to be displayed in the documentation, you can do so by specifying which methods should be in the docs:
```
XXXTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## XXXTokenizer
.. autoclass:: transformers.XXXTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
[[autodoc]] XXXTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
```
If you just want to add a method that is not documented (for instance magic method like `__call__` are not documented
byt default) you can put the list of methods to add in a list that contains `all`:
```
## XXXTokenizer
[[autodoc]] XXXTokenizer
- all
- __call__
```
### Writing source documentation
Values that should be put in `code` should either be surrounded by double backticks: \`\`like so\`\` or be written as
an object using the :obj: syntax: :obj:\`like so\`. Note that argument names and objects like True, None or any strings
should usually be put in `code`.
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None or any strings should usually be put in `code`.
When mentionning a class, it is recommended to use the :class: syntax as the mentioned class will be automatically
linked by Sphinx: :class:\`~transformers.XXXClass\`
When mentioning a class, function or method, it is recommended to use our syntax for internal links so that our tool
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
When mentioning a function, it is recommended to use the :func: syntax as the mentioned function will be automatically
linked by Sphinx: :func:\`~transformers.function\`.
If you want to create a link to some internal class or function, you need to
provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converted into a link with
`utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
When mentioning a method, it is recommended to use the :meth: syntax as the mentioned method will be automatically
linked by Sphinx: :meth:\`~transformers.XXXClass.method\`.
Links should be done as so (note the double underscore at the end): \`text for the link <./local-link-or-global-link#loc>\`__
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
#### Defining arguments in a method
Arguments should be defined with the `Args:` prefix, followed by a line return and an indentation.
The argument should be followed by its type, with its shape if it is a tensor, and a line return.
Another indentation is necessary before writing the description of the argument.
Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon and its
description:
```
Args:
n_layers (`int`): The number of layers of the model.
```
If the description is too long to fit in one line, another indentation is necessary before writing the description
after th argument.
Here's an example showcasing everything so far:
```
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.AlbertTokenizer`.
See :meth:`~transformers.PreTrainedTokenizer.encode` and
:meth:`~transformers.PreTrainedTokenizer.__call__` for details.
Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and
[`~PreTrainedTokenizer.__call__`] for details.
`What are input IDs? <../glossary.html#input-ids>`__
[What are input IDs?](../glossary#input-ids)
```
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
@ -208,93 +221,190 @@ then its documentation should look like this:
```
Args:
x (:obj:`str`, `optional`):
x (`str`, *optional*):
This argument controls ...
a (:obj:`float`, `optional`, defaults to 1):
a (`float`, *optional*, defaults to 1):
This argument is used to ...
```
Note that we always omit the "defaults to :obj:\`None\`" when None is the default for any argument. Also note that even
Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
however write as many lines as you want in the indented description (see the example above with `input_ids`).
#### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done like so:
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
```
Example::
# first line of code
# second line
# etc
# first line of code
# second line
# etc
```
The `Example` string at the beginning can be replaced by anything as long as there are two semicolons following it.
````
We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test
the results stay consistent with the library.
#### Writing a return block
Arguments should be defined with the `Args:` prefix, followed by a line return and an indentation.
The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation.
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
building the return.
Here's an example for tuple return, comprising several objects:
```
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
Here's an example for a single value return:
```
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
#### Adding a new section
In ReST section headers are designated as such with the help of a line of underlying characters, e.g.,:
Here's an example for tuple return, comprising several objects:
```
Section 1
^^^^^^^^^^^^^^^^^^
Sub-section 1
~~~~~~~~~~~~~~~~~~
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
ReST allows the use of any characters to designate different section levels, as long as they are used consistently within the same document. For details see [sections doc](https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections). Because there is no standard different documents often end up using different characters for the same levels which makes it very difficult to know which character to use when creating a new section.
#### Adding an image
Specifically, if when running `make docs` you get an error like:
```
docs/source/main_classes/trainer.rst:127:Title level inconsistent:
```
you picked an inconsistent character for some of the levels.
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
to this dataset.
But how do you know which characters you must use for an already existing level or when adding a new level?
## Styling the docstring
We have an automatic script running with the `make style` comment that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.
# Testing documentation examples
Good documentation oftens comes with an example of how a specific function or class should be used.
Each model class should contain at least one example showcasing
how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
includes an example of how to transcribe speech to text in the
[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward).
## Writing documenation examples
The syntax for Example docstrings can look as follows:
You can use this helper script:
```
perl -ne '/^(.)\1{100,}/ && do { $h{$1}=++$c if !$h{$1} }; END { %h = reverse %h ; print "$_ $h{$_}\n" for sort keys %h}' docs/source/main_classes/trainer.rst
1 -
2 ~
3 ^
4 =
5 "
Example:
```python
>>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> # transcribe speech
>>> transcription = processor.batch_decode(predicted_ids)
>>> transcription[0]
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
```
```
This tells you which characters have already been assigned for each level.
The docstring should give a minimal, clear example of how the respective model
is to be used in inference and also include the expected (ideally sensible)
output.
Often, readers will try out the example before even going through the function
or class definitions. Therefore it is of utmost importance that the example
works as expected.
So using this particular example's output -- if your current section's header uses `=` as its underline character, you now know you're at level 4, and if you want to add a sub-section header you know you want `"` as it'd level 5.
## Docstring testing
If you needed to add yet another sub-level, then pick a character that is not used already. That is you must pick a character that is not in the output of that script.
To do so each example should be included in the doctests.
We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to verify that all of our examples run correctly.
For Transformers, the doctests are run on a daily basis via GitHub Actions as can be
seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml).
Here is the full list of characters that can be used in this context: `= - ` : ' " ~ ^ _ * + # < >`
To include your example in the daily doctests, you need add the filename that
contains the example docstring to the [documentation_tests.txt](../utils/documentation_tests.txt).
### For Python files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
If you work on a specific python module, say `modeling_wav2vec2.py`, you can run the command as follows (to avoid the unnecessary temporary changes in irrelevant files):
```bash
python utils/prepare_for_doc_test.py src/transformers/utils/doc.py src/transformers/models/wav2vec2/modeling_wav2vec2.py
```
(`utils/doc.py` should always be included)
Then you can run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure
```
If you want to isolate a specific docstring, just add `::` after the file name then type the whole path of the function/class/method whose docstring you want to test. For instance, here is how to just test the forward method of `Wav2Vec2ForCTC`:
```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### For Markdown files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
Then you can test locally a given file with this command (here testing the quicktour):
```bash
pytest --doctest-modules docs/source/quicktour.mdx -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### Writing doctests
Here are a few tips to help you debug the doctests and make them pass:
- The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are:
* whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable.
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configure to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
- Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute
- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it.

58
docs/TRANSLATING.md Normal file
View File

@ -0,0 +1,58 @@
### Translating the Transformers documentation into your language
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
**🗞️ Open an issue**
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
**🍴 Fork the repository**
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
```bash
git clone https://github.com/YOUR-USERNAME/transformers.git
```
**📋 Copy-paste the English version with a new language code**
The documentation files are in one leading directory:
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
```bash
cd ~/path/to/transformers/docs
cp -r source/en source/LANG-ID
```
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
**✍️ Start translating**
The fun part comes - translating the text!
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
```yaml
- sections:
- local: pipeline_tutorial # Do not change this! Use the same name for your .md file
title: Pipelines for inference # Translate this!
...
title: Tutorials # Translate this!
```
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you can either [open an issue](https://github.com/huggingface/transformers/issues) or tag @[espejelomar](https://twitter.com/espejelomar)
on Twitter to gain some visibility.

14
docs/source/_config.py Normal file
View File

@ -0,0 +1,14 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

View File

@ -1,16 +0,0 @@
.highlight .c1, .highlight .sd{
color: #999
}
.highlight .nn, .highlight .k, .highlight .s1, .highlight .nb, .highlight .bp, .highlight .kc {
color: #FB8D68;
}
.highlight .kn, .highlight .nv, .highlight .s2, .highlight .ow {
color: #6670FF;
}
.highlight .gp {
color: #FB8D68;
}

View File

@ -1,350 +0,0 @@
/* Our DOM objects */
/* Colab dropdown */
table.center-aligned-table td {
text-align: center;
}
table.center-aligned-table th {
text-align: center;
vertical-align: middle;
}
.colab-dropdown {
position: relative;
display: inline-block;
}
.colab-dropdown-content {
display: none;
position: absolute;
background-color: #f9f9f9;
min-width: 117px;
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
z-index: 1;
}
.colab-dropdown-content button {
color: #6670FF;
background-color: #f9f9f9;
font-size: 12px;
border: none;
min-width: 117px;
padding: 5px 5px;
text-decoration: none;
display: block;
}
.colab-dropdown-content button:hover {background-color: #eee;}
.colab-dropdown:hover .colab-dropdown-content {display: block;}
/* Version control */
.version-button {
background-color: #6670FF;
color: white;
border: none;
padding: 5px;
font-size: 15px;
cursor: pointer;
}
.version-button:hover, .version-button:focus {
background-color: #A6B0FF;
}
.version-dropdown {
display: none;
background-color: #6670FF;
min-width: 160px;
overflow: auto;
font-size: 15px;
}
.version-dropdown a {
color: white;
padding: 3px 4px;
text-decoration: none;
display: block;
}
.version-dropdown a:hover {
background-color: #A6B0FF;
}
.version-show {
display: block;
}
/* Framework selector */
.framework-selector {
display: flex;
flex-direction: row;
justify-content: flex-end;
margin-right: 30px;
}
.framework-selector > button {
background-color: white;
color: #6670FF;
border: 1px solid #6670FF;
padding: 5px;
}
.framework-selector > button.selected{
background-color: #6670FF;
color: white;
border: 1px solid #6670FF;
padding: 5px;
}
/* Copy button */
a.copybtn {
margin: 3px;
}
/* The literal code blocks */
.rst-content tt.literal, .rst-content tt.literal, .rst-content code.literal {
color: #6670FF;
}
/* To keep the logo centered */
.wy-side-scroll {
width: auto;
font-size: 20px;
}
/* The div that holds the Hugging Face logo */
.HuggingFaceDiv {
width: 100%
}
/* The research field on top of the toc tree */
.wy-side-nav-search{
padding-top: 0;
background-color: #6670FF;
}
/* The toc tree */
.wy-nav-side{
background-color: #6670FF;
}
/* The section headers in the toc tree */
.wy-menu-vertical p.caption{
background-color: #4d59ff;
line-height: 40px;
}
/* The selected items in the toc tree */
.wy-menu-vertical li.current{
background-color: #A6B0FF;
}
/* When a list item that does belong to the selected block from the toc tree is hovered */
.wy-menu-vertical li.current a:hover{
background-color: #B6C0FF;
}
/* When a list item that does NOT belong to the selected block from the toc tree is hovered. */
.wy-menu-vertical li a:hover{
background-color: #A7AFFB;
}
/* The text items on the toc tree */
.wy-menu-vertical a {
color: #FFFFDD;
font-family: Calibre-Light, sans-serif;
}
.wy-menu-vertical header, .wy-menu-vertical p.caption{
color: white;
font-family: Calibre-Light, sans-serif;
}
/* The color inside the selected toc tree block */
.wy-menu-vertical li.toctree-l2 a, .wy-menu-vertical li.toctree-l3 a, .wy-menu-vertical li.toctree-l4 a {
color: black;
}
/* Inside the depth-2 selected toc tree block */
.wy-menu-vertical li.toctree-l2.current>a {
background-color: #B6C0FF
}
.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a {
background-color: #C6D0FF
}
/* Inside the depth-3 selected toc tree block */
.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{
background-color: #D6E0FF
}
/* Inside code snippets */
.rst-content dl:not(.docutils) dt{
font-size: 15px;
}
/* Links */
a {
color: #6670FF;
}
/* Content bars */
.rst-content dl:not(.docutils) dt {
background-color: rgba(251, 141, 104, 0.1);
border-right: solid 2px #FB8D68;
border-left: solid 2px #FB8D68;
color: #FB8D68;
font-family: Calibre-Light, sans-serif;
border-top: none;
font-style: normal !important;
}
/* Expand button */
.wy-menu-vertical li.toctree-l2 span.toctree-expand,
.wy-menu-vertical li.on a span.toctree-expand, .wy-menu-vertical li.current>a span.toctree-expand,
.wy-menu-vertical li.toctree-l3 span.toctree-expand{
color: black;
}
/* Max window size */
.wy-nav-content{
max-width: 1200px;
}
/* Mobile header */
.wy-nav-top{
background-color: #6670FF;
}
/* Source spans */
.rst-content .viewcode-link, .rst-content .viewcode-back{
color: #6670FF;
font-size: 110%;
letter-spacing: 2px;
text-transform: uppercase;
}
/* It would be better for table to be visible without horizontal scrolling */
.wy-table-responsive table td, .wy-table-responsive table th{
white-space: normal;
}
.footer {
margin-top: 20px;
}
.footer__Social {
display: flex;
flex-direction: row;
}
.footer__CustomImage {
margin: 2px 5px 0 0;
}
/* class and method names in doc */
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname, .rst-content dl:not(.docutils) tt.descclassname, .rst-content dl:not(.docutils) code.descclassname{
font-family: Calibre, sans-serif;
font-size: 20px !important;
}
/* class name in doc*/
.rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) tt.descname, .rst-content dl:not(.docutils) code.descname{
margin-right: 10px;
font-family: Calibre-Medium, sans-serif;
}
/* Method and class parameters */
.sig-param{
line-height: 23px;
}
/* Class introduction "class" string at beginning */
.rst-content dl:not(.docutils) .property{
font-size: 18px;
color: black;
}
/* FONTS */
body{
font-family: Calibre, sans-serif;
font-size: 16px;
}
h1 {
font-family: Calibre-Thin, sans-serif;
font-size: 70px;
}
h2, .rst-content .toctree-wrapper p.caption, h3, h4, h5, h6, legend{
font-family: Calibre-Medium, sans-serif;
}
@font-face {
font-family: Calibre-Medium;
src: url(./Calibre-Medium.otf);
font-weight:400;
}
@font-face {
font-family: Calibre;
src: url(./Calibre-Regular.otf);
font-weight:400;
}
@font-face {
font-family: Calibre-Light;
src: url(./Calibre-Light.ttf);
font-weight:400;
}
@font-face {
font-family: Calibre-Thin;
src: url(./Calibre-Thin.otf);
font-weight:400;
}
/**
* Nav Links to other parts of huggingface.co
*/
div.menu {
position: absolute;
top: 0;
right: 0;
padding-top: 20px;
padding-right: 20px;
z-index: 1000;
}
div.menu a {
font-size: 14px;
letter-spacing: 0.3px;
text-transform: uppercase;
color: white;
-webkit-font-smoothing: antialiased;
background: linear-gradient(0deg, #6671ffb8, #9a66ffb8 50%);
padding: 10px 16px 6px 16px;
border-radius: 3px;
margin-left: 12px;
position: relative;
}
div.menu a:active {
top: 1px;
}
@media (min-width: 768px) and (max-width: 1750px) {
.wy-breadcrumbs {
margin-top: 32px;
}
}
@media (max-width: 768px) {
div.menu {
display: none;
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 7.6 KiB

