mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-21 01:23:56 +08:00
Compare commits
484 Commits
v4.21.1
...
enable_tf_
Author | SHA1 | Date | |
---|---|---|---|
911b839104 | |||
655f72a689 | |||
b79028f0b6 | |||
902d30b31a | |||
3a27ba3d18 | |||
ba9e336fa3 | |||
0dc7b3a785 | |||
bb6fa06f2d | |||
9d732fd2dd | |||
99c32493e0 | |||
6957350c2b | |||
990936a868 | |||
0fc68a7e14 | |||
64998a57fb | |||
4a0b958d61 | |||
9c6aeba353 | |||
de359c4593 | |||
22d37a9d2c | |||
a357ed50e7 | |||
942fa8ced8 | |||
2df602870b | |||
2d95695825 | |||
34be08efcd | |||
e3a30e2b99 | |||
226b0e46d5 | |||
88f597ba6a | |||
ea540a5977 | |||
7132d55ca1 | |||
a32f97c37d | |||
ca0886395b | |||
be4f269979 | |||
c20b2c7e18 | |||
216b2f9e80 | |||
ea75e9f10e | |||
98af4f9b54 | |||
408b5e307b | |||
71fc331746 | |||
fa4eeb4fd3 | |||
5da6afdd8d | |||
6395d1227f | |||
ece762443e | |||
0cea8d5555 | |||
49bf569830 | |||
fe01ec343b | |||
7e84723fe4 | |||
905635f5d3 | |||
49629e7ba8 | |||
8d59385f12 | |||
3a396c59b8 | |||
74a3ea4737 | |||
e5b7cff5fe | |||
83dc6377d0 | |||
1b5ab39cf4 | |||
cf6308ef9b | |||
2d9853b226 | |||
4d0f8c05f5 | |||
9393f966bc | |||
126a739058 | |||
c7fd28999f | |||
3c7b965bcd | |||
d5848a574a | |||
451df725d6 | |||
66154a6c87 | |||
114295c010 | |||
486134e5a0 | |||
e7fdfc720a | |||
da6a1b6ca1 | |||
9e95706648 | |||
ef6741fe65 | |||
18643ff29a | |||
06f341de4f | |||
36b9a99433 | |||
36e356caa4 | |||
de26241645 | |||
67403413bd | |||
cc567e0063 | |||
c81ebd1c39 | |||
261301d388 | |||
801ebd045d | |||
6227078d0a | |||
3b0cecb627 | |||
6be338f1b9 | |||
e7206ceab9 | |||
0d1ba2dd0b | |||
6f25d107fd | |||
fe5e7cea4a | |||
1bbad7a2da | |||
fbe8464b5b | |||
22264f933d | |||
ba7f2173cc | |||
ca485e562b | |||
ae219532e3 | |||
7d0486c106 | |||
56c548f17c | |||
9017ba4ca4 | |||
773314ab80 | |||
5e636eee4a | |||
658010c739 | |||
70ba10e6d4 | |||
bc5d0b1046 | |||
820cb97a3f | |||
d63bdf78d4 | |||
532ca05079 | |||
c603c80f46 | |||
c8e40d6fa1 | |||
0b5c7e4838 | |||
f3d3863255 | |||
16242e1bf0 | |||
f7ce4f1ff7 | |||
68bb33d770 | |||
578e18e002 | |||
2700ba66d9 | |||
2322eb8e2f | |||
9b80a0bc18 | |||
0a42b61ede | |||
30a28f5227 | |||
7743caccb9 | |||
8edf196310 | |||
abca1741cf | |||
16913b3c92 | |||
3774010161 | |||
0efbb6e93e | |||
0e24548081 | |||
31be02f14b | |||
693ba2cc79 | |||
4eb36f2921 | |||
f5f430e5c8 | |||
6a9726ec0e | |||
1207deb806 | |||
e1224a2a0f | |||
0b567aa430 | |||
77b18783c2 | |||
77ea35b93a | |||
fc21c9be62 | |||
6f8f2f6a77 | |||
a2a3afbc8d | |||
9f4acd059f | |||
59407bbeb3 | |||
5a70a77bfa | |||
4157e3cd7e | |||
f89f16a51e | |||
ad5045e3e3 | |||
d14af22c5c | |||
00fc9217d1 | |||
420f6c5ee3 | |||
2886f7f08a | |||
2848c9ce42 | |||
4bd36f1853 | |||
69df33f180 | |||
470799b3a6 | |||
4c2e983f44 | |||
1182b945a6 | |||
7f4708e1a2 | |||
39b5bb79d9 | |||
8a6928e28b | |||
c126a239bc | |||
f7ceda345d | |||
cf450b776f | |||
adbf3a40de | |||
367026000b | |||
0b36970371 | |||
a86acb75ad | |||
9faa9f9dac | |||
a26114777e | |||
d8cf3b2087 | |||
00cbadb870 | |||
855dcae8bb | |||
645f174286 | |||
660e0b97bd | |||
f1a6df3210 | |||
85125fcffd | |||
e6f221c8d4 | |||
22f7218560 | |||
895c528886 | |||
bb6f6d5338 | |||
9832ac7c73 | |||
90f6fe9155 | |||
6519150c31 | |||
737f6ad1f7 | |||
6394221871 | |||
6690ba3f4d | |||
2ef7742117 | |||
3059d80d80 | |||
10c774cf60 | |||
0eabab0998 | |||
2b9513fdab | |||
d842f2d5b9 | |||
4f299b2446 | |||
7a8118947f | |||
c25f27fa6a | |||
0a632f076d | |||
7d5fde991d | |||
71ff88fa4f | |||
6678350c01 | |||
998a90bc7d | |||
f85acb4d73 | |||
3b19c0317b | |||
734b7e2a5a | |||
d4dbd7ca59 | |||
c6d3daba54 | |||
cfd623a859 | |||
17c634fd5b | |||
badb9d2aaa | |||
591cfc6c90 | |||
7f27e002fd | |||
65fb71bc76 | |||
ae32f3afef | |||
bf9d506137 | |||
53e33e6f1b | |||
ecdf9b06bc | |||
4e29b3f884 | |||
9196f48b95 | |||
c5be7cae59 | |||
9e346f7436 | |||
0ab465a5d2 | |||
38c3cd52fb | |||
17981faf67 | |||
c60dd98e87 | |||
129d73294e | |||
9b3eb81014 | |||
142e12afb4 | |||
23fab60b67 | |||
ddb69e5af8 | |||
c61f116b63 | |||
1c381f3600 | |||
954e18ab97 | |||
fe58929ad6 | |||
ab663b2274 | |||
f719c0377f | |||
fafbb57df1 | |||
e7da38f5dc | |||
6e016634f1 | |||
563a8d58db | |||
a26c752353 | |||
359f7b4b8d | |||
5d81a56833 | |||
80367cd1fb | |||
7e7f743481 | |||
89514f0541 | |||
86387fe87f | |||
f210e2a414 | |||
74690b62a1 | |||
3b6943e7a3 | |||
811c4c9f79 | |||
ee407024c4 | |||
e4910213be | |||
cdde85a0a0 | |||
c3be98ebab | |||
fea4636cfa | |||
5c4c869014 | |||
e88e9ff045 | |||
73c6273d48 | |||
5727dfcebe | |||
a98f6a1da0 | |||
220da3b8a1 | |||
46d0e26a27 | |||
b83796ded7 | |||
ef91a2d135 | |||
de8548ebf3 | |||
7320d95d98 | |||
5c702175eb | |||
da02b4035c | |||
8c4a11493f | |||
da5bb29219 | |||
f1fd460694 | |||
169b8cde47 | |||
8b67f20935 | |||
b10a3b3760 | |||
5f06a09b9f | |||
f2fbe44753 | |||
21f6f58721 | |||
62ceb4d661 | |||
8869bf41fe | |||
06a6a4bd51 | |||
e9442440fc | |||
fbf382c84d | |||
3223d49354 | |||
c55d6e4e10 | |||
6667b0d7bf | |||
dcff504e18 | |||
e49c71fc4c | |||
5b24949669 | |||
c72d7d91bf | |||
cecf9f9b27 | |||
a442884b87 | |||
c12dbdc246 | |||
6faf283288 | |||
438698085c | |||
891704b3c2 | |||
84beb8a49b | |||
d90a36d192 | |||
0f257a8774 | |||
3fa45dbd91 | |||
30992ef0d9 | |||
1f3c2282b5 | |||
e95d433d77 | |||
e54a1b49aa | |||
bbbb453e58 | |||
a123eee9df | |||
358fc18613 | |||
d243112b65 | |||
5987c637ee | |||
76454b08c8 | |||
780253ce3d | |||
2c947d2939 | |||
a541d97477 | |||
0ea53822f8 | |||
582c537175 | |||
49e44b216b | |||
86d0b26d6c | |||
c99e984657 | |||
358478e729 | |||
6d175c1129 | |||
25e651a2de | |||
a27195b1de | |||
fd9aa82b07 | |||
81ab11124f | |||
510c2a0b32 | |||
9cf274685a | |||
d6eeb87170 | |||
1ccd2515ed | |||
b3ff7c680c | |||
37c5991843 | |||
56ef0ba447 | |||
153d1361c7 | |||
2ab790e82d | |||
a5ca56ff15 | |||
ed1924e801 | |||
2156619f10 | |||
4eed2beca0 | |||
d344534bf6 | |||
3cdaea47ec | |||
46d09410eb | |||
bce36ee065 | |||
c8b6ae858d | |||
f28f240828 | |||
05d3a43c59 | |||
713ab6fde5 | |||
c23cbdff4c | |||
42b8940b34 | |||
d53dffec6e | |||
5d3f037433 | |||
80468251bc | |||
3f0707b2fe | |||
4c8ec66a74 | |||
f762f373cc | |||
76568d24b6 | |||
051311ff66 | |||
9a9a525be8 | |||
f62cb8313c | |||
50949fab74 | |||
6936e7c487 | |||
9d4a45509a | |||
0d0aada564 | |||
6eb51450fa | |||
d7e2d7b40b | |||
34aad0dac0 | |||
4a51075a96 | |||
8cf4a6f0a6 | |||
38a674599c | |||
5e2f373705 | |||
0c183cc2f4 | |||
9f5fe63548 | |||
ab2006e3d6 | |||
6bea7b8178 | |||
8cb5ecd912 | |||
fe785730dc | |||
ab62a23d8c | |||
499450ed75 | |||
ed70f24291 | |||
a765b68aa6 | |||
f1f5de31ed | |||
82bb682643 | |||
3632531ec6 | |||
36b37990af | |||
ec8d26248f | |||
47e1676255 | |||
7495924007 | |||
aff5117f46 | |||
70b0d4e193 | |||
2fecde742d | |||
377cdded7a | |||
a4562552eb | |||
88a0ce57bb | |||
9129fd0377 | |||
8d1f9039d0 | |||
b8c247b6d0 | |||
38d656041b | |||
56a55d3ce4 | |||
9d64f7f00c | |||
faacdf007b | |||
280db2e39c | |||
5cd4032368 | |||
70fa1a8d26 | |||
c7849d9efc | |||
893122f666 | |||
bf174f916b | |||
575aa6ef1a | |||
586dcf6b21 | |||
14928921e2 | |||
0bf1e1aca4 | |||
d2704c4143 | |||
f9a0008d2d | |||
672b66262a | |||
df28de0581 | |||
330247ede2 | |||
c74befc9e3 | |||
fc1d841b2d | |||
b69a62d579 | |||
02b176c4ce | |||
be41eaf55f | |||
fc546332d7 | |||
8fb7c908c8 | |||
a507908cd3 | |||
3db4378bd7 | |||
10e1ec9a8c | |||
9d7b70bcd7 | |||
92915ebec2 | |||
22a0dd2ef7 | |||
5096a654b7 | |||
042f420364 | |||
c382ed8a2f | |||
dbd9641c8c | |||
5546fb61ab | |||
2959d09072 | |||
8ae7784256 | |||
0b8c1b6994 | |||
dd21fb378f | |||
68a894a587 | |||
df5e4232f5 | |||
24845aeb6d | |||
151a2aaa4e | |||
01db72abd4 | |||
3909d7f139 | |||
941d233153 | |||
62098b9348 | |||
7b9e995b70 | |||
e0bc4c73e8 | |||
39e76d76fd | |||
1141371103 | |||
af1e6b4d87 | |||
bd6d1b4300 | |||
1cd7c6f154 | |||
96b5d7db9c | |||
679d68a11b | |||
1f84399171 | |||
25ec12eaf7 | |||
a7360385f4 | |||
b2e4b091f0 | |||
51227e26ab | |||
4e2f4a92dd | |||
1763770bd9 | |||
986526a0e4 | |||
a64bcb564d | |||
a4ee463d95 | |||
da503ea02f | |||
a2586795e5 | |||
7b0908769b | |||
9c336657a9 | |||
b53dab601c | |||
286a18fa00 | |||
5d1fed0740 | |||
985c7e3ac9 | |||
a8e279579b | |||
1e380c7dcb | |||
96be1b7f49 | |||
2b81f72be9 | |||
e87ac9d18b | |||
c89a592e87 | |||
7490a97cac | |||
9caf68a638 | |||
0077360d67 | |||
5c5676cdf9 | |||
cf32b2ee42 | |||
170fcaa604 | |||
83d2d74509 | |||
7996ef74dd | |||
70e7d1d656 | |||
1d71ad8905 | |||
d5610b53fa | |||
e318cda9ee | |||
ccd4180f8a | |||
5dfec704da | |||
47c2af0951 |
File diff suppressed because it is too large
Load Diff
10
.github/workflows/add-model-like.yml
vendored
10
.github/workflows/add-model-like.yml
vendored
@ -41,10 +41,12 @@ jobs:
|
||||
run: |
|
||||
. ~/venv/bin/activate
|
||||
python setup.py develop
|
||||
transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-)
|
||||
transformer_repo_loc=$(pwd .)
|
||||
if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then
|
||||
echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src."
|
||||
transformers_install=$(pip list -e | grep transformers)
|
||||
transformers_install_array=($transformers_install)
|
||||
transformers_loc=${transformers_install_array[-1]}
|
||||
transformers_repo_loc=$(pwd .)
|
||||
if [ "$transformers_loc" != "$transformers_repo_loc" ]; then
|
||||
echo "transformers is from $transformers_loc but it shoud be from $transformers_repo_loc/src."
|
||||
echo "A fix is required. Stop testing."
|
||||
exit 1
|
||||
fi
|
||||
|
18
.github/workflows/build-docker-images.yml
vendored
18
.github/workflows/build-docker-images.yml
vendored
@ -6,6 +6,10 @@ on:
|
||||
- docker-image*
|
||||
repository_dispatch:
|
||||
workflow_call:
|
||||
inputs:
|
||||
image_postfix:
|
||||
required: true
|
||||
type: string
|
||||
schedule:
|
||||
- cron: "0 1 * * *"
|
||||
|
||||
@ -38,10 +42,12 @@ jobs:
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-all-latest-gpu
|
||||
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
|
||||
|
||||
latest-with-torch-nightly-docker:
|
||||
name: "Nightly PyTorch + Stable TensorFlow"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
@ -91,10 +97,12 @@ jobs:
|
||||
build-args: |
|
||||
REF=main
|
||||
push: true
|
||||
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
|
||||
|
||||
nightly-torch-deepspeed-docker:
|
||||
name: "Nightly PyTorch + DeepSpeed"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
@ -121,6 +129,8 @@ jobs:
|
||||
|
||||
doc-builder:
|
||||
name: "Doc builder"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
@ -145,6 +155,8 @@ jobs:
|
||||
|
||||
latest-pytorch:
|
||||
name: "Latest PyTorch [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
@ -171,6 +183,8 @@ jobs:
|
||||
|
||||
latest-tensorflow:
|
||||
name: "Latest TensorFlow [dev]"
|
||||
# Push CI doesn't need this image
|
||||
if: inputs.image_postfix != '-push-ci'
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
-
|
||||
|
2
.github/workflows/build_documentation.yml
vendored
2
.github/workflows/build_documentation.yml
vendored
@ -15,6 +15,6 @@ jobs:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: transformers
|
||||
notebook_folder: transformers_doc
|
||||
languages: en es it pt
|
||||
languages: de en es it pt
|
||||
secrets:
|
||||
token: ${{ secrets.HUGGINGFACE_PUSH }}
|
||||
|
2
.github/workflows/build_pr_documentation.yml
vendored
2
.github/workflows/build_pr_documentation.yml
vendored
@ -14,4 +14,4 @@ jobs:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: transformers
|
||||
languages: en es it pt
|
||||
languages: de en es it pt
|
||||
|
67
.github/workflows/check_runner_status.yml
vendored
Normal file
67
.github/workflows/check_runner_status.yml
vendored
Normal file
@ -0,0 +1,67 @@
|
||||
name: Self-hosted runner (check runner status)
|
||||
|
||||
# Note that each job's dependencies go into a corresponding docker file.
|
||||
#
|
||||
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
|
||||
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
|
||||
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
# run per hour
|
||||
- cron: "0 */1 * * *"
|
||||
|
||||
env:
|
||||
TRANSFORMERS_IS_CI: yes
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
offline_runners: ${{ steps.set-offline_runners.outputs.offline_runners }}
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker,single-gpu-scheduled-ci-runner-docker,multi-scheduled-scheduled-ci-runner-docker,single-gpu-doctest-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
- id: set-offline_runners
|
||||
name: Set output for offline runners
|
||||
if: ${{ always() }}
|
||||
run: |
|
||||
offline_runners=$(python3 -c 'fp = open("offline_runners.txt"); failed = fp.read(); fp.close(); print(failed)')
|
||||
echo "::set-output name=offline_runners::$offline_runners"
|
||||
|
||||
send_results:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-latest
|
||||
needs: check_runner_status
|
||||
if: ${{ failure() }}
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/download-artifact@v2
|
||||
- name: Send message to Slack
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_EVENT: runner status check
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
OFFLINE_RUNNERS: ${{ needs.check_runner_status.outputs.offline_runners }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
python utils/notification_service.py
|
58
.github/workflows/self-nightly-scheduled.yml
vendored
58
.github/workflows/self-nightly-scheduled.yml
vendored
@ -8,8 +8,9 @@ name: Self-hosted runner (nightly)
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
schedule:
|
||||
- cron: "0 16 * * *"
|
||||
# Disable temporarily until the test suite can be run under 12 hours.
|
||||
# schedule:
|
||||
# - cron: "0 16 * * *"
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -22,8 +23,36 @@ env:
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-torch-nightly-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
setup:
|
||||
name: Setup
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
@ -178,6 +207,9 @@ jobs:
|
||||
working-directory: /workspace/transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
@ -185,7 +217,7 @@ jobs:
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
rm -rf DeepSpeed
|
||||
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -217,8 +249,23 @@ jobs:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-latest
|
||||
if: always()
|
||||
needs: [setup, run_tests_single_gpu, run_tests_multi_gpu, run_all_tests_torch_cuda_extensions_gpu]
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_all_tests_torch_cuda_extensions_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/download-artifact@v2
|
||||
- name: Send message to Slack
|
||||
@ -229,6 +276,9 @@ jobs:
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
|
||||
CI_EVENT: nightly-build
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
|
49
.github/workflows/self-past.yml
vendored
49
.github/workflows/self-past.yml
vendored
@ -27,9 +27,43 @@ env:
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
|
||||
container:
|
||||
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: ubuntu-latest
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
|
||||
container:
|
||||
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
steps:
|
||||
@ -160,8 +194,16 @@ jobs:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-latest
|
||||
if: always()
|
||||
needs: [setup, run_tests_single_gpu, run_tests_multi_gpu]
|
||||
needs: [check_runner_status, check_runners, setup, run_tests_single_gpu, run_tests_multi_gpu]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/download-artifact@v2
|
||||
|
||||
@ -177,6 +219,9 @@ jobs:
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
|
||||
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
|
2
.github/workflows/self-push-caller.yml
vendored
2
.github/workflows/self-push-caller.yml
vendored
@ -40,6 +40,8 @@ jobs:
|
||||
needs: check-for-setup
|
||||
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
|
||||
uses: ./.github/workflows/build-docker-images.yml
|
||||
with:
|
||||
image_postfix: "-push-ci"
|
||||
secrets: inherit
|
||||
|
||||
run_push_ci:
|
||||
|
79
.github/workflows/self-push.yml
vendored
79
.github/workflows/self-push.yml
vendored
@ -27,9 +27,43 @@ env:
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
setup:
|
||||
name: Setup
|
||||
runs-on: ubuntu-latest
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
outputs:
|
||||
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||
test_map: ${{ steps.set-matrix.outputs.test_map }}
|
||||
@ -62,12 +96,8 @@ jobs:
|
||||
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
|
||||
echo "env.CI_SHA = ${{ env.CI_SHA }}"
|
||||
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Update clone using environment variables
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
echo "original branch = $(git branch --show-current)"
|
||||
git fetch && git checkout ${{ env.CI_BRANCH }}
|
||||
@ -76,12 +106,14 @@ jobs:
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Cleanup
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
rm -rf tests/__pycache__
|
||||
rm -rf tests/models/__pycache__
|
||||
rm -rf reports
|
||||
|
||||
- name: Fetch the tests to run
|
||||
working-directory: /transformers
|
||||
# TODO: add `git-python` in the docker images
|
||||
run: |
|
||||
pip install --upgrade git-python
|
||||
@ -91,10 +123,11 @@ jobs:
