Compare commits

...

582 Commits

Author SHA1 Message Date
df9953901f comment 2024-09-13 14:59:25 +02:00
1027a532c5 add a callback hook right before the optimizer step (#33444) 2024-09-13 10:43:45 +02:00
9c4639b622 Return image hidden states (#33426)
* fix

* return image hidden states

* fix copies

* fix test
2024-09-13 10:20:03 +02:00
a05ce550bf [docs] refine the doc for train with a script (#33423)
* add xpu note

* add one more case

* add more

* Update docs/source/en/run_scripts.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-12 10:16:12 -07:00
5c6257d1fc [whisper] Clarify error message when setting max_new_tokens (#33324)
* clarify error message when setting max_new_tokens

* sync error message in test_generate_with_prompt_ids_max_length

* there is no self
2024-09-12 18:48:36 +02:00
2f611d30d9 Qwen2-VL: clean-up and add more tests (#33354)
* clean-up on qwen2-vl and add generation tests

* add video tests

* Update tests/models/qwen2_vl/test_processing_qwen2_vl.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix and add better tests

* Update src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update docs and address comments

* Update docs/source/en/model_doc/qwen2_vl.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2_vl.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update

* remove size at all

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-09-12 18:24:04 +02:00
8f8af0fb38 Correct Whisper's beam search scores computation (#32336)
fix proposal
2024-09-12 16:53:10 +02:00
e688996176 Allow send SSH into runner info. to DM (#33346)
allow send DM

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-09-12 16:03:15 +02:00
5334b61c33 Revive AMD scheduled CI (#33448)
Revive AMD scheduled CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-09-12 15:52:15 +02:00
d71d6cbdad Fix default revision for pipelines (#33395)
* Fix default revision for pipelines

* dummy change to trigger CI

* revert dummy change

* dummy change to trigger CI

* revery dummy change

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
2024-09-12 13:27:22 +01:00
c8ea675324 Clean-up deprecated code (#33446)
* update

* update modeling
2024-09-12 14:19:02 +02:00
8ed635258c Fix flax whisper tokenizer bug (#33151)
* Update tokenization_whisper.py

Fix issue with flax whisper model

* Update tokenization_whisper_fast.py

Fix issue with flax whisper model

* Update tokenization_whisper.py

just check len of token_ids

* Update tokenization_whisper_fast.py

just use len of token_ids

* Update tokenization_whisper_fast.py and revert changes in _strip_prompt and add support to jax arrays in _convert_to_list

* Update tokenization_whisper.py and revert changes in _strip_prompt and add support to jax arrays in _convert_to_list

* Update test_tokenization_whisper.py to add test for _convert_to_list method

* Update test_tokenization_whisper.py to fix code style issues

* Fix code style

* Fix code check again

* Update test_tokenization)whisper.py to Improve code style

* Update test_tokenization_whisper.py to run each of jax, tf and flax modules if available

* Update tests/models/whisper/test_tokenization_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update test_tokenization_whisper.py and use require_xxx decorators instead of `is_xxx_available()` method

* Revert the changes automatically applied by formatter and was unrelated to PR

* Format for minimal changes

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-09-12 12:21:59 +01:00
516ee6adc2 Fix incomplete sentence in Zero-shot object detection documentation (#33430)
Rephrase sentence in zero-shot object detection docs
2024-09-12 11:25:44 +02:00
e0ff4321d1 Docs - update formatting of llama3 model card (#33438)
update formatting of llama3 content
2024-09-12 11:24:56 +02:00
d7a553b89f Update stale.yml (#33434) 2024-09-12 11:23:47 +02:00
cea9ec086a [docs] add the missing tokenizer when pushing models to huggingface hub (#33428)
* add tokenizer

* typo
2024-09-11 09:56:55 -07:00
c403441339 [docs] add the missing huggingface hub username (#33431)
* add username

* update username

* add username
2024-09-11 09:56:40 -07:00
ecf7024bde Fix: Cast prefetch_bucket_size to integer for deepspeed >= 0.15 (#33402)
Fix: Cast prefetch bucket size to integer in zero_optimization
2024-09-11 14:25:48 +02:00
7a51cbc65f Dynamic number of speculative tokens in order to accelerate speculative decoding (#33258)
* optimal Speculation Lookahead based on probability

* update peer finished condition

* add support to do_sample True

* add stopping criteria

* gitignore

* add print

* remove prints

* minor

* minor

* git ignore

* adding test to stopping ConfidenceCriteria

* doc + format

* add doc

* Update .gitignore

* update docstring and default value of assistant_confidence_threshold

* add docstring

* Update src/transformers/generation/configuration_utils.py

implicit default value (None)

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* style fix

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-09-11 14:22:28 +02:00
42babe8548 Remove deprecated task in load_dataset (#33433) 2024-09-11 14:18:32 +02:00
91f19a5b18 Fix failing windows (#33436)
* Encoding

* style
2024-09-11 14:06:16 +02:00
e719b65c31 Fix FbgemmFp8Linear not preserving tensor shape (#33239)
* add tests for linear shape behavior

* fix linear shape behavior

ended up adding the reshape at the end, after f8f8bf16_rowwise, because adding
it directly after quantize_fp8_per_row caused f8f8bf16_rowwise to drop the
seq_len dimension. (i.e., (17, 23, 1014) -> (17, 1024))

* save shape up front + comment
2024-09-11 13:26:44 +02:00
781bbc4d98 use diff internal model in tests (#33387)
* use diff internal model in tests

* use diff internal model in tests
2024-09-11 11:27:00 +02:00
f38590dade Make StaticCache configurable at model construct time (#32830)
* Make StaticCache configurable at model construct time

* integrations import structure

* add new doc file to toc

---------

Co-authored-by: Guang Yang <guangyang@fb.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-09-10 16:35:57 +01:00
dfee4f2362 Update WhisperTokenizer Doc: Timestamps and Previous Tokens Behaviour (#33390)
* added doc explaining behaviour regarding tokens timestamps and previous tokens

* copied changes to faster tokenizer

---------

Co-authored-by: Bruno Hays <bruno.hays@illuin.tech>
2024-09-10 16:49:28 +02:00
6ed2b10942 Bug Fix: Update hub.py to fix NoneType error (#33315)
* Bug Fix: Update hub.py

Bug:
TypeError: argument of type 'NoneType' is not iterable

Analysis:
The error `TypeError: argument of type 'NoneType' is not iterable` suggests that `model_card.data.tags` is `None`, and the code is trying to iterate through it using `not in`.

Fix:

1. **Check if `model_card.data.tags` is `None` before the loop**:
   Since you're checking the variable `tags` before the loop, you should also ensure that `model_card.data.tags` is not `None`. You can do this by initializing `model_card.data.tags` to an empty list if it's `None`.

2. **Updated code**:
   Add a check and initialize the `tags` if it is `None` before proceeding with the iteration.

This way, if `model_card.data.tags` is `None`, it gets converted to an empty list before checking the contents. This prevents the `TypeError`.

* Update hub.py
2024-09-10 16:39:19 +02:00
96429e74a8 Add support for GGUF Phi-3 (#31844)
* Update docs for GGUF supported models

* Add tensor mappings and define class GGUFPhi3Converter

* Fix tokenizer

* Working version

* Attempt to fix some CI failures

* Run ruff format

* Add vocab, merges, decoder methods like LlamaConverter

* Resolve conflicts since Qwen2Moe was added to gguf

- I missed one place when resolving conflict
- I also made a mistake with tests_ggml.py and now has been fixed to reflect
its master version.
2024-09-10 13:32:38 +02:00
8e8e7d8558 fixed Mask2Former image processor segmentation maps handling (#33364)
* fixed mask2former image processor segmentation maps handling

* introduced review suggestions

* introduced review suggestions
2024-09-10 11:19:56 +01:00
7d2d6ce9cb VLM: fixes after refactor (#32907)
* leave only half of the changes

* fix tests

* [run-slow] llava, llava_next, llava_next_video, vipllava, video_llava

* fix tests, first try

* [run-slow] llava, llava_next, llava_next_video, vipllava, video_llava

* fix, second try

* [run-slow] llava, llava_next, llava_next_video, vipllava, video_llava

* fix

* [run-slow] llava, llava_next, llava_next_video, vipllava, video_llava
2024-09-10 12:02:37 +02:00
f24f084329 Import structure & first three model refactors (#31329)
* Import structure & first three model refactors

* Register -> Export. Export all in __all__. Sensible defaults according to filename.

* Apply most comments from Amy and some comments from Lucain

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain Pouget <lucainp@gmail.com>

* Style

* Add comment

* Clearer .py management

* Raise if not in backend mapping

* More specific type

* More efficient listdir

* Misc fixes

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain Pouget <lucainp@gmail.com>
2024-09-10 11:10:53 +02:00
7f112caac2 Fix import of FalconMambaForCausalLM (#33381)
* fix build issues with FM kernels

* try another approach

* test

* fix

* add init files

* push fix

* fix

* fixup

* fix duplicate

* fix

* fix

* fix
2024-09-10 09:14:54 +02:00
f745e7d3f9 Remove repeated prepare_images in processor tests (#33163)
* Remove repeated prepare_images

* Address comments - update docstring; explanatory comment
2024-09-09 13:20:27 +01:00
0574fa668b Adjust templates (#33384)
* Adjust templates

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Chat templates

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-09-09 14:00:43 +02:00
65bb284448 Compile compatibilty for decoder-only models (#32617)
* squash into one commit

* add qwen2-vl for rope standardization

* fix mistral compile

* fix qwen2-vl

* fix-copies
2024-09-09 10:59:04 +02:00
eedd21b9e7 Fixed Majority of the Typos in transformers[en] Documentation (#33350)
* Fixed typo: insted to instead

* Fixed typo: relase to release

* Fixed typo: nighlty to nightly

* Fixed typos: versatible, benchamarks, becnhmark to versatile, benchmark, benchmarks

* Fixed typo in comment: quantizd to quantized

* Fixed typo: architecutre to architecture

* Fixed typo: contibution to contribution

* Fixed typo: Presequities to Prerequisites

* Fixed typo: faste to faster

* Fixed typo: extendeding to extending

* Fixed typo: segmetantion_maps to segmentation_maps

* Fixed typo: Alternativelly to Alternatively

* Fixed incorrectly defined variable: output to output_disabled

* Fixed typo in library name: tranformers.onnx to transformers.onnx

* Fixed missing import: import tensorflow as tf

* Fixed incorrectly defined variable: token_tensor to tokens_tensor

* Fixed missing import: import torch

* Fixed incorrectly defined variable and typo: uromaize to uromanize

* Fixed incorrectly defined variable and typo: uromaize to uromanize

* Fixed typo in function args: numpy.ndarry to numpy.ndarray

* Fixed Inconsistent Library Name: Torchscript to TorchScript

* Fixed Inconsistent Class Name: OneformerProcessor to OneFormerProcessor

* Fixed Inconsistent Class Named Typo: TFLNetForMultipleChoice to TFXLNetForMultipleChoice

* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch

* Fixed Inconsistent Function Name Typo: captureWarning to captureWarnings

* Fixed Inconsistent Library Name Typo: Pytorch to PyTorch

* Fixed Inconsistent Class Name Typo: TrainingArgument to TrainingArguments

* Fixed Inconsistent Model Name Typo: Swin2R to Swin2SR

* Fixed Inconsistent Model Name Typo: EART to BERT

* Fixed Inconsistent Library Name Typo: TensorFLow to TensorFlow

* Fixed Broken Link for Speech Emotion Classification with Wav2Vec2

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed minor missing word Typo

* Fixed Punctuation: Two commas

* Fixed Punctuation: No Space between XLM-R and is

* Fixed Punctuation: No Space between [~accelerate.Accelerator.backward] and method

* Added backticks to display model.fit() in codeblock

* Added backticks to display openai-community/gpt2 in codeblock

* Fixed Minor Typo: will to with

* Fixed Minor Typo: is to are

* Fixed Minor Typo: in to on

* Fixed Minor Typo: inhibits to exhibits

* Fixed Minor Typo: they need to it needs

* Fixed Minor Typo: cast the load the checkpoints To load the checkpoints

* Fixed Inconsistent Class Name Typo: TFCamembertForCasualLM to TFCamembertForCausalLM

* Fixed typo in attribute name: outputs.last_hidden_states to outputs.last_hidden_state

* Added missing verbosity level: fatal

* Fixed Minor Typo: take To takes

* Fixed Minor Typo: heuristic To heuristics

* Fixed Minor Typo: setting To settings

* Fixed Minor Typo: Content To Contents

* Fixed Minor Typo: millions To million

* Fixed Minor Typo: difference To differences

* Fixed Minor Typo: while extract To which extracts

* Fixed Minor Typo: Hereby To Here

* Fixed Minor Typo: addition To additional

* Fixed Minor Typo: supports To supported

* Fixed Minor Typo: so that benchmark results TO as a consequence, benchmark

* Fixed Minor Typo: a To an

* Fixed Minor Typo: a To an

* Fixed Minor Typo: Chain-of-though To Chain-of-thought
2024-09-09 10:47:24 +02:00
489cbfd6d3 Add visit webpage tool (#33353)
* Add VisitWebpageTool
2024-09-09 10:32:42 +02:00
62aecd85ff schedulefree optimizers (#30079)
* schedulefree optimizers

* fix train instead of eval for optimizer

* fixes and update docs

* chore: lint

* add tests and drop overly-verbose _32bit suffix

* chore: lint

* fix for docs

* fix code review issues

* use duck-typing to avoid per-optimizer patches

* fixup style

* fixup style

* warn if incorrect accelerate version with schedule free

Co-authored-by: Aman Gupta Karmani <aman@tmm1.net>

---------

Co-authored-by: Aman Karmani <aman@tmm1.net>
2024-09-09 09:51:39 +02:00
60226fdc1d Fix quantized cache tests (#33351)
* fix

* fix

* better fix

* Update src/transformers/generation/configuration_utils.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-09-09 09:09:58 +02:00
66bc4def95 add sdpa mbart (#32033)
* add sdpa mbart

useful for donut

* update sdpa docs

* formatting

* add self._use_sdpa in mbartencoder

* use self.config to check attn

* retrigger checks

* [run-slow] mbart
2024-09-06 17:31:24 -07:00
a70286f827 Update author for QLorA/PEFT community notebook (#33338)
update author

Signed-off-by: Daniel Lok <daniel.lok@databricks.com>
2024-09-06 22:50:26 +02:00
d7b04ea14d Fix Prefill docs (#33352)
last -> final
2024-09-06 17:57:54 +01:00
6ff6069fa7 RoPE: fix BC warning (#33331) 2024-09-06 16:15:11 +01:00
2d757002fc red-ci on main, fix copies (#33356)
* fix copies

* ???
2024-09-06 17:06:39 +02:00
e48e5f1f13 Support reading tiktoken tokenizer.model file (#31656)
* use existing TikTokenConverter to read tiktoken tokenizer.model file

* del test file

* create titktoken integration file

* adding tiktoken llama test

* ALTNATIVE IMPLEMENTATION: supports llama 405B

* fix one char

* remove redundant line

* small fix

* rm unused import

* flag for converting from tiktokeng

* remove unneeded file

* ruff

* remove llamatiktokenconverter, stick to general converter

* tiktoken support v2

* update test

* remove stale changes

* udpate doc

* protect import

* use is_protobuf_available

* add templateprocessor in tiktokenconverter

* reverting templateprocessor from tiktoken support

* update test

* add require_tiktoken

* dev-ci

* trigger build

* trigger build again

* dev-ci

* [build-ci-image] tiktoken

* dev-ci

* dev-ci

* dev-ci

* dev-ci

* change tiktoken file name

* feedback review

* feedback rev

* applying feedback, removing tiktoken converters

* conform test

* adding docs for review

* add doc file for review

* add doc file for review

* add doc file for review

* support loading model without config.json file

* Revert "support loading model without config.json file"

This reverts commit 2753602e51c34cef2f184eb11f36d2ad1b02babb.

* remove dev var

* updating docs

* safely import protobuf

* fix protobuf import error

* fix protobuf import error

* trying isort to fix ruff error

* fix ruff error

* try to fix ruff again

* try to fix ruff again

* try to fix ruff again

* doc table of contents

* add fix for consistency.dockerfile torchaudio

* ruff

* applying feedback

* minor typo

* merging with push-ci-image

* clean up imports

* revert dockerfile consistency
2024-09-06 14:24:02 +02:00
342e800086 support 3D attention mask in bert (#32105)
* support 3D/4D attention mask in bert

* test cases

* update doc

* fix doc
2024-09-06 14:20:48 +02:00
2b18354106 add self.head_dim for VisionAttention in Qwen2-VL (#33211)
* add self.head_dim for VisionAttention in Qwen2-VL

* add self.head_dim for VisionAttention in Qwen2-VL

* fix ci

* black the test_modeling_qwen2_vl.py

* use ruff to format test_modeling_qwen2_vl.py

* [run-slow] qwen2_vl

* use tying for python3.8

* fix the import format

* use ruff to fix the ci error I001

* [run-slow] qwen2_vl

* remove unused import

* commit for rebase

* use ruff fix ci

* [run-slow] qwen2_vl

---------

Co-authored-by: root <liji>
2024-09-06 17:19:29 +05:00
3314fe1760 Add validation for maximum sequence length in modeling_whisper.py (#33196)
* Add validation for maximum sequence length in modeling_whisper.py

Added a validation check to ensure that the sequence length of labels does not exceed the maximum allowed length of 448 tokens. If the sequence length exceeds this limit, a ValueError is raised with a descriptive error message.

This change prevents the model from encountering errors or unexpected behavior due to excessively long sequences during training or fine-tuning, ensuring consistent input dimensions and improving overall robustness.

* Change exception message in src/transformers/models/whisper/modeling_whisper.py

The exception message is for whisper's label's sequence max length.

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Change 448 to config.max_target_positions in src/transformers/models/whisper/modeling_whisper.py

It's for whisper's config.max_target_positions.

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Change method's documentation in src/transformers/models/whisper/modeling_whisper.py

* Add test for maximum label's sequence length in test_modeling_whisper.py

* Add self to modeling_whisper.py

* Update test_modeling_whisper.py with respect to automatic validations

* Update modeling_whisper.py with respect to ci/circleci: check_code_quality

* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality

* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate

* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate

* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality

* Separate test_labels_sequence_max_length tests in test_modeling_whisper.py

* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality

* Remove assert from test_modeling_whisper.py

* Add max_target_positions to WhisperModelTester in test_modeling_whisper.py

* Update test_modeling_whisper.py with respect to ci/circleci: check_code_quality

* Update test_modeling_whisper.py with respect to ci/circleci: tests_generate

* Update test_modeling_whisper.py

* Change test_labels_sequence_max_length_error_after_changing_config in test_modeling_whisper.py

* Change self.config.max_target_positions to self.max_target_positions modeling_whisper.py

* Add new tests in test_modeling_whisper.py

* Update test_modeling_whisper.py

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
2024-09-06 14:09:49 +02:00
363301f221 support loading model without config.json file (#32356)
* support loading model without config.json file

* fix condition

* update tests

* add test

* ruff

* ruff

* ruff
2024-09-06 13:49:47 +02:00
e1c2b69c34 Load dynamic module (remote code) only once if code isn't change (#33162)
* Load remote code only once

* Use hash as load indicator

* Add a new option `force_reload` for old behavior (i.e. always reload)

* Add test for dynamic module is cached

* Add more type annotations to improve code readability

* Address comments from code review
2024-09-06 12:49:35 +01:00
1bd9d1c899 fix qwen2vl vision eager-attention (#33213)
* fix-qwen2vl-vision-eager-attention

* code-quality

* Update src/transformers/models/qwen2_vl/modeling_qwen2_vl.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* code-quality

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-09-06 13:42:17 +02:00
51d15eb1c1 [whisper] alternative fix for long-form timestamps (#32131)
* [whisper] alternative fix for long-form timestamps

* update test
2024-09-06 12:57:08 +02:00
2b789f27f3 Docs: add more cross-references to the KV cache docs (#33323)
* add more cross-references

* nit

* import guard

* more import guards

* nit

* Update src/transformers/generation/configuration_utils.py
2024-09-06 10:22:00 +01:00
1759bb9126 Fix: StaticCache & inputs_embeds (#32932)
squash commit
2024-09-06 12:56:59 +05:00
5792c459ed Add a community notebook for fine-tuning with QLoRA, PEFT, and MLflow (#33319)
add notebook for finetuning with mlflow

Signed-off-by: Daniel Lok <daniel.lok@databricks.com>
2024-09-06 09:35:01 +02:00
21fac7abba simple align qwen2vl kv_seq_len calculation with qwen2 (#33161)
* qwen2vl_align_kv_seqlen_to_qwen2

* flash att test

* [run-slow] qwen2_vl

* [run-slow] qwen2_vl fix OOM

* [run-slow] qwen2_vl

* Update tests/models/qwen2_vl/test_modeling_qwen2_vl.py

Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>

* Update tests/models/qwen2_vl/test_modeling_qwen2_vl.py

Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>

* code quality

---------

Co-authored-by: baishuai.bs <1051314669@qq.com>
Co-authored-by: ShuaiBai623 <baishuai623@icloud.com>
Co-authored-by: ShuaiBai623 <43326198+ShuaiBai623@users.noreply.github.com>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
2024-09-05 21:19:30 +05:00
5d11de4a2f Add Qwen2Moe GGUF loading support (#33264)
* update gguf doc, config and tensor mapping

* add qwen2moe architecture support, GGUFQwen2MoeConverter and q4 unit tests

* apply code style fixes

* reformat files

* assign GGUFQwen2Converter to qwen2_moe
2024-09-05 17:42:03 +02:00
132e87500e Update SECURITY.md (#32680)
updated reporting a vulnerability section
2024-09-05 16:41:01 +02:00
c6d2848a23 🚨 Fix torch.jit.trace for interpolate_pos_encoding in all vision models (#33226)
* Fix `torch.jit.tracing` for `interpolate_pos_encoding` in all vision models

* Apply formatting

* Add missing `self.config = config`

* Fix copies

* Fix hiera interpolation unit test

* Formatting

* Update `_import_structure`

* make style

* Fix docstring

* Use `# Copied from` instead of utils

* DeiT variable renaming (`class_and_dist_pos_embed`)

* Fix Hiera `interpolate_pos_encoding`
2024-09-05 16:17:34 +02:00
03164ba14e Add paper link (#33305) 2024-09-05 15:49:28 +02:00
47b096412d Fix: Fix FalconMamba training issues due to incompatible kernels (#33195)
* fix FM training kernels

* fix copies

* fix copies

* propagate to slow path

* make it BC

* add comment

* fix test
2024-09-05 11:55:08 +02:00
43df47d8e7 Llava Onevision: add model (#32673)
* working version

* fix copies

* update

* tests

* update docs

* codestyle

* add more tests

* add returns for docs

* clean up

* Update src/transformers/models/llava_onevision/processing_llava_onevision.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates

* codestyle

* style

* shouldn't be reversed

* [run-slow] llava_onevision

* [run-slow] llava_onevision

* add pooling in videos

* [run-slow] llava_onevision

* num-logits-to-keep

* [run-slow] llava_onevision

* [run-slow] llava_onevision

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* video matched orig impl

* fix tests

* chat template was modified

* Update docs/source/en/model_doc/llava_onevision.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add morer info in the doc page

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-09-05 14:43:20 +05:00
9230d78e76 Add validate images and text inputs order util for processors and test_processing_utils (#33285)
* Add validate images and test processing utils

* Remove encoded text from possible inputs in tests

* Removed encoded inputs as valid in processing_utils

* change text input check to be recursive

* change text check to all element of lists and not just the first one in recursive checks
2024-09-04 13:50:31 -04:00
b3909989d3 Fix excessive CPU memory usage with FSDP and cpu_ram_efficient_loading (#33154) 2024-09-04 18:37:54 +02:00
a1faf22f2c [BUG] fix upper nltk version (#33301)
fix upper nltk version
2024-09-04 18:28:08 +02:00
cfd92c64f5 Add new documentation page for advanced agent usage (#33265)
* Add new documentation page for advanced agent usage
2024-09-04 18:19:54 +02:00
01c8c6c419 Add a warning to the chat template docs about the tool_calls format (#33277)
* Add a warning to the chat template docs

* Add a warning to the chat template docs

* Add a warning to the chat template docs
2024-09-04 17:13:34 +01:00
2cb543db77 Multi agents with manager (#32687)
* Add Multi agents with a hierarchical system
2024-09-04 17:30:54 +02:00
d2dcff96f8 [InstructBLIP] qformer_tokenizer is required input (#33222)
* [InstructBLIP] qformer_tokenizer is required input

* Bit safer

* Add to instructblipvideo processor

* Fix up

* Use video inputs

* Update tests/models/instructblipvideo/test_processor_instructblipvideo.py
2024-09-04 16:18:06 +01:00
5731dc8dd8 Bump cryptography from 42.0.0 to 43.0.1 in /examples/research_projects/decision_transformer (#33286)
Bump cryptography in /examples/research_projects/decision_transformer

Bumps [cryptography](https://github.com/pyca/cryptography) from 42.0.0 to 43.0.1.
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/42.0.0...43.0.1)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-04 17:13:18 +02:00
122ded0a11 Bugfix/alexsherstinsky/fix none check for attention factor in rope scaling 2024 08 28 0 (#33188)
* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.

* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.

* Fixing a bug in the way "attention_factor" is validated in ROPE utilities.
2024-09-04 17:01:12 +02:00
178cb6bb1c wait 15m before SSH into runner workflow stops (#33300)
15m

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-09-04 16:20:56 +02:00
d703477265 [fix] LlavaNextProcessor '_get_unpadded_features' method (#33263)
* [fix] LlavaNextProcessor '_get_unpadded_features' method

* [tests] add test_image_token_filling

* [chore] style + comment

* [minor] improve readability

* [chore] run make fix-copies
2024-09-04 17:41:51 +05:00
d750b509fc Config: unified logic to retrieve text config (#33219) 2024-09-04 12:03:30 +01:00
ebbe8d8014 Cache docs: update (#32929)
* some changes

* more updates

* fix cache copy

* nits

* nits

* add tests
2024-09-04 15:05:31 +05:00
35f72ebf47 Fix: multigpu training (#33271)
fix
2024-09-04 15:01:08 +05:00
ecd61c6286 Add OLMoE (#32406)
* Add OLMoE

* Add OLMoE

* Updates

* Make norm optional; add keys

* Add output

* Add

* Fix dtype

* Fix eos config

* Update

* Add OLMoE

* Fix OLMoE path

* Format

* Format

* Rmv copy statement

* Rmv copy statement

* Format

* Add copies

* Cp rotary

* Fix aming

* Fix naming

* Update RoPE integration; num_logits_to_keep; Add copy statements

* Add eps to config

* Format

* Add aux loss

* Adapt router_aux_loss_coef

* Update md

* Adapt

* adapt tests
2024-09-03 18:43:12 +02:00
d6534f996b Repo checks: check documented methods exist (#32320) 2024-09-03 17:40:27 +01:00
979d24e7fd fix the parallel number of CI nodes when it is smaller than number of tests (#33276)
* fix the parallel number

* this?

* keep it simple

* woups

* nit

* style

* fix param name

* fix

* fix dtype

* yups

* ???

* ??

* this?

* ????

* no default flow style

* ??

* print config

* ????

* there we go!

* documentation

* update

* remove unwanted file
2024-09-03 16:53:21 +02:00
6b7d64ac1c Only disallow DeepSpeed Zero-3 for auto bs finder (#31731)
* Only disallow DeepSpeed

* Clean

* DeepSpeed!

* Add a test for deepspeed
2024-09-03 09:16:28 -04:00
03c12d0d63 Add sdpa support for Albert (#32092)
* Add sdpa support for Albert

* [run_slow] albert

* Add benchmarks and PR suggestion

* Fix quality

* Fix

* [run_slow] albert
2024-09-03 14:01:00 +01:00
e969d884a6 Bump opencv-python from 4.4.0.42 to 4.8.1.78 in /examples/research_projects/visual_bert (#33251)
Bump opencv-python in /examples/research_projects/visual_bert

Bumps [opencv-python](https://github.com/opencv/opencv-python) from 4.4.0.42 to 4.8.1.78.
- [Release notes](https://github.com/opencv/opencv-python/releases)
- [Commits](https://github.com/opencv/opencv-python/commits)

---
updated-dependencies:
- dependency-name: opencv-python
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-03 14:32:23 +02:00
0d86727354 Update chat template docs to remove Blenderbot (#33254)
* Update docs to remove obsolete Blenderbot

* Remove another reference to Blenderbot
2024-09-03 12:18:04 +01:00
edeca4387c 🚨 Support dequantization for most GGML types (#32625)
* use gguf internal dequantize

* add Q5_0 test

* add iq1 test

* add remained test

* remove duplicated test

* update docs

* add gguf version limit

* make style

* update gguf import catch

* revert vocab_size patch

* make style

* use GGUF_MIN_VERSION everywhere
2024-09-03 12:58:14 +02:00
979f4774f6 Fix Bark saving (#33266) 2024-09-03 10:57:59 +02:00
7ed9789e21 Fix: num_logits_to_keep in composite models (#33168)
* fix

* paligemma
2024-09-03 13:48:45 +05:00
566302686a remove torch input dependant control flow (#33245) 2024-09-03 07:41:14 +02:00
ZM
cff06aac6f Fix: use torch.from_numpy() to create tensors for np.ndarrays (#33201)
use torch.from_numpy for np.ndarrays
2024-09-02 17:45:55 +01:00
28952248b1 Fixed typo repeated word in DETR docs (#33250) 2024-09-02 17:19:18 +02:00
9ea1eacd11 remove to restriction for 4-bit model (#33122)
* remove to restiction for 4-bit model

* Update src/transformers/modeling_utils.py

Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>

* bitsandbytes: prevent dtype casting while allowing device movement with .to or .cuda

* quality fix

* Improve warning message for .to() and .cuda() on bnb quantized models

---------

Co-authored-by: Matthew Douglas <38992547+matthewdouglas@users.noreply.github.com>
2024-09-02 16:28:50 +02:00
97c0f45b9c Generate: fix assistant in different device (#33257) 2024-09-02 14:37:49 +01:00
52a0213755 Add assistant prefill for chat templates and TextGenerationPipeline (#33198)
* Add assistant prefill to chat templates

* Add assistant prefill to pipeline

* Add assistant prefill to pipeline

* Tweak another test that ended in assistant message

* Update tests that ended in assistant messages

* Update tests that ended in assistant messages

* Replace assistant_prefill with continue_final_message

* Allow passing continue_final_message to pipeline

* Small fixup

* Add continue_final_message as a pipeline kwarg

* Update docstrings

* Move repos to hf-internal-testing!

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Add explanatory comment

* make fixup

* Update chat templating docs to explain continue_last_message

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-09-02 13:23:47 +01:00
2d37085817 Bump opencv-python from 4.4.0.42 to 4.8.1.78 in /examples/research_projects/lxmert (#33227)
Bump opencv-python in /examples/research_projects/lxmert

Bumps [opencv-python](https://github.com/opencv/opencv-python) from 4.4.0.42 to 4.8.1.78.
- [Release notes](https://github.com/opencv/opencv-python/releases)
- [Commits](https://github.com/opencv/opencv-python/commits)

---
updated-dependencies:
- dependency-name: opencv-python
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-09-02 13:40:49 +02:00
963ed98bed docs: Replace package abbreviations with full name(bitsandbytes) in docstrings (#33230)
* docs: Provide fullname for `bitsandbytes` package

* docs: Provide fullname for `bitsandbytes` package (2)
2024-09-02 13:40:34 +02:00
409fcfdfcc Fix: Suppressed 'use_reentrant=False' warning (#33208)
Co-authored-by: Ankush <ankush13r>
2024-09-02 10:16:07 +02:00
1ca9ff5c91 Add duckduckgo search tool (#32882)
* Add duckduckgo search tool
2024-09-02 09:56:20 +02:00
b9bc691e8d Add GraniteRMSNorm (#33177)
* Add GraniteRMSNorm

* [run_slow] granite
2024-09-02 09:39:39 +02:00
2e3f8f7474 Add video text to text docs (#33164)
---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-09-01 12:06:31 +03:00
eb5b968c5d Generate: throw warning when return_dict_in_generate is False but should be True (#33146) 2024-08-31 10:47:08 +01:00
746104ba6f Test fetcher: missing return on filtered tests; don't write empty files (#33224)
* missing return

* skip files without contents

* test 2

* dbg

* dbg

* how about this?
2024-08-31 00:41:52 +02:00
51e6526b38 Fix red amin (#33220)
* fix

* oups

* oups

* proper fix

* forget about that

* arf

* ish
2024-08-30 18:49:23 +01:00
db70426854 🌐 [i18n-KO] Translated llm_optims.md to Korean (#32325)
* docs: ko: llm_optims.md

* feat: nmt draft

* fix toc title

* fix: manual edits

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: HyunJi Shin <74661937+shinhyunji36@users.noreply.github.com>

* Update docs/source/ko/llm_optims.md

Co-authored-by: HyunJi Shin <74661937+shinhyunji36@users.noreply.github.com>

* Update llm_optims.md

* fix: resolve suggestions

* fix: resolve suggestions

* Apply suggestions from code review

fix: resolve suggestions

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

---------

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>
Co-authored-by: HyunJi Shin <74661937+shinhyunji36@users.noreply.github.com>
2024-08-30 09:52:41 -07:00
c79bfc71b8 Create local Transformers Engine (#33218)
* Create local Transformers Engine
2024-08-30 18:22:27 +02:00
b017a9eb11 Refactor CI: more explicit (#30674)
* don't run custom when not needed?

* update test fetcher filtering

* fixup and updates

* update

* update

* reduce burden

* nit

* nit

* mising comma

* this?

* this?

* more parallelism

* more

* nit for real parallelism on tf and torch examples

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update

* update to make it more custom

* update to make it more custom

* update to make it more custom

* update to make it more custom

* update

* update

* update

* update

* update

* update

* use correct path

* fix path to test files and examples

* filter-tests

* filter?

* filter?

* filter?

* nits

* fix naming of the artifacts to be pushed

* list vs files

* list vs files

* fixup

* fix list of all tests

* fix the install steps

* fix the install steps

* fix the config

* fix the config

* only split if needed

* only split if needed

* extend should fix it

* extend should fix it

* arg

* arg

* update

* update

* run tests

* run tests

* run tests

* more nits

* update

* update

* update

* update

* update

* update

* update

* simpler way to show the test, reduces the complexity of the generated config

* simpler way to show the test, reduces the complexity of the generated config

* style

* oups

* oups

* fix import errors

* skip some tests for now

* update doctestjob

* more parallelism

* fixup

* test only the test in examples

* test only the test in examples

* nits

* from Arthur

* fix generated congi

* update

* update

* show tests

* oups

* oups

* fix torch job for now

* use single upload setp

* oups

* fu**k

* fix

* nit

* update

* nit

* fix

* fixes

* [test-all]

* add generate marker and generate job

* oups

* torch job runs not generate tests

* let repo utils test all utils

* UPdate

* styling

* fix repo utils test

* more parallel please

* don't test

* update

* bit more verbose sir

* more

* hub were skipped

* split by classname

* revert

* maybe?

* Amazing catch

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* fix

* update

* update

* maybe non capturing

* manual convert?

* pass artifacts as parameters as otherwise the config is too long

* artifact.json

* store output

* might not be safe?

* my token

* mmm?

* use CI job IS

* can't get a proper id?

* ups

* build num

* update

* echo url

* this?

* this!

* fix

* wget

* ish

* dang

* udpdate

* there we go

* update

* update

* pass all

* not .txt

* update

* fetcg

* fix naming

* fix

* up

* update

* update

* ??

* update

* more updates

* update

* more

* skip

* oups

* pr documentation tests are currently created differently

* update

* hmmmm

* oups

* curl -L

* update

* ????

* nit

* mmmm

* ish

* ouf

* update

* ish

* update

* update

* updatea

* nit

* nit

* up

* oups

* documentation_test fix

* test hub tests everything, just marker

* update

* fix

* test_hub is the only annoying one now

* tf threads?

* oups

* not sure what is happening?

* fix?

* just use folder for stating hub

* I am getting fucking annoyed

* fix the test?

* update

* uupdate

* ?

* fixes

* add comment!

* nit

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2024-08-30 18:17:25 +02:00
38d58a4427 Fix local repos with remote code not registering for pipelines (#33100)
* Extremely experimental fix!

* Try removing the clause entirely

* Add test

* make fixup

* stash commit

* Remove breakpoint

* Add anti-regression test

* make fixup

* Move repos to hf-internal-testing!
2024-08-30 16:56:22 +01:00
fbff27623a Add warning for stop string edge case (#33169)
* Add warning for edge case

* make fixup
2024-08-30 16:26:26 +01:00
e259d6d1e0 Add missing quotes in modeling_llava_next_video.py (#33214) 2024-08-30 15:39:23 +02:00
9a6956baab Bump torch from 1.13.1 to 2.2.0 in /examples/research_projects/decision_transformer (#33215)
Bump torch in /examples/research_projects/decision_transformer

Bumps [torch](https://github.com/pytorch/pytorch) from 1.13.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.13.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-30 15:38:53 +02:00
4987463de7 Bump torch from 1.13.1 to 2.2.0 in /examples/research_projects/codeparrot (#33173)
Bump torch in /examples/research_projects/codeparrot

Bumps [torch](https://github.com/pytorch/pytorch) from 1.13.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.13.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-30 15:23:35 +02:00
b127fb8fdc Pipeline: fix bad generation kwargs docs (#33205)
fix link
2024-08-30 14:14:42 +02:00
c409cd8177 use a single for loop (#33148)
* use a single for loop

* oups

* fixup

* fix typo
2024-08-29 15:55:02 +02:00
5129671290 Add a static cache that offloads to the CPU or other device (#32161)
* Add a static cache that offloads to the CPU or other device

* Fix PR comments, add unit-tests
2024-08-29 11:51:09 +02:00
92a75ff6b1 Mamba2 conversion script for original models (#32580)
* first attempt at allowing both conversions from codestral and from the original mamba ssm

* allow fp16, seems default for mamba2

* dtype fix

* simplify codestral check, dont overwrite pad/eos/bos when codestral

* change file -> directory

* use path join to be safe

* style

* apply code review
- add util mamba2 tokenizer (gptneox with left padding)
- add models dict

* fix copies

* add tokenizer to docs

* empty commit to check for weird err

* make conversion user dependent on model type, defaults for original paper models

* small comment nit

* remove norm_before_gate in conversion

* simplify model dict by using shared keys directly + remove unnecessary attributes

* fix tokenization: remove separate mamba2 tokenizer, add padding option as kwarg to gptneox one and reuse it for the conversion script

* simplify even further as we pass padding side via **kwargs already
2024-08-29 11:27:45 +02:00
39bfb2f514 pass module to Params4bit.from_prequantized to ensure quant_state (#32524)
* pass module to Params4bit.from_prequantized to ensure quant_state

* make sure to check bnb version

* revert min bnb version and use inspect on method instead

* use version instead of inspect to prevent performance hit

* make the property name readable
2024-08-29 11:09:56 +02:00
5c1027bf09 added quick clarification (#33166)
* added quick clarification

* cosmetics
2024-08-28 18:52:17 +02:00
3d79dcbda0 update push CI workflow files for security (#33142)
* update for security 1

* update for security 2

* update for security 3

* update for security 4

* update for security 5

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-08-28 18:15:58 +02:00
74e19e81e2 Fix spell mistakes (#33149) 2024-08-28 15:27:16 +02:00
5c84682f16 Customise the separator used for splicing in DataCollatorWithFlattening (#33114)
* Customising the separator used for splicing in DataCollatorWithFlattening

* update DataCollatorWithFlattening docs

---------

Co-authored-by: weifangyuan <i.weifangyuan@yuewen.com>
2024-08-28 15:22:07 +02:00
f4c86d0416 Zero-shot pipelines: minor doc changes (#33127)
Minor zero-shot doc changes for pipelines.
2024-08-28 13:59:16 +02:00
f9ed05dd03 Fix import paths for test_module (#32888)
* Fix import path for test_feature_extraction_utils.py

See https://github.com/huggingface/transformers/pull/32601

* Fix import path for test_image_processing_utils.py
2024-08-28 12:08:29 +01:00
f1a385b1de [RoBERTa-based] Add support for sdpa (#30510)
* Adding SDPA support for RoBERTa-based models

* add not is_cross_attention

* fix copies

* fix test

* add minimal test for camembert and xlm_roberta as their test class does not inherit from ModelTesterMixin

* address some review comments

* use copied from

* style

* consistency

* fix lists

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-28 10:26:00 +02:00
e0b87b0f40 [whisper] pass attention_mask to generate_with_fallback() (#33145)
pass attention_mask to generate_with_fallback
2024-08-28 09:53:58 +02:00
3bfd3e4803 Fix: Jamba batched generation (#32914)
* init fix

* fix mask during cached forward, move mask related stuff to own function

* adjust tests as left padding does not change logits as much anymore + batch gen (with todo on logits comp)

* revert overwriting new integration tests

* move some comments to docstring
2024-08-28 09:24:06 +02:00
386931d950 fix model name and copyright (#33152) 2024-08-28 08:38:57 +02:00
c35d2ccf5a Granite language models (#31502)
* first commit

* drop tokenizer

* drop tokenizer

* drop tokenizer

* drop convert

* granite

* drop tokenization test

* mup

* fix

* reformat

* reformat

* reformat

* fix docs

* stop checking for checkpoint

* update support

* attention multiplier

* update model

* tiny drop

* saibo drop

* skip test

* fix test

* fix test

* drop

* drop useless imports

* update docs

* drop flash function

* copied from

* drop pretraining tp

* drop pretraining tp

* drop pretraining tp

* drop unused import

* drop code path

* change name

* softmax scale

* head dim

* drop legacy cache

* rename params

* cleanup

* fix copies

* comments

* add back legacy cache

* multipliers

* multipliers

* multipliers

* text fix

* fix copies

* merge

* multipliers

* attention multiplier

* drop unused imports

* fix

* fix

* fix

* move rope?

* Update src/transformers/models/granite/configuration_granite.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* Update src/transformers/models/granite/modeling_granite.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix

* fix

* fix

* fix-copies

* torch rmsnorm

* add authors

* change model path

* fix

* test

* drop static cache test

* uupdate readme

* drop non-causal

* readme

* drop useless imports

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/en/model_doc/granite.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-27 21:27:21 +02:00
7591ca5bc5 🚨 Add Blip2ForImageTextRetrieval (#29261)
* add Blip2ForImageTextRetrieval

* use one line and remove unnecessary space in tests

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* use  value from the config, rather than hardcoded

* change order of params in Blip2QFormerModel.forward

* update docstring

* fix style

* update test_inference_opt

* move embeddings out of Blip2QFormerModel

* remove from_vision_qformer_configs

* remove autocast float16 in Blip2QFormerModel

* rename fiels into vision_projection,text_projection,use_image_text_matching_head

* use CLIPOutput for  Blip2ImageTextMatchingModelOutput

* remove past_key_values_length from Blip2TextEmbeddings

* fix small typo in the CLIPOutput docstring

* add Blip2ForImageTextRetrieval to Zero Shot Image Classification mapping

* update docstring and add require_torch_fp16

* rollback test_inference_opt

* use use_image_text_matching_head=True in convert

* skip test_model_get_set_embeddings

* fix create_rename_keys error on new itm fields

* revert to do  scale after dot product between "query" and "key"

* fix ValueError on convert script for blip2-opt-2.7b

* update org of paths to Salesforce

* add is_pipeline_test_to_skip for VisualQuestionAnsweringPipelineTests

* [run_slow] blip_2

* removed Blip2ForImageTextRetrieval from IGNORE_NON_AUTO_CONFIGURED

* fix docstring of Blip2ImageTextMatchingModelOutput

* [run_slow] blip_2

* fix multi-gpu tests

* [run_slow] blip_2

* [run_slow] blip_2

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-27 18:50:27 +01:00
27903de7ec Very small change to one of the function parameters (#32548)
Very small change to one of the parameters

np.random.randint second parameter is not included in the possible options. Therefore, we want the upper range to be 2, so that we have some 1 labels in our classification as well.
2024-08-27 09:29:05 -07:00
6101d934a1 🌐 [i18n-KO] Translated conversations.md to Korean (#32468)
* docs: ko: conversations.md

* feat: hand-crafted translate docs

* fix: modify typo after Grammar Check

* Update docs/source/ko/conversations.md

감사합니다

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* fix: accept suggestions about anchor and spacing

* Update docs/source/ko/conversations.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>

* Update docs/source/ko/conversations.md

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>

* fix: anchor 'what happened inside piepeline?' be removed question mark

* fix: translate the comments in the code block

---------

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>
Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>
2024-08-27 09:25:41 -07:00
7ee4363d19 update torch req for 4-bit optimizer (#33144)
update req
2024-08-27 17:07:10 +02:00
d47a9e8ce5 fix redundant checkpointing in example training scripts (#33131)
* fix redundant checkpointing in example scripts

* Update examples/pytorch/image-classification/run_image_classification_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/translation/run_translation_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/token-classification/run_ner_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/text-classification/run_glue_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/summarization/run_summarization_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/language-modeling/run_mlm_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/language-modeling/run_fim_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/language-modeling/run_clm_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/image-pretraining/run_mim_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/multiple-choice/run_swag_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/question-answering/run_qa_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/object-detection/run_object_detection_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update examples/pytorch/question-answering/run_qa_beam_search_no_trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-08-27 15:50:00 +02:00
c6b23fda65 Llama: make slow tests green 🟢 (#33138) 2024-08-27 14:44:42 +01:00
9956c2bc98 Add a fix for custom code tokenizers in pipelines (#32300)
* Add a fix for the case when tokenizers are passed as a string

* Support image processors and feature extractors as well

* Reverting load_feature_extractor and load_image_processor

* Add test

* Test is torch-only

* Add tests for preprocessors and feature extractors and move test

* Extremely experimental fix

* Revert that change, wrong branch!

* Typo!

* Split tests
2024-08-27 14:39:57 +01:00
834ec7b1cc fix Idefics2VisionConfig type annotation (#33103)
* fix Idefics2VisionConfig type annotation

* Update modeling_idefics2.py

* Update modeling_idefics2.py

add ignore copy

* Update modeling_idefics2.py

* Update modeling_idefics2.py
2024-08-27 14:43:28 +02:00
d1f39c484d Update stateful_callbacks state before saving checkpoint (#32115)
* update ExportableState callbacks state before saving trainer_state on save_checkpoint

* run make fixup and fix format

* manage multiple stateful callbacks of same class
2024-08-27 14:33:35 +02:00
6f0ecf1049 [docs] add quick usage snippet to Whisper. (#31289)
* [docs] add quick usage snippet to Whisper.

* Apply suggestions from review.

* 💉 Fix the device for pipeline.
2024-08-27 14:11:52 +02:00
892d51caee Log additional test metrics with the CometCallback (#33124)
* Log additional test metrics with the CometCallback.

Also follow the same metric naming convention as other callbacks

* Merge 2 subsequent if-statements

* Trigger Build

---------

Co-authored-by: Aliaksandr Kuzmik <alexander.kuzmik99@gmail.com>
2024-08-27 13:40:53 +02:00
746e1148cf Bump torch from 1.13.1 to 2.2.0 in /examples/research_projects/jax-projects/hybrid_clip (#33137)
Bump torch in /examples/research_projects/jax-projects/hybrid_clip

Bumps [torch](https://github.com/pytorch/pytorch) from 1.13.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.13.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-27 13:33:37 +02:00
ab0ac3b98f CI: fix efficientnet pipeline timeout and prevent future similar issues due to large image size (#33123)
* fix param not being passed in tested; add exceptions

* better source of model name

* Update utils/create_dummy_models.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-27 11:58:27 +01:00
3806faa171 disable scheduled daily CI temporarily (#33136)
disable scheduled daily CI temporary

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-08-27 11:52:15 +02:00
Aya
7562366d4b fix: multilingual midel convert to tflite get wrong token (#32079)
* fix: multilingual midel convert to tflite get wrong token

* fix: modify test_force_tokens_logits_processor the checking value as scores.dtype.min

---------

Co-authored-by: kent.sc.hung <kent.sc.hung@benq.com>
Co-authored-by: Aya <[kent831217@gmail.com]>
2024-08-27 11:44:09 +02:00
3bf6dd8aa1 fix: Fixed CodeGenTokenizationTest::test_truncation failing test (#32850)
* Fixed failing CodeGenTokenizationTest::test_truncation.