View File

@ -1,361 +0,0 @@
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Benchmarks
=======================================================================================================================
Let's take a look at how 🤗 Transformer models can be benchmarked, best practices, and already available benchmarks.
A notebook explaining in more detail how to benchmark 🤗 Transformer models can be found :prefix_link:`here
<notebooks/05-benchmark.ipynb>`.
How to benchmark 🤗 Transformer models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The classes :class:`~transformers.PyTorchBenchmark` and :class:`~transformers.TensorFlowBenchmark` allow to flexibly
benchmark 🤗 Transformer models. The benchmark classes allow us to measure the `peak memory usage` and `required time`
for both `inference` and `training`.
.. note::
Hereby, `inference` is defined by a single forward pass, and `training` is defined by a single forward pass and
backward pass.
The benchmark classes :class:`~transformers.PyTorchBenchmark` and :class:`~transformers.TensorFlowBenchmark` expect an
object of type :class:`~transformers.PyTorchBenchmarkArguments` and
:class:`~transformers.TensorFlowBenchmarkArguments`, respectively, for instantiation.
:class:`~transformers.PyTorchBenchmarkArguments` and :class:`~transformers.TensorFlowBenchmarkArguments` are data
classes and contain all relevant configurations for their corresponding benchmark class. In the following example, it
is shown how a BERT model of type `bert-base-cased` can be benchmarked.
.. code-block::
>>> ## PYTORCH CODE
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
>>> args = PyTorchBenchmarkArguments(models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> benchmark = PyTorchBenchmark(args)
>>> ## TENSORFLOW CODE
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
>>> args = TensorFlowBenchmarkArguments(models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> benchmark = TensorFlowBenchmark(args)
Here, three arguments are given to the benchmark argument data classes, namely ``models``, ``batch_sizes``, and
``sequence_lengths``. The argument ``models`` is required and expects a :obj:`list` of model identifiers from the
`model hub <https://huggingface.co/models>`__ The :obj:`list` arguments ``batch_sizes`` and ``sequence_lengths`` define
the size of the ``input_ids`` on which the model is benchmarked. There are many more parameters that can be configured
via the benchmark argument data classes. For more detail on these one can either directly consult the files
``src/transformers/benchmark/benchmark_args_utils.py``, ``src/transformers/benchmark/benchmark_args.py`` (for PyTorch)
and ``src/transformers/benchmark/benchmark_args_tf.py`` (for Tensorflow). Alternatively, running the following shell
commands from root will print out a descriptive list of all configurable parameters for PyTorch and Tensorflow
respectively.
.. code-block:: bash
## PYTORCH CODE
python examples/benchmarking/run_benchmark.py --help
## TENSORFLOW CODE
python examples/benchmarking/run_benchmark_tf.py --help
An instantiated benchmark object can then simply be run by calling ``benchmark.run()``.
.. code-block::
>>> ## PYTORCH CODE
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base-uncased 8 8 0.006
bert-base-uncased 8 32 0.006
bert-base-uncased 8 128 0.018
bert-base-uncased 8 512 0.088
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base-uncased 8 8 1227
bert-base-uncased 8 32 1281
bert-base-uncased 8 128 1307
bert-base-uncased 8 512 1539
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 08:58:43.371351
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
>>> ## TENSORFLOW CODE
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base-uncased 8 8 0.005
bert-base-uncased 8 32 0.008
bert-base-uncased 8 128 0.022
bert-base-uncased 8 512 0.105
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base-uncased 8 8 1330
bert-base-uncased 8 32 1330
bert-base-uncased 8 128 1330
bert-base-uncased 8 512 1770
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:26:35.617317
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
By default, the `time` and the `required memory` for `inference` are benchmarked. In the example output above the first
two sections show the result corresponding to `inference time` and `inference memory`. In addition, all relevant
information about the computing environment, `e.g.` the GPU type, the system, the library versions, etc... are printed
out in the third section under `ENVIRONMENT INFORMATION`. This information can optionally be saved in a `.csv` file
when adding the argument :obj:`save_to_csv=True` to :class:`~transformers.PyTorchBenchmarkArguments` and
:class:`~transformers.TensorFlowBenchmarkArguments` respectively. In this case, every section is saved in a separate
`.csv` file. The path to each `.csv` file can optionally be defined via the argument data classes.
Instead of benchmarking pre-trained models via their model identifier, `e.g.` `bert-base-uncased`, the user can
alternatively benchmark an arbitrary configuration of any available model class. In this case, a :obj:`list` of
configurations must be inserted with the benchmark args as follows.
.. code-block::
>>> ## PYTORCH CODE
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig
>>> args = PyTorchBenchmarkArguments(models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 128 0.006
bert-base 8 512 0.006
bert-base 8 128 0.018
bert-base 8 512 0.088
bert-384-hid 8 8 0.006
bert-384-hid 8 32 0.006
bert-384-hid 8 128 0.011
bert-384-hid 8 512 0.054
bert-6-lay 8 8 0.003
bert-6-lay 8 32 0.004
bert-6-lay 8 128 0.009
bert-6-lay 8 512 0.044
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1277
bert-base 8 32 1281
bert-base 8 128 1307
bert-base 8 512 1539
bert-384-hid 8 8 1005
bert-384-hid 8 32 1027
bert-384-hid 8 128 1035
bert-384-hid 8 512 1255
bert-6-lay 8 8 1097
bert-6-lay 8 32 1101
bert-6-lay 8 128 1127
bert-6-lay 8 512 1359
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:35:25.143267
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
>>> ## TENSORFLOW CODE
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig
>>> args = TensorFlowBenchmarkArguments(models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 8 0.005
bert-base 8 32 0.008
bert-base 8 128 0.022
bert-base 8 512 0.106
bert-384-hid 8 8 0.005
bert-384-hid 8 32 0.007
bert-384-hid 8 128 0.018
bert-384-hid 8 512 0.064
bert-6-lay 8 8 0.002
bert-6-lay 8 32 0.003
bert-6-lay 8 128 0.0011
bert-6-lay 8 512 0.074
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1330
bert-base 8 32 1330
bert-base 8 128 1330
bert-base 8 512 1770
bert-384-hid 8 8 1330
bert-384-hid 8 32 1330
bert-384-hid 8 128 1330
bert-384-hid 8 512 1540
bert-6-lay 8 8 1330
bert-6-lay 8 32 1330
bert-6-lay 8 128 1330
bert-6-lay 8 512 1540
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:38:15.487125
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
Again, `inference time` and `required memory` for `inference` are measured, but this time for customized configurations
of the :obj:`BertModel` class. This feature can especially be helpful when deciding for which configuration the model
should be trained.
Benchmark best practices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section lists a couple of best practices one should be aware of when benchmarking a model.
- Currently, only single device benchmarking is supported. When benchmarking on GPU, it is recommended that the user
specifies on which device the code should be run by setting the ``CUDA_VISIBLE_DEVICES`` environment variable in the
shell, `e.g.` ``export CUDA_VISIBLE_DEVICES=0`` before running the code.
- The option :obj:`no_multi_processing` should only be set to :obj:`True` for testing and debugging. To ensure accurate
memory measurement it is recommended to run each memory benchmark in a separate process by making sure
:obj:`no_multi_processing` is set to :obj:`True`.
- One should always state the environment information when sharing the results of a model benchmark. Results can vary
heavily between different GPU devices, library versions, etc., so that benchmark results on their own are not very
useful for the community.
Sharing your benchmark
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Previously all available core models (10 at the time) have been benchmarked for `inference time`, across many different
settings: using PyTorch, with and without TorchScript, using TensorFlow, with and without XLA. All of those tests were
done across CPUs (except for TensorFlow XLA) and GPUs.
The approach is detailed in the `following blogpost
<https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2>`__ and the results are
available `here
<https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit?usp=sharing>`__.
With the new `benchmark` tools, it is easier than ever to share your benchmark results with the community
:prefix_link:`here <examples/benchmarking/README.md>`.

View File

@ -1,38 +0,0 @@
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
BERTology
-----------------------------------------------------------------------------------------------------------------------
There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT
(that some call "BERTology"). Some good examples of this field are:
* BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick:
https://arxiv.org/abs/1905.05950
* Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
* What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D.
Manning: https://arxiv.org/abs/1906.04341
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to
help people access the inner representations, mainly adapted from the great work of Paul Michel
(https://arxiv.org/abs/1905.10650):
* accessing all the hidden-states of BERT/GPT/GPT-2,
* accessing all the attention weights for each head of BERT/GPT/GPT-2,
* retrieving heads output values and gradients to be able to compute head importance score and prune head as explained
in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: :prefix_link:`bertology.py
<examples/research_projects/bertology/run_bertology.py>` while extract information and prune a model pre-trained on
GLUE.

View File

@ -1,217 +0,0 @@
# -*- coding: utf-8 -*-
#
# Configuration file for the Sphinx documentation builder.
#
# This file does only contain a selection of the most common options. For a
# full list see the documentation:
# http://www.sphinx-doc.org/en/master/config
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath("../../src"))
# -- Project information -----------------------------------------------------
project = "transformers"
copyright = "2020, The Hugging Face Team, Licenced under the Apache License, Version 2.0"
author = "huggingface"
# The short X.Y version
version = ""
# The full version, including alpha/beta/rc tags
release = "4.5.0.dev0"
# Prefix link to point to master, comment this during version release and uncomment below line
extlinks = {"prefix_link": ("https://github.com/huggingface/transformers/blob/master/%s", "")}
# Prefix link to always point to corresponding version, uncomment this during version release
# extlinks = {'prefix_link': ('https://github.com/huggingface/transformers/blob/v'+ release + '/%s', '')}
# -- General configuration ---------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.extlinks",
"sphinx.ext.coverage",
"sphinx.ext.napoleon",
"recommonmark",
"sphinx.ext.viewcode",
"sphinx_markdown_tables",
"sphinxext.opengraph",
"sphinx_copybutton",
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
source_suffix = [".rst", ".md"]
# source_suffix = '.rst'
# The master toctree document.
master_doc = "index"
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = None
# Remove the prompt when copying examples
copybutton_prompt_text = r">>> |\.\.\. "
copybutton_prompt_is_regexp = True
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
#
html_theme_options = {"analytics_id": "UA-83738774-2", "navigation_with_keys": True}
# Configuration for OpenGraph and Twitter Card Tags.
# These are responsible for creating nice shareable social images https://ahrefs.com/blog/open-graph-meta-tags/
# https://ogp.me/#type_website
ogp_image = "https://huggingface.co/front/thumbnails/transformers.png"
ogp_description = "State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0. Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation, etc in 100+ languages. Its aim is to make cutting-edge NLP easier to use for everyone"
ogp_description_length = 160
ogp_custom_meta_tags = [
f'<meta name="twitter:image" content="{ogp_image}">',
f'<meta name="twitter:description" content="{ogp_description}">',
]
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
# Custom sidebar templates, must be a dictionary that maps document names
# to template names.
#
# The default sidebars (for documents that don't match any pattern) are
# defined by theme itself. Builtin themes are using these templates by
# default: ``['localtoc.html', 'relations.html', 'sourcelink.html',
# 'searchbox.html']``.
#
# html_sidebars = {}
# This must be the name of an image file (path relative to the configuration
# directory) that is the favicon of the docs. Modern browsers use this as
# the icon for tabs, windows and bookmarks. It should be a Windows-style
# icon file (.ico).
html_favicon = "favicon.ico"
# -- Options for HTMLHelp output ---------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = "transformersdoc"
# -- Options for LaTeX output ------------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(master_doc, "transformers.tex", "transformers Documentation", "huggingface", "manual"),
]
# -- Options for manual page output ------------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [(master_doc, "transformers", "transformers Documentation", [author], 1)]
# -- Options for Texinfo output ----------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(
master_doc,
"transformers",
"transformers Documentation",
author,
"transformers",
"One line description of project.",
"Miscellaneous",
),
]
# -- Options for Epub output -------------------------------------------------
# Bibliographic Dublin Core info.
epub_title = project
# The unique identifier of the text. This can be a ISBN number
# or the project homepage.
#
# epub_identifier = ''
# A unique identification for the text.
#
# epub_uid = ''
# A list of files that should not be packed into the epub file.
epub_exclude_files = ["search.html"]
def setup(app):
app.add_css_file("css/huggingface.css")
app.add_css_file("css/code-snippets.css")
app.add_js_file("js/custom.js")
# -- Extension configuration -------------------------------------------------

View File

@ -1 +0,0 @@
../../CONTRIBUTING.md

View File

@ -1,181 +0,0 @@
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Converting Tensorflow Checkpoints
=======================================================================================================================
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints in models
than be loaded using the ``from_pretrained`` methods of the library.
.. note::
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any
transformers >= 2.3.0 installation.
The documentation below reflects the **transformers-cli convert** command format.
BERT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can convert any TensorFlow checkpoint for BERT (in particular `the pre-trained models released by Google
<https://github.com/google-research/bert#pre-trained-models>`_\ ) in a PyTorch save file by using the
:prefix_link:`convert_bert_original_tf_checkpoint_to_pytorch.py
<src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py>` script.
This CLI takes as input a TensorFlow checkpoint (three files starting with ``bert_model.ckpt``\ ) and the associated
configuration file (\ ``bert_config.json``\ ), and creates a PyTorch model for this configuration, loads the weights
from the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that
can be imported using ``from_pretrained()`` (see example in :doc:`quicktour` , `run_glue.py
<https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_glue.py>`_\ ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
checkpoint (the three files starting with ``bert_model.ckpt``\ ) but be sure to keep the configuration file (\
``bert_config.json``\ ) and the vocabulary file (\ ``vocab.txt``\ ) as these are needed for the PyTorch model too.
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (\ ``pip install
tensorflow``\ ). The rest of the repository only requires PyTorch.
Here is an example of the conversion process for a pre-trained ``BERT-Base Uncased`` model:
.. code-block:: shell
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
transformers-cli convert --model_type bert \
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
--config $BERT_BASE_DIR/bert_config.json \
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
You can download Google's pre-trained models for the conversion `here
<https://github.com/google-research/bert#pre-trained-models>`__.
ALBERT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
:prefix_link:`convert_albert_original_tf_checkpoint_to_pytorch.py
<src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py>` script.
The CLI takes as input a TensorFlow checkpoint (three files starting with ``model.ckpt-best``\ ) and the accompanying
configuration file (\ ``albert_config.json``\ ), then creates and saves a PyTorch model. To run this conversion you
will need to have TensorFlow and PyTorch installed.
Here is an example of the conversion process for the pre-trained ``ALBERT Base`` model:
.. code-block:: shell
export ALBERT_BASE_DIR=/path/to/albert/albert_base
transformers-cli convert --model_type albert \
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
--config $ALBERT_BASE_DIR/albert_config.json \
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
You can download Google's pre-trained models for the conversion `here
<https://github.com/google-research/albert#pre-trained-models>`__.
OpenAI GPT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint
save as the same format than OpenAI pretrained model (see `here <https://github.com/openai/finetune-transformer-lm>`__\
)
.. code-block:: shell
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
transformers-cli convert --model_type gpt \
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT_CONFIG] \
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
OpenAI GPT-2
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see `here
<https://github.com/openai/gpt-2>`__\ )
.. code-block:: shell
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
Transformer-XL
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained Transformer-XL model (see `here
<https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models>`__\ )
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
transformers-cli convert --model_type transfo_xl \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config TRANSFO_XL_CONFIG] \
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
XLNet
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained XLNet model:
.. code-block:: shell
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
transformers-cli convert --model_type xlnet \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
--config $TRANSFO_XL_CONFIG_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--finetuning_task_name XLNET_FINETUNED_TASK] \
XLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained XLM model:
.. code-block:: shell
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
transformers-cli convert --model_type xlm \
--tf_checkpoint $XLM_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
[--config XML_CONFIG] \
[--finetuning_task_name XML_FINETUNED_TASK]
T5
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Here is an example of the conversion process for a pre-trained T5 model:
.. code-block:: shell
export T5=/path/to/t5/uncased_L-12_H-768_A-12
transformers-cli convert --model_type t5 \
--tf_checkpoint $T5/t5_model.ckpt \
--config $T5/t5_config.json \
--pytorch_dump_output $T5/pytorch_model.bin