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: test_fetched
|
||||
path: test_preparation.txt
|
||||
path: /transformers/test_preparation.txt
|
||||
|
||||
- id: set-matrix
|
||||
name: Organize tests into models
|
||||
working-directory: /transformers
|
||||
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
|
||||
# The `test_map` is used to get the actual identified test files under each key.
|
||||
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
|
||||
@ -123,7 +156,7 @@ jobs:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
@ -208,7 +241,7 @@ jobs:
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
image: huggingface/transformers-all-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
@ -293,7 +326,7 @@ jobs:
|
||||
machine_type: [single-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
@ -328,12 +361,15 @@ jobs:
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -372,7 +408,7 @@ jobs:
|
||||
machine_type: [multi-gpu]
|
||||
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
|
||||
container:
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
|
||||
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
@ -407,12 +443,15 @@ jobs:
|
||||
git checkout ${{ env.CI_SHA }}
|
||||
echo "log = $(git log -n 1)"
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -446,6 +485,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
if: always()
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
@ -453,6 +494,14 @@ jobs:
|
||||
run_tests_torch_cuda_extensions_multi_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
|
||||
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
|
||||
# We also take into account the `push` event (we might want to test some changes in a branch)
|
||||
- name: Prepare custom environment variables
|
||||
@ -498,6 +547,10 @@ jobs:
|
||||
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
|
||||
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
|
||||
CI_SHA: ${{ env.CI_SHA }}
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
|
64
.github/workflows/self-scheduled.yml
vendored
64
.github/workflows/self-scheduled.yml
vendored
@ -22,8 +22,36 @@ env:
|
||||
RUN_PT_TF_CROSS_TESTS: 1
|
||||
|
||||
jobs:
|
||||
check_runner_status:
|
||||
name: Check Runner Status
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout transformers
|
||||
uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 2
|
||||
|
||||
- name: Check Runner Status
|
||||
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
|
||||
check_runners:
|
||||
name: Check Runners
|
||||
needs: check_runner_status
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
|
||||
container:
|
||||
image: huggingface/transformers-all-latest-gpu
|
||||
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
|
||||
steps:
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
nvidia-smi
|
||||
|
||||
setup:
|
||||
name: Setup
|
||||
needs: check_runners
|
||||
strategy:
|
||||
matrix:
|
||||
machine_type: [single-gpu, multi-gpu]
|
||||
@ -187,19 +215,19 @@ jobs:
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
python3 -m pytest -v --make-reports=examples_gpu examples/pytorch
|
||||
python3 -m pytest -v --make-reports=single-gpu_examples_gpu examples/pytorch
|
||||
|
||||
- name: Failure short reports
|
||||
if: ${{ failure() }}
|
||||
continue-on-error: true
|
||||
run: cat /transformers/reports/examples_gpu/failures_short.txt
|
||||
run: cat /transformers/reports/single-gpu_examples_gpu/failures_short.txt
|
||||
|
||||
- name: Test suite reports artifacts
|
||||
if: ${{ always() }}
|
||||
uses: actions/upload-artifact@v2
|
||||
with:
|
||||
name: run_examples_gpu
|
||||
path: /transformers/reports/examples_gpu
|
||||
name: single-gpu_run_examples_gpu
|
||||
path: /transformers/reports/single-gpu_examples_gpu
|
||||
|
||||
run_pipelines_torch_gpu:
|
||||
name: PyTorch pipelines
|
||||
@ -306,12 +334,15 @@ jobs:
|
||||
working-directory: /workspace/transformers
|
||||
run: git fetch && git checkout ${{ github.sha }}
|
||||
|
||||
- name: Remove cached torch extensions
|
||||
run: rm -rf /github/home/.cache/torch_extensions/
|
||||
|
||||
# To avoid unknown test failures
|
||||
- name: Pre build DeepSpeed *again*
|
||||
working-directory: /workspace
|
||||
run: |
|
||||
python3 -m pip uninstall -y deepspeed
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
|
||||
|
||||
- name: NVIDIA-SMI
|
||||
run: |
|
||||
@ -343,8 +374,26 @@ jobs:
|
||||
name: Send results to webhook
|
||||
runs-on: ubuntu-latest
|
||||
if: always()
|
||||
needs: [setup, run_tests_single_gpu, run_tests_multi_gpu, run_examples_gpu, run_pipelines_tf_gpu, run_pipelines_torch_gpu, run_all_tests_torch_cuda_extensions_gpu]
|
||||
needs: [
|
||||
check_runner_status,
|
||||
check_runners,
|
||||
setup,
|
||||
run_tests_single_gpu,
|
||||
run_tests_multi_gpu,
|
||||
run_examples_gpu,
|
||||
run_pipelines_tf_gpu,
|
||||
run_pipelines_torch_gpu,
|
||||
run_all_tests_torch_cuda_extensions_gpu
|
||||
]
|
||||
steps:
|
||||
- name: Preliminary job status
|
||||
shell: bash
|
||||
# For the meaning of these environment variables, see the job `Setup`
|
||||
run: |
|
||||
echo "Runner availability: ${{ needs.check_runner_status.result }}"
|
||||
echo "Runner status: ${{ needs.check_runners.result }}"
|
||||
echo "Setup status: ${{ needs.setup.result }}"
|
||||
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/download-artifact@v2
|
||||
- name: Send message to Slack
|
||||
@ -355,6 +404,9 @@ jobs:
|
||||
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
|
||||
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
|
||||
CI_EVENT: scheduled
|
||||
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
|
||||
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
|
||||
SETUP_STATUS: ${{ needs.setup.result }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
|
@ -171,6 +171,14 @@ Follow these steps to start contributing ([supported Python versions](https://gi
|
||||
|
||||
If you have already cloned that repo, you might need to `git pull` to get the most recent changes in the `datasets`
|
||||
library.
|
||||
|
||||
Depending on your OS, you might need to install some external libraries, as well, if the `pip` installation fails.
|
||||
|
||||
For macOS, you will likely need [MeCab](https://taku910.github.io/mecab/), which can be installed from Homebrew:
|
||||
|
||||
```bash
|
||||
brew install mecab
|
||||
```
|
||||
|
||||
5. Develop the features on your branch.
|
||||
|
||||
|
1
Makefile
1
Makefile
@ -41,6 +41,7 @@ repo-consistency:
|
||||
python utils/check_inits.py
|
||||
python utils/check_config_docstrings.py
|
||||
python utils/tests_fetcher.py --sanity_check
|
||||
python utils/update_metadata.py --check-only
|
||||
|
||||
# this target runs checks on all files
|
||||
|
||||
|
42
README.md
42
README.md
@ -87,12 +87,16 @@ Here are a few examples:
|
||||
In Computer Vision:
|
||||
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
|
||||
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
|
||||
- [Image Segmentation with DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
|
||||
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
|
||||
- [Panoptic Segmentation with DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
|
||||
|
||||
In Audio:
|
||||
- [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
|
||||
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
|
||||
|
||||
In Multimodal tasks:
|
||||
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
|
||||
|
||||
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities.
|
||||
|
||||
## If you are looking for custom support from the Hugging Face team
|
||||
@ -157,7 +161,7 @@ Here we get a list of objects detected in the image, with a box surrounding the
|
||||
|
||||
You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
|
||||
|
||||
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
|
||||
In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoModel
|
||||
|
||||
@ -181,7 +185,7 @@ And here is the equivalent code for TensorFlow:
|
||||
|
||||
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
|
||||
|
||||
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
|
||||
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
|
||||
|
||||
## Why should I use transformers?
|
||||
|
||||
@ -194,7 +198,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
|
||||
1. Lower compute costs, smaller carbon footprint:
|
||||
- Researchers can share trained models instead of always retraining.
|
||||
- Practitioners can reduce compute time and production costs.
|
||||
- Dozens of architectures with over 20,000 pretrained models, some in more than 100 languages.
|
||||
- Dozens of architectures with over 60,000 pretrained models across all modalities.
|
||||
|
||||
1. Choose the right framework for every part of a model's lifetime:
|
||||
- Train state-of-the-art models in 3 lines of code.
|
||||
@ -209,7 +213,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
|
||||
## Why shouldn't I use transformers?
|
||||
|
||||
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
|
||||
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
|
||||
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
|
||||
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
|
||||
|
||||
## Installation
|
||||
@ -245,6 +249,8 @@ conda install -c huggingface transformers
|
||||
|
||||
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
|
||||
|
||||
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
|
||||
|
||||
## Model architectures
|
||||
|
||||
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
|
||||
@ -272,6 +278,7 @@ Current number of checkpoints: ** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
|
||||
1. **[Conditional DETR](https://huggingface.co/docs/transformers/main/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
@ -281,15 +288,18 @@ Current number of checkpoints: ** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
|
||||
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
|
||||
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
@ -298,16 +308,17 @@ Current number of checkpoints: ** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
|
||||
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
@ -324,16 +335,17 @@ Current number of checkpoints: ** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
|
||||
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/main/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
|
||||
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/main/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
@ -356,6 +368,7 @@ Current number of checkpoints: ** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
@ -363,18 +376,21 @@ Current number of checkpoints: ** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
|
||||
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[ViTMSN](https://huggingface.co/docs/transformers/main/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
|
||||
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
|
26
README_ko.md
26
README_ko.md
@ -228,6 +228,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
|
||||
1. **[Conditional DETR](https://huggingface.co/docs/transformers/main/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
@ -237,15 +238,18 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
|
||||
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
|
||||
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
@ -254,16 +258,17 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
|
||||
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
@ -280,16 +285,17 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
|
||||
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/main/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
|
||||
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/main/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
@ -312,6 +318,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
@ -319,18 +326,21 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
|
||||
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[ViTMSN](https://huggingface.co/docs/transformers/main/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
|
||||
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
|
@ -173,7 +173,7 @@ checkpoint: 检查点
|
||||
- 对所有模型统一的API
|
||||
|
||||
1. 更低计算开销,更少的碳排放:
|
||||
- 研究人员可以分享亿训练的模型而非次次从头开始训练
|
||||
- 研究人员可以分享已训练的模型而非每次从头开始训练
|
||||
- 工程师可以减少计算用时和生产环境开销
|
||||
- 数十种模型架构、两千多个预训练模型、100多种语言支持
|
||||
|
||||
@ -252,6 +252,7 @@ conda install -c huggingface transformers
|
||||
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
|
||||
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
|
||||
1. **[Conditional DETR](https://huggingface.co/docs/transformers/main/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
|
||||
@ -261,15 +262,18 @@ conda install -c huggingface transformers
|
||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
|
||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
|
||||
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
|
||||
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
|
||||
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
|
||||
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
|
||||
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
|
||||
@ -278,16 +282,17 @@ conda install -c huggingface transformers
|
||||
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
|
||||
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
|
||||
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (来自 ABEJA) 由 Shinya Otani, Takayoshi Makabe, Anuj Arora, Kyo Hattori。
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
|
||||
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
|
||||
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
|
||||
@ -304,16 +309,17 @@ conda install -c huggingface transformers
|
||||
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
|
||||
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/main/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
|
||||
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/main/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
|
||||
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
|
||||
@ -336,6 +342,7 @@ conda install -c huggingface transformers
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
|
||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
|
||||
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
|
||||
@ -343,18 +350,21 @@ conda install -c huggingface transformers
|
||||
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
|
||||
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。
|
||||
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
|
||||
1. **[ViTMSN](https://huggingface.co/docs/transformers/main/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
|
||||
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。
|
||||
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
|
||||
|
@ -185,7 +185,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
|
||||
- 對所有模型使用的制式化API
|
||||
|
||||
1. 更低的運算成本,更少的碳排放:
|
||||
- 研究人員可以分享預訓練的模型而非從頭開始訓練
|
||||
- 研究人員可以分享已訓練的模型而非每次從頭開始訓練
|
||||
- 工程師可以減少計算時間以及生產成本
|
||||
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援
|
||||
|
||||
@ -264,6 +264,7 @@ conda install -c huggingface transformers
|
||||
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
|
||||
1. **[Conditional DETR](https://huggingface.co/docs/transformers/main/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
|
||||
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
@ -273,15 +274,18 @@ conda install -c huggingface transformers
|
||||
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
|
||||
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
|
||||
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
|
||||
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
|
||||
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
|
||||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
|
||||
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
@ -290,16 +294,17 @@ conda install -c huggingface transformers
|
||||
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
|
||||
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
|
||||
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/main/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
||||
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
|
||||
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
|
||||
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
|
||||
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
@ -316,16 +321,17 @@ conda install -c huggingface transformers
|
||||
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
|
||||
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/main/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/main/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/main/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/main/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
|
||||
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
|
||||
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
|
||||
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
|
||||
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/main/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
|
||||
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
@ -348,6 +354,7 @@ conda install -c huggingface transformers
|
||||
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
@ -355,18 +362,21 @@ conda install -c huggingface transformers
|
||||
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
|
||||
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/main/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
|
||||
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
|
||||
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[ViTMSN](https://huggingface.co/docs/transformers/main/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
|
||||
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
|
||||
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
|
||||
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
|
@ -9,7 +9,7 @@ SHELL ["sh", "-lc"]
|
||||
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
|
||||
# to be used as arguments for docker build (so far).
|
||||
|
||||
ARG PYTORCH='1.12.0'
|
||||
ARG PYTORCH='1.12.1'
|
||||
# (not always a valid torch version)
|
||||
ARG INTEL_TORCH_EXT='1.11.0'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
@ -45,6 +45,11 @@ RUN python3 -m pip install -U "itsdangerous<2.1.0"
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
|
||||
|
||||
# Add bitsandbytes for mixed int8 testing
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir decord
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
RUN cd transformers && python3 setup.py develop
|
||||
|
@ -23,4 +23,4 @@ COPY . transformers/
|
||||
RUN cd transformers/ && \
|
||||
python3 -m pip install --no-cache-dir .
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
CMD ["/bin/bash"]
|
||||
|
@ -3,7 +3,7 @@ LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG PYTORCH='1.12.0'
|
||||
ARG PYTORCH='1.12.1'
|
||||
# Example: `cu102`, `cu113`, etc.
|
||||
ARG CUDA='cu113'
|
||||
|
||||
@ -26,7 +26,7 @@ RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run (again) inside the GPU VMs running the tests.
|
||||
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
|
||||
# TODO: Find out why test fail.
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
|
@ -25,7 +25,25 @@ RUN python3 -m pip uninstall -y deepspeed
|
||||
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
|
||||
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
|
||||
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
|
||||
# DS_BUILD_CPU_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
|
||||
|
||||
# For `torchdynamo` tests
|
||||
# (see https://github.com/huggingface/transformers/pull/17765)
|
||||
RUN git clone https://github.com/pytorch/functorch
|
||||
RUN python3 -m pip install --no-cache-dir ./functorch[aot]
|
||||
RUN cd functorch && python3 setup.py develop
|
||||
|
||||
RUN git clone https://github.com/pytorch/torchdynamo
|
||||
RUN python3 -m pip install -r ./torchdynamo/requirements.txt
|
||||
RUN cd torchdynamo && python3 setup.py develop
|
||||
|
||||
# install TensorRT
|
||||
RUN python3 -m pip install --no-cache-dir -U nvidia-pyindex
|
||||
RUN python3 -m pip install --no-cache-dir -U nvidia-tensorrt==8.2.4.2
|
||||
|
||||
# install torch_tensorrt (fx path)
|
||||
RUN git clone https://github.com/pytorch/TensorRT.git
|
||||
RUN cd TensorRT/py && python3 setup.py install --fx-only
|
||||
|
||||
# When installing in editable mode, `transformers` is not recognized as a package.
|
||||
# this line must be added in order for python to be aware of transformers.
|
||||
|
@ -12,7 +12,7 @@ RUN git clone https://github.com/huggingface/transformers && cd transformers &&
|
||||
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing]
|
||||
|
||||
# If set to nothing, will install the latest version
|
||||
ARG PYTORCH='1.12.0'
|
||||
ARG PYTORCH='1.12.1'
|
||||
ARG TORCH_VISION=''
|
||||
ARG TORCH_AUDIO=''
|
||||
|
||||
|
@ -22,4 +22,4 @@ COPY . transformers/
|
||||
RUN cd transformers/ && \
|
||||
python3 -m pip install --no-cache-dir .
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
CMD ["/bin/bash"]
|
||||
|
@ -43,7 +43,7 @@ Once you have setup the `doc-builder` and additional packages, you can generate
|
||||
typing the following command:
|
||||
|
||||
```bash
|
||||
doc-builder build transformers docs/source/ --build_dir ~/tmp/test-build
|
||||
doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build
|
||||
```
|
||||
|
||||
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
|
||||
@ -312,13 +312,13 @@ easily.
|
||||
|
||||
# Testing documentation examples
|
||||
|
||||
Good documentation oftens comes with an example of how a specific function or class should be used.
|
||||
Good documentation often comes with an example of how a specific function or class should be used.
|
||||
Each model class should contain at least one example showcasing
|
||||
how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
|
||||
includes an example of how to transcribe speech to text in the
|
||||
[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward).
|
||||
|
||||
## Writing documenation examples
|
||||
## Writing documentation examples
|
||||
|
||||
The syntax for Example docstrings can look as follows:
|
||||
|
||||
|
@ -54,5 +54,4 @@ The fields you should add are `local` (with the name of the file containing the
|
||||
|
||||
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
|
||||
|
||||
> 🙋 If you'd like others to help you with the translation, you can either [open an issue](https://github.com/huggingface/transformers/issues) or tag @[espejelomar](https://twitter.com/espejelomar)
|
||||
on Twitter to gain some visibility.
|
||||
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @sgugger.
|
||||
|
14
docs/source/de/_config.py
Normal file
14
docs/source/de/_config.py
Normal file
@ -0,0 +1,14 @@
|
||||
# docstyle-ignore
|
||||
INSTALL_CONTENT = """
|
||||
# Transformers installation
|
||||
! pip install transformers datasets
|
||||
# To install from source instead of the last release, comment the command above and uncomment the following one.
|
||||
# ! pip install git+https://github.com/huggingface/transformers.git
|
||||
"""
|
||||
|
||||
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
|
||||
black_avoid_patterns = {
|
||||
"{processor_class}": "FakeProcessorClass",
|
||||
"{model_class}": "FakeModelClass",
|
||||
"{object_class}": "FakeObjectClass",
|
||||
}
|
22
docs/source/de/_toctree.yml
Normal file
22
docs/source/de/_toctree.yml
Normal file
@ -0,0 +1,22 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: 🤗 Transformers
|
||||
- local: quicktour
|
||||
title: Schnellstart
|
||||
- local: installation
|
||||
title: Installation
|
||||
title: Erste Schritte
|
||||
- sections:
|
||||
- local: pipeline_tutorial
|
||||
title: Pipelines für Inferenzen
|
||||
- local: autoclass_tutorial
|
||||
title: Laden von vortrainierten Instanzen mit einer AutoClass
|
||||
- local: preprocessing
|
||||
title: Vorverarbeiten
|
||||
- local: training
|
||||
title: Optimierung eines vortrainierten Modells
|
||||
- local: accelerate
|
||||
title: Verteiltes Training mit 🤗 Accelerate
|
||||
- local: model_sharing
|
||||
title: Ein Modell teilen
|
||||
title: Tutorials
|
132
docs/source/de/accelerate.mdx
Normal file
132
docs/source/de/accelerate.mdx
Normal file
@ -0,0 +1,132 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Verteiltes Training mit 🤗 Accelerate
|
||||
|
||||
Da die Modelle immer größer werden, hat sich die Parallelität als Strategie zum Trainieren größerer Modelle auf begrenzter Hardware und zur Beschleunigung der Trainingsgeschwindigkeit um mehrere Größenordnungen erwiesen. Bei Hugging Face haben wir die Bibliothek [🤗 Accelerate](https://huggingface.co/docs/accelerate) entwickelt, um Nutzern zu helfen, ein 🤗 Transformers-Modell auf jeder Art von verteiltem Setup zu trainieren, egal ob es sich um mehrere GPUs auf einer Maschine oder mehrere GPUs auf mehreren Maschinen handelt. In diesem Tutorial lernen Sie, wie Sie Ihre native PyTorch-Trainingsschleife anpassen, um das Training in einer verteilten Umgebung zu ermöglichen.
|
||||
|
||||
## Einrichtung
|
||||
|
||||
Beginnen Sie mit der Installation von 🤗 Accelerate:
|
||||
|
||||
```bash
|
||||
pip install accelerate
|
||||
```
|
||||
|
||||
Dann importieren und erstellen Sie ein [`~accelerate.Accelerator`]-Objekt. Der [`~accelerate.Accelerator`] wird automatisch Ihre Art der verteilten Einrichtung erkennen und alle notwendigen Komponenten für das Training initialisieren. Sie müssen Ihr Modell nicht explizit auf einem Gerät platzieren.
|
||||
|
||||
```py
|
||||
>>> from accelerate import Accelerator
|
||||
|
||||
>>> accelerator = Accelerator()
|
||||
```
|
||||
|
||||
## Vorbereiten auf die Beschleunigung
|
||||
|
||||
Der nächste Schritt ist die Übergabe aller relevanten Trainingsobjekte an die Methode [`~accelerate.Accelerator.prepare`]. Dazu gehören Ihre Trainings- und Evaluierungs-DataLoader, ein Modell und ein Optimierer:
|
||||
|
||||
```py
|
||||
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
|
||||
... train_dataloader, eval_dataloader, model, optimizer
|
||||
... )
|
||||
```
|
||||
|
||||
## Rückwärts
|
||||
|
||||
Die letzte Ergänzung besteht darin, das typische `loss.backward()` in der Trainingsschleife durch die 🤗 Accelerate-Methode [`~accelerate.Accelerator.backward`] zu ersetzen:
|
||||
|
||||
```py
|
||||
>>> for epoch in range(num_epochs):
|
||||
... for batch in train_dataloader:
|
||||
... outputs = model(**batch)
|
||||
... loss = outputs.loss
|
||||
... accelerator.backward(loss)
|
||||
|
||||
... optimizer.step()
|
||||
... lr_scheduler.step()
|
||||
... optimizer.zero_grad()
|
||||
... progress_bar.update(1)
|
||||
```
|
||||
|
||||
Wie Sie im folgenden Code sehen können, müssen Sie nur vier zusätzliche Codezeilen zu Ihrer Trainingsschleife hinzufügen, um verteiltes Training zu ermöglichen!