* [run_slow] Codegen

* [run_slow] codegen
2024-08-27 09:20:59 +02:00
9578c2597e Fixup py 38 type hints for mps friendly (#33128)
Fixup py 38
2024-08-26 12:27:39 -04:00
26f043bd4d quickfix documentation (#32566)
* fix documentation

* update config
2024-08-26 17:49:44 +02:00
3562772969 fix: Fixed pydantic required version in dockerfiles to make it compatible with DeepSpeed (#33105)
Fixed pydantic required version in dockerfiles.
2024-08-26 17:10:36 +02:00
a378a54a57 Add changes for uroman package to handle non-Roman characters (#32404)
* Add changes for uroman package to handle non-Roman characters

* Update docs for uroman changes

* Modifying error message to warning, for backward compatibility

* Update instruction for user to install uroman

* Update docs for uroman python version dependency and backward compatibility

* Update warning message for python version compatibility with uroman

* Refine docs
2024-08-26 17:07:01 +02:00
72d4a3f9c1 mps: add isin_mps_friendly, a wrapper function for torch.isin (#33099) 2024-08-26 15:34:19 +01:00
894d421ee5 Test: add higher atol in test_forward_with_num_logits_to_keep (#33093) 2024-08-26 15:23:30 +01:00
93e0e1a852 CI: add torchvision to the consistency image (#32941) 2024-08-26 15:17:45 +01:00
19e6e80e10 support qwen2-vl (#32318)
* support-qwen2-vl

* tidy

* tidy

* tidy

* tidy

* tidy

* tidy

* tidy

* hyphen->underscore

* make style

* add-flash2-tipd

* delete-tokenize=False

* remove-image_processor-in-init-file

* add-qwen2_vl-in-MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES

* format-doct

* support-Qwen2VLVisionConfig

* remove-standardize_cache_format

* fix-letter-varaibles

* remove-torch-in-image-processor

* remove-useless-docstring

* fix-one-letter-varaible-name

* change-block-name

* default-quick-gelu-in-vision

* remove-useless-doc

* use-preimplemented-flash-forward

* fix-doc

* fix-image-processing-doc

* fix-apply-rotary-embed

* fix-flash-attn-sliding-window

* refactor

* remove-default_template

* remove-reorder_cache

* simple-get-rope_deltas

* update-prepare_inputs_for_generation

* update-attention-mask

* update-rotary_seq_len

* remove-state

* kv_seq_length

* remove-warning

* _supports_static_cache

* remove-legacy-cache

* refactor

* fix-replace

* mrope-section-doc

* code-quality

* code-quality

* polish-doc

* fix-image-processing-test

* update readme

* Update qwen2_vl.md

* fix-test

* Update qwen2_vl.md

* nit

* processor-kwargs

* hard-code-norm_layer

* code-quality

* discard-pixel-values-in-gen

* fix-inconsistent-error-msg

* unify-image-video

* hidden_act

* add-docstring

* vision-encode-as-PreTrainedModel

* pixel-to-target-dtype

* update doc and low memoryvit

* format

* format

* channel-foramt

* fix vit_flashatt

* format

* inherit-Qwen2VLPreTrainedModel

* simplify

* format-test

* remove-one-line-func-in-image-processing

* avoid-one-line-reshape

* simplify-rotary_seq_len

* avoid-single-letter-variable

* no-for-loop-sdpa

* avoid-single-letter-variable

* remove-one-line-reshape

* remove-one-line-reshape

* remove-no-rope-in-vit-logic

* default-mrope

* add-copied-from

* more-docs-for-mrope

* polish-doc

* comment-and-link

* polish-doc

* single-letter-variables

* simplify-image-processing

* video->images

* kv_seq_len-update

* vision-rope-on-the-fly

* vision-eager-attention

* change-processor-order

---------

Co-authored-by: baishuai <baishuai.bs@alibaba-inc.com>
Co-authored-by: ShuaiBai623 <43326198+ShuaiBai623@users.noreply.github.com>
2024-08-26 15:16:44 +02:00
8defc95df3 Updated the custom_models.md changed cross_entropy code (#33118) 2024-08-26 13:15:43 +02:00
0a7af19f4d Update Jinja docs with new functions and general cleanup (#33097) 2024-08-23 17:40:06 +01:00
e3a5f35cd5 added doctring to SchedulerType class (#32898)
* added doctring to SchedulerType class

* Remove trailing whitespace  src/transformers/trainer_utils.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fixup

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-23 09:15:25 -07:00
1dbd9d3693 DeviceGuard added to use Deformable Attention more safely on multi-GPU (#32910)
* Update modeling_deformable_detr.py

* Update src/transformers/models/deformable_detr/modeling_deformable_detr.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update ms_deform_attn_cuda.cu

* Update modeling_deformable_detr.py

* Update modeling_deformable_detr.py

* [empty] this is a empty commit

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-23 17:12:10 +01:00
371b9c1486 Enable some Jinja extensions and add datetime capabilities (#32684)
* Add new Jinja features:

- Do extension
- Break/continue in loops
- Call strftime to get current datetime in any format

* Add new Jinja features:

- Do extension
- Break/continue in loops
- Call strftime to get current datetime in any format

* Fix strftime template

* Add template strip() just to be safe

* Remove the do extension to make porting easier, and also because it's the least useful

* Rename test

* strftime -> strftime_now

* Split test

* Update test to use strftime_now

* Refactor everything out into chat_template_utils

* Refactor everything out into chat_template_utils

* Refactor everything out into chat_template_utils

* Refactor everything out into chat_template_utils

* Refactor everything out into chat_template_utils
2024-08-23 14:26:12 +01:00
adb91179b9 Integrate Liger (Linkedin GPU Efficient Runtime) Kernel to Trainer (#32860)
* add liger integration

* fix syntax

* fix import issue

* add trainer.md

* Use _apply_liger_kernel()

* Fixed log message

* Update docs/source/en/trainer.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update docs/source/en/trainer.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Byron Hsu <byronhsu1230@gmail.com>

* Update src/transformers/trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Byron Hsu <byronhsu1230@gmail.com>

* Update docs/source/en/trainer.md

Co-authored-by: Byron Hsu <byronhsu1230@gmail.com>

* Fixed checkstyle and updated readme

* Added test

* Fixed checkstyle

* fix docstring

* rename use_liger to use_liger_kernel

* Trigger Build

* Added test

* add fix-copies

* Fixed copy inconsistencies

---------

Co-authored-by: shimizust <sshimizu@linkedin.com>
Co-authored-by: Steven Shimizu <shimizust@gmail.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Byron Hsu <byronhsu1230@gmail.com>
2024-08-23 13:20:49 +02:00
970a16ec7f Forbid PretrainedConfig from saving generate parameters; Update deprecations in generate-related code 🧹 (#32659)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-23 11:12:53 +01:00
22e6f14525 Reducing memory usage: removing useless logits computation in generate() (#31292)
* Add .float() in all generation methods logit outputs

* Switch float-casting of logits to training only for main models

* Add `num_logits_to_keep` in Llama and add it by default in generate

* Apply style

* Add num_logits_to_keep as arg in prepare_input_for_generation

* Add support for Mistral

* Revert models except llama and mistral

* Fix default None value in _supports_num_logits_to_keep()

* Fix dimension of dummy input

* Add exception for prophetnet in _supports_num_logits_to_keep()

* Update _supports_num_logits_to_keep() to use inspect.signature()

* Add deprecation cycle + remove modification with pretraining_tp

* Apply style

* Add most used models

* Apply style

* Make `num_logits_to_keep` an int in all cases to remove if-else clause

* Add compile check for the warning

* Fix torch versions

* style

* Add gemma2

* Update warning version

* Add comment about .float operations in generation utils

* Add tests in GenerationTesterMixin and ModelTesterMixin

* Fix batch size for assisted decoding in tests

* fix small issues in test

* refacor test

* fix slicing removing dim issue

* Add nemotron support (should fix check-copy issue in CIs)

* Trigger new CIs

* Trigger new CIs

* Bump version

* Bump version in TODO

* Trigger CIs

* remove blank space

* Trigger CIs
2024-08-23 11:08:34 +01:00
d806fa3e92 docs: fix outdated link to TF32 explanation (#32947)
fix outdated link
2024-08-22 13:28:00 -07:00
a26de15139 Generate: Deprecate returning legacy cache by default; Handle use_cache=False (#32863) 2024-08-22 20:01:52 +01:00
09e6579d2d 🌐 [i18n-KO] Translated `knowledge_distillation_for_image_classification.md to Korean" (#32334)
* docs: ko: tasks/knowledge_distillation_for_image_classification.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>

* Apply suggestions from code review

Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>

* Apply suggestions from code review

Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>

* Apply suggestions from code review

Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>

* Apply suggestions from code review

Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>

* Apply suggestions from code review

Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>

* Apply suggestions from code review

Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>

* Apply suggestions from code review

Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

---------

Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>
Co-authored-by: Ahnjj_DEV <ahnjj.dev@gmail.com>
2024-08-22 10:42:39 -07:00
273c0afc8f Fix regression on Processor.save_pretrained caused by #31691 (#32921)
fix save_pretrained
2024-08-22 18:42:44 +02:00
18199b34e5 [run_slow] idefics2 (#32840) 2024-08-22 18:08:03 +02:00
975b988bfe Gemma2: eager attention by default (#32865) 2024-08-22 15:59:30 +01:00
f1d822ba33 fix: (issue #32689) AttributeError raised when using Trainer with eval_on_start=True in Jupyter Notebook. (#32849)
fix: `AttributeError` raised when using `Trainer` with `eval_on_start=True` in Jupyter Notebook.
2024-08-22 16:42:00 +02:00
ee8c01f839 Add chat_template for tokenizer extracted from GGUF model (#32908)
* add chat_template to gguf tokenizer

* add template through tokenizer config
2024-08-22 16:41:25 +02:00
99d67f1a09 Improve greedy search memory usage (#32895)
Do not call torch.repeat_interleave if expand_size is 1
2024-08-22 15:37:44 +01:00
bf97d4aa6d Fix benchmark script (#32635)
* fix

* >= 0.3.0

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-08-22 16:07:47 +02:00
9282413611 Add SynCode to llm_tutorial (#32884) 2024-08-22 15:30:22 +02:00
eeea71209a FIX / Hub: Also catch for exceptions.ConnectionError (#31469)
* Update hub.py

* Update errors

* Apply suggestions from code review

Co-authored-by: Lucain <lucainp@gmail.com>

---------

Co-authored-by: Amy Roberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Lucain <lucainp@gmail.com>
2024-08-22 15:29:21 +02:00
8b94d28f97 CI: separate step to download nltk files (#32935)
* separate step to download nltk files

* duplicated

* rm comma
2024-08-22 14:17:24 +01:00
c42d264549 FEAT / Trainer: Add adamw 4bit optimizer (#31865)
* add 4bit optimizer

* style

* fix msg

* style

* add qgalore

* Revert "add qgalore"

This reverts commit 25278e805f24d5d48eaa0638abb48de1b783a3fb.

* style

* version check
2024-08-22 15:07:09 +02:00
6baa6f276a fix: no need to dtype A in jamba (#32924)
Co-authored-by: Gal Cohen <galc@ai21.com>
2024-08-22 15:03:22 +02:00
af638c4afe fix: Added missing huggingface_hub installation to workflows (#32891)
Added missing huggingface_hub installation to workflows.
2024-08-22 12:51:12 +01:00
f6e2586a36 Jamba: update integration tests (#32250)
* try test updates

* a few more changes

* a few more changes

* a few more changes

* [run slow] jamba

* skip logits checks on older gpus

* [run slow] jamba

* oops

* [run slow] jamba

* Update tests/models/jamba/test_modeling_jamba.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/jamba/test_modeling_jamba.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-22 11:46:10 +01:00
3bb7b05229 Update docker image building (#32918)
commit
2024-08-21 21:23:10 +02:00
c6d484e38c fix: [whisper] don't overwrite GenerationConfig's return_timestamps when return_timestamps is not passed to generate function (#31296)
[whisper] don't overwrite return_timestamps when not passed to generate
2024-08-21 20:21:27 +01:00
87134662f7 [i18n-ar] add README_ar.md to README.md (#32583)
* Update README.md

* Update README.md

* Add README_ar.md to i18n/README_de.md

* Add README_ar.md to i18n/README_es.md

* Add README_ar.md to i18n/README_fr.md

* Add README_ar.md to i18n/README_hd.md

* Add README_ar.md to i18n/README_ja.md

* Add README_ar.md to i18n/README_ko.md

* Add README_ar.md to i18n/README_pt-br.md

* Add README_ar.md to i18n/README_ru.md

* Add README_ar.md to i18n/README_te.md

* Add README_ar.md to i18n/README_vi.md

* Add README_ar.md to i18n/README_vi.md

* Add README_ar.md to i18n/README_zh-hans.md

* Add README_ar.md to i18n/README_zh-hant.md

* Create README_ar.md
2024-08-20 16:11:54 -07:00
1dde50c7d2 link for optimizer names (#32400)
* link for optimizer names

Add a note and link to where the user can find more optimizer names easily because there are many more optimizers than are mentioned in the docstring.

* make fixup
2024-08-20 15:28:24 -07:00
078d5a88cd Replace tensor.norm() with decomposed version for CLIP executorch export (#32887)
* Replace .norm() with decomposed version for executorch export

* [run_slow] clip
2024-08-20 21:27:21 +01:00
9800e6d170 Bump nltk from 3.7 to 3.9 in /examples/research_projects/decision_transformer (#32903)
Bump nltk in /examples/research_projects/decision_transformer

Bumps [nltk](https://github.com/nltk/nltk) from 3.7 to 3.9.
- [Changelog](https://github.com/nltk/nltk/blob/develop/ChangeLog)
- [Commits](https://github.com/nltk/nltk/compare/3.7...3.9)

---
updated-dependencies:
- dependency-name: nltk
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-20 21:02:17 +01:00
c63a3d0f17 Fix: Mamba2 norm_before_gate usage (#32686)
* mamba2 uses norm_before_gate=False

* small nit

* remove norm_before_gate flag and follow False path only
2024-08-20 19:47:34 +02:00
01c4fc455b fix: jamba cache fails to use torch.nn.module (#32894)
Co-authored-by: Gal Cohen <galc@ai21.com>
2024-08-20 14:50:13 +02:00
65f4bc99f9 Fix repr for conv (#32897)
add nx
2024-08-20 14:34:24 +02:00
fd06ad5438 🚨🚨🚨 Update min version of accelerate to 0.26.0 (#32627)
* Update min version of accelerate to 0.26.0

* dev-ci

* update min version in import

* remove useless check

* dev-ci

* style

* dev-ci

* dev-ci
2024-08-20 11:42:36 +02:00
13e645bb40 Allow-head-dim (#32857)
* support head dim

* fix the doc

* fixup

* add oproj

Co-authored-by: Suhara
<suhara@users.noreply.github.com>>

* update

Co-authored-by: bzantium <bzantium@users.noreply.github.com>

* Co-authored-by: suhara <suhara@users.noreply.github.com>

* Update

Co-authored-by: Yoshi Suhara <suhara@users.noreply.github.com>

---------

Co-authored-by: bzantium <bzantium@users.noreply.github.com>
Co-authored-by: Yoshi Suhara <suhara@users.noreply.github.com>
2024-08-20 10:24:48 +02:00
85345bb439 Add tip to clarify tool calling (#32883) 2024-08-19 18:37:35 +01:00
37204848f1 Docs: Fixed whisper-large-v2 model link in docs (#32871)
Fixed whisper-large-v2 model link in docs.
2024-08-19 09:50:35 -07:00
61d89c19d8 Fix: Mamba2 generation mismatch between input_ids and inputs_embeds (#32694)
* fix cache when using input embeddings

* simplify check, we can always add input ids seq len since its 0 in first pass
2024-08-19 16:06:07 +02:00
93e538ae2e Mamba / FalconMamba: Fix mamba left padding (#32677)
* fix mamba left padding

* Apply suggestions from code review

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* fix copies

* test with `inputs_embeds`

* Update src/transformers/models/falcon_mamba/modeling_falcon_mamba.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* copies

* clairfy

* fix last comments

* remove

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-19 16:01:35 +02:00
59e8f1919c Fix incorrect vocab size retrieval in GGUF config (#32551)
* fix gguf config vocab size

* minor fix

* link issue
2024-08-19 15:53:54 +02:00
5f6c080b62 RT-DETR parameterized batchnorm freezing (#32631)
* fix: Parameterized norm freezing

For the R18 model, the authors don't freeze norms in the backbone.

* Update src/transformers/models/rt_detr/configuration_rt_detr.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2024-08-19 14:50:57 +01:00
8a4857c0db Support save/load ckpt for XLA FSDP (#32311)
* Support save/load ckpt for XLA FSDP

* Fix bug for save

* Fix style

* reserve sharded ckpt and better file naming

* minor fix

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* add is_fsdp_xla_v1_enabled

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-08-19 15:44:21 +02:00
f1b720ed62 Add __repr__ for Conv1D (#32425)
* Add representation for Conv1D, for better output info.

* code format for Conv1D

* We add a __repr__ func for Conv1D, this allows the print (or output) of the model's info has a better description for Conv1D.
2024-08-19 15:26:19 +02:00
e55b33ceb4 [tests] make test_sdpa_can_compile_dynamic device-agnostic (#32519)
* enable

* fix
2024-08-19 12:46:59 +01:00
54b7703682 support torch-speech (#32537) 2024-08-19 11:26:35 +02:00
8260cb311e Add Descript-Audio-Codec model (#31494)
* dac model

* original dac works

* add dac model

* dac can be instatiated

* add forward pass

* load weights

* all weights are used

* convert checkpoint script ready

* test

* add feature extractor

* up

* make style

* apply cookicutter

* fix tests

* iterate on FeatureExtractor

* nit

* update dac doc

* replace nn.Sequential with nn.ModuleList

* nit

* apply review suggestions 1/2

* Update src/transformers/models/dac/modeling_dac.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* up

* apply review suggestions 2/2

* update padding in FeatureExtractor

* apply review suggestions

* iterate on design and tests

* add integration tests

* feature extractor tests

* make style

* all tests pass

* make style

* fixup

* apply review suggestions

* fix-copies

* apply review suggestions

* apply review suggestions

* Update docs/source/en/model_doc/dac.md

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update docs/source/en/model_doc/dac.md

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* anticipate transfer weights to descript

* up

* make style

* apply review suggestions

* update slow test values

* update slow tests

* update test values

* update with CI values

* update with vorace values

* update test with slice

* make style

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
2024-08-19 10:21:51 +01:00
843e5e20ca Add Flax Dinov2 (#31960)
* tfmsenv restored in main

* installed flax

* forward pass done and all tests passed

* make fix-copies and cleaning the scripts

* fixup attempt 1

* fixup attempt 2

* fixup third attempt

* fixup attempt 4

* fixup attempt 5

* dinov2 doc fixed

* FlaxDinov2Model + ForImageClassification added to OBJECTS_TO_IGNORE

* external pos_encoding layer removed

* fixup attempt 6

* fixed integration test values

* fixup attempt 7

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* comments removed

* comment removed from the test

* fixup

* Update src/transformers/models/dinov2/modeling_flax_dinov2.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* new fixes 1

* interpolate_pos_encoding function removed

* droppath rng fixed, pretrained beit copied-from still not working

* modeling_flax_dinov2.py reformatted

* Update tests/models/dinov2/test_modeling_flax_dinov2.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* added Copied from, to the tests

* copied from statements removed from tests

* fixed copied from statements in the tests

* [run_slow] dinov2

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-08-19 09:28:13 +01:00
52cb4034ad generate: missing to in DoLa body, causing exceptions in multi-gpu generation (#32856) 2024-08-17 16:37:00 +01:00
6806d33567 Make beam_constraints.Constraint.advance() docstring more accurate (#32674)
* Fix beam_constraints.Constraint.advance() docstring

* Update src/transformers/generation/beam_constraints.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-16 19:36:55 +01:00
8ec028aded Reduce the error log when using core models that need their weights renamed, and provide a step forward (#32656)
* Fin

* Modify msg

* Finish up nits
2024-08-16 13:05:57 -04:00
1c36db697a fix multi-gpu with static cache (#32543) 2024-08-16 19:02:37 +02:00
0b066bed14 Revert PR 32299, flag users when Zero-3 was missed (#32851)
Revert PR 32299
2024-08-16 12:35:41 -04:00
f20d0e81ea improve _get_is_as_tensor_fns (#32596)
* improve _get_is_as_tensor_fns

* format
2024-08-16 15:59:44 +01:00
a27182b7fc Fix AutoConfig and AutoModel support for Llava-Next-Video (#32844)
* Fix: fix all model_type of Llava-Next-Video to llava_next_video

* Fix doc for llava_next_video

* * Fix formatting issues
* Change llava-next-video.md file name into llava_next_video.md to make it compatible with implementation

* Fix docs TOC for llava-next-video
2024-08-16 12:41:05 +01:00
cf32ee1753 Cache: use batch_size instead of max_batch_size (#32657)
* more precise name

* better docstrings

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-16 11:48:45 +01:00
8f9fa3b081 [tests] make test_sdpa_equivalence device-agnostic (#32520)
* fix on xpu

* [run_all]
2024-08-16 11:34:13 +01:00
70d5df6107 Generate: unify LogitsWarper and LogitsProcessor (#32626) 2024-08-16 11:20:41 +01:00
5fd7ca7bc9 Use head_dim if in config for RoPE (#32495)
* use head_dim if in config for RoPE

* typo

* simplify with getattr
2024-08-16 11:37:43 +02:00
c215523528 add back the position ids (#32554)
* add back the position ids

* fix failing test
2024-08-16 11:00:05 +02:00
f3c8b18053 VLMs: small clean-up for cache class (#32417)
* fix beam search in video llava

* [run-slow] video_llava
2024-08-16 09:07:05 +05:00
d6751d91c8 fix: update doc link for runhouse in README.md (#32664) 2024-08-15 20:00:55 +01:00
ab7e893d09 fix: Corrected falcon-mamba-7b model checkpoint name (#32837)
Corrected the model checkpoint.
2024-08-15 18:03:18 +01:00
jp
e840127370 reopen: llava-next fails to consider padding_side during Training (#32679)
restore #32386
2024-08-15 11:44:19 +01:00
8820fe8b8c Updated workflows to the latest versions (#32405)
Updated few workflows to the latest versions.
2024-08-14 20:18:14 +02:00
0cea2081a3 Unpin deepspeed in Docker image/tests (#32572)
Unpin deepspeed
2024-08-14 18:30:25 +01:00
95a77819db fix: Fixed unknown pytest config option doctest_glob (#32475)
Fixed unknown config option doctest_glob.
2024-08-14 18:30:01 +01:00
6577c77d93 Update the distributed CPU training on Kubernetes documentation (#32669)
* Update the Kubernetes CPU training example

* Add namespace arg

Signed-off-by: Dina Suehiro Jones <dina.s.jones@intel.com>

---------

Signed-off-by: Dina Suehiro Jones <dina.s.jones@intel.com>
2024-08-14 09:36:43 -07:00
20a04497a8 Fix JetMoeIntegrationTest (#32332)
JetMoeIntegrationTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-08-14 16:22:06 +02:00
78d78cdf8a Add TorchAOHfQuantizer (#32306)
* Add TorchAOHfQuantizer

Summary:
Enable loading torchao quantized model in huggingface.

Test Plan:
local test

Reviewers:

Subscribers:

Tasks:

Tags:

* Fix a few issues

* style

* Added tests and addressed some comments about dtype conversion

* fix torch_dtype warning message

* fix tests

* style

* TorchAOConfig -> TorchAoConfig

* enable offload + fix memory with multi-gpu

* update torchao version requirement to 0.4.0

* better comments

* add torch.compile to torchao README, add perf number link

---------

Co-authored-by: Marc Sun <marc@huggingface.co>
2024-08-14 16:14:24 +02:00
9485289f37 Update translation docs review (#32662)
update list of people to tag
2024-08-14 13:57:07 +02:00
df323476a3 fix: Fixed failing tests in tests/utils/test_add_new_model_like.py (#32678)
* Fixed failing tests in tests/utils/test_add_new_model_like.py

* Fixed formatting using ruff.

* Small nit.
2024-08-14 12:06:17 +01:00
a22ff36e0e Support MUSA (Moore Threads GPU) backend in transformers (#31913)
Add accelerate version check, needs accelerate>=0.33.0
2024-08-13 21:10:25 -04:00
c1357834e8 Fix tests recurrent (#32651)
* add fix for recurrentgemma

* [no-filter]

* trigger-ci

* [no-filter]

* [no-filter]

* attempt to fix mysterious zip error

* [no-filter]

* fix lookup error

* [no-filter]

* remove summarization hack

* [no-filter]
2024-08-13 23:40:50 +02:00
9d2ab8824c TF_Deberta supporting mixed precision (#32618)
* Update modeling_tf_deberta.py

Corrected some codes which do not support mixed precision

* Update modeling_tf_deberta_v2.py

Corrected some codes which do not support mixed precision

* Update modeling_tf_deberta_v2.py

* Update modeling_tf_deberta.py

* Add files via upload

* Add files via upload
2024-08-13 18:15:24 +01:00
5bcbdff159 Modify ProcessorTesterMixin for better generalization (#32637)
* Add padding="max_length" to tokenizer kwargs and change crop_size to size for image_processor kwargs

* remove crop_size argument in align processor tests to be coherent with base tests

* Add pad_token when loading tokenizer if needed, change test override tokenizer kwargs, remove unnecessary test overwrites in grounding dino
2024-08-13 11:48:53 -04:00
c3cd9d807e Fix: Fixed directory path for utils folder in test_tokenization_utils.py (#32601)
* Removed un-necessary expressions.

* Fixed directory path for utils folder in test_tokenization_utils.py
2024-08-13 16:48:15 +01:00
cc25757a44 Add Depth Anything V2 Metric models (#32126)
* add checkpoint and repo names

* adapt head to support metric depth estimation

* add max_depth output scaling

* add expected logits

* improve docs

* fix docstring

* add checkpoint and repo names

* adapt head to support metric depth estimation

* add max_depth output scaling

* add expected logits

* improve docs

* fix docstring

* rename depth_estimation to depth_estimation_type

* add integration test

* Refactored tests to include metric depth model inference test
* Integration test pass when the timm backbone lines are commented (L220-L227)

* address feedback

* replace model path to use organization path

* formatting

* delete deprecated TODO

* address feedback

* [run_slow] depth_anything
2024-08-13 16:16:30 +02:00
481e15604a Add support for GrokAdamW optimizer (#32521)
* add grokadamw

* reformat

* code review feedback, unit test

* reformat

* reformat
2024-08-13 13:20:28 +01:00
b5016d5de7 fix tensors on different devices in WhisperGenerationMixin (#32316)
* fix

* enable on xpu

* no manual remove

* move to device

* remove to

* add move to
2024-08-13 11:29:57 +01:00
a5a8291ad1 Fix tests (#32649)
* skip failing tests

* [no-filter]

* [no-filter]

* fix wording catch in FA2 test

* [no-filter]

* trigger normal CI without filtering
2024-08-13 09:46:21 +01:00
29c3a0fa01 Automatically add transformers tag to the modelcard (#32623)
* Automatically add `transformers` tag to the modelcard

* Specify library_name and test
2024-08-13 07:59:01 +02:00
a29eabd0eb Expand inputs in processors for VLMs (#30962)
* let it be

* draft

* should not have changed

* add warnings

* fix & add tests

* fix tests

* ipnuts embeds cannot be passed with pixels

* more updates

* paligemma ready!

* minor typos

* update blip-2

* fix tests & raise error

* docstring

* add blip2 test

* tmp

* add image seq length to config

* update docstring

* delete

* fix tests

* fix blip

* fix paligemma

* out-of-place scatter

* add llava-next-video

* Update src/transformers/models/blip_2/modeling_blip_2.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* remove tmp

* codestyle

* nits

* more nits

* remove overriding in tests

* comprehension when merging video

* fix-copies

* revert changes for embeds test

* fix tests after making comprehension

* Update src/transformers/models/blip_2/processing_blip_2.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* Update src/transformers/models/blip_2/processing_blip_2.py

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>

* more updates

* fix tests

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
2024-08-13 10:14:39 +05:00
2a5a6ad18a fix: Updated the is_torch_mps_available() function to include min_version argument (#32545)
* Fixed wrong argument in is_torch_mps_available() function call.

* Fixed wrong argument in is_torch_mps_available() function call.

* sorted the import.

* Fixed wrong argument in is_torch_mps_available() function call.

* Fixed wrong argument in is_torch_mps_available() function call.

* Update src/transformers/utils/import_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* removed extra space.

* Added type hint for the min_version parameter.

* Added missing import.

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-12 20:42:57 +01:00
f1c8542ff7 "to be not" -> "not to be" (#32636)
* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py
2024-08-12 20:20:17 +01:00
126cbdb365 Bump tensorflow from 2.11.1 to 2.12.1 in /examples/research_projects/decision_transformer (#32341)
Bump tensorflow in /examples/research_projects/decision_transformer

Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 2.11.1 to 2.12.1.
- [Release notes](https://github.com/tensorflow/tensorflow/releases)
- [Changelog](https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorflow/compare/v2.11.1...v2.12.1)

---
updated-dependencies:
- dependency-name: tensorflow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-12 19:57:07 +01:00
ce4b28830a fix: Fixed failing test_find_base_model_checkpoint (#32638)
Fixed failing test_find_base_model_checkpoint.
2024-08-12 19:51:30 +01:00
7f777ab7d9 🌐 [i18n-KO] Translated awq.mdto Korean (#32324)
* fix: manual edits

* Apply suggestions from code review

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>

* fix:manual edits

- 잘못된 경로에 번역본 파일을 생성해서 옮김

* Delete docs/source/ko/tasks/awq.md

* Update docs/source/ko/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
Co-authored-by: Chulhwa (Evan) Han <cjfghk5697@ajou.ac.kr>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-12 10:12:48 -07:00
4996990d61 🌐 [i18n-KO] Translated deepspeed.md to Korean (#32431)
* Update _toctree.yml

* docs: ko: deepspeed.md

* Apply suggestions from code review

Co-authored-by: wony617 <49024958+Jwaminju@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: wony617 <49024958+Jwaminju@users.noreply.github.com>

* Update docs/source/ko/_toctree.yml

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/ko/deepspeed.md

* Update docs/source/ko/deepspeed.md

Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* Apply suggestions from code review

Co-authored-by: wony617 <49024958+Jwaminju@users.noreply.github.com>

* Update docs/source/ko/_toctree.yml

---------

Co-authored-by: wony617 <49024958+Jwaminju@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>
2024-08-12 10:07:31 -07:00
b7ea171403 Cleanup tool calling documentation and rename doc (#32337)
* Rename "Templates for Chat Models" doc to "Chat Templates"

* Small formatting fix

* Small formatting fix

* Small formatting fix

* Cleanup tool calling docs as well

* Remove unneeded 'revision'

* Move tip to below main code example

* Little bonus section on template editing
2024-08-12 16:20:14 +01:00
8a3c55eb21 Bump torch from 1.13.1 to 2.2.0 in /examples/research_projects/visual_bert (#32220)
Bump torch in /examples/research_projects/visual_bert

Bumps [torch](https://github.com/pytorch/pytorch) from 1.13.1 to 2.2.0.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/main/RELEASE.md)
- [Commits](https://github.com/pytorch/pytorch/compare/v1.13.1...v2.2.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-12 16:02:52 +01:00
50837f2060 Bump aiohttp from 3.9.4 to 3.10.2 in /examples/research_projects/decision_transformer (#32569)
Bump aiohttp in /examples/research_projects/decision_transformer

Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.9.4 to 3.10.2.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/master/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.9.4...v3.10.2)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-12 15:49:59 +01:00
e31a7a2638 Fix .push_to_hub(..., create_pr=True, revision="my-branch") when creating PR on not-owned repo (#32094)
Fix create_pr aagainst existing revision
2024-08-12 15:35:32 +01:00
bd251e4955 fix: Fixed conditional check for encodec model names (#32581)
* Fixed conditional check for encodec model names.

* Reformatted conditional check.
2024-08-12 12:07:46 +01:00
342e3f9f20 Fix sliding window attention used in Gemma2FlashAttention2 (#32522)
* fix sliding window attention (flash2) in gemma2 model

* [run-slow] gemma

* fix slicing attention_mask for flash_attn2

* fix slicing attention_mask when flash_attn is used

* add missing comment

* slice the last seq_len tokens in the key, value states

* revert code of slicing key, value states
2024-08-12 11:18:15 +02:00
8f2b6d5e3d Fix: FA2 with packed training (#32487)
* fix check

* add tests

* [run-slow] llama, gemma2

* oops, whisper actually runs but needed some special treatment
2024-08-12 13:40:07 +05:00
7c11491208 Add new model (#32615)
* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-12 08:22:47 +02:00
48101cf8d1 🌐 [i18n-KO] Translated agent.md to Korean (#32351)
* docs: ko: main_classes/agent

* feat: chatgpt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: thsamaji <60818655+thsamajiki@users.noreply.github.com>
Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>

* fix: resolve suggestions

* fix: resolve code line number

---------

Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: thsamaji <60818655+thsamajiki@users.noreply.github.com>
Co-authored-by: SeungAhSon <gongsoonyee@gmail.com>
2024-08-09 09:58:52 -07:00
e7f4ace092 fix non contiguous tensor value error in save_pretrained (#32422)
Signed-off-by: duzhanwei <duzhanwei@bytedance.com>
Co-authored-by: duzhanwei <duzhanwei@bytedance.com>
2024-08-09 12:59:43 +01:00
e4522fe399 fix slow integration gemma2 test (#32534)
no empty revision
2024-08-09 11:28:22 +02:00
7728b78855 Fix a bug in Qwen2Audio (#32552)
fix _update_model_kwargs_for_generation
2024-08-09 10:25:00 +02:00
838d141fb4 Gemma2: fix FA2 generation (#32553)
fix FA2
2024-08-09 12:22:16 +05:00
85817d98fb [docs] Translation guide (#32547)
clarify
2024-08-08 13:43:14 -07:00
54ac39c648 Fix code example to load bigcode starcoder2 7b (#32474) 2024-08-08 13:42:58 -07:00
0164560353 Fixed test test_static_cache_exportability with torch 2.4.0 (#32516)
Workaround the export issue in torch 2.4

Co-authored-by: Guang Yang <guangyang@fb.com>
2024-08-08 18:13:40 +01:00
044281605f Fix generate with inputs_embeds as input (#32493)
* I think inputs_embeds has ndim == 3

* fix sequence length catch

* add generate test

* [run-slow]olmo, persimmon, gemma, gemma2, qwen2, llama

* skip whisper

* fix bart test

* more fixes
2024-08-08 18:44:53 +02:00
b01f9c484c 🌐 [i18n-KO] Translated bitsandbytes.md to Korean (#32408)
* docs: ko: quantization/bitsandbytes.md

* feat: nmt draft

* fix: minor typos

* fix: manual edits

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: wony617 <49024958+Jwaminju@users.noreply.github.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: wony617 <49024958+Jwaminju@users.noreply.github.com>
Co-authored-by: YONGSANG <71686691+4N3MONE@users.noreply.github.com>
Co-authored-by: Woojun Jung <46880056+jungnerd@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-08 09:40:50 -07:00
496207a166 🌐 [i18n-KO] Translated fsdp.md to Korean (#32261)
* docs: ko: fsdp.md

* feat: nmt draft

* fix: manual edits

* Apply suggestions from code review

Co-authored-by: 김준재 <55151385+junejae@users.noreply.github.com>
Co-authored-by: Minki Kim <100768622+1kmmk1@users.noreply.github.com>

* fix: resolve suggestions

* Update docs/source/ko/fsdp.md

Co-authored-by: 김준재 <55151385+junejae@users.noreply.github.com>

* Update docs/source/ko/fsdp.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: 김준재 <55151385+junejae@users.noreply.github.com>
Co-authored-by: Minki Kim <100768622+1kmmk1@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-08 09:40:03 -07:00
e0396bdaa0 🌐 [i18n-KO] Translated eetq.md to Korean (#32352)
* docs: ko: quantization/eetq.md

* feat: nmt draft

* fix docs: ko: quantization/eetq.md

* fix docs: ko: quantization/eetq.md

* fix: resolve suggestions

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* fix: resolve suggestions

* fix: resolve suggsetions

---------

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>
2024-08-08 09:39:35 -07:00
96ba7f0c51 🌐 [i18n-KO] Translated trainer.md to Korean (#32260)
* docs: ko: ko-trainer

* feat: nmt draft

* fix: manual edits

* fix: manual edits

* fix: glossary

* fix: glossary

* Apply suggestions from code review

Co-authored-by: Jinuk <45095330+JinukHong@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>

---------

Co-authored-by: Jinuk <45095330+JinukHong@users.noreply.github.com>
Co-authored-by: SeongWooChoi <46990061+nuatmochoi@users.noreply.github.com>
2024-08-08 09:38:58 -07:00
43f3fe879c 🌐 [i18n-KO] Translated ko-llm_tutorial_optimization.md to Korean (#32372)
* docs: ko: llm_tutorial_optimization.md

* feat: nmt draft

* fix: manual edits

* Update docs/source/ko/llm_tutorial_optimization.md

Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>

* Update docs/source/ko/llm_tutorial_optimization.md

Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>

* fix: resolve suggestions - 1

Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>
Co-authored-by: timdalxx <48753785+jeongiin@users.noreply.github.com>
Co-authored-by: boyunJang <gobook1234@naver.com>

* fix: resolve suggestions - 2

Co-authored-by: boyunJang <gobook1234@naver.com>
Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>
Co-authored-by: timdalxx <48753785+jeongiin@users.noreply.github.com>

---------

Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>
Co-authored-by: timdalxx <48753785+jeongiin@users.noreply.github.com>
Co-authored-by: boyunJang <gobook1234@naver.com>
2024-08-08 09:37:39 -07:00
cc832cbd19 filter flash_attn optional imports loading remote code (#30954)
* filter flash_attn optional imports loading remote code

* improve pattern

* fix code style

* Update src/transformers/dynamic_module_utils.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-08-08 17:21:42 +01:00
16ed0640be Add Qwen2-Audio (#32137)
* add qwen2audio

* Update check_repo.py

* fix style

* fix test

* fix style

* add model size

* Qwen2AudioEncoderModel->Qwen2AudioEncoder; add copy info

* Update src/transformers/models/qwen2_audio/modeling_qwen2_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/qwen2_audio/modeling_qwen2_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/qwen2_audio/modeling_qwen2_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* switch the attention_mask and the feature_attention_mask

* add to PRIVATE_MODELS in check_repo.py; add to MODEL_NAMES_TO_IGNORE in check_table.py

* fix initialization

* update chat_template

* fix consistency issue after copy

* add docstrings to _merge_input_ids_with_audio_features

* add copied from to prepare_inputs_for_generation

* add more details to docs

* rm comment

* add init_std

* Update src/transformers/models/qwen2_audio/modeling_qwen2_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/qwen2_audio/modeling_qwen2_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/qwen2_audio/modeling_qwen2_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/qwen2_audio/modeling_qwen2_audio.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* update

* Update docs/source/en/model_doc/qwen2_audio.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update tests

* rm ignore_index

* update processor

* rm ffmpeg_read

* Update tests/models/qwen2_audio/test_modeling_qwen2_audio.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2_audio.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2_audio.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/qwen2_audio.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* update

* typo

* [run_slow] qwen2_audio

* [run_slow] qwen2_audio

* [run_slow] qwen2_audio

* fix quality

* [run_slow] qwen2_audio

* [run_slow] qwen2_audio

* [run_slow] qwen2_audio

* add official model

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-08 15:47:24 +02:00
b51d4145bb Fix add-new-model-like (#31773)
* handle (processor_class, None) returned by ModelPatterns

* handle (slow, fast) image processors in add model

* handle old image processor case
2024-08-08 15:10:00 +02:00
d3b3551750 Uniformize kwargs for processors - GroundingDINO (#31964)
* fix typo

* uniform kwargs

* make style

* add comments

* remove return_tensors

* remove common_kwargs from processor since it propagates

* make style

* return_token_type_ids to True

* revert the default imagekwargs since does not accept any value in the image processro

* revert processing_utils.py

* make style

* add molbap's commit

* fix typo

* fix common processor

* remain

* Revert "add molbap's commit"

This reverts commit a476c6ee88318ce40d73ea31e2dc2d4faa8ae410.

* add unsync PR

* revert

* make CI happy

* nit

* import annotationformat
2024-08-08 14:03:08 +01:00
e28784f821 Change Phi3 _supports_sdpa to True (#32457)
* Change `_supports_sdpa` to True

* add phi3 to sdpa support list
2024-08-08 13:28:20 +02:00
1c944ac1e1 Fix issue #32518: Update llm_tutorial.md (#32523)
Update llm_tutorial.md

remove comma re: issue 32518

https://github.com/huggingface/transformers/issues/32518
2024-08-08 10:54:02 +01:00
aefd3e2ae1 Fix typo: depracted -> deprecated (#32489)
Hello!

## Pull Request overview
* Fix typo

## Details
This should speak for itself.

cc @itazap @ArthurZucker 

- Tom Aarsen
2024-08-08 09:37:14 +02:00
f5cdbf6e54 Fix link to autoclass_tutorial.md in i18n.md (#32501) 2024-08-07 16:09:52 -07:00
78566dbdf0 🌐 [i18n-KO] Translated chat_templating.md to Korean (#32362)
* docs: ko: chat_templating.md

* feat: nmt draft

* fix: manual edits

* Update docs/source/ko/chat_templating.md

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>

* Update docs/source/ko/chat_templating.md

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>

* fix: apply suggestions from code review - anchor

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>

* fix: manual edits

Co-authored-by: SeungYoun Lee <84276596+win2dvp21@users.noreply.github.com>
Co-authored-by: Minki Kim <100768622+1kmmk1@users.noreply.github.com>

* fix: manual edits

* fix: delete 'default template' section

---------

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>
Co-authored-by: SeungYoun Lee <84276596+win2dvp21@users.noreply.github.com>
Co-authored-by: Minki Kim <100768622+1kmmk1@users.noreply.github.com>
2024-08-07 11:25:19 -07:00
543df48914 Docs: Fixed WhisperModel.forward’s docstring link (#32498)
Fixed WhisperModel.forward’s docstring link.
2024-08-07 11:01:33 -07:00
73a59a2fcb Fix references to model google mt5 small (#32497) 2024-08-07 17:57:20 +01:00
cba7bcf87b 🌐 [i18n-KO] Translated image_feature_extraction.md to Korean (#32239)
* docs: ko: tasks/images_feature_extraction.md

* feat: nmt draft

* fix: manual edits

* fix: manual edits

* fix: manual edits

* fix: manual edits

* feat: manual edits

* Update docs/source/ko/tasks/image_feature_extraction.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* Update docs/source/ko/tasks/image_feature_extraction.md

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>

* fix: manual edits

---------

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
2024-08-07 09:56:23 -07:00
fa59fd87dd 🌐 [i18n-KO] Translated quantization/quanto.md to Korean (#32281)
* docs: ko: quantization/quanto.md

* feat: nmt draft

* fix: resolve suggestions

Co-authored-by: SeungYoun Lee <84276596+win2dvp21@users.noreply.github.com>
Co-authored-by: Minki Kim <100768622+1kmmk1@users.noreply.github.com>
Co-authored-by: 김준재 <55151385+junejae@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: SeungYoun Lee <84276596+win2dvp21@users.noreply.github.com>

---------

Co-authored-by: SeungYoun Lee <84276596+win2dvp21@users.noreply.github.com>
Co-authored-by: Minki Kim <100768622+1kmmk1@users.noreply.github.com>
Co-authored-by: 김준재 <55151385+junejae@users.noreply.github.com>
2024-08-07 09:52:57 -07:00
fcc4f2ae8f 🌐 [i18n-KO] Translated prompting.md to Korean (#32294)
* docs: ko: tasks/prompting.md

* feat: nmt-draft

* fix: update translation in prompting.md

* fix: update toctree.yml

* fix: manual edits

* fix: toctree edits

* fix: resolve suggestions

Co-authored-by: boyunJang <gobook1234@naver.com>
Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: timdalxx <48753785+jeongiin@users.noreply.github.com>

---------

Co-authored-by: boyunJang <gobook1234@naver.com>
Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: timdalxx <48753785+jeongiin@users.noreply.github.com>
2024-08-07 09:44:31 -07:00
1124d95dbb 🌐 [i18n-KO] Translated gptq.md to Korean (#32293)
* fix: manual edits

* fix: manual edits2

* fix: delete files

* fix: resolve suggestions

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>
Co-authored-by: SeungYoun Lee <84276596+win2dvp21@users.noreply.github.com>
Co-authored-by: 김준재 <55151385+junejae@users.noreply.github.com>

* fix: resolve suggestions

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Sungmin Oh <fabxoe.kor@gmail.com>
Co-authored-by: SeungYoun Lee <84276596+win2dvp21@users.noreply.github.com>
Co-authored-by: 김준재 <55151385+junejae@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-08-07 09:19:35 -07:00
b7fb393f68 Docs: alert for the possibility of manipulating logits (#32467)
* logits

* words
2024-08-07 16:34:46 +01:00
b6401030de fix broken link in docs (#32491)
`https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TextGenerationPipeline.__call__`

`generate_kwargs (dict, optional) — Additional keyword arguments to pass along to the generate method of the model (see the generate method corresponding to your framework here).`

link in "here" doesnt work
2024-08-07 15:14:03 +01:00
e0d82534cc Agents use grammar (#31735)
* Allow optional use of grammars to constrain generation
2024-08-07 11:42:52 +02:00
c54a6f994a Fix typo in tokenization_utils_base.py (#32484) 2024-08-07 10:29:44 +01:00
46d09af4fc enable xla fsdp (#32048)
* enable xla fsdp

* add acceleration version check for xla fsdp
2024-08-07 10:28:17 +01:00
7ad784ae9d Gemma2: add cache warning (#32279)
* gemma2 fallback to dynamic cache

* Update src/transformers/models/gemma2/modeling_gemma2.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/gemma2/modeling_gemma2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* raise error and dont fallback to dynamic cache

* prev will break most forward calls/tests

* Update src/transformers/models/gemma2/modeling_gemma2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* update

* fix copies

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-07 10:03:05 +05:00
a30c865f99 Cache: new Cache format in decoder-only models (#31421)
* draft bart with new cache

* add cache for decoder-only models

* revert utils

* modify docstring

* revert bart

* minor fixes

* fix copies (not related)

* revert tests

* remove enc-dec related code

* remove bloom

* remove opt (enc-dec)

* update docstring

* git, codegen, gpt_neo, gpt_neox, gpj

* clean up

* copied from statements

* revert

* tmp

* update warning msg

* forgot git

* add more flags

* run-slow git,codegen,gpt_neo,gpt_neox,gpj

* add cache flag to VLMs

* remove files

* style

* video LLMs also need a flag

* style

* llava will go in another PR

* style

* [run-slow] codegen, falcon, git, gpt_neo, gpt_neox, gptj, idefics

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* copy from

* deprecate until v4.45 and warn if not training

* nit

* fix test

* test static cache

* add more tests and fix models

* fix copies

* return sliding window mask

* run slow tests & fix + codestyle

* one more falcon fix for alibi

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-07 10:02:16 +05:00
6af0854efa 🌐 [i18n-KO] Translated image_to_image.md to Korean (#32327)
* docs: ko: tasks/image_to_image.md

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

* fix: handle remaining suggestions

Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>

---------

Co-authored-by: Jihun Lim <31366038+heuristicwave@users.noreply.github.com>
Co-authored-by: Jiwook Han <33192762+mreraser@users.noreply.github.com>
2024-08-06 11:59:44 -07:00
3b193c7bae 🌐 [i18n-KO] Translated idefics.md to Korean (#32258)
* docs: ko: tasks/idefics.md

* feat: nmt draft

* fix: manual edits

* fix: resolve suggestions

Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>
Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: timdalxx <48753785+jeongiin@users.noreply.github.com>

---------

Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>
Co-authored-by: Harheem Kim <49297157+harheem@users.noreply.github.com>
Co-authored-by: timdalxx <48753785+jeongiin@users.noreply.github.com>
2024-08-06 11:58:21 -07:00
5301b981d7 🌐 [i18n-KO] Translated mask_generation.md to Korean (#32257)
* docs: ko: tasks/mask_generation.md

* feat: nmt draft

* fix : toc local

* fix : manual edits

* fix : ko-toctree

* fix: resolve suggestions

Co-authored-by: boyunJang <gobook1234@naver.com>
Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>

* fix: resolve suggestions

Co-authored-by: boyunJang <gobook1234@naver.com>
Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>

* fix: resolve suggestions

* fix: resolve suggestions

* fix: resolve suggestions

---------

Co-authored-by: boyunJang <gobook1234@naver.com>
Co-authored-by: Chaewon Song <chaewon1019@ewhain.net>
2024-08-06 11:36:14 -07:00
ac2707e8ee Revert "fixes to properly shard FSDP across cpu and meta for cpu_effcient_loading for prequantized 4bit (#32276)" (#32477)
* Revert "fixes to properly shard FSDP across cpu and meta for cpu_efficient_loading for prequantized 4bit (#32276)"

This reverts commit 62c60a30181a65e1a3a7f19c3055a240a6a21335.

We uncovered an issue with this change that caused our training runs to hang.

* `is_torchdynamo_compiling` -- cast a wide exception net (#32476)

* cast a wide net

* make fix-copies with a few manual changes

* add copied from

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-08-06 20:28:59 +02:00
4fdc7020b2 is_torchdynamo_compiling -- cast a wide exception net (#32476)
* cast a wide net

* make fix-copies with a few manual changes

* add copied from
2024-08-06 20:12:58 +02:00
26a9443dae dev version 4.45.0 2024-08-06 18:33:18 +02:00
50c3ba889a Documentation: BOS token_id deprecation change for NLLB (#32443)
Update nllb.md
2024-08-06 09:22:08 -07:00
194cf1f392 Migrate import checks not need accelerate, and be more clear on min versions (#32292)
* Migrate import checks to secondary accelerate calls

* better errs too

* Revert, just keep the import checks + remove accelerate-specific things

* Rm extra'

* Empty commit for ci

* Small nits

* Final
2024-08-06 12:03:09 -04:00
80b90e7b2f Add codestral mamba2 (#32080)
* add new model like

* draft cuda forward - mismatched keys (sharding on conv1)

* match keys successfully

* fix split

* get generation/forward running (wrong gens, norm?)

* :update

* some refactoring

* fixes

* works up until copy to cache

* fix

* update

* NON WORKING VERSION

* version that work?