View File

@ -1,729 +0,0 @@
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Fine-tuning with custom datasets
=======================================================================================================================
.. note::
The datasets used in this tutorial are available and can be more easily accessed using the `🤗 Datasets library
<https://github.com/huggingface/datasets>`_. We do not use this library to access the datasets here since this
tutorial meant to illustrate how to work with your own data. A brief of introduction can be found at the end of the
tutorial in the section ":ref:`datasetslib`".
This tutorial will take you through several examples of using 🤗 Transformers models with your own datasets. The guide
shows one of many valid workflows for using these models and is meant to be illustrative rather than definitive. We
show examples of reading in several data formats, preprocessing the data for several types of tasks, and then preparing
the data into PyTorch/TensorFlow ``Dataset`` objects which can easily be used either with
:class:`~transformers.Trainer`/:class:`~transformers.TFTrainer` or with native PyTorch/TensorFlow.
We include several examples, each of which demonstrates a different type of common downstream task:
- :ref:`seq_imdb`
- :ref:`tok_ner`
- :ref:`qa_squad`
- :ref:`resources`
.. _seq_imdb:
Sequence Classification with IMDb Reviews
-----------------------------------------------------------------------------------------------------------------------
.. note::
This dataset can be explored in the Hugging Face model hub (`IMDb <https://huggingface.co/datasets/imdb>`_), and
can be alternatively downloaded with the 🤗 Datasets library with ``load_dataset("imdb")``.
In this example, we'll show how to download, tokenize, and train a model on the IMDb reviews dataset. This task takes
the text of a review and requires the model to predict whether the sentiment of the review is positive or negative.
Let's start by downloading the dataset from the `Large Movie Review Dataset
<http://ai.stanford.edu/~amaas/data/sentiment/>`_ webpage.
.. code-block:: bash
wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
tar -xf aclImdb_v1.tar.gz
This data is organized into ``pos`` and ``neg`` folders with one text file per example. Let's write a function that can
read this in.
.. code-block:: python
from pathlib import Path
def read_imdb_split(split_dir):
split_dir = Path(split_dir)
texts = []
labels = []
for label_dir in ["pos", "neg"]:
for text_file in (split_dir/label_dir).iterdir():
texts.append(text_file.read_text())
labels.append(0 if label_dir is "neg" else 1)
return texts, labels
train_texts, train_labels = read_imdb_split('aclImdb/train')
test_texts, test_labels = read_imdb_split('aclImdb/test')
We now have a train and test dataset, but let's also also create a validation set which we can use for for evaluation
and tuning without tainting our test set results. Sklearn has a convenient utility for creating such splits:
.. code-block:: python
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
Alright, we've read in our dataset. Now let's tackle tokenization. We'll eventually train a classifier using
pre-trained DistilBert, so let's use the DistilBert tokenizer.
.. code-block:: python
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
Now we can simply pass our texts to the tokenizer. We'll pass ``truncation=True`` and ``padding=True``, which will
ensure that all of our sequences are padded to the same length and are truncated to be no longer model's maximum input
length. This will allow us to feed batches of sequences into the model at the same time.
.. code-block:: python
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)
Now, let's turn our labels and encodings into a Dataset object. In PyTorch, this is done by subclassing a
``torch.utils.data.Dataset`` object and implementing ``__len__`` and ``__getitem__``. In TensorFlow, we pass our input
encodings and labels to the ``from_tensor_slices`` constructor method. We put the data in this format so that the data
can be easily batched such that each key in the batch encoding corresponds to a named parameter of the
:meth:`~transformers.DistilBertForSequenceClassification.forward` method of the model we will train.
.. code-block:: python
## PYTORCH CODE
import torch
class IMDbDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_dataset = IMDbDataset(train_encodings, train_labels)
val_dataset = IMDbDataset(val_encodings, val_labels)
test_dataset = IMDbDataset(test_encodings, test_labels)
## TENSORFLOW CODE
import tensorflow as tf
train_dataset = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
val_labels
))
test_dataset = tf.data.Dataset.from_tensor_slices((
dict(test_encodings),
test_labels
))
Now that our datasets our ready, we can fine-tune a model either with the 🤗
:class:`~transformers.Trainer`/:class:`~transformers.TFTrainer` or with native PyTorch/TensorFlow. See :doc:`training
<training>`.
.. _ft_trainer:
Fine-tuning with Trainer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The steps above prepared the datasets in the way that the trainer is expected. Now all we need to do is create a model
to fine-tune, define the :class:`~transformers.TrainingArguments`/:class:`~transformers.TFTrainingArguments` and
instantiate a :class:`~transformers.Trainer`/:class:`~transformers.TFTrainer`.
.. code-block:: python
## PYTORCH CODE
from transformers import DistilBertForSequenceClassification, Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
trainer = Trainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
## TENSORFLOW CODE
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments
training_args = TFTrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
with training_args.strategy.scope():
model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
trainer = TFTrainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()
.. _ft_native:
Fine-tuning with native PyTorch/TensorFlow
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can also train use native PyTorch or TensorFlow:
.. code-block:: python
## PYTORCH CODE
from torch.utils.data import DataLoader
from transformers import DistilBertForSequenceClassification, AdamW
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
model.to(device)
model.train()
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
optim = AdamW(model.parameters(), lr=5e-5)
for epoch in range(3):
for batch in train_loader:
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
loss.backward()
optim.step()
model.eval()
## TENSORFLOW CODE
from transformers import TFDistilBertForSequenceClassification
model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=model.compute_loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)
.. _tok_ner:
Token Classification with W-NUT Emerging Entities
-----------------------------------------------------------------------------------------------------------------------
.. note::
This dataset can be explored in the Hugging Face model hub (`WNUT-17 <https://huggingface.co/datasets/wnut_17>`_),
and can be alternatively downloaded with the 🤗 Datasets library with ``load_dataset("wnut_17")``.
Next we will look at token classification. Rather than classifying an entire sequence, this task classifies token by
token. We'll demonstrate how to do this with `Named Entity Recognition
<http://nlpprogress.com/english/named_entity_recognition.html>`_, which involves identifying tokens which correspond to
a predefined set of "entities". Specifically, we'll use the `W-NUT Emerging and Rare entities
<http://noisy-text.github.io/2017/emerging-rare-entities.html>`_ corpus. The data is given as a collection of
pre-tokenized documents where each token is assigned a tag.
Let's start by downloading the data.
.. code-block:: bash
wget http://noisy-text.github.io/2017/files/wnut17train.conll
In this case, we'll just download the train set, which is a single text file. Each line of the file contains either (1)
a word and tag separated by a tab, or (2) a blank line indicating the end of a document. Let's write a function to read
this in. We'll take in the file path and return ``token_docs`` which is a list of lists of token strings, and
``token_tags`` which is a list of lists of tag strings.
.. code-block:: python
from pathlib import Path
import re
def read_wnut(file_path):
file_path = Path(file_path)
raw_text = file_path.read_text().strip()
raw_docs = re.split(r'\n\t?\n', raw_text)
token_docs = []
tag_docs = []
for doc in raw_docs:
tokens = []
tags = []
for line in doc.split('\n'):
token, tag = line.split('\t')
tokens.append(token)
tags.append(tag)
token_docs.append(tokens)
tag_docs.append(tags)
return token_docs, tag_docs
texts, tags = read_wnut('wnut17train.conll')
Just to see what this data looks like, let's take a look at a segment of the first document.
.. code-block:: python
>>> print(texts[0][10:17], tags[0][10:17], sep='\n')
['for', 'two', 'weeks', '.', 'Empire', 'State', 'Building']
['O', 'O', 'O', 'O', 'B-location', 'I-location', 'I-location']
``location`` is an entity type, ``B-`` indicates the beginning of an entity, and ``I-`` indicates consecutive positions
of the same entity ("Empire State Building" is considered one entity). ``O`` indicates the token does not correspond to
any entity.
Now that we've read the data in, let's create a train/validation split:
.. code-block:: python
from sklearn.model_selection import train_test_split
train_texts, val_texts, train_tags, val_tags = train_test_split(texts, tags, test_size=.2)
Next, let's create encodings for our tokens and tags. For the tags, we can start by just create a simple mapping which
we'll use in a moment:
.. code-block:: python
unique_tags = set(tag for doc in tags for tag in doc)
tag2id = {tag: id for id, tag in enumerate(unique_tags)}
id2tag = {id: tag for tag, id in tag2id.items()}
To encode the tokens, we'll use a pre-trained DistilBert tokenizer. We can tell the tokenizer that we're dealing with
ready-split tokens rather than full sentence strings by passing ``is_split_into_words=True``. We'll also pass
``padding=True`` and ``truncation=True`` to pad the sequences to be the same length. Lastly, we can tell the model to
return information about the tokens which are split by the wordpiece tokenization process, which we will need in a
moment.
.. code-block:: python
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-cased')
train_encodings = tokenizer(train_texts, is_split_into_words=True, return_offsets_mapping=True, padding=True, truncation=True)
val_encodings = tokenizer(val_texts, is_split_into_words=True, return_offsets_mapping=True, padding=True, truncation=True)
Great, so now our tokens are nicely encoded in the format that they need to be in to feed them into our DistilBert
model below.
Now we arrive at a common obstacle with using pre-trained models for token-level classification: many of the tokens in
the W-NUT corpus are not in DistilBert's vocabulary. Bert and many models like it use a method called WordPiece
Tokenization, meaning that single words are split into multiple tokens such that each token is likely to be in the
vocabulary. For example, DistilBert's tokenizer would split the Twitter handle ``@huggingface`` into the tokens ``['@',
'hugging', '##face']``. This is a problem for us because we have exactly one tag per token. If the tokenizer splits a
token into multiple sub-tokens, then we will end up with a mismatch between our tokens and our labels.
One way to handle this is to only train on the tag labels for the first subtoken of a split token. We can do this in 🤗
Transformers by setting the labels we wish to ignore to ``-100``. In the example above, if the label for
``@HuggingFace`` is ``3`` (indexing ``B-corporation``), we would set the labels of ``['@', 'hugging', '##face']`` to
``[3, -100, -100]``.
Let's write a function to do this. This is where we will use the ``offset_mapping`` from the tokenizer as mentioned
above. For each sub-token returned by the tokenizer, the offset mapping gives us a tuple indicating the sub-token's
start position and end position relative to the original token it was split from. That means that if the first position
in the tuple is anything other than ``0``, we will set its corresponding label to ``-100``. While we're at it, we can
also set labels to ``-100`` if the second position of the offset mapping is ``0``, since this means it must be a
special token like ``[PAD]`` or ``[CLS]``.
.. note::
Due to a recently fixed bug, -1 must be used instead of -100 when using TensorFlow in 🤗 Transformers <= 3.02.
.. code-block:: python
import numpy as np
def encode_tags(tags, encodings):
labels = [[tag2id[tag] for tag in doc] for doc in tags]
encoded_labels = []
for doc_labels, doc_offset in zip(labels, encodings.offset_mapping):
# create an empty array of -100
doc_enc_labels = np.ones(len(doc_offset),dtype=int) * -100
arr_offset = np.array(doc_offset)
# set labels whose first offset position is 0 and the second is not 0
doc_enc_labels[(arr_offset[:,0] == 0) & (arr_offset[:,1] != 0)] = doc_labels
encoded_labels.append(doc_enc_labels.tolist())
return encoded_labels
train_labels = encode_tags(train_tags, train_encodings)
val_labels = encode_tags(val_tags, val_encodings)
The hard part is now done. Just as in the sequence classification example above, we can create a dataset object:
.. code-block:: python
## PYTORCH CODE
import torch
class WNUTDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
train_encodings.pop("offset_mapping") # we don't want to pass this to the model
val_encodings.pop("offset_mapping")
train_dataset = WNUTDataset(train_encodings, train_labels)
val_dataset = WNUTDataset(val_encodings, val_labels)
## TENSORFLOW CODE
import tensorflow as tf
train_encodings.pop("offset_mapping") # we don't want to pass this to the model
val_encodings.pop("offset_mapping")
train_dataset = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
train_labels
))
val_dataset = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
val_labels
))
Now load in a token classification model and specify the number of labels:
.. code-block:: python
## PYTORCH CODE
from transformers import DistilBertForTokenClassification
model = DistilBertForTokenClassification.from_pretrained('distilbert-base-cased', num_labels=len(unique_tags))
## TENSORFLOW CODE
from transformers import TFDistilBertForTokenClassification
model = TFDistilBertForTokenClassification.from_pretrained('distilbert-base-cased', num_labels=len(unique_tags))
The data and model are both ready to go. You can train the model either with
:class:`~transformers.Trainer`/:class:`~transformers.TFTrainer` or with native PyTorch/TensorFlow, exactly as in the
sequence classification example above.
- :ref:`ft_trainer`
- :ref:`ft_native`
.. _qa_squad:
Question Answering with SQuAD 2.0
-----------------------------------------------------------------------------------------------------------------------
.. note::
This dataset can be explored in the Hugging Face model hub (`SQuAD V2
<https://huggingface.co/datasets/squad_v2>`_), and can be alternatively downloaded with the 🤗 Datasets library with
``load_dataset("squad_v2")``.
Question answering comes in many forms. In this example, we'll look at the particular type of extractive QA that
involves answering a question about a passage by highlighting the segment of the passage that answers the question.
This involves fine-tuning a model which predicts a start position and an end position in the passage. We will use the
`Stanford Question Answering Dataset (SQuAD) 2.0 <https://rajpurkar.github.io/SQuAD-explorer/>`_.
We will start by downloading the data:
.. code-block:: bash
mkdir squad
wget https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json -O squad/train-v2.0.json
wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json -O squad/dev-v2.0.json
Each split is in a structured json file with a number of questions and answers for each passage (or context). We'll
take this apart into parallel lists of contexts, questions, and answers (note that the contexts here are repeated since
there are multiple questions per context):
.. code-block:: python
import json
from pathlib import Path
def read_squad(path):
path = Path(path)
with open(path, 'rb') as f:
squad_dict = json.load(f)
contexts = []
questions = []
answers = []
for group in squad_dict['data']:
for passage in group['paragraphs']:
context = passage['context']
for qa in passage['qas']:
question = qa['question']
for answer in qa['answers']:
contexts.append(context)
questions.append(question)
answers.append(answer)
return contexts, questions, answers
train_contexts, train_questions, train_answers = read_squad('squad/train-v2.0.json')
val_contexts, val_questions, val_answers = read_squad('squad/dev-v2.0.json')
The contexts and questions are just strings. The answers are dicts containing the subsequence of the passage with the
correct answer as well as an integer indicating the character at which the answer begins. In order to train a model on
this data we need (1) the tokenized context/question pairs, and (2) integers indicating at which *token* positions the
answer begins and ends.
First, let's get the *character* position at which the answer ends in the passage (we are given the starting position).
Sometimes SQuAD answers are off by one or two characters, so we will also adjust for that.
.. code-block:: python
def add_end_idx(answers, contexts):
for answer, context in zip(answers, contexts):
gold_text = answer['text']
start_idx = answer['answer_start']
end_idx = start_idx + len(gold_text)
# sometimes squad answers are off by a character or two fix this
if context[start_idx:end_idx] == gold_text:
answer['answer_end'] = end_idx
elif context[start_idx-1:end_idx-1] == gold_text:
answer['answer_start'] = start_idx - 1
answer['answer_end'] = end_idx - 1 # When the gold label is off by one character
elif context[start_idx-2:end_idx-2] == gold_text:
answer['answer_start'] = start_idx - 2
answer['answer_end'] = end_idx - 2 # When the gold label is off by two characters
add_end_idx(train_answers, train_contexts)
add_end_idx(val_answers, val_contexts)
Now ``train_answers`` and ``val_answers`` include the character end positions and the corrected start positions. Next,
let's tokenize our context/question pairs. 🤗 Tokenizers can accept parallel lists of sequences and encode them together
as sequence pairs.
.. code-block:: python
from transformers import DistilBertTokenizerFast
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
train_encodings = tokenizer(train_contexts, train_questions, truncation=True, padding=True)
val_encodings = tokenizer(val_contexts, val_questions, truncation=True, padding=True)
Next we need to convert our character start/end positions to token start/end positions. When using 🤗 Fast Tokenizers,
we can use the built in :func:`~transformers.BatchEncoding.char_to_token` method.
.. code-block:: python
def add_token_positions(encodings, answers):
start_positions = []
end_positions = []
for i in range(len(answers)):
start_positions.append(encodings.char_to_token(i, answers[i]['answer_start']))
end_positions.append(encodings.char_to_token(i, answers[i]['answer_end'] - 1))
# if start position is None, the answer passage has been truncated
if start_positions[-1] is None:
start_positions[-1] = tokenizer.model_max_length
if end_positions[-1] is None:
end_positions[-1] = tokenizer.model_max_length
encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
add_token_positions(train_encodings, train_answers)
add_token_positions(val_encodings, val_answers)
Our data is ready. Let's just put it in a PyTorch/TensorFlow dataset so that we can easily use it for training. In
PyTorch, we define a custom ``Dataset`` class. In TensorFlow, we pass a tuple of ``(inputs_dict, labels_dict)`` to the
``from_tensor_slices`` method.
.. code-block:: python
## PYTORCH CODE
import torch
class SquadDataset(torch.utils.data.Dataset):
def __init__(self, encodings):
self.encodings = encodings
def __getitem__(self, idx):
return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
def __len__(self):
return len(self.encodings.input_ids)
train_dataset = SquadDataset(train_encodings)
val_dataset = SquadDataset(val_encodings)
## TENSORFLOW CODE
import tensorflow as tf
train_dataset = tf.data.Dataset.from_tensor_slices((
{key: train_encodings[key] for key in ['input_ids', 'attention_mask']},
{key: train_encodings[key] for key in ['start_positions', 'end_positions']}
))
val_dataset = tf.data.Dataset.from_tensor_slices((
{key: val_encodings[key] for key in ['input_ids', 'attention_mask']},
{key: val_encodings[key] for key in ['start_positions', 'end_positions']}
))
Now we can use a DistilBert model with a QA head for training:
.. code-block:: python
## PYTORCH CODE
from transformers import DistilBertForQuestionAnswering
model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
## TENSORFLOW CODE
from transformers import TFDistilBertForQuestionAnswering
model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
The data and model are both ready to go. You can train the model with
:class:`~transformers.Trainer`/:class:`~transformers.TFTrainer` exactly as in the sequence classification example
above. If using native PyTorch, replace ``labels`` with ``start_positions`` and ``end_positions`` in the training
example. If using Keras's ``fit``, we need to make a minor modification to handle this example since it involves
multiple model outputs.
- :ref:`ft_trainer`
.. code-block:: python
## PYTORCH CODE
from torch.utils.data import DataLoader
from transformers import AdamW
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
model.train()
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
optim = AdamW(model.parameters(), lr=5e-5)
for epoch in range(3):
for batch in train_loader:
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
start_positions = batch['start_positions'].to(device)
end_positions = batch['end_positions'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
loss = outputs[0]
loss.backward()
optim.step()
model.eval()
## TENSORFLOW CODE
# Keras will expect a tuple when dealing with labels
train_dataset = train_dataset.map(lambda x, y: (x, (y['start_positions'], y['end_positions'])))
# Keras will assign a separate loss for each output and add them together. So we'll just use the standard CE loss
# instead of using the built-in model.compute_loss, which expects a dict of outputs and averages the two terms.
# Note that this means the loss will be 2x of when using TFTrainer since we're adding instead of averaging them.
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.distilbert.return_dict = False # if using 🤗 Transformers >3.02, make sure outputs are tuples
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5)
model.compile(optimizer=optimizer, loss=loss) # can also use any keras loss fn
model.fit(train_dataset.shuffle(1000).batch(16), epochs=3, batch_size=16)
.. _resources:
Additional Resources
-----------------------------------------------------------------------------------------------------------------------
- `How to train a new language model from scratch using Transformers and Tokenizers
<https://huggingface.co/blog/how-to-train>`_. Blog post showing the steps to load in Esperanto data and train a
masked language model from scratch.
- :doc:`Preprocessing <preprocessing>`. Docs page on data preprocessing.
- :doc:`Training <training>`. Docs page on training and fine-tuning.
.. _datasetslib:
Using the 🤗 Datasets & Metrics library
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This tutorial demonstrates how to read in datasets from various raw text formats and prepare them for training with 🤗
Transformers so that you can do the same thing with your own custom datasets. However, we recommend users use the `🤗
Datasets library <https://github.com/huggingface/datasets>`_ for working with the 150+ datasets included in the `hub
<https://huggingface.co/datasets>`_, including the three datasets used in this tutorial. As a very brief overview, we
will show how to use the Datasets library to download and prepare the IMDb dataset from the first example,
:ref:`seq_imdb`.
Start by downloading the dataset:
.. code-block:: python
from datasets import load_dataset
train = load_dataset("imdb", split="train")
Each dataset has multiple columns corresponding to different features. Let's see what our columns are.
.. code-block:: python
>>> print(train.column_names)
['label', 'text']
Great. Now let's tokenize the text. We can do this using the ``map`` method. We'll also rename the ``label`` column to
``labels`` to match the model's input arguments.
.. code-block:: python
train = train.map(lambda batch: tokenizer(batch["text"], truncation=True, padding=True), batched=True)
train.rename_column_("label", "labels")
Lastly, we can use the ``set_format`` method to determine which columns and in what data format we want to access
dataset elements.
.. code-block:: python
## PYTORCH CODE
>>> train.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
>>> {key: val.shape for key, val in train[0].items()})
{'labels': torch.Size([]), 'input_ids': torch.Size([512]), 'attention_mask': torch.Size([512])}
## TENSORFLOW CODE
>>> train.set_format("tensorflow", columns=["input_ids", "attention_mask", "labels"])
>>> {key: val.shape for key, val in train[0].items()})
{'labels': TensorShape([]), 'input_ids': TensorShape([512]), 'attention_mask': TensorShape([512])}
We now have a fully-prepared dataset. Check out `the 🤗 Datasets docs
<https://huggingface.co/docs/datasets/processing.html>`_ for a more thorough introduction.