|
||||
|
||||
```diff
|
||||
+ from accelerate import Accelerator
|
||||
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
|
||||
|
||||
+ accelerator = Accelerator()
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
|
||||
optimizer = AdamW(model.parameters(), lr=3e-5)
|
||||
|
||||
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
- model.to(device)
|
||||
|
||||
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
|
||||
+ train_dataloader, eval_dataloader, model, optimizer
|
||||
+ )
|
||||
|
||||
num_epochs = 3
|
||||
num_training_steps = num_epochs * len(train_dataloader)
|
||||
lr_scheduler = get_scheduler(
|
||||
"linear",
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=0,
|
||||
num_training_steps=num_training_steps
|
||||
)
|
||||
|
||||
progress_bar = tqdm(range(num_training_steps))
|
||||
|
||||
model.train()
|
||||
for epoch in range(num_epochs):
|
||||
for batch in train_dataloader:
|
||||
- batch = {k: v.to(device) for k, v in batch.items()}
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
- loss.backward()
|
||||
+ accelerator.backward(loss)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
progress_bar.update(1)
|
||||
```
|
||||
|
||||
## Trainieren
|
||||
|
||||
Sobald Sie die entsprechenden Codezeilen hinzugefügt haben, starten Sie Ihr Training in einem Skript oder einem Notebook wie Colaboratory.
|
||||
|
||||
### Trainieren mit einem Skript
|
||||
|
||||
Wenn Sie Ihr Training mit einem Skript durchführen, führen Sie den folgenden Befehl aus, um eine Konfigurationsdatei zu erstellen und zu speichern:
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
Dann starten Sie Ihr Training mit:
|
||||
|
||||
```bash
|
||||
accelerate launch train.py
|
||||
```
|
||||
|
||||
### Trainieren mit einem Notebook
|
||||
|
||||
🤗 Accelerate kann auch in einem Notebook laufen, wenn Sie planen, die TPUs von Colaboratory zu verwenden. Verpacken Sie den gesamten Code, der für das Training verantwortlich ist, in eine Funktion und übergeben Sie diese an [`~accelerate.notebook_launcher`]:
|
||||
|
||||
```py
|
||||
>>> from accelerate import notebook_launcher
|
||||
|
||||
>>> notebook_launcher(training_function)
|
||||
```
|
||||
|
||||
Weitere Informationen über 🤗 Accelerate und seine umfangreichen Funktionen finden Sie in der [Dokumentation](https://huggingface.co/docs/accelerate).
|
127
docs/source/de/autoclass_tutorial.mdx
Normal file
127
docs/source/de/autoclass_tutorial.mdx
Normal file
@ -0,0 +1,127 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Vortrainierte Instanzen mit einer AutoClass laden
|
||||
|
||||
Bei so vielen verschiedenen Transformator-Architekturen kann es eine Herausforderung sein, eine für Ihren Checkpoint zu erstellen. Als Teil der 🤗 Transformers Kernphilosophie, die Bibliothek leicht, einfach und flexibel nutzbar zu machen, leitet eine `AutoClass` automatisch die richtige Architektur aus einem gegebenen Checkpoint ab und lädt sie. Mit der Methode `from_pretrained()` kann man schnell ein vortrainiertes Modell für eine beliebige Architektur laden, so dass man keine Zeit und Ressourcen aufwenden muss, um ein Modell von Grund auf zu trainieren. Die Erstellung dieser Art von Checkpoint-agnostischem Code bedeutet, dass Ihr Code, wenn er für einen Checkpoint funktioniert, auch mit einem anderen Checkpoint funktionieren wird - solange er für eine ähnliche Aufgabe trainiert wurde - selbst wenn die Architektur unterschiedlich ist.
|
||||
|
||||
<Tip>
|
||||
|
||||
Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/bert-base-uncased) eine Architektur, während `bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann.
|
||||
|
||||
</Tip>
|
||||
|
||||
In dieser Anleitung lernen Sie, wie man:
|
||||
|
||||
* Einen vortrainierten Tokenizer lädt.
|
||||
* Einen vortrainierten Merkmalsextraktor lädt.
|
||||
* Einen vortrainierten Prozessor lädt.
|
||||
* Ein vortrainiertes Modell lädt.
|
||||
|
||||
## AutoTokenizer
|
||||
|
||||
Nahezu jede NLP-Aufgabe beginnt mit einem Tokenizer. Ein Tokenizer wandelt Ihre Eingabe in ein Format um, das vom Modell verarbeitet werden kann.
|
||||
|
||||
Laden Sie einen Tokenizer mit [`AutoTokenizer.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
||||
```
|
||||
|
||||
Dann tokenisieren Sie Ihre Eingabe wie unten gezeigt:
|
||||
|
||||
```py
|
||||
>>> sequence = "In a hole in the ground there lived a hobbit."
|
||||
>>> print(tokenizer(sequence))
|
||||
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
## AutoFeatureExtractor
|
||||
|
||||
Für Audio- und Bildverarbeitungsaufgaben verarbeitet ein Merkmalsextraktor das Audiosignal oder Bild in das richtige Eingabeformat.
|
||||
|
||||
Laden Sie einen Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
|
||||
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
||||
... )
|
||||
```
|
||||
|
||||
## AutoProcessor
|
||||
|
||||
Multimodale Aufgaben erfordern einen Prozessor, der zwei Arten von Vorverarbeitungswerkzeugen kombiniert. Das Modell [LayoutLMV2](model_doc/layoutlmv2) beispielsweise benötigt einen Feature-Extraktor für Bilder und einen Tokenizer für Text; ein Prozessor kombiniert beide.
|
||||
|
||||
Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoProcessor
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
||||
```
|
||||
|
||||
## AutoModel
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
||||
```
|
||||
|
||||
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForTokenClassification
|
||||
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Für PyTorch-Modelle verwendet die Methode `from_pretrained()` `torch.load()`, die intern `pickle` verwendet und als unsicher bekannt ist. Generell sollte man niemals ein Modell laden, das aus einer nicht vertrauenswürdigen Quelle stammen könnte, oder das manipuliert worden sein könnte. Dieses Sicherheitsrisiko wird für öffentliche Modelle, die auf dem Hugging Face Hub gehostet werden, teilweise gemildert, da diese bei jeder Übertragung [auf Malware](https://huggingface.co/docs/hub/security-malware) gescannt werden. Siehe die [Hub-Dokumentation](https://huggingface.co/docs/hub/security) für Best Practices wie [signierte Commit-Verifizierung](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) mit GPG.
|
||||
|
||||
TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Architekturen mit den Kwargs `from_tf` und `from_flax` für die Methode `from_pretrained` geladen werden, um dieses Problem zu umgehen.
|
||||
|
||||
</Tip>
|
||||
|
||||
Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
|
||||
</pt>
|
||||
<tf>
|
||||
Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
|
||||
```
|
||||
|
||||
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForTokenClassification
|
||||
|
||||
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
|
||||
```
|
||||
|
||||
Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
|
||||
</tf>
|
||||
</frameworkcontent>
|
322
docs/source/de/index.mdx
Normal file
322
docs/source/de/index.mdx
Normal file
@ -0,0 +1,322 @@
|
||||
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# 🤗 Transformers
|
||||
|
||||
Maschinelles Lernen auf dem neuesten Stand der Technik für PyTorch, TensorFlow und JAX.
|
||||
|
||||
🤗 Transformers bietet APIs zum einfachen Herunterladen und Trainieren von vortrainierten Modellen auf dem neuesten Stand der Technik. Die Verwendung von vortrainierten Modellen kann Rechenkosten sparen und den CO2-Fußabdruck reduzieren und Zeit sparen, die für das Training eines Modells von Grund auf benötigt wird. Die Modelle können für verschiedene Modalitäten verwendet werden, wie z. B.:
|
||||
|
||||
* 📝 Text: Textklassifizierung, Informationsextrahierung, Beantwortung von Fragen, Zusammenfassung, Übersetzung und Texterstellung in über 100 Sprachen.
|
||||
* 🖼️ Bilder: Bildklassifizierung, Objekterkennung und Segmentierung.
|
||||
* 🗣️ Audio: Spracherkennung und Audioklassifizierung.
|
||||
* 🐙 Multimodal: Beantwortung von Tabellenfragen, optische Zeichenerkennung, Informationsextraktion aus gescannten Dokumenten, Videoklassifizierung und Beantwortung visueller Fragen.
|
||||
|
||||
Unsere Bibliothek unterstützt die nahtlose Integration von drei der beliebtesten Deep-Learning-Bibliotheken: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) und [JAX](https://jax.readthedocs.io/en/latest/). Trainieren Sie Ihr Modell in drei Codezeilen in einem Framework und laden Sie es zur Inferenz mit einem anderen.
|
||||
|
||||
Jede 🤗 Transformers-Architektur ist in einem eigenständigen Python-Modul definiert, so dass sie leicht für Forschung und Experimente angepasst werden kann.
|
||||
|
||||
## Wenn Sie auf der Suche nach individueller Unterstützung durch das Hugging Face-Team sind
|
||||
|
||||
<a target="_blank" href="https://huggingface.co/support">
|
||||
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
|
||||
</a><br>
|
||||
|
||||
## Inhalt
|
||||
|
||||
Die Dokumentation ist in fünf Teile gegliedert:
|
||||
|
||||
- **GET STARTED** enthält eine kurze Tour und Installationsanweisungen, um mit 🤗 Transformers loszulegen.
|
||||
- **TUTORIALS** sind ein hervorragender Ausgangspunkt, wenn Sie neu in unserer Bibliothek sind. Dieser Abschnitt hilft Ihnen, die grundlegenden Fähigkeiten zu erlangen, die Sie benötigen, um mit 🤗 Transformers zu arbeiten.
|
||||
- **HOW-TO GUIDES** zeigen Ihnen, wie Sie ein bestimmtes Ziel erreichen können, z. B. die Feinabstimmung eines vortrainierten Modells für die Sprachmodellierung oder die Erstellung eines benutzerdefinierten Modellkopfs.
|
||||
- **KONZEPTUELLE ANLEITUNGEN** bietet weitere Diskussionen und Erklärungen zu den zugrunde liegenden Konzepten und Ideen hinter Modellen, Aufgaben und der Designphilosophie von 🤗 Transformers.
|
||||
- **API** beschreibt jede Klasse und Funktion, gruppiert in:
|
||||
|
||||
- **MAIN CLASSES** für die Hauptklassen, die die wichtigsten APIs der Bibliothek darstellen.
|
||||
- MODELLE** für die Klassen und Funktionen, die zu jedem in der Bibliothek implementierten Modell gehören.
|
||||
- **INTERNAL HELPERS** für die Klassen und Funktionen, die wir intern verwenden.
|
||||
|
||||
Die Bibliothek enthält derzeit JAX-, PyTorch- und TensorFlow-Implementierungen, vortrainierte Modellgewichte, Nutzungsskripte und Konvertierungsprogramme für die folgenden Modelle.
|
||||
|
||||
### Unterstütze Modelle
|
||||
|
||||
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
|
||||
|
||||
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
|
||||
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
|
||||
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
|
||||
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
|
||||
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
|
||||
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
|
||||
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
|
||||
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
|
||||
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
||||
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
|
||||
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
|
||||
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
|
||||
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
|
||||
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
|
||||
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
|
||||
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
|
||||
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
|
||||
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
|
||||
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
|
||||
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
|
||||
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
|
||||
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
|
||||
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
|
||||
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
|
||||
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
|
||||
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
|
||||
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
|
||||
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
|
||||
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
|
||||
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
|
||||
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
||||
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
|
||||
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
|
||||
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
|
||||
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
|
||||
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
|
||||
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
|
||||
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
|
||||
1. **[Nezha](model_doc/nezha)** (from Huawei Noah’s Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
|
||||
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
|
||||
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
|
||||
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
|
||||
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
|
||||
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
|
||||
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
|
||||
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
|
||||
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
||||
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
|
||||
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
|
||||
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
|
||||
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
|
||||
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
||||
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
|
||||
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
|
||||
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
|
||||
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
|
||||
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
|
||||
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
|
||||
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
|
||||
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
|
||||
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
|
||||
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
|
||||
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
|
||||
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
|
||||
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
|
||||
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
|
||||
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
|
||||
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
|
||||
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
|
||||
|
||||
|
||||
### Unterstützte Frameworks
|
||||
|
||||
Die folgende Tabelle zeigt die derzeitige Unterstützung in der Bibliothek für jedes dieser Modelle, unabhängig davon, ob sie einen Python
|
||||
Tokenizer haben (als "langsam" bezeichnet), ein "schneller" Tokenizer, der von der 🤗 Tokenizers Bibliothek unterstützt wird, ob sie Unterstützung in Jax (via
|
||||
Flax), PyTorch, und/oder TensorFlow haben.
|
||||
|
||||
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
|
||||
|
||||
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
|
||||
|:---------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:|
|
||||
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
|
||||
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
|
||||
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CvT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
|
||||
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| GroupViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| LayoutLMv3 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
|
||||
| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| MobileViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| RegNet | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ResNet | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
|
||||
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| XGLM | ✅ | ✅ | ✅ | ❌ | ✅ |
|
||||
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
||||
<!-- End table-->
|
246
docs/source/de/installation.mdx
Normal file
246
docs/source/de/installation.mdx
Normal file
@ -0,0 +1,246 @@
|
||||
<!---
|
||||
Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
# Installation
|
||||
|
||||
Installieren Sie 🤗 Transformers für die Deep-Learning-Bibliothek, mit der Sie arbeiten, richten Sie Ihren Cache ein und konfigurieren Sie 🤗 Transformers optional für den Offline-Betrieb.
|
||||
|
||||
🤗 Transformers wurde unter Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, und Flax getestet. Folgen Sie den Installationsanweisungen unten für die von Ihnen verwendete Deep-Learning-Bibliothek:
|
||||
|
||||
* [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
|
||||
* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions.
|
||||
* [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
|
||||
|
||||
## Installation mit pip
|
||||
|
||||
Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, werfen Sie einen Blick auf diese [Anleitung](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Eine virtuelle Umgebung macht es einfacher, verschiedene Projekte zu verwalten und Kompatibilitätsprobleme zwischen Abhängigkeiten zu vermeiden.
|
||||
|
||||
Beginnen wir mit der Erstellung einer virtuellen Umgebung in Ihrem Projektverzeichnis:
|
||||
|
||||
|
||||
```bash
|
||||
python -m venv .env
|
||||
```
|
||||
|
||||
Aktivieren wir die virtuelle Umgebung. Unter Linux und MacOs:
|
||||
|
||||
```bash
|
||||
source .env/bin/activate
|
||||
```
|
||||
Aktivieren wir die virtuelle Umgebung unter Windows
|
||||
|
||||
```bash
|
||||
.env/Scripts/activate
|
||||
```
|
||||
|
||||
Jetzt können wir die 🤗 Transformers mit dem folgenden Befehl installieren:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
Bei reiner CPU-Unterstützung können wir 🤗 Transformers und eine Deep-Learning-Bibliothek bequem in einer Zeile installieren. Installieren wir zum Beispiel 🤗 Transformers und PyTorch mit:
|
||||
|
||||
```bash
|
||||
pip install transformers[torch]
|
||||
```
|
||||
|
||||
🤗 Transformers und TensorFlow 2.0:
|
||||
|
||||
```bash
|
||||
pip install transformers[tf-cpu]
|
||||
```
|
||||
|
||||
🤗 Transformers und Flax:
|
||||
|
||||
```bash
|
||||
pip install transformers[flax]
|
||||
```
|
||||
|
||||
Überprüfen wir abschließend, ob 🤗 Transformers ordnungsgemäß installiert wurde, indem wir den folgenden Befehl ausführen. Es wird ein vortrainiertes Modell heruntergeladen:
|
||||
|
||||
```bash
|
||||
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
|
||||
```
|
||||
|
||||
Dann wird die Kategorie und die Wahrscheinlichkeit ausgegeben:
|
||||
|
||||
```bash
|
||||
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
|
||||
```
|
||||
|
||||
## Installation aus dem Code
|
||||
|
||||
Installieren wir 🤗 Transformers aus dem Quellcode mit dem folgenden Befehl:
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/huggingface/transformers
|
||||
```
|
||||
|
||||
Dieser Befehl installiert die aktuelle `main` Version und nicht die neueste `stable` Version. Die `main`-Version ist nützlich, um mit den neuesten Entwicklungen Schritt zu halten. Zum Beispiel, wenn ein Fehler seit der letzten offiziellen Version behoben wurde, aber eine neue Version noch nicht veröffentlicht wurde. Das bedeutet jedoch, dass die "Hauptversion" nicht immer stabil ist. Wir bemühen uns, die Hauptversion einsatzbereit zu halten, und die meisten Probleme werden normalerweise innerhalb weniger Stunden oder eines Tages behoben. Wenn Sie auf ein Problem stoßen, öffnen Sie bitte ein [Issue] (https://github.com/huggingface/transformers/issues), damit wir es noch schneller beheben können!
|
||||
|
||||
Überprüfen wir, ob 🤗 Transformers richtig installiert wurde, indem Sie den folgenden Befehl ausführen:
|
||||
|
||||
|
||||
```bash
|
||||
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
|
||||
```
|
||||
|
||||
## Editierbare Installation
|
||||
|
||||
Sie benötigen eine bearbeitbare Installation, wenn Sie:
|
||||
|
||||
* die "Haupt"-Version des Quellcodes verwenden möchten.
|
||||
* Zu 🤗 Transformers beitragen und Änderungen am Code testen wollen.
|
||||
|
||||
Klonen Sie das Repository und installieren 🤗 Transformers mit den folgenden Befehlen:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/transformers.git
|
||||
cd transformers
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
Diese Befehle verknüpfen den Ordner, in den Sie das Repository geklont haben, mit den Pfaden Ihrer Python-Bibliotheken. Python wird nun in dem Ordner suchen, in den Sie geklont haben, zusätzlich zu den normalen Bibliothekspfaden. Wenn zum Beispiel Ihre Python-Pakete normalerweise in `~/anaconda3/envs/main/lib/python3.7/site-packages/` installiert sind, wird Python auch den Ordner durchsuchen, in den Sie geklont haben: `~/transformers/`.
|
||||
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Sie müssen den Ordner `transformers` behalten, wenn Sie die Bibliothek weiter verwenden wollen.
|
||||
|
||||
</Tip>
|
||||
|
||||
Jetzt können Sie Ihren Klon mit dem folgenden Befehl ganz einfach auf die neueste Version von 🤗 Transformers aktualisieren:
|
||||
|
||||
|
||||
```bash
|
||||
cd ~/transformers/
|
||||
git pull
|
||||
```
|
||||
|
||||
Ihre Python-Umgebung wird beim nächsten Ausführen die `main`-Version von 🤗 Transformers finden.
|
||||
|
||||
## Installation mit conda
|
||||
|
||||
Installation von dem conda Kanal `huggingface`:
|
||||
|
||||
```bash
|
||||
conda install -c huggingface transformers
|
||||
```
|
||||
|
||||
## Cache Einrichtung
|
||||
|
||||
Vorgefertigte Modelle werden heruntergeladen und lokal zwischengespeichert unter: `~/.cache/huggingface/hub`. Dies ist das Standardverzeichnis, das durch die Shell-Umgebungsvariable "TRANSFORMERS_CACHE" vorgegeben ist. Unter Windows wird das Standardverzeichnis durch `C:\Benutzer\Benutzername\.cache\huggingface\hub` angegeben. Sie können die unten aufgeführten Shell-Umgebungsvariablen - in der Reihenfolge ihrer Priorität - ändern, um ein anderes Cache-Verzeichnis anzugeben:
|
||||
|
||||
1. Shell-Umgebungsvariable (Standard): `HUGGINGFACE_HUB_CACHE` oder `TRANSFORMERS_CACHE`.
|
||||
2. Shell-Umgebungsvariable: `HF_HOME`.
|
||||
3. Shell-Umgebungsvariable: `XDG_CACHE_HOME` + `/huggingface`.
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE` oder `PYTORCH_PRETRAINED_BERT_CACHE`, wenn Sie von einer früheren Iteration dieser Bibliothek kommen und diese Umgebungsvariablen gesetzt haben, sofern Sie nicht die Shell-Umgebungsvariable `TRANSFORMERS_CACHE` angeben.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Offline Modus
|
||||
|
||||
Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `TRANSFORMERS_OFFLINE=1`, um dieses Verhalten zu aktivieren.
|
||||
|
||||
<Tip>
|
||||
|
||||
Fügen sie [🤗 Datasets](https://huggingface.co/docs/datasets/) zu Ihrem Offline-Trainingsworkflow hinzufügen, indem Sie die Umgebungsvariable `HF_DATASETS_OFFLINE=1` setzen.
|
||||
|
||||
</Tip>
|
||||
|
||||
So würden Sie beispielsweise ein Programm in einem normalen Netzwerk mit einer Firewall für externe Instanzen mit dem folgenden Befehl ausführen:
|
||||
|
||||
```bash
|
||||
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
|
||||
```
|
||||
|
||||
Führen Sie das gleiche Programm in einer Offline-Instanz mit aus:
|
||||
|
||||
```bash
|
||||
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
|
||||
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
|
||||
```
|
||||
|
||||
Das Skript sollte nun laufen, ohne sich aufzuhängen oder eine Zeitüberschreitung abzuwarten, da es weiß, dass es nur nach lokalen Dateien suchen soll.
|
||||
|
||||
|
||||
### Abrufen von Modellen und Tokenizern zur Offline-Verwendung
|
||||
|
||||
Eine andere Möglichkeit, 🤗 Transformers offline zu verwenden, besteht darin, die Dateien im Voraus herunterzuladen und dann auf ihren lokalen Pfad zu verweisen, wenn Sie sie offline verwenden müssen. Es gibt drei Möglichkeiten, dies zu tun:
|
||||
|
||||
* Laden Sie eine Datei über die Benutzeroberfläche des [Model Hub](https://huggingface.co/models) herunter, indem Sie auf das ↓-Symbol klicken.