* nit

* fix config

* fix conversion script

* working cuda forward

* nit

* update

* simplifcation

* make mamba slow simple work

* no einops

* todo

* fix style

* no einops

* update fix no einsum

* nit

* remove einops

* bug: scan_output differs strongly

* add rms norm option

* fix fast + slow generation with and w/o cache ✔️

* draft integration tests

* remove a big chunk of the einsum

* fix slow, fast generations, without any einsum

* fix copies

* fix structure

* fix up modeling and tests

* fix tests

* clamping is indeed worse

* recover mamba2 cache test

* fix copies

* no cache position (yet)

* fix tf tests

* fix matmul for generate

* fixup

* skip cache tests for now

* [run-slow]mamba2

* tune out hidden states for padding

* test batched generation

* propagate attention mask changes

* fix past length

* fix integration test

* style

* address comments

* update readme

* add mamba2 version check

* fix tests

* [run-slow]mamba2

* skip edge tests

* [run-slow]mamba2

* last fixup

* [run-slow]mamba2

* update README

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2024-08-06 16:39:52 +02:00
3d8bd11942 Generate: fix end to end compilation (#32465) 2024-08-06 15:06:47 +01:00
6a03942db7 Add Nemotron HF Support (#31699)
* Add nemotron support

* fix inference

* add unit test

* add layernorm1p as a class to avoid meta device mismatch

* test fixed

* Add copied_from statements

* remove pretraining_tp args

* remove nemotronlayernorm

* force LN computation done in FP32

* remove nemotrontokenizer and use llamatokenizer

* license update

* add option for kv_channels for minitron8b

* remove assert

* o_proj fixed

* o_proj reshape

* add gated_proj option

* typo

* remove todos

* fix broken test after merging latest main

* remove nezha/nat after meging main

* chnage default config to 15b model

* add nemo conversion script

* rename conversion script

* remove gate_proj option

* pr comment resolved

* fix unit test

* rename kv_channels to head_dim

* resolve PR issue

* add nemotron md

* fix broken tests

* refactor rope for nemotron

* test fix

* remove linearscaling

* whitespace and import

* fix some copied-from

* code style fix

* reformatted

* add position_embedding to nemotronattention

* rope refactor to only use config, copied-from fix

* format

* Run make fix-copies

* nemotron md with autodoc

* doc  fix

* fix order

* pass check_config_docstrings.py

* fix config_attributes

* remove all llama BC related code

* Use PreTrainedTokenizerFast

* ruff check examples

* conversion script update

* add nemotron to toctree
2024-08-06 15:42:05 +02:00
36fd35e1cf Dependencies: fix typo (#32389)
deps_2
2024-08-06 12:36:33 +01:00
438d06c95a Fix get large model config for Switch Transformer encoder only tester (#32438) 2024-08-06 11:48:32 +01:00
fb66ef8147 Update kwargs validation for preprocess with decorator (#32024)
* BLIP preprocess

* BIT preprocess

* BRIDGETOWER preprocess

* CHAMELEON preprocess

* CHINESE_CLIP preprocess

* CONVNEXT preprocess

* DEIT preprocess

* DONUT preprocess

* DPT preprocess

* FLAVA preprocess

* EFFICIENTNET preprocess

* FUYU preprocess

* GLPN preprocess

* IMAGEGPT preprocess

* INTRUCTBLIPVIDEO preprocess

* VIVIT preprocess

* ZOEDEPTH preprocess

* VITMATTE preprocess

* VIT preprocess

* VILT preprocess

* VIDEOMAE preprocess

* VIDEOLLAVA

* TVP processing

* TVP fixup

* SWIN2SR preprocess

* SIGLIP preprocess

* SAM preprocess

* RT-DETR preprocess

* PVT preprocess

* POOLFORMER preprocess

* PERCEIVER preprocess

* OWLVIT preprocess

* OWLV2 preprocess

* NOUGAT preprocess

* MOBILEVIT preprocess

* MOBILENETV2 preprocess

* MOBILENETV1 preprocess

* LEVIT preprocess

* LAYOUTLMV2 preprocess

* LAYOUTLMV3 preprocess

* Add test

* Update tests
2024-08-06 11:33:05 +01:00
e85d86398a add the missing flash attention test marker (#32419)
* add flash attention check

* fix

* fix

* add the missing marker

* bug fix

* add one more

* remove order

* add one more
2024-08-06 11:18:58 +01:00
0aa8328293 Llava: fix checkpoint_doc (#32458)
fix: add new llava like model bug
2024-08-06 10:11:59 +01:00
37c5ca5eb9 Cache: create docs (#32150)
* draft

* updates

* works?

* try adding python example in hidden section

* another try

* hwo do i render python

* format as html code?

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docs/source/en/kv_cache.md

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* one more small update

* should render hidden secrtion now

* add outputs

* fix links

* check links

* update all links

* update with offloaded cache

* all cache is importable, so they appear in docs

* fix copies

* docstring...

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-08-06 10:24:19 +05:00
13dc6b0853 Fix documentation links and code reference to model llava-next (#32434) 2024-08-05 15:14:50 -07:00
7e5d46ded4 Respect the config's attn_implementation if set (#32383)
* Respect the config's attn if set

* Update test - can override in from_config

* Fix
2024-08-05 16:33:19 +01:00
458b0cd2c5 fix: Updated test_embeded_special_tokens for luke and mluke models (#32413)
Fixed tokenizertests for luke, mluke models.
2024-08-05 15:19:42 +01:00
baf7e5c927 Persist embedding type of BART and mBART models after resize (#32242)
* fix: persist embedding type of MBartConditonalGeneration after resize

* fix: persist embedding type of BartConditonalGeneration after resize
2024-08-05 14:15:36 +01:00
f5f1e52f6c Fix documentation references to google/bit-50 model (#32407) 2024-08-05 10:18:28 +02:00
ea5da52ebc add values for neftune (#32399)
I always forget what typical values are, and I have to look at the paper everytime. This will be a helpful reminder.
2024-08-05 09:51:58 +02:00
3d7c2f9dea #32184 save total_vocab_size (#32240)
* save total_vocab_size = vocab_size + user added tokens to speed up operation

* updating length when added_tokens_decoder is set

* add test len(tokenizer)
2024-08-05 09:22:48 +02:00
3bb646a54f Phi3 tests: fix typing for Python 3.8 (#32388)
fix phi
2024-08-05 11:58:42 +05:00
05ae3a300d fix: SeamlessM4TFeatureExtractor stride remainder (#32088)
* fix: SeamlessM4TFeatureExtractor stride remainder

* Added attention mask size test

* Reran ruff for style correction
2024-08-05 08:40:58 +02:00
847bb856d5 Bump keras from 2.8.0 to 2.13.1 in /examples/research_projects/decision_transformer (#32393)
Bump keras in /examples/research_projects/decision_transformer

Bumps [keras](https://github.com/keras-team/keras) from 2.8.0 to 2.13.1.
- [Release notes](https://github.com/keras-team/keras/releases)
- [Commits](https://github.com/keras-team/keras/compare/v2.8.0...v2.13.1)

---
updated-dependencies:
- dependency-name: keras
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-08-05 08:38:34 +02:00
621fb3c0ed MixtralFlashAttention2: put "plus 1" inside parentheses when calculating rotary_seq_len, allowing None position_ids input. (#31500)
* Mixtral: remove unnecessary plus 1 when calculating rotary_seq_len, allowing position_ids=None (no auto position_ids generation could be unsafe)

* fix typo [:-1] to [:, -1]

* to meet formatting requirement

* to meet formatting requirement

* remove white space

* MixtralFlashAttention2: put "+ 1" inside parentheses when calculating rotary_seq_len, allowing None position_ids input. Fix format/style issue.

* propagate to startcoder2, phi3, mixtral and qwen2

* update qwen2_moe
2024-08-03 20:07:55 +02:00
7c31d05b59 fix: (issue #32124) Exception raised when running transformers/examples/flax/language-modeling/t5_tokenizer_model.py. (#32157)
fix: Exception raised when running .
2024-08-03 18:24:11 +02:00
c1aa0edb48 [generate] only require an attention mask for mps with torch<2.4 (#32367)
* up

* style

* stopping
2024-08-02 17:32:50 +08:00
083e13b7c4 RoPE: Add numerical tests (#32380)
tests! :D
2024-08-02 09:39:45 +01:00
2af199c42b Update docs (#32368)
nits
2024-08-02 09:54:16 +05:00
82efc53513 Yell at the user if zero-3 init wasn't performed, but expected to have been done (#32299)
* Test this zach

* Test for improper init w/o zero3

* Move back

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Get rid of stars in warning

* Make private

* Make clear

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-08-01 15:18:43 -04:00
51ab25e293 Fixed Hybrid Cache Shape Initialization. (#32163)
* fixed hybrid cache init, added test

* Fix Test Typo

---------

Co-authored-by: Aaron Haag <aaron.haag@siemens.com>
2024-08-01 13:57:42 +01:00
e3d8285a84 Docker: add speech dep to the consistency docker image (#32374) 2024-08-01 13:46:11 +01:00
ca59d6f77c Offloaded KV Cache (#31325)
* Initial implementation of OffloadedCache

* enable usage via cache_implementation

* Address feedback, add tests, remove legacy methods.

* Remove flash-attn, discover synchronization bugs, fix bugs

* Prevent usage in CPU only mode

* Add a section about offloaded KV cache to the docs

* Fix typos in docs

* Clarifications and better explanation of streams
2024-08-01 14:42:07 +02:00
b4727a1216 Fix conflicting key in init kwargs in PreTrainedTokenizerBase (#31233)
* Fix conflicting key in init kwargs in PreTrainedTokenizerBase

* Update code to check for callable key in save_pretrained

* Apply PR suggestions

* Invoke CI

* Updates based on PR suggestion
2024-08-01 14:32:13 +02:00
db8c7caeb6 Empty list in defaults for LLaMA special tokens during weights conversion (#32342)
empty list in defaults
2024-08-01 14:30:10 +02:00
2229ebe722 update clean_up_tokenization_spaces warning (#32371) 2024-08-01 13:57:41 +02:00
05c1f9af9a Check device map for saving tokenizer config on TPU (fix for issue #31971) (#32043)
* Remove TPU device map for saving tokenizer config

* Update tokenization_utils_base.py

* Fix error msg when passing non-string device into tokenizer

* Fix error message for non-string tokenizer device

* Print out tokenizer device type in error msg

* Update tokenization_utils_base.py
2024-08-01 13:52:05 +02:00
9e28284032 add missing attribute _supports_param_buffer_assignment for gpt-j. (#32359)
Co-authored-by: Guoming Zhang <37257613+nv-guomingz@users.noreply.github.com>
2024-08-01 13:51:20 +02:00
48ed24c50a Remove size check between attn_weights and kv_seq_len for phi3 (#32339)
* Remove size check between attn_weights and kv_seq_len

* add unit tests
2024-08-01 13:49:00 +02:00
e234061cdd [whisper] compile compatibility with long-form decoding (#31772)
* [whisper] compile compatibility with long-form decoding

* clarify comment

* fix after rebase

* finalise

* fix bsz

* fix cache split

* remove contiguous

* style

* finish

* update doc

* prevent cuda graph trace
2024-08-01 18:10:56 +08:00
9451a38526 [enc-dec cache] fix bug in indexing (#32370) 2024-08-01 16:05:27 +08:00
453e74884f LLaVa: add cache class attribute (#32278)
cache class flag
2024-08-01 09:48:03 +05:00
14ee2326e5 fix: warmup_steps check for training_args (#32236) 2024-07-31 23:34:22 +01:00
53f0c9c290 fix: Removed unnecessary @staticmethod decorator (#32361)
* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.

* Fixed staticmethods with self as first argument.
2024-07-31 20:56:50 +01:00
92abe60334 >3-5x faster torch.compile forward compilation for autoregressive decoder models (#32227)
* draft

* apply changes to all relevant archs

* rerun ci - check_docstrings.py failing?

* fix docstring

* move 2D->4D mask creation to modeling file

* repo consistency

* fix the batch size = 1 case - calling contiguous is not enough

* nit

* style

* propagate to gemma/gemma-2

* prepare inputs for gemma generation

* implement test and tiny fix in gemma2

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix copies

* ci pass

* fix gemma's test_compile_static_cache tests

* flacky

* retrigger ci

---------

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-08-01 02:03:07 +08:00
b46bd8b9d2 Fix error when streaming to gradio with non-string tool arguments (#32360)
Fix error when streaming agent run to gradio with non-string tool arguments
2024-07-31 18:44:53 +02:00
ef177a5e1c Gemma 2: support assisted generation (#32357) 2024-07-31 16:04:48 +01:00
5f1fcc299c [Idefics2] - Fix FA2 call for Perceiver layer (#32275)
* Fix FA2 call for Perciever layer

* [run_slow] idefics2

* [run_slow] idefics2

* [run_slow] idefics2

* Fix up

* [run_slow] idefics2

* [run_slow] idefics2

* [run_slow] idefics2
2024-07-31 14:51:04 +01:00
b75ad56620 Llama 3.1: Fix incorrect inv_freq assignment (#32330)
fix 💩
2024-07-31 11:12:46 +01:00
7f552e28e0 Gemma2 and flash-attention (#32188)
* enable flash-attn & static cache

* this works, not the prev

* fix for sliding window layers

* not needed anymore
2024-07-31 10:33:38 +05:00
a3264332cf LLaVA-NeXT: fix anyres shapes (#32314)
fix
2024-07-31 10:01:12 +05:00
6e2d04e429 Fix slow GemmaTokenizer and improve SPM slow -> fast conversion process (#32191)
* Remove user-defined tokens which can be obtained through merges

* Remove debug line

* formatting

* Refactor spm slow -> fast converter

* revert unnecessary refactor

* set comprehension

* remove test files

* Use `vocab_scores`

* Always replace spiece underline with space in decode

* we no longer need token filtering

* Add save fast load slow unit test

* Remove tokenizers version check

* Remove duplicate code

* Make `<start_of_turn>` and `<end_of_turn>` special tokens

* Bias merge priority with length if score is the same

* Add unit test for merge priority

* CI
2024-07-30 23:36:38 +02:00
026a173a64 Repo checks: skip docstring checks if not in the diff (#32328)
* tmp

* skip files not in the diff

* use git.Repo instead of an external subprocess

* add tiny change to confirm that the diff is working on pushed changes

* add make quality task

* more profesh main commit reference
2024-07-30 18:56:10 +01:00
516af4bb63 fixes #32329 : The Torch code is correct - to get an average of 10% o… (#32335)
fixes #32329 : The Torch code is correct - to get an average of 10% of the total, we want to take 50% of the remainder after we've already masked 80% with [MASK] in the previous step.
2024-07-30 18:21:45 +01:00
62c60a3018 fixes to properly shard FSDP across cpu and meta for cpu_efficient_loading for prequantized 4bit (#32276) 2024-07-30 18:55:59 +02:00
1627108033 fix: Added missing raise keyword for few exceptions (#32333)
Fixed raising of few exceptions.
2024-07-30 17:53:03 +01:00
bd54ed2ed7 Alternative agent plan (#32295)
* new agent plan

* plan type assertion

* style corrections

* better prompt naming

* make fixup
2024-07-30 18:48:18 +02:00
e68ec18ce2 Docs: formatting nits (#32247)
* doc formatting nits

* ignore non-autodocs

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/esm/modeling_esm.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/esm/modeling_esm.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make fixup

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-30 15:49:14 +01:00
2fbbcf5007 Fix M4T for ASR pipeline (#32296)
* tentative fix

* do the same for M4T
2024-07-30 16:00:13 +02:00
084b5094eb feat(ci): set fetch-depth: 0 in trufflehog checkout step (#31663) 2024-07-30 14:49:26 +02:00
20528f067c Cast epochs_trained to int when resuming training (#32286)
* fix epochs_trained as int when resuming training

* refactor

---------

Co-authored-by: teddyferdinan <teddy.ferdinan@pwr.edu.pl>
2024-07-30 11:25:54 +02:00
934fe1504e Fix GGUF dequantize for gguf==0.9.1 (#32298)
* fix gguf dequantize for gguf==0.9.1

* fix old version

* make style
2024-07-30 11:01:00 +02:00
3e8106d253 Docs: fix GaLore optimizer code example (#32249)
Docs: fix GaLore optimizer example

Fix incorrect usage of GaLore optimizer in Transformers trainer code example.

The GaLore optimizer uses low-rank gradient updates to reduce memory usage. GaLore is quite popular and is implemented by the authors in [https://github.com/jiaweizzhao/GaLore](https://github.com/jiaweizzhao/GaLore). A few months ago GaLore was added to the HuggingFace Transformers library in https://github.com/huggingface/transformers/pull/29588.

Documentation of the Trainer module includes a few code examples of how to use GaLore. However, the `optim_targe_modules` argument to the `TrainingArguments` function is incorrect, as discussed in https://github.com/huggingface/transformers/pull/29588#issuecomment-2006289512. This pull request fixes this issue.
2024-07-30 09:19:24 +02:00
f0bc49e7f6 use torch 2.4 in 2 CI jobs (#32302)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-29 22:12:21 +02:00
a24a9a66f4 Add stream messages from agent run for gradio chatbot (#32142)
* Add stream_to_gradio method for running agent in gradio demo
2024-07-29 20:12:44 +02:00
811a9caa21 Make static cache compatible with torch.export (#32168) 2024-07-29 18:19:15 +01:00
7f5d644e69 [pipeline] fix padding for 1-d tensors (#31776)
* [pipeline] fix padding for 1-d tensors

* add test

* make style

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Kamil Akesbi <45195979+kamilakesbi@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_automatic_speech_recognition.py

---------

Co-authored-by: Kamil Akesbi <45195979+kamilakesbi@users.noreply.github.com>
2024-07-29 21:24:42 +08:00
3fbaaaa64d Whisper tokenizer word level timestamps (#32197)
* fix _fix_key in PreTrainedModel

* fix _find_longest_common_sequence

* add test

* remove result.json

* nit

* update test
2024-07-29 11:19:52 +01:00
7ffe25f2b9 Generate: end-to-end compilation (#30788)
* mvp

* added test (a few models need fixes)

* fix a few test cases

* test nits

* harder test 😈

* revert changes in stablelm

* test with improved condition

* add todo

* tmp commit

* merged with main

* nits

* add todo

* final corrections

* add docs for generation compilation

* docs nits

* add  tip

* PR suggestions

* add more details to the compilation docs

* fix cache positions

* cache is now init in generate; update docs

* tag test as flaky

* docs

* post rebase make fixup and other nits

* remove unintended changes

* whisper (encoder-decoder) not supported

* move token default updates to ; add tests for token defaults

* push changes

* manual rebase

* chameleon doesn't support this

* fix test_static_cache_mha_mqa_gqa (broken in another PR)

* docs: dynamic is better with end-to-end compilation
2024-07-29 10:52:13 +01:00
49928892d6 fix(docs): Fixed a link in docs (#32274)
Fixed a link in docs.
2024-07-29 10:50:43 +01:00
6494479f1d make p_mask a numpy array before passing to select_starts_ends (#32076)
* fix

* bug fix

* refine

* fix
2024-07-29 10:29:11 +01:00
535fe78b9f Repo: remove exceptions in check_docstrings (#32259)
remove exceptions
2024-07-29 11:06:05 +02:00
a2ad9d5ad5 fix: Fixed wrong argument passed to convert_blip_checkpoint function call (#32262)
Removed one wrong argument passed to convert_blip_checkpoint function call.
2024-07-29 10:43:09 +02:00
5019aabfac Optimize t5 tokenize logic to avoid redundant calls (#32270)
* Optimize t5 tokenize logic to avoid redundant calls

* fix and overwrite copies
2024-07-29 09:51:43 +02:00
f2122cc6eb Upload new model failure report to Hub (#32264)
upload

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-29 09:42:54 +02:00
f739687684 🚨 Bloom support for cache class (#31445)
* bloom dynamic cache

* bloom follows standard cache format

* no skips for bloom anymore

* use cache position when possible

* clean up

* codestyle

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* pr comments

* isinstance fix

* address comments

* make musicgen test happy

* [run-slow] bloom

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-29 10:58:59 +05:00
44f6fdd74f Llama 3.1: replace for loop by tensor ops at inv_freq initialization (#32244)
* replace for loop by tensor ops

* rm assert; readability
2024-07-27 10:19:46 +01:00
8da9068730 More flexible trigger condition (#32251)
update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-26 20:52:45 +02:00
81233c069c Flash-Attn: fix generation when no attention mask or no pading (#32241)
* fix

* fix prev test (half of failures)

* [run-slow] llama, gemma2

* [run-slow] llama, gemma2
2024-07-26 14:45:55 +05:00
27c7f971c0 [tests] fix static cache implementation is not compatible with attn_implementation==flash_attention_2 (#32039)
* add flash attention check

* fix

* fix
2024-07-26 11:41:27 +02:00
5f841c74b6 Add check for target_sizes is None in post_process_image_guided_detection for owlv2 (#31934)
* Add check for target_sizes is None in post_process_image_guided_detection

* Make sure Owlvit and Owlv2 in sync

* Fix incorrect indentation; add check for correct size of target_sizes
2024-07-26 10:05:46 +01:00
f9756d9edb Adds: extra_repr for RMSNorm layers in most models (#32204)
* adds: extra_repr() to RMSNorm layers in multiple models

* adds: extra_repr for deprecated models as well

* formatting as per style guide
2024-07-26 11:05:38 +02:00
b8e5cd5396 Refactor: Removed un-necessary object base class (#32230)
* Refactored to remove un-necessary object base class.

* small fix.
2024-07-26 10:33:02 +02:00
1c7ebf1d6e don't log base model architecture in wandb if log model is false (#32143)
* don't log base model architecture in wandb is log model is false

* Update src/transformers/integrations/integration_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* convert log model setting into an enum

* fix formatting

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-26 09:38:59 +02:00
c46edfb823 Resize embeds with DeepSpeed (#32214)
* fix resize when deepspeed

* deepsped uses new embeds

* we needed this
2024-07-26 10:52:06 +05:00
fad15fba78 Llava: generate without images (#32183)
* llava w/o images

* tests
2024-07-26 10:17:27 +05:00
4ab33c2d81 Generation: stop at eos for assisted decoding (#31301)
* fix

* move changes to prompt lookup

* add test

* set eos in assistant model

* style

* fix flakiness

* changes for new `main`

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/generation/test_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add comment to explain

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-26 10:16:06 +05:00
9d6c0641c4 Fix code snippet for Grounding DINO (#32229)
Fix code snippet for grounding-dino
2024-07-25 19:20:47 +01:00
3a83ec48a6 Allow a specific microphone to be used by the ffmpeg audio pipeline utility functions. Default to using the currently active microphone on Mac (#31846)
* use currently active microphone on mac for ffmpeg_microphone

* Allow ffmpeg_microphone device to be specified

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-25 17:16:13 +01:00
6ed0bf1e85 translate philosophy.md to chinese (#32177)
* translate philosophy.md to chinese

* add the missing link
2024-07-25 09:01:06 -07:00
df6eee9201 Follow up for #31973 (#32025)
* fix

* [test_all] trigger full CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-25 16:12:23 +02:00
de2318894e [warnings] fix E721 warnings (#32223)
fix E721 warnings
2024-07-25 15:12:23 +02:00
9b9a54e61b [BigBird Pegasus] set _supports_param_buffer_assignment to False (#32222)
set _supports_param_buffer_assignment to False
2024-07-25 15:11:43 +02:00
1ecedf1d9e Update question_answering.py (#32208) 2024-07-25 13:20:27 +01:00
f53a5dec7b remove unnecessary guard code related with pytorch versions 1.4.2 ~ 1.7.0 (#32210)
remove unnecessary guard code related with pytorch versions 1.4.2 ~
1.7.0
2024-07-25 11:04:04 +02:00
5658e749ad [whisper] fix short-form output type (#32178)
* [whisper] fix short-form output type

* add test

* make style

* update long-form tests

* fixes

* last fix

* finalise test
2024-07-25 16:58:02 +08:00
85a1269e19 fix: Replaced deprecated unittest method with the correct one (#32198)
Replaced deprecated unittest method with the correct one.
2024-07-24 18:00:21 +01:00
edd68f4ed8 🚨 No more default chat templates (#31733)
* No more default chat templates

* Add the template to the GPT-SW3 tests since it's not available by default now

* Fix GPT2 test

* Fix Bloom test

* Fix Bloom test

* Remove default templates again
2024-07-24 17:36:32 +01:00
1c122a46dc Support dequantizing GGUF FP16 format (#31783)
* support gguf fp16

* support gguf bf16 with pytorch

* add gguf f16 test

* remove bf16
2024-07-24 17:59:59 +02:00
af0e4b7b37 Fix float8_e4m3fn in modeling_utils (#32193)
* Fix float8_e4m3fn in modeling_utils

* style

* fix

* comment
2024-07-24 17:14:05 +02:00
1392a6867f Fix resize embedding with Deepspeed (#32192)
fix resize when deepspeed
2024-07-24 19:26:20 +05:00
8d2534c4d0 let's not warn when someone is running a forward (#32176)
* let's not warn when someone is running a foward without cache + self.training

* more models

* fixup
2024-07-24 16:06:39 +02:00
e0182f3bd7 RoPE: relaxed rope validation (#32182)
* relaxed rope check

* lets also accept rope_type=None, defaulting to the original implementation

* type and rope_type can coexist
2024-07-24 15:00:48 +01:00
165116bc14 Remove conversational pipeline tests (#32099)
Remove conversation pipeline tests
2024-07-24 14:03:40 +01:00
5f4ee98a7a Update qwen2.md (#32108)
* Update qwen2.md

outdated description

* Update qwen2.md

amended

* Update qwen2.md

Update

* Update qwen2.md

fix wrong version code, now good to go
2024-07-24 11:54:41 +01:00
8678879f1d fix: default value reflects the runtime environment variables rather than the ones present at import time. (#32153)
* fix: default value reflects the runtime environment variables rather than the ones present at import time.

* Fix: Change `deterministic` to None by default; use env var if None
2024-07-24 11:38:49 +01:00
01be5b4879 adds: extra_repr() to MambaRMSNorm to include hidden size / size of weights in the layer (#32171)
* adds: extra_repr() to MambaRMSNorm to include the hidden size of the layer

* style fix with ruff:
2024-07-24 09:09:59 +02:00
c85510f958 [docs] change temperature to a positive value (#32077)
fix
2024-07-23 17:47:51 +01:00
bc2adb0112 fix: Fixed an if condition that is always evaluating to true (#32160)
Fixed an if condition always evaluating to true.
2024-07-23 16:52:41 +01:00
23f6a43f82 fix (#32162) 2024-07-23 16:48:16 +01:00
d5a99dfcee Llama 3.1 conversion
Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
2024-07-23 17:13:25 +02:00
ff0d708fe6 Dev version: v4.44.0.dev0 2024-07-23 17:12:47 +02:00
d2c687b3f1 Updated ruff to the latest version (#31926)
* Updated ruff version and fixed the required code accorindg to the latest version.

* Updated ruff version and fixed the required code accorindg to the latest version.

* Added noqa directive to ignore 1 error shown by ruff
2024-07-23 17:07:31 +02:00
9cf4f2aa9a Enhancing SFT Training Efficiency Using Packing and FlashAttention2 with Position IDs (#31629)
* add DataCollatorBatchFlattening

* Update data_collator.py

* change name

* new FA2 flow if position_ids is provided

* add comments

* minor fix

* minor fix data collator

* add test cases for models

* add test case for data collator

* remove extra code

* formating for ruff check and check_repo.py

* ruff format

ruff format tests src utils

* custom_init_isort.py
2024-07-23 15:56:41 +02:00
7d92009af6 Added additional kwarg for successful running of optuna hyperparameter search (#31924)
Update integration_utils.py

Added additional kwarg
2024-07-23 14:41:52 +01:00
63700628ad feat(cache): StaticCache uses index_copy_ to avoid useless copy (#31857)
* feat(cache): StaticCache uses index_copy_ to avoid useless copy

Using index_copy_ allows for explicit in-place change of the tensor.
Some backends (XLA) will otherwise copy the tensor, making the code
slower and using more memory.

Proposed implementation will end up using less memory and on XLA will
result in less compilation, but the change is also quite generic, making
no change whatsoever on CUDA or CPU backend.

* feat(cache): SlidingWindowCache uses index_copy_ to avoid useless copy

Applying the same change done in StaticCache.

* fix(cache): fallback of index_copy_ when not implemented

* fix(cache): in index_copy_ ensure tensors are on same device

* [run slow] llama

* fix(cache): add move of cache_position to same device in SlidingWindowCache

* Revert "[run slow] llama"

This reverts commit 02608dd14253ccd464e31c108e0cd94364f0e8b9.
2024-07-23 14:18:19 +02:00
a009fbdab3 Fix typing to be compatible with later py versions (#32155) 2024-07-23 12:23:34 +01:00
3263b34354 Revert "Incorrect Whisper long-form decoding timestamps " (#32148)
Revert "Incorrect Whisper long-form decoding timestamps  (#32003)"

This reverts commit cd48553fc8375e1a28d4d82cfe231dedf6a23af8.
2024-07-23 18:34:30 +08:00
034b477847 Rename Phi-3 rope scaling type (#31436)
* renamed phi3 rope_scaling type

* fixed trailing whitespaces

* fixed test

* added warning

* fixed format
2024-07-23 12:33:22 +02:00
bab32d6fe9 Added mamba.py backend (#30139)
* Update README.md

* tests: forward ok

* backward test done

* done testing

* removed check. scripts

* Update README.md

* added use_mambapy arg

* fixed typo in warning

* protected imports w/ mambapy package

* delete pscan.py + raise rather than assert

* Update import_utils.py

* fix whitespaces and unused import

* trailing whitespace + import block unformatted

* Update modeling_mamba.py

* transpose before pscan

* shape comment

* ran make style

* use_mambapy=False by default

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* ran make fix-copies

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-23 12:32:19 +02:00
9ced33ca7f Fix video batching to videollava (#32139)
---------

Co-authored-by: Merve Noyan <mervenoyan@Merve-MacBook-Pro.local>
2024-07-23 13:23:23 +03:00
a5b226ce98 Fix flash attention speed issue (#32028)
Add the lru_cache for speed
2024-07-23 12:21:23 +02:00
a1844a3209 gguf conversion add_prefix_space=None for llama3 (#31937)
* gguf conversion forces add_prefix_space=False for llama3, this is not required and forces from_slow, which fails. changing to None + test

* typo

* clean test
2024-07-23 11:45:54 +02:00
2e113422b3 Llama: RoPE refactor (#32135)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-23 10:42:55 +01:00
5a4a76edb7 Modify resize_token_embeddings to ensure output type is same as input (#31979)
* Change resize_token_embeddings to make it return same Class that is passed to it

* Add explanatory comment as requested in review

* Add explanatory comments for add resizing function in lxmert

* Add comment for padding_idx and moving _resize_bias in lxmert to LxmertForPreTraining

---------

Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MBP.attlocal.net>
Co-authored-by: Prashanth Sateesh <prasatee@Prashanths-MacBook-Pro.local>
2024-07-23 10:28:44 +01:00
1535a2c93d Disable quick init for TapasPreTrainedModel (#32149)
add attribute to model

Signed-off-by: Daniel Lok <daniel.lok@databricks.com>
2024-07-23 10:26:00 +01:00
34b43211d7 Add YaRN and Dynamic-YaRN RoPE Scaling Methods (#30910)
* Add YaRN and Dynamic-YaRN RoPE Scaling Methods

YaRN (Yet another RoPE extension method) combines the NTK-By-Parts
Interpolation and Attention Scaling methods, improving upon existing
RoPE interpolation methods for longer context window sizes.

Fine-tuned models maintain their original performance across benchmarks
while enabling efficient extrapolation and transfer learning for
quicker convergence, especially in compute-limited environments.

We implement YaRN and Dynamic-YaRN for the following list of models:

 - LLaMA
 - Falcon
 - GPT-NeoX
 - Olmo
 - Persimmon
 - Phi
 - StableLM
 - OpenLLaMA

New unit tests are added to assert YaRN's correct behavior on both
short and long sequence inputs.

For more details, please refer to https://arxiv.org/abs/2309.00071.

Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>

* Refactor YaRN implementation for LLaMA

Iterate on YaRN implementation for LLaMA and remove diff from remaining
models for increased PR modularity.

This commit includes the following changes:
- Merge 'yarn_rope_scaling' and 'rope_scaling' dictionaries
- Remove unnecessary attributes ('extrapolation_factor' and 'finetuned')
  from YaRN classes
- Inherit 'forward' method in YaRN classes from superclass
- Rename 'yarn' method to 'compute_yarn_scaling'
- Extend YaRN tests with further assertions
- Fix style inconsistencies

Co-authored-by: Miguel Monte e Freitas <miguelmontefreitas@tecnico.ulisboa.pt>

* Refactor Tensor Building Logic for YaRN

- Comply with the the tensor building logic introduced in #30743
- Add referencing to the optimized Attention Factor equation
- Remove Dynamic YaRN for a more agile deployment

Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>

* remove unwanted file

---------

Co-authored-by: Miguel Almeida <miguel.pessanha.almeida@tecnico.ulisboa.pt>
Co-authored-by: mig-mfreitas <mig-mfreitas@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-07-23 10:07:58 +01:00
7405c1c77e Add method to retrieve used chat template (#32032)
encapsulate chat template logic
2024-07-23 10:56:21 +02:00
605f3245dc Fix mask creations of GPTNeoX and GPT2 (#31944)
* fix mask creation of gpt2 and gpt_neox caused by me

* forgot the reshape of masks when shape > 2

* add tests for gpt neox and gpt2

* nit on a comment
2024-07-23 10:11:12 +02:00
2782aadae2 [modelling] remove un-necessary transpose for fa2 attention (#31749)
* [whisper] remove un-necessary transpose for fa2 attention

* propagate
2024-07-23 14:55:16 +08:00
f83c6f1d02 Remove trust_remote_code when loading Libri Dummy (#31748)
* [whisper integration] use parquet dataset for testing

* propagate to others

* more propagation

* last one
2024-07-23 14:54:38 +08:00
3aefb4ec7f LLaVaNeXT: pad on right if training (#32134)
* pad on right if training

* docs

* add tests
2024-07-23 10:23:55 +05:00
251a2409c6 Add llama3-llava-next-8b to llava_next conversion script (#31395)
* Add llama3-llava-next-8b to llava_next conversion script

Adds support for the lmms-lab/llama3-llava-next-8b model to the
convert_llava_next_weights_to_hf.py script, along with an example
prompt generated from the llava_llama_3 conv_template in the LLaVA-NeXT
repo.

* Exclude <|begin_of_text|> from prompt example

This token gets added automatically, so it should not be included in the
prompt example.

* Add llava-next-72b and llava-next-110b

Adds the Qwen-based LLaVA-Next models to the conversion script, along
with changes to load the models on multiple GPUs for inference.

* Add llama3 and qwen prompt formats to docs

* Chat prompt and padding side left for llama3 batched

* update

* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/convert_llava_next_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove code

* better naming

---------

Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-23 10:12:16 +05:00
96a074fa7e Add new quant method (#32047)
* Add new quant method

* update

* fix multi-device

* add test

* add offload

* style

* style

* add simple example

* initial doc

* docstring

* style again

* works ?

* better docs

* switch to non persistant

* remove print

* fix init

* code review
2024-07-22 20:21:59 +02:00
bd9dca3b85 set warning level to info for special tokens have been added (#32138)
fixes #7002
2024-07-22 19:42:47 +02:00
817a676bd7 Don't default to other weights file when use_safetensors=True (#31874)
* Don't default to other weights file when use_safetensors=True

* Add tests

* Update tests/utils/test_modeling_utils.py

* Add clarifying comments to tests

* Update tests/utils/test_modeling_utils.py

* Update tests/utils/test_modeling_utils.py
2024-07-22 18:29:50 +01:00
74d0eb3fed Return assistant generated tokens mask in apply_chat_template (#30650)
return assistant generated tokens mask in apply_chat_template
2024-07-22 18:24:43 +01:00
7987710696 [RoBERTa] Minor clarifications to model doc (#31949)
* minor edits and clarifications

* address comment

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-07-22 10:08:27 -07:00
12b6880c81 fix: Fixed raising TypeError instead of ValueError for invalid type (#32111)
* Raised TypeError instead of ValueError for invalid types.

* Updated formatting using ruff.

* Retrieved few changes.

* Retrieved few changes.

* Updated tests accordingly.
2024-07-22 17:46:17 +01:00
d1ec36b94f Update ko/_toctree.yml and remove custom_tools.md to reflect latest changes (#31969)
update `ko/_toctree.yml` and remove `custom_tools.md`
2024-07-22 08:27:13 -07:00
7ba028fccb Fix failing test with race condition (#32140)
* Fix failing test with race condition

* make fixup

* monotonic_ns instead of randint

* uuid4 instead of monotonic_ns

* Add a finally cleanup step
2024-07-22 16:07:29 +01:00
5a649ff3ec [generate] fix eos/pad id check on mps devices (#31695)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2024-07-22 15:18:48 +02:00
f2a1e3ca68 Mention model_info.id instead of model_info.modelId (#32106) 2024-07-22 14:14:47 +01:00
0fcfc5ccc9 fix: Replaced deprecated mktemp() function (#32123)
Replaced deprecated mktemp function.
2024-07-22 14:13:39 +01:00
c38c55f4fb Generate: store special token tensors under a unique variable name (#31980)
* rename stuff

* english; this one shouldn't be changed

* add a _ to the new var names

* musicgen

* derp
2024-07-22 14:06:49 +01:00
aa8f86a421 Fix shard order (#32023) 2024-07-22 14:06:22 +02:00
b381880597 Agents planning (#31702)
* Allow planning for agents
2024-07-22 10:49:57 +02:00
0fdea8607d Fix tests after huggingface_hub 0.24 (#32054)
* adapt tests

* style

* comment
2024-07-19 19:32:39 +01:00
fe008d6ebe Chameleon: not supported with fast load (#32091)
fixes
2024-07-19 19:21:45 +05:00
62aa270f2a Disable quick init for deepspeed (#32066)
Disable via deepspeed
2024-07-19 08:58:53 -04:00
89575b567e Support generating with fallback for short form audio in Whisper (#30984)
* remove is_shortform

* adapt _retrieve_max_frames_and_seek for short_form

* return bos token in short and long form

* add decoder_input_ids to short form audios

* add eos token for  short form

* handle short form token_timestamps

* no need to return scores

* add is_shortform conditions

* handle when max_new_tokens is None - short form

* handle assistant decoding

* fix

* handle return_dict_in_generate

* handle split_by_batch for encoder_attentions attribute

* handle num_beams>1

* handle num_return_sequences>1 in generate_with_fallback

* handle num_return_sequences>1 with return_dict_in_generate=True

* raise error if max_new_tokens + decoder_inputs_ids > max_target_pos

* fix

* apply review suggestions

* fix

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fix

* logits for both short form and long form

* handle if logits_processor is None

* test

* apply review changes to num_return_sequences

* add _expand_variables_for_generation

* remove short form commented section

* update comments

* uncomment num_beams line in generate_with_fallback

* update assistant decoding

* handle return_segment with short form generation

* up

* fix output format is_shortform

* overwrite beam_sample test

* update _set_return_timestamps

* apply review suggestions

* apply review suggestions

* remove seek_outputs_short_form

* fix _stack_split_outputs

* fix stack dim in _stack_split_outputs

* update tests

* fix past_key_values + beam tests

* fix

* clean _expand_variables_for_generation

* make style

* fix slow tests

* make style

* max_length condition

* make style

* add slow tests for shortform fallback

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* apply review changes

* Update src/transformers/models/whisper/generation_whisper.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* up

* fix slow tests

* apply review suggestions

* update test

* make style

* small fix

* fix

* fix test_new_cache_format

* fix past_key_values

* fix

* make style

* fix slow tests

* fix

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-07-19 13:42:22 +01:00
46835ec6ae Add image-text-to-text task guide (#31777)
* Add image-text-to-text task page

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Address comments

* Fix heading

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/tasks/image_text_to_text.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Address comments

* Update image_text_to_text.md

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-19 13:40:40 +01:00
4bd8f12972 Fixes to chameleon docs (#32078)
* Fixes

* Let's not use auto
2024-07-19 12:50:34 +01:00
566b0f1fbf Fix progress callback deepcopy (#32070)
* Replacing ProgressCallbacks deepcopy with a shallowcopy

* Using items instead of entries

* code cleanup for copy in trainer callback

* Style fix for ProgressCallback
2024-07-19 11:56:45 +01:00
e316c5214f VideoLLaVa: fix chat format in docs (#32083)
fix chat format
2024-07-19 15:38:01 +05:00
22f888b3fa [mistral] Fix FA2 attention reshape for Mistral Nemo (#32065)
* [mistral] Fix FA2 attention reshape

* [run-slow] mistral
2024-07-19 11:19:35 +02:00
cd48553fc8 Incorrect Whisper long-form decoding timestamps (#32003)
* fix lo form timestamps in decode_batch

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>

* add test

* make style

* fix copies

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/processing_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/whisper/tokenization_whisper.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* apply review suggestions

* fix

* fix copies

* fix

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix-copies

---------

Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-19 09:26:38 +01:00
56a7745704 [Chameleon, Hiera] Improve docs (#32038)
* Improve docs

* Fix docs

* Fix code snippet
2024-07-19 11:20:03 +03:00
b873234cb6 Llava: add default chat templates (#31691)
* add default chat templates

* Update src/transformers/models/llava/processing_llava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/llava_next/processing_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* more clear docstring and docs

* Update docs/source/en/model_doc/llava.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add tests

* remove default templates (see #31733)

* load chat template from another file

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* revert some changes in docs

* forgot vipllava

* chat template file is not temporary hack

* warn if loading from processor

* not that file

* similarly modify `save_pretrained`

* Update tests/models/llava_next/test_processor_llava_next.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vipllava/test_processor_vipllava.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vipllava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/llava_next.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2024-07-19 10:08:56 +05:00
271fd8e60d docs: Fixed 2 links in the docs along with some minor fixes (#32058)
* Fixed 2 links in the docs along with some minor fixes.

* Updated Contributing.md
2024-07-18 21:28:36 +01:00
8f0d26c55e fix: Removed duplicate entries in a dictionary (#32041)
Removed duplicate key in a dictionary.
2024-07-18 17:26:08 +01:00
c75969ee28 Add torch.compile Support For Mamba (#31247)
* modify mamba cache

* set up cache

* add test

* [run-slow] mamba

* [run-slow] mamba

* address comments

* [run-slow] mamba

* use_cache_position

* [run-slow] mamba

* [run-slow] mamba

* [run-slow] mamba

* [run-slow] mamba

* fix

* cache in generate

* [run-slow] mamba

* address comments

* [run-slow] mamba

* [run-slow] mamba

* address comments

* [run-slow] mamba

* fix

* [run-slow] mamba

* fix

* [run-slow] mamba

* fix cache name

* [run-slow] mamba
2024-07-18 11:54:54 -04:00
4c040aba02 [mistral] Support passing head_dim through config (and do not require head_dim * num_heads == hidden_size) (#32050)
* Allow `head_dim` to be set in Mistral config

* Add docstring

* Do not require `head_dim * num_heads == hidden_size`

* [run-slow] mistral
2024-07-18 16:41:12 +02:00
c50e0551fd Bump scikit-learn from 1.1.2 to 1.5.0 in /examples/research_projects/codeparrot/examples (#32052)
Bump scikit-learn in /examples/research_projects/codeparrot/examples

Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.1.2 to 1.5.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.1.2...1.5.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-18 13:29:56 +01:00
c25dde1fc9 Bump scikit-learn from 1.0.2 to 1.5.0 in /examples/research_projects/decision_transformer (#31458)
Bump scikit-learn in /examples/research_projects/decision_transformer

Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 1.0.2 to 1.5.0.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/1.0.2...1.5.0)

---
updated-dependencies:
- dependency-name: scikit-learn
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-18 13:13:38 +01:00
673d30b826 Chameleon: minor fixes after shipping (#32037)
* fix merging

* make chameleon conditional
2024-07-18 16:54:07 +05:00
765732e92c unpin numpy<2.0 (#32018)
* unpin np

* [test_all] trigger full CI

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-18 11:26:01 +02:00
1c37e8c1a6 Add sdpa and FA2 for CLIP (#31940)
* Squashed commit of the following:

commit 102842cd477219b9f9bcb23a0bca3a8b92bd732f
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:23:52 2024 +0000

    Add model-specific sdpa tests

commit 60e4c88581abf89ec098da84ed8e92aa904c997d
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:20:53 2024 +0000

    Add fallback to eager (expensive operation)

commit c29033d30e7ffde4327e8a15cbbc6bee37546f80
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Thu Jul 11 17:09:55 2024 +0000

    Fix attn_implementation propagation

commit 783aed05f0f38cb2f99e758f81db6838ac55b9f8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:05:27 2024 +0530

    style

commit e77e703ca75d00447cda277eca6b886cd32bddc0
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:04:57 2024 +0530

    add comment to explain why I had to touch forbidden codebase.

commit ab9d8849758e7773a31778ccba71588d18552623
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:03:02 2024 +0530

    fix: flax attribute access.

commit c570fc0abf9d1bd58c291aae3c7e384f995996d2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 08:23:54 2024 +0530

    fix tensorflow attribute name.

commit 32c812871cfdb268d8a6e3e2c61c5c925c8ed47e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:57:10 2024 +0530

    fix attribute access.

commit 4f41a0138b6c417aed9c9332278f8bcd979cb7c2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:44:02 2024 +0530

    _from_config.

commit 35aed64ff602422adcf41d7f677a0a24bd9eccae
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 18:46:52 2024 +0530

    propagation of attn_implementation.

commit 4c25c19845438b1dc1d35a5adf9436151c8c5940
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:24:36 2024 +0530

    style again

commit 5f7dc5c5015c0f8116408f737e8c318d1802c80c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:19:05 2024 +0530

    use from_config.

commit b70c409956d0359fa6ae5372275d2a20ba7e3389
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:13:43 2024 +0530

    quality

commit a7b63beff53d0fc754c6564e2a7b51731ddee49d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 14:35:10 2024 +0200

    add benchmark numbers

commit 455b0eaea50862b8458c8f422b60fe60ae40fdcb
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:16 2024 +0200

    Revert "reflect feedback more"

    This reverts commit dc123e71eff60aae74d5f325f113d515d0d71117.

commit ca674829d28787349c2a9593a14e0f1d41f04ea4
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:05 2024 +0200

    Revert "fix"

    This reverts commit 37a1cb35b87acdc4cf7528b8b1ed6da27d244e52.

commit fab2dd8576c099eb1a3464958cb206a664d28247
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:47:46 2024 +0200

    fix

commit fbc6ae50fd6f2d36294d31e191761631b701d696
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:38:30 2024 +0200

    reflect feedback more

commit 87245bb020b2d60a89afe318a951df0159404fc9
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 08:54:34 2024 +0530

    fixes

commit 1057cc26390ee839251e7f8b3326c4207595fb23
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:49:03 2024 +0530

    don't explicit set attn_implementation in tests

commit e33f75916fc8a99f516b1cf449dbbe9d3aabda81
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:43:54 2024 +0530

    explicitly override attn_implementation in the towers.

commit 4cf41cb1bc885c39df7cb8f2a0694ebf23299235
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:38:42 2024 +0530

    import in one-line.

commit f2cc447ae9e74ccfacb448140cdf88259d4afc8c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:34:58 2024 +0530

    move sdpa mention to usage tips.

commit 92884766c64dbb456926a3a84dd427be1349fa95
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 10:58:26 2024 +0530

    fix: memory allocation problem.

commit d7ffbbfe12f7750b7d0a361420f35c13e0ea787d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 09:56:59 2024 +0530

    fix-copies

commit 8dfc3731cedd02e36acd3fe56bb2e6d61efd25d8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:16:12 2024 +0530

    address arthur's comments.

commit d2ed7b4ce4ff15ae9aa4d3d0500f1544e3dcd9e9
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:08:15 2024 +0530

    Apply suggestions from code review

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 46e04361f37ded5c522ff05e9f725b9f82dce40e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:55:27 2024 +0530

    add to docs.

commit 831629158ad40d34d8983f209afb2740ba041af2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:33:10 2024 +0530

    styling.g

commit d263a119c77314250f4b4c8469caf42559197f22
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:15:20 2024 +0530

    up

commit d44f9d3d7633d4c241a737a1bc317f791f6aedb3
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 18:40:42 2024 +0530

    handle causal and attention mask

commit 122f1d60153df6666b634a94e38d073f3f260926
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 15:18:21 2024 +0530

    test fixes.

commit 4382d8cff6fa1dee5dbcf0d06b3e2841231e36f5
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 09:39:25 2024 +0530

    fix: scaling inside sdpa.

commit 0f629989efc48b7315cf19405a81e02955efe7e5
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 08:14:58 2024 +0530

    Update src/transformers/models/clip/modeling_clip.py

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 14367316877dc27ea40f767ad1aee38bbc97e4ce
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 22 16:21:36 2024 +0530

    add: sdpa support to clip.

* Remove fallback for empty attention mask (expensive operation)

* Fix typing in copies

* Add flash attention

* Add flash attention tests

* List CLIP in FA docs

* Fix embeddings attributes and tf

* [run-slow] clip

* Update clip documentation

* Remove commented code, skip compile dynamic for CLIPModel

* Fix doc

* Fix doc 2

* Remove double transpose

* Add torch version check for contiguous()

* Add comment to test mixin

* Fix copies

* Add comment for mask

* Update docs

* [run-slow] clip
2024-07-18 10:30:37 +05:30
b31d595040 Add language to word timestamps for Whisper (#31572)
* add language to words

_collate_word_timestamps uses the return_language flag to determine whether the language of the chunk should be added to the word's information

* ran style checks

added missing comma

* add new language test

test that the pipeline can return both the language and timestamp

* remove model configuration in test

Removed model configurations that do not influence test results

* remove model configuration in test

Removed model configurations that do not influence test results
2024-07-17 21:32:53 +01:00
cb23d1b20b Pass missing arguments to SeamlessM4Tv2ConformerEncoderLayer.forward() when gradient checkpointing is enabled (#31945)
* pass missing arguments when gradient checkpointing is enabled for SeamlessM4Tv2

* fix same bug in SeamlessM4Tv1

* pass args, not kwargs
2024-07-17 20:42:53 +01:00
bc36c26fa6 doc: fix broken BEiT and DiNAT model links on Backbone page (#32029)
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-07-17 20:24:10 +01:00
63be8e6f39 Fix typo in classification function selection logic to improve code consistency (#32031)
Make problem_type condition consistent with num_labels condition

The latter condition generally overrides the former, so this is more of a code reading issue. I'm not sure the bug would ever actually get triggered under normal use.
2024-07-17 20:20:39 +01:00
72fb02c47d Fixed log messages that are resulting in TypeError due to too many arguments (#32017)
* Fixed log messages that are resulting in TypeErrors due to too many arguments.