14
docs/source/en/_config.py Normal file
View File

@ -0,0 +1,14 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

454
docs/source/en/_toctree.yml Normal file
View File

@ -0,0 +1,454 @@
- sections:
- local: index
title: 🤗 Transformers
- local: quicktour
title: Quick tour
- local: installation
title: Installation
title: Get started
- sections:
- local: pipeline_tutorial
title: Pipelines for inference
- local: autoclass_tutorial
title: Load pretrained instances with an AutoClass
- local: preprocessing
title: Preprocess
- local: training
title: Fine-tune a pretrained model
- local: accelerate
title: Distributed training with 🤗 Accelerate
- local: model_sharing
title: Share a model
title: Tutorials
- sections:
- local: fast_tokenizers
title: Use tokenizers from 🤗 Tokenizers
- local: create_a_model
title: Create a custom architecture
- local: custom_models
title: Sharing custom models
- sections:
- local: tasks/sequence_classification
title: Text classification
- local: tasks/token_classification
title: Token classification
- local: tasks/question_answering
title: Question answering
- local: tasks/language_modeling
title: Language modeling
- local: tasks/translation
title: Translation
- local: tasks/summarization
title: Summarization
- local: tasks/multiple_choice
title: Multiple choice
- local: tasks/audio_classification
title: Audio classification
- local: tasks/asr
title: Automatic speech recognition
- local: tasks/image_classification
title: Image classification
title: Fine-tune for downstream tasks
- local: run_scripts
title: Train with a script
- local: sagemaker
title: Run training on Amazon SageMaker
- local: multilingual
title: Inference for multilingual models
- local: converting_tensorflow_models
title: Converting TensorFlow Checkpoints
- local: serialization
title: Export 🤗 Transformers models
- sections:
- local: performance
title: Overview
- local: perf_train_gpu_one
title: Training on one GPU
- local: perf_train_gpu_many
title: Training on many GPUs
- local: perf_train_cpu
title: Training on CPU
- local: perf_train_tpu
title: Training on TPUs
- local: perf_train_special
title: Training on Specialized Hardware
- local: perf_infer_cpu
title: Inference on CPU
- local: perf_infer_gpu_one
title: Inference on one GPU
- local: perf_infer_gpu_many
title: Inference on many GPUs
- local: perf_infer_special
title: Inference on Specialized Hardware
- local: perf_hardware
title: Custom hardware for training
title: Performance and scalability
- local: big_models
title: Instantiating a big model
- local: benchmarks
title: Benchmarks
- local: migration
title: Migrating from previous packages
- local: troubleshooting
title: Troubleshoot
- local: debugging
title: Debugging
- local: notebooks
title: 🤗 Transformers Notebooks
- local: community
title: Community
- local: contributing
title: How to contribute to transformers?
- local: add_new_model
title: How to add a model to 🤗 Transformers?
- local: add_new_pipeline
title: How to add a pipeline to 🤗 Transformers?
- local: testing
title: Testing
- local: pr_checks
title: Checks on a Pull Request
title: How-to guides
- sections:
- local: philosophy
title: Philosophy
- local: glossary
title: Glossary
- local: task_summary
title: Summary of the tasks
- local: model_summary
title: Summary of the models
- local: tokenizer_summary
title: Summary of the tokenizers
- local: pad_truncation
title: Padding and truncation
- local: bertology
title: BERTology
- local: perplexity
title: Perplexity of fixed-length models
title: Conceptual guides
- sections:
- sections:
- local: main_classes/callback
title: Callbacks
- local: main_classes/configuration
title: Configuration
- local: main_classes/data_collator
title: Data Collator
- local: main_classes/keras_callbacks
title: Keras callbacks
- local: main_classes/logging
title: Logging
- local: main_classes/model
title: Models
- local: main_classes/text_generation
title: Text Generation
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: Optimization
- local: main_classes/output
title: Model outputs
- local: main_classes/pipelines
title: Pipelines
- local: main_classes/processors
title: Processors
- local: main_classes/tokenizer
title: Tokenizer
- local: main_classes/trainer
title: Trainer
- local: main_classes/deepspeed
title: DeepSpeed Integration
- local: main_classes/feature_extractor
title: Feature Extractor
title: Main Classes
- sections:
- local: model_doc/albert
title: ALBERT
- local: model_doc/auto
title: Auto Classes
- local: model_doc/bart
title: BART
- local: model_doc/barthez
title: BARThez
- local: model_doc/bartpho
title: BARTpho
- local: model_doc/beit
title: BEiT
- local: model_doc/bert
title: BERT
- local: model_doc/bert-generation
title: BertGeneration
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/bertweet
title: Bertweet
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
title: BigBirdPegasus
- local: model_doc/blenderbot
title: Blenderbot
- local: model_doc/blenderbot-small
title: Blenderbot Small
- local: model_doc/bloom
title: BLOOM
- local: model_doc/bort
title: BORT
- local: model_doc/byt5
title: ByT5
- local: model_doc/camembert
title: CamemBERT
- local: model_doc/canine
title: CANINE
- local: model_doc/clip
title: CLIP
- local: model_doc/codegen
title: CodeGen
- local: model_doc/convbert
title: ConvBERT
- local: model_doc/convnext
title: ConvNeXT
- local: model_doc/cpm
title: CPM
- local: model_doc/ctrl
title: CTRL
- local: model_doc/cvt
title: CvT
- local: model_doc/data2vec
title: Data2Vec
- local: model_doc/deberta
title: DeBERTa
- local: model_doc/deberta-v2
title: DeBERTa-v2
- local: model_doc/decision_transformer
title: Decision Transformer
- local: model_doc/deit
title: DeiT
- local: model_doc/detr
title: DETR
- local: model_doc/dialogpt
title: DialoGPT
- local: model_doc/distilbert
title: DistilBERT
- local: model_doc/dit
title: DiT
- local: model_doc/dpr
title: DPR
- local: model_doc/dpt
title: DPT
- local: model_doc/electra
title: ELECTRA
- local: model_doc/encoder-decoder
title: Encoder Decoder Models
- local: model_doc/flaubert
title: FlauBERT
- local: model_doc/flava
title: FLAVA
- local: model_doc/fnet
title: FNet
- local: model_doc/fsmt
title: FSMT
- local: model_doc/funnel
title: Funnel Transformer
- local: model_doc/glpn
title: GLPN
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
title: GPT Neo
- local: model_doc/gpt_neox
title: GPT NeoX
- local: model_doc/gptj
title: GPT-J
- local: model_doc/gpt2
title: GPT2
- local: model_doc/groupvit
title: GroupViT
- local: model_doc/herbert
title: HerBERT
- local: model_doc/hubert
title: Hubert
- local: model_doc/ibert
title: I-BERT
- local: model_doc/imagegpt
title: ImageGPT
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/layoutlmv2
title: LayoutLMV2
- local: model_doc/layoutlmv3
title: LayoutLMV3
- local: model_doc/layoutxlm
title: LayoutXLM
- local: model_doc/led
title: LED
- local: model_doc/levit
title: LeViT
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
title: LongT5
- local: model_doc/luke
title: LUKE
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/m2m_100
title: M2M100
- local: model_doc/marian
title: MarianMT
- local: model_doc/maskformer
title: MaskFormer
- local: model_doc/mbart
title: MBart and MBart-50
- local: model_doc/mctct
title: MCTCT
- local: model_doc/megatron-bert
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/mluke
title: mLUKE
- local: model_doc/mobilebert
title: MobileBERT
- local: model_doc/mobilevit
title: MobileViT
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mt5
title: MT5
- local: model_doc/mvp
title: MVP
- local: model_doc/nezha
title: NEZHA
- local: model_doc/nystromformer
title: Nyströmformer
- local: model_doc/opt
title: OPT
- local: model_doc/pegasus
title: Pegasus
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/phobert
title: PhoBERT
- local: model_doc/plbart
title: PLBart
- local: model_doc/poolformer
title: PoolFormer
- local: model_doc/prophetnet
title: ProphetNet
- local: model_doc/qdqbert
title: QDQBert
- local: model_doc/rag
title: RAG
- local: model_doc/realm
title: REALM
- local: model_doc/reformer
title: Reformer
- local: model_doc/regnet
title: RegNet
- local: model_doc/rembert
title: RemBERT
- local: model_doc/resnet
title: ResNet
- local: model_doc/retribert
title: RetriBERT
- local: model_doc/roberta
title: RoBERTa
- local: model_doc/roformer
title: RoFormer
- local: model_doc/segformer
title: SegFormer
- local: model_doc/sew
title: SEW
- local: model_doc/sew-d
title: SEW-D
- local: model_doc/speech-encoder-decoder
title: Speech Encoder Decoder Models
- local: model_doc/speech_to_text
title: Speech2Text
- local: model_doc/speech_to_text_2
title: Speech2Text2
- local: model_doc/splinter
title: Splinter
- local: model_doc/squeezebert
title: SqueezeBERT
- local: model_doc/swin
title: Swin Transformer
- local: model_doc/t5
title: T5
- local: model_doc/t5v1.1
title: T5v1.1
- local: model_doc/tapas
title: TAPAS
- local: model_doc/tapex
title: TAPEX
- local: model_doc/trajectory_transformer
title: Trajectory Transformer
- local: model_doc/transfo-xl
title: Transformer XL
- local: model_doc/trocr
title: TrOCR
- local: model_doc/ul2
title: UL2
- local: model_doc/unispeech
title: UniSpeech
- local: model_doc/unispeech-sat
title: UniSpeech-SAT
- local: model_doc/van
title: VAN
- local: model_doc/vilt
title: ViLT
- local: model_doc/vision-encoder-decoder
title: Vision Encoder Decoder Models
- local: model_doc/vision-text-dual-encoder
title: Vision Text Dual Encoder
- local: model_doc/vit
title: Vision Transformer (ViT)
- local: model_doc/visual_bert
title: VisualBERT
- local: model_doc/vit_mae
title: ViTMAE
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2-conformer
title: Wav2Vec2-Conformer
- local: model_doc/wav2vec2_phoneme
title: Wav2Vec2Phoneme
- local: model_doc/wavlm
title: WavLM
- local: model_doc/xglm
title: XGLM
- local: model_doc/xlm
title: XLM
- local: model_doc/xlm-prophetnet
title: XLM-ProphetNet
- local: model_doc/xlm-roberta
title: XLM-RoBERTa
- local: model_doc/xlm-roberta-xl
title: XLM-RoBERTa-XL
- local: model_doc/xlnet
title: XLNet
- local: model_doc/xls_r
title: XLS-R
- local: model_doc/xlsr_wav2vec2
title: XLSR-Wav2Vec2
- local: model_doc/yolos
title: YOLOS
- local: model_doc/yoso
title: YOSO
title: Models
- sections:
- local: internal/modeling_utils
title: Custom Layers and Utilities
- local: internal/pipelines_utils
title: Utilities for pipelines
- local: internal/tokenization_utils
title: Utilities for Tokenizers
- local: internal/trainer_utils
title: Utilities for Trainer
- local: internal/generation_utils
title: Utilities for Generation
- local: internal/file_utils
title: General Utilities
title: Internal Helpers
title: API

View File

@ -0,0 +1,132 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Distributed training with 🤗 Accelerate
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate/index.html) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
## Setup
Get started by installing 🤗 Accelerate:
```bash
pip install accelerate
```
Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator) object. `Accelerator` will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
```py
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
```
## Prepare to accelerate
The next step is to pass all the relevant training objects to the [`prepare`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.prepare) method. This includes your training and evaluation DataLoaders, a model and an optimizer:
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
... train_dataloader, eval_dataloader, model, optimizer
... )
```
## Backward
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`backward`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.backward) method:
```py
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... outputs = model(**batch)
... loss = outputs.loss
... accelerator.backward(loss)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
As you can see in the following code, you only need to add four additional lines of code to your training loop to enable distributed training!
```diff
+ from accelerate import Accelerator
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
+ accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
optimizer = AdamW(model.parameters(), lr=3e-5)
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+ train_dataloader, eval_dataloader, model, optimizer
+ )
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## Train
Once you've added the relevant lines of code, launch your training in a script or a notebook like Colaboratory.
### Train with a script
If you are running your training from a script, run the following command to create and save a configuration file:
```bash
accelerate config
```
Then launch your training with:
```bash
accelerate launch train.py
```
### Train with a notebook
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to `notebook_launcher`:
```py
>>> from accelerate import notebook_launcher
>>> notebook_launcher(training_function)
```
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate/index.html).

View File

@ -0,0 +1,167 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
-->
# How to add a pipeline to 🤗 Transformers?
First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes,
dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible
as it makes compatibility easier (even through other languages via JSON). Those will be the `inputs` of the
pipeline (`preprocess`).
Then define the `outputs`. Same policy as the `inputs`. The simpler, the better. Those will be the outputs of
`postprocess` method.
Start by inheriting the base class `Pipeline`. with the 4 methods needed to implement `preprocess`,
`_forward`, `postprocess` and `_sanitize_parameters`.
```python
from transformers import Pipeline
class MyPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, inputs, maybe_arg=2):
model_input = Tensor(inputs["input_ids"])
return {"model_input": model_input}
def _forward(self, model_inputs):
# model_inputs == {"model_input": model_input}
outputs = self.model(**model_inputs)
# Maybe {"logits": Tensor(...)}
return outputs
def postprocess(self, model_outputs):
best_class = model_outputs["logits"].softmax(-1)
return best_class
```
The structure of this breakdown is to support relatively seamless support for CPU/GPU, while supporting doing
pre/postprocessing on the CPU on different threads
`preprocess` will take the originally defined inputs, and turn them into something feedable to the model. It might
contain more information and is usually a `Dict`.
`_forward` is the implementation detail and is not meant to be called directly. `forward` is the preferred
called method as it contains safeguards to make sure everything is working on the expected device. If anything is
linked to a real model it belongs in the `_forward` method, anything else is in the preprocess/postprocess.
`postprocess` methods will take the output of `_forward` and turn it into the final output that were decided
earlier.
`_sanitize_parameters` exists to allow users to pass any parameters whenever they wish, be it at initialization
time `pipeline(...., maybe_arg=4)` or at call time `pipe = pipeline(...); output = pipe(...., maybe_arg=4)`.
The returns of `_sanitize_parameters` are the 3 dicts of kwargs that will be passed directly to `preprocess`,
`_forward` and `postprocess`. Don't fill anything if the caller didn't call with any extra parameter. That
allows to keep the default arguments in the function definition which is always more "natural".
A classic example would be a `top_k` argument in the post processing in classification tasks.
```python
>>> pipe = pipeline("my-new-task")
>>> pipe("This is a test")
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}, {"label": "3-star", "score": 0.05}
{"label": "4-star", "score": 0.025}, {"label": "5-star", "score": 0.025}]
>>> pipe("This is a test", top_k=2)
[{"label": "1-star", "score": 0.8}, {"label": "2-star", "score": 0.1}]
```
In order to achieve that, we'll update our `postprocess` method with a default parameter to `5`. and edit
`_sanitize_parameters` to allow this new parameter.
```python
def postprocess(self, model_outputs, top_k=5):
best_class = model_outputs["logits"].softmax(-1)
# Add logic to handle top_k
return best_class
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
postprocess_kwargs = {}
if "top_k" in kwargs:
preprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
Try to keep the inputs/outputs very simple and ideally JSON-serializable as it makes the pipeline usage very easy
without requiring users to understand new kind of objects. It's also relatively common to support many different types
of arguments for ease of use (audio files, can be filenames, URLs or pure bytes)
## Adding it to the list of supported tasks
To register your `new-task` to the list of supported tasks, provide the
following task template:
```python
my_new_task = {
"impl": MyPipeline,
"tf": (),
"pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
"default": {"model": {"pt": "user/awesome_model"}},
"type": "audio", # current support type: text, audio, image, multimodal
}
```
<Tip>
Take a look at the `src/transformers/pipelines/__init__.py` and the dictionary `SUPPORTED_TASKS` to see how a task is defined.
If possible your custom task should provide a default model.
</Tip>
Then add your custom task to the list of supported tasks via
`PIPELINE_REGISTRY.register_pipeline()`:
```python
from transformers.pipelines import PIPELINE_REGISTRY
PIPELINE_REGISTRY.register_pipeline("new-task", my_new_task)
```
## Adding tests
Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
The `run_pipeline_test` function will be very generic and run on small random models on every possible
architecture as defined by `model_mapping` and `tf_model_mapping`.
This is very important to test future compatibility, meaning if someone adds a new model for
`XXXForQuestionAnswering` then the pipeline test will attempt to run on it. Because the models are random it's
impossible to check for actual values, that's why There is a helper `ANY` that will simply attempt to match the
output of the pipeline TYPE.
You also *need* to implement 2 (ideally 4) tests.
- `test_small_model_pt` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)
and test the pipeline outputs. The results should be the same as `test_small_model_tf`.
- `test_small_model_tf` : Define 1 small model for this pipeline (doesn't matter if the results don't make sense)
and test the pipeline outputs. The results should be the same as `test_small_model_pt`.
- `test_large_model_pt` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases
- `test_large_model_tf` (`optional`): Tests the pipeline on a real pipeline where the results are supposed to
make sense. These tests are slow and should be marked as such. Here the goal is to showcase the pipeline and to make
sure there is no drift in future releases

View File

@ -0,0 +1,119 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Load pretrained instances with an AutoClass
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
<Tip>
Remember, architecture refers to the skeleton of the model and checkpoints are the weights for a given architecture. For example, [BERT](https://huggingface.co/bert-base-uncased) is an architecture, while `bert-base-uncased` is a checkpoint. Model is a general term that can mean either architecture or checkpoint.
</Tip>
In this tutorial, learn to:
* Load a pretrained tokenizer.
* Load a pretrained feature extractor.
* Load a pretrained processor.
* Load a pretrained model.
## AutoTokenizer
Nearly every NLP task begins with a tokenizer. A tokenizer converts your input into a format that can be processed by the model.
Load a tokenizer with [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
Then tokenize your input as shown below:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoFeatureExtractor
For audio and vision tasks, a feature extractor processes the audio signal or image into the correct input format.
Load a feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor
Multimodal tasks require a processor that combines two types of preprocessing tools. For example, the [LayoutLMV2](model_doc/layoutlmv2) model requires a feature extractor to handle images and a tokenizer to handle text; a processor combines both of them.
Load a processor with [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel
<frameworkcontent>
<pt>
Finally, the `AutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse the same checkpoint to load an architecture for a different task:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generally, we recommend using the `AutoTokenizer` class and the `AutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
</pt>
<tf>
Finally, the `TFAutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse the same checkpoint to load an architecture for a different task:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generally, we recommend using the `AutoTokenizer` class and the `TFAutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
</tf>
</frameworkcontent>

View File

@ -0,0 +1,383 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Benchmarks
<Tip warning={true}>
Hugging Face's Benchmarking tools are deprecated and it is advised to use external Benchmarking libraries to measure the speed
and memory complexity of Transformer models.
</Tip>
[[open-in-colab]]
Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks.
A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb).
## How to benchmark 🤗 Transformers models
The classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] allow to flexibly benchmark 🤗 Transformers models. The benchmark classes allow us to measure the _peak memory usage_ and _required time_ for both _inference_ and _training_.
<Tip>
Hereby, _inference_ is defined by a single forward pass, and _training_ is defined by a single forward pass and
backward pass.
</Tip>
The benchmark classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] expect an object of type [`PyTorchBenchmarkArguments`] and
[`TensorFlowBenchmarkArguments`], respectively, for instantiation. [`PyTorchBenchmarkArguments`] and [`TensorFlowBenchmarkArguments`] are data classes and contain all relevant configurations for their corresponding benchmark class. In the following example, it is shown how a BERT model of type _bert-base-cased_ can be benchmarked.
<frameworkcontent>
<pt>
```py
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
>>> args = PyTorchBenchmarkArguments(models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> benchmark = PyTorchBenchmark(args)
```
</pt>
<tf>
```py
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
>>> args = TensorFlowBenchmarkArguments(
... models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> benchmark = TensorFlowBenchmark(args)
```
</tf>
</frameworkcontent>
Here, three arguments are given to the benchmark argument data classes, namely `models`, `batch_sizes`, and
`sequence_lengths`. The argument `models` is required and expects a `list` of model identifiers from the
[model hub](https://huggingface.co/models) The `list` arguments `batch_sizes` and `sequence_lengths` define
the size of the `input_ids` on which the model is benchmarked. There are many more parameters that can be configured
via the benchmark argument data classes. For more detail on these one can either directly consult the files
`src/transformers/benchmark/benchmark_args_utils.py`, `src/transformers/benchmark/benchmark_args.py` (for PyTorch)
and `src/transformers/benchmark/benchmark_args_tf.py` (for Tensorflow). Alternatively, running the following shell
commands from root will print out a descriptive list of all configurable parameters for PyTorch and Tensorflow
respectively.
<frameworkcontent>
<pt>
```bash
python examples/pytorch/benchmarking/run_benchmark.py --help
```
An instantiated benchmark object can then simply be run by calling `benchmark.run()`.
```py
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base-uncased 8 8 0.006
bert-base-uncased 8 32 0.006
bert-base-uncased 8 128 0.018
bert-base-uncased 8 512 0.088
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base-uncased 8 8 1227
bert-base-uncased 8 32 1281
bert-base-uncased 8 128 1307
bert-base-uncased 8 512 1539
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 08:58:43.371351
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</pt>
<tf>
```bash
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
```
An instantiated benchmark object can then simply be run by calling `benchmark.run()`.
```py
>>> results = benchmark.run()
>>> print(results)
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base-uncased 8 8 0.005
bert-base-uncased 8 32 0.008
bert-base-uncased 8 128 0.022
bert-base-uncased 8 512 0.105
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base-uncased 8 8 1330
bert-base-uncased 8 32 1330
bert-base-uncased 8 128 1330
bert-base-uncased 8 512 1770
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:26:35.617317
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</tf>
</frameworkcontent>
By default, the _time_ and the _required memory_ for _inference_ are benchmarked. In the example output above the first
two sections show the result corresponding to _inference time_ and _inference memory_. In addition, all relevant
information about the computing environment, _e.g._ the GPU type, the system, the library versions, etc... are printed
out in the third section under _ENVIRONMENT INFORMATION_. This information can optionally be saved in a _.csv_ file
when adding the argument `save_to_csv=True` to [`PyTorchBenchmarkArguments`] and
[`TensorFlowBenchmarkArguments`] respectively. In this case, every section is saved in a separate
_.csv_ file. The path to each _.csv_ file can optionally be defined via the argument data classes.
Instead of benchmarking pre-trained models via their model identifier, _e.g._ `bert-base-uncased`, the user can
alternatively benchmark an arbitrary configuration of any available model class. In this case, a `list` of
configurations must be inserted with the benchmark args as follows.
<frameworkcontent>
<pt>
```py
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig
>>> args = PyTorchBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 128 0.006
bert-base 8 512 0.006
bert-base 8 128 0.018
bert-base 8 512 0.088
bert-384-hid 8 8 0.006
bert-384-hid 8 32 0.006
bert-384-hid 8 128 0.011
bert-384-hid 8 512 0.054
bert-6-lay 8 8 0.003
bert-6-lay 8 32 0.004
bert-6-lay 8 128 0.009
bert-6-lay 8 512 0.044
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1277
bert-base 8 32 1281
bert-base 8 128 1307
bert-base 8 512 1539
bert-384-hid 8 8 1005
bert-384-hid 8 32 1027
bert-384-hid 8 128 1035
bert-384-hid 8 512 1255
bert-6-lay 8 8 1097
bert-6-lay 8 32 1101
bert-6-lay 8 128 1127
bert-6-lay 8 512 1359
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:35:25.143267
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</pt>
<tf>
```py
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig
>>> args = TensorFlowBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 8 0.005
bert-base 8 32 0.008
bert-base 8 128 0.022
bert-base 8 512 0.106
bert-384-hid 8 8 0.005
bert-384-hid 8 32 0.007
bert-384-hid 8 128 0.018
bert-384-hid 8 512 0.064
bert-6-lay 8 8 0.002
bert-6-lay 8 32 0.003
bert-6-lay 8 128 0.0011
bert-6-lay 8 512 0.074
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1330
bert-base 8 32 1330
bert-base 8 128 1330
bert-base 8 512 1770
bert-384-hid 8 8 1330
bert-384-hid 8 32 1330
bert-384-hid 8 128 1330
bert-384-hid 8 512 1540
bert-6-lay 8 8 1330
bert-6-lay 8 32 1330
bert-6-lay 8 128 1330
bert-6-lay 8 512 1540
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:38:15.487125
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</tf>
</frameworkcontent>
Again, _inference time_ and _required memory_ for _inference_ are measured, but this time for customized configurations
of the `BertModel` class. This feature can especially be helpful when deciding for which configuration the model
should be trained.
## Benchmark best practices
This section lists a couple of best practices one should be aware of when benchmarking a model.
- Currently, only single device benchmarking is supported. When benchmarking on GPU, it is recommended that the user
specifies on which device the code should be run by setting the `CUDA_VISIBLE_DEVICES` environment variable in the
shell, _e.g._ `export CUDA_VISIBLE_DEVICES=0` before running the code.
- The option `no_multi_processing` should only be set to `True` for testing and debugging. To ensure accurate
memory measurement it is recommended to run each memory benchmark in a separate process by making sure
`no_multi_processing` is set to `True`.
- One should always state the environment information when sharing the results of a model benchmark. Results can vary
heavily between different GPU devices, library versions, etc., so that benchmark results on their own are not very
useful for the community.
## Sharing your benchmark
Previously all available core models (10 at the time) have been benchmarked for _inference time_, across many different
settings: using PyTorch, with and without TorchScript, using TensorFlow, with and without XLA. All of those tests were
done across CPUs (except for TensorFlow XLA) and GPUs.
The approach is detailed in the [following blogpost](https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2) and the results are
available [here](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit?usp=sharing).
With the new _benchmark_ tools, it is easier than ever to share your benchmark results with the community
- [PyTorch Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/pytorch/benchmarking/README.md).
- [TensorFlow Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/benchmarking/README.md).