|
||||
|
||||

|
||||
|
||||
* Verwenden Sie den [PreTrainedModel.from_pretrained] und [PreTrainedModel.save_pretrained] Workflow:
|
||||
|
||||
1. Laden Sie Ihre Dateien im Voraus mit [`PreTrainedModel.from_pretrained`] herunter:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
|
||||
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
|
||||
```
|
||||
|
||||
2. Speichern Sie Ihre Dateien in einem bestimmten Verzeichnis mit [`PreTrainedModel.save_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
|
||||
>>> model.save_pretrained("./your/path/bigscience_t0")
|
||||
```
|
||||
|
||||
3. Wenn Sie nun offline sind, laden Sie Ihre Dateien mit [`PreTrainedModel.from_pretrained`] aus dem bestimmten Verzeichnis:
|
||||
|
||||
```py
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
|
||||
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
|
||||
```
|
||||
|
||||
* Programmatisches Herunterladen von Dateien mit der [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) Bibliothek:
|
||||
|
||||
1. Installieren Sie die "huggingface_hub"-Bibliothek in Ihrer virtuellen Umgebung:
|
||||
|
||||
```bash
|
||||
python -m pip install huggingface_hub
|
||||
```
|
||||
|
||||
2. Verwenden Sie die Funktion [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub), um eine Datei in einen bestimmten Pfad herunterzuladen. Der folgende Befehl lädt zum Beispiel die Datei "config.json" aus dem Modell [T0](https://huggingface.co/bigscience/T0_3B) in den gewünschten Pfad herunter:
|
||||
|
||||
```py
|
||||
>>> from huggingface_hub import hf_hub_download
|
||||
|
||||
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
|
||||
```
|
||||
|
||||
Sobald Ihre Datei heruntergeladen und lokal zwischengespeichert ist, geben Sie den lokalen Pfad an, um sie zu laden und zu verwenden:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoConfig
|
||||
|
||||
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
Weitere Informationen zum Herunterladen von Dateien, die auf dem Hub gespeichert sind, finden Sie im Abschnitt [Wie man Dateien vom Hub herunterlädt] (https://huggingface.co/docs/hub/how-to-downstream).
|
||||
|
||||
</Tip>
|
228
docs/source/de/model_sharing.mdx
Normal file
228
docs/source/de/model_sharing.mdx
Normal file
@ -0,0 +1,228 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Ein Modell teilen
|
||||
|
||||
Die letzten beiden Tutorials haben gezeigt, wie man ein Modell mit PyTorch, Keras und 🤗 Accelerate für verteilte Setups feinabstimmen kann. Der nächste Schritt besteht darin, Ihr Modell mit der Community zu teilen! Bei Hugging Face glauben wir an den offenen Austausch von Wissen und Ressourcen, um künstliche Intelligenz für alle zu demokratisieren. Wir ermutigen Sie, Ihr Modell mit der Community zu teilen, um anderen zu helfen, Zeit und Ressourcen zu sparen.
|
||||
|
||||
In diesem Tutorial lernen Sie zwei Methoden kennen, wie Sie ein trainiertes oder verfeinertes Modell auf dem [Model Hub](https://huggingface.co/models) teilen können:
|
||||
|
||||
- Programmgesteuertes Übertragen Ihrer Dateien auf den Hub.
|
||||
- Ziehen Sie Ihre Dateien per Drag-and-Drop über die Weboberfläche in den Hub.
|
||||
|
||||
<iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player"
|
||||
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
|
||||
picture-in-picture" allowfullscreen></iframe>
|
||||
|
||||
<Tip>
|
||||
|
||||
Um ein Modell mit der Öffentlichkeit zu teilen, benötigen Sie ein Konto auf [huggingface.co](https://huggingface.co/join). Sie können auch einer bestehenden Organisation beitreten oder eine neue Organisation gründen.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Repository-Funktionen
|
||||
|
||||
Jedes Repository im Model Hub verhält sich wie ein typisches GitHub-Repository. Unsere Repositorys bieten Versionierung, Commit-Historie und die Möglichkeit, Unterschiede zu visualisieren.
|
||||
|
||||
Die integrierte Versionierung des Model Hub basiert auf Git und [git-lfs](https://git-lfs.github.com/). Mit anderen Worten: Sie können ein Modell als ein Repository behandeln, was eine bessere Zugriffskontrolle und Skalierbarkeit ermöglicht. Die Versionskontrolle ermöglicht *Revisionen*, eine Methode zum Anheften einer bestimmten Version eines Modells mit einem Commit-Hash, Tag oder Branch.
|
||||
|
||||
Folglich können Sie eine bestimmte Modellversion mit dem Parameter "Revision" laden:
|
||||
|
||||
```py
|
||||
>>> model = AutoModel.from_pretrained(
|
||||
... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash
|
||||
... )
|
||||
```
|
||||
|
||||
Dateien lassen sich auch in einem Repository leicht bearbeiten, und Sie können die Commit-Historie sowie die Unterschiede einsehen:
|
||||
|
||||

|
||||
|
||||
## Einrichtung
|
||||
|
||||
Bevor Sie ein Modell für den Hub freigeben, benötigen Sie Ihre Hugging Face-Anmeldedaten. Wenn Sie Zugang zu einem Terminal haben, führen Sie den folgenden Befehl in der virtuellen Umgebung aus, in der 🤗 Transformers installiert ist. Dadurch werden Ihre Zugangsdaten in Ihrem Hugging Face-Cache-Ordner (standardmäßig `~/.cache/`) gespeichert:
|
||||
|
||||
```bash
|
||||
huggingface-cli login
|
||||
```
|
||||
|
||||
Wenn Sie ein Notebook wie Jupyter oder Colaboratory verwenden, stellen Sie sicher, dass Sie die [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) Bibliothek installiert haben. Diese Bibliothek ermöglicht Ihnen die programmatische Interaktion mit dem Hub.
|
||||
|
||||
```bash
|
||||
pip install huggingface_hub
|
||||
```
|
||||
|
||||
Verwenden Sie dann `notebook_login`, um sich beim Hub anzumelden, und folgen Sie dem Link [hier](https://huggingface.co/settings/token), um ein Token für die Anmeldung zu generieren:
|
||||
|
||||
```py
|
||||
>>> from huggingface_hub import notebook_login
|
||||
|
||||
>>> notebook_login()
|
||||
```
|
||||
|
||||
## Ein Modell für alle Frameworks konvertieren
|
||||
|
||||
Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit einem anderen Framework arbeitet, empfehlen wir Ihnen, Ihr Modell sowohl mit PyTorch- als auch mit TensorFlow-Checkpoints zu konvertieren und hochzuladen. Während Benutzer immer noch in der Lage sind, Ihr Modell von einem anderen Framework zu laden, wenn Sie diesen Schritt überspringen, wird es langsamer sein, weil 🤗 Transformers den Checkpoint on-the-fly konvertieren müssen.
|
||||
|
||||
Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework.
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren:
|
||||
|
||||
```py
|
||||
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
|
||||
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Geben Sie `from_pt=True` an, um einen Prüfpunkt von PyTorch nach TensorFlow zu konvertieren:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
|
||||
```
|
||||
|
||||
Dann können Sie Ihr neues TensorFlow-Modell mit seinem neuen Checkpoint speichern:
|
||||
|
||||
```py
|
||||
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
|
||||
```
|
||||
</tf>
|
||||
<jax>
|
||||
Wenn ein Modell in Flax verfügbar ist, können Sie auch einen Kontrollpunkt von PyTorch nach Flax konvertieren:
|
||||
|
||||
```py
|
||||
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
|
||||
... "path/to/awesome-name-you-picked", from_pt=True
|
||||
... )
|
||||
```
|
||||
</jax>
|
||||
</frameworkcontent>
|
||||
|
||||
## Ein Modell während des Trainings hochladen
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Z1-XMy-GNLQ"/>
|
||||
|
||||
Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]:
|
||||
|
||||
```py
|
||||
>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True)
|
||||
```
|
||||
|
||||
Übergeben Sie Ihre Trainingsargumente wie gewohnt an [`Trainer`]:
|
||||
|
||||
```py
|
||||
>>> trainer = Trainer(
|
||||
... model=model,
|
||||
... args=training_args,
|
||||
... train_dataset=small_train_dataset,
|
||||
... eval_dataset=small_eval_dataset,
|
||||
... compute_metrics=compute_metrics,
|
||||
... )
|
||||
```
|
||||
|
||||
Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_hub`] auf [`Trainer`] auf, um das trainierte Modell an den Hub zu übertragen. Transformers fügt sogar automatisch Trainings-Hyperparameter, Trainingsergebnisse und Framework-Versionen zu Ihrer Modellkarte hinzu!
|
||||
|
||||
```py
|
||||
>>> trainer.push_to_hub()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Geben Sie ein Modell mit [`PushToHubCallback`] an den Hub weiter. In der [`PushToHubCallback`] Funktion, fügen Sie hinzu:
|
||||
|
||||
- Ein Ausgabeverzeichnis für Ihr Modell.
|
||||
- Einen Tokenizer.
|
||||
- Die `hub_model_id`, die Ihr Hub-Benutzername und Modellname ist.
|
||||
|
||||
```py
|
||||
>>> from transformers.keras.callbacks import PushToHubCallback
|
||||
|
||||
>>> push_to_hub_callback = PushToHubCallback(
|
||||
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
|
||||
... )
|
||||
```
|
||||
|
||||
Fügen Sie den Callback zu [`fit`](https://keras.io/api/models/model_training_apis/) hinzu, und 🤗 Transformers wird das trainierte Modell an den Hub weiterleiten:
|
||||
|
||||
```py
|
||||
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Verwenden Sie die Funktion `push_to_hub`.
|
||||
|
||||
Sie können `push_to_hub` auch direkt für Ihr Modell aufrufen, um es in den Hub hochzuladen.
|
||||
|
||||
Geben Sie den Namen Ihres Modells in "push_to_hub" an:
|
||||
|
||||
```py
|
||||
>>> pt_model.push_to_hub("my-awesome-model")
|
||||
```
|
||||
|
||||
Dadurch wird ein Repository unter Ihrem Benutzernamen mit dem Modellnamen `my-awesome-model` erstellt. Benutzer können nun Ihr Modell mit der Funktion `from_pretrained` laden:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
|
||||
```
|
||||
|
||||
Wenn Sie zu einer Organisation gehören und Ihr Modell stattdessen unter dem Namen der Organisation pushen wollen, fügen Sie diesen einfach zur `repo_id` hinzu:
|
||||
|
||||
```py
|
||||
>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model")
|
||||
```
|
||||
|
||||
Die Funktion "push_to_hub" kann auch verwendet werden, um andere Dateien zu einem Modell-Repository hinzuzufügen. Zum Beispiel kann man einen Tokenizer zu einem Modell-Repository hinzufügen:
|
||||
|
||||
```py
|
||||
>>> tokenizer.push_to_hub("my-awesome-model")
|
||||
```
|
||||
|
||||
Oder vielleicht möchten Sie die TensorFlow-Version Ihres fein abgestimmten PyTorch-Modells hinzufügen:
|
||||
|
||||
```py
|
||||
>>> tf_model.push_to_hub("my-awesome-model")
|
||||
```
|
||||
|
||||
Wenn Sie nun zu Ihrem Hugging Face-Profil navigieren, sollten Sie Ihr neu erstelltes Modell-Repository sehen. Wenn Sie auf die Registerkarte **Dateien** klicken, werden alle Dateien angezeigt, die Sie in das Repository hochgeladen haben.
|
||||
|
||||
Weitere Einzelheiten zum Erstellen und Hochladen von Dateien in ein Repository finden Sie in der Hub-Dokumentation [hier](https://huggingface.co/docs/hub/how-to-upstream).
|
||||
|
||||
## Hochladen mit der Weboberfläche
|
||||
|
||||
Benutzer, die einen no-code Ansatz bevorzugen, können ein Modell über das Webinterface des Hubs hochladen. Besuchen Sie [huggingface.co/new](https://huggingface.co/new) um ein neues Repository zu erstellen:
|
||||
|
||||

|
||||
|
||||
Fügen Sie von hier aus einige Informationen über Ihr Modell hinzu:
|
||||
|
||||
- Wählen Sie den **Besitzer** des Repositorys. Dies können Sie selbst oder eine der Organisationen sein, denen Sie angehören.
|
||||
- Wählen Sie einen Namen für Ihr Modell, der auch der Name des Repositorys sein wird.
|
||||
- Wählen Sie, ob Ihr Modell öffentlich oder privat ist.
|
||||
- Geben Sie die Lizenzverwendung für Ihr Modell an.
|
||||
|
||||
Klicken Sie nun auf die Registerkarte **Dateien** und klicken Sie auf die Schaltfläche **Datei hinzufügen**, um eine neue Datei in Ihr Repository hochzuladen. Ziehen Sie dann eine Datei per Drag-and-Drop hoch und fügen Sie eine Übergabemeldung hinzu.
|
||||
|
||||

|
||||
|
||||
## Hinzufügen einer Modellkarte
|
||||
|
||||
Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verzerrungen und ethischen Aspekte Ihres Modells verstehen, fügen Sie bitte eine Modellkarte zu Ihrem Repository hinzu. Die Modellkarte wird in der Datei `README.md` definiert. Sie können eine Modellkarte hinzufügen, indem Sie:
|
||||
|
||||
* Manuelles Erstellen und Hochladen einer "README.md"-Datei.
|
||||
* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository.
|
||||
|
||||
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).
|
171
docs/source/de/pipeline_tutorial.mdx
Normal file
171
docs/source/de/pipeline_tutorial.mdx
Normal file
@ -0,0 +1,171 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Pipelines für Inferenzen
|
||||
|
||||
Die [`pipeline`] macht es einfach, jedes beliebige Modell aus dem [Hub](https://huggingface.co/models) für die Inferenz auf jede Sprache, Computer Vision, Sprache und multimodale Aufgaben zu verwenden. Selbst wenn Sie keine Erfahrung mit einer bestimmten Modalität haben oder nicht mit dem zugrundeliegenden Code hinter den Modellen vertraut sind, können Sie sie mit der [`pipeline`] für Inferenzen verwenden! In diesem Beispiel lernen Sie, wie:
|
||||
|
||||
* Eine [`pipeline`] für Inferenz zu verwenden.
|
||||
* Einen bestimmten Tokenizer oder ein bestimmtes Modell zu verwenden.
|
||||
* Eine [`pipeline`] für Audio-, Vision- und multimodale Aufgaben zu verwenden.
|
||||
|
||||
<Tip>
|
||||
|
||||
Eine vollständige Liste der unterstützten Aufgaben und verfügbaren Parameter finden Sie in der [`pipeline`]-Dokumentation.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Verwendung von Pipelines
|
||||
|
||||
Obwohl jede Aufgabe eine zugehörige [`pipeline`] hat, ist es einfacher, die allgemeine [`pipeline`]-Abstraktion zu verwenden, die alle aufgabenspezifischen Pipelines enthält. Die [`pipeline`] lädt automatisch ein Standardmodell und eine Vorverarbeitungsklasse, die für Ihre Aufgabe inferenzfähig ist.
|
||||
|
||||
1. Beginnen Sie mit der Erstellung einer [`pipeline`] und geben Sie eine Inferenzaufgabe an:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> generator = pipeline(task="text-generation")
|
||||
```
|
||||
|
||||
2. Übergeben Sie Ihren Eingabetext an die [`pipeline`]:
|
||||
|
||||
```py
|
||||
>>> generator(
|
||||
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
|
||||
... ) # doctest: +SKIP
|
||||
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Iron-priests at the door to the east, and thirteen for the Lord Kings at the end of the mountain'}]
|
||||
```
|
||||
|
||||
Wenn Sie mehr als eine Eingabe haben, übergeben Sie die Eingabe als Liste:
|
||||
|
||||
```py
|
||||
>>> generator(
|
||||
... [
|
||||
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
|
||||
... "Nine for Mortal Men, doomed to die, One for the Dark Lord on his dark throne",
|
||||
... ]
|
||||
... ) # doctest: +SKIP
|
||||
```
|
||||
|
||||
Alle zusätzlichen Parameter für Ihre Aufgabe können auch in die [`pipeline`] aufgenommen werden. Die Aufgabe `Text-Generierung` hat eine [`~generation_utils.GenerationMixin.generate`]-Methode mit mehreren Parametern zur Steuerung der Ausgabe. Wenn Sie zum Beispiel mehr als eine Ausgabe erzeugen wollen, setzen Sie den Parameter `num_return_sequences`:
|
||||
|
||||
```py
|
||||
>>> generator(
|
||||
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
|
||||
... num_return_sequences=2,
|
||||
... ) # doctest: +SKIP
|
||||
```
|
||||
|
||||
### Wählen Sie ein Modell und einen Tokenizer
|
||||
|
||||
Die [`pipeline`] akzeptiert jedes Modell aus dem [Hub] (https://huggingface.co/models). Auf dem Hub gibt es Tags, mit denen Sie nach einem Modell filtern können, das Sie für Ihre Aufgabe verwenden möchten. Sobald Sie ein passendes Modell ausgewählt haben, laden Sie es mit der entsprechenden `AutoModelFor` und [`AutoTokenizer`] Klasse. Laden Sie zum Beispiel die Klasse [`AutoModelForCausalLM`] für eine kausale Sprachmodellierungsaufgabe:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
||||
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
||||
```
|
||||
|
||||
Erstellen Sie eine [`pipeline`] für Ihre Aufgabe, und geben Sie das Modell und den Tokenizer an, die Sie geladen haben:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
Übergeben Sie Ihren Eingabetext an die [`pipeline`] , um einen Text zu erzeugen:
|
||||
|
||||
```py
|
||||
>>> generator(
|
||||
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
|
||||
... ) # doctest: +SKIP
|
||||
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Dragon-lords (for them to rule in a world ruled by their rulers, and all who live within the realm'}]
|
||||
```
|
||||
|
||||
## Audio-Pipeline
|
||||
|
||||
Die [`pipeline`] unterstützt auch Audioaufgaben wie Audioklassifizierung und automatische Spracherkennung.
|
||||
|
||||
Lassen Sie uns zum Beispiel die Emotion in diesem Audioclip klassifizieren:
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
|
||||
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT
|
||||
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
|
||||
>>> audio_file = ds[0]["audio"]["path"]
|
||||
```
|
||||
|
||||
Finden Sie ein [Audioklassifikation](https://huggingface.co/models?pipeline_tag=audio-classification) Modell auf dem Model Hub für Emotionserkennung und laden Sie es in die [`pipeline`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> audio_classifier = pipeline(
|
||||
... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
||||
... )
|
||||
```
|
||||
|
||||
Übergeben Sie die Audiodatei an die [`pipeline`]:
|
||||
|
||||
```py
|
||||
>>> preds = audio_classifier(audio_file)
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.1315, 'label': 'calm'}, {'score': 0.1307, 'label': 'neutral'}, {'score': 0.1274, 'label': 'sad'}, {'score': 0.1261, 'label': 'fearful'}, {'score': 0.1242, 'label': 'happy'}]
|
||||
```
|
||||
|
||||
## Bildverarbeitungs-Pipeline
|
||||
|
||||
Die Verwendung einer [`pipeline`] für Bildverarbeitungsaufgaben ist praktisch identisch.
|
||||
|
||||
Geben Sie Ihre Aufgabe an und übergeben Sie Ihr Bild an den Klassifikator. Das Bild kann ein Link oder ein lokaler Pfad zu dem Bild sein. Zum Beispiel: Welche Katzenart ist unten abgebildet?
|
||||
|
||||

|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> vision_classifier = pipeline(task="image-classification")
|
||||
>>> preds = vision_classifier(
|
||||
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
... )
|
||||
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}]
|
||||
```
|
||||
|
||||
## Multimodale Pipeline
|
||||
|
||||
Die [`pipeline`] unterstützt mehr als eine Modalität. Eine Aufgabe zur Beantwortung visueller Fragen (VQA) kombiniert zum Beispiel Text und Bild. Verwenden Sie einen beliebigen Bildlink und eine Frage, die Sie zu dem Bild stellen möchten. Das Bild kann eine URL oder ein lokaler Pfad zu dem Bild sein.
|
||||
|
||||
Wenn Sie zum Beispiel das gleiche Bild wie in der obigen Vision-Pipeline verwenden:
|
||||
|
||||
```py
|
||||
>>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
>>> question = "Where is the cat?"
|
||||
```
|
||||
|
||||
Erstellen Sie eine Pipeline für "vqa" und übergeben Sie ihr das Bild und die Frage:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> vqa = pipeline(task="vqa")
|
||||
>>> preds = vqa(image=image, question=question)
|
||||
>>> preds = [{"score": round(pred["score"], 4), "answer": pred["answer"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.9112, 'answer': 'snow'}, {'score': 0.8796, 'answer': 'in snow'}, {'score': 0.6717, 'answer': 'outside'}, {'score': 0.0291, 'answer': 'on ground'}, {'score': 0.027, 'answer': 'ground'}]
|
||||
```
|
502
docs/source/de/preprocessing.mdx
Normal file
502
docs/source/de/preprocessing.mdx
Normal file
@ -0,0 +1,502 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Vorverarbeiten
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
Bevor Sie Ihre Daten in einem Modell verwenden können, müssen die Daten in ein für das Modell akzeptables Format gebracht werden. Ein Modell versteht keine Rohtexte, Bilder oder Audiodaten. Diese Eingaben müssen in Zahlen umgewandelt und zu Tensoren zusammengesetzt werden. In dieser Anleitung werden Sie:
|
||||
|
||||
* Textdaten mit einem Tokenizer vorverarbeiten.
|
||||
* Bild- oder Audiodaten mit einem Feature Extractor vorverarbeiten.
|
||||
* Daten für eine multimodale Aufgabe mit einem Prozessor vorverarbeiten.