* Removed un-necessary imports.
2024-07-17 10:56:44 +01:00
691586b0dc Fix tests skip (#32012)
* [run-slow] clip

* [run-slow] clip

* Fix skip -> skipTest

* [run-slow] clip
2024-07-17 08:37:43 +01:00
24cfcc2114 Chameleon: add model (#31534)
* Chameleon model integration

Co-authored-by: Jacob Kahn <jacobkahn1@gmail.com>
Co-authored-by: Leonid Shamis <leonid.shamis@gmail.com>

* fix 7B, again. mask away image tokens

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* remove pretrained_config_map

* make fixup passing up to utils/check_config_docstrings.py; vqgan moved to the modeling file

* remove tokenizer (use llama's); remove codechameleon tests

* a few copied from statements and minor changes

* copied from in ChameleonModel

* some copies in ChameleonForCausalLM

* a few more copies

* VQModel moved to ChameleonModel (as opposed to being in the processor)

* ChameleonProcessor ready

* Fix chameleon weights convert

* update conversion script

* clean-up processing

* update modeling a bit

* update

* update (throws error...)

* correct conversion ready

* fix tests

* fix docs

* docs

* ve swin norm

* fix device for vocab map

* add normalization

* update

* update script with rope rotations

* final fix on model conversion

* add slow tests

* more info in docs

* fix repo consistency tests

* fix repo tests

* fix-copies

* hope this will make CI happy

* fix for 30b model

* Update docs/source/en/index.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/chameleon.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/image_processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/chameleon/processing_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/chameleon/test_modeling_chameleon.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* address comments

* remove assertion in conversion script

* add image processor test

* not copied

* port changes for qk layernorm

* fix-copies

* read token decorator for tests

* [run-slow] chameleon

* one more read-token

* address some comments

* qk norm changes

* tests and repo check

* moved rope permutations to conversion, YAY!

* fix past kv check

* docs

* layernorm done!

* let's be consistent in naming

* fix slow tests

* weird thing with slow CI, but let's see

* once more try

* remove past-kv as tuple following llama

* ignore

* style

---------

Co-authored-by: Pablo Montalvo <39954772+molbap@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: jacobkahn <jacobkahn1@gmail.com>
Co-authored-by: Leonid Shamis <leonid.shamis@gmail.com>
Co-authored-by: Leonid Shamis <lshamis@meta.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-17 10:41:43 +05:00
4037a2b5b1 SpeechEncoderDecoder doesn't support param buffer assignments (#32009)
One more model
2024-07-16 18:18:32 -04:00
6f40a213eb Fix if else and *actually* enable superfast init (#32007)
* Fix if else

* rm err raise
2024-07-16 14:35:57 -04:00
e391706420 Fix gather when collecting 'num_input_tokens_seen' (#31974)
* Move token count to device before gathering

* Run 'make style; make quality'
2024-07-16 19:35:10 +01:00
c22efa6196 Bug report update -- round 2 (#32006)
* like this?

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-16 19:22:45 +01:00
88e0813d8d fix: Fixed incorrect dictionary assignment in src/transformers/__init__.py (#31993)
Fixed incorrect dictionary assignment.
2024-07-16 17:28:14 +01:00
036d3de23d add flash-attn deterministic option to flash-attn>=2.4.1 (#31961)
* add flash-attn deterministic option to flash-attn>=2.4.1

* Add Missing Import

* Fix ruff linting issues

* Replace `is_flash_attn_greater_or_equal_2_41` with the existing `is_flash_attn_greater_or_equal`

---------

Co-authored-by: jun.4 <jun.4@kakaobrain.com>
2024-07-16 17:55:41 +02:00
89eec5cf20 Bug report update (#31983) 2024-07-16 16:51:05 +01:00
999981daf4 Tests: remove cuda versions when the result is the same 🧹🧹 (#31955)
remove cuda versions when the result is the same
2024-07-16 16:49:54 +01:00
693cb828ff Fix bad test about slower init (#32002)
Bronked main
2024-07-16 10:33:05 -04:00
25e5e3fa56 [tests] fix deepspeed zero3 config for test_stage3_nvme_offload (#31881)
fix config
2024-07-16 16:11:37 +02:00
e0dfd7bcaf Speedup model init on CPU (by 10x+ for llama-3-8B as one example) (#31771)
* 1,100%!

* Clean

* Don't touch DS

* Experiment with dtype allocation

* skip test_load_save_without_tied_weights test

* A little faster

* Include proper upscaling?

* Fixup tests

* Potentially skip?

* Let's see if this fixes git history

* Maintain new dtype

* Fin

* Rm hook idea for now

* New approach, see what breaks

* stage

* Clean

* Stash

* Should be fin now, just need to mark failing models

* Clean up

* Simplify

* Deal with weird models

* Enc/Dec

* Skip w/ reason

* Adjust test

* Fix test

* one more test

* Keep experimenting

* Fix ref

* TO REMOVE: testing feedback CI

* Right push

* Update tests/utils/test_modeling_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* disable

* Add new func

* Test nits from Amy

* Update src/transformers/modeling_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Adjust comment

* Adjust comment on skip

* make private

* Fin

* Should be a not flag

* Clarify and rename test

---------

Co-authored-by: Marc Sun <marc@huggingface.co>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-16 09:32:01 -04:00
03a3becc48 Cambricon MLUs support SDPA and flash_attn (#31102)
* add Cambricon MLUs support

* fix mlu device rng state

* up for quality check

* up mlu to support fp16

* fix mlu device dependency error

* fix mlu device dependency error

* enable mlu device for bf16

* fix mlu device memory tracker

* Cambricon support SDPA and flash_attn
2024-07-16 14:33:22 +02:00
ac946aac25 Fix the incorrect permutation of gguf (#31788)
* Fix the incorrect permutation of gguf

* rename num_kv_heads

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* add typing to num_kv_heads

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* rename variables

* refactor permute function name

* update the expected text of the llama3 q4 test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-07-16 08:20:34 +02:00
6fbea6d237 Generate: doc nits (#31982)
nits
2024-07-15 19:59:20 +01:00
e4682de635 Masking: remove flakiness from test (#31939) 2024-07-15 18:49:37 +01:00
a1a34657d4 Avoid race condition (#31973)
* [test_all] hub

* remove delete

* remove delete

* remove delete

* remove delete

* remove delete

* remove delete

* [test_all]

* [test_all]

* [test_all]

* [test_all]

* [test_all]

* [test_all]

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-15 17:56:24 +02:00
11efb4fc09 Notify new docker images built for circleci (#31701)
* hello

* hello

* hello

* hello

* hello

* hello

* hello

* notify

* trigger

* use new channel

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-15 17:16:36 +02:00
556a4205f0 fix: Fixed the arguments in create_repo() function call (#31947)
* Fixed the arguments in create_repo() function call.

* Formatted the code properly using ruff.

* Formatted the code more clearly.
2024-07-15 15:56:17 +01:00
907500423d Generate: handle logits_warper update in models with custom generate fn (#31957)
handle logits_warper update in models with custom generate fn
2024-07-15 12:07:53 +02:00
454bc14d90 fix: Removed a wrong key-word argument in sigmoid_focal_loss() function call (#31951)
Removed a wrong key-word argument in sigmoid_focal_loss() function call.
2024-07-15 10:05:08 +01:00
a5c642fe7a Whisper: move to tensor cpu before converting to np array at decode time (#31954) 2024-07-14 16:39:42 +01:00
df1c248a6d Generate: v4.42 deprecations 🧹🧹 (#31956)
v4_42 deprecations
2024-07-14 16:39:24 +01:00
739a63166d Generate: remove deprecated code due to Cache and cache_position being default (#31898)
* tmp commit

* shorter

* nit

* explicit kwargs

* propagate changes

* mass propagation with a few manual touches (let's see how CI behaves)

* fix cacheless case

* Update src/transformers/generation/utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* make fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-14 15:16:58 +01:00
8480fda6ee Fix GenerationMixin.generate compatibility with pytorch profiler (#31935)
use torch.compiler.is_compiling() when possible
2024-07-14 14:44:38 +01:00
7f79a97399 fix prompt strip to support tensors and np arrays (#27818)
* fix prompt strip to support tensors and np arrays

* framework agnostic

* change logic check before converting prompt into list

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adding _convert_to_list to tokenization_whisper_fast

* adding tests for prompt decoding

* adding comment

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adding comment

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* revert minor

* make style formatting

* style formatting after update

* Update src/transformers/models/whisper/tokenization_whisper_fast.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixing _strip_prompt to handle _decode_with_timestamps

* fix copies

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2024-07-12 20:07:10 +01:00
d1a1bcf56a Docker: TF pin on the consistency job (#31928)
* pin

* dev-ci

* dev-ci

* dev-ci

* test pushed image
2024-07-12 14:28:46 +02:00
aec1ca3a58 [Bug Fix] fix qa pipeline tensor to numpy (#31585)
* fix qa pipeline

* fix tensor to numpy
2024-07-11 22:22:26 +01:00
c1e139c2b0 Adding hiera (#30356)
* initialized Structure

* Updated variable names

* Added Config class, basic HF setup, convert_to_hf

* Fixed Convert function, added hiera to HF files, Initilized test files

* better naming for x in forward pass

* Moved utils to hiera

* Change hiera -> hiera_model

* Fixed integration into tranformers

* Fix: Convert Checkpoint

* added documentation for hiera

* added documentation for hiera

* added Docstings to models, Transformers based changes

* make style and quality

* make style and quality

* Integration & Block tests running

* Fixed bugs

* initialized Structure

* Updated variable names

* Added Config class, basic HF setup, convert_to_hf

* Fixed Convert function, added hiera to HF files, Initilized test files

* better naming for x in forward pass

* Moved utils to hiera

* Change hiera -> hiera_model

* Fixed integration into tranformers

* Fix: Convert Checkpoint

* added documentation for hiera

* added documentation for hiera

* added Docstings to models, Transformers based changes

* make style and quality

* make style and quality

* Integration & Block tests running

* Fixed bugs

* Removed tim dependency

* added HieraBlock

* fixed: Model name

* added tests for HieraModel, HieraBlock

* fixed imports

* fixed quality & copies

* Fixes

* Update docs/source/en/model_doc/hiera.md

Fix name

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/hiera.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/hiera.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/configuration_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/configuration_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Fixed formatting

* Code quality & Import differences

* quality and repo-consistency fix

* fixed no torch error

* Docstring fix

* Docstring fix

* doc string fix

* fixed example usage

* Resolved issues in modeling_hiera

* Removed Hiera MAE

* Added test and resolved bug

* fixed doc string

* First commit

* Finished conversion script and model forward working

* Resolved all issues

* nits

* Improving tests

* Nits

* More nits

* Improving HieraForMaskedImageModeling

* More improvements and nits

* Fixed docstrings of outputs

* More fixes

* More imrpovments

* Updated conversion script

* Fixed docstrings

* Improved tests

* Fixed attentou outputs test

* All tests green

* Removed unnecessary file

* contribution attribution

* Resolved a few issues

* Resolved Comments

* Updated model repo id and fixed bugs

* Removed loss print

* Make tests green

* Updated docstrings

* Fix style

* Fixed num_heads in config

* Removed unnecessary video checkpoint related code in the conversion script

* Fix style

* Changed atol in conversion script

* HieraConfig

* Fix copies

* Fixed typo

* Resolved few issues

* make

* converted conv_nd -> nn.Module

* Removed video complexities

* Removed video complexities

* fix style

* Addressing comments

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/hiera/modeling_hiera.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix style

* Fixed tests

* Fixed typo

* Fixed interpolate test

* Made torch fx compatible

* Made sure imageprocesor is correct

* Addressed comments

* Noise directly as torch

* Remove unnecesary attr

* Added return_dit

* Update src/transformers/models/hiera/__init__.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Updated checkpoints

* [run_slow] hiera

* Fixed device mismatch

* [run_slow] hiera

* Fixed GPU tests

* [run_slow] hiera

---------

Co-authored-by: Ubuntu <ubuntu@ip-172-31-29-50.us-east-2.compute.internal>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Eduardo Pacheco <eduardo.pach@hotmail.com>
Co-authored-by: Eduardo Pacheco <69953243+EduardoPach@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-11 22:13:56 +01:00
574e68d554 Allow Trainer.get_optimizer_cls_and_kwargs to be overridden (#31875)
* Change `Trainer.get_optimizer_cls_and_kwargs` to `self.`

* Make `get_optimizer_cls_and_kwargs` an instance method

* Fixing typo

* Revert `get_optimizer_cls_and_kwargs` to staticmethod

* restore newline to trainer.py eof
2024-07-11 22:13:06 +01:00
52585019a1 🚨 fix(SigLip): remove spurious exclusion of first vision output token (#30952)
fix(SigLip): remove spurious exclusion of first vision output token in classifier
2024-07-11 19:40:57 +01:00
6a05f68f51 Generate: fix SlidingWindowCache.reset() (#31917)
fix sliding cache
2024-07-11 19:35:46 +01:00
e314395277 Refactor flash attention implementation in transformers (#31446)
* dumb commit

* nit

* update

* something like this

* unpack in modeling utils

* safe import

* oups

* update

* nits

* diff convert gemma

* update

* start propagating

* udpate other modeling code as well

* update for sliding window models

* nits

* more init cleanups

* styling

* fixup

* noice

* pass fixup

* typo typing_extension -> typing_extensions

* torch.nn.functionnal -> torch.nn.functional

* add to import structure

* unpack

* simplify a bit more for this first version

* nut

* update

* update

* nit

* ease the import of `Unpack`

* remove useless `use_sliding_window`

* no qua please

* protect import?

* style

* [run-slow]

* [run slow] llama,gemma,mistral,mixtral

* remove extra kwargs

* fix llama

* address review comments

* apply diff_model_converter to modeling_gemma.py

* remove cache_position 1

* remove cache_position 2

* some cleaning

* refactor gemma2 as well

* apply review comments

* rename file to modeling_flash_attention_utils.py

* siglip refactor

* remove dead code

* is the hub down?

* still down?

* fix siglip

* fix gemma2

* fatal: Could not read from remote repository.

* fix typo in softcap implem

* flacky

* Failed: Timeout >120.0s

---------

Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com>
2024-07-11 20:37:31 +08:00
ad4ef3a290 Fix fx tests with inputs_embeds (#31862)
* fix tests

* [test_all] check

* address review comments
2024-07-11 20:14:03 +08:00
1499a55008 Add warning message for beta and gamma parameters (#31654)
* Add warning message for  and  parameters

* Fix when the warning is raised

* Formatting changes

* Improve testing and remove duplicated warning from _fix_key
2024-07-11 13:01:47 +01:00
23d6d0cc06 add gather_use_object arguments II (#31799)
* add gather_use_object arguments

* fix name and pass the CI test for Seq2SeqTrainer

* make style

* make it to functools

* fix typo

* add accelerate version:

* adding warning

* Update src/transformers/trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* make style

* Update src/transformers/training_args.py

* check function move to initial part

* add test for eval_use_gather_object

* fix minor

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-07-11 12:23:02 +01:00
2e48b3e872 fix: Fixed the 1st argument name in classmethods (#31907)
Fixed the first argument name in few classmethods.
2024-07-11 12:11:50 +01:00
48c20700e1 Fix missing methods for Fuyu (#31880)
* add missing methods for FuyuForCausalLM

* fix a typo

* format code

* add missing tie_weights

* format code
2024-07-11 11:01:46 +01:00
f4ec7a286a [Gemma2] Support FA2 softcapping (#31887)
* Support softcapping

* strictly greater than

* update
2024-07-11 11:57:35 +02:00
f67e0f7fb7 [ConvertSlow] make sure the order is preserved for addedtokens (#31902)
* preserve the order

* oups

* oups

* nit

* trick

* fix issues
2024-07-11 11:56:41 +02:00
14d3b3f0f0 Processor accepts any kwargs (#31889)
* accept kwargs in processors

* return unused kwargs

* fix tests

* typo

* update the other way
2024-07-11 13:20:30 +05:00
a695c18649 Fixes to alternating SWA layers in Gemma2 (#31775)
* HybridCache: Flip order of alternating global-attn/sliding-attn layers

* HybridCache: Read sliding_window argument from cache_kwargs

* Gemma2Model: Flip order of alternating global-attn/sliding-attn layers

* Code formatting
2024-07-11 10:03:46 +02:00
d625294d79 InstructBlipVideo: Update docstring (#31886)
* update docs

* one more change
2024-07-11 10:13:29 +05:00
c54af4c77e Add a condition for nested_detach (#31855)
fix bug: https://github.com/huggingface/transformers/issues/31852
2024-07-10 21:37:22 +01:00
080e14b24c Modify warnings in a with block to avoid flaky tests (#31893)
* fix

* [test_all] check before merge

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-10 17:56:12 +02:00
ec03d97b27 [RT-DETR] Add resources (#31815)
* Add resources

* Address comments
2024-07-10 16:34:53 +01:00
8df28bb308 Push sharded checkpoint to hub when push_to_hub=True in TrainingArguments (#31808)
Save sharded checkpoint in Trainer
2024-07-10 15:14:20 +02:00
da79b18087 fix: Removed duplicate field definitions in some classes (#31888)
Removed duplicate field definitions in classes.
2024-07-10 13:46:31 +01:00
9d98706b3f Fix failed tests in #31851 (#31879)
* Revert "Revert "Fix `_init_weights` for `ResNetPreTrainedModel`" (#31868)"

This reverts commit b45dd5de9c8426db5dbda1797a4790566a278919.

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

* fix

* [test_all] check

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-10 14:25:24 +02:00
a0a3e2f469 Fix file type checks in data splits for contrastive training example script (#31720)
fix data split file type checks
2024-07-10 10:17:03 +01:00
e9eeedaf3b remove duplicate words in msg (#31876) 2024-07-10 09:54:45 +01:00
97aa3e2905 Add conversion for interleave llava (#31858)
* add conversion for interleave llava

* remove debug lines

* remove unused imports

* Update src/transformers/models/llava/convert_llava_weights_to_hf.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* small changes + docs

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-10 12:12:21 +05:00
ad35309a62 add warning when using gradient_checkpointing with FSDP full shard (#31578)
* add warning when using  with FSDP full shard

* fix style

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* add hybrid shard warn

* fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-09 23:55:57 +01:00
6176d8f5ee Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/visual_bert (#31872)
Bump certifi in /examples/research_projects/visual_bert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-09 22:20:39 +01:00
b45dd5de9c Revert "Fix _init_weights for ResNetPreTrainedModel" (#31868)
Revert "Fix `_init_weights` for `ResNetPreTrainedModel` (#31851)"

This reverts commit 4c8149d643576c23d4df559d4931ccf08fa7aee4.
2024-07-09 23:00:56 +02:00
c5bc2d5fd5 Add return type annotation to PreTrainedModel.from_pretrained (#31869)
Update modeling_utils.py

Add return type annotation to PreTrainedModel.from_pretrained
2024-07-09 21:49:29 +01:00
6e59b30841 Bump zipp from 3.7.0 to 3.19.1 in /examples/research_projects/decision_transformer (#31871)
Bump zipp in /examples/research_projects/decision_transformer

Bumps [zipp](https://github.com/jaraco/zipp) from 3.7.0 to 3.19.1.
- [Release notes](https://github.com/jaraco/zipp/releases)
- [Changelog](https://github.com/jaraco/zipp/blob/main/NEWS.rst)
- [Commits](https://github.com/jaraco/zipp/compare/v3.7.0...v3.19.1)

---
updated-dependencies:
- dependency-name: zipp
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-09 21:44:48 +01:00
e3a7d9bd47 Update depth estimation task guide (#31860)
---------

Co-authored-by: Merve Noyan <mervenoyan@Merve-MacBook-Pro.local>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-07-09 22:13:30 +03:00
4c8149d643 Fix _init_weights for ResNetPreTrainedModel (#31851)
* init

* test

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-09 20:09:08 +02:00
d094d8d9ec Generate: Add new decoding strategy "DoLa" in .generate() (#29619)
Co-authored-by: Joao Gante <joao@huggingface.co>
2024-07-09 17:37:38 +01:00
99c0e55335 docs: typo in tf qa example (#31864)
Signed-off-by: chenk <hen.keinan@gmail.com>
2024-07-09 16:30:06 +01:00
4c2538b863 Test loading generation config with safetensor weights (#31550)
fix test
2024-07-09 16:22:43 +02:00
cffa2b9c1d save_pretrained: use tqdm when saving checkpoint shards from offloaded params (#31856) 2024-07-09 12:55:57 +01:00
350aed7076 chore: remove duplicate words (#31853)
remove duplicate words
2024-07-09 10:38:29 +01:00
bd760cd13d [Grounding DINO] Add processor to auto mapping (#31845)
Add model
2024-07-09 11:28:53 +02:00
0abf5e8eae FX symbolic_trace: do not test decoder_inputs_embeds (#31840)
only test input_embeds, not decoder_input_embeds
2024-07-09 08:07:46 +02:00
952dfd4867 Deprecate vocab_size in other two VLMs (#31681)
* deprrecate `vocab_size` in other two VLMs

* Update src/transformers/models/fuyu/configuration_fuyu.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* depracate until 4.44

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-09 10:40:06 +05:00
594c1610fa Mamba & RecurrentGemma: enable strict signature (#31549)
* enable strict signature

* this should not have been deleted

* recurrent_gemma too
2024-07-08 15:48:32 +01:00
ae9dd02ee1 Fix incorrect accelerator device handling for MPS in TrainingArguments (#31812)
* Fix wrong acclerator device setup when using MPS

* More robust TrainingArguments MPS handling

* Update training_args.py

* Cleanup
2024-07-08 12:49:30 +01:00
4879ac2b33 Avoid failure TFBlipModelTest::test_pipeline_image_to_text (#31827)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-08 13:49:21 +02:00
ba743700f4 transformers.fx.symbolic_trace supports inputs_embeds (#31574)
* symbolic trace supports inputs_embeds

* fix test?

* Update tests/test_modeling_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-08 19:17:28 +08:00
e5ca9b057c Fix typos (#31819)
* fix typo

* fix typo

* fix typos

* fix typo

* fix typos
2024-07-08 11:52:47 +01:00
f4711844a3 Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/lxmert (#31838)
Bump certifi in /examples/research_projects/lxmert

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 11:17:49 +01:00
9f3f58c905 Bump transformers from 4.26.1 to 4.38.0 in /examples/tensorflow/language-modeling-tpu (#31837)
Bump transformers in /examples/tensorflow/language-modeling-tpu

Bumps [transformers](https://github.com/huggingface/transformers) from 4.26.1 to 4.38.0.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](https://github.com/huggingface/transformers/compare/v4.26.1...v4.38.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 11:12:33 +01:00
a177821b24 Add FA2 and sdpa support for SigLIP (#31499)
* Rebase to main

* Fix attention implementation autoset for tex and vision configs

* Fixup

* Minor fixes

* Fix copies

* Fix attention_mask for FA2

* Add eqvivalence tests for siglip

* Remove right padding test

* Uncomment flaky

* Fix import

* Add to docs

* Fix test message

* Add sdpa

* Add sdpa equivalence test

* Add siglip sdpa to docs

* Fix typing for attention output

* Add sdpa tests

* Fix signature of FA2

* Autoset attn_implementation in config

* Rename bsz -> batch_size

* Move back autoset attn method

* Mark as flaky

* Correct attention mask padding

* [run-slow] siglip

* Add FA2 and sdpa docs

* Style fix

* Remove flaky for FA2 test

* Change attention implementation set

* Change attn_implementaiton propogation

* Fix typos

* Add modality to assert message

* Add more sdpa backends in test

* [run slow] siglip

* Add math sdpa backend for all options

* [run slow] siglip
2024-07-08 11:10:02 +01:00
076e66e479 Bump certifi from 2023.7.22 to 2024.7.4 in /examples/research_projects/decision_transformer (#31813)
Bump certifi in /examples/research_projects/decision_transformer

Bumps [certifi](https://github.com/certifi/python-certifi) from 2023.7.22 to 2024.7.4.
- [Commits](https://github.com/certifi/python-certifi/compare/2023.07.22...2024.07.04)

---
updated-dependencies:
- dependency-name: certifi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-07-08 10:52:10 +01:00
c1cda0ee2c Fix Seq2SeqTrainer crash when BatchEncoding data is None (#31418)
avoiding crash when BatchEncoding data is None
2024-07-08 10:51:23 +01:00
06fd7972ac Add ZoeDepth (#30136)
* First draft

* Add docs

* Clean up code

* Convert model

* Add image processor

* Convert Zoe_K

* More improvements

* Improve variable names and docstrings

* Improve variable names

* Improve variable names

* Replace nn.sequential

* More improvements

* Convert ZoeD_NK

* Fix most tests

* Verify pixel values

* Verify pixel values

* Add squeeze

* Update beit to support arbitrary window sizes

* Improve image processor

* Improve docstring

* Improve beit

* Improve model outputs

* Add figure

* Fix beit

* Update checkpoint

* Fix repo id

* Add _keys_to_ignore_on_load_unexpected

* More improvements

* Address comments

* Address comments

* Address comments

* Address comments

* Rename variable name

* Add backbone_hidden_size

* Vectorize

* Vectorize more

* Address comments

* Clarify docstring

* Remove backbone_hidden_size

* Fix image processor

* Remove print statements

* Remove print statement

* Add integration test

* Address comments

* Address comments

* Address comments

* Address comments

* Add requires_backends

* Clean up

* Simplify conversion script

* Simplify more

* Simplify more

* Simplify more

* Clean up

* Make sure beit is loaded correctly

* Address comment

* Address bin_configurations

* Use bin_configurations

* Convert models, add integration tests

* Fix doc test

* Address comments

* Unify regressor classes

* Clarify arguments

* Improve resize_image

* Add num_relative_features

* Address comment

* [run-slow]beit,data2vec,zoedepth

* [run-slow]beit,data2vec,zoedepth

* Address comments

* Address comment

* Address comment

* Replace nn.TransformerEncoderLayer and nn.TransformerEncoder

* Replace nn.MultiheadAttention

* Add attributes for patch transformer to config

* Add tests for ensure_multiple_of

* Update organization

* Add tests

* [run-slow] beit data2vec

* Update ruff

* [run-slow] beit data2vec

* Add comment

* Improve docstrings, add test

* Fix interpolate_pos_encoding

* Fix slow tests

* Add docstring

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/zoedepth/image_processing_zoedepth.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Improve tests and docstrings

* Use run_common_tests

* Improve docstrings

* Improve docstrings

* Improve tests

* Improve tests

* Remove print statements

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-08 11:43:33 +02:00
1082361a19 Depth Anything: update conversion script for V2 (#31522)
* Depth Anything: update conversion script for V2

* Update docs

* Style

* Revert "Update docs"

This reverts commit be0ca47ea1be4f3cd9aa2113bdd8efcc9959119e.

* Add docs for depth anything v2

* Add depth_anything_v2 to MODEL_NAMES_MAPPING

Done similarly to Flan-T5: https://github.com/huggingface/transformers/pull/19892/files

* Add tip in original docs
2024-07-05 19:28:41 +01:00
a8fa6fbbec Fix Wav2Vec2 Fairseq conversion (weight norm state dict keys) (#31714)
* handle new weight norm

* fix

* fix trailing space
2024-07-05 19:26:21 +01:00
a01b033cb4 Fix galore lr display with schedulers (#31710)
* fix galore lr display with lr schedulers

* style

* add some tests to check for displayed lrs

* copy-paste err for warmup steps

* standardize the default lr to be only in the optimizer

* trying out my luck with the reads
2024-07-05 18:59:09 +01:00
ac26260436 Allow FP16 or other precision inference for Pipelines (#31342)
* cast image features to model.dtype where needed to support FP16 or other precision in pipelines

* Update src/transformers/pipelines/image_feature_extraction.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Use .to instead

* Add FP16 pipeline support for zeroshot audio classification

* Remove unused torch imports

* Add docs on FP16 pipeline

* Remove unused import

* Add FP16 tests to pipeline mixin

* Add fp16 placeholder for mask_generation pipeline test

* Add FP16 tests for all pipelines

* Fix formatting

* Remove torch_dtype arg from is_pipeline_test_to_skip*

* Fix format

* trigger ci

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-05 17:21:50 +01:00
e786844425 Repeating an important warning in the chat template docs (#31796)
* Repeating an important warning in the chat template docs

* Update docs/source/en/chat_templating.md

Co-authored-by: Lysandre Debut <hi@lysand.re>

* Reword for clarity

* Reword for clarity

---------

Co-authored-by: Lysandre Debut <hi@lysand.re>
2024-07-05 15:30:24 +01:00
1d3eaa6f7e Add training support for SigLIP (#31495)
* Add siglip loss function

* Update docs

* Enable training tests
[experimental] enable GC training tests as it has worked for my own data

* Remove test_training* overrides to enable training tests
[run_slow] siglip

* Skip training tests for Siglip text model and ImageClassificationModel
[run_slow] siglip

* Skip GC training tests for SiglipForImageClassification

* Explicitly skip training tests for SiglipVisionModel
Add skip reason for training tests for SiglipTextModel

* Remove copied from to fix CI
2024-07-05 14:50:39 +01:00
1556025271 Code agent: allow function persistence between steps (#31769)
* Code agent: allow function persistence between steps
2024-07-05 11:09:11 +02:00
eef0507f3d Fix gemma tests (#31794)
* skip 3 7b tests

* fix

* fix

* fix

* [run-slow] gemma

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-05 10:17:59 +02:00
9e599d1d94 Update CometCallback to allow reusing of the running experiment (#31366)
* Update CometCallback to allow reusing of the running experiment

* Fixups

* Remove useless TODO

* Add checks for minimum version of the Comet SDK

* Fix documentation and links.

Also simplify how the Comet Experiment name is passed
2024-07-05 08:13:46 +02:00
d19b5a90c2 Exclude torch.compile time from metrics computation (#31443)
* exclude compile time from metrics computation

* fix the quality issue
2024-07-05 08:11:55 +02:00
2aa2a14481 Make tensor device correct when ACCELERATE_TORCH_DEVICE is defined (#31751)
return correct device when ACCELERATE_TORCH_DEVICE is defined
2024-07-05 08:09:04 +02:00
8c5c180de0 Fix serialization for offloaded model (#31727)
* Fix serialization

* style

* add test
2024-07-05 08:07:07 +02:00
eaa5f41439 Fix ClapProcessor to merge feature_extractor output into the returned BatchEncoding (#31767)
* fixed ClapProcessor to merge all values output from the feature extractor into the returned BatchEncoding.

* fixed trailing whitespace
2024-07-05 07:55:47 +02:00
43ffb785c0 Add torch_empty_cache_steps to TrainingArguments (#31546)
* Add torch_empty_cache_steps to TrainingArguments

* Fix formatting

* Add torch_empty_cache_steps to docs on single gpu training

* Remove check for torch_empty_cache_steps <= max_steps

* Captalize Tip

* Be device agnostic

* Fix linting
2024-07-04 13:20:49 -04:00
cee768d97e Fix Gemma2 types (#31779)
Update __init__.py
2024-07-04 15:37:32 +02:00
87726a08ed pytest_num_workers=4 for some CircleCI jobs (#31764)
pytest_num_workers=4

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-07-04 14:44:58 +02:00
048f599f35 Fix RT-DETR weights initialization (#31724)
* Fix init for rt-detr heads

* Fixup

* Add separate prior_prob value to config for initialization

* Add bbox init

* Change to 1 / num_labels init

* Adjust weights init test

* Fix style for test
2024-07-03 14:29:02 +01:00
b97521614a Fix RT-DETR cache for generate_anchors (#31671)
* Fix cache and type conversion

* Add test

* Fixup

* nit

* [run slow] rt_detr

* Fix test

* Fixup

* [run slow] rt_detr

* Update src/transformers/models/rt_detr/modeling_rt_detr.py
2024-07-03 14:19:57 +01:00
534cbf8a5d [fix bug] logits's shape different from label's shape in preprocess_logits_for_metrics (#31447)
* [fix BUG] pad labels before use it in preprocess_logits_for_metrics

* a more readable fix

labels can't use  `gather` before pass to `preprocess_logits_for_metrics`, so must split into 2 if-block

* add a comment

* oh code quality check
2024-07-03 06:58:27 -04:00
65a02cd27d Add ignore_errors=True to trainer.py rmtree in _inner_training_loop (#31668)
Update trainer.py
2024-07-03 06:54:49 -04:00
ddfaf11926 Gemma 2: Update slow tests (#31759)
gemma 2 slow tests
2024-07-03 11:43:44 +02:00
c1fe12595e handle (processor_class, None) returned by ModelPatterns (#31753) 2024-07-03 11:42:30 +02:00
0fd885b91c Adds final answer tool for all agents (#31703)
* Adds final answer tool for all agents

* Typo

* Add clarification in doc

* Put final_answer tool adition in agent for clarity
2024-07-03 11:36:09 +02:00
dc72fd7edd Requires for torch.tensor before casting (#31755) 2024-07-03 11:12:51 +02:00
7f91f168a1 fix assisted decoding (#31401)
* fix assisted decoding

* check None

* fix typo

* fix _prepare_special_tokens

* fix style

* fix lint

* add tests for assisted decoding

* fix style

* fix tests check
2024-07-03 09:22:56 +01:00
f91c16d270 Fix documentation for Gemma2. (#31682)
* Fix documentation for Gemma2. 

Model sizes and Blog post URL are wrong in the documentation.

* Update docs/source/en/model_doc/gemma2.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-02 23:04:53 +01:00
cd0935dd55 Make tool JSON schemas consistent (#31756)
Make the order of array items consistent using sorted()
2024-07-02 20:00:42 +01:00
82486e5995 🚨🚨 TextGenerationPipeline: rely on the tokenizer default kwargs (#31747)
* rely on the tokenizer default kwargs

* fix a few tests
2024-07-02 16:17:42 +02:00
a9701953ff [whisper] static kv cache (#31166)
* make work with cache abstraction

* correct for static cache

* hacks for compile

* make fast

* fix

* fix pos ids

* generate

* fix sdpa

* fix sdpa cache pos

* fix fa2

* clean fa2

* integrate cache into generate

* make style

* copies

* more copies

* update eager

* update sdpa

* update fa2

* simplify

* use cache pos

* always compute cross-cache for debug

* avoid recompiles
Co-authored-by: Arthur Zucker <arthur@huggingface.co>

* fix fix

* fix fix fix

* more fix

* try encoder-decoder cache (too messy)

* revert encoder-decoder cache

* check cross-attn cache

* use enc-dec dataclass

* use richer enc-dec dataclass

* clean-up

* revert static cache changes

* small fixes

* revert to cpu flag

* fix copies

* add static slow test

* past k/v docstring

* more docstrings

* cache_position docstrings

* add to docs

* add enc-dec cache to docs

* make style

* fix after rebase

* fix beam

* style

* fix generation strategies

* fix most decoder-only tests

* style

* skip test

* more clean up

* small docstrings

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* add todo

* only crop self-attn

* check cache in mixin

* style

* fix re-compile after rebase

* move `is_updated` logic to enc-dec wrapper

* revert back

* revert cache back

* finalise design

* fix

* fix fix

* style

* Update src/transformers/cache_utils.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* deprecate

* updates

* final updates

* style

* style

---------

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-07-02 13:24:15 +01:00
57d7594a79 Fix mistral ONNX export (#31696)
* use bitwise or

* why is the CI not triggered?
2024-07-02 19:54:10 +08:00
93cd94b79d Move some test files (tets/test_xxx_utils.py) to tests/utils (#31730)
* move

* move

* move

* move

* Update tests/utils/test_image_processing_utils.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-07-02 13:46:03 +02:00
cf85e86e9a remove incorrect urls pointing to the llava repository (#31107)
* remove incorrect urls pointing to the llava repository

* remove incorrect urls pointing to the llava repository; removing entire comments

* remove incorrect urls pointing to the llava repository; removing entire comments; ran fix-copies

* ran fixup
2024-07-02 12:24:55 +01:00
3345ae733b dependencies: keras-nlp<0.14 pin (#31684)
* keras nlp pin

* this should use the new docker images:dev

* dev-ci
2024-07-01 17:39:33 +01:00
e655029515 Add French version of run scripts tutorial (#31483)
* Add French translation of run scripts tutorial

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update docs/source/fr/run_scripts_fr.md

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

---------

Co-authored-by: Jade Choghari <chogharijade@icloud.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-28 18:02:30 +02:00
bbf1e61864 Gemma capping is a must for big models (#31698)
* softcapping

* soft cap before the mask

* style

* ...

* super nit
2024-06-28 17:16:17 +02:00
cb298978ad add gather_use_object arguments (#31514)
* add gather_use_object arguments

* fix name and pass the CI test for Seq2SeqTrainer

* make style

* make it to functools

* fix typo

* add accelerate version:

* adding warning

* Update src/transformers/trainer.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* make style

* Update src/transformers/training_args.py

* check function move to initial part

* add test for eval_use_gather_object

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-06-28 13:50:27 +01:00
82a1fc7256 Fix return_dict in encodec (#31646)
* fix: use return_dict parameter

* fix: type checks

* fix: unused imports

* update: one-line if else

* remove: recursive check
2024-06-28 12:18:01 +01:00
5e89b335ab Fix Gemma2 4d attention mask (#31674)
Update modeling_gemma2.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-06-28 08:20:30 +02:00
0142aab7f8 don't zero out the attention_mask when using sliding window with flash attention (#31670)
* don't zero out the attention_mask when using sliding window with flash attention

* chore: lint
2024-06-28 07:59:54 +02:00
1c68f2cafb [HybridCache] Fix get_seq_length method (#31661)
* fix gemma2

* handle in generate
2024-06-27 19:40:40 +02:00
464aa74659 [docs] Llama3 (#31662)
quick usage to top
2024-06-27 10:32:51 -07:00
e44b878c02 Fix float out of range in owlvit and owlv2 when using FP16 or lower precision (#31657) 2024-06-27 18:07:33 +01:00
75a6319864 Fix post gemma merge (#31660)
* nit

* toctree issue

* protect gemma2 tests as well

* sdpa supported
2024-06-27 17:51:42 +02:00
727eea4ab0 v4.43.0.dev0 2024-06-27 17:40:07 +02:00
0cf60f13ab Add gemma 2 (#31659)
* inital commit

* Add doc

* protect?

* fixup stuffs

* update tests

* fix build documentation

* mmmmmmm config attributes

* style

* nit

* uodate

* nit

* Fix docs

* protect some stuff

---------

Co-authored-by: Lysandre <lysandre@huggingface.co>
2024-06-27 17:36:19 +02:00
4aa17d0069 Remove deprecated config attribute in VLMs (#31655)
remove
2024-06-27 16:54:41 +05:00
1189 changed files with 83812 additions and 22078 deletions

View File

@ -34,64 +34,44 @@ jobs:
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
- run: python utils/tests_fetcher.py | tee tests_fetched_summary.txt
- store_artifacts:
path: ~/transformers/tests_fetched_summary.txt
- run: |
if [ -f test_list.txt ]; then
cp test_list.txt test_preparation/test_list.txt
else
touch test_preparation/test_list.txt
fi
- run: |
if [ -f examples_test_list.txt ]; then
mv examples_test_list.txt test_preparation/examples_test_list.txt
else
touch test_preparation/examples_test_list.txt
fi
- run: |
if [ -f filtered_test_list_cross_tests.txt ]; then
mv filtered_test_list_cross_tests.txt test_preparation/filtered_test_list_cross_tests.txt
else
touch test_preparation/filtered_test_list_cross_tests.txt
fi
- run: |
if [ -f doctest_list.txt ]; then
cp doctest_list.txt test_preparation/doctest_list.txt
else
touch test_preparation/doctest_list.txt
fi
- run: |
if [ -f test_repo_utils.txt ]; then
mv test_repo_utils.txt test_preparation/test_repo_utils.txt
else
touch test_preparation/test_repo_utils.txt
fi
- run: python utils/tests_fetcher.py --filter_tests
- run: |
if [ -f test_list.txt ]; then
mv test_list.txt test_preparation/filtered_test_list.txt
else
touch test_preparation/filtered_test_list.txt
fi
- store_artifacts:
path: test_preparation/test_list.txt
- store_artifacts:
path: test_preparation/doctest_list.txt
- store_artifacts:
path: ~/transformers/test_preparation/filtered_test_list.txt
- store_artifacts:
path: test_preparation/examples_test_list.txt
- run: export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)" && echo $GIT_COMMIT_MESSAGE && python .circleci/create_circleci_config.py --fetcher_folder test_preparation
- run: |
if [ ! -s test_preparation/generated_config.yml ]; then
echo "No tests to run, exiting early!"
circleci-agent step halt
fi
if [ ! -s test_preparation/generated_config.yml ]; then
echo "No tests to run, exiting early!"
circleci-agent step halt
fi
- store_artifacts:
path: test_preparation/generated_config.yml
path: test_preparation
- run:
name: "Retrieve Artifact Paths"
env:
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
command: |
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
job_number=${CIRCLE_BUILD_NUM}
url="https://circleci.com/api/v2/project/${project_slug}/${job_number}/artifacts"
curl -o test_preparation/artifacts.json ${url}
- run:
name: "Prepare pipeline parameters"
command: |
python utils/process_test_artifacts.py
# To avoid too long generated_config.yaml on the continuation orb, we pass the links to the artifacts as parameters.
# Otherwise the list of tests was just too big. Explicit is good but for that it was a limitation.
# We used:
# https://circleci.com/docs/api/v2/index.html#operation/getJobArtifacts : to get the job artifacts
# We could not pass a nested dict, which is why we create the test_file_... parameters for every single job
- store_artifacts:
path: test_preparation/filtered_test_list_cross_tests.txt
path: test_preparation/transformed_artifacts.json
- store_artifacts:
path: test_preparation/artifacts.json
- continuation/continue:
parameters: test_preparation/transformed_artifacts.json
configuration_path: test_preparation/generated_config.yml
# To run all tests for the nightly build
@ -142,6 +122,7 @@ jobs:
- run: python utils/custom_init_isort.py --check_only
- run: python utils/sort_auto_mappings.py --check_only
- run: python utils/check_doc_toc.py
- run: python utils/check_docstrings.py --check_all
check_repository_consistency:
working_directory: ~/transformers
@ -190,4 +171,4 @@ workflows:
- check_circleci_user
- check_code_quality
- check_repository_consistency
- fetch_all_tests
- fetch_all_tests