View File

@ -0,0 +1,36 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# BERTology
There is a growing field of study concerned with investigating the inner working of large-scale transformers like BERT
(that some call "BERTology"). Some good examples of this field are:
- BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick:
https://arxiv.org/abs/1905.05950
- Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
- What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D.
Manning: https://arxiv.org/abs/1906.04341
In order to help this new field develop, we have included a few additional features in the BERT/GPT/GPT-2 models to
help people access the inner representations, mainly adapted from the great work of Paul Michel
(https://arxiv.org/abs/1905.10650):
- accessing all the hidden-states of BERT/GPT/GPT-2,
- accessing all the attention weights for each head of BERT/GPT/GPT-2,
- retrieving heads output values and gradients to be able to compute head importance score and prune head as explained
in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) while extract information and prune a model pre-trained on
GLUE.

View File

@ -0,0 +1,119 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Instantiating a big model
When you want to use a very big pretrained model, one challenge is to minimize the use of the RAM. The usual workflow
from PyTorch is:
1. Create your model with random weights.
2. Load your pretrained weights.
3. Put those pretrained weights in your random model.
Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you got our of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM.
<Tip>
Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instatiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible!
</Tip>
In this guide, we explore the solutions Transformers offer to deal with this issue. Note that this is an area of active development, so the APIs explained here may change slightly in the future.
## Sharded checkpoints
Since version 4.18.0, model checkpoints that end up taking more than 10GB of space are automatically sharded in smaller pieces. In terms of having one single checkpoint when you do `model.save_pretrained(save_dir)`, you will end up with several partial checkpoints (each of which being of size < 10GB) and an index that maps parameter names to the files they are stored in.
You can control the maximum size before sharding with the `max_shard_size` parameter, so for the sake of an example, we'll use a normal-size models with a small shard size: let's take a traditional BERT model.
```py
from transformers import AutoModel
model = AutoModel.from_pretrained("bert-base-cased")
```
If you save it using [`~PreTrainedModel.save_pretrained`], you will get a new folder with two files: the config of the model and its weights:
```py
>>> import os
>>> import tempfile
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir)
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model.bin']
```
Now let's use a maximum shard size of 200MB:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json']
```
On top of the configuration of the model, we see three different weights files, and an `index.json` file which is our index. A checkpoint like this can be fully reloaded using the [`~PreTrainedModel.from_pretrained`] method:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... new_model = AutoModel.from_pretrained(tmp_dir)
```
The main advantage of doing this for big models is that during step 2 of the workflow shown above, each shard of the checkpoint is loaded after the previous one, capping the memory usage in RAM to the model size plus the size of the biggest shard.
Beind the scenes, the index file is used to determine which keys are in the checkpoint, and where the corresponding weights are stored. We can load that index like any json and get a dictionary:
```py
>>> import json
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f:
... index = json.load(f)
>>> print(index.keys())
dict_keys(['metadata', 'weight_map'])
```
The metadata just consists of the total size of the model for now. We plan to add several other informations in the future:
```py
>>> index["metadata"]
{'total_size': 433245184}
```
The weights map is the main part of this index, which maps each parameter name (as usually found in a PyTorch model `state_dict`) to the file it's stored in:
```py
>>> index["weight_map"]
{'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin',
'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin',
...
```
If you want to directly load such a sharded checkpoint inside a model without using [`~PreTrainedModel.from_pretrained`] (like you would do `model.load_state_dict()` for a full checkpoint) you should use [`~modeling_utils.load_sharded_checkpoint`]:
```py
>>> from transformers.modeling_utils import load_sharded_checkpoint
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... load_sharded_checkpoint(model, tmp_dir)
```
## Low memory loading
Sharded checkpoints reduce the memory usage during step 2 of the workflow mentioned above, but in order to use that model in a low memory setting, we recommend leveraging our tools based on the Accelerate library.
Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)

View File

@ -1,4 +1,4 @@
# Community
# Community
This page regroups resources around 🤗 Transformers developed by the community.
@ -6,12 +6,13 @@ This page regroups resources around 🤗 Transformers developed by the community
| Resource | Description | Author |
|:----------|:-------------|------:|
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](https://huggingface.co/transformers/master/glossary.html) that has been put into a form which can be easily learnt/revised using [Anki ](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
| [Hugging Face Transformers Glossary Flashcards](https://www.darigovresearch.com/huggingface-transformers-glossary-flashcards) | A set of flashcards based on the [Transformers Docs Glossary](glossary) that has been put into a form which can be easily learnt/revised using [Anki ](https://apps.ankiweb.net/) an open source, cross platform app specifically designed for long term knowledge retention. See this [Introductory video on how to use the flashcards](https://www.youtube.com/watch?v=Dji_h7PILrw). | [Darigov Research](https://www.darigovresearch.com/) |
## Community notebooks:
| Notebook | Description | Author | |
|:----------|:-------------|:-------------|------:|
| [Fine-tune a pre-trained Transformer to generate lyrics](https://github.com/AlekseyKorshuk/huggingartists) | How to generate lyrics in the style of your favorite artist by fine-tuning a GPT-2 model | [Aleksey Korshuk](https://github.com/AlekseyKorshuk) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb) |
| [Train T5 in Tensorflow 2 ](https://github.com/snapthat/TF-T5-text-to-text) | How to train T5 for any task using Tensorflow 2. This notebook demonstrates a Question & Answer task implemented in Tensorflow 2 using SQUAD | [Muhammad Harris](https://github.com/HarrisDePerceptron) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snapthat/TF-T5-text-to-text/blob/master/snapthatT5/notebooks/TF-T5-Datasets%20Training.ipynb) |
| [Train T5 on TPU](https://github.com/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) | How to train T5 on SQUAD with Transformers and Nlp | [Suraj Patil](https://github.com/patil-suraj) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb#scrollTo=QLGiFCDqvuil) |
| [Fine-tune T5 for Classification and Multiple Choice](https://github.com/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) | How to fine-tune T5 for classification and multiple choice tasks using a text-to-text format with PyTorch Lightning | [Suraj Patil](https://github.com/patil-suraj) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb) |
@ -35,7 +36,7 @@ This page regroups resources around 🤗 Transformers developed by the community
|[fine-tune a non-English GPT-2 Model with Trainer class](https://github.com/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb) | How to fine-tune a non-English GPT-2 Model with Trainer class | [Philipp Schmid](https://www.philschmid.de) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/fine-tune-GPT-2/blob/master/Fine_tune_a_non_English_GPT_2_Model_with_Huggingface.ipynb)|
|[Fine-tune a DistilBERT Model for Multi Label Classification task](https://github.com/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb) | How to fine-tune a DistilBERT Model for Multi Label Classification task | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/Transformers_scripts/blob/master/Transformers_multilabel_distilbert.ipynb)|
|[Fine-tune ALBERT for sentence-pair classification](https://github.com/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb) | How to fine-tune an ALBERT model or another BERT-based model for the sentence-pair classification task | [Nadir El Manouzi](https://github.com/NadirEM) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NadirEM/nlp-notebooks/blob/master/Fine_tune_ALBERT_sentence_pair_classification.ipynb)|
|[Fine-tune Roberta for sentiment analysis](https://github.com/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb) | How to fine-tune an Roberta model for sentiment analysis | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb)|
|[Fine-tune Roberta for sentiment analysis](https://github.com/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb) | How to fine-tune a Roberta model for sentiment analysis | [Dhaval Taunk](https://github.com/DhavalTaunk08) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb)|
|[Evaluating Question Generation Models](https://github.com/flexudy-pipe/qugeev) | How accurate are the answers to questions generated by your seq2seq transformer model? | [Pascal Zoleko](https://github.com/zolekode) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bpsSqCQU-iw_5nNoRm_crPq6FRuJthq_?usp=sharing)|
|[Classify text with DistilBERT and Tensorflow](https://github.com/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb) | How to fine-tune DistilBERT for text classification in TensorFlow | [Peter Bayerle](https://github.com/peterbayerle) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/peterbayerle/huggingface_notebook/blob/main/distilbert_tf.ipynb)|
|[Leverage BERT for Encoder-Decoder Summarization on CNN/Dailymail](https://github.com/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb) | How to warm-start a *EncoderDecoderModel* with a *bert-base-uncased* checkpoint for summarization on CNN/Dailymail | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)|
@ -51,3 +52,14 @@ This page regroups resources around 🤗 Transformers developed by the community
|[Wav2Vec2 CTC decoding with GPT2 adjustment](https://github.com/voidful/huggingface_notebook/blob/main/xlsr_gpt.ipynb) | How to decode CTC sequence with language model adjustment | [Eric Lam](https://github.com/voidful) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1e_z5jQHYbO2YKEaUgzb1ww1WwiAyydAj?usp=sharing)|
|[Fine-tune BART for summarization in two languages with Trainer class](https://github.com/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb) | How to fine-tune BART for summarization in two languages with Trainer class | [Eliza Szczechla](https://github.com/elsanns) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb)|
|[Evaluate Big Bird on Trivia QA](https://github.com/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb) | How to evaluate BigBird on long document question answering on Trivia QA | [Patrick von Platen](https://github.com/patrickvonplaten) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Evaluating_Big_Bird_on_TriviaQA.ipynb)|
| [Create video captions using Wav2Vec2](https://github.com/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) | How to create YouTube captions from any video by transcribing the audio with Wav2Vec | [Niklas Muennighoff](https://github.com/Muennighoff) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Muennighoff/ytclipcc/blob/main/wav2vec_youtube_captions.ipynb) |
| [Fine-tune the Vision Transformer on CIFAR-10 using PyTorch Lightning](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) | How to fine-tune the Vision Transformer (ViT) on CIFAR-10 using HuggingFace Transformers, Datasets and PyTorch Lightning | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_PyTorch_Lightning.ipynb) |
| [Fine-tune the Vision Transformer on CIFAR-10 using the 🤗 Trainer](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) | How to fine-tune the Vision Transformer (ViT) on CIFAR-10 using HuggingFace Transformers, Datasets and the 🤗 Trainer | [Niels Rogge](https://github.com/nielsrogge) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/VisionTransformer/Fine_tuning_the_Vision_Transformer_on_CIFAR_10_with_the_%F0%9F%A4%97_Trainer.ipynb) |
| [Evaluate LUKE on Open Entity, an entity typing dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) | How to evaluate *LukeForEntityClassification* on the Open Entity dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_open_entity.ipynb) |
| [Evaluate LUKE on TACRED, a relation extraction dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | How to evaluate *LukeForEntityPairClassification* on the TACRED dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) |
| [Evaluate LUKE on CoNLL-2003, an important NER benchmark](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | How to evaluate *LukeForEntitySpanClassification* on the CoNLL-2003 dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) |
| [Evaluate BigBird-Pegasus on PubMed dataset](https://github.com/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | How to evaluate *BigBirdPegasusForConditionalGeneration* on PubMed dataset | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) |
| [Speech Emotion Classification with Wav2Vec2](https://github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | How to leverage a pretrained Wav2Vec2 model for Emotion Classification on the MEGA dataset | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) |
| [Detect objects in an image with DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | How to use a trained *DetrForObjectDetection* model to detect objects in an image and visualize attention | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) |
| [Fine-tune DETR on a custom object detection dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | How to fine-tune *DetrForObjectDetection* on a custom object detection dataset | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) |
| [Finetune T5 for Named Entity Recognition](https://github.com/ToluClassics/Notebooks/blob/main/T5_Ner_Finetuning.ipynb) | How to fine-tune *T5* on a Named Entity Recognition Task | [Ogundepo Odunayo](https://github.com/ToluClassics) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing) |

View File

@ -0,0 +1 @@
../../../CONTRIBUTING.md

View File

@ -0,0 +1,162 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Converting Tensorflow Checkpoints
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models
that can be loaded using the `from_pretrained` methods of the library.
<Tip>
Since 2.3.0 the conversion script is now part of the transformers CLI (**transformers-cli**) available in any
transformers >= 2.3.0 installation.
The documentation below reflects the **transformers-cli convert** command format.
</Tip>
## BERT
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script.
This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated
configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from
the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can
be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (\
`bert_config.json`) and the vocabulary file (`vocab.txt`) as these are needed for the PyTorch model too.
To run this specific conversion script you will need to have TensorFlow and PyTorch installed (`pip install tensorflow`). The rest of the repository only requires PyTorch.
Here is an example of the conversion process for a pre-trained `BERT-Base Uncased` model:
```bash
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
transformers-cli convert --model_type bert \
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
--config $BERT_BASE_DIR/bert_config.json \
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
```
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/bert#pre-trained-models).
## ALBERT
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script.
The CLI takes as input a TensorFlow checkpoint (three files starting with `model.ckpt-best`) and the accompanying
configuration file (`albert_config.json`), then creates and saves a PyTorch model. To run this conversion you will
need to have TensorFlow and PyTorch installed.
Here is an example of the conversion process for the pre-trained `ALBERT Base` model:
```bash
export ALBERT_BASE_DIR=/path/to/albert/albert_base
transformers-cli convert --model_type albert \
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
--config $ALBERT_BASE_DIR/albert_config.json \
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
```
You can download Google's pre-trained models for the conversion [here](https://github.com/google-research/albert#pre-trained-models).
## OpenAI GPT
Here is an example of the conversion process for a pre-trained OpenAI GPT model, assuming that your NumPy checkpoint
save as the same format than OpenAI pretrained model (see [here](https://github.com/openai/finetune-transformer-lm)\
)
```bash
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
transformers-cli convert --model_type gpt \
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT_CONFIG] \
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
```
## OpenAI GPT-2
Here is an example of the conversion process for a pre-trained OpenAI GPT-2 model (see [here](https://github.com/openai/gpt-2))
```bash
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/gpt2/pretrained/weights
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
```
## Transformer-XL
Here is an example of the conversion process for a pre-trained Transformer-XL model (see [here](https://github.com/kimiyoung/transformer-xl/tree/master/tf#obtain-and-evaluate-pretrained-sota-models))
```bash
export TRANSFO_XL_CHECKPOINT_FOLDER_PATH=/path/to/transfo/xl/checkpoint
transformers-cli convert --model_type transfo_xl \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config TRANSFO_XL_CONFIG] \
[--finetuning_task_name TRANSFO_XL_FINETUNED_TASK]
```
## XLNet
Here is an example of the conversion process for a pre-trained XLNet model:
```bash
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
transformers-cli convert --model_type xlnet \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
--config $TRANSFO_XL_CONFIG_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--finetuning_task_name XLNET_FINETUNED_TASK] \
```
## XLM
Here is an example of the conversion process for a pre-trained XLM model:
```bash
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
transformers-cli convert --model_type xlm \
--tf_checkpoint $XLM_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
[--config XML_CONFIG] \
[--finetuning_task_name XML_FINETUNED_TASK]
```
## T5
Here is an example of the conversion process for a pre-trained T5 model:
```bash
export T5=/path/to/t5/uncased_L-12_H-768_A-12
transformers-cli convert --model_type t5 \
--tf_checkpoint $T5/t5_model.ckpt \
--config $T5/t5_config.json \
--pytorch_dump_output $T5/pytorch_model.bin
```