|
||||
|
||||
## NLP
|
||||
|
||||
<Youtube id="Yffk5aydLzg"/>
|
||||
|
||||
Das wichtigste Werkzeug zur Verarbeitung von Textdaten ist ein [Tokenizer](main_classes/tokenizer). Ein Tokenizer zerlegt Text zunächst nach einer Reihe von Regeln in *Token*. Die Token werden in Zahlen umgewandelt, die zum Aufbau von Tensoren als Eingabe für ein Modell verwendet werden. Alle zusätzlichen Eingaben, die ein Modell benötigt, werden ebenfalls vom Tokenizer hinzugefügt.
|
||||
|
||||
<Tip>
|
||||
|
||||
Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden.
|
||||
|
||||
</Tip>
|
||||
|
||||
Laden Sie einen vortrainierten Tokenizer mit der Klasse [AutoTokenizer], um schnell loszulegen. Damit wird das *vocab* heruntergeladen, das verwendet wird, wenn ein Modell vortrainiert wird.
|
||||
|
||||
### Tokenize
|
||||
|
||||
Laden Sie einen vortrainierten Tokenizer mit [`AutoTokenizer.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
||||
```
|
||||
|
||||
Dann übergeben Sie Ihren Satz an den Tokenizer:
|
||||
|
||||
```py
|
||||
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
Der Tokenizer gibt ein Wörterbuch mit drei wichtigen Elementen zurück:
|
||||
|
||||
* [input_ids](glossary#input-ids) sind die Indizes, die den einzelnen Token im Satz entsprechen.
|
||||
* [attention_mask](glossary#attention-mask) gibt an, ob ein Token beachtet werden soll oder nicht.
|
||||
* [token_type_ids](glossary#token-type-ids) gibt an, zu welcher Sequenz ein Token gehört, wenn es mehr als eine Sequenz gibt.
|
||||
|
||||
Sie können die `input_ids` dekodieren, um die ursprüngliche Eingabe zurückzugeben:
|
||||
|
||||
```py
|
||||
>>> tokenizer.decode(encoded_input["input_ids"])
|
||||
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
|
||||
```
|
||||
|
||||
Wie Sie sehen können, hat der Tokenisierer zwei spezielle Token - `CLS` und `SEP` (Klassifikator und Separator) - zum Satz hinzugefügt. Nicht alle Modelle benötigen
|
||||
spezielle Token, aber wenn dies der Fall ist, fügt der Tokenisierer sie automatisch für Sie hinzu.
|
||||
|
||||
Wenn Sie mehrere Sätze verarbeiten wollen, übergeben Sie die Sätze als Liste an den Tokenizer:
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_inputs = tokenizer(batch_sentences)
|
||||
>>> print(encoded_inputs)
|
||||
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102]],
|
||||
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0]],
|
||||
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1]]}
|
||||
```
|
||||
|
||||
### Pad
|
||||
|
||||
Dies bringt uns zu einem wichtigen Thema. Wenn Sie einen Haufen von Sätzen verarbeiten, sind diese nicht immer gleich lang. Das ist ein Problem, weil Tensoren, die Eingabe für das Modell, eine einheitliche Form haben müssen. Padding ist eine Strategie, die sicherstellt, dass Tensoren rechteckig sind, indem ein spezielles *Padding-Token* zu Sätzen mit weniger Token hinzugefügt wird.
|
||||
|
||||
Setzen Sie den Parameter "padding" auf "true", um die kürzeren Sequenzen im Stapel so aufzufüllen, dass sie der längsten Sequenz entsprechen:
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True)
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
||||
```
|
||||
|
||||
Beachten Sie, dass der Tokenizer den ersten und den dritten Satz mit einer "0" aufgefüllt hat, weil sie kürzer sind!
|
||||
|
||||
### Kürzung
|
||||
|
||||
Auf der anderen Seite des Spektrums kann es vorkommen, dass eine Sequenz zu lang für ein Modell ist. In diesem Fall müssen Sie die Sequenz auf eine kürzere Länge kürzen.
|
||||
|
||||
Setzen Sie den Parameter "truncation" auf "true", um eine Sequenz auf die vom Modell akzeptierte Höchstlänge zu kürzen:
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
|
||||
```
|
||||
|
||||
### Tensoren erstellen
|
||||
|
||||
Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurückgibt, die dem Modell zugeführt werden.
|
||||
|
||||
Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
||||
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
||||
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```py
|
||||
>>> batch_sentences = [
|
||||
... "But what about second breakfast?",
|
||||
... "Don't think he knows about second breakfast, Pip.",
|
||||
... "What about elevensies?",
|
||||
... ]
|
||||
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
|
||||
>>> print(encoded_input)
|
||||
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
|
||||
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
|
||||
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
|
||||
dtype=int32)>,
|
||||
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
|
||||
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
|
||||
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Audio
|
||||
|
||||
Audioeingaben werden anders vorverarbeitet als Texteingaben, aber das Endziel bleibt dasselbe: numerische Sequenzen zu erstellen, die das Modell verstehen kann. Ein [feature extractor](main_classes/feature_extractor) dient dem ausdrücklichen Zweck, Merkmale aus Rohbild- oder Audiodaten zu extrahieren und in Tensoren zu konvertieren. Bevor Sie beginnen, installieren Sie 🤗 Datasets, um einen Audio-Datensatz zu laden, mit dem Sie experimentieren können:
|
||||
|
||||
```bash
|
||||
pip install datasets
|
||||
```
|
||||
|
||||
Laden Sie den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz (weitere Informationen zum Laden eines Datensatzes finden Sie im 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub.html)):
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset, Audio
|
||||
|
||||
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
|
||||
```
|
||||
|
||||
Greifen Sie auf das erste Element der `audio`-Spalte zu, um einen Blick auf die Eingabe zu werfen. Durch den Aufruf der Spalte "audio" wird die Audiodatei automatisch geladen und neu gesampelt:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["audio"]
|
||||
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
|
||||
0. , 0. ], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
|
||||
'sampling_rate': 8000}
|
||||
```
|
||||
|
||||
Dies gibt drei Elemente zurück:
|
||||
|
||||
* "array" ist das Sprachsignal, das als 1D-Array geladen - und möglicherweise neu gesampelt - wurde.
|
||||
* Pfad" zeigt auf den Speicherort der Audiodatei.
|
||||
* `sampling_rate` bezieht sich darauf, wie viele Datenpunkte im Sprachsignal pro Sekunde gemessen werden.
|
||||
|
||||
### Resample
|
||||
|
||||
Für dieses Tutorial werden Sie das Modell [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) verwenden. Wie Sie aus der Modellkarte ersehen können, ist das Wav2Vec2-Modell auf 16kHz abgetastetes Sprachaudio vortrainiert. Es ist wichtig, dass die Abtastrate Ihrer Audiodaten mit der Abtastrate des Datensatzes übereinstimmt, der für das Pre-Training des Modells verwendet wurde. Wenn die Abtastrate Ihrer Daten nicht dieselbe ist, müssen Sie Ihre Audiodaten neu abtasten.
|
||||
|
||||
Der Datensatz [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) hat zum Beispiel eine Abtastrate von 8000 kHz. Um das Wav2Vec2-Modell mit diesem Datensatz verwenden zu können, müssen Sie die Abtastrate auf 16 kHz erhöhen:
|
||||
|
||||
```py
|
||||
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
|
||||
>>> dataset[0]["audio"]
|
||||
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
|
||||
0. , 0. ], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
|
||||
'sampling_rate': 8000}
|
||||
```
|
||||
|
||||
1. Verwenden Sie die Methode [~datasets.Dataset.cast_column] von 🤗 Datasets, um die Abtastrate auf 16kHz zu erhöhen:
|
||||
|
||||
```py
|
||||
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
||||
```
|
||||
|
||||
2. Laden Sie die Audiodatei:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["audio"]
|
||||
{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ...,
|
||||
3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
|
||||
'sampling_rate': 16000}
|
||||
```
|
||||
|
||||
Wie Sie sehen können, ist die Abtastrate jetzt 16kHz!
|
||||
|
||||
### Merkmalsextraktor
|
||||
|
||||
Der nächste Schritt ist das Laden eines Merkmalsextraktors, um die Eingabe zu normalisieren und aufzufüllen. Beim Auffüllen von Textdaten wird für kürzere Sequenzen ein `0` hinzugefügt. Die gleiche Idee gilt für Audiodaten, und der Audio-Feature-Extraktor fügt eine `0` - interpretiert als Stille - zu `array` hinzu.
|
||||
|
||||
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
||||
```
|
||||
|
||||
Übergeben Sie das Audio-"Array" an den Feature-Extraktor. Wir empfehlen auch, das Argument `sampling_rate` im Feature Extractor hinzuzufügen, um eventuell auftretende stille Fehler besser zu beheben.
|
||||
|
||||
```py
|
||||
>>> audio_input = [dataset[0]["audio"]["array"]]
|
||||
>>> feature_extractor(audio_input, sampling_rate=16000)
|
||||
{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ...,
|
||||
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
|
||||
```
|
||||
|
||||
### Auffüllen und Kürzen
|
||||
|
||||
Genau wie beim Tokenizer können Sie variable Sequenzen in einem Stapel durch Auffüllen oder Abschneiden behandeln. Werfen Sie einen Blick auf die Sequenzlänge dieser beiden Audiobeispiele:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["audio"]["array"].shape
|
||||
(173398,)
|
||||
|
||||
>>> dataset[1]["audio"]["array"].shape
|
||||
(106496,)
|
||||
```
|
||||
|
||||
Wie Sie sehen können, hat das erste Beispiel eine längere Sequenz als das zweite Beispiel. Lassen Sie uns eine Funktion erstellen, die den Datensatz vorverarbeitet. Geben Sie eine maximale Länge der Probe an, und der Feature-Extraktor wird die Sequenzen entweder auffüllen oder abschneiden, damit sie dieser Länge entsprechen:
|
||||
|
||||
```py
|
||||
>>> def preprocess_function(examples):
|
||||
... audio_arrays = [x["array"] for x in examples["audio"]]
|
||||
... inputs = feature_extractor(
|
||||
... audio_arrays,
|
||||
... sampling_rate=16000,
|
||||
... padding=True,
|
||||
... max_length=100000,
|
||||
... truncation=True,
|
||||
... )
|
||||
... return inputs
|
||||
```
|
||||
|
||||
Wenden Sie die Funktion auf die ersten paar Beispiele im Datensatz an:
|
||||
|
||||
```py
|
||||
>>> processed_dataset = preprocess_function(dataset[:5])
|
||||
```
|
||||
|
||||
Schauen Sie sich nun noch einmal die verarbeiteten Beispiel-Längen an:
|
||||
|
||||
```py
|
||||
>>> processed_dataset["input_values"][0].shape
|
||||
(100000,)
|
||||
|
||||
>>> processed_dataset["input_values"][1].shape
|
||||
(100000,)
|
||||
```
|
||||
|
||||
Die Länge der ersten beiden Beispiele entspricht nun der von Ihnen angegebenen Maximallänge.
|
||||
|
||||
## Bildverarbeitung
|
||||
|
||||
Ein Merkmalsextraktor wird auch verwendet, um Bilder für Bildverarbeitungsaufgaben zu verarbeiten. Auch hier besteht das Ziel darin, das Rohbild in eine Reihe von Tensoren als Eingabe zu konvertieren.
|
||||
|
||||
Laden wir den [food101](https://huggingface.co/datasets/food101) Datensatz für dieses Tutorial. Verwenden Sie den Parameter 🤗 Datasets `split`, um nur eine kleine Stichprobe aus dem Trainingssplit zu laden, da der Datensatz recht groß ist:
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> dataset = load_dataset("food101", split="train[:100]")
|
||||
```
|
||||
|
||||
Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild] (https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) an:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["image"]
|
||||
```
|
||||
|
||||

|
||||
|
||||
### Merkmalsextraktor
|
||||
|
||||
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoFeatureExtractor
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
||||
```
|
||||
|
||||
### Datenerweiterung
|
||||
|
||||
Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarbeitung eine Art von Datenerweiterung hinzuzufügen. Sie können Erweiterungen mit jeder beliebigen Bibliothek hinzufügen, aber in diesem Tutorial werden Sie das Modul [`transforms`](https://pytorch.org/vision/stable/transforms.html) von torchvision verwenden.
|
||||
|
||||
1. Normalisieren Sie das Bild und verwenden Sie [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html), um einige Transformationen - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) und [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - miteinander zu verknüpfen:
|
||||
|
||||
```py
|
||||
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
|
||||
|
||||
>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
||||
>>> _transforms = Compose(
|
||||
... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
|
||||
... )
|
||||
```
|
||||
|
||||
2. Das Modell akzeptiert [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) als Eingabe. Dieser Wert wird vom Merkmalsextraktor erzeugt. Erstellen Sie eine Funktion, die `pixel_values` aus den Transformationen erzeugt:
|
||||
|
||||
```py
|
||||
>>> def transforms(examples):
|
||||
... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]]
|
||||
... return examples
|
||||
```
|
||||
|
||||
3. Dann verwenden Sie 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process.html#format-transform), um die Transformationen im laufenden Betrieb anzuwenden:
|
||||
|
||||
```py
|
||||
>>> dataset.set_transform(transforms)
|
||||
```
|
||||
|
||||
4. Wenn Sie nun auf das Bild zugreifen, werden Sie feststellen, dass der Feature Extractor die Modelleingabe "pixel_values" hinzugefügt hat:
|
||||
|
||||
```py
|
||||
>>> dataset[0]["image"]
|
||||
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>,
|
||||
'label': 6,
|
||||
'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922],
|
||||
[-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922],
|
||||
[ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667],
|
||||
...,
|
||||
[ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824],
|
||||
[ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980],
|
||||
[ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]],
|
||||
|
||||
[[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451],
|
||||
[ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373],
|
||||
[ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275],
|
||||
...,
|
||||
[-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078],
|
||||
[ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235],
|
||||
[-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]],
|
||||
|
||||
[[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216],
|
||||
[ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137],
|
||||
[ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804],
|
||||
...,
|
||||
[-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882],
|
||||
[-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039],
|
||||
[-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])}
|
||||
```
|
||||
|
||||
Hier sehen Sie, wie das Bild nach der Vorverarbeitung aussieht. Wie von den angewandten Transformationen zu erwarten, wurde das Bild willkürlich beschnitten und seine Farbeigenschaften sind anders.
|
||||
|
||||
```py
|
||||
>>> import numpy as np
|
||||
>>> import matplotlib.pyplot as plt
|
||||
|
||||
>>> img = dataset[0]["pixel_values"]
|
||||
>>> plt.imshow(img.permute(1, 2, 0))
|
||||
```
|
||||
|
||||

|
||||
|
||||
## Multimodal
|
||||
|
||||
Für multimodale Aufgaben werden Sie eine Kombination aus allem, was Sie bisher gelernt haben, verwenden und Ihre Fähigkeiten auf eine Aufgabe der automatischen Spracherkennung (ASR) anwenden. Dies bedeutet, dass Sie einen:
|
||||
|
||||
* Feature Extractor zur Vorverarbeitung der Audiodaten.
|
||||
* Tokenizer, um den Text zu verarbeiten.
|
||||
|
||||
Kehren wir zum [LJ Speech](https://huggingface.co/datasets/lj_speech) Datensatz zurück:
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> lj_speech = load_dataset("lj_speech", split="train")
|
||||
```
|
||||
|
||||
Da Sie hauptsächlich an den Spalten "Audio" und "Text" interessiert sind, entfernen Sie die anderen Spalten:
|
||||
|
||||
```py
|
||||
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
|
||||
```
|
||||
|
||||
Schauen Sie sich nun die Spalten "Audio" und "Text" an:
|
||||
|
||||
```py
|
||||
>>> lj_speech[0]["audio"]
|
||||
{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ...,
|
||||
7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32),
|
||||
'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav',
|
||||
'sampling_rate': 22050}
|
||||
|
||||
>>> lj_speech[0]["text"]
|
||||
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
|
||||
```
|
||||
|
||||
Erinnern Sie sich an den früheren Abschnitt über die Verarbeitung von Audiodaten: Sie sollten immer die Abtastrate Ihrer Audiodaten [resample](preprocessing#audio), damit sie mit der Abtastrate des Datensatzes übereinstimmt, der für das Vortraining eines Modells verwendet wird:
|
||||
|
||||
```py
|
||||
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
|
||||
```
|
||||
|
||||
### Prozessor
|
||||
|
||||
Ein Processor kombiniert einen Feature-Extraktor und einen Tokenizer. Laden Sie einen Processor mit [`AutoProcessor.from_pretrained]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoProcessor
|
||||
|
||||
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
|
||||
```
|
||||
|
||||
1. Erstellen Sie eine Funktion, die die Audiodaten zu `input_values` verarbeitet und den Text zu `labels` tokenisiert. Dies sind Ihre Eingaben für das Modell:
|
||||
|
||||
```py
|
||||
>>> def prepare_dataset(example):
|
||||
... audio = example["audio"]
|
||||
|
||||
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
|
||||
|
||||
... return example
|
||||
```
|
||||
|
||||
2. Wenden Sie die Funktion "prepare_dataset" auf ein Beispiel an:
|
||||
|
||||
```py
|
||||
>>> prepare_dataset(lj_speech[0])
|
||||
```
|
||||
|
||||
Beachten Sie, dass der Processor `input_values` und `labels` hinzugefügt hat. Auch die Abtastrate wurde korrekt auf 16kHz heruntergerechnet.
|
||||
|
||||
Toll, Sie sollten jetzt in der Lage sein, Daten für jede Modalität vorzuverarbeiten und sogar verschiedene Modalitäten zu kombinieren! Im nächsten Kurs lernen Sie, wie Sie ein Modell mit Ihren neu aufbereiteten Daten feinabstimmen können.
|
428
docs/source/de/quicktour.mdx
Normal file
428
docs/source/de/quicktour.mdx
Normal file
@ -0,0 +1,428 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Schnellstart
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
Mit 🤗 Transformers können Sie sofort loslegen! Verwenden Sie die [`pipeline`] für schnelle Inferenz und laden Sie schnell ein vortrainiertes Modell und einen Tokenizer mit einer [AutoClass](./model_doc/auto), um Ihre Text-, Bild- oder Audioaufgabe zu lösen.
|
||||
|
||||
<Tip>
|
||||
|
||||
Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter für PyTorch und TensorFlow. Wenn
|
||||
nicht, wird erwartet, dass der Code für beide Backends ohne Änderungen funktioniert.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Pipeline
|
||||
|
||||
[`pipeline`] ist der einfachste Weg, ein vortrainiertes Modell für eine bestimmte Aufgabe zu verwenden.
|
||||
|
||||
<Youtube id="tiZFewofSLM"/>
|
||||
|
||||
Die [`pipeline`] unterstützt viele gängige Aufgaben:
|
||||
|
||||
**Text**:
|
||||
* Stimmungsanalyse: Klassifizierung der Polarität eines gegebenen Textes.
|
||||
* Textgenerierung (auf Englisch): Generierung von Text aus einer gegebenen Eingabe.
|
||||
* Name-Entity-Recognition (NER): Kennzeichnung jedes Worts mit der Entität, die es repräsentiert (Person, Datum, Ort usw.).
|
||||
* Beantwortung von Fragen: Extrahieren der Antwort aus dem Kontext, wenn ein gewisser Kontext und eine Frage gegeben sind.
|
||||
* Fill-mask: Ausfüllen von Lücken in einem Text mit maskierten Wörtern.
|
||||
* Zusammenfassung: Erstellung einer Zusammenfassung einer langen Text- oder Dokumentensequenz.
|
||||
* Übersetzung: Übersetzen eines Textes in eine andere Sprache.
|
||||
* Merkmalsextraktion: Erstellen einer Tensordarstellung des Textes.
|
||||
|
||||
**Bild**:
|
||||
* Bildklassifizierung: Klassifizierung eines Bildes.
|
||||
* Bildsegmentierung: Klassifizierung jedes Pixels in einem Bild.
|
||||
* Objekterkennung: Erkennen von Objekten innerhalb eines Bildes.
|
||||
|
||||
**Audio**:
|
||||
* Audioklassifizierung: Zuweisung eines Labels zu einem bestimmten Audiosegment.
|
||||
* Automatische Spracherkennung (ASR): Transkription von Audiodaten in Text.
|
||||
|
||||
<Tip>
|
||||
|
||||
Für mehr Details über die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines).
|
||||
|
||||
</Tip>
|
||||
|
||||
### Verwendung der Pipeline
|
||||
|
||||
Im folgenden Beispiel werden Sie die [`pipeline`] für die Stimmungsanalyse verwenden.
|
||||
|
||||
Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits getan haben:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
```bash
|
||||
pip install torch
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```bash
|
||||
pip install tensorflow
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Importieren sie die [`pipeline`] und spezifizieren sie die Aufgabe, welche sie lösen möchten:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> classifier = pipeline("sentiment-analysis")
|
||||
```
|
||||
|
||||
Die Pipeline lädt ein standardmäßiges [vortrainiertes Modell] (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) und einen Tokenizer für die Stimmungs-Analyse herunter und speichert sie. Jetzt können Sie den "Klassifikator" auf Ihren Zieltext anwenden:
|
||||
|
||||
```py
|
||||
>>> classifier("We are very happy to show you the 🤗 Transformers library.")
|
||||
[{'label': 'POSITIVE', 'score': 0.9998}]
|
||||
```
|
||||
|
||||
For more than one sentence, pass a list of sentences to the [`pipeline`] which returns a list of dictionaries:
|
||||
|
||||
```py
|
||||
>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
|
||||
>>> for result in results:
|
||||
... print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
|
||||
label: POSITIVE, with score: 0.9998
|
||||
label: NEGATIVE, with score: 0.5309
|
||||
```
|
||||
|
||||
Die [`pipeline`] kann auch über einen ganzen Datensatz iterieren. Starten wir mit der Installation der [🤗 Datasets](https://huggingface.co/docs/datasets/) Bibliothek:
|
||||
|
||||
```bash
|
||||
pip install datasets
|
||||
```
|
||||
|
||||
Erstellen wir eine [`pipeline`] mit der Aufgabe die wir lösen und dem Modell welches wir nutzen möchten.