View File

@ -32,7 +32,7 @@ COMMON_ENV_VARIABLES = {
"RUN_PT_FLAX_CROSS_TESTS": False,
}
# Disable the use of {"s": None} as the output is way too long, causing the navigation on CircleCI impractical
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "v": None}
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "vvv": None, "rsf":None}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.8.12"}]
@ -50,16 +50,15 @@ class EmptyJob:
class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
cache_name: str = None
cache_version: str = "0.8.2"
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 1
parallelism: Optional[int] = 0
pytest_num_workers: int = 12
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "2xlarge"
tests_to_run: Optional[List[str]] = None
num_test_files_per_worker: Optional[int] = 10
# This should be only used for doctest job!
command_timeout: Optional[int] = None
@ -67,8 +66,6 @@ class CircleCIJob:
# Deal with defaults for mutable attributes.
if self.additional_env is None:
self.additional_env = {}
if self.cache_name is None:
self.cache_name = self.name
if self.docker_image is None:
# Let's avoid changing the default list and make a copy.
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
@ -79,155 +76,96 @@ class CircleCIJob:
self.docker_image[0]["image"] = f"{self.docker_image[0]['image']}:dev"
print(f"Using {self.docker_image} docker image")
if self.install_steps is None:
self.install_steps = []
self.install_steps = ["uv venv && uv pip install ."]
if self.pytest_options is None:
self.pytest_options = {}
if isinstance(self.tests_to_run, str):
self.tests_to_run = [self.tests_to_run]
if self.parallelism is None:
self.parallelism = 1
else:
test_file = os.path.join("test_preparation" , f"{self.job_name}_test_list.txt")
print("Looking for ", test_file)
if os.path.exists(test_file):
with open(test_file) as f:
expanded_tests = f.read().strip().split("\n")
self.tests_to_run = expanded_tests
print("Found:", expanded_tests)
else:
self.tests_to_run = []
print("not Found")
def to_dict(self):
env = COMMON_ENV_VARIABLES.copy()
env.update(self.additional_env)
cache_branch_prefix = os.environ.get("CIRCLE_BRANCH", "pull")
if cache_branch_prefix != "main":
cache_branch_prefix = "pull"
job = {
"docker": self.docker_image,
"environment": env,
}
if self.resource_class is not None:
job["resource_class"] = self.resource_class
if self.parallelism is not None:
job["parallelism"] = self.parallelism
steps = [
"checkout",
{"attach_workspace": {"at": "test_preparation"}},
]
steps.extend([{"run": l} for l in self.install_steps])
steps.append({"run": {"name": "Show installed libraries and their size", "command": """du -h -d 1 "$(pip -V | cut -d ' ' -f 4 | sed 's/pip//g')" | grep -vE "dist-info|_distutils_hack|__pycache__" | sort -h | tee installed.txt || true"""}})
steps.append({"run": {"name": "Show installed libraries and their versions", "command": """pip list --format=freeze | tee installed.txt || true"""}})
steps.append({"run":{"name":"Show biggest libraries","command":"""dpkg-query --show --showformat='${Installed-Size}\t${Package}\n' | sort -rh | head -25 | sort -h | awk '{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}' || true"""}})
steps.append({"store_artifacts": {"path": "installed.txt"}})
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
pytest_flags = [f"--{key}={value}" if (value is not None or key in ["doctest-modules"]) else f"-{key}" for key, value in all_options.items()]
pytest_flags.append(
f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}"
)
steps.append({"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}})
test_command = ""
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
# junit familiy xunit1 is necessary to support splitting on test name or class name with circleci split
test_command += f"python3 -m pytest -rsfE -p no:warnings -o junit_family=xunit1 --tb=short --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.parallelism == 1:
if self.tests_to_run is None:
test_command += " << pipeline.parameters.tests_to_run >>"
else:
test_command += " " + " ".join(self.tests_to_run)
else:
# We need explicit list instead of `pipeline.parameters.tests_to_run` (only available at job runtime)
tests = self.tests_to_run
if tests is None:
folder = os.environ["test_preparation_dir"]
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file): # We take this job's tests from the filtered test_list.txt
with open(test_file) as f:
tests = f.read().split(" ")
# expand the test list
if tests == ["tests"]:
tests = [os.path.join("tests", x) for x in os.listdir("tests")]
expanded_tests = []
for test in tests:
if test.endswith(".py"):
expanded_tests.append(test)
elif test == "tests/models":
if "tokenization" in self.name:
expanded_tests.extend(glob.glob("tests/models/**/test_tokenization*.py", recursive=True))
elif self.name in ["flax","torch","tf"]:
name = self.name if self.name != "torch" else ""
if self.name == "torch":
all_tests = glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True)
filtered = [k for k in all_tests if ("_tf_") not in k and "_flax_" not in k]
expanded_tests.extend(filtered)
else:
expanded_tests.extend(glob.glob(f"tests/models/**/test_modeling_{name}*.py", recursive=True))
else:
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
elif test == "tests/pipelines":
expanded_tests.extend(glob.glob("tests/models/**/test_modeling*.py", recursive=True))
else:
expanded_tests.append(test)
tests = " ".join(expanded_tests)
# Each executor to run ~10 tests
n_executors = max(len(expanded_tests) // 10, 1)
# Avoid empty test list on some executor(s) or launching too many executors
if n_executors > self.parallelism:
n_executors = self.parallelism
job["parallelism"] = n_executors
# Need to be newline separated for the command `circleci tests split` below
command = f'echo {tests} | tr " " "\\n" >> tests.txt'
steps.append({"run": {"name": "Get tests", "command": command}})
command = 'TESTS=$(circleci tests split tests.txt) && echo $TESTS > splitted_tests.txt'
steps.append({"run": {"name": "Split tests", "command": command}})
steps.append({"store_artifacts": {"path": "tests.txt"}})
steps.append({"store_artifacts": {"path": "splitted_tests.txt"}})
test_command = ""
if self.command_timeout:
test_command = f"timeout {self.command_timeout} "
test_command += f"python3 -m pytest -rsfE -p no:warnings --tb=short -o junit_family=xunit1 --junitxml=test-results/junit.xml -n {self.pytest_num_workers} " + " ".join(pytest_flags)
test_command += " $(cat splitted_tests.txt)"
if self.marker is not None:
test_command += f" -m {self.marker}"
if self.name == "pr_documentation_tests":
# can't use ` | tee tee tests_output.txt` as usual
test_command += " > tests_output.txt"
# Save the return code, so we can check if it is timeout in the next step.
test_command += '; touch "$?".txt'
# Never fail the test step for the doctest job. We will check the results in the next step, and fail that
# step instead if the actual test failures are found. This is to avoid the timeout being reported as test
# failure.
test_command = f"({test_command}) || true"
else:
test_command = f"({test_command} | tee tests_output.txt)"
steps.append({"run": {"name": "Run tests", "command": test_command}})
steps.append({"run": {"name": "Skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}})
steps.append({"run": {"name": "Failed tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}})
steps.append({"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}})
steps.append({"store_test_results": {"path": "test-results"}})
steps.append({"store_artifacts": {"path": "tests_output.txt"}})
steps.append({"store_artifacts": {"path": "test-results/junit.xml"}})
steps.append({"store_artifacts": {"path": "reports"}})
# Examples special case: we need to download NLTK files in advance to avoid cuncurrency issues
timeout_cmd = f"timeout {self.command_timeout} " if self.command_timeout else ""
marker_cmd = f"-m '{self.marker}'" if self.marker is not None else ""
additional_flags = f" -p no:warning -o junit_family=xunit1 --junitxml=test-results/junit.xml"
parallel = f' << pipeline.parameters.{self.job_name}_parallelism >> '
steps = [
"checkout",
{"attach_workspace": {"at": "test_preparation"}},
{"run": "apt-get update && apt-get install -y curl"},
{"run": " && ".join(self.install_steps)},
{"run": {"name": "Download NLTK files", "command": """python -c "import nltk; nltk.download('punkt', quiet=True)" """} if "example" in self.name else "echo Skipping"},
{"run": {
"name": "Show installed libraries and their size",
"command": """du -h -d 1 "$(pip -V | cut -d ' ' -f 4 | sed 's/pip//g')" | grep -vE "dist-info|_distutils_hack|__pycache__" | sort -h | tee installed.txt || true"""}
},
{"run": {
"name": "Show installed libraries and their versions",
"command": """pip list --format=freeze | tee installed.txt || true"""}
},
{"run": {
"name": "Show biggest libraries",
"command": """dpkg-query --show --showformat='${Installed-Size}\t${Package}\n' | sort -rh | head -25 | sort -h | awk '{ package=$2; sub(".*/", "", package); printf("%.5f GB %s\n", $1/1024/1024, package)}' || true"""}
},
{"run": {"name": "Create `test-results` directory", "command": "mkdir test-results"}},
{"run": {"name": "Get files to test", "command":f'curl -L -o {self.job_name}_test_list.txt <<pipeline.parameters.{self.job_name}_test_list>>' if self.name != "pr_documentation_tests" else 'echo "Skipped"'}},
{"run": {"name": "Split tests across parallel nodes: show current parallel tests",
"command": f"TESTS=$(circleci tests split --split-by=timings {self.job_name}_test_list.txt) && echo $TESTS > splitted_tests.txt && echo $TESTS | tr ' ' '\n'" if self.parallelism else f"awk '{{printf \"%s \", $0}}' {self.job_name}_test_list.txt > splitted_tests.txt"
}
},
{"run": {
"name": "Run tests",
"command": f"({timeout_cmd} python3 -m pytest {marker_cmd} -n {self.pytest_num_workers} {additional_flags} {' '.join(pytest_flags)} $(cat splitted_tests.txt) | tee tests_output.txt)"}
},
{"run": {"name": "Expand to show skipped tests", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --skip"}},
{"run": {"name": "Failed tests: show reasons", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --fail"}},
{"run": {"name": "Errors", "when": "always", "command": f"python3 .circleci/parse_test_outputs.py --file tests_output.txt --errors"}},
{"store_test_results": {"path": "test-results"}},
{"store_artifacts": {"path": "test-results/junit.xml"}},
{"store_artifacts": {"path": "reports"}},
{"store_artifacts": {"path": "tests.txt"}},
{"store_artifacts": {"path": "splitted_tests.txt"}},
{"store_artifacts": {"path": "installed.txt"}},
]
if self.parallelism:
job["parallelism"] = parallel
job["steps"] = steps
return job
@property
def job_name(self):
return self.name if "examples" in self.name else f"tests_{self.name}"
return self.name if ("examples" in self.name or "pipeline" in self.name or "pr_documentation" in self.name) else f"tests_{self.name}"
# JOBS
torch_and_tf_job = CircleCIJob(
"torch_and_tf",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=["uv venv && uv pip install ."],
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
@ -238,7 +176,6 @@ torch_and_flax_job = CircleCIJob(
"torch_and_flax",
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
docker_image=[{"image":"huggingface/transformers-torch-jax-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
)
@ -246,24 +183,36 @@ torch_and_flax_job = CircleCIJob(
torch_job = CircleCIJob(
"torch",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
marker="not generate",
parallelism=6,
pytest_num_workers=16
pytest_num_workers=8
)
generate_job = CircleCIJob(
"generate",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
marker="generate",
parallelism=6,
pytest_num_workers=8
)
tokenization_job = CircleCIJob(
"tokenization",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
parallelism=8,
pytest_num_workers=16
)
processor_job = CircleCIJob(
"processors",
docker_image=[{"image": "huggingface/transformers-torch-light"}],
parallelism=8,
pytest_num_workers=6
)
tf_job = CircleCIJob(
"tf",
docker_image=[{"image":"huggingface/transformers-tf-light"}],
install_steps=["uv venv", "uv pip install -e."],
parallelism=6,
pytest_num_workers=16,
)
@ -272,7 +221,6 @@ tf_job = CircleCIJob(
flax_job = CircleCIJob(
"flax",
docker_image=[{"image":"huggingface/transformers-jax-light"}],
install_steps=["uv venv && uv pip install ."],
parallelism=6,
pytest_num_workers=16
)
@ -282,8 +230,8 @@ pipelines_torch_job = CircleCIJob(
"pipelines_torch",
additional_env={"RUN_PIPELINE_TESTS": True},
docker_image=[{"image":"huggingface/transformers-torch-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pipeline_test",
parallelism=4
)
@ -291,8 +239,8 @@ pipelines_tf_job = CircleCIJob(
"pipelines_tf",
additional_env={"RUN_PIPELINE_TESTS": True},
docker_image=[{"image":"huggingface/transformers-tf-light"}],
install_steps=["uv venv && uv pip install ."],
marker="is_pipeline_test",
parallelism=4
)
@ -300,34 +248,24 @@ custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
docker_image=[{"image": "huggingface/transformers-custom-tokenizers"}],
install_steps=["uv venv","uv pip install -e ."],
parallelism=None,
resource_class=None,
tests_to_run=[
"./tests/models/bert_japanese/test_tokenization_bert_japanese.py",
"./tests/models/openai/test_tokenization_openai.py",
"./tests/models/clip/test_tokenization_clip.py",
],
)
examples_torch_job = CircleCIJob(
"examples_torch",
additional_env={"OMP_NUM_THREADS": 8},
cache_name="torch_examples",
docker_image=[{"image":"huggingface/transformers-examples-torch"}],
# TODO @ArthurZucker remove this once docker is easier to build
install_steps=["uv venv && uv pip install . && uv pip install -r examples/pytorch/_tests_requirements.txt"],
pytest_num_workers=1,
pytest_num_workers=8,
)
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
cache_name="tensorflow_examples",
additional_env={"OMP_NUM_THREADS": 8},
docker_image=[{"image":"huggingface/transformers-examples-tf"}],
install_steps=["uv venv && uv pip install . && uv pip install -r examples/tensorflow/_tests_requirements.txt"],
parallelism=8
pytest_num_workers=16,
)
@ -336,12 +274,12 @@ hub_job = CircleCIJob(
additional_env={"HUGGINGFACE_CO_STAGING": True},
docker_image=[{"image":"huggingface/transformers-torch-light"}],
install_steps=[
"uv venv && uv pip install .",
'uv venv && uv pip install .',
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
],
marker="is_staging_test",
pytest_num_workers=1,
pytest_num_workers=2,
)
@ -349,8 +287,7 @@ onnx_job = CircleCIJob(
"onnx",
docker_image=[{"image":"huggingface/transformers-torch-tf-light"}],
install_steps=[
"uv venv && uv pip install .",
"uv pip install --upgrade eager pip",
"uv venv",
"uv pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
@ -360,15 +297,7 @@ onnx_job = CircleCIJob(
exotic_models_job = CircleCIJob(
"exotic_models",
install_steps=["uv venv && uv pip install ."],
docker_image=[{"image":"huggingface/transformers-exotic-models"}],
tests_to_run=[
"tests/models/*layoutlmv*",
"tests/models/*nat",
"tests/models/deta",
"tests/models/udop",
"tests/models/nougat",
],
pytest_num_workers=12,
parallelism=4,
pytest_options={"durations": 100},
@ -378,11 +307,8 @@ exotic_models_job = CircleCIJob(
repo_utils_job = CircleCIJob(
"repo_utils",
docker_image=[{"image":"huggingface/transformers-consistency"}],
install_steps=["uv venv && uv pip install ."],
parallelism=None,
pytest_num_workers=1,
pytest_num_workers=4,
resource_class="large",
tests_to_run="tests/repo_utils",
)
@ -391,28 +317,18 @@ repo_utils_job = CircleCIJob(
# the bash output redirection.)
py_command = 'from utils.tests_fetcher import get_doctest_files; to_test = get_doctest_files() + ["dummy.py"]; to_test = " ".join(to_test); print(to_test)'
py_command = f"$(python3 -c '{py_command}')"
command = f'echo "{py_command}" > pr_documentation_tests_temp.txt'
command = f'echo """{py_command}""" > pr_documentation_tests_temp.txt'
doc_test_job = CircleCIJob(
"pr_documentation_tests",
docker_image=[{"image":"huggingface/transformers-consistency"}],
additional_env={"TRANSFORMERS_VERBOSITY": "error", "DATASETS_VERBOSITY": "error", "SKIP_CUDA_DOCTEST": "1"},
install_steps=[
# Add an empty file to keep the test step running correctly even no file is selected to be tested.
"uv venv && pip install .",
"touch dummy.py",
{
"name": "Get files to test",
"command": command,
},
{
"name": "Show information in `Get files to test`",
"command":
"cat pr_documentation_tests_temp.txt"
},
{
"name": "Get the last line in `pr_documentation_tests.txt`",
"command":
"tail -n1 pr_documentation_tests_temp.txt | tee pr_documentation_tests.txt"
},
command,
"cat pr_documentation_tests_temp.txt",
"tail -n1 pr_documentation_tests_temp.txt | tee pr_documentation_tests_test_list.txt"
],
tests_to_run="$(cat pr_documentation_tests.txt)", # noqa
pytest_options={"-doctest-modules": None, "doctest-glob": "*.md", "dist": "loadfile", "rvsA": None},
@ -420,121 +336,37 @@ doc_test_job = CircleCIJob(
pytest_num_workers=1,
)
REGULAR_TESTS = [
torch_and_tf_job,
torch_and_flax_job,
torch_job,
tf_job,
flax_job,
custom_tokenizers_job,
hub_job,
onnx_job,
exotic_models_job,
tokenization_job
]
EXAMPLES_TESTS = [
examples_torch_job,
examples_tensorflow_job,
]
PIPELINE_TESTS = [
pipelines_torch_job,
pipelines_tf_job,
]
REGULAR_TESTS = [torch_and_tf_job, torch_and_flax_job, torch_job, tf_job, flax_job, hub_job, onnx_job, tokenization_job, processor_job, generate_job] # fmt: skip
EXAMPLES_TESTS = [examples_torch_job, examples_tensorflow_job]
PIPELINE_TESTS = [pipelines_torch_job, pipelines_tf_job]
REPO_UTIL_TESTS = [repo_utils_job]
DOC_TESTS = [doc_test_job]
ALL_TESTS = REGULAR_TESTS + EXAMPLES_TESTS + PIPELINE_TESTS + REPO_UTIL_TESTS + DOC_TESTS + [custom_tokenizers_job] + [exotic_models_job] # fmt: skip
def create_circleci_config(folder=None):
if folder is None:
folder = os.getcwd()
# Used in CircleCIJob.to_dict() to expand the test list (for using parallelism)
os.environ["test_preparation_dir"] = folder
jobs = []
all_test_file = os.path.join(folder, "test_list.txt")
if os.path.exists(all_test_file):
with open(all_test_file) as f:
all_test_list = f.read()
else:
all_test_list = []
if len(all_test_list) > 0:
jobs.extend(PIPELINE_TESTS)
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
with open(test_file) as f:
test_list = f.read()
else:
test_list = []
if len(test_list) > 0:
jobs.extend(REGULAR_TESTS)
extended_tests_to_run = set(test_list.split())
# Extend the test files for cross test jobs
for job in jobs:
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
for test_path in copy.copy(extended_tests_to_run):
dir_path, fn = os.path.split(test_path)
if fn.startswith("test_modeling_tf_"):
fn = fn.replace("test_modeling_tf_", "test_modeling_")
elif fn.startswith("test_modeling_flax_"):
fn = fn.replace("test_modeling_flax_", "test_modeling_")
else:
if job.job_name == "test_torch_and_tf":
fn = fn.replace("test_modeling_", "test_modeling_tf_")
elif job.job_name == "test_torch_and_flax":
fn = fn.replace("test_modeling_", "test_modeling_flax_")
new_test_file = str(os.path.join(dir_path, fn))
if os.path.isfile(new_test_file):
if new_test_file not in extended_tests_to_run:
extended_tests_to_run.add(new_test_file)
extended_tests_to_run = sorted(extended_tests_to_run)
for job in jobs:
if job.job_name in ["tests_torch_and_tf", "tests_torch_and_flax"]:
job.tests_to_run = extended_tests_to_run
fn = "filtered_test_list_cross_tests.txt"
f_path = os.path.join(folder, fn)
with open(f_path, "w") as fp:
fp.write(" ".join(extended_tests_to_run))
example_file = os.path.join(folder, "examples_test_list.txt")
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
with open(example_file, "r", encoding="utf-8") as f:
example_tests = f.read()
for job in EXAMPLES_TESTS:
framework = job.name.replace("examples_", "").replace("torch", "pytorch")
if example_tests == "all":
job.tests_to_run = [f"examples/{framework}"]
else:
job.tests_to_run = [f for f in example_tests.split(" ") if f.startswith(f"examples/{framework}")]
if len(job.tests_to_run) > 0:
jobs.append(job)
doctest_file = os.path.join(folder, "doctest_list.txt")
if os.path.exists(doctest_file):
with open(doctest_file) as f:
doctest_list = f.read()
else:
doctest_list = []
if len(doctest_list) > 0:
jobs.extend(DOC_TESTS)
repo_util_file = os.path.join(folder, "test_repo_utils.txt")
if os.path.exists(repo_util_file) and os.path.getsize(repo_util_file) > 0:
jobs.extend(REPO_UTIL_TESTS)
jobs = [k for k in ALL_TESTS if os.path.isfile(os.path.join("test_preparation" , f"{k.job_name}_test_list.txt") )]
print("The following jobs will be run ", jobs)
if len(jobs) == 0:
jobs = [EmptyJob()]
config = {"version": "2.1"}
config["parameters"] = {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": test_list},
print("Full list of job name inputs", {j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs})
config = {
"version": "2.1",
"parameters": {
# Only used to accept the parameters from the trigger
"nightly": {"type": "boolean", "default": False},
"tests_to_run": {"type": "string", "default": ''},
**{j.job_name + "_test_list":{"type":"string", "default":''} for j in jobs},
**{j.job_name + "_parallelism":{"type":"integer", "default":1} for j in jobs},
},
"jobs" : {j.job_name: j.to_dict() for j in jobs},
"workflows": {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
f.write(yaml.dump(config, sort_keys=False, default_flow_style=False).replace("' << pipeline", " << pipeline").replace(">> '", " >>"))
if __name__ == "__main__":

View File

@ -67,4 +67,4 @@ def main():
if __name__ == "__main__":
main()
main()

View File

@ -1,6 +1,17 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve transformers
labels: [ "bug" ]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report! 🤗
Before you submit your bug report:
- If it is your first time submitting, be sure to check our [bug report guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#did-you-find-a-bug)
- Try our [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat) -- it might be able to help you with your issue
- type: textarea
id: system-info
attributes:
@ -25,22 +36,22 @@ body:
Models:
- text models: @ArthurZucker
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- text models: @ArthurZucker
- vision models: @amyeroberts, @qubvel
- speech models: @ylacombe, @eustlb
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Narsil
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- tokenizers: @ArthurZucker and @itazap
- trainer: @muellerzr @SunMarc
Integrations:
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc

View File

@ -34,7 +34,7 @@ Some notes:
## Tutorial section
- [ ] [pipeline_tutorial.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/pipeline_tutorial.md)
- [ ] [autoclass_tutorial.md](https://github.com/huggingface/transformers/blob/master/docs/source/autoclass_tutorial.md)
- [ ] [autoclass_tutorial.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/autoclass_tutorial.md)
- [ ] [preprocessing.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/preprocessing.md)
- [ ] [training.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/training.md)
- [ ] [accelerate.md](https://github.com/huggingface/transformers/blob/main/docs/source/en/accelerate.md)

View File

@ -40,27 +40,28 @@ members/contributors who may be interested in your PR.
Models:
- text models: @ArthurZucker
- vision models: @amyeroberts
- speech models: @sanchit-gandhi
- vision models: @amyeroberts, @qubvel
- speech models: @ylacombe, @eustlb
- graph models: @clefourrier
Library:
- flax: @sanchit-gandhi
- generate: @zucchini-nlp (visual-language models) or @gante (all others)
- pipelines: @Narsil
- pipelines: @Rocketknight1
- tensorflow: @gante and @Rocketknight1
- tokenizers: @ArthurZucker
- trainer: @muellerzr and @SunMarc
- chat templates: @Rocketknight1
Integrations:
- deepspeed: HF Trainer/Accelerate: @muellerzr
- ray/raytune: @richardliaw, @amogkam
- Big Model Inference: @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc
- quantization (bitsandbytes, autogpt): @SunMarc
Documentation: @stevhliu and @MKhalusova
Documentation: @stevhliu
HF projects:

View File

@ -23,7 +23,7 @@ jobs:
sudo apt -y update && sudo apt install -y libsndfile1-dev
- name: Load cached virtual environment
uses: actions/cache@v2
uses: actions/cache@v4
id: cache
with:
path: ~/venv/

View File

@ -31,12 +31,12 @@ jobs:
if: github.event_name == 'schedule'
working-directory: /transformers
run: |
python3 -m pip install optimum-benchmark>=0.2.0
python3 -m pip install optimum-benchmark>=0.3.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun
- name: Benchmark (merged to main event)
if: github.event_name == 'push' && github.ref_name == 'main'
working-directory: /transformers
run: |
python3 -m pip install optimum-benchmark>=0.2.0
python3 -m pip install optimum-benchmark>=0.3.0
HF_TOKEN=${{ secrets.TRANSFORMERS_BENCHMARK_TOKEN }} python3 benchmark/benchmark.py --repo_id hf-internal-testing/benchmark_results_merge_event --path_in_repo $(date +'%Y-%m-%d') --config-dir benchmark/config --config-name generation --commit=${{ github.sha }} backend.model=google/gemma-2b backend.cache_implementation=null,static backend.torch_compile=false,true --multirun

View File

@ -27,10 +27,10 @@ jobs:
strategy:
matrix:
file: ["quality", "consistency", "custom-tokenizers", "torch-light", "tf-light", "exotic-models", "torch-tf-light", "torch-jax-light", "jax-light", "examples-torch", "examples-tf"]
continue-on-error: true
continue-on-error: true
steps:
-
-
name: Set tag
run: |
if ${{contains(github.event.head_commit.message, '[build-ci-image]')}}; then
@ -61,4 +61,17 @@ jobs:
REF=${{ github.sha }}
file: "./docker/${{ matrix.file }}.dockerfile"
push: ${{ contains(github.event.head_commit.message, 'ci-image]') || github.event_name == 'schedule' }}
tags: ${{ env.TAG }}
tags: ${{ env.TAG }}
notify:
runs-on: ubuntu-22.04
if: ${{ contains(github.event.head_commit.message, '[build-ci-image]') || contains(github.event.head_commit.message, '[push-ci-image]') && '!cancelled()' || github.event_name == 'schedule' }}
steps:
- name: Post to Slack
if: ${{ contains(github.event.head_commit.message, '[push-ci-image]') && github.event_name != 'schedule' }}
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: "#transformers-ci-circleci-images"
title: 🤗 New docker images for CircleCI are pushed.
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -23,7 +23,7 @@ jobs:
- uses: actions/checkout@v4
- name: Set up Python 3.8
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
# Semantic version range syntax or exact version of a Python version
python-version: '3.8'

129
.github/workflows/model_jobs_amd.yml vendored Normal file
View File

@ -0,0 +1,129 @@
name: model jobs
on:
workflow_call:
inputs:
folder_slices:
required: true
type: string
machine_type:
required: true
type: string
slice_id:
required: true
type: number
runner:
required: true
type: string
docker:
required: true
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
# For gated repositories, we still need to agree to share information on the Hub repo. page in order to get access.
# This token is created under the bot `hf-transformers-bot`.
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
CUDA_VISIBLE_DEVICES: 0,1
jobs:
run_models_gpu:
name: " "
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
fail-fast: false
matrix:
folders: ${{ fromJson(inputs.folder_slices)[inputs.slice_id] }}
runs-on: ['${{ inputs.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: ${{ inputs.docker }}
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Echo input and matrix info
shell: bash
run: |
echo "${{ inputs.folder_slices }}"
echo "${{ matrix.folders }}"
echo "${{ toJson(fromJson(inputs.folder_slices)[inputs.slice_id]) }}"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') }}
working-directory: /transformers
run: |
python3 -m pip install -U datasets
- name: Update / Install some packages (for Past CI)
if: ${{ contains(inputs.docker, '-past-') && contains(inputs.docker, '-pytorch-') }}
working-directory: /transformers
run: |
python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -rsfE -v --make-reports=${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: Run test
shell: bash
run: |
mkdir -p /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
echo "hello" > /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/hello.txt
echo "${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ inputs.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ inputs.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports

View File

@ -19,7 +19,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v1
uses: actions/checkout@v4
- name: Install miniconda
uses: conda-incubator/setup-miniconda@v2

19
.github/workflows/remind_slow_ci.yml vendored Normal file
View File

@ -0,0 +1,19 @@
name: Build PR Documentation
on:
pull_request_target:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
remind:
name: remind
runs-on: ubuntu-22.04
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- name: Install requirements
run: |
echo "Bonjour"

View File

@ -4,7 +4,7 @@ on:
pull_request:
paths:
- "src/transformers/models/*/modeling_*.py"
- "tests/models/*/test_*.py"
- "tests/**/test_*.py"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}

View File

@ -64,23 +64,24 @@ jobs:
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -159,6 +160,12 @@ jobs:
container:
image: huggingface/transformers-pytorch-amd-gpu-push-ci # <--- We test only for PyTorch for now
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -166,11 +173,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -256,6 +259,12 @@ jobs:
# run_tests_torch_cuda_extensions_single_gpu,
# run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
@ -271,11 +280,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -324,6 +329,7 @@ jobs:
# We pass `needs.setup_gpu.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup_gpu.outputs.matrix }}"

View File

@ -40,23 +40,24 @@ jobs:
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
env:
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -135,6 +136,12 @@ jobs:
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -142,11 +149,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -228,6 +231,12 @@ jobs:
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -235,11 +244,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -321,6 +326,12 @@ jobs:
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -328,11 +339,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -411,6 +418,12 @@ jobs:
container:
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
@ -418,11 +431,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -500,6 +509,12 @@ jobs:
run_tests_torch_cuda_extensions_single_gpu,
run_tests_torch_cuda_extensions_multi_gpu
]
env:
# For the meaning of these environment variables, see the job `Setup`
CI_BRANCH_PUSH: ${{ github.event.ref }}
CI_BRANCH_WORKFLOW_RUN: ${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH: ${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN: ${{ github.event.workflow_run.head_sha }}
steps:
- name: Preliminary job status
shell: bash
@ -513,11 +528,7 @@ jobs:
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
@ -563,6 +574,7 @@ jobs:
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -10,11 +10,46 @@ on:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi210
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi210
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
example-ci:
name: Example CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit

View File

@ -10,11 +10,46 @@ on:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi250
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && startsWith(github.ref_name, 'run_amd_scheduled_ci_caller')))
model-ci:
name: Model CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi250
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit
example-ci:
name: Example CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: ./.github/workflows/self-scheduled-amd.yml
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
secrets: inherit

View File

@ -1,21 +0,0 @@
name: Self-hosted runner (AMD mi300 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
run_amd_ci:
name: AMD mi300
needs: build-docker-containers
if: (cancelled() != true) && ((github.event_name == 'workflow_run') || ((github.event_name == 'push') && (startsWith(github.ref_name, 'run_amd_push_ci_caller') || startsWith(github.ref_name, 'mi300-ci'))))
uses: ./.github/workflows/self-scheduled-amd.yml
with:
gpu_flavor: mi300
slack_report_channel: "#transformers-ci-daily-amd"
secrets: inherit

View File

@ -3,10 +3,23 @@ name: Self-hosted runner (scheduled-amd)
# Note: For the AMD CI, we rely on a caller workflow and on the workflow_call event to trigger the
# CI in order to run it on both MI210 and MI250, without having to use matrix here which pushes
# us towards the limit of allowed jobs on GitHub Actions.
on:
workflow_call:
inputs:
gpu_flavor:
job:
required: true
type: string
slack_report_channel:
required: true
type: string
runner:
required: true
type: string
docker:
required: true
type: string
ci_event:
required: true
type: string
@ -18,7 +31,7 @@ env:
RUN_SLOW: yes
HF_HUB_READ_TOKEN: ${{ secrets.HF_HUB_READ_TOKEN }}
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
NUM_SLICES: 2
# Important note: each job (run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_torch_gpu) requires all the previous jobs before running.
# This is done so that we avoid parallelizing the scheduled tests, to leave available
@ -42,7 +55,7 @@ jobs:
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
@ -50,25 +63,29 @@ jobs:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
setup:
if: contains(fromJSON('["run_models_gpu"]'), inputs.job)
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
folder_slices: ${{ steps.set-matrix.outputs.folder_slices }}
slice_ids: ${{ steps.set-matrix.outputs.slice_ids }}
steps:
- name: Update clone
working-directory: /transformers
@ -90,7 +107,8 @@ jobs:
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "matrix=$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')" >> $GITHUB_OUTPUT
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
- name: ROCM-SMI
run: |
@ -99,6 +117,7 @@ jobs:
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
@ -108,99 +127,38 @@ jobs:
run: |
python3 utils/print_env.py
run_models_gpu_single_gpu:
run_models_gpu:
if: ${{ inputs.job == 'run_models_gpu' }}
name: Single GPU tests
needs: setup
strategy:
max-parallel: 1 # For now, not to parallelize. Can change later if it works well.
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
machine_type: [single-gpu, multi-gpu]
slice_id: ${{ fromJSON(needs.setup.outputs.slice_ids) }}
uses: ./.github/workflows/model_jobs_amd.yml
with:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
machine_type: ${{ matrix.machine_type }}
slice_id: ${{ matrix.slice_id }}
runner: ${{ inputs.runner }}
docker: ${{ inputs.docker }}
secrets: inherit
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
run_models_gpu_multi_gpu:
name: Multi GPU tests
run_pipelines_torch_gpu:
if: ${{ inputs.job == 'run_pipelines_torch_gpu' }}
name: PyTorch pipelines
needs: check_runners
strategy:
max-parallel: 1
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
machine_type: [single-gpu, multi-gpu]
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
image: ${{ inputs.docker }}
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
@ -212,9 +170,11 @@ jobs:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
@ -228,33 +188,35 @@ jobs:
working-directory: /transformers
run: pip freeze
- name: Run all tests on GPU
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports tests/${{ matrix.folders }} -m "not not_device_test"
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports/failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports"
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_models_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_models_gpu_${{ matrix.folders }}_test_reports
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_examples_gpu:
name: Examples tests
if: ${{ inputs.job == 'run_examples_gpu' }}
name: Examples directory
needs: check_runners
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
image: ${{ inputs.docker }}
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
@ -267,9 +229,11 @@ jobs:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
@ -301,73 +265,17 @@ jobs:
name: ${{ matrix.machine_type }}_run_examples_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_examples_gpu_test_reports
run_pipelines_torch_gpu:
name: PyTorch pipelines tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
container:
image: huggingface/transformers-pytorch-amd-gpu
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Reinstall transformers in edit mode (remove the one installed during docker image build)
working-directory: /transformers
run: python3 -m pip uninstall -y transformers && python3 -m pip install -e .
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Show installed libraries and their versions
working-directory: /transformers
run: pip freeze
- name: Run all pipeline tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports tests/pipelines -m "not not_device_test"
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports/failures_short.txt
- name: "Test suite reports artifacts: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports"
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: ${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_pipelines_torch_gpu_test_reports
run_torch_cuda_extensions_gpu:
if: ${{ inputs.job == 'run_torch_cuda_extensions_gpu' }}
name: Torch ROCm deepspeed tests
needs: check_runners
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, amd-gpu, '${{ matrix.machine_type }}', '${{ inputs.gpu_flavor }}']
needs: setup
runs-on: ['${{ matrix.machine_type }}', self-hosted, amd-gpu, '${{ inputs.runner }}']
container:
image: huggingface/transformers-pytorch-deepspeed-amd-gpu
image: ${{ inputs.docker }}
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
@ -381,6 +289,7 @@ jobs:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
@ -414,106 +323,27 @@ jobs:
name: ${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_run_torch_cuda_extensions_gpu_test_reports
run_extract_warnings:
name: Extract warnings in CI artifacts
runs-on: ubuntu-22.04
if: always()
send_results:
name: Slack Report
needs: [
check_runner_status,
check_runners,
setup,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_models_gpu,
run_pipelines_torch_gpu,
run_examples_gpu,
run_torch_cuda_extensions_gpu
]
steps:
- name: Checkout transformers
uses: actions/checkout@v4
with:
fetch-depth: 2
if: ${{ always() }}
uses: ./.github/workflows/slack-report.yml
with:
job: ${{ inputs.job }}
# This would be `skipped` if `setup` is skipped.
setup_status: ${{ needs.setup.result }}
slack_report_channel: ${{ inputs.slack_report_channel }}
# This would be an empty string if `setup` is skipped.
folder_slices: ${{ needs.setup.outputs.folder_slices }}
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
ci_event: ${{ inputs.ci_event }}
- name: Install transformers
run: pip install transformers
- name: Show installed libraries and their versions
run: pip freeze
- name: Create output directory
run: mkdir warnings_in_ci
- uses: actions/download-artifact@v4
with:
path: warnings_in_ci
- name: Show artifacts
run: echo "$(python3 -c 'import os; d = os.listdir(); print(d)')"
working-directory: warnings_in_ci
- name: Extract warnings in CI artifacts
run: |
python3 utils/extract_warnings.py --workflow_run_id ${{ github.run_id }} --output_dir warnings_in_ci --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }} --from_gh
echo "$(python3 -c 'import os; import json; fp = open("warnings_in_ci/selected_warnings.json"); d = json.load(fp); d = "\n".join(d) ;print(d)')"
- name: Upload artifact
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: warnings_in_ci
path: warnings_in_ci/selected_warnings.json
send_results:
name: Send results to webhook
runs-on: ubuntu-22.04
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_models_gpu_single_gpu,
run_models_gpu_multi_gpu,
run_examples_gpu,
run_pipelines_torch_gpu,
run_torch_cuda_extensions_gpu,
run_extract_warnings
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID_DAILY_AMD: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_AMD }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
CI_EVENT: Scheduled CI (AMD) - ${{ inputs.gpu_flavor }}
CI_SHA: ${{ github.sha }}
CI_WORKFLOW_REF: ${{ github.workflow_ref }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
sudo apt-get install -y curl
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v4
with:
name: test_failure_tables
path: test_failure_tables
secrets: inherit

View File

@ -2,9 +2,6 @@ name: Self-hosted runner (scheduled)
on:
repository_dispatch:
schedule:
- cron: "17 2 * * *"
push:
branches:
- run_scheduled_ci*

View File

@ -83,7 +83,7 @@ jobs:
run: |
echo "folder_slices=$(python3 ../utils/split_model_tests.py --num_splits ${{ env.NUM_SLICES }})" >> $GITHUB_OUTPUT
echo "slice_ids=$(python3 -c 'd = list(range(${{ env.NUM_SLICES }})); print(d)')" >> $GITHUB_OUTPUT
- id: set-matrix-quantization
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
name: Identify quantization method to test

View File

@ -53,11 +53,22 @@ jobs:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Store Slack infos
#because the SSH can be enabled dynamically if the workflow failed, so we need to store slack infos to be able to retrieve them during the waitforssh step
shell: bash
run: |
if [ "${{ secrets[format('{0}_{1}', github.actor, 'SLACK_ID')] }}" != "" ]; then
echo "SLACKCHANNEL=${{ secrets[format('{0}_{1}', github.actor, 'SLACK_ID')] }}" >> $GITHUB_ENV
else
echo "SLACKCHANNEL=${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}" >> $GITHUB_ENV
fi
- name: Tailscale # In order to be able to SSH when a test fails
uses: huggingface/tailscale-action@main
with:
authkey: ${{ secrets.TAILSCALE_SSH_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackChannel: ${{ env.SLACKCHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
waitForSSH: true
sshTimeout: 15m

View File

@ -9,13 +9,15 @@ jobs:
name: Close Stale Issues
if: github.repository == 'huggingface/transformers'
runs-on: ubuntu-22.04
permissions:
issues: write
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v4
uses: actions/setup-python@v5
with:
python-version: 3.8

View File

@ -10,20 +10,9 @@ jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- shell: bash
run: |
if [ "${{ github.event_name }}" == "push" ]; then
echo "depth=$(($(jq length <<< '${{ toJson(github.event.commits) }}') + 2))" >> $GITHUB_ENV
echo "branch=${{ github.ref_name }}" >> $GITHUB_ENV
fi
if [ "${{ github.event_name }}" == "pull_request" ]; then
echo "depth=$((${{ github.event.pull_request.commits }}+2))" >> $GITHUB_ENV
echo "branch=${{ github.event.pull_request.head.ref }}" >> $GITHUB_ENV
fi
- name: Checkout code
uses: actions/checkout@v4
with:
ref: ${{env.branch}}
fetch-depth: ${{env.depth}}
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

View File

@ -61,7 +61,10 @@ feedback.
The 🤗 Transformers library is robust and reliable thanks to users who report the problems they encounter.
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) first. This helps us respond quicker to fixing issues related to the library versus general questions.
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code. If you're unsure whether the bug is in your code or the library, please ask in the [forum](https://discuss.huggingface.co/) or on our [discord](https://discord.com/invite/hugging-face-879548962464493619) first. This helps us respond quicker to fixing issues related to the library versus general questions.
> [!TIP]
> We have a [docs bot](https://huggingface.co/spaces/huggingchat/hf-docs-chat), and we highly encourage you to ask all your questions there. There is always a chance your bug can be fixed with a simple flag 👾🔫
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
@ -129,7 +132,7 @@ You will need basic `git` proficiency to contribute to
manual. Type `git --help` in a shell and enjoy! If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L426)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main/setup.py#L449)** or above to contribute to 🤗 Transformers. Follow the steps below to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the **[Fork](https://github.com/huggingface/transformers/fork)** button on the repository's page. This creates a copy of the code
@ -160,7 +163,7 @@ You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main
If 🤗 Transformers was already installed in the virtual environment, remove
it with `pip uninstall transformers` before reinstalling it in editable
mode with the `-e` flag.
Depending on your OS, and since the number of optional dependencies of Transformers is growing, you might get a
failure with this command. If that's the case make sure to install the Deep Learning framework you are working with
(PyTorch, TensorFlow and/or Flax) then do:
@ -219,7 +222,7 @@ You'll need **[Python 3.8](https://github.com/huggingface/transformers/blob/main
If you're modifying documents under the `docs/source` directory, make sure the documentation can still be built. This check will also run in the CI when you open a pull request. To run a local check
make sure you install the documentation builder:
```bash
pip install ".[docs]"
```
@ -338,12 +341,12 @@ RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./tests/models/my_ne
RUN_SLOW=yes python -m pytest -n auto --dist=loadfile -s -v ./examples/pytorch/text-classification
```
Like the slow tests, there are other environment variables available which not enabled by default during testing:
Like the slow tests, there are other environment variables available which are not enabled by default during testing:
- `RUN_CUSTOM_TOKENIZERS`: Enables tests for custom tokenizers.
- `RUN_PT_FLAX_CROSS_TESTS`: Enables tests for PyTorch + Flax integration.
- `RUN_PT_TF_CROSS_TESTS`: Enables tests for TensorFlow + PyTorch integration.
More environment variables and additional information can be found in the [testing_utils.py](src/transformers/testing_utils.py).
More environment variables and additional information can be found in the [testing_utils.py](https://github.com/huggingface/transformers/blob/main/src/transformers/testing_utils.py).
🤗 Transformers uses `pytest` as a test runner only. It doesn't use any
`pytest`-specific features in the test suite itself.

View File

@ -53,15 +53,14 @@ quality:
@python -c "from transformers import *" || (echo '🚨 import failed, this means you introduced unprotected imports! 🚨'; exit 1)
ruff check $(check_dirs) setup.py conftest.py
ruff format --check $(check_dirs) setup.py conftest.py
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
python utils/check_doc_toc.py
python utils/check_docstrings.py --check_all
# Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks:
python utils/custom_init_isort.py
python utils/sort_auto_mappings.py
python utils/check_doc_toc.py --fix_and_overwrite

View File

@ -48,6 +48,7 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_fr.md">Français</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_de.md">Deutsch</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_vi.md">Tiếng Việt</a> |
<a href="https://github.com/huggingface/transformers/blob/main/i18n/README_ar.md">العربية</a> |
</p>
</h4>

View File

@ -36,5 +36,4 @@ Please inspect the code of the tools before passing them to the Agent to protect
## Reporting a Vulnerability
🤗 Please feel free to submit vulnerability reports to our private bug bounty program at https://hackerone.com/hugging_face. You'll need to request access to the program by emailing security@huggingface.co.
Note that you'll need to be invited to our program, so send us a quick email at security@huggingface.co if you've found a vulnerability.
Feel free to submit vulnerability reports to [security@huggingface.co](mailto:security@huggingface.co), where someone from the HF security team will review and recommend next steps. If reporting a vulnerability specific to open source, please note [Huntr](https://huntr.com) is a vulnerability disclosure program for open source software.

View File

@ -596,7 +596,7 @@ Keywords: Data-Centric AI, Data Quality, Noisy Labels, Outlier Detection, Active
## [BentoML](https://github.com/bentoml/BentoML)
[BentoML](https://github.com/bentoml) is the unified framework for for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
[BentoML](https://github.com/bentoml) is the unified framework for building, shipping, and scaling production-ready AI applications incorporating traditional ML, pre-trained AI models, Generative and Large Language Models.
All Hugging Face models and pipelines can be seamlessly integrated into BentoML applications, enabling the running of models on the most suitable hardware and independent scaling based on usage.
Keywords: BentoML, Framework, Deployment, AI Applications

View File

@ -101,7 +101,7 @@ def summarize(run_dir, metrics, expand_metrics=False):
# post-processing of report: show a few selected/important metric
for metric in metrics:
keys = metric.split(".")
value = report
value = report.to_dict()
current = metrics_values
for key in keys:
# Avoid KeyError when a user's specified metric has typo.

View File

@ -2,14 +2,15 @@ FROM python:3.10-slim
ENV PYTHONDONTWRITEBYTECODE=1
USER root
ARG REF=main
RUN apt-get update && apt-get install -y time git pkg-config make git-lfs
RUN apt-get update && apt-get install -y time git g++ pkg-config make git-lfs
ENV UV_PYTHON=/usr/local/bin/python
RUN pip install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools GitPython
RUN uv pip install --no-cache-dir --upgrade 'torch' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir tensorflow-cpu tf-keras
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,vision,testing]"
RUN pip install --no-cache-dir --upgrade 'torch' 'torchaudio' 'torchvision' --index-url https://download.pytorch.org/whl/cpu
# tensorflow pin matching setup.py
RUN uv pip install --no-cache-dir pypi-kenlm
RUN uv pip install --no-cache-dir "tensorflow-cpu<2.16" "tf-keras<2.16"
RUN uv pip install --no-cache-dir "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[flax,quality,testing,torch-speech,vision]"
RUN git lfs install
RUN pip uninstall -y transformers
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean
RUN apt-get clean && rm -rf /var/lib/apt/lists/* && apt-get autoremove && apt-get autoclean

View File

@ -6,6 +6,6 @@ RUN apt-get update && apt-get install -y --no-install-recommends libsndfile1-de
ENV UV_PYTHON=/usr/local/bin/python
RUN pip --no-cache-dir install uv && uv venv && uv pip install --no-cache-dir -U pip setuptools
RUN pip install --no-cache-dir 'torch' 'torchvision' 'torchaudio' --index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing]"
RUN uv pip install --no-deps timm accelerate --extra-index-url https://download.pytorch.org/whl/cpu
RUN uv pip install --no-cache-dir librosa "git+https://github.com/huggingface/transformers.git@${REF}#egg=transformers[sklearn,sentencepiece,vision,testing,tiktoken]"
RUN pip uninstall -y transformers

View File

@ -9,7 +9,7 @@ SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='2.3.0'
ARG PYTORCH='2.4.0'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='2.3.0'
# Example: `cu102`, `cu113`, etc.

View File

@ -22,7 +22,7 @@ RUN apt update && \
apt clean && \
rm -rf /var/lib/apt/lists/*
RUN python3 -m pip install --no-cache-dir --upgrade pip ninja "pydantic<2"
RUN python3 -m pip install --no-cache-dir --upgrade pip ninja "pydantic>=2.0.0"
RUN python3 -m pip uninstall -y apex torch torchvision torchaudio
RUN python3 -m pip install torch==$PYTORCH torchvision==$TORCH_VISION torchaudio==$TORCH_AUDIO --index-url https://download.pytorch.org/whl/rocm$ROCM --no-cache-dir

View File

@ -42,12 +42,12 @@ RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install "deepspeed<=0.14.0" --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# The base image ships with `pydantic==1.8.2` which is not working - i.e. the next command fails
RUN python3 -m pip install -U --no-cache-dir "pydantic<2"
RUN python3 -m pip install -U --no-cache-dir "pydantic>=2.0.0"
RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -11,7 +11,7 @@ ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# If set to nothing, will install the latest version
ARG PYTORCH='2.3.0'
ARG PYTORCH='2.4.0'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
# Example: `cu102`, `cu113`, etc.

View File

@ -54,4 +54,4 @@ The fields you should add are `local` (with the name of the file containing the
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu and @MKhalusova.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @stevhliu.

View File

@ -24,7 +24,9 @@
- local: model_sharing
title: Share your model
- local: agents
title: Agents
title: Agents 101
- local: agents_advanced
title: Agents, supercharged - Multi-agents, External tools, and more
- local: llm_tutorial
title: Generation with LLMs
- local: conversations
@ -92,11 +94,17 @@
title: Visual Question Answering
- local: tasks/text-to-speech
title: Text to speech
- local: tasks/image_text_to_text
title: Image-text-to-text
- local: tasks/video_text_to_text
title: Video-text-to-text
title: Multimodal
- isExpanded: false
sections:
- local: generation_strategies
title: Customize the generation strategy
- local: kv_cache
title: Best Practices for Generation with Cache
title: Generation
- isExpanded: false
sections:
@ -116,7 +124,7 @@
- local: custom_models
title: Share a custom model
- local: chat_templating
title: Templates for chat models
title: Chat templates
- local: trainer
title: Trainer
- local: sagemaker
@ -137,6 +145,8 @@
title: Troubleshoot
- local: gguf
title: Interoperability with GGUF files
- local: tiktoken
title: Interoperability with TikToken files
title: Developer guides
- sections:
- local: quantization/overview
@ -155,8 +165,12 @@
title: EETQ
- local: quantization/hqq
title: HQQ
- local: quantization/fbgemm_fp8
title: FBGEMM_FP8
- local: quantization/optimum
title: Optimum
- local: quantization/torchao
title: TorchAO
- local: quantization/contribute
title: Contribute new quantization method
title: Quantization Methods
@ -282,6 +296,8 @@
title: Trainer
- local: main_classes/deepspeed
title: DeepSpeed
- local: main_classes/executorch
title: ExecuTorch
- local: main_classes/feature_extractor
title: Feature Extractor
- local: main_classes/image_processor
@ -364,6 +380,8 @@
title: ESM
- local: model_doc/falcon
title: Falcon
- local: model_doc/falcon_mamba
title: FalconMamba
- local: model_doc/fastspeech2_conformer
title: FastSpeech2Conformer
- local: model_doc/flan-t5
@ -382,6 +400,8 @@
title: Fuyu
- local: model_doc/gemma
title: Gemma
- local: model_doc/gemma2
title: Gemma2
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
@ -400,6 +420,8 @@
title: GPTSAN Japanese
- local: model_doc/gpt-sw3
title: GPTSw3
- local: model_doc/granite
title: Granite
- local: model_doc/herbert
title: HerBERT
- local: model_doc/ibert
@ -430,6 +452,8 @@
title: MADLAD-400
- local: model_doc/mamba
title: Mamba
- local: model_doc/mamba2
title: mamba2
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
@ -460,6 +484,8 @@
title: MT5
- local: model_doc/mvp
title: MVP
- local: model_doc/nemotron
title: Nemotron
- local: model_doc/nezha
title: NEZHA
- local: model_doc/nllb
@ -470,6 +496,8 @@
title: Nyströmformer
- local: model_doc/olmo
title: OLMo
- local: model_doc/olmoe
title: OLMoE
- local: model_doc/open-llama
title: Open-Llama
- local: model_doc/opt
@ -494,8 +522,12 @@
title: QDQBert
- local: model_doc/qwen2
title: Qwen2
- local: model_doc/qwen2_audio
title: Qwen2Audio
- local: model_doc/qwen2_moe
title: Qwen2MoE
- local: model_doc/qwen2_vl
title: Qwen2VL
- local: model_doc/rag
title: RAG
- local: model_doc/realm
@ -579,6 +611,8 @@
title: DeiT
- local: model_doc/depth_anything
title: Depth Anything
- local: model_doc/depth_anything_v2
title: Depth Anything V2
- local: model_doc/deta
title: DETA
- local: model_doc/detr
@ -599,6 +633,8 @@
title: FocalNet
- local: model_doc/glpn
title: GLPN
- local: model_doc/hiera
title: Hiera
- local: model_doc/imagegpt
title: ImageGPT
- local: model_doc/levit
@ -663,6 +699,8 @@
title: ViTMSN
- local: model_doc/yolos
title: YOLOS
- local: model_doc/zoedepth
title: ZoeDepth
title: Vision models
- isExpanded: false
sections:
@ -672,8 +710,12 @@
title: Bark
- local: model_doc/clap
title: CLAP
- local: model_doc/dac
title: dac
- local: model_doc/encodec
title: EnCodec
- local: model_doc/hiera
title: Hiera
- local: model_doc/hubert
title: Hubert
- local: model_doc/mctct
@ -748,6 +790,8 @@
title: BridgeTower
- local: model_doc/bros
title: BROS
- local: model_doc/chameleon
title: Chameleon
- local: model_doc/chinese_clip
title: Chinese-CLIP
- local: model_doc/clip
@ -794,8 +838,10 @@
title: Llava
- local: model_doc/llava_next
title: LLaVA-NeXT
- local: model_doc/llava-next-video
- local: model_doc/llava_next_video
title: LLaVa-NeXT-Video
- local: model_doc/llava_onevision
title: LLaVA-Onevision
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/matcha

View File

@ -46,7 +46,7 @@ The next step is to pass all the relevant training objects to the [`~accelerate.
## Backward
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method:
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`] method:
```py
>>> for epoch in range(num_epochs):