View File

@ -0,0 +1,355 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Create a custom architecture
An [`AutoClass`](model_doc/auto) automatically infers the model architecture and downloads pretrained configuration and weights. Generally, we recommend using an `AutoClass` to produce checkpoint-agnostic code. But users who want more control over specific model parameters can create a custom 🤗 Transformers model from just a few base classes. This could be particularly useful for anyone who is interested in studying, training or experimenting with a 🤗 Transformers model. In this guide, dive deeper into creating a custom model without an `AutoClass`. Learn how to:
- Load and customize a model configuration.
- Create a model architecture.
- Create a slow and fast tokenizer for text.
- Create a feature extractor for audio or image tasks.
- Create a processor for multimodal tasks.
## Configuration
A [configuration](main_classes/configuration) refers to a model's specific attributes. Each model configuration has different attributes; for instance, all NLP models have the `hidden_size`, `num_attention_heads`, `num_hidden_layers` and `vocab_size` attributes in common. These attributes specify the number of attention heads or hidden layers to construct a model with.
Get a closer look at [DistilBERT](model_doc/distilbert) by accessing [`DistilBertConfig`] to inspect it's attributes:
```py
>>> from transformers import DistilBertConfig
>>> config = DistilBertConfig()
>>> print(config)
DistilBertConfig {
"activation": "gelu",
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
[`DistilBertConfig`] displays all the default attributes used to build a base [`DistilBertModel`]. All attributes are customizable, creating space for experimentation. For example, you can customize a default model to:
- Try a different activation function with the `activation` parameter.
- Use a higher dropout ratio for the attention probabilities with the `attention_dropout` parameter.
```py
>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
>>> print(my_config)
DistilBertConfig {
"activation": "relu",
"attention_dropout": 0.4,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
Pretrained model attributes can be modified in the [`~PretrainedConfig.from_pretrained`] function:
```py
>>> my_config = DistilBertConfig.from_pretrained("distilbert-base-uncased", activation="relu", attention_dropout=0.4)
```
Once you are satisfied with your model configuration, you can save it with [`~PretrainedConfig.save_pretrained`]. Your configuration file is stored as a JSON file in the specified save directory:
```py
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
```
To reuse the configuration file, load it with [`~PretrainedConfig.from_pretrained`]:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
```
<Tip>
You can also save your configuration file as a dictionary or even just the difference between your custom configuration attributes and the default configuration attributes! See the [configuration](main_classes/configuration) documentation for more details.
</Tip>
## Model
The next step is to create a [model](main_classes/models). The model - also loosely referred to as the architecture - defines what each layer is doing and what operations are happening. Attributes like `num_hidden_layers` from the configuration are used to define the architecture. Every model shares the base class [`PreTrainedModel`] and a few common methods like resizing input embeddings and pruning self-attention heads. In addition, all models are also either a [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) or [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. This means models are compatible with each of their respective framework's usage.
<frameworkcontent>
<pt>
Load your custom configuration attributes into the model:
```py
>>> from transformers import DistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> model = DistilBertModel(my_config)
```
This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training.
Create a pretrained model with [`~PreTrainedModel.from_pretrained`]:
```py
>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased")
```
When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like:
```py
>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config)
```
</pt>
<tf>
Load your custom configuration attributes into the model:
```py
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
```
This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training.
Create a pretrained model with [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
```
When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config)
```
</tf>
</frameworkcontent>
### Model heads
At this point, you have a base DistilBERT model which outputs the *hidden states*. The hidden states are passed as inputs to a model head to produce the final output. 🤗 Transformers provides a different model head for each task as long as a model supports the task (i.e., you can't use DistilBERT for a sequence-to-sequence task like translation).
<frameworkcontent>
<pt>
For example, [`DistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs.
```py
>>> from transformers import DistilBertForSequenceClassification
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`DistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output.
```py
>>> from transformers import DistilBertForQuestionAnswering
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
```
</pt>
<tf>
For example, [`TFDistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs.
```py
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`TFDistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output.
```py
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
```
</tf>
</frameworkcontent>
## Tokenizer
The last base class you need before using a model for textual data is a [tokenizer](main_classes/tokenizer) to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers:
- [`PreTrainedTokenizer`]: a Python implementation of a tokenizer.
- [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to it's Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters.
Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens.
<Tip warning={true}>
Not every model supports a fast tokenizer. Take a look at this [table](index#supported-frameworks) to check if a model has fast tokenizer support.
</Tip>
If you trained your own tokenizer, you can create one from your *vocabulary* file:
```py
>>> from transformers import DistilBertTokenizer
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left")
```
It is important to remember the vocabulary from a custom tokenizer will be different from the vocabulary generated by a pretrained model's tokenizer. You need to use a pretrained model's vocabulary if you are using a pretrained model, otherwise the inputs won't make sense. Create a tokenizer with a pretrained model's vocabulary with the [`DistilBertTokenizer`] class:
```py
>>> from transformers import DistilBertTokenizer
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
```
Create a fast tokenizer with the [`DistilBertTokenizerFast`] class:
```py
>>> from transformers import DistilBertTokenizerFast
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
```
<Tip>
By default, [`AutoTokenizer`] will try to load a fast tokenizer. You can disable this behavior by setting `use_fast=False` in `from_pretrained`.
</Tip>
## Feature Extractor
A feature extractor processes audio or image inputs. It inherits from the base [`~feature_extraction_utils.FeatureExtractionMixin`] class, and may also inherit from the [`ImageFeatureExtractionMixin`] class for processing image features or the [`SequenceFeatureExtractor`] class for processing audio inputs.
Depending on whether you are working on an audio or vision task, create a feature extractor associated with the model you're using. For example, create a default [`ViTFeatureExtractor`] if you are using [ViT](model_doc/vit) for image classification:
```py
>>> from transformers import ViTFeatureExtractor
>>> vit_extractor = ViTFeatureExtractor()
>>> print(vit_extractor)
ViTFeatureExtractor {
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_mean": [
0.5,
0.5,
0.5
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": 2,
"size": 224
}
```
<Tip>
If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default feature extractor parameters.
</Tip>
Modify any of the [`ViTFeatureExtractor`] parameters to create your custom feature extractor:
```py
>>> from transformers import ViTFeatureExtractor
>>> my_vit_extractor = ViTFeatureExtractor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> print(my_vit_extractor)
ViTFeatureExtractor {
"do_normalize": false,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_mean": [
0.3,
0.3,
0.3
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": "PIL.Image.BOX",
"size": 224
}
```
For audio inputs, you can create a [`Wav2Vec2FeatureExtractor`] and customize the parameters in a similar way:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 16000
}
```
## Processor
For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps a feature extractor and tokenizer into a single object. For example, let's use the [`Wav2Vec2Processor`] for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer.
Create a feature extractor to handle the audio inputs:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
```
Create a tokenizer to handle the text inputs:
```py
>>> from transformers import Wav2Vec2CTCTokenizer
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
```
Combine the feature extractor and tokenizer in [`Wav2Vec2Processor`]:
```py
>>> from transformers import Wav2Vec2Processor
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
```
With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune.

View File

@ -0,0 +1,349 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Sharing custom models
The 🤗 Transformers library is designed to be easily extensible. Every model is fully coded in a given subfolder
of the repository with no abstraction, so you can easily copy a modeling file and tweak it to your needs.
If you are writing a brand new model, it might be easier to start from scratch. In this tutorial, we will show you
how to write a custom model and its configuration so it can be used inside Transformers, and how you can share it
with the community (with the code it relies on) so that anyone can use it, even if it's not present in the 🤗
Transformers library.
We will illustrate all of this on a ResNet model, by wrapping the ResNet class of the
[timm library](https://github.com/rwightman/pytorch-image-models/tree/master/timm) into a [`PreTrainedModel`].
## Writing a custom configuration
Before we dive into the model, let's first write its configuration. The configuration of a model is an object that
will contain all the necessary information to build the model. As we will see in the next section, the model can only
take a `config` to be initialized, so we really need that object to be as complete as possible.
In our example, we will take a couple of arguments of the ResNet class that we might want to tweak. Different
configurations will then give us the different types of ResNets that are possible. We then just store those arguments,
after checking the validity of a few of them.
```python
from transformers import PretrainedConfig
from typing import List
class ResnetConfig(PretrainedConfig):
model_type = "resnet"
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,
base_width: int = 64,
stem_width: int = 64,
stem_type: str = "",
avg_down: bool = False,
**kwargs,
):
if block_type not in ["basic", "bottleneck"]:
raise ValueError(f"`block` must be 'basic' or bottleneck', got {block}.")
if stem_type not in ["", "deep", "deep-tiered"]:
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {block}.")
self.block_type = block_type
self.layers = layers
self.num_classes = num_classes
self.input_channels = input_channels
self.cardinality = cardinality
self.base_width = base_width
self.stem_width = stem_width
self.stem_type = stem_type
self.avg_down = avg_down
super().__init__(**kwargs)
```
The three important things to remember when writing you own configuration are the following:
- you have to inherit from `PretrainedConfig`,
- the `__init__` of your `PretrainedConfig` must accept any kwargs,
- those `kwargs` need to be passed to the superclass `__init__`.
The inheritance is to make sure you get all the functionality from the 🤗 Transformers library, while the two other
constraints come from the fact a `PretrainedConfig` has more fields than the ones you are setting. When reloading a
config with the `from_pretrained` method, those fields need to be accepted by your config and then sent to the
superclass.
Defining a `model_type` for your configuration (here `model_type="resnet"`) is not mandatory, unless you want to
register your model with the auto classes (see last section).
With this done, you can easily create and save your configuration like you would do with any other model config of the
library. Here is how we can create a resnet50d config and save it:
```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d_config.save_pretrained("custom-resnet")
```
This will save a file named `config.json` inside the folder `custom-resnet`. You can then reload your config with the
`from_pretrained` method:
```py
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
```
You can also use any other method of the [`PretrainedConfig`] class, like [`~PretrainedConfig.push_to_hub`] to
directly upload your config to the Hub.
## Writing a custom model
Now that we have our ResNet configuration, we can go on writing the model. We will actually write two: one that
extracts the hidden features from a batch of images (like [`BertModel`]) and one that is suitable for image
classification (like [`BertForSequenceClassification`]).
As we mentioned before, we'll only write a loose wrapper of the model to keep it simple for this example. The only
thing we need to do before writing this class is a map between the block types and actual block classes. Then the
model is defined from the configuration by passing everything to the `ResNet` class:
```py
from transformers import PreTrainedModel
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
from .configuration_resnet import ResnetConfig
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
class ResnetModel(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor):
return self.model.forward_features(tensor)
```
For the model that will classify images, we just change the forward method:
```py
class ResnetModelForImageClassification(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}
```
In both cases, notice how we inherit from `PreTrainedModel` and call the superclass initialization with the `config`
(a bit like when you write a regular `torch.nn.Module`). The line that sets the `config_class` is not mandatory, unless
you want to register your model with the auto classes (see last section).
<Tip>
If your model is very similar to a model inside the library, you can re-use the same configuration as this model.
</Tip>
You can have your model return anything you want, but returning a dictionary like we did for
`ResnetModelForImageClassification`, with the loss included when labels are passed, will make your model directly
usable inside the [`Trainer`] class. Using another output format is fine as long as you are planning on using your own
training loop or another library for training.
Now that we have our model class, let's create one:
```py
resnet50d = ResnetModelForImageClassification(resnet50d_config)
```
Again, you can use any of the methods of [`PreTrainedModel`], like [`~PreTrainedModel.save_pretrained`] or
[`~PreTrainedModel.push_to_hub`]. We will use the second in the next section, and see how to push the model weights
with the code of our model. But first, let's load some pretrained weights inside our model.
In your own use case, you will probably be training your custom model on your own data. To go fast for this tutorial,
we will use the pretrained version of the resnet50d. Since our model is just a wrapper around it, it's going to be
easy to transfer those weights:
```py
import timm
pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```
Now let's see how to make sure that when we do [`~PreTrainedModel.save_pretrained`] or [`~PreTrainedModel.push_to_hub`], the
code of the model is saved.
## Sending the code to the Hub
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
First, make sure your model is fully defined in a `.py` file. It can rely on relative imports to some other files as
long as all the files are in the same directory (we don't support submodules for this feature yet). For our example,
we'll define a `modeling_resnet.py` file and a `configuration_resnet.py` file in a folder of the current working
directory named `resnet_model`. The configuration file contains the code for `ResnetConfig` and the modeling file
contains the code of `ResnetModel` and `ResnetModelForImageClassification`.
```
.
└── resnet_model
├── __init__.py
├── configuration_resnet.py
└── modeling_resnet.py
```
The `__init__.py` can be empty, it's just there so that Python detects `resnet_model` can be use as a module.
<Tip warning={true}>
If copying a modeling files from the library, you will need to replace all the relative imports at the top of the file
to import from the `transformers` package.
</Tip>
Note that you can re-use (or subclass) an existing configuration/model.
To share your model with the community, follow those steps: first import the ResNet model and config from the newly
created files:
```py
from resnet_model.configuration_resnet import ResnetConfig
from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification
```
Then you have to tell the library you want to copy the code files of those objects when using the `save_pretrained`
method and properly register them with a given Auto class (especially for models), just run:
```py
ResnetConfig.register_for_auto_class()
ResnetModel.register_for_auto_class("AutoModel")
ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification")
```
Note that there is no need to specify an auto class for the configuration (there is only one auto class for them,
[`AutoConfig`]) but it's different for models. Your custom model could be suitable for many different tasks, so you
have to specify which one of the auto classes is the correct one for your model.
Next, let's create the config and models as we did before:
```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d = ResnetModelForImageClassification(resnet50d_config)
pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```
Now to send the model to the Hub, make sure you are logged in. Either run in your terminal:
```bash
huggingface-cli login
```
or from a notebook:
```py
from huggingface_hub import notebook_login
notebook_login()
```
You can then push to to your own namespace (or an organization you are a member of) like this:
```py
resnet50d.push_to_hub("custom-resnet50d")
```
On top of the modeling weights and the configuration in json format, this also copied the modeling and
configuration `.py` files in the folder `custom-resnet50d` and uploaded the result to the Hub. You can check the result
in this [model repo](https://huggingface.co/sgugger/custom-resnet50d).
See the [sharing tutorial](model_sharing) for more information on the push to Hub method.
## Using a model with custom code
You can use any configuration, model or tokenizer with custom code files in its repository with the auto-classes and
the `from_pretrained` method. All files and code uploaded to the Hub are scanned for malware (refer to the [Hub security](https://huggingface.co/docs/hub/security#malware-scanning) documentation for more information), but you should still
review the model code and author to avoid executing malicious code on your machine. Set `trust_remote_code=True` to use
a model with custom code:
```py
from transformers import AutoModelForImageClassification
model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True)
```
It is also strongly encouraged to pass a commit hash as a `revision` to make sure the author of the models did not
update the code with some malicious new lines (unless you fully trust the authors of the models).
```py
commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292"
model = AutoModelForImageClassification.from_pretrained(
"sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash
)
```
Note that when browsing the commit history of the model repo on the Hub, there is a button to easily copy the commit
hash of any commit.
## Registering a model with custom code to the auto classes
If you are writing a library that extends 🤗 Transformers, you may want to extend the auto classes to include your own
model. This is different from pushing the code to the Hub in the sense that users will need to import your library to
get the custom models (contrarily to automatically downloading the model code from the Hub).
As long as your config has a `model_type` attribute that is different from existing model types, and that your model
classes have the right `config_class` attributes, you can just add them to the auto classes likes this:
```py
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification
AutoConfig.register("resnet", ResnetConfig)
AutoModel.register(ResnetConfig, ResnetModel)
AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification)
```
Note that the first argument used when registering your custom config to [`AutoConfig`] needs to match the `model_type`
of your custom config, and the first argument used when registering your custom models to any auto model class needs
to match the `config_class` of those models.

View File

@ -0,0 +1,335 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Debugging
## Multi-GPU Network Issues Debug
When training or inferencing with `DistributedDataParallel` and multiple GPU, if you run into issue of inter-communication between processes and/or nodes, you can use the following script to diagnose network issues.
```bash
wget https://raw.githubusercontent.com/huggingface/transformers/main/scripts/distributed/torch-distributed-gpu-test.py
```
For example to test how 2 GPUs interact do:
```bash
python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
If both processes can talk to each and allocate GPU memory each will print an OK status.
For more GPUs or nodes adjust the arguments in the script.
You will find a lot more details inside the diagnostics script and even a recipe to how you could run it in a SLURM environment.
An additional level of debug is to add `NCCL_DEBUG=INFO` environment variable as follows:
```bash
NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
This will dump a lot of NCCL-related debug information, which you can then search online if you find that some problems are reported. Or if you're not sure how to interpret the output you can share the log file in an Issue.
## Underflow and Overflow Detection
<Tip>
This feature is currently available for PyTorch-only.
</Tip>
<Tip>
For multi-GPU training it requires DDP (`torch.distributed.launch`).
</Tip>
<Tip>
This feature can be used with any `nn.Module`-based model.
</Tip>
If you start getting `loss=NaN` or the model inhibits some other abnormal behavior due to `inf` or `nan` in
activations or weights one needs to discover where the first underflow or overflow happens and what led to it. Luckily
you can accomplish that easily by activating a special module that will do the detection automatically.
If you're using [`Trainer`], you just need to add:
```bash
--debug underflow_overflow
```
to the normal command line arguments, or pass `debug="underflow_overflow"` when creating the
[`TrainingArguments`] object.
If you're using your own training loop or another Trainer you can accomplish the same with:
```python
from .debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model)
```
[`~debug_utils.DebugUnderflowOverflow`] inserts hooks into the model that immediately after each
forward call will test input and output variables and also the corresponding module's weights. As soon as `inf` or
`nan` is detected in at least one element of the activations or weights, the program will assert and print a report
like this (this was caught with `google/mt5-small` under fp16 mixed precision):
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
encoder.block.1.layer.1.DenseReluDense.dropout Dropout
0.00e+00 2.57e+02 input[0]
0.00e+00 2.85e+02 output
[...]
encoder.block.2.layer.0 T5LayerSelfAttention
6.78e-04 3.15e+03 input[0]
2.65e-04 3.42e+03 output[0]
None output[1]
2.25e-01 1.00e+04 output[2]
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.dropout Dropout
0.00e+00 8.76e+03 input[0]
0.00e+00 9.74e+03 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
The example output has been trimmed in the middle for brevity.
The second column shows the value of the absolute largest element, so if you have a closer look at the last few frames,
the inputs and outputs were in the range of `1e4`. So when this training was done under fp16 mixed precision the very
last step overflowed (since under `fp16` the largest number before `inf` is `64e3`). To avoid overflows under
`fp16` the activations must remain way below `1e4`, because `1e4 * 1e4 = 1e8` so any matrix multiplication with
large activations is going to lead to a numerical overflow condition.
At the very start of the trace you can discover at which batch number the problem occurred (here `Detected inf/nan during batch_number=0` means the problem occurred on the first batch).
Each reported frame starts by declaring the fully qualified entry for the corresponding module this frame is reporting
for. If we look just at this frame:
```
encoder.block.2.layer.1.layer_norm T5LayerNorm
8.69e-02 4.18e-01 weight
2.65e-04 3.42e+03 input[0]
1.79e-06 4.65e+00 output
```
Here, `encoder.block.2.layer.1.layer_norm` indicates that it was a layer norm for the first layer, of the second
block of the encoder. And the specific calls of the `forward` is `T5LayerNorm`.
Let's look at the last few frames of that report:
```
Detected inf/nan during batch_number=0
Last 21 forward frames:
abs min abs max metadata
[...]
encoder.block.2.layer.1.DenseReluDense.wi_0 Linear
2.17e-07 4.50e+00 weight
1.79e-06 4.65e+00 input[0]
2.68e-06 3.70e+01 output
encoder.block.2.layer.1.DenseReluDense.wi_1 Linear
8.08e-07 2.66e+01 weight
1.79e-06 4.65e+00 input[0]
1.27e-04 2.37e+02 output
encoder.block.2.layer.1.DenseReluDense.wo Linear
1.01e-06 6.44e+00 weight
0.00e+00 9.74e+03 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense
1.79e-06 4.65e+00 input[0]
3.18e-04 6.27e+04 output
encoder.block.2.layer.1.dropout Dropout
3.18e-04 6.27e+04 input[0]
0.00e+00 inf output
```
The last frame reports for `Dropout.forward` function with the first entry for the only input and the second for the
only output. You can see that it was called from an attribute `dropout` inside `DenseReluDense` class. We can see
that it happened during the first layer, of the 2nd block, during the very first batch. Finally, the absolute largest
input elements was `6.27e+04` and same for the output was `inf`.
You can see here, that `T5DenseGatedGeluDense.forward` resulted in output activations, whose absolute max value was
around 62.7K, which is very close to fp16's top limit of 64K. In the next frame we have `Dropout` which renormalizes
the weights, after it zeroed some of the elements, which pushes the absolute max value to more than 64K, and we get an
overflow (`inf`).
As you can see it's the previous frames that we need to look into when the numbers start going into very large for fp16
numbers.
Let's match the report to the code from `models/t5/modeling_t5.py`:
```python
class T5DenseGatedGeluDense(nn.Module):
def __init__(self, config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.gelu_act = ACT2FN["gelu_new"]
def forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
```
Now it's easy to see the `dropout` call, and all the previous calls as well.
Since the detection is happening in a forward hook, these reports are printed immediately after each `forward`
returns.
Going back to the full report, to act on it and to fix the problem, we need to go a few frames up where the numbers
started to go up and most likely switch to the `fp32` mode here, so that the numbers don't overflow when multiplied
or summed up. Of course, there might be other solutions. For example, we could turn off `amp` temporarily if it's
enabled, after moving the original `forward` into a helper wrapper, like so:
```python
def _forward(self, hidden_states):
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
hidden_states = self.wo(hidden_states)
return hidden_states
import torch
def forward(self, hidden_states):
if torch.is_autocast_enabled():
with torch.cuda.amp.autocast(enabled=False):
return self._forward(hidden_states)
else:
return self._forward(hidden_states)
```
Since the automatic detector only reports on inputs and outputs of full frames, once you know where to look, you may
want to analyse the intermediary stages of any specific `forward` function as well. In such a case you can use the
`detect_overflow` helper function to inject the detector where you want it, for example:
```python
from debug_utils import detect_overflow
class T5LayerFF(nn.Module):
[...]
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
detect_overflow(forwarded_states, "after layer_norm")
forwarded_states = self.DenseReluDense(forwarded_states)
detect_overflow(forwarded_states, "after DenseReluDense")
return hidden_states + self.dropout(forwarded_states)
```
You can see that we added 2 of these and now we track if `inf` or `nan` for `forwarded_states` was detected
somewhere in between.
Actually, the detector already reports these because each of the calls in the example above is a `nn.Module`, but
let's say if you had some local direct calculations this is how you'd do that.
Additionally, if you're instantiating the debugger in your own code, you can adjust the number of frames printed from
its default, e.g.:
```python
from .debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
```
### Specific batch absolute mix and max value tracing
The same debugging class can be used for per-batch tracing with the underflow/overflow detection feature turned off.
Let's say you want to watch the absolute min and max values for all the ingredients of each `forward` call of a given
batch, and only do that for batches 1 and 3. Then you instantiate this class as:
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3])
```
And now full batches 1 and 3 will be traced using the same format as the underflow/overflow detector does.
Batches are 0-indexed.
This is helpful if you know that the program starts misbehaving after a certain batch number, so you can fast-forward
right to that area. Here is a sample truncated output for such configuration:
```
*** Starting batch number=1 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.47e+04 input[0]
5.36e-05 7.92e+02 output
[...]
decoder.dropout Dropout
1.60e-07 2.27e+01 input[0]
0.00e+00 2.52e+01 output
decoder T5Stack
not a tensor output
lm_head Linear
1.01e-06 7.92e+02 weight
0.00e+00 1.11e+00 input[0]
6.06e-02 8.39e+01 output
T5ForConditionalGeneration
not a tensor output
*** Starting batch number=3 ***
abs min abs max metadata
shared Embedding
1.01e-06 7.92e+02 weight
0.00e+00 2.78e+04 input[0]
5.36e-05 7.92e+02 output
[...]
```
Here you will get a huge number of frames dumped - as many as there were forward calls in your model, so it may or may
not what you want, but sometimes it can be easier to use for debugging purposes than a normal debugger. For example, if
a problem starts happening at batch number 150. So you can dump traces for batches 149 and 150 and compare where
numbers started to diverge.
You can also specify the batch number after which to stop the training, with:
```python
debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3)
```