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
||||
```
|
||||
|
||||
Als nächstes laden wir den Datensatz (siehe 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart.html) für mehr Details) welches wir nutzen möchten. Zum Beispiel laden wir den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz:
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset, Audio
|
||||
|
||||
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT
|
||||
```
|
||||
|
||||
Wir müssen sicherstellen, dass die Abtastrate des Datensatzes der Abtastrate entspricht, mit der `facebook/wav2vec2-base-960h` trainiert wurde.
|
||||
|
||||
```py
|
||||
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
|
||||
```
|
||||
|
||||
Audiodateien werden automatisch geladen und neu abgetastet, wenn die Spalte "audio" aufgerufen wird.
|
||||
Extrahieren wir die rohen Wellenform-Arrays der ersten 4 Beispiele und übergeben wir sie als Liste an die Pipeline:
|
||||
|
||||
```py
|
||||
>>> result = speech_recognizer(dataset[:4]["audio"])
|
||||
>>> print([d["text"] for d in result])
|
||||
['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FODING HOW I'D SET UP A JOIN TO HET WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE AP SO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AND I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I THURN A JOIN A COUNT']
|
||||
```
|
||||
|
||||
Bei einem größeren Datensatz mit vielen Eingaben (wie bei Sprache oder Bildverarbeitung) sollten Sie einen Generator anstelle einer Liste übergeben, der alle Eingaben in den Speicher lädt. Weitere Informationen finden Sie in der [Pipeline-Dokumentation](./main_classes/pipelines).
|
||||
|
||||
### Ein anderes Modell und einen anderen Tokenizer in der Pipeline verwenden
|
||||
|
||||
Die [`pipeline`] kann jedes Modell aus dem [Model Hub] (https://huggingface.co/models) verwenden, wodurch es einfach ist, die [`pipeline`] für andere Anwendungsfälle anzupassen. Wenn Sie beispielsweise ein Modell wünschen, das französischen Text verarbeiten kann, verwenden Sie die Tags im Model Hub, um nach einem geeigneten Modell zu filtern. Das oberste gefilterte Ergebnis liefert ein mehrsprachiges [BERT-Modell](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment), das auf die Stimmungsanalyse abgestimmt ist. Großartig, verwenden wir dieses Modell!
|
||||
|
||||
```py
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `AutoClass` below):
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Use the [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `TFAutoClass` below):
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Dann können Sie das Modell und den Tokenizer in der [`pipeline`] angeben und den `Klassifikator` auf Ihren Zieltext anwenden:
|
||||
|
||||
```py
|
||||
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
||||
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
|
||||
[{'label': '5 stars', 'score': 0.7273}]
|
||||
```
|
||||
|
||||
Wenn Sie kein Modell für Ihren Anwendungsfall finden können, müssen Sie ein vortrainiertes Modell auf Ihren Daten feinabstimmen. Schauen Sie sich unser [Feinabstimmungs-Tutorial](./training) an, um zu erfahren, wie das geht. Und schließlich, nachdem Sie Ihr trainiertes Modell verfeinert haben, sollten Sie es mit der Community im Model Hub teilen (siehe Tutorial [hier](./model_sharing)), um NLP für alle zu demokratisieren! 🤗
|
||||
|
||||
## AutoClass
|
||||
|
||||
<Youtube id="AhChOFRegn4"/>
|
||||
|
||||
Unter der Haube arbeiten die Klassen [`AutoModelForSequenceClassification`] und [`AutoTokenizer`] zusammen, um die [`pipeline`] zu betreiben. Eine [`AutoClass`](./model_doc/auto) ist eine Abkürzung, die automatisch die Architektur eines trainierten Modells aus dessen Namen oder Pfad abruft. Sie müssen nur die passende `AutoClass` für Ihre Aufgabe und den zugehörigen Tokenizer mit [`AutoTokenizer`] auswählen.
|
||||
|
||||
Kehren wir zu unserem Beispiel zurück und sehen wir uns an, wie Sie die `AutoClass` verwenden können, um die Ergebnisse der [`pipeline`] zu replizieren.
|
||||
|
||||
### AutoTokenizer
|
||||
|
||||
Ein Tokenizer ist für die Vorverarbeitung von Text in ein für das Modell verständliches Format zuständig. Zunächst zerlegt der Tokenisierer den Text in Wörter, die *Token* genannt werden. Es gibt mehrere Regeln für den Tokenisierungsprozess, z. B. wie und auf welcher Ebene ein Wort aufgespalten wird (weitere Informationen über Tokenisierung [hier](./tokenizer_summary)). Das Wichtigste ist jedoch, dass Sie den Tokenizer mit demselben Modellnamen instanziieren müssen, um sicherzustellen, dass Sie dieselben Tokenisierungsregeln verwenden, mit denen ein Modell zuvor trainiert wurde.
|
||||
Laden sie einen Tokenizer mit [`AutoTokenizer`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
Anschließend wandelt der Tokenizer die Token in Zahlen um, um einen Tensor als Eingabe für das Modell zu konstruieren. Dieser wird als *Vokabular* des Modells bezeichnet.
|
||||
|
||||
Übergeben Sie Ihren Text an den Tokenizer:
|
||||
|
||||
```py
|
||||
>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
|
||||
>>> print(encoding)
|
||||
{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102],
|
||||
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
|
||||
```
|
||||
|
||||
Der Tokenizer gibt ein Wörterbuch zurück, das Folgendes enthält:
|
||||
|
||||
* [input_ids](./glossary#input-ids): numerische Repräsentationen Ihrer Token.
|
||||
* [atttention_mask](.glossary#attention-mask): gibt an, welche Token beachtet werden sollen.
|
||||
|
||||
Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Darüber hinaus kann der Tokenizer den Text auch auffüllen und kürzen, um einen Stapel mit einheitlicher Länge zurückzugeben:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
```py
|
||||
>>> pt_batch = tokenizer(
|
||||
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
|
||||
... padding=True,
|
||||
... truncation=True,
|
||||
... max_length=512,
|
||||
... return_tensors="pt",
|
||||
... )
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```py
|
||||
>>> tf_batch = tokenizer(
|
||||
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
|
||||
... padding=True,
|
||||
... truncation=True,
|
||||
... max_length=512,
|
||||
... return_tensors="tf",
|
||||
... )
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Lesen Sie das Tutorial [preprocessing](./preprocessing) für weitere Details zur Tokenisierung.
|
||||
|
||||
### AutoModel
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
🤗 Transformers bietet eine einfache und einheitliche Möglichkeit, vortrainierte Instanzen zu laden. Das bedeutet, dass Sie ein [`AutoModel`] laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`AutoModel`] für die Aufgabe. Da Sie eine Text- oder Sequenzklassifizierung vornehmen, laden Sie [`AutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
|
||||
|
||||
</Tip>
|
||||
|
||||
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben. Sie müssen nur das Wörterbuch entpacken, indem Sie `**` hinzufügen:
|
||||
|
||||
```py
|
||||
>>> pt_outputs = pt_model(**pt_batch)
|
||||
```
|
||||
|
||||
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
|
||||
|
||||
```py
|
||||
>>> from torch import nn
|
||||
|
||||
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
|
||||
>>> print(pt_predictions)
|
||||
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
🤗 Transformers bietet eine einfache und einheitliche Methode zum Laden von vortrainierten Instanzen. Das bedeutet, dass Sie ein [`TFAutoModel`] genauso laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`TFAutoModel`] für die Aufgabe. Da Sie Text - oder Sequenz - Klassifizierung machen, laden Sie [`TFAutoModelForSequenceClassification`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModelForSequenceClassification
|
||||
|
||||
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
|
||||
|
||||
</Tip>
|
||||
|
||||
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben, indem Sie die Wörterbuchschlüssel direkt an die Tensoren übergeben:
|
||||
|
||||
```py
|
||||
>>> tf_outputs = tf_model(tf_batch)
|
||||
```
|
||||
|
||||
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
|
||||
|
||||
```py
|
||||
>>> import tensorflow as tf
|
||||
|
||||
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
|
||||
>>> tf_predictions # doctest: +IGNORE_RESULT
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<Tip>
|
||||
|
||||
Alle 🤗 Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgültigen Aktivierungsfunktion
|
||||
Funktion (wie Softmax) aus, da die endgültige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist.
|
||||
|
||||
</Tip>
|
||||
|
||||
Modelle sind ein standardmäßiges [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model), sodass Sie sie in Ihrer üblichen Trainingsschleife verwenden können. Um jedoch die Dinge einfacher zu machen, bietet 🤗 Transformers eine [`Trainer`]-Klasse für PyTorch, die Funktionalität für verteiltes Training, gemischte Präzision und mehr bietet. Für TensorFlow können Sie die Methode `fit` aus [Keras](https://keras.io/) verwenden. Siehe das [training tutorial](./training) für weitere Details.
|
||||
|
||||
<Tip>
|
||||
|
||||
Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollständigt werden.
|
||||
Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B. können Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Modell speichern
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer speichern, indem Sie [`PreTrainedModel.save_pretrained`] verwenden:
|
||||
|
||||
```py
|
||||
>>> pt_save_directory = "./pt_save_pretrained"
|
||||
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
|
||||
>>> pt_model.save_pretrained(pt_save_directory)
|
||||
```
|
||||
|
||||
Wenn Sie bereit sind, das Modell erneut zu verwenden, laden Sie es mit [`PreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer unter Verwendung von [`TFPreTrainedModel.save_pretrained`] speichern:
|
||||
|
||||
```py
|
||||
>>> tf_save_directory = "./tf_save_pretrained"
|
||||
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
|
||||
>>> tf_model.save_pretrained(tf_save_directory)
|
||||
```
|
||||
|
||||
Wenn Sie bereit sind, das Modell wieder zu verwenden, laden Sie es mit [`TFPreTrainedModel.from_pretrained`]:
|
||||
|
||||
```py
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell zu speichern und es entweder als PyTorch- oder TensorFlow-Modell wieder zu laden. Der Parameter "from_pt" oder "from_tf" kann das Modell von einem Framework in das andere konvertieren:
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
## Custom model builds
|
||||
|
||||
Sie können die Konfigurationsklasse des Modells ändern, um zu bestimmen, wie ein Modell aufgebaut ist. Die Konfiguration legt die Attribute eines Modells fest, z. B. die Anzahl der verborgenen Schichten oder der Aufmerksamkeitsköpfe. Wenn Sie ein Modell aus einer benutzerdefinierten Konfigurationsklasse initialisieren, beginnen Sie bei Null. Die Modellattribute werden zufällig initialisiert, und Sie müssen das Modell trainieren, bevor Sie es verwenden können, um aussagekräftige Ergebnisse zu erhalten.
|
||||
|
||||
Beginnen Sie mit dem Import von [`AutoConfig`] und laden Sie dann das trainierte Modell, das Sie ändern möchten. Innerhalb von [`AutoConfig.from_pretrained`] können Sie das Attribut angeben, das Sie ändern möchten, z. B. die Anzahl der Aufmerksamkeitsköpfe:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoConfig
|
||||
|
||||
>>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12)
|
||||
```
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
Create a model from your custom configuration with [`AutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> my_model = AutoModel.from_config(my_config)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
Create a model from your custom configuration with [`TFAutoModel.from_config`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> my_model = TFAutoModel.from_config(my_config)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
Weitere Informationen zur Erstellung von benutzerdefinierten Konfigurationen finden Sie in der Anleitung [Erstellen einer benutzerdefinierten Architektur](./create_a_model).
|
||||
|
||||
## Wie geht es weiter?
|
||||
|
||||
Nachdem Sie nun die 🤗 Transformers-Kurztour abgeschlossen haben, schauen Sie sich unsere Anleitungen an und erfahren Sie, wie Sie spezifischere Dinge tun können, wie das Schreiben eines benutzerdefinierten Modells, die Feinabstimmung eines Modells für eine Aufgabe und wie man ein Modell mit einem Skript trainiert. Wenn Sie mehr über die Kernkonzepte von 🤗 Transformers erfahren möchten, nehmen Sie sich eine Tasse Kaffee und werfen Sie einen Blick auf unsere konzeptionellen Leitfäden!
|
427
docs/source/de/training.mdx
Normal file
427
docs/source/de/training.mdx
Normal file
@ -0,0 +1,427 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Optimierung eines vortrainierten Modells
|
||||
|
||||
[[open-in-colab]]
|
||||
|
||||
Die Verwendung eines vorab trainierten Modells hat erhebliche Vorteile. Es reduziert die Rechenkosten und den CO2-Fußabdruck und ermöglicht Ihnen die Verwendung von Modellen, die dem neuesten Stand der Technik entsprechen, ohne dass Sie ein Modell von Grund auf neu trainieren müssen. Transformers bietet Zugang zu Tausenden von vortrainierten Modellen für eine Vielzahl von Aufgaben. Wenn Sie ein vorab trainiertes Modell verwenden, trainieren Sie es auf einem für Ihre Aufgabe spezifischen Datensatz. Dies wird als Feinabstimmung bezeichnet und ist eine unglaublich leistungsfähige Trainingstechnik. In diesem Tutorial werden Sie ein vortrainiertes Modell mit einem Deep-Learning-Framework Ihrer Wahl feinabstimmen:
|
||||
|
||||
* Feinabstimmung eines vorab trainierten Modells mit 🤗 Transformers [`Trainer`].
|
||||
* Feinabstimmung eines vorab trainierten Modells in TensorFlow mit Keras.
|
||||
* Feinabstimmung eines vorab trainierten Modells in nativem PyTorch.
|
||||
|
||||
<a id='data-processing'></a>
|
||||
|
||||
## Vorbereitung eines Datensatzes
|
||||
|
||||
<Youtube id="_BZearw7f0w"/>
|
||||
|
||||
Bevor Sie die Feinabstimmung eines vortrainierten Modells vornehmen können, müssen Sie einen Datensatz herunterladen und für das Training vorbereiten. Im vorangegangenen Leitfaden haben Sie gelernt, wie man Daten für das Training aufbereitet, und jetzt haben Sie die Gelegenheit, diese Fähigkeiten zu testen!
|
||||
|
||||
Laden Sie zunächst den Datensatz [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full):
|
||||
|
||||
```py
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> dataset = load_dataset("yelp_review_full")
|
||||
>>> dataset["train"][100]
|
||||
{'label': 0,
|
||||
'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}
|
||||
```
|
||||
|
||||
Wie Sie nun wissen, benötigen Sie einen Tokenizer, um den Text zu verarbeiten und eine Auffüll- und Abschneidungsstrategie einzubauen, um mit variablen Sequenzlängen umzugehen. Um Ihren Datensatz in einem Schritt zu verarbeiten, verwenden Sie die 🤗 Methode Datasets [`map`](https://huggingface.co/docs/datasets/process.html#map), um eine Vorverarbeitungsfunktion auf den gesamten Datensatz anzuwenden:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
||||
|
||||
|
||||
>>> def tokenize_function(examples):
|
||||
... return tokenizer(examples["text"], padding="max_length", truncation=True)
|
||||
|
||||
|
||||
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
||||
```
|
||||
|
||||
Wenn Sie möchten, können Sie eine kleinere Teilmenge des gesamten Datensatzes für die Feinabstimmung erstellen, um den Zeitaufwand zu verringern:
|
||||
|
||||
```py
|
||||
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
||||
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
||||
```
|
||||
|
||||
<a id='trainer'></a>
|
||||
|
||||
## Training
|
||||
|
||||
An dieser Stelle sollten Sie dem Abschnitt folgen, der dem Rahmen entspricht, den Sie verwenden möchten. Sie können über die Links
|
||||
in der rechten Seitenleiste können Sie zu dem gewünschten Abschnitt springen - und wenn Sie den gesamten Inhalt eines bestimmten Frameworks ausblenden möchten,
|
||||
klicken Sie einfach auf die Schaltfläche oben rechts im Block des jeweiligen Frameworks!
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="nvBXf7s7vTI"/>
|
||||
|
||||
## Trainieren mit PyTorch Trainer
|
||||
|
||||
🤗 Transformers bietet eine [`Trainer`]-Klasse, die für das Training von 🤗 Transformers-Modellen optimiert ist und es einfacher macht, mit dem Training zu beginnen, ohne manuell eine eigene Trainingsschleife zu schreiben. Die [`Trainer`]-API unterstützt eine breite Palette von Trainingsoptionen und Funktionen wie Logging, Gradientenakkumulation und gemischte Präzision.
|
||||
|
||||
Beginnen Sie mit dem Laden Ihres Modells und geben Sie die Anzahl der erwarteten Labels an. Aus dem Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields) wissen Sie, dass es fünf Labels gibt:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
Es wird eine Warnung angezeigt, dass einige der trainierten Parameter nicht verwendet werden und einige Parameter zufällig
|
||||
initialisiert werden. Machen Sie sich keine Sorgen, das ist völlig normal! Der vorher trainierte Kopf des BERT-Modells wird verworfen und durch einen zufällig initialisierten Klassifikationskopf ersetzt. Sie werden diesen neuen Modellkopf in Ihrer Sequenzklassifizierungsaufgabe feinabstimmen, indem Sie das Wissen des vortrainierten Modells auf ihn übertragen.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Hyperparameter für das Training
|
||||
|
||||
Als Nächstes erstellen Sie eine Klasse [`TrainingArguments`], die alle Hyperparameter enthält, die Sie einstellen können, sowie Flags zur Aktivierung verschiedener Trainingsoptionen. Für dieses Lernprogramm können Sie mit den Standard- [Hyperparametern](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) beginnen, aber Sie können mit diesen experimentieren, um Ihre optimalen Einstellungen zu finden.
|
||||
|
||||
Geben Sie an, wo die Kontrollpunkte Ihres Trainings gespeichert werden sollen:
|
||||
|
||||
```py
|
||||
>>> from transformers import TrainingArguments
|
||||
|
||||
>>> training_args = TrainingArguments(output_dir="test_trainer")
|
||||
```
|
||||
|
||||
### Auswerten
|
||||
|
||||
Der [`Trainer`] wertet die Leistung des Modells während des Trainings nicht automatisch aus. Sie müssen [`Trainer`] eine Funktion übergeben, um Metriken zu berechnen und zu berichten. Die [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) Bibliothek bietet eine einfache [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) Funktion, die Sie mit der [`evaluate.load`] Funktion laden können (siehe diese [quicktour](https://huggingface.co/docs/evaluate/a_quick_tour) für weitere Informationen):
|
||||
|
||||
```py
|
||||
>>> import numpy as np
|
||||
>>> import evaluate
|
||||
|
||||
>>> metric = evaluate.load("accuracy")
|
||||
```
|
||||
|
||||
Rufen Sie [`~evaluate.compute`] auf `metric` auf, um die Genauigkeit Ihrer Vorhersagen zu berechnen. Bevor Sie Ihre Vorhersagen an `compute` übergeben, müssen Sie die Vorhersagen in Logits umwandeln (denken Sie daran, dass alle 🤗 Transformers-Modelle Logits zurückgeben):
|
||||
|
||||
```py
|
||||
>>> def compute_metrics(eval_pred):
|
||||
... logits, labels = eval_pred
|
||||
... predictions = np.argmax(logits, axis=-1)
|
||||
... return metric.compute(predictions=predictions, references=labels)
|
||||
```
|
||||
|
||||
Wenn Sie Ihre Bewertungsmetriken während der Feinabstimmung überwachen möchten, geben Sie den Parameter `evaluation_strategy` in Ihren Trainingsargumenten an, um die Bewertungsmetrik am Ende jeder Epoche zu ermitteln:
|
||||
|
||||
```py
|
||||
>>> from transformers import TrainingArguments, Trainer
|
||||
|
||||
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
|
||||
```
|
||||
|
||||
### Trainer
|
||||
|
||||
Erstellen Sie ein [`Trainer`]-Objekt mit Ihrem Modell, Trainingsargumenten, Trainings- und Testdatensätzen und einer Evaluierungsfunktion:
|
||||
|
||||
```py
|
||||
>>> trainer = Trainer(
|
||||
... model=model,
|
||||
... args=training_args,
|
||||
... train_dataset=small_train_dataset,
|
||||
... eval_dataset=small_eval_dataset,
|
||||
... compute_metrics=compute_metrics,
|
||||
... )
|
||||
```
|
||||
|
||||
Anschließend können Sie Ihr Modell durch den Aufruf von [`~transformers.Trainer.train`] optimieren:
|
||||
|
||||
```py
|
||||
>>> trainer.train()
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
<a id='keras'></a>
|
||||
|
||||
<Youtube id="rnTGBy2ax1c"/>
|
||||
|
||||
## Trainieren Sie ein TensorFlow-Modell mit Keras
|
||||
|
||||
Sie können auch 🤗 Transformers Modelle in TensorFlow mit der Keras API trainieren!
|
||||
|
||||
### Laden von Daten für Keras
|
||||
|
||||
Wenn Sie ein 🤗 Transformers Modell mit der Keras API trainieren wollen, müssen Sie Ihren Datensatz in ein Format konvertieren, das
|
||||
Keras versteht. Wenn Ihr Datensatz klein ist, können Sie das Ganze einfach in NumPy-Arrays konvertieren und an Keras übergeben.
|
||||
Probieren wir das zuerst aus, bevor wir etwas Komplizierteres tun.
|
||||
|
||||
Laden Sie zunächst ein Dataset. Wir werden den CoLA-Datensatz aus dem [GLUE-Benchmark](https://huggingface.co/datasets/glue) verwenden,
|
||||
da es sich um eine einfache Aufgabe zur Klassifizierung von binärem Text handelt, und nehmen vorerst nur den Trainingssplit.
|
||||
|
||||
```py
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("glue", "cola")
|
||||
dataset = dataset["train"] # Just take the training split for now
|
||||
```
|
||||
|
||||
Als nächstes laden Sie einen Tokenizer und tokenisieren die Daten als NumPy-Arrays. Beachten Sie, dass die Beschriftungen bereits eine Liste von 0 und 1en sind,
|
||||
Wir können sie also ohne Tokenisierung direkt in ein NumPy-Array konvertieren!