View File

@ -28,8 +28,8 @@ An agent is a system that uses an LLM as its engine, and it has access to functi
These *tools* are functions for performing a task, and they contain all necessary description for the agent to properly use them.
The agent can be programmed to:
- devise a series of actions/tools and run them all at once like the [`CodeAgent`] for example
- plan and execute actions/tools one by one and wait for the outcome of each action before launching the next one like the [`ReactJsonAgent`] for example
- devise a series of actions/tools and run them all at once, like the [`CodeAgent`]
- plan and execute actions/tools one by one and wait for the outcome of each action before launching the next one, like the [`ReactJsonAgent`]
### Types of agents
@ -46,11 +46,22 @@ We implement two versions of ReactJsonAgent:
- [`ReactCodeAgent`] is a new type of ReactJsonAgent that generates its tool calls as blobs of code, which works really well for LLMs that have strong coding performance.
> [!TIP]
> Read [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) blog post to learn more the ReAct agent.
> Read [Open-source LLMs as LangChain Agents](https://huggingface.co/blog/open-source-llms-as-agents) blog post to learn more about ReAct agents.
<div class="flex justify-center">
<img
class="block dark:hidden"
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Agent_ManimCE.gif"
/>
<img
class="hidden dark:block"
src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/Agent_ManimCE.gif"
/>
</div>
![Framework of a React Agent](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/open-source-llms-as-agents/ReAct.png)
For example, here is how a ReAct agent would work its way through the following question.
For example, here is how a ReAct Code agent would work its way through the following question.
```py3
>>> agent.run(
@ -119,17 +130,20 @@ def llm_engine(messages, stop_sequences=["Task"]) -> str:
```
You could use any `llm_engine` method as long as:
1. it follows the [messages format](./chat_templating.md) for its input (`List[Dict[str, str]]`) and returns a `str`
2. it stops generating outputs at the sequences passed in the argument `stop`
1. it follows the [messages format](./chat_templating.md) (`List[Dict[str, str]]`) for its input `messages`, and it returns a `str`.
2. it stops generating outputs at the sequences passed in the argument `stop_sequences`
You also need a `tools` argument which accepts a list of `Tools`. You can provide an empty list for `tools`, but use the default toolbox with the optional argument `add_base_tools=True`.
Additionally, `llm_engine` can also take a `grammar` argument. In the case where you specify a `grammar` upon agent initialization, this argument will be passed to the calls to llm_engine, with the `grammar` that you defined upon initialization, to allow [constrained generation](https://huggingface.co/docs/text-generation-inference/conceptual/guidance) in order to force properly-formatted agent outputs.
Now you can create an agent, like [`CodeAgent`], and run it. For convenience, we also provide the [`HfEngine`] class that uses `huggingface_hub.InferenceClient` under the hood.
You will also need a `tools` argument which accepts a list of `Tools` - it can be an empty list. You can also add the default toolbox on top of your `tools` list by defining the optional argument `add_base_tools=True`.
Now you can create an agent, like [`CodeAgent`], and run it. You can also create a [`TransformersEngine`] with a pre-initialized pipeline to run inference on your local machine using `transformers`.
For convenience, since agentic behaviours generally require stronger models such as `Llama-3.1-70B-Instruct` that are harder to run locally for now, we also provide the [`HfApiEngine`] class that initializes a `huggingface_hub.InferenceClient` under the hood.
```python
from transformers import CodeAgent, HfEngine
from transformers import CodeAgent, HfApiEngine
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
llm_engine = HfApiEngine(model="meta-llama/Meta-Llama-3-70B-Instruct")
agent = CodeAgent(tools=[], llm_engine=llm_engine, add_base_tools=True)
agent.run(
@ -139,7 +153,7 @@ agent.run(
```
This will be handy in case of emergency baguette need!
You can even leave the argument `llm_engine` undefined, and an [`HfEngine`] will be created by default.
You can even leave the argument `llm_engine` undefined, and an [`HfApiEngine`] will be created by default.
```python
from transformers import CodeAgent
@ -188,7 +202,7 @@ You can still authorize additional imports by passing the authorized modules as
>>> from transformers import ReactCodeAgent
>>> agent = ReactCodeAgent(tools=[], additional_authorized_imports=['requests', 'bs4'])
>>>agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")
>>> agent.run("Could you get me the title of the page at url 'https://huggingface.co/blog'?")
(...)
'Hugging Face Blog'
@ -256,6 +270,13 @@ agent = ReactJsonAgent(tools=[PythonInterpreterTool()], system_prompt="{your_cus
> Please make sure to define the `<<tool_descriptions>>` string somewhere in the `template` so the agent is aware
of the available tools.
### Inspecting an agent run
Here are a few useful attributes to inspect what happened after a run:
- `agent.logs` stores the fine-grained logs of the agent. At every step of the agent's run, everything gets stored in a dictionary that then is appended to `agent.logs`.
- Running `agent.write_inner_memory_from_logs()` creates an inner memory of the agent's logs for the LLM to view, as a list of chat messages. This method goes over each step of the log and only stores what it's interested in as a message: for instance, it will save the system prompt and task in separate messages, then for each step it will store the LLM output as a message, and the tool call output as another message. Use this if you want a higher-level view of what has happened - but not every log will be transcripted by this method.
## Tools
A tool is an atomic function to be used by an agent.
@ -273,7 +294,8 @@ Transformers comes with a default toolbox for empowering agents, that you can ad
- **Speech to text**: given an audio recording of a person talking, transcribe the speech into text ([Whisper](./model_doc/whisper))
- **Text to speech**: convert text to speech ([SpeechT5](./model_doc/speecht5))
- **Translation**: translates a given sentence from source language to target language.
- **Python code interpreter**: runs your the LLM generated Python code in a secure environment. This tool will only be added to [`ReactJsonAgent`] if you use `add_base_tools=True`, since code-based tools can already execute Python code
- **DuckDuckGo search***: performs a web search using DuckDuckGo browser.
- **Python code interpreter**: runs your the LLM generated Python code in a secure environment. This tool will only be added to [`ReactJsonAgent`] if you initialize it with `add_base_tools=True`, since code-based agent can already natively execute Python code
You can manually use a tool by calling the [`load_tool`] function and a task to perform.
@ -379,7 +401,7 @@ And the output:
`"The most downloaded model for the 'text-to-video' task is ByteDance/AnimateDiff-Lightning."`
### Manage agent toolbox
### Manage your agent's toolbox
If you have already initialized an agent, it is inconvenient to reinitialize it from scratch with a tool you want to use. With Transformers, you can manage an agent's toolbox by adding or replacing a tool.
@ -433,72 +455,3 @@ To speed up the start, tools are loaded only if called by the agent.
This gets you this image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png">
### Use gradio-tools
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging
Face Spaces as tools. It supports many existing Spaces as well as custom Spaces.
Transformers supports `gradio_tools` with the [`Tool.from_gradio`] method. For example, let's use the [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) from `gradio-tools` toolkit for improving prompts to generate better images.
Import and instantiate the tool, then pass it to the `Tool.from_gradio` method:
```python
from gradio_tools import StableDiffusionPromptGeneratorTool
from transformers import Tool, load_tool, CodeAgent
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
```
Now you can use it just like any other tool. For example, let's improve the prompt `a rabbit wearing a space suit`.
```python
image_generation_tool = load_tool('huggingface-tools/text-to-image')
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
agent.run(
"Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit'
)
```
The model adequately leverages the tool:
```text
======== New task ========
Improve this prompt, then generate an image of it.
You have been provided with these initial arguments: {'prompt': 'A rabbit wearing a space suit'}.
==== Agent is executing the code below:
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
while improved_prompt == "QUEUE_FULL":
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
print(f"The improved prompt is {improved_prompt}.")
image = image_generator(prompt=improved_prompt)
====
```
Before finally generating the image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png">
> [!WARNING]
> gradio-tools require *textual* inputs and outputs even when working with different modalities like image and audio objects. Image and audio inputs and outputs are currently incompatible.
### Use LangChain tools
We love Langchain and think it has a very compelling suite of tools.
To import a tool from LangChain, use the `from_langchain()` method.
Here is how you can use it to recreate the intro's search result using a LangChain web search tool.
```python
from langchain.agents import load_tools
from transformers import Tool, ReactCodeAgent
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
agent = ReactCodeAgent(tools=[search_tool])
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
```

View File

@ -0,0 +1,182 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Agents, supercharged - Multi-agents, External tools, and more
[[open-in-colab]]
### What is an agent?
> [!TIP]
> If you're new to `transformers.agents`, make sure to first read the main [agents documentation](./agents).
In this page we're going to highlight several advanced uses of `transformers.agents`.
## Multi-agents
Multi-agent has been introduced in Microsoft's framework [Autogen](https://huggingface.co/papers/2308.08155).
It simply means having several agents working together to solve your task instead of only one.
It empirically yields better performance on most benchmarks. The reason for this better performance is conceptually simple: for many tasks, rather than using a do-it-all system, you would prefer to specialize units on sub-tasks. Here, having agents with separate tool sets and memories allows to achieve efficient specialization.
You can easily build hierarchical multi-agent systems with `transformers.agents`.
To do so, encapsulate the agent in a [`ManagedAgent`] object. This object needs arguments `agent`, `name`, and a `description`, which will then be embedded in the manager agent's system prompt to let it know how to call this managed agent, as we also do for tools.
Here's an example of making an agent that managed a specitif web search agent using our [`DuckDuckGoSearchTool`]:
```py
from transformers.agents import ReactCodeAgent, HfApiEngine, DuckDuckGoSearchTool, ManagedAgent
llm_engine = HfApiEngine()
web_agent = ReactCodeAgent(tools=[DuckDuckGoSearchTool()], llm_engine=llm_engine)
managed_web_agent = ManagedAgent(
agent=web_agent,
name="web_search",
description="Runs web searches for you. Give it your query as an argument."
)
manager_agent = ReactCodeAgent(
tools=[], llm_engine=llm_engine, managed_agents=[managed_web_agent]
)
manager_agent.run("Who is the CEO of Hugging Face?")
```
> [!TIP]
> For an in-depth example of an efficient multi-agent implementation, see [how we pushed our multi-agent system to the top of the GAIA leaderboard](https://huggingface.co/blog/beating-gaia).
## Use tools from gradio or LangChain
### Use gradio-tools
[gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging
Face Spaces as tools. It supports many existing Spaces as well as custom Spaces.
Transformers supports `gradio_tools` with the [`Tool.from_gradio`] method. For example, let's use the [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) from `gradio-tools` toolkit for improving prompts to generate better images.
Import and instantiate the tool, then pass it to the `Tool.from_gradio` method:
```python
from gradio_tools import StableDiffusionPromptGeneratorTool
from transformers import Tool, load_tool, CodeAgent
gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool()
prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool)
```
Now you can use it just like any other tool. For example, let's improve the prompt `a rabbit wearing a space suit`.
```python
image_generation_tool = load_tool('huggingface-tools/text-to-image')
agent = CodeAgent(tools=[prompt_generator_tool, image_generation_tool], llm_engine=llm_engine)
agent.run(
"Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit'
)
```
The model adequately leverages the tool:
```text
======== New task ========
Improve this prompt, then generate an image of it.
You have been provided with these initial arguments: {'prompt': 'A rabbit wearing a space suit'}.
==== Agent is executing the code below:
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
while improved_prompt == "QUEUE_FULL":
improved_prompt = StableDiffusionPromptGenerator(query=prompt)
print(f"The improved prompt is {improved_prompt}.")
image = image_generator(prompt=improved_prompt)
====
```
Before finally generating the image:
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png">
> [!WARNING]
> gradio-tools require *textual* inputs and outputs even when working with different modalities like image and audio objects. Image and audio inputs and outputs are currently incompatible.
### Use LangChain tools
We love Langchain and think it has a very compelling suite of tools.
To import a tool from LangChain, use the `from_langchain()` method.
Here is how you can use it to recreate the intro's search result using a LangChain web search tool.
```python
from langchain.agents import load_tools
from transformers import Tool, ReactCodeAgent
search_tool = Tool.from_langchain(load_tools(["serpapi"])[0])
agent = ReactCodeAgent(tools=[search_tool])
agent.run("How many more blocks (also denoted as layers) in BERT base encoder than the encoder from the architecture proposed in Attention is All You Need?")
```
## Display your agent run in a cool Gradio interface
You can leverage `gradio.Chatbot`to display your agent's thoughts using `stream_to_gradio`, here is an example:
```py
import gradio as gr
from transformers import (
load_tool,
ReactCodeAgent,
HfApiEngine,
stream_to_gradio,
)
# Import tool from Hub
image_generation_tool = load_tool("m-ric/text-to-image")
llm_engine = HfApiEngine("meta-llama/Meta-Llama-3-70B-Instruct")
# Initialize the agent with the image generation tool
agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine)
def interact_with_agent(task):
messages = []
messages.append(gr.ChatMessage(role="user", content=task))
yield messages
for msg in stream_to_gradio(agent, task):
messages.append(msg)
yield messages + [
gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!")
]
yield messages
with gr.Blocks() as demo:
text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.")
submit = gr.Button("Run illustrator agent!")
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
),
)
submit.click(interact_with_agent, [text_input], [chatbot])
if __name__ == "__main__":
demo.launch()
```

View File

@ -110,7 +110,7 @@ Now you can access the `feature_maps` object from the first stage of the backbon
## AutoFeatureExtractor
For audio tasks, a feature extractor processes the audio signal the correct input format.
For audio tasks, a feature extractor processes the audio signal into the correct input format.
Load a feature extractor with [`AutoFeatureExtractor.from_pretrained`]:

View File

@ -35,7 +35,7 @@ The classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] allow to flexibly b
<Tip>
Hereby, _inference_ is defined by a single forward pass, and _training_ is defined by a single forward pass and
Here, _inference_ is defined by a single forward pass, and _training_ is defined by a single forward pass and
backward pass.
</Tip>
@ -368,7 +368,7 @@ This section lists a couple of best practices one should be aware of when benchm
memory measurement it is recommended to run each memory benchmark in a separate process by making sure
`no_multi_processing` is set to `True`.
- One should always state the environment information when sharing the results of a model benchmark. Results can vary
heavily between different GPU devices, library versions, etc., so that benchmark results on their own are not very
heavily between different GPU devices, library versions, etc., as a consequence, benchmark results on their own are not very
useful for the community.

View File

@ -37,5 +37,5 @@ help people access the inner representations, mainly adapted from the great work
- retrieving heads output values and gradients to be able to compute head importance score and prune head as explained
in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) while extract information and prune a model pre-trained on
To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) which extracts information and prune a model pre-trained on
GLUE.

View File

@ -14,7 +14,7 @@ rendered properly in your Markdown viewer.
-->
# Templates for Chat Models
# Chat Templates
## Introduction
@ -26,26 +26,7 @@ Much like tokenization, different models expect very different input formats for
**chat templates** as a feature. Chat templates are part of the tokenizer. They specify how to convert conversations,
represented as lists of messages, into a single tokenizable string in the format that the model expects.
Let's make this concrete with a quick example using the `BlenderBot` model. BlenderBot has an extremely simple default
template, which mostly just adds whitespace between rounds of dialogue:
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> chat = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "I'd like to show off how chat templating works!"},
... ]
>>> tokenizer.apply_chat_template(chat, tokenize=False)
" Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!</s>"
```
Notice how the entire chat is condensed into a single string. If we use `tokenize=True`, which is the default setting,
that string will also be tokenized for us. To see a more complex template in action, though, let's use the
`mistralai/Mistral-7B-Instruct-v0.1` model.
Let's make this concrete with a quick example using the `mistralai/Mistral-7B-Instruct-v0.1` model:
```python
>>> from transformers import AutoTokenizer
@ -61,8 +42,26 @@ that string will also be tokenized for us. To see a more complex template in act
"<s>[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST]"
```
Note that this time, the tokenizer has added the control tokens [INST] and [/INST] to indicate the start and end of
user messages (but not assistant messages!). Mistral-instruct was trained with these tokens, but BlenderBot was not.
Notice how the tokenizer has added the control tokens [INST] and [/INST] to indicate the start and end of
user messages (but not assistant messages!), and the entire chat is condensed into a single string.
If we use `tokenize=True`, which is the default setting, that string will also be tokenized for us.
Now, try the same code, but swap in the `HuggingFaceH4/zephyr-7b-beta` model instead, and you should get:
```text
<|user|>
Hello, how are you?</s>
<|assistant|>
I'm doing great. How can I help you today?</s>
<|user|>
I'd like to show off how chat templating works!</s>
```
Both Zephyr and Mistral-Instruct were fine-tuned from the same base model, `Mistral-7B-v0.1`. However, they were trained
with totally different chat formats. Without chat templates, you would have to write manual formatting code for each
model, and it's very easy to make minor errors that hurt performance! Chat templates handle the details of formatting
for you, allowing you to write universal code that works for any model.
## How do I use chat templates?
@ -71,7 +70,7 @@ and `content` keys, and then pass it to the [`~PreTrainedTokenizer.apply_chat_te
you'll get output that's ready to go! When using chat templates as input for model generation, it's also a good idea
to use `add_generation_prompt=True` to add a [generation prompt](#what-are-generation-prompts).
Here's an example of preparing input for `model.generate()`, using the `Zephyr` assistant model:
Here's an example of preparing input for `model.generate()`, using `Zephyr` again:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
@ -160,7 +159,7 @@ messages = [
]
```
Here's what this will look like without a generation prompt, using the ChatML template we saw in the Zephyr example:
Here's what this will look like without a generation prompt, for a model that uses standard "ChatML" formatting:
```python
tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
@ -193,13 +192,51 @@ message. Remember, chat models are still just language models - they're trained
special kind of text to them! You need to guide them with appropriate control tokens, so they know what they're
supposed to be doing.
Not all models require generation prompts. Some models, like BlenderBot and LLaMA, don't have any
Not all models require generation prompts. Some models, like LLaMA, don't have any
special tokens before bot responses. In these cases, the `add_generation_prompt` argument will have no effect. The exact
effect that `add_generation_prompt` has will depend on the template being used.
## What does "continue_final_message" do?
When passing a list of messages to `apply_chat_template` or `TextGenerationPipeline`, you can choose
to format the chat so the model will continue the final message in the chat instead of starting a new one. This is done
by removing any end-of-sequence tokens that indicate the end of the final message, so that the model will simply
extend the final message when it begins to generate text. This is useful for "prefilling" the model's response.
Here's an example:
```python
chat = [
{"role": "user", "content": "Can you format the answer in JSON?"},
{"role": "assistant", "content": '{"name": "'},
]
formatted_chat = tokenizer.apply_chat_template(chat, tokenize=True, return_dict=True, continue_final_message=True)
model.generate(**formatted_chat)
```
The model will generate text that continues the JSON string, rather than starting a new message. This approach
can be very useful for improving the accuracy of the model's instruction-following when you know how you want
it to start its replies.
Because `add_generation_prompt` adds the tokens that start a new message, and `continue_final_message` removes any
end-of-message tokens from the final message, it does not make sense to use them together. As a result, you'll
get an error if you try!
<Tip>
The default behaviour of `TextGenerationPipeline` is to set `add_generation_prompt=True` so that it starts a new
message. However, if the final message in the input chat has the "assistant" role, it will assume that this message is
a prefill and switch to `continue_final_message=True` instead, because most models do not support multiple
consecutive assistant messages. You can override this behaviour by explicitly passing the `continue_final_message`
argument when calling the pipeline.
</Tip>
## Can I use chat templates in training?
Yes! We recommend that you apply the chat template as a preprocessing step for your dataset. After this, you
Yes! This is a good way to ensure that the chat template matches the tokens the model sees during training.
We recommend that you apply the chat template as a preprocessing step for your dataset. After this, you
can simply continue like any other language model training task. When training, you should usually set
`add_generation_prompt=False`, because the added tokens to prompt an assistant response will not be helpful during
training. Let's see an example:
@ -233,6 +270,17 @@ The sun.</s>
From here, just continue training like you would with a standard language modelling task, using the `formatted_chat` column.
<Tip>
By default, some tokenizers add special tokens like `<bos>` and `<eos>` to text they tokenize. Chat templates should
already include all the special tokens they need, and so additional special tokens will often be incorrect or
duplicated, which will hurt model performance.
Therefore, if you format text with `apply_chat_template(tokenize=False)`, you should set the argument
`add_special_tokens=False` when you tokenize that text later. If you use `apply_chat_template(tokenize=True)`, you don't need to worry about this!
</Tip>
## Advanced: Extra inputs to chat templates
The only argument that `apply_chat_template` requires is `messages`. However, you can pass any keyword
@ -314,7 +362,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "NousResearch/Hermes-2-Pro-Llama-3-8B"
tokenizer = AutoTokenizer.from_pretrained(checkpoint, revision="pr/13")
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto")
```
@ -359,7 +407,7 @@ messages = [
Now, let's apply the chat template and generate a response:
```python
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = tokenizer.apply_chat_template(messages, tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
@ -377,29 +425,62 @@ The model has called the function with valid arguments, in the format requested
inferred that we're most likely referring to the Paris in France, and it remembered that, as the home of SI units,
the temperature in France should certainly be displayed in Celsius.
Let's append the model's tool call to the conversation. Note that we generate a random `tool_call_id` here. These IDs
are not used by all models, but they allow models to issue multiple tool calls at once and keep track of which response
corresponds to which call. You can generate them any way you like, but they should be unique within each chat.
<Tip>
The output format above is specific to the `Hermes-2-Pro` model we're using in this example. Other models may emit different
tool call formats, and you may need to do some manual parsing at this step. For example, `Llama-3.1` models will emit
slightly different JSON, with `parameters` instead of `arguments`. Regardless of the format the model outputs, you
should add the tool call to the conversation in the format below, with `tool_calls`, `function` and `arguments` keys.
</Tip>
Next, let's append the model's tool call to the conversation.
```python
tool_call_id = "vAHdf3" # Random ID, should be unique for each tool call
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France", "unit": "celsius"}}
messages.append({"role": "assistant", "tool_calls": [{"id": tool_call_id, "type": "function", "function": tool_call}]})
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
```
<Tip warning={true}>
If you're familiar with the OpenAI API, you should pay attention to an important difference here - the `tool_call` is
a dict, but in the OpenAI API it's a JSON string. Passing a string may cause errors or strange model behaviour!
</Tip>
Now that we've added the tool call to the conversation, we can call the function and append the result to the
conversation. Since we're just using a dummy function for this example that always returns 22.0, we can just append
that result directly. Again, note the `tool_call_id` - this should match the ID used in the tool call above.
that result directly.
```python
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
```
<Tip>
Some model architectures, notably Mistral/Mixtral, also require a `tool_call_id` here, which should be
9 randomly-generated alphanumeric characters, and assigned to the `id` key of the tool call
dictionary. The same key should also be assigned to the `tool_call_id` key of the tool response dictionary below, so
that tool calls can be matched to tool responses. So, for Mistral/Mixtral models, the code above would be:
```python
tool_call_id = "9Ae3bDc2F" # Random ID, 9 alphanumeric characters
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France", "unit": "celsius"}}
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "id": tool_call_id, "function": tool_call}]})
```
and
```python
messages.append({"role": "tool", "tool_call_id": tool_call_id, "name": "get_current_temperature", "content": "22.0"})
```
</Tip>
Finally, let's let the assistant read the function outputs and continue chatting with the user:
```python
inputs = tokenizer.apply_chat_template(messages, chat_template="tool_use", tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = tokenizer.apply_chat_template(messages, tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
out = model.generate(**inputs, max_new_tokens=128)
print(tokenizer.decode(out[0][len(inputs["input_ids"][0]):]))
@ -415,14 +496,6 @@ Although this was a simple demo with dummy tools and a single call, the same tec
multiple real tools and longer conversations. This can be a powerful way to extend the capabilities of conversational
agents with real-time information, computational tools like calculators, or access to large databases.
<Tip>
Not all of the tool-calling features shown above are used by all models. Some use tool call IDs, others simply use the function name and
match tool calls to results using the ordering, and there are several models that use neither and only issue one tool
call at a time to avoid confusion. If you want your code to be compatible across as many models as possible, we
recommend structuring your tools calls like we've shown here, and returning tool results in the order that
they were issued by the model. The chat templates on each model should handle the rest.
</Tip>
### Understanding tool schemas
Each function you pass to the `tools` argument of `apply_chat_template` is converted into a
@ -562,32 +635,17 @@ model_input = tokenizer.apply_chat_template(
## Advanced: How do chat templates work?
The chat template for a model is stored on the `tokenizer.chat_template` attribute. If no chat template is set, the
default template for that model class is used instead. Let's take a look at the template for `BlenderBot`:
```python
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
>>> tokenizer.default_chat_template
"{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}"
```
That's kind of intimidating. Let's clean it up a little to make it more readable. In the process, though, we also make
sure that the newlines and indentation we add don't end up being included in the template output - see the tip on
[trimming whitespace](#trimming-whitespace) below!
default template for that model class is used instead. Let's take a look at a `Zephyr` chat template, though note this
one is a little simplified from the actual one!
```
{%- for message in messages %}
{%- if message['role'] == 'user' %}
{{- ' ' }}
{%- endif %}
{{- message['content'] }}
{%- if not loop.last %}
{{- ' ' }}
{%- endif %}
{{- '<|' + message['role'] + |>\n' }}
{{- message['content'] + eos_token }}
{%- endfor %}
{{- eos_token }}
{%- if add_generation_prompt %}
{{- '<|assistant|>\n' }}
{%- endif %}
```
If you've never seen one of these before, this is a [Jinja template](https://jinja.palletsprojects.com/en/3.1.x/templates/).
@ -595,25 +653,23 @@ Jinja is a templating language that allows you to write simple code that generat
syntax resembles Python. In pure Python, this template would look something like this:
```python
for idx, message in enumerate(messages):
if message['role'] == 'user':
print(' ')
print(message['content'])
if not idx == len(messages) - 1: # Check for the last message in the conversation
print(' ')
print(eos_token)
for message in messages:
print(f'<|{message["role"]}|>')
print(message['content'] + eos_token)
if add_generation_prompt:
print('<|assistant|>')
```
Effectively, the template does three things:
1. For each message, if the message is a user message, add a blank space before it, otherwise print nothing.
2. Add the message content
3. If the message is not the last message, add two spaces after it. After the final message, print the EOS token.
1. For each message, print the role enclosed in `<|` and `|>`, like `<|user|>` or `<|assistant|>`.
2. Next, print the content of the message, followed by the end-of-sequence token.
3. Finally, if `add_generation_prompt` is set, print the assistant token, so that the model knows to start generating
an assistant response.
This is a pretty simple template - it doesn't add any control tokens, and it doesn't support "system" messages, which
are a common way to give the model directives about how it should behave in the subsequent conversation.
But Jinja gives you a lot of flexibility to do those things! Let's see a Jinja template that can format inputs
similarly to the way LLaMA formats them (note that the real LLaMA template includes handling for default system
messages and slightly different system message handling in general - don't use this one in your actual code!)
This is a pretty simple template but Jinja gives you a lot of flexibility to do more complex things! Let's see a Jinja
template that can format inputs similarly to the way LLaMA formats them (note that the real LLaMA template includes
handling for default system messages and slightly different system message handling in general - don't use this one
in your actual code!)
```
{%- for message in messages %}
@ -627,8 +683,8 @@ messages and slightly different system message handling in general - don't use t
{%- endfor %}
```
Hopefully if you stare at this for a little bit you can see what this template is doing - it adds specific tokens based
on the "role" of each message, which represents who sent it. User, assistant and system messages are clearly
Hopefully if you stare at this for a little bit you can see what this template is doing - it adds specific tokens like
`[INST]` and `[/INST]` based on the role of each message. User, assistant and system messages are clearly
distinguishable to the model because of the tokens they're wrapped in.
## Advanced: Adding and editing chat templates
@ -693,23 +749,6 @@ with other names, pass the name of the template you want to the `chat_template`
We find that this can be a bit confusing for users, though - so if you're writing a template yourself, we recommend
trying to put it all in a single template where possible!
### What are "default" templates?
Before the introduction of chat templates, chat handling was hardcoded at the model class level. For backwards
compatibility, we have retained this class-specific handling as default templates, also set at the class level. If a
model does not have a chat template set, but there is a default template for its model class, the `TextGenerationPipeline`
class and methods like `apply_chat_template` will use the class template instead. You can find out what the default
template for your tokenizer is by checking the `tokenizer.default_chat_template` attribute.
This is something we do purely for backward compatibility reasons, to avoid breaking any existing workflows. Even when
the class template is appropriate for your model, we strongly recommend overriding the default template by
setting the `chat_template` attribute explicitly to make it clear to users that your model has been correctly configured
for chat.
Now that actual chat templates have been adopted more widely, default templates have been deprecated and will be
removed in a future release. We strongly recommend setting the `chat_template` attribute for any tokenizers that
still depend on them!
### What template should I use?
When setting the template for a model that's already been trained for chat, you should ensure that the template
@ -771,14 +810,23 @@ it's time to put an end to them!
## Advanced: Template writing tips
If you're unfamiliar with Jinja, we generally find that the easiest way to write a chat template is to first
write a short Python script that formats messages the way you want, and then convert that script into a template.
<Tip>
Remember that the template handler will receive the conversation history as a variable called `messages`.
The easiest way to get started with writing Jinja templates is to take a look at some existing ones. You can use
`print(tokenizer.chat_template)` for any chat model to see what template it's using. In general, models that support tool use have
much more complex templates than other models - so when you're just getting started, they're probably a bad example
to learn from! You can also take a look at the
[Jinja documentation](https://jinja.palletsprojects.com/en/3.1.x/templates/#synopsis) for details
of general Jinja formatting and syntax.
</Tip>
Jinja templates in `transformers` are identical to Jinja templates elsewhere. The main thing to know is that
the conversation history will be accessible inside your template as a variable called `messages`.
You will be able to access `messages` in your template just like you can in Python, which means you can loop over
it with `{% for message in messages %}` or access individual messages with `{{ messages[0] }}`, for example.
You can also use the following tips to convert your code to Jinja:
You can also use the following tips to write clean, efficient Jinja templates:
### Trimming whitespace
@ -803,46 +851,35 @@ rather than like this:
Adding `-` will strip any whitespace that comes before the block. The second example looks innocent, but the newline
and indentation may end up being included in the output, which is probably not what you want!
### For loops
For loops in Jinja look like this:
```
{%- for message in messages %}
{{- message['content'] }}
{%- endfor %}
```
Note that whatever's inside the {{ expression block }} will be printed to the output. You can use operators like
`+` to combine strings inside expression blocks.
### If statements
If statements in Jinja look like this:
```
{%- if message['role'] == 'user' %}
{{- message['content'] }}
{%- endif %}
```
Note how where Python uses whitespace to mark the beginnings and ends of `for` and `if` blocks, Jinja requires you
to explicitly end them with `{% endfor %}` and `{% endif %}`.
### Special variables
Inside your template, you will have access to the list of `messages`, but you can also access several other special
variables. These include special tokens like `bos_token` and `eos_token`, as well as the `add_generation_prompt`
variable that we discussed above. You can also use the `loop` variable to access information about the current loop
iteration, for example using `{% if loop.last %}` to check if the current message is the last message in the
conversation. Here's an example that puts these ideas together to add a generation prompt at the end of the
conversation if add_generation_prompt is `True`:
Inside your template, you will have access several special variables. The most important of these is `messages`,
which contains the chat history as a list of message dicts. However, there are several others. Not every
variable will be used in every template. The most common other variables are:
```
{%- if loop.last and add_generation_prompt %}
{{- bos_token + 'Assistant:\n' }}
{%- endif %}
```
- `tools` contains a list of tools in JSON schema format. Will be `None` or undefined if no tools are passed.
- `documents` contains a list of documents in the format `{"title": "Title", "contents": "Contents"}`, used for retrieval-augmented generation. Will be `None` or undefined if no documents are passed.
- `add_generation_prompt` is a bool that is `True` if the user has requested a generation prompt, and `False` otherwise. If this is set, your template should add the header for an assistant message to the end of the conversation. If your model doesn't have a specific header for assistant messages, you can ignore this flag.
- **Special tokens** like `bos_token` and `eos_token`. These are extracted from `tokenizer.special_tokens_map`. The exact tokens available inside each template will differ depending on the parent tokenizer.
<Tip>
You can actually pass any `kwarg` to `apply_chat_template`, and it will be accessible inside the template as a variable. In general,
we recommend trying to stick to the core variables above, as it will make your model harder to use if users have
to write custom code to pass model-specific `kwargs`. However, we're aware that this field moves quickly, so if you
have a new use-case that doesn't fit in the core API, feel free to use a new `kwarg` for it! If a new `kwarg`
becomes common we may promote it into the core API and create a standard, documented format for it.
</Tip>
### Callable functions
There is also a short list of callable functions available to you inside your templates. These are:
- `raise_exception(msg)`: Raises a `TemplateException`. This is useful for debugging, and for telling users when they're
doing something that your template doesn't support.
- `strftime_now(format_str)`: Equivalent to `datetime.now().strftime(format_str)` in Python. This is used for getting
the current date/time in a specific format, which is sometimes included in system messages.
### Compatibility with non-Python Jinja
@ -861,4 +898,25 @@ all implementations of Jinja:
in the Jinja documentation for more.
- Replace `True`, `False` and `None`, which are Python-specific, with `true`, `false` and `none`.
- Directly rendering a dict or list may give different results in other implementations (for example, string entries
might change from single-quoted to double-quoted). Adding the `tojson` filter can help to ensure consistency here.
might change from single-quoted to double-quoted). Adding the `tojson` filter can help to ensure consistency here.
### Writing and debugging larger templates
When this feature was introduced, most templates were quite small, the Jinja equivalent of a "one-liner" script.
However, with new models and features like tool-use and RAG, some templates can be 100 lines long or more. When
writing templates like these, it's a good idea to write them in a separate file, using a text editor. You can easily
extract a chat template to a file:
```python
open("template.jinja", "w").write(tokenizer.chat_template)
```
Or load the edited template back into the tokenizer:
```python
tokenizer.chat_template = open("template.jinja").read()
```
As an added bonus, when you write a long, multi-line template in a separate file, line numbers in that file will
exactly correspond to line numbers in template parsing or execution errors. This will make it much easier to
identify the source of issues.

View File

@ -63,7 +63,8 @@ This page regroups resources around 🤗 Transformers developed by the community
| [Evaluate LUKE on TACRED, a relation extraction dataset](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) | How to evaluate *LukeForEntityPairClassification* on the TACRED dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_tacred.ipynb) |
| [Evaluate LUKE on CoNLL-2003, an important NER benchmark](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | How to evaluate *LukeForEntitySpanClassification* on the CoNLL-2003 dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) |
| [Evaluate BigBird-Pegasus on PubMed dataset](https://github.com/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | How to evaluate *BigBirdPegasusForConditionalGeneration* on PubMed dataset | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) |
| [Speech Emotion Classification with Wav2Vec2](https://github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | How to leverage a pretrained Wav2Vec2 model for Emotion Classification on the MEGA dataset | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) |
| [Speech Emotion Classification with Wav2Vec2](https://github.com/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | How to leverage a pretrained Wav2Vec2 model for Emotion Classification on the MEGA dataset | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) |
| [Detect objects in an image with DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | How to use a trained *DetrForObjectDetection* model to detect objects in an image and visualize attention | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) |
| [Fine-tune DETR on a custom object detection dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | How to fine-tune *DetrForObjectDetection* on a custom object detection dataset | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) |
| [Finetune T5 for Named Entity Recognition](https://github.com/ToluClassics/Notebooks/blob/main/T5_Ner_Finetuning.ipynb) | How to fine-tune *T5* on a Named Entity Recognition Task | [Ogundepo Odunayo](https://github.com/ToluClassics) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing) |
| [Fine-Tuning Open-Source LLM using QLoRA with MLflow and PEFT](https://github.com/mlflow/mlflow/blob/master/docs/source/llms/transformers/tutorials/fine-tuning/transformers-peft.ipynb) | How to use [QLoRA](https://github.com/artidoro/qlora) and [PEFT](https://huggingface.co/docs/peft/en/index) to fine-tune an LLM in a memory-efficient way, while using [MLflow](https://mlflow.org/docs/latest/llms/transformers/index.html) to manage experiment tracking | [Yuki Watanabe](https://github.com/B-Step62) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mlflow/mlflow/blob/master/docs/source/llms/transformers/tutorials/fine-tuning/transformers-peft.ipynb) |

View File

@ -195,7 +195,7 @@ inputs = {key: tensor.to(model.device) for key, tensor in inputs.items()}
print("Tokenized inputs:\n", inputs)
# 4: Generate text from the model
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.1)
print("Generated tokens:\n", outputs)
# 5: Decode the output back to a string

View File

@ -185,7 +185,7 @@ class ResnetModelForImageClassification(PreTrainedModel):
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
loss = torch.nn.functional.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}
```

View File

@ -203,7 +203,7 @@ This feature can be used with any `nn.Module`-based model.
</Tip>
If you start getting `loss=NaN` or the model inhibits some other abnormal behavior due to `inf` or `nan` in
If you start getting `loss=NaN` or the model exhibits some other abnormal behavior due to `inf` or `nan` in
activations or weights one needs to discover where the first underflow or overflow happens and what led to it. Luckily
you can accomplish that easily by activating a special module that will do the detection automatically.

View File

@ -16,11 +16,11 @@ rendered properly in your Markdown viewer.
# DeepSpeed
[DeepSpeed](https://www.deepspeed.ai/) is a PyTorch optimization library that makes distributed training memory-efficient and fast. At it's core is the [Zero Redundancy Optimizer (ZeRO)](https://hf.co/papers/1910.02054) which enables training large models at scale. ZeRO works in several stages:
[DeepSpeed](https://www.deepspeed.ai/) is a PyTorch optimization library that makes distributed training memory-efficient and fast. At its core is the [Zero Redundancy Optimizer (ZeRO)](https://hf.co/papers/1910.02054) which enables training large models at scale. ZeRO works in several stages:
* ZeRO-1, optimizer state partioning across GPUs
* ZeRO-1, optimizer state partitioning across GPUs
* ZeRO-2, gradient partitioning across GPUs
* ZeRO-3, parameteter partitioning across GPUs
* ZeRO-3, parameter partitioning across GPUs
In GPU-limited environments, ZeRO also enables offloading optimizer memory and computation from the GPU to the CPU to fit and train really large models on a single GPU. DeepSpeed is integrated with the Transformers [`Trainer`] class for all ZeRO stages and offloading. All you need to do is provide a config file or you can use a provided template. For inference, Transformers support ZeRO-3 and offloading since it allows loading huge models.
@ -159,7 +159,7 @@ There are three types of configuration parameters:
You could also modify the DeepSpeed configuration and edit [`TrainingArguments`] from it:
1. Create or load a DeepSpeed configuration to used as the main configuration
1. Create or load a DeepSpeed configuration to use as the main configuration
2. Create a [`TrainingArguments`] object based on these DeepSpeed configuration values
Some values, such as `scheduler.params.total_num_steps` are calculated by the [`Trainer`] during training.
@ -191,7 +191,7 @@ ZeRO-1 shards the optimizer states across GPUs, and you can expect a tiny speed
</hfoption>
<hfoption id="ZeRO-2">
ZeRO-2 shards the optimizer and gradients across GPUs. This stage is primarily used for training since it's features are not relevant to inference. Some important parameters to configure for better performance include:
ZeRO-2 shards the optimizer and gradients across GPUs. This stage is primarily used for training since its features are not relevant to inference. Some important parameters to configure for better performance include:
* `offload_optimizer` should be enabled to reduce GPU memory usage.
* `overlap_comm` when set to `true` trades off increased GPU memory usage to lower allreduce latency. This feature uses 4.5x the `allgather_bucket_size` and `reduce_bucket_size` values. In this example, they're set to `5e8` which means it requires 9GB of GPU memory. If your GPU memory is 8GB or less, you should reduce `overlap_comm` to lower the memory requirements and prevent an out-of-memory (OOM) error.
@ -226,7 +226,7 @@ ZeRO-3 shards the optimizer, gradient, and parameters across GPUs. Unlike ZeRO-2
* `pin_memory: true` can improve throughput, but less memory becomes available for other processes because the pinned memory is reserved for the specific process that requested it and it's typically accessed much faster than normal CPU memory.
* `stage3_max_live_parameters` is the upper limit on how many full parameters you want to keep on the GPU at any given time. Reduce this value if you encounter an OOM error.
* `stage3_max_reuse_distance` is a value for determining when a parameter is used again in the future, and it helps decide whether to throw the parameter away or to keep it. If the parameter is going to be reused (if the value is less than `stage3_max_reuse_distance`), then it is kept to reduce communication overhead. This is super helpful when activation checkpointing is enabled and you want to keep the parameter in the forward recompute until the backward pass. But reduce this value if you encounter an OOM error.
* `stage3_gather_16bit_weights_on_model_save` consolidates fp16 weights when a model is saved. For large models and multiple GPUs, this is an expensive in terms of memory and speed. You should enable it if you're planning on resuming training.
* `stage3_gather_16bit_weights_on_model_save` consolidates fp16 weights when a model is saved. For large models and multiple GPUs, this is expensive in terms of memory and speed. You should enable it if you're planning on resuming training.
* `sub_group_size` controls which parameters are updated during the optimizer step. Parameters are grouped into buckets of `sub_group_size` and each bucket is updated one at a time. When used with NVMe offload, `sub_group_size` determines when model states are moved in and out of CPU memory from during the optimization step. This prevents running out of CPU memory for extremely large models. `sub_group_size` can be left to its default value if you aren't using NVMe offload, but you may want to change it if you:
1. Run into an OOM error during the optimizer step. In this case, reduce `sub_group_size` to reduce memory usage of the temporary buffers.

View File

@ -174,50 +174,13 @@ An increasing sequence: one, two, three, four, five, six, seven, eight, nine, te
```
## KV Cache Quantization
The `generate()` method supports caching keys and values to enhance efficiency and avoid re-computations. However the key and value
cache can occupy a large portion of memory, becoming a bottleneck for long-context generation, especially for Large Language Models.
Quantizing the cache when using `generate()` can significantly reduce memory requirements at the cost of speed.
KV Cache quantization in `transformers` is largely inspired by the paper [KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache]
(https://arxiv.org/abs/2402.02750) and currently supports `quanto` and `HQQ` as backends. For more information on the inner workings see the paper.
To enable quantization of the key-value cache, one needs to indicate `cache_implementation="quantized"` in the `generation_config`.
Quantization related arguments should be passed to the `generation_config` either as a `dict` or an instance of a [`QuantizedCacheConfig`] class.
One has to indicate which quantization backend to use in the [`QuantizedCacheConfig`], the default is `quanto`.
<Tip warning={true}>
Cache quantization can be detrimental if the context length is short and there is enough GPU VRAM available to run without cache quantization.
</Tip>
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"})
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. It's a great way to express myself and rel
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20)
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. I like to listen to it when I'm feeling
```
## Watermarking
The `generate()` supports watermarking the generated text by randomly marking a portion of tokens as "green".
The `generate()` supports watermarking the generated text by randomly marking a portion of tokens as "green".
When generating the "green" will have a small 'bias' value added to their logits, thus having a higher chance to be generated.
The watermarked text can be detected by calculating the proportion of "green" tokens in the text and estimating how likely it is
statistically to obtain that amount of "green" tokens for human-generated text. This watermarking strategy was proposed in the paper
["On the Reliability of Watermarks for Large Language Models"](https://arxiv.org/abs/2306.04634). For more information on
statistically to obtain that amount of "green" tokens for human-generated text. This watermarking strategy was proposed in the paper
["On the Reliability of Watermarks for Large Language Models"](https://arxiv.org/abs/2306.04634). For more information on
the inner functioning of watermarking, it is recommended to refer to the paper.
The watermarking can be used with any generative model in `tranformers` and does not require an extra classification model
@ -262,10 +225,21 @@ array([True, True])
## Decoding strategies
Certain combinations of the `generate()` parameters, and ultimately `generation_config`, can be used to enable specific
decoding strategies. If you are new to this concept, we recommend reading [this blog post that illustrates how common decoding strategies work](https://huggingface.co/blog/how-to-generate).
decoding strategies. If you are new to this concept, we recommend reading
[this blog post that illustrates how common decoding strategies work](https://huggingface.co/blog/how-to-generate).
Here, we'll show some of the parameters that control the decoding strategies and illustrate how you can use them.
<Tip>
Selecting a given decoding strategy is not the only way you can influence the outcome of `generate()` with your model.
The decoding strategies act based (mostly) on the logits, the distribution of probabilities for the next token, and
thus selecting a good logits manipulation strategy can go a long way! In other words, manipulating the logits is another
dimension you can act upon, in addition to selecting a decoding strategy. Popular logits manipulation strategies include
`top_p`, `min_p`, and `repetition_penalty` -- you can check the full list in the [`GenerationConfig`] class.
</Tip>
### Greedy Search
[`generate`] uses greedy search decoding by default so you don't have to pass any parameters to enable it. This means the parameters `num_beams` is set to 1 and `do_sample=False`.
@ -482,5 +456,61 @@ just like in multinomial sampling. However, in assisted decoding, reducing the t
['Alice and Bob, a couple of friends of mine, who are both in the same office as']
```
Alternativelly, you can also set the `prompt_lookup_num_tokens` to trigger n-gram based assisted decoding, as opposed
Alternatively, you can also set the `prompt_lookup_num_tokens` to trigger n-gram based assisted decoding, as opposed
to model based assisted decoding. You can read more about it [here](https://twitter.com/joao_gante/status/1747322413006643259).
### DoLa Decoding
**D**ecoding by C**o**ntrasting **La**yers (DoLa) is a contrastive decoding strategy to improve the factuality and reduce the
hallucinations of LLMs, as described in this paper of ICLR 2024 [DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models](https://arxiv.org/abs/2309.03883).
DoLa is achieved by contrasting the differences in logits obtained from final
layers versus earlier layers, thus amplify the factual knowledge localized to particular part of transformer layers.
Do the following two steps to activate DoLa decoding when calling the `model.generate` function:
1. Set the `dola_layers` argument, which can be either a string or a list of integers.
- If set to a string, it can be one of `low`, `high`.
- If set to a list of integers, it should be a list of layer indices between 0 and the total number of layers in the model. The 0-th layer is word embedding, and the 1st layer is the first transformer layer, and so on.
2. Set `repetition_penalty = 1.2` is suggested to reduce repetition in DoLa decoding.
See the following examples for DoLa decoding with the 32-layer LLaMA-7B model.
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b")
>>> model = AutoModelForCausalLM.from_pretrained("huggyllama/llama-7b", torch_dtype=torch.float16)
>>> device = 'cuda' if torch.cuda.is_available() else 'cpu'
>>> model.to(device)
>>> set_seed(42)
>>> text = "On what date was the Declaration of Independence officially signed?"
>>> inputs = tokenizer(text, return_tensors="pt").to(device)
# Vanilla greddy decoding
>>> vanilla_output = model.generate(**inputs, do_sample=False, max_new_tokens=50)
>>> tokenizer.batch_decode(vanilla_output[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
['\nThe Declaration of Independence was signed on July 4, 1776.\nWhat was the date of the signing of the Declaration of Independence?\nThe Declaration of Independence was signed on July 4,']
# DoLa decoding with contrasting higher part of layers (layers 16,18,...,30)
>>> dola_high_output = model.generate(**inputs, do_sample=False, max_new_tokens=50, dola_layers='high')
>>> tokenizer.batch_decode(dola_high_output[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
['\nJuly 4, 1776, when the Continental Congress voted to separate from Great Britain. The 56 delegates to the Continental Congress signed the Declaration on August 2, 1776.']
# DoLa decoding with contrasting specific layers (layers 28 and 30)
>>> dola_custom_output = model.generate(**inputs, do_sample=False, max_new_tokens=50, dola_layers=[28,30], repetition_penalty=1.2)
>>> tokenizer.batch_decode(dola_custom_output[:, inputs.input_ids.shape[-1]:], skip_special_tokens=True)
['\nIt was officially signed on 2 August 1776, when 56 members of the Second Continental Congress, representing the original 13 American colonies, voted unanimously for the resolution for independence. The 2']
```
#### Understanding the `dola_layers` argument
`dola_layers` stands for the candidate layers in premature layer selection, as described in the DoLa paper. The selected premature layer will be contrasted with the final layer.
Setting `dola_layers` to `'low'` or `'high'` will select the lower or higher part of the layers to contrast, respectively.
- For `N`-layer models with `N <= 40` layers, the layers of `range(0, N // 2, 2)` and `range(N // 2, N, 2)` are used for `'low'` and `'high'` layers, respectively.
- For models with `N > 40` layers, the layers of `range(0, 20, 2)` and `range(N - 20, N, 2)` are used for `'low'` and `'high'` layers, respectively.
- If the model has tied word embeddings, we skip the word embeddings (0-th) layer and start from the 2nd layer, as the early exit from word embeddings will become identity function.
- Set the `dola_layers` to a list of integers for layer indices to contrast manually specified layers. For example, setting `dola_layers=[28,30]` will contrast the final layer (32-th layer) with the 28-th and 30-th layers.
The paper suggested that contrasting `'high'` layers to improve short-answer tasks like TruthfulQA, and contrasting `'low'` layers to improve all the other long-answer reasoning tasks, such as GSM8K, StrategyQA, FACTOR, and VicunaQA. Applying DoLa to smaller models like GPT-2 is not recommended, as the results shown in the Appendix N of the paper.

View File

@ -46,16 +46,30 @@ The initial supported quantization types are decided according to the popular qu
on the Hub.
- F32
- F16
- BF16
- Q4_0
- Q4_1
- Q5_0
- Q5_1
- Q8_0
- Q2_K
- Q3_K
- Q4_0
- Q4_K
- Q5_K
- Q6_K
- Q8_0
- IQ1_S
- IQ1_M
- IQ2_XXS
- IQ2_XS
- IQ2_S
- IQ3_XXS
- IQ3_S
- IQ4_XS
- IQ4_NL
We take example from the excellent [99991/pygguf](https://github.com/99991/pygguf) Python parser to dequantize the
weights.
> [!NOTE]
> To support gguf dequantization, `gguf>=0.10.0` installation is required.
### Supported model architectures
@ -64,6 +78,8 @@ For now the supported model architectures are the architectures that have been v
- LLaMa
- Mistral
- Qwen2
- Qwen2Moe
- Phi3
## Example usage

View File

@ -139,7 +139,7 @@ reading the whole sentence with a mask to hide future tokens at a certain timest
### deep learning (DL)
Machine learning algorithms which uses neural networks with several layers.
Machine learning algorithms which use neural networks with several layers.
## E
@ -519,4 +519,4 @@ A form of model training in which data provided to the model is not labeled. Uns
Parallelism technique which performs sharding of the tensors somewhat similar to [TensorParallel](#tensor-parallelism-tp),
except the whole tensor gets reconstructed in time for a forward or backward computation, therefore the model doesn't need
to be modified. This method also supports various offloading techniques to compensate for limited GPU memory.
Learn more about ZeRO [here](perf_train_gpu_many#zero-data-parallelism).
Learn more about ZeRO [here](perf_train_gpu_many#zero-data-parallelism).