View File

@ -0,0 +1,70 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Use tokenizers from 🤗 Tokenizers
The [`PreTrainedTokenizerFast`] depends on the [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) library. The tokenizers obtained from the 🤗 Tokenizers library can be
loaded very simply into 🤗 Transformers.
Before getting in the specifics, let's first start by creating a dummy tokenizer in a few lines:
```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```
We now have a tokenizer trained on the files we defined. We can either continue using it in that runtime, or save it to
a JSON file for future re-use.
## Loading directly from the tokenizer object
Let's see how to leverage this tokenizer object in the 🤗 Transformers library. The
[`PreTrainedTokenizerFast`] class allows for easy instantiation, by accepting the instantiated
*tokenizer* object as an argument:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to [the tokenizer
page](main_classes/tokenizer) for more information.
## Loading from a JSON file
In order to load a tokenizer from a JSON file, let's first start by saving our tokenizer:
```python
>>> tokenizer.save("tokenizer.json")
```
The path to which we saved this file can be passed to the [`PreTrainedTokenizerFast`] initialization
method using the `tokenizer_file` parameter:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```
This object can now be used with all the methods shared by the 🤗 Transformers tokenizers! Head to [the tokenizer
page](main_classes/tokenizer) for more information.

300
docs/source/en/glossary.mdx Normal file
View File

@ -0,0 +1,300 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Glossary
## General terms
- autoencoding models: see MLM
- autoregressive models: see CLM
- CLM: causal language modeling, a pretraining task where the model reads the texts in order and has to predict the
next word. It's usually done by reading the whole sentence but using a mask inside the model to hide the future
tokens at a certain timestep.
- deep learning: machine learning algorithms which uses neural networks with several layers.
- MLM: masked language modeling, a pretraining task where the model sees a corrupted version of the texts, usually done
by masking some tokens randomly, and has to predict the original text.
- multimodal: a task that combines texts with another kind of inputs (for instance images).
- NLG: natural language generation, all tasks related to generating text (for instance talk with transformers,
translation).
- NLP: natural language processing, a generic way to say "deal with texts".
- NLU: natural language understanding, all tasks related to understanding what is in a text (for instance classifying
the whole text, individual words).
- pretrained model: a model that has been pretrained on some data (for instance all of Wikipedia). Pretraining methods
involve a self-supervised objective, which can be reading the text and trying to predict the next word (see CLM) or
masking some words and trying to predict them (see MLM).
- RNN: recurrent neural network, a type of model that uses a loop over a layer to process texts.
- self-attention: each element of the input finds out which other elements of the input they should attend to.
- seq2seq or sequence-to-sequence: models that generate a new sequence from an input, like translation models, or
summarization models (such as [Bart](model_doc/bart) or [T5](model_doc/t5)).
- token: a part of a sentence, usually a word, but can also be a subword (non-common words are often split in subwords)
or a punctuation symbol.
- transformer: self-attention based deep learning model architecture.
## Model inputs
Every model is different yet bears similarities with the others. Therefore most models use the same inputs, which are
detailed here alongside usage examples.
<a id='input-ids'></a>
### Input IDs
The input ids are often the only required parameters to be passed to the model as input. *They are token indices,
numerical representations of tokens building the sequences that will be used as input by the model*.
<Youtube id="VFp38yj8h3A"/>
Each tokenizer works differently but the underlying mechanism remains the same. Here's an example using the BERT
tokenizer, which is a [WordPiece](https://arxiv.org/pdf/1609.08144.pdf) tokenizer:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence = "A Titan RTX has 24GB of VRAM"
```
The tokenizer takes care of splitting the sequence into tokens available in the tokenizer vocabulary.
```python
>>> tokenized_sequence = tokenizer.tokenize(sequence)
```
The tokens are either words or subwords. Here for instance, "VRAM" wasn't in the model vocabulary, so it's been split
in "V", "RA" and "M". To indicate those tokens are not separate words but parts of the same word, a double-hash prefix
is added for "RA" and "M":
```python
>>> print(tokenized_sequence)
['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M']
```
These tokens can then be converted into IDs which are understandable by the model. This can be done by directly feeding
the sentence to the tokenizer, which leverages the Rust implementation of [🤗 Tokenizers](https://github.com/huggingface/tokenizers) for peak performance.
```python
>>> inputs = tokenizer(sequence)
```
The tokenizer returns a dictionary with all the arguments necessary for its corresponding model to work properly. The
token indices are under the key "input_ids":
```python
>>> encoded_sequence = inputs["input_ids"]
>>> print(encoded_sequence)
[101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102]
```
Note that the tokenizer automatically adds "special tokens" (if the associated model relies on them) which are special
IDs the model sometimes uses.
If we decode the previous sequence of ids,
```python
>>> decoded_sequence = tokenizer.decode(encoded_sequence)
```
we will see
```python
>>> print(decoded_sequence)
[CLS] A Titan RTX has 24GB of VRAM [SEP]
```
because this is the way a [`BertModel`] is going to expect its inputs.
<a id='attention-mask'></a>
### Attention mask
The attention mask is an optional argument used when batching sequences together.
<Youtube id="M6adb1j2jPI"/>
This argument indicates to the model which tokens should be attended to, and which should not.
For example, consider these two sequences:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence_a = "This is a short sequence."
>>> sequence_b = "This is a rather long sequence. It is at least longer than the sequence A."
>>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"]
>>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"]
```
The encoded versions have different lengths:
```python
>>> len(encoded_sequence_a), len(encoded_sequence_b)
(8, 19)
```
Therefore, we can't put them together in the same tensor as-is. The first sequence needs to be padded up to the length
of the second one, or the second one needs to be truncated down to the length of the first one.
In the first case, the list of IDs will be extended by the padding indices. We can pass a list to the tokenizer and ask
it to pad like this:
```python
>>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True)
```
We can see that 0s have been added on the right of the first sentence to make it the same length as the second one:
```python
>>> padded_sequences["input_ids"]
[[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]]
```
This can then be converted into a tensor in PyTorch or TensorFlow. The attention mask is a binary tensor indicating the
position of the padded indices so that the model does not attend to them. For the [`BertTokenizer`],
`1` indicates a value that should be attended to, while `0` indicates a padded value. This attention mask is
in the dictionary returned by the tokenizer under the key "attention_mask":
```python
>>> padded_sequences["attention_mask"]
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```
<a id='token-type-ids'></a>
### Token Type IDs
Some models' purpose is to do classification on pairs of sentences or question answering.
<Youtube id="0u3ioSwev3s"/>
These require two different sequences to be joined in a single "input_ids" entry, which usually is performed with the
help of special tokens, such as the classifier (`[CLS]`) and separator (`[SEP]`) tokens. For example, the BERT
model builds its two sequence input as such:
```python
>>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP]
```
We can use our tokenizer to automatically generate such a sentence by passing the two sequences to `tokenizer` as two
arguments (and not a list, like before) like this:
```python
>>> from transformers import BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased")
>>> sequence_a = "HuggingFace is based in NYC"
>>> sequence_b = "Where is HuggingFace based?"
>>> encoded_dict = tokenizer(sequence_a, sequence_b)
>>> decoded = tokenizer.decode(encoded_dict["input_ids"])
```
which will return:
```python
>>> print(decoded)
[CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based? [SEP]
```
This is enough for some models to understand where one sequence ends and where another begins. However, other models,
such as BERT, also deploy token type IDs (also called segment IDs). They are represented as a binary mask identifying
the two types of sequence in the model.
The tokenizer returns this mask as the "token_type_ids" entry:
```python
>>> encoded_dict["token_type_ids"]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]
```
The first sequence, the "context" used for the question, has all its tokens represented by a `0`, whereas the
second sequence, corresponding to the "question", has all its tokens represented by a `1`.
Some models, like [`XLNetModel`] use an additional token represented by a `2`.
<a id='position-ids'></a>
### Position IDs
Contrary to RNNs that have the position of each token embedded within them, transformers are unaware of the position of
each token. Therefore, the position IDs (`position_ids`) are used by the model to identify each token's position in
the list of tokens.
They are an optional parameter. If no `position_ids` are passed to the model, the IDs are automatically created as
absolute positional embeddings.
Absolute positional embeddings are selected in the range `[0, config.max_position_embeddings - 1]`. Some models use
other types of positional embeddings, such as sinusoidal position embeddings or relative position embeddings.
<a id='labels'></a>
### Labels
The labels are an optional argument which can be passed in order for the model to compute the loss itself. These labels
should be the expected prediction of the model: it will use the standard loss in order to compute the loss between its
predictions and the expected value (the label).
These labels are different according to the model head, for example:
- For sequence classification models (e.g., [`BertForSequenceClassification`]), the model expects a
tensor of dimension `(batch_size)` with each value of the batch corresponding to the expected label of the
entire sequence.
- For token classification models (e.g., [`BertForTokenClassification`]), the model expects a tensor
of dimension `(batch_size, seq_length)` with each value corresponding to the expected label of each individual
token.
- For masked language modeling (e.g., [`BertForMaskedLM`]), the model expects a tensor of dimension
`(batch_size, seq_length)` with each value corresponding to the expected label of each individual token: the
labels being the token ID for the masked token, and values to be ignored for the rest (usually -100).
- For sequence to sequence tasks,(e.g., [`BartForConditionalGeneration`],
[`MBartForConditionalGeneration`]), the model expects a tensor of dimension `(batch_size, tgt_seq_length)` with each value corresponding to the target sequences associated with each input sequence. During
training, both *BART* and *T5* will make the appropriate *decoder_input_ids* and decoder attention masks internally.
They usually do not need to be supplied. This does not apply to models leveraging the Encoder-Decoder framework. See
the documentation of each model for more information on each specific model's labels.
The base models (e.g., [`BertModel`]) do not accept labels, as these are the base transformer
models, simply outputting features.
<a id='decoder-input-ids'></a>
### Decoder input IDs
This input is specific to encoder-decoder models, and contains the input IDs that will be fed to the decoder. These
inputs should be used for sequence to sequence tasks, such as translation or summarization, and are usually built in a
way specific to each model.
Most encoder-decoder models (BART, T5) create their `decoder_input_ids` on their own from the `labels`. In
such models, passing the `labels` is the preferred way to handle training.
Please check each model's docs to see how they handle these input IDs for sequence to sequence training.
<a id='feed-forward-chunking'></a>
### Feed Forward Chunking
In each residual attention block in transformers the self-attention layer is usually followed by 2 feed forward layers.
The intermediate embedding size of the feed forward layers is often bigger than the hidden size of the model (e.g., for
`bert-base-uncased`).
For an input of size `[batch_size, sequence_length]`, the memory required to store the intermediate feed forward
embeddings `[batch_size, sequence_length, config.intermediate_size]` can account for a large fraction of the memory
use. The authors of [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) noticed that since the
computation is independent of the `sequence_length` dimension, it is mathematically equivalent to compute the output
embeddings of both feed forward layers `[batch_size, config.hidden_size]_0, ..., [batch_size, config.hidden_size]_n`
individually and concat them afterward to `[batch_size, sequence_length, config.hidden_size]` with `n = sequence_length`, which trades increased computation time against reduced memory use, but yields a mathematically
**equivalent** result.
For models employing the function [`apply_chunking_to_forward`], the `chunk_size` defines the
number of output embeddings that are computed in parallel and thus defines the trade-off between memory and time
complexity. If `chunk_size` is set to 0, no feed forward chunking is done.