|
||||
|
||||
```py
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
||||
tokenized_data = tokenizer(dataset["text"], return_tensors="np", padding=True)
|
||||
|
||||
labels = np.array(dataset["label"]) # Label is already an array of 0 and 1
|
||||
```
|
||||
|
||||
Schließlich laden, [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) und [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) Sie das Modell:
|
||||
|
||||
```py
|
||||
from transformers import TFAutoModelForSequenceClassification
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
|
||||
# Load and compile our model
|
||||
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
|
||||
# Lower learning rates are often better for fine-tuning transformers
|
||||
model.compile(optimizer=Adam(3e-5))
|
||||
|
||||
model.fit(tokenized_data, labels)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
Sie müssen Ihren Modellen kein Verlustargument übergeben, wenn Sie sie `compile()`! Hugging-Face-Modelle wählen automatisch
|
||||
einen Loss, der für ihre Aufgabe und Modellarchitektur geeignet ist, wenn dieses Argument leer gelassen wird. Sie können jederzeit außer Kraft setzen, indem Sie selbst einen Loss angeben, wenn Sie das möchten!
|
||||
|
||||
</Tip>
|
||||
|
||||
Dieser Ansatz eignet sich hervorragend für kleinere Datensätze, aber bei größeren Datensätzen kann er zu einem Problem werden. Warum?
|
||||
Weil das tokenisierte Array und die Beschriftungen vollständig in den Speicher geladen werden müssten, und weil NumPy nicht mit
|
||||
"gezackte" Arrays nicht verarbeiten kann, so dass jedes tokenisierte Sample auf die Länge des längsten Samples im gesamten Datensatz aufgefüllt werden müsste.
|
||||
Datensatzes aufgefüllt werden. Dadurch wird das Array noch größer, und all die aufgefüllten Token verlangsamen auch das Training!
|
||||
|
||||
### Laden von Daten als tf.data.Dataset
|
||||
|
||||
Wenn Sie eine Verlangsamung des Trainings vermeiden wollen, können Sie Ihre Daten stattdessen als `tf.data.Dataset` laden. Sie können zwar Ihre eigene
|
||||
tf.data"-Pipeline schreiben können, wenn Sie wollen, haben wir zwei bequeme Methoden, um dies zu tun:
|
||||
|
||||
- [`~TFPreTrainedModel.prepare_tf_dataset`]: Dies ist die Methode, die wir in den meisten Fällen empfehlen. Da es sich um eine Methode
|
||||
Ihres Modells ist, kann sie das Modell inspizieren, um automatisch herauszufinden, welche Spalten als Modelleingaben verwendet werden können, und
|
||||
verwirft die anderen, um einen einfacheren, leistungsfähigeren Datensatz zu erstellen.
|
||||
- [~datasets.Dataset.to_tf_dataset`]: Diese Methode ist eher auf niedriger Ebene angesiedelt und ist nützlich, wenn Sie genau kontrollieren wollen, wie
|
||||
Dataset erstellt wird, indem man genau angibt, welche `columns` und `label_cols` einbezogen werden sollen.
|
||||
|
||||
Bevor Sie [~TFPreTrainedModel.prepare_tf_dataset`] verwenden können, müssen Sie die Tokenizer-Ausgaben als Spalten zu Ihrem Datensatz hinzufügen, wie in
|
||||
dem folgenden Codebeispiel:
|
||||
|
||||
```py
|
||||
def tokenize_dataset(data):
|
||||
# Keys of the returned dictionary will be added to the dataset as columns
|
||||
return tokenizer(data["text"])
|
||||
|
||||
|
||||
dataset = dataset.map(tokenize_dataset)
|
||||
```
|
||||
|
||||
Denken Sie daran, dass Hugging Face-Datensätze standardmäßig auf der Festplatte gespeichert werden, so dass dies nicht zu einem erhöhten Arbeitsspeicherbedarf führen wird! Sobald die
|
||||
Spalten hinzugefügt wurden, können Sie Batches aus dem Datensatz streamen und zu jedem Batch Auffüllungen hinzufügen, was die Anzahl der Auffüllungs-Token im Vergleich zum Auffüllen des gesamten Datensatzes reduziert.
|
||||
|
||||
|
||||
```py
|
||||
>>> tf_dataset = model.prepare_tf_dataset(dataset, batch_size=16, shuffle=True, tokenizer=tokenizer)
|
||||
```
|
||||
|
||||
Beachten Sie, dass Sie im obigen Codebeispiel den Tokenizer an `prepare_tf_dataset` übergeben müssen, damit die Stapel beim Laden korrekt aufgefüllt werden können.
|
||||
Wenn alle Stichproben in Ihrem Datensatz die gleiche Länge haben und kein Auffüllen erforderlich ist, können Sie dieses Argument weglassen.
|
||||
Wenn Sie etwas Komplexeres als nur das Auffüllen von Stichproben benötigen (z. B. das Korrumpieren von Token für die maskierte Sprachmodellierung), können Sie das Argument
|
||||
Modellierung), können Sie stattdessen das Argument `collate_fn` verwenden, um eine Funktion zu übergeben, die aufgerufen wird, um die
|
||||
Liste von Stichproben in einen Stapel umwandelt und alle gewünschten Vorverarbeitungen vornimmt. Siehe unsere
|
||||
[examples](https://github.com/huggingface/transformers/tree/main/examples) oder
|
||||
[notebooks](https://huggingface.co/docs/transformers/notebooks), um diesen Ansatz in Aktion zu sehen.
|
||||
|
||||
Sobald Sie einen `tf.data.Dataset` erstellt haben, können Sie das Modell wie zuvor kompilieren und anpassen:
|
||||
|
||||
```py
|
||||
model.compile(optimizer=Adam(3e-5))
|
||||
|
||||
model.fit(tf_dataset)
|
||||
```
|
||||
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='pytorch_native'></a>
|
||||
|
||||
## Trainieren in nativem PyTorch
|
||||
|
||||
<frameworkcontent>
|
||||
<pt>
|
||||
<Youtube id="Dh9CL8fyG80"/>
|
||||
|
||||
[`Trainer`] kümmert sich um die Trainingsschleife und ermöglicht die Feinabstimmung eines Modells in einer einzigen Codezeile. Für Benutzer, die es vorziehen, ihre eigene Trainingsschleife zu schreiben, können Sie auch eine Feinabstimmung eines 🤗 Transformers-Modells in nativem PyTorch vornehmen.
|
||||
|
||||
An diesem Punkt müssen Sie möglicherweise Ihr Notebook neu starten oder den folgenden Code ausführen, um etwas Speicher freizugeben:
|
||||
|
||||
```py
|
||||
del model
|
||||
del pytorch_model
|
||||
del trainer
|
||||
torch.cuda.empty_cache()
|
||||
```
|
||||
|
||||
Als Nächstes müssen Sie den Datensatz `tokenized_dataset` manuell nachbearbeiten, um ihn für das Training vorzubereiten.
|
||||
|
||||
1. Entfernen Sie die Spalte "Text", da das Modell keinen Rohtext als Eingabe akzeptiert:
|
||||
|
||||
```py
|
||||
>>> tokenized_datasets = tokenized_datasets.remove_columns(["text"])
|
||||
```
|
||||
|
||||
2. Benennen Sie die Spalte "Label" in "Labels" um, da das Modell erwartet, dass das Argument "Labels" genannt wird:
|
||||
|
||||
```py
|
||||
>>> tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
||||
```
|
||||
|
||||
3. Stellen Sie das Format des Datensatzes so ein, dass PyTorch-Tensoren anstelle von Listen zurückgegeben werden:
|
||||
|
||||
```py
|
||||
>>> tokenized_datasets.set_format("torch")
|
||||
```
|
||||
|
||||
Erstellen Sie dann eine kleinere Teilmenge des Datensatzes, wie zuvor gezeigt, um die Feinabstimmung zu beschleunigen:
|
||||
|
||||
```py
|
||||
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
||||
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
||||
```
|
||||
|
||||
### DataLoader
|
||||
|
||||
Erstellen Sie einen `DataLoader` für Ihre Trainings- und Testdatensätze, damit Sie über die Datenstapel iterieren können:
|
||||
|
||||
```py
|
||||
>>> from torch.utils.data import DataLoader
|
||||
|
||||
>>> train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
|
||||
>>> eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
|
||||
```
|
||||
|
||||
Laden Sie Ihr Modell mit der Anzahl der erwarteten Kennzeichnungen:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoModelForSequenceClassification
|
||||
|
||||
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
||||
```
|
||||
|
||||
### Optimierer und Lernratensteuerung
|
||||
|
||||
Erstellen Sie einen Optimierer und einen Scheduler für die Lernrate, um das Modell fein abzustimmen. Wir verwenden den Optimierer [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) aus PyTorch:
|
||||
|
||||
```py
|
||||
>>> from torch.optim import AdamW
|
||||
|
||||
>>> optimizer = AdamW(model.parameters(), lr=5e-5)
|
||||
```
|
||||
|
||||
Erstellen Sie den Standard-Lernratenplaner aus [`Trainer`]:
|
||||
|
||||
```py
|
||||
>>> from transformers import get_scheduler
|
||||
|
||||
>>> num_epochs = 3
|
||||
>>> num_training_steps = num_epochs * len(train_dataloader)
|
||||
>>> lr_scheduler = get_scheduler(
|
||||
... name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
|
||||
... )
|
||||
```
|
||||
|
||||
Geben Sie schließlich `device` an, um einen Grafikprozessor zu verwenden, wenn Sie Zugang zu einem solchen haben. Andernfalls kann das Training auf einer CPU mehrere Stunden statt ein paar Minuten dauern.
|
||||
|
||||
```py
|
||||
>>> import torch
|
||||
|
||||
>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
>>> model.to(device)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
Holen Sie sich mit einem gehosteten Notebook wie [Colaboratory](https://colab.research.google.com/) oder [SageMaker StudioLab](https://studiolab.sagemaker.aws/) kostenlosen Zugang zu einem Cloud-GPU, wenn Sie noch keinen haben.
|
||||
|
||||
</Tip>
|
||||
|
||||
Großartig, Sie sind bereit für das Training! 🥳
|
||||
|
||||
### Trainingsschleife
|
||||
|
||||
Um Ihren Trainingsfortschritt zu verfolgen, verwenden Sie die [tqdm](https://tqdm.github.io/) Bibliothek, um einen Fortschrittsbalken über die Anzahl der Trainingsschritte hinzuzufügen:
|
||||
|
||||
```py
|
||||
>>> from tqdm.auto import tqdm
|
||||
|
||||
>>> progress_bar = tqdm(range(num_training_steps))
|
||||
|
||||
>>> model.train()
|
||||
>>> for epoch in range(num_epochs):
|
||||
... for batch in train_dataloader:
|
||||
... batch = {k: v.to(device) for k, v in batch.items()}
|
||||
... outputs = model(**batch)
|
||||
... loss = outputs.loss
|
||||
... loss.backward()
|
||||
|
||||
... optimizer.step()
|
||||
... lr_scheduler.step()
|
||||
... optimizer.zero_grad()
|
||||
... progress_bar.update(1)
|
||||
```
|
||||
|
||||
### Auswertung
|
||||
|
||||
Genauso wie Sie eine Bewertungsfunktion zu [`Trainer`] hinzugefügt haben, müssen Sie dasselbe tun, wenn Sie Ihre eigene Trainingsschleife schreiben. Aber anstatt die Metrik am Ende jeder Epoche zu berechnen und zu melden, werden Sie dieses Mal alle Stapel mit [`~evaluate.add_batch`] akkumulieren und die Metrik ganz am Ende berechnen.
|
||||
|
||||
```py
|
||||
>>> import evaluate
|
||||
|
||||
>>> metric = evaluate.load("accuracy")
|
||||
>>> model.eval()
|
||||
>>> for batch in eval_dataloader:
|
||||
... batch = {k: v.to(device) for k, v in batch.items()}
|
||||
... with torch.no_grad():
|
||||
... outputs = model(**batch)
|
||||
|
||||
... logits = outputs.logits
|
||||
... predictions = torch.argmax(logits, dim=-1)
|
||||
... metric.add_batch(predictions=predictions, references=batch["labels"])
|
||||
|
||||
>>> metric.compute()
|
||||
```
|
||||
</pt>
|
||||
</frameworkcontent>
|
||||
|
||||
<a id='additional-resources'></a>
|
||||
|
||||
## Zusätzliche Ressourcen
|
||||
|
||||
Weitere Beispiele für die Feinabstimmung finden Sie unter:
|
||||
|
||||
- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) enthält Skripte
|
||||
um gängige NLP-Aufgaben in PyTorch und TensorFlow zu trainieren.
|
||||
|
||||
- [🤗 Transformers Notebooks](notebooks) enthält verschiedene Notebooks zur Feinabstimmung eines Modells für bestimmte Aufgaben in PyTorch und TensorFlow.
|
@ -21,44 +21,57 @@
|
||||
title: Share a model
|
||||
title: Tutorials
|
||||
- sections:
|
||||
- local: fast_tokenizers
|
||||
title: Use tokenizers from 🤗 Tokenizers
|
||||
- local: create_a_model
|
||||
title: Create a custom architecture
|
||||
- local: custom_models
|
||||
title: Sharing custom models
|
||||
- sections:
|
||||
- local: tasks/sequence_classification
|
||||
title: Text classification
|
||||
- local: tasks/token_classification
|
||||
title: Token classification
|
||||
- local: tasks/question_answering
|
||||
title: Question answering
|
||||
- local: tasks/language_modeling
|
||||
title: Language modeling
|
||||
- local: tasks/translation
|
||||
title: Translation
|
||||
- local: tasks/summarization
|
||||
title: Summarization
|
||||
- local: tasks/multiple_choice
|
||||
title: Multiple choice
|
||||
- local: create_a_model
|
||||
title: Create a custom architecture
|
||||
- local: custom_models
|
||||
title: Sharing custom models
|
||||
- local: run_scripts
|
||||
title: Train with a script
|
||||
- local: sagemaker
|
||||
title: Run training on Amazon SageMaker
|
||||
- local: converting_tensorflow_models
|
||||
title: Converting TensorFlow Checkpoints
|
||||
- local: serialization
|
||||
title: Export 🤗 Transformers models
|
||||
- local: troubleshooting
|
||||
title: Troubleshoot
|
||||
title: General usage
|
||||
- sections:
|
||||
- local: fast_tokenizers
|
||||
title: Use tokenizers from 🤗 Tokenizers
|
||||
- local: multilingual
|
||||
title: Inference for multilingual models
|
||||
- sections:
|
||||
- local: tasks/sequence_classification
|
||||
title: Text classification
|
||||
- local: tasks/token_classification
|
||||
title: Token classification
|
||||
- local: tasks/question_answering
|
||||
title: Question answering
|
||||
- local: tasks/language_modeling
|
||||
title: Language modeling
|
||||
- local: tasks/translation
|
||||
title: Translation
|
||||
- local: tasks/summarization
|
||||
title: Summarization
|
||||
- local: tasks/multiple_choice
|
||||
title: Multiple choice
|
||||
title: Task guides
|
||||
isExpanded: false
|
||||
title: Natural Language Processing
|
||||
- sections:
|
||||
- local: tasks/audio_classification
|
||||
title: Audio classification
|
||||
- local: tasks/asr
|
||||
title: Automatic speech recognition
|
||||
title: Audio
|
||||
- sections:
|
||||
- local: tasks/image_classification
|
||||
title: Image classification
|
||||
title: Fine-tune for downstream tasks
|
||||
- local: run_scripts
|
||||
title: Train with a script
|
||||
- local: sagemaker
|
||||
title: Run training on Amazon SageMaker
|
||||
- local: multilingual
|
||||
title: Inference for multilingual models
|
||||
- local: converting_tensorflow_models
|
||||
title: Converting TensorFlow Checkpoints
|
||||
- local: serialization
|
||||
title: Export 🤗 Transformers models
|
||||
- local: tasks/semantic_segmentation
|
||||
title: Semantic segmentation
|
||||
title: Computer Vision
|
||||
- sections:
|
||||
- local: performance
|
||||
title: Overview
|
||||
@ -68,6 +81,8 @@
|
||||
title: Training on many GPUs
|
||||
- local: perf_train_cpu
|
||||
title: Training on CPU
|
||||
- local: perf_train_cpu_many
|
||||
title: Training on many CPUs
|
||||
- local: perf_train_tpu
|
||||
title: Training on TPUs
|
||||
- local: perf_train_special
|
||||
@ -82,31 +97,33 @@
|
||||
title: Inference on Specialized Hardware
|
||||
- local: perf_hardware
|
||||
title: Custom hardware for training
|
||||
- local: big_models
|
||||
title: Instantiating a big model
|
||||
- local: debugging
|
||||
title: Debugging
|
||||
- local: hpo_train
|
||||
title: Hyperparameter Search using Trainer API
|
||||
title: Performance and scalability
|
||||
- local: big_models
|
||||
title: Instantiating a big model
|
||||
- sections:
|
||||
- local: contributing
|
||||
title: How to contribute to transformers?
|
||||
- local: add_new_model
|
||||
title: How to add a model to 🤗 Transformers?
|
||||
- local: add_new_pipeline
|
||||
title: How to add a pipeline to 🤗 Transformers?
|
||||
- local: testing
|
||||
title: Testing
|
||||
- local: pr_checks
|
||||
title: Checks on a Pull Request
|
||||
title: Contribute
|
||||
- local: notebooks
|
||||
title: 🤗 Transformers Notebooks
|
||||
- local: community
|
||||
title: Community resources
|
||||
- local: benchmarks
|
||||
title: Benchmarks
|
||||
- local: migration
|
||||
title: Migrating from previous packages
|
||||
- local: troubleshooting
|
||||
title: Troubleshoot
|
||||
- local: debugging
|
||||
title: Debugging
|
||||
- local: notebooks
|
||||
title: 🤗 Transformers Notebooks
|
||||
- local: community
|
||||
title: Community
|
||||
- local: contributing
|
||||
title: How to contribute to transformers?
|
||||
- local: add_new_model
|
||||
title: How to add a model to 🤗 Transformers?
|
||||
- local: add_new_pipeline
|
||||
title: How to create a custom pipeline?