View File

@ -88,6 +88,7 @@ Flax), PyTorch, and/or TensorFlow.
| [ByT5](model_doc/byt5) | ✅ | ✅ | ✅ |
| [CamemBERT](model_doc/camembert) | ✅ | ✅ | ❌ |
| [CANINE](model_doc/canine) | ✅ | ❌ | ❌ |
| [Chameleon](model_doc/chameleon) | ✅ | ❌ | ❌ |
| [Chinese-CLIP](model_doc/chinese_clip) | ✅ | ❌ | ❌ |
| [CLAP](model_doc/clap) | ✅ | ❌ | ❌ |
| [CLIP](model_doc/clip) | ✅ | ✅ | ✅ |
@ -104,6 +105,7 @@ Flax), PyTorch, and/or TensorFlow.
| [CPM-Ant](model_doc/cpmant) | ✅ | ❌ | ❌ |
| [CTRL](model_doc/ctrl) | ✅ | ✅ | ❌ |
| [CvT](model_doc/cvt) | ✅ | ✅ | ❌ |
| [DAC](model_doc/dac) | ✅ | ❌ | ❌ |
| [Data2VecAudio](model_doc/data2vec) | ✅ | ❌ | ❌ |
| [Data2VecText](model_doc/data2vec) | ✅ | ❌ | ❌ |
| [Data2VecVision](model_doc/data2vec) | ✅ | ✅ | ❌ |
@ -119,7 +121,7 @@ Flax), PyTorch, and/or TensorFlow.
| [DETR](model_doc/detr) | ✅ | ❌ | ❌ |
| [DialoGPT](model_doc/dialogpt) | ✅ | ✅ | ✅ |
| [DiNAT](model_doc/dinat) | ✅ | ❌ | ❌ |
| [DINOv2](model_doc/dinov2) | ✅ | ❌ | |
| [DINOv2](model_doc/dinov2) | ✅ | ❌ | |
| [DistilBERT](model_doc/distilbert) | ✅ | ✅ | ✅ |
| [DiT](model_doc/dit) | ✅ | ❌ | ✅ |
| [DonutSwin](model_doc/donut) | ✅ | ❌ | ❌ |
@ -135,6 +137,7 @@ Flax), PyTorch, and/or TensorFlow.
| [ESM](model_doc/esm) | ✅ | ✅ | ❌ |
| [FairSeq Machine-Translation](model_doc/fsmt) | ✅ | ❌ | ❌ |
| [Falcon](model_doc/falcon) | ✅ | ❌ | ❌ |
| [FalconMamba](model_doc/falcon_mamba) | ✅ | ❌ | ❌ |
| [FastSpeech2Conformer](model_doc/fastspeech2_conformer) | ✅ | ❌ | ❌ |
| [FLAN-T5](model_doc/flan-t5) | ✅ | ✅ | ✅ |
| [FLAN-UL2](model_doc/flan-ul2) | ✅ | ✅ | ✅ |
@ -145,6 +148,7 @@ Flax), PyTorch, and/or TensorFlow.
| [Funnel Transformer](model_doc/funnel) | ✅ | ✅ | ❌ |
| [Fuyu](model_doc/fuyu) | ✅ | ❌ | ❌ |
| [Gemma](model_doc/gemma) | ✅ | ❌ | ✅ |
| [Gemma2](model_doc/gemma2) | ✅ | ❌ | ❌ |
| [GIT](model_doc/git) | ✅ | ❌ | ❌ |
| [GLPN](model_doc/glpn) | ✅ | ❌ | ❌ |
| [GPT Neo](model_doc/gpt_neo) | ✅ | ❌ | ✅ |
@ -154,10 +158,12 @@ Flax), PyTorch, and/or TensorFlow.
| [GPT-Sw3](model_doc/gpt-sw3) | ✅ | ✅ | ✅ |
| [GPTBigCode](model_doc/gpt_bigcode) | ✅ | ❌ | ❌ |
| [GPTSAN-japanese](model_doc/gptsan-japanese) | ✅ | ❌ | ❌ |
| [Granite](model_doc/granite) | ✅ | ❌ | ❌ |
| [Graphormer](model_doc/graphormer) | ✅ | ❌ | ❌ |
| [Grounding DINO](model_doc/grounding-dino) | ✅ | ❌ | ❌ |
| [GroupViT](model_doc/groupvit) | ✅ | ✅ | ❌ |
| [HerBERT](model_doc/herbert) | ✅ | ✅ | ✅ |
| [Hiera](model_doc/hiera) | ✅ | ❌ | ❌ |
| [Hubert](model_doc/hubert) | ✅ | ✅ | ❌ |
| [I-BERT](model_doc/ibert) | ✅ | ❌ | ❌ |
| [IDEFICS](model_doc/idefics) | ✅ | ✅ | ❌ |
@ -182,7 +188,8 @@ Flax), PyTorch, and/or TensorFlow.
| [Llama3](model_doc/llama3) | ✅ | ❌ | ✅ |
| [LLaVa](model_doc/llava) | ✅ | ❌ | ❌ |
| [LLaVA-NeXT](model_doc/llava_next) | ✅ | ❌ | ❌ |
| [LLaVa-NeXT-Video](model_doc/llava-next-video) | ✅ | ❌ | ❌ |
| [LLaVa-NeXT-Video](model_doc/llava_next_video) | ✅ | ❌ | ❌ |
| [LLaVA-Onevision](model_doc/llava_onevision) | ✅ | ❌ | ❌ |
| [Longformer](model_doc/longformer) | ✅ | ✅ | ❌ |
| [LongT5](model_doc/longt5) | ✅ | ❌ | ✅ |
| [LUKE](model_doc/luke) | ✅ | ❌ | ❌ |
@ -191,6 +198,7 @@ Flax), PyTorch, and/or TensorFlow.
| [M2M100](model_doc/m2m_100) | ✅ | ❌ | ❌ |
| [MADLAD-400](model_doc/madlad-400) | ✅ | ✅ | ✅ |
| [Mamba](model_doc/mamba) | ✅ | ❌ | ❌ |
| [mamba2](model_doc/mamba2) | ✅ | ❌ | ❌ |
| [Marian](model_doc/marian) | ✅ | ✅ | ✅ |
| [MarkupLM](model_doc/markuplm) | ✅ | ❌ | ❌ |
| [Mask2Former](model_doc/mask2former) | ✅ | ❌ | ❌ |
@ -219,12 +227,14 @@ Flax), PyTorch, and/or TensorFlow.
| [MusicGen Melody](model_doc/musicgen_melody) | ✅ | ❌ | ❌ |
| [MVP](model_doc/mvp) | ✅ | ❌ | ❌ |
| [NAT](model_doc/nat) | ✅ | ❌ | ❌ |
| [Nemotron](model_doc/nemotron) | ✅ | ❌ | ❌ |
| [Nezha](model_doc/nezha) | ✅ | ❌ | ❌ |
| [NLLB](model_doc/nllb) | ✅ | ❌ | ❌ |
| [NLLB-MOE](model_doc/nllb-moe) | ✅ | ❌ | ❌ |
| [Nougat](model_doc/nougat) | ✅ | ✅ | ✅ |
| [Nyströmformer](model_doc/nystromformer) | ✅ | ❌ | ❌ |
| [OLMo](model_doc/olmo) | ✅ | ❌ | ❌ |
| [OLMoE](model_doc/olmoe) | ✅ | ❌ | ❌ |
| [OneFormer](model_doc/oneformer) | ✅ | ❌ | ❌ |
| [OpenAI GPT](model_doc/openai-gpt) | ✅ | ✅ | ❌ |
| [OpenAI GPT-2](model_doc/gpt2) | ✅ | ✅ | ✅ |
@ -251,7 +261,9 @@ Flax), PyTorch, and/or TensorFlow.
| [PVTv2](model_doc/pvt_v2) | ✅ | ❌ | ❌ |
| [QDQBert](model_doc/qdqbert) | ✅ | ❌ | ❌ |
| [Qwen2](model_doc/qwen2) | ✅ | ❌ | ❌ |
| [Qwen2Audio](model_doc/qwen2_audio) | ✅ | ❌ | ❌ |
| [Qwen2MoE](model_doc/qwen2_moe) | ✅ | ❌ | ❌ |
| [Qwen2VL](model_doc/qwen2_vl) | ✅ | ❌ | ❌ |
| [RAG](model_doc/rag) | ✅ | ✅ | ❌ |
| [REALM](model_doc/realm) | ✅ | ❌ | ❌ |
| [RecurrentGemma](model_doc/recurrent_gemma) | ✅ | ❌ | ❌ |
@ -342,5 +354,6 @@ Flax), PyTorch, and/or TensorFlow.
| [XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2) | ✅ | ✅ | ✅ |
| [YOLOS](model_doc/yolos) | ✅ | ❌ | ❌ |
| [YOSO](model_doc/yoso) | ✅ | ❌ | ❌ |
| [ZoeDepth](model_doc/zoedepth) | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -71,7 +71,7 @@ pip install 'transformers[tf-cpu]'
M1 / ARM Users
You will need to install the following before installing TensorFLow 2.0
You will need to install the following before installing TensorFlow 2.0
```bash
brew install cmake
brew install pkg-config

View File

@ -140,9 +140,6 @@ generation.
[[autodoc]] ForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] ForceTokensLogitsProcessor
- __call__
[[autodoc]] HammingDiversityLogitsProcessor
- __call__
@ -158,9 +155,6 @@ generation.
[[autodoc]] LogitsProcessorList
- __call__
[[autodoc]] LogitsWarper
- __call__
[[autodoc]] MinLengthLogitsProcessor
- __call__
@ -386,14 +380,43 @@ A [`Constraint`] can be used to force the generation to include specific tokens
- get_seq_length
- reorder_cache
[[autodoc]] OffloadedCache
- update
- prefetch_layer
- evict_previous_layer
[[autodoc]] StaticCache
- update
- get_seq_length
- reset
[[autodoc]] OffloadedStaticCache
- update
- get_seq_length
- reset
[[autodoc]] HybridCache
- update
- get_seq_length
- reset
[[autodoc]] SlidingWindowCache
- update
- reset
[[autodoc]] EncoderDecoderCache
- get_seq_length
- to_legacy_cache
- from_legacy_cache
- reset
- reorder_cache
[[autodoc]] MambaCache
- update_conv_state
- update_ssm_state
- reset
## Watermark Utils
[[autodoc]] WatermarkDetector
- __call__

403
docs/source/en/kv_cache.md Normal file
View File

@ -0,0 +1,403 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Best Practices for Generation with Cache
Efficient caching is crucial for optimizing the performance of models in various generative tasks,
including text generation, translation, summarization and other transformer-based applications.
Effective caching helps reduce computation time and improve response rates, especially in real-time or resource-intensive applications.
Transformers support various caching methods, leveraging "Cache" classes to abstract and manage the caching logic.
This document outlines best practices for using these classes to maximize performance and efficiency.
Check out all the available `Cache` classes in the [API documentation](./internal/generation_utils).
## What is Cache and why we should care?
Imagine youre having a conversation with someone, and instead of remembering what was said previously, you have to start from scratch every time you respond. This would be slow and inefficient, right? In the world of Transformer models, a similar concept applies, and that's where Caching keys and values come into play. From now on, I'll refer to the concept as KV Cache.
KV cache is needed to optimize the generation in autoregressive models, where the model predicts text token by token. This process can be slow since the model can generate only one token at a time, and each new prediction is dependent on the previous context. That means, to predict token number 1000 in the generation, you need information from the previous 999 tokens, which comes in the form of some matrix multiplications across the representations of those tokens. But to predict token number 1001, you also need the same information from the first 999 tokens, plus additional information from token number 1000. That is where key-value cache is used to optimize the sequential generation process by storing previous calculations to reuse in subsequent tokens, so they don't need to be computed again.
More concretely, key-value cache acts as a memory bank for these generative models, where the model stores key-value pairs derived from self-attention layers for previously processed tokens. By storing this information, the model can avoid redundant computations and instead retrieve keys and values of previous tokens from the cache. Note that caching can be used only in inference and should be disabled when training, otherwise it might cause unexpected errors.
<details>
<summary><em>For the Curious Minds Who Like to Dive Deep</em></summary>
### Under the Hood: How Cache Object Works in Attention Mechanism
When utilizing a cache object in the input, the Attention module performs several critical steps to integrate past and present information seamlessly.
The Attention module concatenates the current key-values with the past key-values stored in the cache. This results in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`. Essentially, the past and current key-values are combined to compute attention scores, ensuring that the model considers both previous context and new input. The concatenated key-values are used to compute the attention scores resulting in attention weights of shape `(new_tokens_length, past_kv_length + new_tokens_length)`.
Therefore, when iteratively calling `forward()` instead of the `generate()` method, its crucial to ensure that the attention mask shape matches the combined length of past and current key-values. The attention mask should have the shape `(batch_size, past_kv_length + new_tokens_length)`. This is usually handled internally when you call `generate()` method. If you want to implement your own generation loop with Cache classes, take this into consideration and prepare the attention mask to hold values to current and past tokens.
<Tip warning={true}>
One important concept you need to know when writing your own generation loop, is `cache_position`. In case you want to reuse an already filled Cache object by calling `forward()`, you have to pass in a valid `cache_position` which will indicate the positions of inputs in the sequence. Note that `cache_position` is not affected by padding, and always adds one more position for each token. For example, if key/value cache contains 10 tokens (no matter how many of it is a pad token), the cache position for the next token should be `torch.tensor([10])`.
</Tip>
See an example below for how to implement your own generation loop.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
>>> model_id = "meta-llama/Llama-2-7b-chat-hf"
>>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda:0")
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>> past_key_values = DynamicCache()
>>> messages = [{"role": "user", "content": "Hello, what's your name."}]
>>> inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda:0")
>>> generated_ids = inputs.input_ids
>>> cache_position = torch.arange(inputs.input_ids.shape[1], dtype=torch.int64, device="cuda:0")
>>> max_new_tokens = 10
>>> for _ in range(max_new_tokens):
... outputs = model(**inputs, cache_position=cache_position, past_key_values=past_key_values, use_cache=True)
... # Greedily sample one next token
... next_token_ids = outputs.logits[:, -1:].argmax(-1)
... generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
...
... # Prepare inputs for the next generation step by leaaving unprocessed tokens, in our case we have only one new token
... # and expanding attn mask for the new token, as explained above
... attention_mask = inputs["attention_mask"]
... attention_mask = torch.cat([attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1)
... inputs = {"input_ids": next_token_ids, "attention_mask": attention_mask}
... cache_position = cache_position[-1:] + 1 # add one more position for the next token
>>> print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
</details>
## Generate with Cache
In 🤗 Transformers, we support various Cache types to optimize the performance across different models and tasks. By default, all models generate with caching,
with the [`~DynamicCache`] class being the default cache for most models. It allows us to dynamically grow cache size, by saving more and more keys and values as we generate. If for some reason you don't want to use caches, you can pass `use_cache=False` into the `generate()` method.
Refer to the table below to see the difference between cache types and choose the one that suits best for your use-case. Models for which initialization is recommended should be initialized before calling the model and passed to model as a kwarg. In all other cases you can simply define desired `cache_implementation` and we take care of the rest for you.
| Cache Type | Memory Efficient | Supports torch.compile() | Initialization Recommended | Latency | Long Context Generation |
|------------------------|------------------|--------------------------|----------------------------|---------|-------------------------|
| Dynamic Cache | No | No | No | Mid | No |
| Static Cache | No | Yes | Yes | High | No |
| Offloaded Cache | Yes | No | No | Low | Yes |
| Offloaded Static Cache | No | Yes | Yes | High | Yes |
| Quantized Cache | Yes | No | No | Low | Yes |
| Sliding Window Cache | No | Yes | Yes | High | No |
| Sink Cache | Yes | No | Yes | Mid | Yes |
These cache classes can be set with a `cache_implementation` argument when generating. To learn about the available options for the cache_implementation flag, please refer to the [API Documentation](./main_classes/text_generation#transformers.GenerationConfig). Now, let's explore each cache type in detail and see how to use them. Note that the below examples are for decoder-only Tranformer-based models. We also support ["Model-Specific Cache"] classes for models such as Mamba or Jamba, keep reading for more details.
### Quantized Cache
The key and value cache can occupy a large portion of memory, becoming a [bottleneck for long-context generation](https://huggingface.co/blog/llama31#inference-memory-requirements), especially for Large Language Models.
Quantizing the cache when using `generate()` can significantly reduce memory requirements at the cost of speed.
KV Cache quantization in `transformers` is largely inspired by the paper ["KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache"](https://arxiv.org/abs/2402.02750) and currently supports [`~QuantoQuantizedCache`] and [`~HQQQuantizedCache`] classes. For more information on the inner workings see the paper.
To enable quantization of the key-value cache, one needs to indicate `cache_implementation="quantized"` in the `generation_config`.
Quantization related arguments should be passed to the `generation_config` either as a `dict` or an instance of a [`~QuantizedCacheConfig`] class.
One has to indicate which quantization backend to use in the [`~QuantizedCacheConfig`], the default is `quanto`.
It is recommended to set `axis-key/axis-value` parameters in the cache config to `0` if you're using the `quanto` backend and to `1` if you're using the `HQQ` backend. For other config values, please use the defaults unless you're running out of memory. In that case, you may consider decreasing the residual length.
<Tip warning={true}>
Cache quantization can be detrimental in terms of latency if the context length is short and there is enough GPU VRAM available to run without cache quantization. It is recommended to seek balance between memory efficiency and latency.
</Tip>
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("I like rock music because", return_tensors="pt").to(model.device)
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="quantized", cache_config={"nbits": 4, "backend": "quanto"})
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. It's a great way to express myself and rel
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20)
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
I like rock music because it's loud and energetic. I like to listen to it when I'm feeling
```
### Offloaded Cache
Similarly to KV cache quantization, [`~OffloadedCache`] strategy aims to reduce GPU VRAM usage.
It does so by moving the KV cache for most layers to the CPU.
As the model's `forward()` method iterates over the layers, this strategy maintains the current layer cache on the GPU.
At the same time it asynchronously prefetches the next layer cache as well as sending the previous layer cache back to the CPU.
Unlike KV cache quantization, this strategy always produces the same result as the default KV cache implementation.
Thus, it can serve as a drop-in replacement or a fallback for it.
Depending on your model and the characteristics of your generation task (size of context, number of generated tokens, number of beams, etc.)
you may notice a small degradation in generation throughput compared to the default KV cache implementation.
To enable KV cache offloading, pass `cache_implementation="offloaded"` in the `generation_config` or directly to the `generate()` call.
Use `cache_implementation="offloaded_static"` for an offloaded static cache (see also [Offloaded Static Cache](#offloaded-static-cache) below).
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> ckpt = "microsoft/Phi-3-mini-4k-instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(ckpt)
>>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("Fun fact: The shortest", return_tensors="pt").to(model.device)
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23, cache_implementation="offloaded")
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896.
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=23)
>>> print(tokenizer.batch_decode(out, skip_special_tokens=True)[0])
Fun fact: The shortest war in history was between Britain and Zanzibar on August 27, 1896.
```
<Tip warning={true}>
Cache offloading requires a GPU and can be slower than dynamic KV cache. Use it if you are getting CUDA out of memory errors.
</Tip>
The example below shows how KV cache offloading can be used as a fallback strategy.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> def resilient_generate(model, *args, **kwargs):
... oom = False
... try:
... return model.generate(*args, **kwargs)
... except torch.cuda.OutOfMemoryError as e:
... print(e)
... print("retrying with cache_implementation='offloaded'")
... oom = True
... if oom:
... torch.cuda.empty_cache()
... kwargs["cache_implementation"] = "offloaded"
... return model.generate(*args, **kwargs)
...
...
>>> ckpt = "microsoft/Phi-3-mini-4k-instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(ckpt)
>>> model = AutoModelForCausalLM.from_pretrained(ckpt, torch_dtype=torch.float16).to("cuda:0")
>>> prompt = ["okay "*1000 + "Fun fact: The most"]
>>> inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
>>> beams = { "num_beams": 40, "num_beam_groups": 40, "num_return_sequences": 40, "diversity_penalty": 1.0, "max_new_tokens": 23, "early_stopping": True, }
>>> out = resilient_generate(model, **inputs, **beams)
>>> responses = tokenizer.batch_decode(out[:,-28:], skip_special_tokens=True)
```
On a GPU with 50 GB of RAM, running this code will print
```
CUDA out of memory. Tried to allocate 4.83 GiB. GPU
retrying with cache_implementation='offloaded'
```
before successfully generating 40 beams.
### Static Cache
Since the "DynamicCache" dynamically grows with each generation step, it prevents you from taking advantage of JIT optimizations. The [`~StaticCache`] pre-allocates
a specific maximum size for the keys and values, allowing you to generate up to the maximum length without having to modify cache size. Check the below usage example.
For more examples with Static Cache and JIT compilation, take a look at [StaticCache & torchcompile](./llm_optims#static-kv-cache-and-torchcompile)
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
>>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
>>> # simply pass the cache implementation="static"
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="static")
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of"
```
## Offloaded Static Cache
Like [`~OffloadedCache`] exists for offloading a "DynamicCache", there is also an offloaded static cache. It fully supports
JIT optimizations. Just pass `cache_implementation="offloaded_static"` in the `generation_config` or directly to the `generate()` call.
This will use the [`~OffloadedStaticCache`] implementation instead.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16, device_map="auto")
>>> inputs = tokenizer("Hello, my name is", return_tensors="pt").to(model.device)
>>> # simply pass the cache implementation="static"
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=20, cache_implementation="offloaded_static")
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Hello, my name is [Your Name], and I am a [Your Profession] with [Number of Years] of"
```
### Sliding Window Cache
As the name suggests, this cache type implements a sliding window over previous keys and values, retaining only the last `sliding_window` tokens. It should be used with models like Mistral that support sliding window attention. Additionally, similar to Static Cache, this one is JIT-friendly and can be used with the same compile tecniques as Static Cache.
Note that you can use this cache only for models that support sliding window, e.g. Mistral models.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
>>> model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("Yesterday I was on a rock concert and.", return_tensors="pt").to(model.device)
>>> # can be used by passing in cache implementation
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, cache_implementation="sliding_window")
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"Yesterday I was on a rock concert and. I was so excited to see my favorite band. I was so excited that I was jumping up and down and screaming. I was so excited that I"
```
### Sink Cache
Sink Cache was introduced in ["Efficient Streaming Language Models with Attention Sinks"](https://arxiv.org/abs/2309.17453). It allows you to generate long sequences of text ("infinite length" according to the paper) without any fine-tuning. That is achieved by smart handling of previous keys and values, specifically it retains a few initial tokens from the sequence, called "sink tokens". This is based on the observation that these initial tokens attract a significant portion of attention scores during the generation process. Tokens that come after "sink tokens" are discarded on a sliding windowed basis, keeping only the latest `window_size` tokens. By keeping these initial tokens as "attention sinks," the model maintains stable performance even when dealing with very long texts, thus discarding most of the previous knowledge.
Unlike other cache classes, this one can't be used directly by indicating a `cache_implementation`. You have to initialize the Cache before calling on `generate()` as follows.
```python
>>> import torch
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", torch_dtype=torch.float16).to("cuda:0")
>>> inputs = tokenizer("This is a long story about unicorns, fairies and magic.", return_tensors="pt").to(model.device)
>>> # get our cache, specify number of sink tokens and window size
>>> # Note that window size already includes sink tokens, so has to be larger
>>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
>>> out = model.generate(**inputs, do_sample=False, max_new_tokens=30, past_key_values=past_key_values)
>>> tokenizer.batch_decode(out, skip_special_tokens=True)[0]
"This is a long story about unicorns, fairies and magic. It is a fantasy world where unicorns and fairies live together in harmony. The story follows a young girl named Lily"
```
### Encoder-Decoder Cache
The [`~EncoderDecoderCache`] is a wrapper designed to handle the caching needs of encoder-decoder models. This cache type is specifically built to manage both self-attention and cross-attention caches, ensuring storage and retrieval of past key/values required for these complex models. Cool thing about Encoder-Decoder Cache is that you can set different cache types for the encoder and for the decoder, depending on your use case. Currently this cache is only supported in [Whisper](./model_doc/whisper) models but we will be adding more models soon.
In terms of usage, there is nothing special to be done and calling `generate()` or `forward()` will handle everything for you.
### Model-specific Cache Classes
Some models require storing previous keys, values, or states in a specific way, and the above cache classes cannot be used. For such cases, we have several specialized cache classes that are designed for specific models. These models only accept their own dedicated cache classes and do not support using any other cache types. Some examples include [`~HybridCache`] for [Gemma2](./model_doc/gemma2) series models or [`~MambaCache`] for [Mamba](./model_doc/mamba) architecture models.
## Iterative Generation with Cache
We have seen how to use each of the cache types when generating. What if you want to use cache in iterative generation setting, for example in applications like chatbots, where interactions involve multiple turns and continuous back-and-forth exchanges. Iterative generation with cache allows these systems to handle ongoing conversations effectively without reprocessing the entire context at each step. But there are some tips that you should know before you start implementing:
The general format when doing iterative generation is as below. First you have to initialize an empty cache of the type you want, and you can start feeding in new prompts iteratively. Keeping track of dialogues history and formatting can be done with chat templates, read more on that in [chat_templating](./chat_templating)
In case you are using Sink Cache, you have to crop your inputs to that maximum length because Sink Cache can generate text longer than its maximum window size, but it expects the first input to not exceed the maximum cache length.
```python
>>> import torch
>>> from transformers import AutoTokenizer,AutoModelForCausalLM
>>> from transformers.cache_utils import (
>>> DynamicCache,
>>> SinkCache,
>>> StaticCache,
>>> SlidingWindowCache,
>>> QuantoQuantizedCache,
>>> QuantizedCacheConfig,
>>> )
>>> model_id = "meta-llama/Llama-2-7b-chat-hf"
>>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map='auto')
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>> user_prompts = ["Hello, what's your name?", "Btw, yesterday I was on a rock concert."]
>>> past_key_values = DynamicCache()
>>> max_cache_length = past_key_values.get_max_length()
>>> messages = []
>>> for prompt in user_prompts:
... messages.append({"role": "user", "content": prompt})
... inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
... if isinstance(past_key_values, SinkCache):
... inputs = {k: v[:, -max_cache_length:] for k, v in inputs.items()}
...
... input_length = inputs["input_ids"].shape[1]
...
... outputs = model.generate(**inputs, do_sample=False, max_new_tokens=256, past_key_values=past_key_values)
... completion = tokenizer.decode(outputs[0, input_length: ], skip_special_tokens=True)
... messages.append({"role": "assistant", "content": completion})
print(messages)
[{'role': 'user', 'content': "Hello, what's your name?"}, {'role': 'assistant', 'content': " Hello! My name is LLaMA, I'm a large language model trained by a team of researcher at Meta AI. 😊"}, {'role': 'user', 'content': 'Btw, yesterday I was on a rock concert.'}, {'role': 'assistant', 'content': ' Oh, cool! That sounds like a lot of fun! 🎉 Did you enjoy the concert? What was the band like? 🤔'}]
```
## Re-use Cache to continue generation
Sometimes you would want to first fill-in cache object with key/values for certain prefix prompt and re-use it several times to generate different sequences from it. In that case you can construct a `Cache` object that will hold the instruction prompt, and re-use it several times with different text sequences.
```python
>>> import copy
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache, StaticCache
>>> model_id = "meta-llama/Llama-2-7b-chat-hf"
>>> model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="cuda")
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
>>> # Init StaticCache with big enough max-length (1024 tokens for the below example)
>>> # You can also init a DynamicCache, if that suits you better
>>> prompt_cache = StaticCache(config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16)
>>> INITIAL_PROMPT = "You are a helpful assistant. "
>>> inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda")
>>> # This is the common prompt cached, we need to run forward without grad to be abel to copy
>>> with torch.no_grad():
... prompt_cache = model(**inputs_initial_prompt, past_key_values = prompt_cache).past_key_values
>>> prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
>>> responses = []
>>> for prompt in prompts:
... new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
... past_key_values = copy.deepcopy(prompt_cache)
... outputs = model.generate(**new_inputs, past_key_values=past_key_values,max_new_tokens=20)
... response = tokenizer.batch_decode(outputs)[0]
... responses.append(response)
>>> print(responses)
['<s> You are a helpful assistant. Help me to write a blogpost about travelling.\n\nTitle: The Ultimate Guide to Travelling: Tips, Tricks, and', '<s> You are a helpful assistant. What is the capital of France?\n\nYes, the capital of France is Paris.</s>']
```

View File

@ -18,59 +18,109 @@ Basic inference is slow because LLMs have to be called repeatedly to generate th
This guide will show you how to use the optimization techniques available in Transformers to accelerate LLM inference.
> [!TIP]
> Hugging Face also provides [Text Generation Inference (TGI)](https://hf.co/docs/text-generation-inference), a library dedicated to deploying and serving highly optimized LLMs for inference. It includes more optimization features not included in Transformers, such as continuous batching for increasing throughput and tensor parallelism for multi-GPU inference.
> Hugging Face also provides [Text Generation Inference (TGI)](https://hf.co/docs/text-generation-inference), a library dedicated to deploying and serving highly optimized LLMs for inference. It includes deployment-oriented optimization features not included in Transformers, such as continuous batching for increasing throughput and tensor parallelism for multi-GPU inference.
## Static kv-cache and torch.compile
## Static kv-cache and `torch.compile`
During decoding, a LLM computes the key-value (kv) values for each input token and since it is autoregressive, it computes the same kv values each time because the generated output becomes part of the input now. This is not very efficient because you're recomputing the same kv values each time.
To optimize this, you can use a kv-cache to store the past keys and values instead of recomputing them each time. However, since the kv-cache grows with each generation step and is dynamic, it prevents you from taking advantage of [torch.compile](./perf_torch_compile), a powerful optimization tool that fuses PyTorch code into fast and optimized kernels.
To optimize this, you can use a kv-cache to store the past keys and values instead of recomputing them each time. However, since the kv-cache grows with each generation step and is dynamic, it prevents you from taking advantage of [`torch.compile`](./perf_torch_compile), a powerful optimization tool that fuses PyTorch code into fast and optimized kernels. We have an entire guide dedicated to kv-caches [here](./kv_cache).
The *static kv-cache* solves this issue by pre-allocating the kv-cache size to a maximum value which allows you to combine it with torch.compile for up to a 4x speed up.
The *static kv-cache* solves this issue by pre-allocating the kv-cache size to a maximum value which allows you to combine it with `torch.compile` for up to a 4x speed up. Your speed up may vary depending on the model size (larger models have a smaller speed up) and hardware.
> [!WARNING]
> Currently, only [Llama](./model_doc/llama2) and a few other models support static kv-cache and torch.compile. Check [this issue](https://github.com/huggingface/transformers/issues/28981) for a live model compatibility list.
> Currently, only [Llama](./model_doc/llama2) and a few other models support static kv-cache and `torch.compile`. Check [this issue](https://github.com/huggingface/transformers/issues/28981) for a live model compatibility list.
For this example, let's load the [Gemma](https://hf.co/google/gemma-2b) model.
There are three flavors of static kv-cache usage, depending on the complexity of your task:
1. Basic usage: simply set a flag in `generation_config` (recommended);
2. Advanced usage: handle a cache object for multi-turn generation or a custom generation loop;
3. Advanced usage: compile the entire `generate` function into a single graph, if having a single graph is relevant for you.
Select the correct tab below for further instructions on each of these flavors.
> [!TIP]
> Regardless of the strategy used with `torch.compile`, you can avoid shape-related recompilations if you left-pad your LLM inputs to a limited set of values. The [`pad_to_multiple_of` tokenizer flag](https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__.pad_to_multiple_of) is your friend!
<hfoptions id="static-kv">
<hfoption id="basic usage: generation_config">
For this example, let's use the [Gemma](https://hf.co/google/gemma-2b) model. All we need to do is to:
1. Access the model's `generation_config` attribute and set the `cache_implementation` to "static";
2. Call `torch.compile` on the model to compile the forward pass with the static kv-cache.
And that's it!
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b", device_map="auto"
)
```
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
There are two ways you can configure the model to use a static kv-cache. For a 7B model on an A100, both methods get a 4x speed up in the forward pass. Your speed up may vary depending on the model size (larger models have a smaller speed up) and hardware. If you're using the [`~GenerationMixin.generate`] method, the speed up is ~3x. The forward pass (which still gets 4x speed up) is only a part of the whole [`~GenerationMixin.generate`] code.
<hfoptions id="static-kv">
<hfoption id="generation_config">
Access the model's `generation_config` attribute and set the `cache_implementation` to "static".
```py
model.generation_config.cache_implementation = "static"
```
Call torch.compile on the model to compile the forward pass with the static kv-cache.
```py
compiled_model = torch.compile(model, mode="reduce-overhead", fullgraph=True)
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
input_text = "The theory of special relativity states "
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = compiled_model.generate(**input_ids)
tokenizer.batch_decode(outputs, skip_special_tokens=True)
outputs = model.generate(**input_ids)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference']
```
Under the hood, `generate` will attempt to reuse the same cache object, removing the need for re-compilation at each call. However, if the batch size or the maximum output length increase between calls, the cache will have to be reinitialized, triggering a new compilation.
Under the hood, `generate` will attempt to reuse the same cache object, removing the need for re-compilation at each call. Avoiding re-compilation is critical to get the most out of `torch.compile`, and you should be aware of the following:
1. If the batch size changes or the maximum output length increases between calls, the cache will have to be reinitialized, triggering a new compilation;
2. The first couple of calls of the compiled function are slower, as the function is being compiled.
> [!WARNING]
> For a more advanced usage of the static cache, such as multi-turn conversations, we recommend instantiating and manipulating the cache object outside [`~GenerationMixin.generate`]. See the advanced usage tab.
</hfoption>
<hfoption id="Static Cache">
<hfoption id="advanced usage: control Static Cache">
A [`StaticCache`] object can be passed to the model's forward pass under the `past_key_values` argument, enabling the use of this object as a static kv-cache. Using this strategy, you can write your own function to decode the next token given the current token and position and cache position of previously generated tokens. You can also pass the [`StaticCache`] object to [`~GenerationMixin.generate`] and use it across calls, like you would do with a dynamic cache.
A [`StaticCache`] object can be passed to the model's [`~GenerationMixin.generate`] under the `past_key_values` argument. The object will retain the cache contents, so you can pass it to a new [`~GenerationMixin.generate`] call to continue generation, like you would do with a dynamic cache.
```py
from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
input_text = "The theory of special relativity states "
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
prompt_length = input_ids.input_ids.shape[1]
model.generation_config.max_new_tokens = 16
past_key_values = StaticCache(
config=model.config,
batch_size=1,
# If you plan to reuse the cache, make sure the cache length is large enough for all cases
max_cache_len=prompt_length+(model.generation_config.max_new_tokens*2),
device=model.device,
dtype=model.dtype
)
outputs = model.generate(**input_ids, past_key_values=past_key_values)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference frames. 2']
# pass in the generated text and the same cache object to continue generation from where it left off. Optionally, in a
# multi-turn conversation, append the new user input to the generated text.
new_input_ids = outputs
outputs = model.generate(new_input_ids, past_key_values=past_key_values)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference frames. 2. The speed of light is constant in all inertial reference frames. 3.']
```
> [!TIP]
> If you want to reuse the same [`StaticCache`] object on a new prompt, be sure to reset its contents with the `.reset()` method between calls
If you want to go further down a level, the [`StaticCache`] object can also be passed to the model's forward pass under the same `past_key_values` argument. Using this strategy, you can write your own function to decode the next token given the current token and position and cache position of previously generated tokens.
```py
from transformers import LlamaTokenizer, LlamaForCausalLM, StaticCache, logging
@ -102,19 +152,16 @@ def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_valu
return new_token
```
There are a few important things you must do to enable static kv-cache and torch.compile with the `StaticCache` method:
There are a few important things you must do to enable static kv-cache and `torch.compile` with the `StaticCache` method:
1. Initialize the [`StaticCache`] instance before using the model for inference. There you can configure parameters like the maximum batch size and sequence length.
2. Call torch.compile on the model to compile the forward pass with the static kv-cache.
2. Call `torch.compile` on the model to compile the forward pass with the static kv-cache.
3. Set `enable_math=True` in the [torch.backends.cuda.sdp_kernel](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) context manager to enable the native PyTorch C++ implementation of scaled dot product attention to speed up inference even more.
```py
batch_size, seq_length = inputs["input_ids"].shape
with torch.no_grad():
past_key_values = StaticCache(
config=model.config, max_batch_size=2, max_cache_len=4096, device=torch_device, dtype=model.dtype
config=model.config, batch_size=2, max_cache_len=4096, device=torch_device, dtype=model.dtype
)
cache_position = torch.arange(seq_length, device=torch_device)
generated_ids = torch.zeros(
@ -142,8 +189,34 @@ text
'My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p']
```
> [!TIP]
> If you want to reuse the [`StaticCache`] object on a new prompt, be sure to reset its contents with the `.reset()` method
</hfoption>
<hfoption id="advanced usage: end-to-end generate compilation">
Compiling the entire `generate` function, in terms of code, is even simpler than in the basic usage: call `torch.compile` on `generate` to compile the entire function. No need to specify the use of the static cache: although it is compatible, dynamic cache (default) was faster in our benchmarks.
```py
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :)
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", device_map="auto")
model.generate = torch.compile(model.generate, mode="reduce-overhead", fullgraph=True)
input_text = "The theory of special relativity states "
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
['The theory of special relativity states 1. The speed of light is constant in all inertial reference']
```
As a result, we compile not only the model forward pass, but also all input preparation, logit processor operations, and so on. The result should be a slightly `generate` call, compared to the basic usage example, and the compiled graph may be better suited to more exotic hardware devices or use cases. However, there are severe drawbacks in using this approach:
1. Compilation is much slower;
2. All parameterization of `generate` must be done through `generation_config`;
3. Many warnings and exceptions are suppressed -- we suggest testing with its uncompiled form first;
4. Although we are working on it, it is heavily feature restricted (for instance, at the time of writing, generation does not stop if an EOS token is selected).
</hfoption>
</hfoptions>

View File

@ -267,5 +267,6 @@ While the autoregressive generation process is relatively straightforward, makin
1. [`optimum`](https://github.com/huggingface/optimum), an extension of 🤗 Transformers that optimizes for specific hardware devices.
2. [`outlines`](https://github.com/outlines-dev/outlines), a library where you can constrain text generation (e.g. to generate JSON files);
3. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), a production-ready server for LLMs;
4. [`text-generation-webui`](https://github.com/oobabooga/text-generation-webui), a UI for text generation;
3. [`SynCode`](https://github.com/uiuc-focal-lab/syncode), a library for context-free grammar guided generation. (e.g. JSON, SQL, Python)
4. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), a production-ready server for LLMs;
5. [`text-generation-webui`](https://github.com/oobabooga/text-generation-webui), a UI for text generation;

View File

@ -147,7 +147,7 @@ Let's call it now for the next experiment.
```python
flush()
```
In the recent version of the accelerate library, you can also use an utility method called `release_memory()`
In the recent version of the accelerate library, you can also use a utility method called `release_memory()`
```python
from accelerate.utils import release_memory
@ -662,7 +662,7 @@ Using the key-value cache has two advantages:
- Significant increase in computational efficiency as less computations are performed compared to computing the full \\( \mathbf{QK}^T \\) matrix. This leads to an increase in inference speed
- The maximum required memory is not increased quadratically with the number of generated tokens, but only increases linearly.
> One should *always* make use of the key-value cache as it leads to identical results and a significant speed-up for longer input sequences. Transformers has the key-value cache enabled by default when making use of the text pipeline or the [`generate` method](https://huggingface.co/docs/transformers/main_classes/text_generation).
> One should *always* make use of the key-value cache as it leads to identical results and a significant speed-up for longer input sequences. Transformers has the key-value cache enabled by default when making use of the text pipeline or the [`generate` method](https://huggingface.co/docs/transformers/main_classes/text_generation). We have an entire guide dedicated to caches [here](./kv_cache).
<Tip warning={true}>
@ -683,7 +683,7 @@ Assistant: Germany has ca. 81 million inhabitants
In this chat, the LLM runs auto-regressive decoding twice:
1. The first time, the key-value cache is empty and the input prompt is `"User: How many people live in France?"` and the model auto-regressively generates the text `"Roughly 75 million people live in France"` while increasing the key-value cache at every decoding step.
2. The second time the input prompt is `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many in Germany?"`. Thanks to the cache, all key-value vectors for the first two sentences are already computed. Therefore the input prompt only consists of `"User: And how many in Germany?"`. While processing the shortened input prompt, it's computed key-value vectors are concatenated to the key-value cache of the first decoding. The second Assistant's answer `"Germany has ca. 81 million inhabitants"` is then auto-regressively generated with the key-value cache consisting of encoded key-value vectors of `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many are in Germany?"`.
2. The second time the input prompt is `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many in Germany?"`. Thanks to the cache, all key-value vectors for the first two sentences are already computed. Therefore the input prompt only consists of `"User: And how many in Germany?"`. While processing the shortened input prompt, its computed key-value vectors are concatenated to the key-value cache of the first decoding. The second Assistant's answer `"Germany has ca. 81 million inhabitants"` is then auto-regressively generated with the key-value cache consisting of encoded key-value vectors of `"User: How many people live in France? \n Assistant: Roughly 75 million people live in France \n User: And how many are in Germany?"`.
Two things should be noted here:
1. Keeping all the context is crucial for LLMs deployed in chat so that the LLM understands all the previous context of the conversation. E.g. for the example above the LLM needs to understand that the user refers to the population when asking `"And how many are in Germany"`.

View File

@ -50,6 +50,10 @@ We provide two types of agents, based on the main [`Agent`] class:
[[autodoc]] ReactCodeAgent
### ManagedAgent
[[autodoc]] ManagedAgent
## Tools
### load_tool
@ -72,6 +76,10 @@ We provide two types of agents, based on the main [`Agent`] class:
[[autodoc]] launch_gradio_demo
### stream_to_gradio
[[autodoc]] stream_to_gradio
### ToolCollection
[[autodoc]] ToolCollection
@ -83,12 +91,33 @@ These engines have the following specification:
1. Follow the [messages format](../chat_templating.md) for its input (`List[Dict[str, str]]`) and return a string.
2. Stop generating outputs *before* the sequences passed in the argument `stop_sequences`
### HfEngine
### TransformersEngine
For convenience, we have added a `HfEngine` that implements the points above and uses an inference endpoint for the execution of the LLM.
For convenience, we have added a `TransformersEngine` that implements the points above, taking a pre-initialized `Pipeline` as input.
```python
>>> from transformers import HfEngine
>>> from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, TransformersEngine
>>> model_name = "HuggingFaceTB/SmolLM-135M-Instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> model = AutoModelForCausalLM.from_pretrained(model_name)
>>> pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
>>> engine = TransformersEngine(pipe)
>>> engine([{"role": "user", "content": "Ok!"}], stop_sequences=["great"])
"What a "
```
[[autodoc]] TransformersEngine
### HfApiEngine
The `HfApiEngine` is an engine that wraps an [HF Inference API](https://huggingface.co/docs/api-inference/index) client for the execution of the LLM.
```python
>>> from transformers import HfApiEngine
>>> messages = [
... {"role": "user", "content": "Hello, how are you?"},
@ -96,12 +125,12 @@ For convenience, we have added a `HfEngine` that implements the points above and
... {"role": "user", "content": "No need to help, take it easy."},
... ]
>>> HfEngine()(messages, stop_sequences=["conversation"])
>>> HfApiEngine()(messages, stop_sequences=["conversation"])
"That's very kind of you to say! It's always nice to have a relaxed "
```
[[autodoc]] HfEngine
[[autodoc]] HfApiEngine
## Agent Types

View File

@ -25,11 +25,11 @@ A backbone is a model used for feature extraction for higher level computer visi
Backbones are supported for the following models:
* [BEiT](..model_doc/beit)
* [BEiT](../model_doc/beit)
* [BiT](../model_doc/bit)
* [ConvNet](../model_doc/convnext)
* [ConvNext](../model_doc/convnext)
* [ConvNextV2](../model_doc/convnextv2)
* [DiNAT](..model_doc/dinat)
* [DiNAT](../model_doc/dinat)
* [DINOV2](../model_doc/dinov2)
* [FocalNet](../model_doc/focalnet)
* [MaskFormer](../model_doc/maskformer)

View File

@ -34,7 +34,7 @@ By default, `TrainingArguments.report_to` is set to `"all"`, so a [`Trainer`] wi
- [`~integrations.TensorBoardCallback`] if tensorboard is accessible (either through PyTorch >= 1.4
or tensorboardX).
- [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed.
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.ml/site/) is installed.
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.com/site/) is installed.
- [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed.
- [`~integrations.NeptuneCallback`] if [neptune](https://neptune.ai/) is installed.
- [`~integrations.AzureMLCallback`] if [azureml-sdk](https://pypi.org/project/azureml-sdk/) is

View File

@ -66,3 +66,8 @@ Examples of use can be found in the [example scripts](../examples) or [example n
- numpy_mask_tokens
- tf_mask_tokens
- torch_mask_tokens
## DataCollatorWithFlattening
[[autodoc]] data.data_collator.DataCollatorWithFlattening

View File

@ -0,0 +1,33 @@
<!--Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# ExecuTorch
[`ExecuTorch`](https://github.com/pytorch/executorch) is an end-to-end solution for enabling on-device inference capabilities across mobile and edge devices including wearables, embedded devices and microcontrollers. It is part of the PyTorch ecosystem and supports the deployment of PyTorch models with a focus on portability, productivity, and performance.
ExecuTorch introduces well defined entry points to perform model, device, and/or use-case specific optimizations such as backend delegation, user-defined compiler transformations, memory planning, and more. The first step in preparing a PyTorch model for execution on an edge device using ExecuTorch is to export the model. This is achieved through the use of a PyTorch API called [`torch.export`](https://pytorch.org/docs/stable/export.html).
## ExecuTorch Integration
An integration point is being developed to ensure that 🤗 Transformers can be exported using `torch.export`. The goal of this integration is not only to enable export but also to ensure that the exported artifact can be further lowered and optimized to run efficiently in `ExecuTorch`, particularly for mobile and edge use cases.
[[autodoc]] integrations.executorch.TorchExportableModuleWithStaticCache
- forward
[[autodoc]] integrations.executorch.convert_and_export_with_cache

View File

@ -30,7 +30,7 @@ transformers.logging.set_verbosity_info()
```
You can also use the environment variable `TRANSFORMERS_VERBOSITY` to override the default verbosity. You can set it
to one of the following: `debug`, `info`, `warning`, `error`, `critical`. For example:
to one of the following: `debug`, `info`, `warning`, `error`, `critical`, `fatal`. For example:
```bash
TRANSFORMERS_VERBOSITY=error ./myprogram.py
@ -65,7 +65,7 @@ verbose to the most verbose), those levels (with their corresponding int values
critical errors.
- `transformers.logging.ERROR` (int value, 40): only report errors.
- `transformers.logging.WARNING` or `transformers.logging.WARN` (int value, 30): only reports error and
warnings. This the default level used by the library.
warnings. This is the default level used by the library.
- `transformers.logging.INFO` (int value, 20): reports error, warnings and basic information.
- `transformers.logging.DEBUG` (int value, 10): report all information.
@ -77,10 +77,10 @@ Python has two logging systems that are often used in conjunction: `logging`, wh
which allows further classification of warnings in specific buckets, e.g., `FutureWarning` for a feature or path
that has already been deprecated and `DeprecationWarning` to indicate an upcoming deprecation.
We use both in the `transformers` library. We leverage and adapt `logging`'s `captureWarning` method to allow
We use both in the `transformers` library. We leverage and adapt `logging`'s `captureWarnings` method to allow
management of these warning messages by the verbosity setters above.
What does that mean for developers of the library? We should respect the following heuristic:
What does that mean for developers of the library? We should respect the following heuristics:
- `warnings` should be favored for developers of the library and libraries dependent on `transformers`
- `logging` should be used for end-users of the library using it in every-day projects

View File

@ -40,6 +40,10 @@ for text generation, [`~generation.GenerationMixin`] (for the PyTorch models),
- push_to_hub
- all
Custom models should also include a `_supports_assign_param_buffer`, which determines if superfast init can apply
on the particular model. Signs that your model needs this are if `test_save_and_load_from_pretrained` fails. If so,
set this to `False`.
## ModuleUtilsMixin
[[autodoc]] modeling_utils.ModuleUtilsMixin

View File

@ -38,7 +38,7 @@ The `.optimization` module provides:
## Schedules
### Learning Rate Schedules (Pytorch)
### Learning Rate Schedules (PyTorch)
[[autodoc]] SchedulerType

View File

@ -42,7 +42,7 @@ an optional `attentions` attribute. Here we have the `loss` since we passed alon
<Tip>
When passing `output_hidden_states=True` you may expect the `outputs.hidden_states[-1]` to match `outputs.last_hidden_states` exactly.
When passing `output_hidden_states=True` you may expect the `outputs.hidden_states[-1]` to match `outputs.last_hidden_state` exactly.
However, this is not always the case. Some models apply normalization or subsequent process to the last hidden state when it's returned.
</Tip>

View File

@ -270,6 +270,11 @@ This is a simplified view, since the pipeline can handle automatically the batch
about how many forward passes you inputs are actually going to trigger, you can optimize the `batch_size`
independently of the inputs. The caveats from the previous section still apply.
## Pipeline FP16 inference
Models can be run in FP16 which can be significantly faster on GPU while saving memory. Most models will not suffer noticeable performance loss from this. The larger the model, the less likely that it will.
To enable FP16 inference, you can simply pass `torch_dtype=torch.float16` or `torch_dtype='float16'` to the pipeline constructor. Note that this only works for models with a PyTorch backend. Your inputs will be converted to FP16 internally.
## Pipeline custom code
If you want to override a specific pipeline.

View File

@ -56,3 +56,12 @@ Learn how to quantize models in the [Quantization](../quantization) guide.
## HqqConfig
[[autodoc]] HqqConfig
## FbgemmFp8Config
[[autodoc]] FbgemmFp8Config
## TorchAoConfig
[[autodoc]] TorchAoConfig

View File

@ -18,7 +18,7 @@ rendered properly in your Markdown viewer.
The [`Trainer`] class provides an API for feature-complete training in PyTorch, and it supports distributed training on multiple GPUs/TPUs, mixed precision for [NVIDIA GPUs](https://nvidia.github.io/apex/), [AMD GPUs](https://rocm.docs.amd.com/en/latest/rocm.html), and [`torch.amp`](https://pytorch.org/docs/stable/amp.html) for PyTorch. [`Trainer`] goes hand-in-hand with the [`TrainingArguments`] class, which offers a wide range of options to customize how a model is trained. Together, these two classes provide a complete training API.
[`Seq2SeqTrainer`] and [`Seq2SeqTrainingArguments`] inherit from the [`Trainer`] and [`TrainingArgument`] classes and they're adapted for training models for sequence-to-sequence tasks such as summarization or translation.
[`Seq2SeqTrainer`] and [`Seq2SeqTrainingArguments`] inherit from the [`Trainer`] and [`TrainingArguments`] classes and they're adapted for training models for sequence-to-sequence tasks such as summarization or translation.
<Tip warning={true}>

View File

@ -59,7 +59,52 @@ This model was contributed by [lysandre](https://huggingface.co/lysandre). This
- Layers are split in groups that share parameters (to save memory).
Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B (that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been swapped or not.
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import AlbertModel
model = AlbertModel.from_pretrained("albert/albert-base-v1", torch_dtype=torch.float16, attn_implementation="sdpa")
...
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
On a local benchmark (GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16`, we saw the
following speedups during training and inference.
#### Training for 100 iterations
|batch_size|seq_len|Time per batch (eager - s)| Time per batch (sdpa - s)| Speedup (%)| Eager peak mem (MB)| sdpa peak mem (MB)| Mem saving (%)|
|----------|-------|--------------------------|--------------------------|------------|--------------------|-------------------|---------------|
|2 |256 |0.028 |0.024 |14.388 |358.411 |321.088 |11.624 |
|2 |512 |0.049 |0.041 |17.681 |753.458 |602.660 |25.022 |
|4 |256 |0.044 |0.039 |12.246 |679.534 |602.660 |12.756 |
|4 |512 |0.090 |0.076 |18.472 |1434.820 |1134.140 |26.512 |
|8 |256 |0.081 |0.072 |12.664 |1283.825 |1134.140 |13.198 |
|8 |512 |0.170 |0.143 |18.957 |2820.398 |2219.695 |27.062 |
#### Inference with 50 batches
|batch_size|seq_len|Per token latency eager (ms)|Per token latency SDPA (ms)|Speedup (%) |Mem eager (MB)|Mem BT (MB)|Mem saved (%)|
|----------|-------|----------------------------|---------------------------|------------|--------------|-----------|-------------|
|4 |128 |0.083 |0.071 |16.967 |48.319 |48.45 |-0.268 |
|4 |256 |0.148 |0.127 |16.37 |63.4 |63.922 |-0.817 |
|4 |512 |0.31 |0.247 |25.473 |110.092 |94.343 |16.693 |
|8 |128 |0.137 |0.124 |11.102 |63.4 |63.66 |-0.409 |
|8 |256 |0.271 |0.231 |17.271 |91.202 |92.246 |-1.132 |
|8 |512 |0.602 |0.48 |25.47 |186.159 |152.564 |22.021 |
|16 |128 |0.252 |0.224 |12.506 |91.202 |91.722 |-0.567 |
|16 |256 |0.526 |0.448 |17.604 |148.378 |150.467 |-1.388 |
|16 |512 |1.203 |0.96 |25.365 |338.293 |271.102 |24.784 |
This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by
[kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT).

View File

@ -87,4 +87,17 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] Blip2ForConditionalGeneration
- forward
- generate
- generate
## Blip2ForImageTextRetrieval
[[autodoc]] Blip2ForImageTextRetrieval
- forward
## Blip2TextModelWithProjection
[[autodoc]] Blip2TextModelWithProjection
## Blip2VisionModelWithProjection
[[autodoc]] Blip2VisionModelWithProjection

View File

@ -106,7 +106,7 @@ as the information relative to the inputs and outputs.
[[autodoc]] TFCamembertModel
## TFCamembertForCasualLM
## TFCamembertForCausalLM
[[autodoc]] TFCamembertForCausalLM

View File

@ -0,0 +1,192 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Chameleon
## Overview
The Chameleon model was proposed in [Chameleon: Mixed-Modal Early-Fusion Foundation Models
](https://arxiv.org/abs/2405.09818v1) by META AI Chameleon Team. Chameleon is a Vision-Language Model that use vector quantization to tokenize images which enables the model to generate multimodal output. The model takes images and texts as input, including an interleaved format, and generates textual response. Image generation module is not released yet.
The abstract from the paper is the following:
*We present Chameleon, a family of early-fusion token-based mixed-modal models capable of understanding and generating images and text in any arbitrary sequence. We outline a stable training
approach from inception, an alignment recipe, and an architectural parameterization tailored for the
early-fusion, token-based, mixed-modal setting. The models are evaluated on a comprehensive range
of tasks, including visual question answering, image captioning, text generation, image generation, and
long-form mixed modal generation. Chameleon demonstrates broad and general capabilities, including
state-of-the-art performance in image captioning tasks, outperforms Llama-2 in text-only tasks while
being competitive with models such as Mixtral 8x7B and Gemini-Pro, and performs non-trivial image
generation, all in a single model. It also matches or exceeds the performance of much larger models,
including Gemini Pro and GPT-4V, according to human judgments on a new long-form mixed-modal
generation evaluation, where either the prompt or outputs contain mixed sequences of both images and
text. Chameleon marks a significant step forward in unified modeling of full multimodal documents*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/chameleon_arch.png"
alt="drawing" width="600"/>
<small> Chameleon incorporates a vector quantizer module to transform images into discrete tokens. That also enables image generation using an auto-regressive transformer. Taken from the <a href="https://arxiv.org/abs/2405.09818v1">original paper.</a> </small>
This model was contributed by [joaogante](https://huggingface.co/joaogante) and [RaushanTurganbay](https://huggingface.co/RaushanTurganbay).
The original code can be found [here](https://github.com/facebookresearch/chameleon).
## Usage tips
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to set `processor.tokenizer.padding_side = "left"` before generating.
- Note that Chameleon was tuned for safety alignment. If the model is refusing to answer, consider asking a more concrete question, instead of an open question.
- Chameleon generates in chat format which means that the generated text will always be the "assistant's turn". You can enable a text completion generation by passing `return_for_text_completion=True` when calling the processor.
> [!NOTE]
> Chameleon implementation in Transformers uses a special image token to indicate where to merge image embeddings. For special image token we didn't add a new one but used one of the reserved tokens: `<reserved08707>`. You have to add `<image>` to your prompt in the place where the image should be embedded for correct generation.
## Usage example
### Single image inference
Chameleon is a gated model so make sure to have access and login to Hugging Face Hub using a token.
Here's how to load the model and perform inference in half-precision (`torch.bfloat16`):
```python
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")
# prepare image and text prompt
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
prompt = "What do you see in this image?<image>"
inputs = processor(prompt, image, return_tensors="pt").to(model.device)
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=50)
print(processor.decode(output[0], skip_special_tokens=True))
```
### Multi image inference
Chameleon can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). Here is how you can do it:
```python
from transformers import ChameleonProcessor, ChameleonForConditionalGeneration
import torch
from PIL import Image
import requests
processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b")
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.bfloat16, device_map="cuda")
# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batched prompt, where the first one is a multi-image prompt and the second is not
prompts = [
"What do these images have in common?<image><image>",
"<image>What is shown in this image?"
]
# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(text=prompts, images=[image_stop, image_cats, image_snowman], padding=True, return_tensors="pt").to(device="cuda", dtype=torch.bfloat16)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=50)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
```
## Model optimization
### Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```python
from transformers import ChameleonForConditionalGeneration, BitsAndBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", quantization_config=quantization_config, device_map="cuda")
```
### Use Flash-Attention 2 and SDPA to further speed-up generation
The models supports both, Flash-Attention 2 and PyTorch's [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html) which can be enables for optimization. SDPA is the default options when you load the model, If you want to switch for Flash Attention 2, first make sure to install flash-attn. Refer to the [original repository](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```python
from transformers import ChameleonForConditionalGeneration
model_id = "facebook/chameleon-7b"
model = ChameleonForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2"
).to(0)
```
## ChameleonConfig
[[autodoc]] ChameleonConfig
## ChameleonVQVAEConfig
[[autodoc]] ChameleonVQVAEConfig
## ChameleonProcessor
[[autodoc]] ChameleonProcessor
## ChameleonImageProcessor
[[autodoc]] ChameleonImageProcessor
- preprocess
## ChameleonVQVAE
[[autodoc]] ChameleonVQVAE
- forward
## ChameleonModel
[[autodoc]] ChameleonModel
- forward
## ChameleonForConditionalGeneration
[[autodoc]] ChameleonForConditionalGeneration
- forward

View File

@ -79,6 +79,123 @@ encode the text and prepare the images. The following example shows how to get t
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```
### Combining CLIP and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16`)
<Tip warning={true}>
For small batch sizes, you might notice a slowdown in your model when using flash attention. Refer to the section [Expected speedups with Flash Attention and SDPA](#Expected-speedups-with-Flash-Attention-and-SDPA) below and select an appropriate attention implementation.
</Tip>
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from transformers import CLIPProcessor, CLIPModel
>>> device = "cuda"
>>> torch_dtype = torch.float16
>>> model = CLIPModel.from_pretrained(
... "openai/clip-vit-base-patch32",
... attn_implementation="flash_attention_2",
... device_map=device,
... torch_dtype=torch_dtype,
... )
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> inputs.to(device)
>>> with torch.no_grad():
... with torch.autocast(device):
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[0.9946, 0.0052]], device='cuda:0', dtype=torch.float16)
```
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```python
from transformers import CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.float16, attn_implementation="sdpa")
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
### Expected speedups with Flash Attention and SDPA
On a local benchmark (NVIDIA A10G, PyTorch 2.3.1+cu121) with `float16`, we saw the following speedups during inference for `"openai/clip-vit-large-patch14"` checkpoint ([code](https://gist.github.com/qubvel/ac691a54e54f9fae8144275f866a7ff8)):
#### CLIPTextModel
| Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 4 | 0.009 | 0.012 | 0.737 | 0.007 | 1.269 |
| 16 | 0.009 | 0.014 | 0.659 | 0.008 | 1.187 |
| 32 | 0.018 | 0.021 | 0.862 | 0.016 | 1.142 |
| 64 | 0.034 | 0.034 | 1.001 | 0.03 | 1.163 |
| 128 | 0.063 | 0.058 | 1.09 | 0.054 | 1.174 |
![clip_text_model_viz_3](https://github.com/user-attachments/assets/e9826b43-4e66-4f4c-952b-af4d90bd38eb)
#### CLIPVisionModel
| Image batch size | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 0.016 | 0.013 | 1.247 | 0.012 | 1.318 |
| 4 | 0.025 | 0.021 | 1.198 | 0.021 | 1.202 |
| 16 | 0.093 | 0.075 | 1.234 | 0.075 | 1.24 |
| 32 | 0.181 | 0.147 | 1.237 | 0.146 | 1.241 |
![clip_image_model_viz_3](https://github.com/user-attachments/assets/50a36206-e3b9-4adc-ac8e-926b8b071d63)
#### CLIPModel
| Image batch size | Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 4 | 0.025 | 0.026 | 0.954 | 0.02 | 1.217 |
| 1 | 16 | 0.026 | 0.028 | 0.918 | 0.02 | 1.287 |
| 1 | 64 | 0.042 | 0.046 | 0.906 | 0.036 | 1.167 |
| 4 | 4 | 0.028 | 0.033 | 0.849 | 0.024 | 1.189 |
| 4 | 16 | 0.034 | 0.035 | 0.955 | 0.029 | 1.169 |
| 4 | 64 | 0.059 | 0.055 | 1.072 | 0.05 | 1.179 |
| 16 | 4 | 0.096 | 0.088 | 1.091 | 0.078 | 1.234 |
| 16 | 16 | 0.102 | 0.09 | 1.129 | 0.083 | 1.224 |
| 16 | 64 | 0.127 | 0.11 | 1.157 | 0.105 | 1.218 |
| 32 | 4 | 0.185 | 0.159 | 1.157 | 0.149 | 1.238 |
| 32 | 16 | 0.19 | 0.162 | 1.177 | 0.154 | 1.233 |
| 32 | 64 | 0.216 | 0.181 | 1.19 | 0.176 | 1.228 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CLIP.