315
docs/source/en/index.mdx Normal file
View File

@ -0,0 +1,315 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 🤗 Transformers
State-of-the-art Machine Learning for PyTorch, TensorFlow and JAX.
🤗 Transformers provides APIs to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you time from training a model from scratch. The models can be used across different modalities such as:
* 📝 Text: text classification, information extraction, question answering, summarization, translation, and text generation in over 100 languages.
* 🖼️ Images: image classification, object detection, and segmentation.
* 🗣️ Audio: speech recognition and audio classification.
* 🐙 Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
Our library supports seamless integration between three of the most popular deep learning libraries: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) and [JAX](https://jax.readthedocs.io/en/latest/). Train your model in three lines of code in one framework, and load it for inference with another.
Each 🤗 Transformers architecture is defined in a standalone Python module so they can be easily customized for research and experiments.
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Contents
The documentation is organized in five parts:
- **GET STARTED** contains a quick tour and installation instructions to get up and running with 🤗 Transformers.
- **TUTORIALS** are a great place to begin if you are new to our library. This section will help you gain the basic skills you need to start using 🤗 Transformers.
- **HOW-TO GUIDES** will show you how to achieve a specific goal like fine-tuning a pretrained model for language modeling or how to create a custom model head.
- **CONCEPTUAL GUIDES** provides more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
- **API** describes each class and function, grouped in:
- **MAIN CLASSES** for the main classes exposing the important APIs of the library.
- **MODELS** for the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** for the classes and functions we use internally.
The library currently contains JAX, PyTorch and TensorFlow implementations, pretrained model weights, usage scripts and conversion utilities for the following models.
### Supported models
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Supported frameworks
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
|:---------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
| CvT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| DeiT | ❌ | ❌ | ✅ | ❌ | ❌ |
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
| GroupViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ✅ | ❌ | ❌ |
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| MobileViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
| RegNet | ❌ | ❌ | ✅ | ✅ | ❌ |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ResNet | ❌ | ❌ | ✅ | ✅ | ❌ |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
| SegFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ |
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | ❌ | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -0,0 +1,240 @@
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Installation
Install 🤗 Transformers for whichever deep learning library you're working with, setup your cache, and optionally configure 🤗 Transformers to run offline.
🤗 Transformers is tested on Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, and Flax. Follow the installation instructions below for the deep learning library you are using:
* [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions.
* [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
## Install with pip
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, take a look at this [guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). A virtual environment makes it easier to manage different projects, and avoid compatibility issues between dependencies.
Start by creating a virtual environment in your project directory:
```bash
python -m venv .env
```
Activate the virtual environment. On Linux and MacOs:
```bash
source .env/bin/activate
```
Activate Virtual environment on Windows
```bash
.env/Scripts/activate
```
Now you're ready to install 🤗 Transformers with the following command:
```bash
pip install transformers
```
For CPU-support only, you can conveniently install 🤗 Transformers and a deep learning library in one line. For example, install 🤗 Transformers and PyTorch with:
```bash
pip install transformers[torch]
```
🤗 Transformers and TensorFlow 2.0:
```bash
pip install transformers[tf-cpu]
```
🤗 Transformers and Flax:
```bash
pip install transformers[flax]
```
Finally, check if 🤗 Transformers has been properly installed by running the following command. It will download a pretrained model:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
```
Then print out the label and score:
```bash
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
```
## Install from source
Install 🤗 Transformers from source with the following command:
```bash
pip install git+https://github.com/huggingface/transformers
```
This command installs the bleeding edge `main` version rather than the latest `stable` version. The `main` version is useful for staying up-to-date with the latest developments. For instance, if a bug has been fixed since the last official release but a new release hasn't been rolled out yet. However, this means the `main` version may not always be stable. We strive to keep the `main` version operational, and most issues are usually resolved within a few hours or a day. If you run into a problem, please open an [Issue](https://github.com/huggingface/transformers/issues) so we can fix it even sooner!
Check if 🤗 Transformers has been properly installed by running the following command:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
## Editable install
You will need an editable install if you'd like to:
* Use the `main` version of the source code.
* Contribute to 🤗 Transformers and need to test changes in the code.
Clone the repository and install 🤗 Transformers with the following commands:
```bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
```
These commands will link the folder you cloned the repository to and your Python library paths. Python will now look inside the folder you cloned to in addition to the normal library paths. For example, if your Python packages are typically installed in `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python will also search the folder you cloned to: `~/transformers/`.
<Tip warning={true}>
You must keep the `transformers` folder if you want to keep using the library.
</Tip>
Now you can easily update your clone to the latest version of 🤗 Transformers with the following command:
```bash
cd ~/transformers/
git pull
```
Your Python environment will find the `main` version of 🤗 Transformers on the next run.
## Install with conda
Install from the conda channel `huggingface`:
```bash
conda install -c huggingface transformers
```
## Cache setup
Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/transformers/`. This is the default directory given by the shell environment variable `TRANSFORMERS_CACHE`. On Windows, the default directory is given by `C:\Users\username\.cache\huggingface\transformers`. You can change the shell environment variables shown below - in order of priority - to specify a different cache directory:
1. Shell environment variable (default): `TRANSFORMERS_CACHE`.
2. Shell environment variable: `HF_HOME` + `transformers/`.
3. Shell environment variable: `XDG_CACHE_HOME` + `/huggingface/transformers`.
<Tip>
🤗 Transformers will use the shell environment variables `PYTORCH_TRANSFORMERS_CACHE` or `PYTORCH_PRETRAINED_BERT_CACHE` if you are coming from an earlier iteration of this library and have set those environment variables, unless you specify the shell environment variable `TRANSFORMERS_CACHE`.
</Tip>
## Offline mode
🤗 Transformers is able to run in a firewalled or offline environment by only using local files. Set the environment variable `TRANSFORMERS_OFFLINE=1` to enable this behavior.
<Tip>
Add [🤗 Datasets](https://huggingface.co/docs/datasets/) to your offline training workflow by setting the environment variable `HF_DATASETS_OFFLINE=1`.
</Tip>
For example, you would typically run a program on a normal network firewalled to external instances with the following command:
```bash
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Run this same program in an offline instance with:
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
The script should now run without hanging or waiting to timeout because it knows it should only look for local files.
### Fetch models and tokenizers to use offline
Another option for using 🤗 Transformers offline is to download the files ahead of time, and then point to their local path when you need to use them offline. There are three ways to do this:
* Download a file through the user interface on the [Model Hub](https://huggingface.co/models) by clicking on the ↓ icon.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png)
* Use the [`PreTrainedModel.from_pretrained`] and [`PreTrainedModel.save_pretrained`] workflow:
1. Download your files ahead of time with [`PreTrainedModel.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
```
2. Save your files to a specified directory with [`PreTrainedModel.save_pretrained`]:
```py
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
>>> model.save_pretrained("./your/path/bigscience_t0")
```
3. Now when you're offline, reload your files with [`PreTrainedModel.from_pretrained`] from the specified directory:
```py
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
```
* Programmatically download files with the [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) library:
1. Install the `huggingface_hub` library in your virtual environment:
```bash
python -m pip install huggingface_hub
```
2. Use the [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) function to download a file to a specific path. For example, the following command downloads the `config.json` file from the [T0](https://huggingface.co/bigscience/T0_3B) model to your desired path:
```py
>>> from huggingface_hub import hf_hub_download
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
```
Once your file is downloaded and locally cached, specify it's local path to load and use it:
```py
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
```
<Tip>
See the [How to download files from the Hub](https://huggingface.co/docs/hub/how-to-downstream) section for more details on downloading files stored on the Hub.
</Tip>

View File

@ -0,0 +1,46 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# General Utilities
This page lists all of Transformers general utility functions that are found in the file `utils.py`.
Most of those are only useful if you are studying the general code in the library.
## Enums and namedtuples
[[autodoc]] utils.ExplicitEnum
[[autodoc]] utils.PaddingStrategy
[[autodoc]] utils.TensorType
## Special Decorators
[[autodoc]] utils.add_start_docstrings
[[autodoc]] utils.add_start_docstrings_to_model_forward
[[autodoc]] utils.add_end_docstrings
[[autodoc]] utils.add_code_sample_docstrings
[[autodoc]] utils.replace_return_docstrings
## Special Properties
[[autodoc]] utils.cached_property
## Other Utilities
[[autodoc]] utils._LazyModule

View File

@ -0,0 +1,263 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for Generation
This page lists all the utility functions used by [`~generation_utils.GenerationMixin.generate`],
[`~generation_utils.GenerationMixin.greedy_search`],
[`~generation_utils.GenerationMixin.sample`],
[`~generation_utils.GenerationMixin.beam_search`],
[`~generation_utils.GenerationMixin.beam_sample`],
[`~generation_utils.GenerationMixin.group_beam_search`], and
[`~generation_utils.GenerationMixin.constrained_beam_search`].
Most of those are only useful if you are studying the code of the generate methods in the library.
## Generate Outputs
The output of [`~generation_utils.GenerationMixin.generate`] is an instance of a subclass of
[`~utils.ModelOutput`]. This output is a data structure containing all the information returned
by [`~generation_utils.GenerationMixin.generate`], but that can also be used as tuple or dictionary.
Here's an example:
```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt")
generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
```
The `generation_output` object is a [`~generation_utils.GreedySearchDecoderOnlyOutput`], as we can
see in the documentation of that class below, it means it has the following attributes:
- `sequences`: the generated sequences of tokens
- `scores` (optional): the prediction scores of the language modelling head, for each generation step
- `hidden_states` (optional): the hidden states of the model, for each generation step
- `attentions` (optional): the attention weights of the model, for each generation step
Here we have the `scores` since we passed along `output_scores=True`, but we don't have `hidden_states` and
`attentions` because we didn't pass `output_hidden_states=True` or `output_attentions=True`.
You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you
will get `None`. Here for instance `generation_output.scores` are all the generated prediction scores of the
language modeling head, and `generation_output.attentions` is `None`.
When using our `generation_output` object as a tuple, it only keeps the attributes that don't have `None` values.
Here, for instance, it has two elements, `loss` then `logits`, so
```python
generation_output[:2]
```
will return the tuple `(generation_output.sequences, generation_output.scores)` for instance.
When using our `generation_output` object as a dictionary, it only keeps the attributes that don't have `None`
values. Here, for instance, it has two keys that are `sequences` and `scores`.
We document here all output types.
### GreedySearchOutput
[[autodoc]] generation_utils.GreedySearchDecoderOnlyOutput
[[autodoc]] generation_utils.GreedySearchEncoderDecoderOutput
[[autodoc]] generation_flax_utils.FlaxGreedySearchOutput
### SampleOutput
[[autodoc]] generation_utils.SampleDecoderOnlyOutput
[[autodoc]] generation_utils.SampleEncoderDecoderOutput
[[autodoc]] generation_flax_utils.FlaxSampleOutput
### BeamSearchOutput
[[autodoc]] generation_utils.BeamSearchDecoderOnlyOutput
[[autodoc]] generation_utils.BeamSearchEncoderDecoderOutput
### BeamSampleOutput
[[autodoc]] generation_utils.BeamSampleDecoderOnlyOutput
[[autodoc]] generation_utils.BeamSampleEncoderDecoderOutput
## LogitsProcessor
A [`LogitsProcessor`] can be used to modify the prediction scores of a language model head for
generation.
[[autodoc]] LogitsProcessor
- __call__
[[autodoc]] LogitsProcessorList
- __call__
[[autodoc]] LogitsWarper
- __call__
[[autodoc]] MinLengthLogitsProcessor
- __call__
[[autodoc]] TemperatureLogitsWarper
- __call__
[[autodoc]] RepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TopPLogitsWarper
- __call__
[[autodoc]] TopKLogitsWarper
- __call__
[[autodoc]] TypicalLogitsWarper
- __call__
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
[[autodoc]] PrefixConstrainedLogitsProcessor
- __call__
[[autodoc]] HammingDiversityLogitsProcessor
- __call__
[[autodoc]] ForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] ForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] InfNanRemoveLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessorList
- __call__
[[autodoc]] TFLogitsWarper
- __call__
[[autodoc]] TFTemperatureLogitsWarper
- __call__
[[autodoc]] TFTopPLogitsWarper
- __call__
[[autodoc]] TFTopKLogitsWarper
- __call__
[[autodoc]] TFMinLengthLogitsProcessor
- __call__
[[autodoc]] TFNoBadWordsLogitsProcessor
- __call__
[[autodoc]] TFNoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] TFRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TFForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] TFForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessorList
- __call__
[[autodoc]] FlaxLogitsWarper
- __call__
[[autodoc]] FlaxTemperatureLogitsWarper
- __call__
[[autodoc]] FlaxTopPLogitsWarper
- __call__
[[autodoc]] FlaxTopKLogitsWarper
- __call__
[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxMinLengthLogitsProcessor
- __call__
## StoppingCriteria
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token).
[[autodoc]] StoppingCriteria
- __call__
[[autodoc]] StoppingCriteriaList
- __call__
[[autodoc]] MaxLengthCriteria
- __call__
[[autodoc]] MaxTimeCriteria
- __call__
## Constraints
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output.
[[autodoc]] Constraint
[[autodoc]] PhrasalConstraint
[[autodoc]] DisjunctiveConstraint
[[autodoc]] ConstraintListState
## BeamSearch
[[autodoc]] BeamScorer
- process
- finalize
[[autodoc]] BeamSearchScorer
- process
- finalize
[[autodoc]] ConstrainedBeamSearchScorer
- process
- finalize
## Utilities
[[autodoc]] top_k_top_p_filtering
[[autodoc]] tf_top_k_top_p_filtering

View File

@ -0,0 +1,82 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Custom Layers and Utilities
This page lists all the custom layers used by the library, as well as the utility functions it provides for modeling.
Most of those are only useful if you are studying the code of the models in the library.
## Pytorch custom modules
[[autodoc]] pytorch_utils.Conv1D
[[autodoc]] modeling_utils.PoolerStartLogits
- forward
[[autodoc]] modeling_utils.PoolerEndLogits
- forward
[[autodoc]] modeling_utils.PoolerAnswerClass
- forward
[[autodoc]] modeling_utils.SquadHeadOutput
[[autodoc]] modeling_utils.SQuADHead
- forward
[[autodoc]] modeling_utils.SequenceSummary
- forward
## PyTorch Helper Functions
[[autodoc]] pytorch_utils.apply_chunking_to_forward
[[autodoc]] pytorch_utils.find_pruneable_heads_and_indices
[[autodoc]] pytorch_utils.prune_layer
[[autodoc]] pytorch_utils.prune_conv1d_layer
[[autodoc]] pytorch_utils.prune_linear_layer
## TensorFlow custom layers
[[autodoc]] modeling_tf_utils.TFConv1D
[[autodoc]] modeling_tf_utils.TFSharedEmbeddings
- call
[[autodoc]] modeling_tf_utils.TFSequenceSummary
## TensorFlow loss functions
[[autodoc]] modeling_tf_utils.TFCausalLanguageModelingLoss
[[autodoc]] modeling_tf_utils.TFMaskedLanguageModelingLoss
[[autodoc]] modeling_tf_utils.TFMultipleChoiceLoss
[[autodoc]] modeling_tf_utils.TFQuestionAnsweringLoss
[[autodoc]] modeling_tf_utils.TFSequenceClassificationLoss
[[autodoc]] modeling_tf_utils.TFTokenClassificationLoss
## TensorFlow Helper Functions
[[autodoc]] modeling_tf_utils.get_initializer
[[autodoc]] modeling_tf_utils.keras_serializable
[[autodoc]] modeling_tf_utils.shape_list

View File

@ -0,0 +1,40 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for pipelines
This page lists all the utility functions the library provides for pipelines.
Most of those are only useful if you are studying the code of the models in the library.
## Argument handling
[[autodoc]] pipelines.ArgumentHandler
[[autodoc]] pipelines.ZeroShotClassificationArgumentHandler
[[autodoc]] pipelines.QuestionAnsweringArgumentHandler
## Data format
[[autodoc]] pipelines.PipelineDataFormat
[[autodoc]] pipelines.CsvPipelineDataFormat
[[autodoc]] pipelines.JsonPipelineDataFormat
[[autodoc]] pipelines.PipedPipelineDataFormat
## Utilities
[[autodoc]] pipelines.PipelineException

View File

@ -0,0 +1,38 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for Tokenizers
This page lists all the utility functions used by the tokenizers, mainly the class
[`~tokenization_utils_base.PreTrainedTokenizerBase`] that implements the common methods between
[`PreTrainedTokenizer`] and [`PreTrainedTokenizerFast`] and the mixin
[`~tokenization_utils_base.SpecialTokensMixin`].
Most of those are only useful if you are studying the code of the tokenizers in the library.
## PreTrainedTokenizerBase
[[autodoc]] tokenization_utils_base.PreTrainedTokenizerBase
- __call__
- all
## SpecialTokensMixin
[[autodoc]] tokenization_utils_base.SpecialTokensMixin
## Enums and namedtuples
[[autodoc]] tokenization_utils_base.TruncationStrategy
[[autodoc]] tokenization_utils_base.CharSpan
[[autodoc]] tokenization_utils_base.TokenSpan

View File

@ -0,0 +1,45 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for Trainer
This page lists all the utility functions used by [`Trainer`].
Most of those are only useful if you are studying the code of the Trainer in the library.
## Utilities
[[autodoc]] EvalPrediction
[[autodoc]] IntervalStrategy
[[autodoc]] enable_full_determinism
[[autodoc]] set_seed
[[autodoc]] torch_distributed_zero_first
## Callbacks internals
[[autodoc]] trainer_callback.CallbackHandler
## Distributed Evaluation
[[autodoc]] trainer_pt_utils.DistributedTensorGatherer
## Distributed Evaluation
[[autodoc]] HfArgumentParser
## Debug Utilities
[[autodoc]] debug_utils.DebugUnderflowOverflow

View File

@ -0,0 +1,111 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Callbacks
Callbacks are objects that can customize the behavior of the training loop in the PyTorch
[`Trainer`] (this feature is not yet implemented in TensorFlow) that can inspect the training loop
state (for progress reporting, logging on TensorBoard or other ML platforms...) and take decisions (like early
stopping).
Callbacks are "read only" pieces of code, apart from the [`TrainerControl`] object they return, they
cannot change anything in the training loop. For customizations that require changes in the training loop, you should
subclass [`Trainer`] and override the methods you need (see [trainer](trainer) for examples).
By default a [`Trainer`] will use the following callbacks:
- [`DefaultFlowCallback`] which handles the default behavior for logging, saving and evaluation.
- [`PrinterCallback`] or [`ProgressCallback`] to display progress and print the
logs (the first one is used if you deactivate tqdm through the [`TrainingArguments`], otherwise
it's the second one).
- [`~integrations.TensorBoardCallback`] if tensorboard is accessible (either through PyTorch >= 1.4
or tensorboardX).
- [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed.
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.ml/site/) is installed.
- [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed.
- [`~integrations.AzureMLCallback`] if [azureml-sdk](https://pypi.org/project/azureml-sdk/) is
installed.
- [`~integrations.CodeCarbonCallback`] if [codecarbon](https://pypi.org/project/codecarbon/) is
installed.
The main class that implements callbacks is [`TrainerCallback`]. It gets the
[`TrainingArguments`] used to instantiate the [`Trainer`], can access that
Trainer's internal state via [`TrainerState`], and can take some actions on the training loop via
[`TrainerControl`].
## Available Callbacks
Here is the list of the available [`TrainerCallback`] in the library:
[[autodoc]] integrations.CometCallback
- setup
[[autodoc]] DefaultFlowCallback
[[autodoc]] PrinterCallback
[[autodoc]] ProgressCallback
[[autodoc]] EarlyStoppingCallback
[[autodoc]] integrations.TensorBoardCallback
[[autodoc]] integrations.WandbCallback
- setup
[[autodoc]] integrations.MLflowCallback
- setup
[[autodoc]] integrations.AzureMLCallback
[[autodoc]] integrations.CodeCarbonCallback
## TrainerCallback
[[autodoc]] TrainerCallback
Here is an example of how to register a custom callback with the PyTorch [`Trainer`]:
```python
class MyCallback(TrainerCallback):
"A callback that prints a message at the beginning of training"
def on_train_begin(self, args, state, control, **kwargs):
print("Starting training")
trainer = Trainer(
model,
args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
callbacks=[MyCallback], # We can either pass the callback class this way or an instance of it (MyCallback())
)
```
Another way to register a callback is to call `trainer.add_callback()` as follows:
```python
trainer = Trainer(...)
trainer.add_callback(MyCallback)
# Alternatively, we can pass an instance of the callback class
trainer.add_callback(MyCallback())
```
## TrainerState
[[autodoc]] TrainerState
## TrainerControl
[[autodoc]] TrainerControl

View File

@ -0,0 +1,28 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Configuration
The base class [`PretrainedConfig`] implements the common methods for loading/saving a configuration
either from a local file or directory, or from a pretrained model configuration provided by the library (downloaded
from HuggingFace's AWS S3 repository).
Each derived config class implements model specific attributes. Common attributes present in all config classes are:
`hidden_size`, `num_attention_heads`, and `num_hidden_layers`. Text models further implement:
`vocab_size`.
## PretrainedConfig
[[autodoc]] PretrainedConfig
- push_to_hub
- all

Some files were not shown because too many files have changed in this diff Show More