View File

@ -19,7 +19,7 @@ rendered properly in your Markdown viewer.
## Overview
The CLIPSeg model was proposed in [Image Segmentation Using Text and Image Prompts](https://arxiv.org/abs/2112.10003) by Timo Lüddecke
and Alexander Ecker. CLIPSeg adds a minimal decoder on top of a frozen [CLIP](clip) model for zero- and one-shot image segmentation.
and Alexander Ecker. CLIPSeg adds a minimal decoder on top of a frozen [CLIP](clip) model for zero-shot and one-shot image segmentation.
The abstract from the paper is the following:

View File

@ -34,7 +34,7 @@ This model was contributed by [ArthurZucker](https://huggingface.co/ArthurZ). Th
The `Llama2` family models, on which Code Llama is based, were trained using `bfloat16`, but the original inference uses `float16`. Let's look at the different precisions:
* `float32`: PyTorch convention on model initialization is to load models in `float32`, no matter with which `dtype` the model weights were stored. `transformers` also follows this convention for consistency with PyTorch. This will be picked by default. If you want the `AutoModel` API to cast the load the checkpoints with the storage weights type, you must specify `torch_dtype="auto"`, e.g. `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`.
* `float32`: PyTorch convention on model initialization is to load models in `float32`, no matter with which `dtype` the model weights were stored. `transformers` also follows this convention for consistency with PyTorch. This will be picked by default. If you want the `AutoModel` API to load the checkpoints with the storage weights type, you must specify `torch_dtype="auto"`, e.g. `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`.
* `bfloat16`: Code Llama was trained with this precision, so we recommend using it for further training or fine-tuning.
* `float16`: We recommend running inference using this precision, as it's usually faster than `bfloat16`, and evaluation metrics show no discernible degradation with respect to `bfloat16`. You can also run inference using `bfloat16`, and we recommend you check inference results with both `float16` and `bfloat16` after fine-tuning.

View File

@ -0,0 +1,80 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DAC
## Overview
The DAC model was proposed in [Descript Audio Codec: High-Fidelity Audio Compression with Improved RVQGAN](https://arxiv.org/abs/2306.06546) by Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, Kundan Kumar.
The Descript Audio Codec (DAC) model is a powerful tool for compressing audio data, making it highly efficient for storage and transmission. By compressing 44.1 KHz audio into tokens at just 8kbps bandwidth, the DAC model enables high-quality audio processing while significantly reducing the data footprint. This is particularly useful in scenarios where bandwidth is limited or storage space is at a premium, such as in streaming applications, remote conferencing, and archiving large audio datasets.
The abstract from the paper is the following:
*Language models have been successfully used to model natural signals, such as images, speech, and music. A key component of these models is a high quality neural compression model that can compress high-dimensional natural signals into lower dimensional discrete tokens. To that end, we introduce a high-fidelity universal neural audio compression algorithm that achieves ~90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining advances in high-fidelity audio generation with better vector quantization techniques from the image domain, along with improved adversarial and reconstruction losses. We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio. We compare with competing audio compression algorithms, and find our method outperforms them significantly. We provide thorough ablations for every design choice, as well as open-source code and trained model weights. We hope our work can lay the foundation for the next generation of high-fidelity audio modeling.*
This model was contributed by [Kamil Akesbi](https://huggingface.co/kamilakesbi).
The original code can be found [here](https://github.com/descriptinc/descript-audio-codec/tree/main?tab=readme-ov-file).
## Model structure
The Descript Audio Codec (DAC) model is structured into three distinct stages:
1. Encoder Model: This stage compresses the input audio, reducing its size while retaining essential information.
2. Residual Vector Quantizer (RVQ) Model: Working in tandem with the encoder, this model quantizes the latent codes of the audio, refining the compression and ensuring high-quality reconstruction.
3. Decoder Model: This final stage reconstructs the audio from its compressed form, restoring it to a state that closely resembles the original input.
## Usage example
Here is a quick example of how to encode and decode an audio using this model:
```python
>>> from datasets import load_dataset, Audio
>>> from transformers import DacModel, AutoProcessor
>>> librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> model = DacModel.from_pretrained("descript/dac_16khz")
>>> processor = AutoProcessor.from_pretrained("descript/dac_16khz")
>>> librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
>>> audio_sample = librispeech_dummy[-1]["audio"]["array"]
>>> inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt")
>>> encoder_outputs = model.encode(inputs["input_values"])
>>> # Get the intermediate audio codes
>>> audio_codes = encoder_outputs.audio_codes
>>> # Reconstruct the audio from its quantized representation
>>> audio_values = model.decode(encoder_outputs.quantized_representation)
>>> # or the equivalent with a forward pass
>>> audio_values = model(inputs["input_values"]).audio_values
```
## DacConfig
[[autodoc]] DacConfig
## DacFeatureExtractor
[[autodoc]] DacFeatureExtractor
- __call__
## DacModel
[[autodoc]] DacModel
- decode
- encode
- forward

View File

@ -20,6 +20,12 @@ rendered properly in your Markdown viewer.
The Depth Anything model was proposed in [Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data](https://arxiv.org/abs/2401.10891) by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao. Depth Anything is based on the [DPT](dpt) architecture, trained on ~62 million images, obtaining state-of-the-art results for both relative and absolute depth estimation.
<Tip>
[Depth Anything V2](depth_anything_v2) was released in June 2024. It uses the same architecture as Depth Anything and therefore it is compatible with all code examples and existing workflows. However, it leverages synthetic data and a larger capacity teacher model to achieve much finer and robust depth predictions.
</Tip>
The abstract from the paper is the following:
*This work presents Depth Anything, a highly practical solution for robust monocular depth estimation. Without pursuing novel technical modules, we aim to build a simple yet powerful foundation model dealing with any images under any circumstances. To this end, we scale up the dataset by designing a data engine to collect and automatically annotate large-scale unlabeled data (~62M), which significantly enlarges the data coverage and thus is able to reduce the generalization error. We investigate two simple yet effective strategies that make data scaling-up promising. First, a more challenging optimization target is created by leveraging data augmentation tools. It compels the model to actively seek extra visual knowledge and acquire robust representations. Second, an auxiliary supervision is developed to enforce the model to inherit rich semantic priors from pre-trained encoders. We evaluate its zero-shot capabilities extensively, including six public datasets and randomly captured photos. It demonstrates impressive generalization ability. Further, through fine-tuning it with metric depth information from NYUv2 and KITTI, new SOTAs are set. Our better depth model also results in a better depth-conditioned ControlNet.*

View File

@ -0,0 +1,115 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Depth Anything V2
## Overview
Depth Anything V2 was introduced in [the paper of the same name](https://arxiv.org/abs/2406.09414) by Lihe Yang et al. It uses the same architecture as the original [Depth Anything model](depth_anything), but uses synthetic data and a larger capacity teacher model to achieve much finer and robust depth predictions.
The abstract from the paper is the following:
*This work presents Depth Anything V2. Without pursuing fancy techniques, we aim to reveal crucial findings to pave the way towards building a powerful monocular depth estimation model. Notably, compared with V1, this version produces much finer and more robust depth predictions through three key practices: 1) replacing all labeled real images with synthetic images, 2) scaling up the capacity of our teacher model, and 3) teaching student models via the bridge of large-scale pseudo-labeled real images. Compared with the latest models built on Stable Diffusion, our models are significantly more efficient (more than 10x faster) and more accurate. We offer models of different scales (ranging from 25M to 1.3B params) to support extensive scenarios. Benefiting from their strong generalization capability, we fine-tune them with metric depth labels to obtain our metric depth models. In addition to our models, considering the limited diversity and frequent noise in current test sets, we construct a versatile evaluation benchmark with precise annotations and diverse scenes to facilitate future research.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_anything_overview.jpg"
alt="drawing" width="600"/>
<small> Depth Anything overview. Taken from the <a href="https://arxiv.org/abs/2401.10891">original paper</a>.</small>
The Depth Anything models were contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/DepthAnything/Depth-Anything-V2).
## Usage example
There are 2 main ways to use Depth Anything V2: either using the pipeline API, which abstracts away all the complexity for you, or by using the `DepthAnythingForDepthEstimation` class yourself.
### Pipeline API
The pipeline allows to use the model in a few lines of code:
```python
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> # load pipe
>>> pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Small-hf")
>>> # load image
>>> url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # inference
>>> depth = pipe(image)["depth"]
```
### Using the model yourself
If you want to do the pre- and post-processing yourself, here's how to do that:
```python
>>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
>>> model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
... predicted_depth = outputs.predicted_depth
>>> # interpolate to original size
>>> prediction = torch.nn.functional.interpolate(
... predicted_depth.unsqueeze(1),
... size=image.size[::-1],
... mode="bicubic",
... align_corners=False,
... )
>>> # visualize the prediction
>>> output = prediction.squeeze().cpu().numpy()
>>> formatted = (output * 255 / np.max(output)).astype("uint8")
>>> depth = Image.fromarray(formatted)
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Depth Anything.
- [Monocular depth estimation task guide](../tasks/depth_estimation)
- [Depth Anything V2 demo](https://huggingface.co/spaces/depth-anything/Depth-Anything-V2).
- A notebook showcasing inference with [`DepthAnythingForDepthEstimation`] can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Depth%20Anything/Predicting_depth_in_an_image_with_Depth_Anything.ipynb). 🌎
- [Core ML conversion of the `small` variant for use on Apple Silicon](https://huggingface.co/apple/coreml-depth-anything-v2-small).
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
## DepthAnythingConfig
[[autodoc]] DepthAnythingConfig
## DepthAnythingForDepthEstimation
[[autodoc]] DepthAnythingForDepthEstimation
- forward

View File

@ -153,7 +153,7 @@ In short, one should prepare the data either in COCO detection or COCO panoptic
[`~transformers.DetrImageProcessor`] to create `pixel_values`, `pixel_mask` and optional
`labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the
outputs of the model using one of the postprocessing methods of [`~transformers.DetrImageProcessor`]. These can
be be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like
be provided to either `CocoEvaluator` or `PanopticEvaluator`, which allow you to calculate metrics like
mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the [original repository](https://github.com/facebookresearch/detr). See the [example notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR) for more info regarding evaluation.
## Resources

View File

@ -57,7 +57,7 @@ print((last_hidden_states - traced_outputs[0]).abs().max())
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DPT.
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with DINOv2.
- Demo notebooks for DINOv2 can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DINOv2). 🌎
@ -72,6 +72,9 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] Dinov2Config
<frameworkcontent>
<pt>
## Dinov2Model
[[autodoc]] Dinov2Model
@ -81,3 +84,20 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] Dinov2ForImageClassification
- forward
</pt>
<jax>
## FlaxDinov2Model
[[autodoc]] FlaxDinov2Model
- __call__
## FlaxDinov2ForImageClassification
[[autodoc]] FlaxDinov2ForImageClassification
- __call__
</jax>
</frameworkcontent>

View File

@ -0,0 +1,116 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FalconMamba
## Overview
The FalconMamba model was proposed by TII UAE (Technology Innovation Institute) in their release.
The abstract from the paper is the following:
*We present FalconMamba, a new base large language model based on the novel Mamba architecture. FalconMamba is trained on 5.8 trillion tokens with carefully selected data mixtures. As a pure Mamba-based model, FalconMamba surpasses leading open-weight models based on Transformers, such as Mistral 7B, Llama3 8B, and Falcon2 11B. It is on par with Gemma 7B and outperforms models with different architecture designs, such as RecurrentGemma 9B. Currently, FalconMamba is the best-performing Mamba model in the literature at this scale, surpassing both existing Mamba and hybrid Mamba-Transformer models.
Due to its architecture, FalconMamba is significantly faster at inference and requires substantially less memory for long sequence generation. Despite recent studies suggesting that hybrid Mamba-Transformer models outperform pure architecture designs, we argue and demonstrate that the pure Mamba design can achieve similar, even superior results compared to the hybrid design. We make the weights of our implementation of FalconMamba publicly available under a permissive license.*
Tips:
- FalconMamba is mostly based on Mamba architecture, the same [tips and best practices](./mamba) would be relevant here.
The model has been trained on approximtely 6T tokens consisting a mixture of many data sources such as RefineWeb, Cosmopedia and Math data.
For more details about the training procedure and the architecture, have a look at [the technical paper of FalconMamba]() (coming soon).
# Usage
Below we demonstrate how to use the model:
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b")
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
```
The architecture is also compatible with `torch.compile` for faster generation:
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
```
If you have access to a GPU that is compatible with `bitsandbytes`, you can also quantize the model in 4-bit precision:
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b")
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b", quantization_config=quantization_config)
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
```
You can also play with the instruction fine-tuned model:
```python
from transformers import FalconMambaForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = FalconMambaForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True).input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
```
## FalconMambaConfig
[[autodoc]] FalconMambaConfig
## FalconMambaModel
[[autodoc]] FalconMambaModel
- forward
## FalconMambaLMHeadModel
[[autodoc]] FalconMambaForCausalLM
- forward

View File

@ -0,0 +1,64 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Gemma2
## Overview
The Gemma2 model was proposed in [Gemma2: Open Models Based on Gemini Technology and Research](https://blog.google/technology/developers/google-gemma-2/) by Gemma2 Team, Google.
Two Gemma2 models are released, with parameters sizes of 9 billion (9B) and 27 billion (27B).
The abstract from the blog post is the following:
*Now were officially releasing Gemma 2 to researchers and developers globally. Available in both 9 billion (9B) and 27 billion (27B) parameter sizes, Gemma 2 is higher-performing and more efficient at inference than the first generation, with significant safety advancements built in. In fact, at 27B, it offers competitive alternatives to models more than twice its size, delivering the kind of performance that was only possible with proprietary models as recently as December.*
Tips:
- The original checkpoints can be converted using the conversion script `src/transformers/models/Gemma2/convert_Gemma2_weights_to_hf.py`
<Tip warning={true}>
- Gemma2 uses sliding window attention every second layer, which makes it unsuitable for typical kv caching with [`~DynamicCache`] or tuples of tensors. To enable caching in Gemma2 forward call, you must initialize a [`~HybridCache`] instance and pass it as `past_key_values` to the forward call. Note, that you also have to prepare `cache_position` if the `past_key_values` already contains previous keys and values.
</Tip>
This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ), [Pedro Cuenca](https://huggingface.co/pcuenq) and [Tom Arsen]().
## Gemma2Config
[[autodoc]] Gemma2Config
## Gemma2Model
[[autodoc]] Gemma2Model
- forward
## Gemma2ForCausalLM
[[autodoc]] Gemma2ForCausalLM
- forward
## Gemma2ForSequenceClassification
[[autodoc]] Gemma2ForSequenceClassification
- forward
## Gemma2ForTokenClassification
[[autodoc]] Gemma2ForTokenClassification
- forward

View File

@ -0,0 +1,74 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Granite
## Overview
The Granite model was proposed in [Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler](https://arxiv.org/abs/2408.13359) by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda.
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a wide range of open-source and synthetic datasets with permissive licenses. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
The abstract from the paper is the following:
*Finding the optimal learning rate for language model pretraining is a challenging task.
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored.
In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (\mup) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models.
We [open source](https://huggingface.co/collections/ibm/power-lm-66be64ae647ddf11b9808000) these pretrained models.*
Tips:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "ibm/PowerLM-3b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
```
This model was contributed by [mayank-mishra](https://huggingface.co/mayank-mishra).
## GraniteConfig
[[autodoc]] GraniteConfig
## GraniteModel
[[autodoc]] GraniteModel
- forward
## GraniteForCausalLM
[[autodoc]] GraniteForCausalLM
- forward

View File

@ -41,33 +41,40 @@ The original code can be found [here](https://github.com/IDEA-Research/Grounding
Here's how to use the model for zero-shot object detection:
```python
import requests
>>> import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection,
>>> import torch
>>> from PIL import Image
>>> from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
model_id = "IDEA-Research/grounding-dino-tiny"
>>> model_id = "IDEA-Research/grounding-dino-tiny"
>>> device = "cuda"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
>>> processor = AutoProcessor.from_pretrained(model_id)
>>> model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(image_url, stream=True).raw)
# Check for cats and remote controls
text = "a cat. a remote control."
>>> image_url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(image_url, stream=True).raw)
>>> # Check for cats and remote controls
>>> text = "a cat. a remote control."
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
>>> inputs = processor(images=image, text=text, return_tensors="pt").to(device)
>>> with torch.no_grad():
... outputs = model(**inputs)
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.4,
text_threshold=0.3,
target_sizes=[image.size[::-1]]
)
>>> results = processor.post_process_grounded_object_detection(
... outputs,
... inputs.input_ids,
... box_threshold=0.4,
... text_threshold=0.3,
... target_sizes=[image.size[::-1]]
... )
>>> print(results)
[{'boxes': tensor([[344.6959, 23.1090, 637.1833, 374.2751],
[ 12.2666, 51.9145, 316.8582, 472.4392],
[ 38.5742, 70.0015, 176.7838, 118.1806]], device='cuda:0'),
'labels': ['a cat', 'a cat', 'a remote control'],
'scores': tensor([0.4785, 0.4381, 0.4776], device='cuda:0')}]
```
## Grounded SAM

View File

@ -0,0 +1,62 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Hiera
## Overview
Hiera was proposed in [Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles](https://arxiv.org/abs/2306.00989) by Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, Jitendra Malik, Yanghao Li, Christoph Feichtenhofer
The paper introduces "Hiera," a hierarchical Vision Transformer that simplifies the architecture of modern hierarchical vision transformers by removing unnecessary components without compromising on accuracy or efficiency. Unlike traditional transformers that add complex vision-specific components to improve supervised classification performance, Hiera demonstrates that such additions, often termed "bells-and-whistles," are not essential for high accuracy. By leveraging a strong visual pretext task (MAE) for pretraining, Hiera retains simplicity and achieves superior accuracy and speed both in inference and training across various image and video recognition tasks. The approach suggests that spatial biases required for vision tasks can be effectively learned through proper pretraining, eliminating the need for added architectural complexity.
The abstract from the paper is the following:
*Modern hierarchical vision transformers have added several vision-specific components in the pursuit of supervised classification performance. While these components lead to effective accuracies and attractive FLOP counts, the added complexity actually makes these transformers slower than their vanilla ViT counterparts. In this paper, we argue that this additional bulk is unnecessary. By pretraining with a strong visual pretext task (MAE), we can strip out all the bells-and-whistles from a state-of-the-art multi-stage vision transformer without losing accuracy. In the process, we create Hiera, an extremely simple hierarchical vision transformer that is more accurate than previous models while being significantly faster both at inference and during training. We evaluate Hiera on a variety of tasks for image and video recognition. Our code and models are available at https://github.com/facebookresearch/hiera.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/hiera_overview.png"
alt="drawing" width="600"/>
<small> Hiera architecture. Taken from the <a href="https://arxiv.org/abs/2306.00989">original paper.</a> </small>
This model was a joint contribution by [EduardoPacheco](https://huggingface.co/EduardoPacheco) and [namangarg110](https://huggingface.co/namangarg110). The original code can be found [here] (https://github.com/facebookresearch/hiera).
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Hiera. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="image-classification"/>
- [`HieraForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
## HieraConfig
[[autodoc]] HieraConfig
## HieraModel
[[autodoc]] HieraModel
- forward
## HieraForPreTraining
[[autodoc]] HieraForPreTraining
- forward
## HieraForImageClassification
[[autodoc]] HieraForImageClassification
- forward

View File

@ -33,7 +33,7 @@ alt="drawing" width="600"/>
## Usage
### Presequities
### Prerequisites
Jamba requires you use `transformers` version 4.39.0 or higher:
```bash

View File

@ -16,6 +16,15 @@ rendered properly in your Markdown viewer.
# Llama3
```py3
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B"
pipeline = transformers.pipeline("text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto")
pipeline("Hey how are you doing today?")
```
## Overview
@ -48,38 +57,26 @@ Tips:
- The tokenizer is a BPE model based on [tiktoken](https://github.com/openai/tiktoken) (vs the one based on sentencepiece implementation for Llama2). The main difference that it ignores BPE merge rules when an input token is part of the vocab. This means that if no merge exist to produce `"hugging"`, instead of having the smallest units, like `["hug","ging"] form 2 tokens, if `"hugging"` is part of the vocab, it will be automatically returned as a token.
- The original model uses `pad_id = -1` which means that there is no padding token. We can't have the same logic, make sure to add a padding token using `tokenizer.add_special_tokens({"pad_token":"<pad>"})` and resize the token embedding accordingly. You should also set the `model.config.pad_token_id`. The `embed_tokens` layer of the model is initialized with `self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.config.padding_idx)`, which makes sure that encoding the padding token will output zeros, so passing it when initializing is recommended.
- The original checkpoint can be converted using the [conversion script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py). The script can be called with the following (example) command:
```bash
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path --llama_version 3
```
```bash
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path --llama_version 3
```
- After conversion, the model and tokenizer can be loaded via:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("/output/path")
model = AutoModelForCausalLM.from_pretrained("/output/path")
```
Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 75B model, it's thus 145GB of RAM needed.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("/output/path")
model = AutoModelForCausalLM.from_pretrained("/output/path")
```
Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 75B model, it's thus 145GB of RAM needed.
- When using Flash Attention 2 via `attn_implementation="flash_attention_2"`, don't pass `torch_dtype` to the `from_pretrained` class method and use Automatic Mixed-Precision training. When using `Trainer`, it is simply specifying either `fp16` or `bf16` to `True`. Otherwise, make sure you are using `torch.autocast`. This is required because the Flash Attention only support `fp16` and `bf16` data type.
## Quick usage
```py3
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B"
pipeline = transformers.pipeline("text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto")
pipeline("Hey how are you doing today?")
```
## Resources
A ton of cool resources are already available on the documentation page of [~llama2], inviting contributors to add new resources curated for Llama3 here! 🤗
A ton of cool resources are already available on the documentation page of [Llama2](./llama2), inviting contributors to add new resources curated for Llama3 here! 🤗

View File

@ -40,8 +40,55 @@ The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/
- Note the model has not been explicitly trained to process multiple images in the same prompt, although this is technically possible, you may experience inaccurate results.
- For better results, we recommend users to prompt the model with the correct prompt format:
- For better results, we recommend users to use the processor's `apply_chat_template()` method to format your prompt correctly. For that you need to construct a conversation history, passing in a plain string will not format your prompt. Each message in the conversation history for chat templates is a dictionary with keys "role" and "content". The "content" should be a list of dictionaries, for "text" and "image" modalities, as follows:
```python
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Whats shown in this image?"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe the image in more details."},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
print(text_prompt)
>>> "USER: <image>\n<Whats shown in this image? ASSISTANT: This image shows a red stop sign.</s>USER: Describe the image in more details. ASSISTANT:"
```
- If you want to construct a chat prompt yourself, below is a list of prompt formats accepted by each llava checkpoint:
[llava-interleave models](https://huggingface.co/collections/llava-hf/llava-interleave-668e19a97da0036aad4a2f19) requires the following format:
```bash
"<|im_start|>user <image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant"
```
For multiple turns conversation:
```bash
"<|im_start|>user <image>\n<prompt1><|im_end|><|im_start|>assistant <answer1><|im_end|><|im_start|>user <image>\n<prompt1><|im_end|><|im_start|>assistant "
```
[llava-1.5 models](https://huggingface.co/collections/llava-hf/llava-15-65f762d5b6941db5c2ba07e0) requires the following format:
```bash
"USER: <image>\n<prompt> ASSISTANT:"
```
@ -52,6 +99,7 @@ For multiple turns conversation:
"USER: <image>\n<prompt1> ASSISTANT: <answer1></s>USER: <prompt2> ASSISTANT: <answer2></s>USER: <prompt3> ASSISTANT:"
```
### Using Flash Attention 2
Flash Attention 2 is an even faster, optimized version of the previous optimization, please refer to the [Flash Attention 2 section of performance docs](https://huggingface.co/docs/transformers/perf_infer_gpu_one).

View File

@ -46,26 +46,79 @@ The original code can be found [here](https://github.com/haotian-liu/LLaVA/tree/
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
- Note that each checkpoint has been trained with a specific prompt format, depending on which large language model (LLM) was used. Below, we list the correct prompt formats to use for the text prompt "What is shown in this image?":
<Tip warning={true}>
- Llava-Next uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is "left-padding" if model is in `eval()` mode, otherwise "right-padding".
</Tip>
- Note that each checkpoint has been trained with a specific prompt format, depending on which large language model (LLM) was used. You can use the processor's `apply_chat_template` to format your prompts correctly. For that you have to construct a conversation history, passing a plain string will not format your prompt. Each message in the conversation history for chat templates is a dictionary with keys "role" and "content". The "content" should be a list of dictionaries, for "text" and "image" modalities. Below is an example of how to do that and the list of formats accepted by each checkpoint.
We will use [llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) and a conversation history of text and image. Each content field has to be a list of dicts, as follows:
```python
from transformers import LlavaNextProcessor
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Whats shown in this image?"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe the image in more details."},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
print(text_prompt)
>>> "[INST] <image>\nWhat's shown in this image? [/INST] This image shows a red stop sign. [INST] Describe the image in more details. [/INST]"
```
- If you want to construct a chat prompt yourself, below is a list of possible formats
.
[llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) requires the following format:
```bash
"[INST] <image>\nWhat is shown in this image? [/INST]"
```
[llava-v1.6-vicuna-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf) and [llava-v1.6-vicuna-13b-hf](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) require the following format:
```bash
"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER: <image>\nWhat is shown in this image? ASSISTANT:"
```
[llava-v1.6-34b-hf](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) requires the following format:
```bash
"<|im_start|>system\nAnswer the questions.<|im_end|><|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|><|im_start|>assistant\n"
```
[llama3-llava-next-8b-hf](https://huggingface.co/llava-hf/llava-next-8b-hf) requires the following format:
```bash
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nWhat is shown in this image?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
```
[llava-next-72b-hf](https://huggingface.co/llava-hf/llava-next-72b-hf) and [llava-next-110b-hf](https://huggingface.co/llava-hf/llava-next-110b-hf) require the following format:
```bash
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<image>\nWhat is shown in this image?<|im_end|>\n<|im_start|>assistant\n"
```
## Usage example
### Single image inference
@ -86,8 +139,17 @@ model.to("cuda:0")
# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
# autoregressively complete prompt
@ -120,15 +182,47 @@ image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batched prompt, where the first one is a multi-turn conversation and the second is not
prompt = [
"[INST] <image>\nWhat is shown in this image? [/INST] There is a red stop sign in the image. [INST] <image>\nWhat about this image? How many cats do you see [/INST]",
"[INST] <image>\nWhat is shown in this image? [/INST]"
# Prepare a batch of two prompts, where the first one is a multi-turn conversation and the second is not
conversation_1 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a red stop sign in the image."},
],
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What about this image? How many cats do you see?"},
],
},
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
prompts = [prompt_1, prompt_2]
# We can simply feed images in the order they have to be used in the text prompt
# Each "<image>" token uses one image leaving the next for the subsequent "<image>" tokens
inputs = processor(text=prompt, images=[image_stop, image_cats, image_snowman], padding=True, return_tensors="pt").to(model.device)
inputs = processor(text=prompts, images=[image_stop, image_cats, image_snowman], padding=True, return_tensors="pt").to(model.device)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)

View File

@ -43,6 +43,13 @@ The original code can be found [here](https://github.com/LLaVA-VL/LLaVA-NeXT/tre
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
<Tip warning={true}>
- Llava-Next uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is "left-padding" if model is in `eval()` mode, otherwise "right-padding".
</Tip>
- Note that each checkpoint has been trained with a specific prompt format, depending on which large language model (LLM) was used. You can use tokenizer's `apply_chat_template` to format your prompts correctly. Below is an example of how to do that.
We will use [LLaVA-NeXT-Video-7B-hf](https://huggingface.co/llava-hf/LLaVA-NeXT-Video-7B-hf) and a conversation history of videos and images. Each content field has to be a list of dicts, as follows:

View File

@ -0,0 +1,319 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LLaVA-Onevision
## Overview
The LLaVA-Onevision model was proposed in [LLaVA-OneVision: Easy Visual Task Transfer](https://arxiv.org/abs/2408.03326) by <Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, Chunyuan Li
LLaVA-Onevision is a Vision-Language Model that can generate text conditioned on one or several images/videos. The model consists of SigLIP vision encoder and a Qwen2 language backbone. The images are processed with anyres-9 technique where the image is split into 9 patches to better process high resolution images and capture as much details as possible. However, videos are pooled to a total sequence length of 196 tokens each frame for more memory efficient computation. LLaVA-Onevision is available in three sizes: 0.5B, 7B and 72B and achieves remarkable performance on benchmark evaluations.
The abstract from the paper is the following:
*We present LLaVA-OneVision, a family of open large multimodal models (LMMs)
developed by consolidating our insights into data, models, and visual representations in the LLaVA-NeXT blog series. Our experimental results demonstrate that
LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open LMMs in three important computer vision scenarios:
single-image, multi-image, and video scenarios. Importantly, the design of LLaVAOneVision allows strong transfer learning across different modalities/scenarios,
yielding new emerging capabilities. In particular, strong video understanding and
cross-scenario capabilities are demonstrated through task transfer from images to
videos.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/llava-ov-acrhitecture.png"
alt="drawing" width="600"/>
<small> LLaVA=Onevision architecture. Taken from the <a href="https://arxiv.org/abs/2408.03326">original paper.</a> </small>
Tips:
- We advise users to use `padding_side="left"` when computing batched generation as it leads to more accurate results. Simply make sure to call `processor.tokenizer.padding_side = "left"` before generating.
<Tip warning={true}>
- Llava-Onevision uses different number of patches for images and thus has to pad the inputs inside modeling code, aside from the padding done when processing the inputs. The default setting is "left-padding" if model is in `eval()` mode, otherwise "right-padding".
</Tip>
- Note that the model should use a specific prompt format, on which the large language model (LLM) was trained. You can use the processor's `apply_chat_template` to format your prompts correctly. For that you have to construct a conversation history, passing a plain string will not format your prompt. Each message in the conversation history for chat templates is a dictionary with keys "role" and "content". The "content" should be a list of dictionaries, for "text" and "image" modalities.
We will use [llava-onevision-qwen2-7b-si-hf](https://huggingface.co/llava-hf/llava-onevision-qwen2-7b-si-hf) and a conversation history of text and image. Each content field has to be a list of dicts, as follows:
```python
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-si-hf")
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Whats shown in this image?"},
],
},
{
"role": "assistant",
"content": [{"type": "text", "text": "This image shows a red stop sign."},]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe the image in more details."},
],
},
]
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Note that the template simply formats your prompt, you still have to tokenize it and obtain pixel values for your images
print(text_prompt)
>>> "<|im_start|>user\n<image>What is shown in this image?<|im_end|>\n<|im_start|>assistant\nPage showing the list of options.<|im_end|>"
```
This model was contributed by [RaushanTurganbay](https://huggingface.co/RaushanTurganbay).
The original code can be found [here](https://github.com/LLaVA-VL/LLaVA-NeXT/tree/main).
## Usage example
### Single image inference
Here's how to load the model and perform inference in half-precision (`torch.float16`):
```python
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
import torch
from PIL import Image
import requests
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
model = LlavaOnevisionForConditionalGeneration.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to("cuda:0")
# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(images=image, text=prompt, return_tensors="pt").to("cuda:0", torch.float16)
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
'user\n\nWhat is shown in this image?\nassistant\nThe image shows a radar chart, also known as a spider chart or a star chart, which is used to compare multiple quantitative variables. Each axis represents a different variable, and the chart is filled with'
```
### Multi image inference
LLaVa-Onevision can perform inference with multiple images as input, where images either belong to the same prompt or different prompts (in batched inference). For that you have to use checkpoints with an "ov" suffix. Here is how you can do it:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
# Load the model in half-precision
model = LlavaOnevisionForConditionalGeneration.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf", torch_dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
# Get three different images
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_stop = Image.open(requests.get(url, stream=True).raw)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image_cats = Image.open(requests.get(url, stream=True).raw)
url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
image_snowman = Image.open(requests.get(url, stream=True).raw)
# Prepare a batch of two prompts, where the first one is a multi-turn conversation and the second is not
conversation_1 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a red stop sign in the image."},
],
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What about this image? How many cats do you see?"},
],
},
]
conversation_2 = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
prompt_1 = processor.apply_chat_template(conversation_1, add_generation_prompt=True)
prompt_2 = processor.apply_chat_template(conversation_2, add_generation_prompt=True)
prompts = [prompt_1, prompt_2]
# We can simply feed images in the order they have to be used in the text prompt
inputs = processor(images=[image_stop, image_cats, image_snowman], text=prompts, padding=True, return_tensors="pt").to(model.device, torch.float16)
# Generate
generate_ids = model.generate(**inputs, max_new_tokens=30)
processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
['user\n\nWhat is shown in this image?\nassistant\nThere is a red stop sign in the image.\nuser\n\nWhat about this image? How many cats do you see?\nassistant\ntwo', 'user\n\nWhat is shown in this image?\nassistant\n']
```
### Video inference
LLaVa-Onevision also can perform inference with videos as input, where video frames are treated as multiple images. Here is how you can do it:
```python
import av
import numpy as np
from huggingface_hub import hf_hub_download
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
# Load the model in half-precision
model = LlavaOnevisionForConditionalGeneration.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf", torch_dtype=torch.float16, device_map="auto")
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-7b-ov-hf")
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
# Load the video as an np.array, sampling uniformly 8 frames (can sample more for longer videos, up to 32 frames)
video_path = hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="sample_demo_1.mp4", repo_type="dataset")
container = av.open(video_path)
total_frames = container.streams.video[0].frames
indices = np.arange(0, total_frames, total_frames / 8).astype(int)
video = read_video_pyav(container, indices)
# For videos we have to feed a "video" type instead of "image"
conversation = [
{
"role": "user",
"content": [
{"type": "video"},
{"type": "text", "text": "Why is this video funny?"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(videos=list(video), text=prompt, return_tensors="pt").to("cuda:0", torch.float16)
out = model.generate(**inputs, max_new_tokens=60)
processor.batch_decode(out, skip_special_tokens=True, clean_up_tokenization_spaces=True)
["user\n\nWhy is this video funny?\nassistant\nThe video appears to be humorous because it shows a young child, who is wearing glasses and holding a book, seemingly reading with a serious and focused expression. The child's glasses are a bit oversized for their face, which adds a comical touch, as it's a common trope to see children wearing"]
```
## Model optimization
### Quantization using Bitsandbytes
The model can be loaded in 8 or 4 bits, greatly reducing the memory requirements while maintaining the performance of the original model. First make sure to install bitsandbytes, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```python
from transformers import LlavaOnevisionForConditionalGeneration, BitsAndBytesConfig
# specify how to quantize the model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, device_map="auto")
```
### Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```python
from transformers import LlavaOnevisionForConditionalGeneration
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
use_flash_attention_2=True
).to(0)
```
## LlavaOnevisionConfig
[[autodoc]] LlavaOnevisionConfig
## LlavaOnevisionProcessor
[[autodoc]] LlavaOnevisionProcessor
## LlavaOnevisionImageProcessor
[[autodoc]] LlavaOnevisionImageProcessor
## LlavaOnevisionVideoProcessor
[[autodoc]] LlavaOnevisionVideoProcessor
## LlavaOnevisionForConditionalGeneration
[[autodoc]] LlavaOnevisionForConditionalGeneration
- forward

View File

@ -0,0 +1,106 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Mamba 2
## Overview
The Mamba2 model was proposed in [Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality](https://arxiv.org/abs/2405.21060) by Tri Dao and Albert Gu. It is a State Space Model similar to Mamba 1, with better performances in a simplified architecture.
The abstract from the paper is the following:
*While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling.*
Tips:
This version should support all implementations of Mamba 2, and in particular [Mamba-2 codestral](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) from Mistral AI. In particular, mamba 2 codestral was released with a number of `groups` equal to 8, which can be thought intuitively as similar to the number of kv heads in an attention-based model.
This model has two different forward passes, `torch_forward` or `cuda_kernels_forward`. The latter uses the original cuda kernels if they are found in your environment, and is slower on the prefill i.e. requires a "warmup run" due to high cpu overhead, see [here](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) and [also here](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457). Without compilation, the `torch_forward` implementation is faster by a factor 3 to 4. Further, there are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation, see [here](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) as well. Due to this, in addition to the reimplementation of mamba2 kernels, batched generation and cached generation are expected to have slight discrepancies. Further, the results given by the cuda kernels or the torch forward are expected to be slightly different. The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different, making the difference greater at smaller precisions.
Another note, shutdown of hidden states corresponding to padding tokens is done in 2 places and mostly has been tested with left-padding. Right-padding will propagate noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
This model was contributed by [Molbap](https://huggingface.co/Molbap), with tremendous help from [Anton Vlasjuk](https://github.com/vasqu).
The original code can be found [here](https://github.com/state-spaces/mamba).
# Usage
### A simple generation example:
```python
from transformers import Mamba2Config, Mamba2ForCausalLM, AutoTokenizer
import torch
model_id = 'mistralai/Mamba-Codestral-7B-v0.1'
tokenizer = AutoTokenizer.from_pretrained(model_id, revision='refs/pr/9', from_slow=True, legacy=False)
model = Mamba2ForCausalLM.from_pretrained(model_id, revision='refs/pr/9')
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
```
Here's a draft script for finetuning:
```python
from trl import SFTTrainer
from peft import LoraConfig
from transformers import AutoTokenizer, Mamba2ForCausalLM, TrainingArguments
model_id = 'mistralai/Mamba-Codestral-7B-v0.1'
tokenizer = AutoTokenizer.from_pretrained(model_id, revision='refs/pr/9', from_slow=True, legacy=False)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left" #enforce padding side left
model = Mamba2ForCausalLM.from_pretrained(model_id, revision='refs/pr/9')
dataset = load_dataset("Abirate/english_quotes", split="train")
# Without CUDA kernels, batch size of 2 occupies one 80GB device
# but precision can be reduced.
# Experiments and trials welcome!
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=2,
logging_dir='./logs',
logging_steps=10,
learning_rate=2e-3
)
lora_config = LoraConfig(
r=8,
target_modules=["embeddings", "in_proj", "out_proj"],
task_type="CAUSAL_LM",
bias="none"
)
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
peft_config=lora_config,
train_dataset=dataset,
dataset_text_field="quote",
)
trainer.train()
```
## Mamba2Config
[[autodoc]] Mamba2Config
## Mamba2Model
[[autodoc]] Mamba2Model
- forward
## Mamba2LMHeadModel
[[autodoc]] Mamba2ForCausalLM
- forward

View File

@ -105,7 +105,7 @@ from huggingface_hub import list_models
model_list = list_models()
org = "Helsinki-NLP"
model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
model_ids = [x.id for x in model_list if x.id.startswith(org)]
suffix = [x.split("/")[1] for x in model_ids]
old_style_multi_models = [f"{org}/{s}" for s in suffix if s != s.lower()]
```

View File

@ -61,7 +61,7 @@ print(processor.decode(predictions[0], skip_special_tokens=True))
## Fine-tuning
To fine-tune MatCha, refer to the pix2struct [fine-tuning notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb). For `Pix2Struct` models, we have found out that fine-tuning the model with Adafactor and cosine learning rate scheduler leads to faste convergence:
To fine-tune MatCha, refer to the pix2struct [fine-tuning notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb). For `Pix2Struct` models, we have found out that fine-tuning the model with Adafactor and cosine learning rate scheduler leads to faster convergence:
```python
from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup

View File

@ -83,7 +83,7 @@ keyword, and target text format passed with the `text_label` keyword argument.
## Overview of MBart-50
MBart-50 was introduced in the [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extendeding
Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original *mbart-large-cc25* checkpoint by extending
its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50
languages.

Some files were not shown because too many files have changed in this diff Show More