|
||||
- local: testing
|
||||
title: Testing
|
||||
- local: pr_checks
|
||||
title: Checks on a Pull Request
|
||||
title: How-to guides
|
||||
- sections:
|
||||
- local: philosophy
|
||||
@ -128,6 +145,8 @@
|
||||
title: Conceptual guides
|
||||
- sections:
|
||||
- sections:
|
||||
- local: model_doc/auto
|
||||
title: Auto Classes
|
||||
- local: main_classes/callback
|
||||
title: Callbacks
|
||||
- local: main_classes/configuration
|
||||
@ -162,284 +181,317 @@
|
||||
title: Feature Extractor
|
||||
title: Main Classes
|
||||
- sections:
|
||||
- local: model_doc/albert
|
||||
title: ALBERT
|
||||
- local: model_doc/auto
|
||||
title: Auto Classes
|
||||
- local: model_doc/bart
|
||||
title: BART
|
||||
- local: model_doc/barthez
|
||||
title: BARThez
|
||||
- local: model_doc/bartpho
|
||||
title: BARTpho
|
||||
- local: model_doc/beit
|
||||
title: BEiT
|
||||
- local: model_doc/bert
|
||||
title: BERT
|
||||
- local: model_doc/bert-generation
|
||||
title: BertGeneration
|
||||
- local: model_doc/bert-japanese
|
||||
title: BertJapanese
|
||||
- local: model_doc/bertweet
|
||||
title: Bertweet
|
||||
- local: model_doc/big_bird
|
||||
title: BigBird
|
||||
- local: model_doc/bigbird_pegasus
|
||||
title: BigBirdPegasus
|
||||
- local: model_doc/blenderbot
|
||||
title: Blenderbot
|
||||
- local: model_doc/blenderbot-small
|
||||
title: Blenderbot Small
|
||||
- local: model_doc/bloom
|
||||
title: BLOOM
|
||||
- local: model_doc/bort
|
||||
title: BORT
|
||||
- local: model_doc/byt5
|
||||
title: ByT5
|
||||
- local: model_doc/camembert
|
||||
title: CamemBERT
|
||||
- local: model_doc/canine
|
||||
title: CANINE
|
||||
- local: model_doc/clip
|
||||
title: CLIP
|
||||
- local: model_doc/codegen
|
||||
title: CodeGen
|
||||
- local: model_doc/convbert
|
||||
title: ConvBERT
|
||||
- local: model_doc/convnext
|
||||
title: ConvNeXT
|
||||
- local: model_doc/cpm
|
||||
title: CPM
|
||||
- local: model_doc/ctrl
|
||||
title: CTRL
|
||||
- local: model_doc/cvt
|
||||
title: CvT
|
||||
- local: model_doc/data2vec
|
||||
title: Data2Vec
|
||||
- local: model_doc/deberta
|
||||
title: DeBERTa
|
||||
- local: model_doc/deberta-v2
|
||||
title: DeBERTa-v2
|
||||
- local: model_doc/decision_transformer
|
||||
title: Decision Transformer
|
||||
- local: model_doc/deit
|
||||
title: DeiT
|
||||
- local: model_doc/detr
|
||||
title: DETR
|
||||
- local: model_doc/dialogpt
|
||||
title: DialoGPT
|
||||
- local: model_doc/distilbert
|
||||
title: DistilBERT
|
||||
- local: model_doc/dit
|
||||
title: DiT
|
||||
- local: model_doc/dpr
|
||||
title: DPR
|
||||
- local: model_doc/dpt
|
||||
title: DPT
|
||||
- local: model_doc/electra
|
||||
title: ELECTRA
|
||||
- local: model_doc/encoder-decoder
|
||||
title: Encoder Decoder Models
|
||||
- local: model_doc/flaubert
|
||||
title: FlauBERT
|
||||
- local: model_doc/flava
|
||||
title: FLAVA
|
||||
- local: model_doc/fnet
|
||||
title: FNet
|
||||
- local: model_doc/fsmt
|
||||
title: FSMT
|
||||
- local: model_doc/funnel
|
||||
title: Funnel Transformer
|
||||
- local: model_doc/glpn
|
||||
title: GLPN
|
||||
- local: model_doc/openai-gpt
|
||||
title: GPT
|
||||
- local: model_doc/gpt_neo
|
||||
title: GPT Neo
|
||||
- local: model_doc/gpt_neox
|
||||
title: GPT NeoX
|
||||
- local: model_doc/gptj
|
||||
title: GPT-J
|
||||
- local: model_doc/gpt2
|
||||
title: GPT2
|
||||
- local: model_doc/groupvit
|
||||
title: GroupViT
|
||||
- local: model_doc/herbert
|
||||
title: HerBERT
|
||||
- local: model_doc/hubert
|
||||
title: Hubert
|
||||
- local: model_doc/ibert
|
||||
title: I-BERT
|
||||
- local: model_doc/imagegpt
|
||||
title: ImageGPT
|
||||
- local: model_doc/layoutlm
|
||||
title: LayoutLM
|
||||
- local: model_doc/layoutlmv2
|
||||
title: LayoutLMV2
|
||||
- local: model_doc/layoutlmv3
|
||||
title: LayoutLMV3
|
||||
- local: model_doc/layoutxlm
|
||||
title: LayoutXLM
|
||||
- local: model_doc/led
|
||||
title: LED
|
||||
- local: model_doc/levit
|
||||
title: LeViT
|
||||
- local: model_doc/longformer
|
||||
title: Longformer
|
||||
- local: model_doc/longt5
|
||||
title: LongT5
|
||||
- local: model_doc/luke
|
||||
title: LUKE
|
||||
- local: model_doc/lxmert
|
||||
title: LXMERT
|
||||
- local: model_doc/m2m_100
|
||||
title: M2M100
|
||||
- local: model_doc/marian
|
||||
title: MarianMT
|
||||
- local: model_doc/maskformer
|
||||
title: MaskFormer
|
||||
- local: model_doc/mbart
|
||||
title: MBart and MBart-50
|
||||
- local: model_doc/mctct
|
||||
title: MCTCT
|
||||
- local: model_doc/megatron-bert
|
||||
title: MegatronBERT
|
||||
- local: model_doc/megatron_gpt2
|
||||
title: MegatronGPT2
|
||||
- local: model_doc/mluke
|
||||
title: mLUKE
|
||||
- local: model_doc/mobilebert
|
||||
title: MobileBERT
|
||||
- local: model_doc/mobilevit
|
||||
title: MobileViT
|
||||
- local: model_doc/mpnet
|
||||
title: MPNet
|
||||
- local: model_doc/mt5
|
||||
title: MT5
|
||||
- local: model_doc/mvp
|
||||
title: MVP
|
||||
- local: model_doc/nezha
|
||||
title: NEZHA
|
||||
- local: model_doc/nllb
|
||||
title: NLLB
|
||||
- local: model_doc/nystromformer
|
||||
title: Nyströmformer
|
||||
- local: model_doc/opt
|
||||
title: OPT
|
||||
- local: model_doc/owlvit
|
||||
title: OWL-ViT
|
||||
- local: model_doc/pegasus
|
||||
title: Pegasus
|
||||
- local: model_doc/perceiver
|
||||
title: Perceiver
|
||||
- local: model_doc/phobert
|
||||
title: PhoBERT
|
||||
- local: model_doc/plbart
|
||||
title: PLBart
|
||||
- local: model_doc/poolformer
|
||||
title: PoolFormer
|
||||
- local: model_doc/prophetnet
|
||||
title: ProphetNet
|
||||
- local: model_doc/qdqbert
|
||||
title: QDQBert
|
||||
- local: model_doc/rag
|
||||
title: RAG
|
||||
- local: model_doc/realm
|
||||
title: REALM
|
||||
- local: model_doc/reformer
|
||||
title: Reformer
|
||||
- local: model_doc/regnet
|
||||
title: RegNet
|
||||
- local: model_doc/rembert
|
||||
title: RemBERT
|
||||
- local: model_doc/resnet
|
||||
title: ResNet
|
||||
- local: model_doc/retribert
|
||||
title: RetriBERT
|
||||
- local: model_doc/roberta
|
||||
title: RoBERTa
|
||||
- local: model_doc/roformer
|
||||
title: RoFormer
|
||||
- local: model_doc/segformer
|
||||
title: SegFormer
|
||||
- local: model_doc/sew
|
||||
title: SEW
|
||||
- local: model_doc/sew-d
|
||||
title: SEW-D
|
||||
- local: model_doc/speech-encoder-decoder
|
||||
title: Speech Encoder Decoder Models
|
||||
- local: model_doc/speech_to_text
|
||||
title: Speech2Text
|
||||
- local: model_doc/speech_to_text_2
|
||||
title: Speech2Text2
|
||||
- local: model_doc/splinter
|
||||
title: Splinter
|
||||
- local: model_doc/squeezebert
|
||||
title: SqueezeBERT
|
||||
- local: model_doc/swin
|
||||
title: Swin Transformer
|
||||
- local: model_doc/t5
|
||||
title: T5
|
||||
- local: model_doc/t5v1.1
|
||||
title: T5v1.1
|
||||
- local: model_doc/tapas
|
||||
title: TAPAS
|
||||
- local: model_doc/tapex
|
||||
title: TAPEX
|
||||
- local: model_doc/trajectory_transformer
|
||||
title: Trajectory Transformer
|
||||
- local: model_doc/transfo-xl
|
||||
title: Transformer XL
|
||||
- local: model_doc/trocr
|
||||
title: TrOCR
|
||||
- local: model_doc/ul2
|
||||
title: UL2
|
||||
- local: model_doc/unispeech
|
||||
title: UniSpeech
|
||||
- local: model_doc/unispeech-sat
|
||||
title: UniSpeech-SAT
|
||||
- local: model_doc/van
|
||||
title: VAN
|
||||
- local: model_doc/vilt
|
||||
title: ViLT
|
||||
- local: model_doc/vision-encoder-decoder
|
||||
title: Vision Encoder Decoder Models
|
||||
- local: model_doc/vision-text-dual-encoder
|
||||
title: Vision Text Dual Encoder
|
||||
- local: model_doc/vit
|
||||
title: Vision Transformer (ViT)
|
||||
- local: model_doc/visual_bert
|
||||
title: VisualBERT
|
||||
- local: model_doc/vit_mae
|
||||
title: ViTMAE
|
||||
- local: model_doc/wav2vec2
|
||||
title: Wav2Vec2
|
||||
- local: model_doc/wav2vec2-conformer
|
||||
title: Wav2Vec2-Conformer
|
||||
- local: model_doc/wav2vec2_phoneme
|
||||
title: Wav2Vec2Phoneme
|
||||
- local: model_doc/wavlm
|
||||
title: WavLM
|
||||
- local: model_doc/xglm
|
||||
title: XGLM
|
||||
- local: model_doc/xlm
|
||||
title: XLM
|
||||
- local: model_doc/xlm-prophetnet
|
||||
title: XLM-ProphetNet
|
||||
- local: model_doc/xlm-roberta
|
||||
title: XLM-RoBERTa
|
||||
- local: model_doc/xlm-roberta-xl
|
||||
title: XLM-RoBERTa-XL
|
||||
- local: model_doc/xlnet
|
||||
title: XLNet
|
||||
- local: model_doc/xls_r
|
||||
title: XLS-R
|
||||
- local: model_doc/xlsr_wav2vec2
|
||||
title: XLSR-Wav2Vec2
|
||||
- local: model_doc/yolos
|
||||
title: YOLOS
|
||||
- local: model_doc/yoso
|
||||
title: YOSO
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: model_doc/albert
|
||||
title: ALBERT
|
||||
- local: model_doc/bart
|
||||
title: BART
|
||||
- local: model_doc/barthez
|
||||
title: BARThez
|
||||
- local: model_doc/bartpho
|
||||
title: BARTpho
|
||||
- local: model_doc/bert
|
||||
title: BERT
|
||||
- local: model_doc/bert-generation
|
||||
title: BertGeneration
|
||||
- local: model_doc/bert-japanese
|
||||
title: BertJapanese
|
||||
- local: model_doc/bertweet
|
||||
title: Bertweet
|
||||
- local: model_doc/big_bird
|
||||
title: BigBird
|
||||
- local: model_doc/bigbird_pegasus
|
||||
title: BigBirdPegasus
|
||||
- local: model_doc/blenderbot
|
||||
title: Blenderbot
|
||||
- local: model_doc/blenderbot-small
|
||||
title: Blenderbot Small
|
||||
- local: model_doc/bloom
|
||||
title: BLOOM
|
||||
- local: model_doc/bort
|
||||
title: BORT
|
||||
- local: model_doc/byt5
|
||||
title: ByT5
|
||||
- local: model_doc/camembert
|
||||
title: CamemBERT
|
||||
- local: model_doc/canine
|
||||
title: CANINE
|
||||
- local: model_doc/codegen
|
||||
title: CodeGen
|
||||
- local: model_doc/convbert
|
||||
title: ConvBERT
|
||||
- local: model_doc/cpm
|
||||
title: CPM
|
||||
- local: model_doc/ctrl
|
||||
title: CTRL
|
||||
- local: model_doc/deberta
|
||||
title: DeBERTa
|
||||
- local: model_doc/deberta-v2
|
||||
title: DeBERTa-v2
|
||||
- local: model_doc/dialogpt
|
||||
title: DialoGPT
|
||||
- local: model_doc/distilbert
|
||||
title: DistilBERT
|
||||
- local: model_doc/dpr
|
||||
title: DPR
|
||||
- local: model_doc/electra
|
||||
title: ELECTRA
|
||||
- local: model_doc/encoder-decoder
|
||||
title: Encoder Decoder Models
|
||||
- local: model_doc/ernie
|
||||
title: ERNIE
|
||||
- local: model_doc/flaubert
|
||||
title: FlauBERT
|
||||
- local: model_doc/fnet
|
||||
title: FNet
|
||||
- local: model_doc/fsmt
|
||||
title: FSMT
|
||||
- local: model_doc/funnel
|
||||
title: Funnel Transformer
|
||||
- local: model_doc/openai-gpt
|
||||
title: GPT
|
||||
- local: model_doc/gpt_neo
|
||||
title: GPT Neo
|
||||
- local: model_doc/gpt_neox
|
||||
title: GPT NeoX
|
||||
- local: model_doc/gpt_neox_japanese
|
||||
title: GPT NeoX Japanese
|
||||
- local: model_doc/gptj
|
||||
title: GPT-J
|
||||
- local: model_doc/gpt2
|
||||
title: GPT2
|
||||
- local: model_doc/herbert
|
||||
title: HerBERT
|
||||
- local: model_doc/ibert
|
||||
title: I-BERT
|
||||
- local: model_doc/layoutlm
|
||||
title: LayoutLM
|
||||
- local: model_doc/led
|
||||
title: LED
|
||||
- local: model_doc/longformer
|
||||
title: Longformer
|
||||
- local: model_doc/longt5
|
||||
title: LongT5
|
||||
- local: model_doc/luke
|
||||
title: LUKE
|
||||
- local: model_doc/m2m_100
|
||||
title: M2M100
|
||||
- local: model_doc/marian
|
||||
title: MarianMT
|
||||
- local: model_doc/mbart
|
||||
title: MBart and MBart-50
|
||||
- local: model_doc/megatron-bert
|
||||
title: MegatronBERT
|
||||
- local: model_doc/megatron_gpt2
|
||||
title: MegatronGPT2
|
||||
- local: model_doc/mluke
|
||||
title: mLUKE
|
||||
- local: model_doc/mobilebert
|
||||
title: MobileBERT
|
||||
- local: model_doc/mpnet
|
||||
title: MPNet
|
||||
- local: model_doc/mt5
|
||||
title: MT5
|
||||
- local: model_doc/mvp
|
||||
title: MVP
|
||||
- local: model_doc/nezha
|
||||
title: NEZHA
|
||||
- local: model_doc/nllb
|
||||
title: NLLB
|
||||
- local: model_doc/nystromformer
|
||||
title: Nyströmformer
|
||||
- local: model_doc/opt
|
||||
title: OPT
|
||||
- local: model_doc/pegasus
|
||||
title: Pegasus
|
||||
- local: model_doc/pegasus_x
|
||||
title: PEGASUS-X
|
||||
- local: model_doc/phobert
|
||||
title: PhoBERT
|
||||
- local: model_doc/plbart
|
||||
title: PLBart
|
||||
- local: model_doc/prophetnet
|
||||
title: ProphetNet
|
||||
- local: model_doc/qdqbert
|
||||
title: QDQBert
|
||||
- local: model_doc/rag
|
||||
title: RAG
|
||||
- local: model_doc/realm
|
||||
title: REALM
|
||||
- local: model_doc/reformer
|
||||
title: Reformer
|
||||
- local: model_doc/rembert
|
||||
title: RemBERT
|
||||
- local: model_doc/retribert
|
||||
title: RetriBERT
|
||||
- local: model_doc/roberta
|
||||
title: RoBERTa
|
||||
- local: model_doc/roformer
|
||||
title: RoFormer
|
||||
- local: model_doc/splinter
|
||||
title: Splinter
|
||||
- local: model_doc/squeezebert
|
||||
title: SqueezeBERT
|
||||
- local: model_doc/t5
|
||||
title: T5
|
||||
- local: model_doc/t5v1.1
|
||||
title: T5v1.1
|
||||
- local: model_doc/tapas
|
||||
title: TAPAS
|
||||
- local: model_doc/tapex
|
||||
title: TAPEX
|
||||
- local: model_doc/transfo-xl
|
||||
title: Transformer XL
|
||||
- local: model_doc/ul2
|
||||
title: UL2
|
||||
- local: model_doc/xglm
|
||||
title: XGLM
|
||||
- local: model_doc/xlm
|
||||
title: XLM
|
||||
- local: model_doc/xlm-prophetnet
|
||||
title: XLM-ProphetNet
|
||||
- local: model_doc/xlm-roberta
|
||||
title: XLM-RoBERTa
|
||||
- local: model_doc/xlm-roberta-xl
|
||||
title: XLM-RoBERTa-XL
|
||||
- local: model_doc/xlnet
|
||||
title: XLNet
|
||||
- local: model_doc/yoso
|
||||
title: YOSO
|
||||
title: Text models
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: model_doc/beit
|
||||
title: BEiT
|
||||
- local: model_doc/conditional_detr
|
||||
title: Conditional DETR
|
||||
- local: model_doc/convnext
|
||||
title: ConvNeXT
|
||||
- local: model_doc/cvt
|
||||
title: CvT
|
||||
- local: model_doc/deformable_detr
|
||||
title: Deformable DETR
|
||||
- local: model_doc/deit
|
||||
title: DeiT
|
||||
- local: model_doc/detr
|
||||
title: DETR
|
||||
- local: model_doc/dit
|
||||
title: DiT
|
||||
- local: model_doc/dpt
|
||||
title: DPT
|
||||
- local: model_doc/glpn
|
||||
title: GLPN
|
||||
- local: model_doc/imagegpt
|
||||
title: ImageGPT
|
||||
- local: model_doc/levit
|
||||
title: LeViT
|
||||
- local: model_doc/maskformer
|
||||
title: MaskFormer
|
||||
- local: model_doc/mobilevit
|
||||
title: MobileViT
|
||||
- local: model_doc/poolformer
|
||||
title: PoolFormer
|
||||
- local: model_doc/regnet
|
||||
title: RegNet
|
||||
- local: model_doc/resnet
|
||||
title: ResNet
|
||||
- local: model_doc/segformer
|
||||
title: SegFormer
|
||||
- local: model_doc/swin
|
||||
title: Swin Transformer
|
||||
- local: model_doc/swinv2
|
||||
title: Swin Transformer V2
|
||||
- local: model_doc/van
|
||||
title: VAN
|
||||
- local: model_doc/videomae
|
||||
title: VideoMAE
|
||||
- local: model_doc/vit
|
||||
title: Vision Transformer (ViT)
|
||||
- local: model_doc/vit_mae
|
||||
title: ViTMAE
|
||||
- local: model_doc/vit_msn
|
||||
title: ViTMSN
|
||||
- local: model_doc/yolos
|
||||
title: YOLOS
|
||||
title: Vision models
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: model_doc/hubert
|
||||
title: Hubert
|
||||
- local: model_doc/mctct
|
||||
title: MCTCT
|
||||
- local: model_doc/sew
|
||||
title: SEW
|
||||
- local: model_doc/sew-d
|
||||
title: SEW-D
|
||||
- local: model_doc/speech_to_text
|
||||
title: Speech2Text
|
||||
- local: model_doc/speech_to_text_2
|
||||
title: Speech2Text2
|
||||
- local: model_doc/unispeech
|
||||
title: UniSpeech
|
||||
- local: model_doc/unispeech-sat
|
||||
title: UniSpeech-SAT
|
||||
- local: model_doc/wav2vec2
|
||||
title: Wav2Vec2
|
||||
- local: model_doc/wav2vec2-conformer
|
||||
title: Wav2Vec2-Conformer
|
||||
- local: model_doc/wav2vec2_phoneme
|
||||
title: Wav2Vec2Phoneme
|
||||
- local: model_doc/wavlm
|
||||
title: WavLM
|
||||
- local: model_doc/xls_r
|
||||
title: XLS-R
|
||||
- local: model_doc/xlsr_wav2vec2
|
||||
title: XLSR-Wav2Vec2
|
||||
title: Audio models
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: model_doc/clip
|
||||
title: CLIP
|
||||
- local: model_doc/data2vec
|
||||
title: Data2Vec
|
||||
- local: model_doc/donut
|
||||
title: Donut
|
||||
- local: model_doc/flava
|
||||
title: FLAVA
|
||||
- local: model_doc/groupvit
|
||||
title: GroupViT
|
||||
- local: model_doc/layoutlmv2
|
||||
title: LayoutLMV2
|
||||
- local: model_doc/layoutlmv3
|
||||
title: LayoutLMV3
|
||||
- local: model_doc/layoutxlm
|
||||
title: LayoutXLM
|
||||
- local: model_doc/lxmert
|
||||
title: LXMERT
|
||||
- local: model_doc/owlvit
|
||||
title: OWL-ViT
|
||||
- local: model_doc/perceiver
|
||||
title: Perceiver
|
||||
- local: model_doc/speech-encoder-decoder
|
||||
title: Speech Encoder Decoder Models
|
||||
- local: model_doc/trocr
|
||||
title: TrOCR
|
||||
- local: model_doc/vilt
|
||||
title: ViLT
|
||||
- local: model_doc/vision-encoder-decoder
|
||||
title: Vision Encoder Decoder Models
|
||||
- local: model_doc/vision-text-dual-encoder
|
||||
title: Vision Text Dual Encoder
|
||||
- local: model_doc/visual_bert
|
||||
title: VisualBERT
|
||||
- local: model_doc/xclip
|
||||
title: X-CLIP
|
||||
title: Multimodal models
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: model_doc/decision_transformer
|
||||
title: Decision Transformer
|
||||
- local: model_doc/trajectory_transformer
|
||||
title: Trajectory Transformer
|
||||
title: Reinforcement learning models
|
||||
title: Models
|
||||
- sections:
|
||||
- local: internal/modeling_utils
|
||||
@ -455,4 +507,4 @@
|
||||
- local: internal/file_utils
|
||||
title: General Utilities
|
||||
title: Internal Helpers
|
||||
title: API
|
||||
title: API
|
@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Distributed training with 🤗 Accelerate
|
||||
|
||||
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate/index.html) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
|
||||
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
|
||||
|
||||
## Setup
|
||||
|
||||
@ -22,7 +22,7 @@ Get started by installing 🤗 Accelerate:
|
||||
pip install accelerate
|
||||
```
|
||||
|
||||
Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator) object. `Accelerator` will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
|
||||
Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
|
||||
|
||||
```py
|
||||
>>> from accelerate import Accelerator
|
||||
@ -32,7 +32,7 @@ Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate
|
||||
|
||||
## Prepare to accelerate
|
||||
|
||||
The next step is to pass all the relevant training objects to the [`prepare`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.prepare) method. This includes your training and evaluation DataLoaders, a model and an optimizer:
|
||||
The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer:
|
||||
|
||||
```py
|
||||
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
|
||||
@ -42,7 +42,7 @@ The next step is to pass all the relevant training objects to the [`prepare`](ht
|
||||
|
||||
## Backward
|
||||
|
||||
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`backward`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.backward) method:
|
||||
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method:
|
||||
|
||||
```py
|
||||
>>> for epoch in range(num_epochs):
|
||||
@ -121,7 +121,7 @@ accelerate launch train.py
|
||||
|
||||
### Train with a notebook
|
||||
|
||||
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to `notebook_launcher`:
|
||||
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]:
|
||||
|
||||
```py
|
||||
>>> from accelerate import notebook_launcher
|
||||
@ -129,4 +129,4 @@ accelerate launch train.py
|
||||
>>> notebook_launcher(training_function)
|
||||
```
|
||||
|
||||
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate/index.html).
|
||||
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).
|
@ -813,13 +813,9 @@ checkpoint and to get the required access rights to be able to upload the model
|
||||
*brand_new_bert*. The `push_to_hub` method, present in all models in `transformers`, is a quick and efficient way to push your checkpoint to the hub. A little snippet is pasted below:
|
||||
|
||||
```python
|
||||
brand_new_bert.push_to_hub(
|
||||
repo_path_or_name="brand_new_bert",
|
||||
# Uncomment the following line to push to an organization
|
||||
# organization="<ORGANIZATION>",
|
||||
commit_message="Add model",
|
||||
use_temp_dir=True,
|
||||
)
|
||||
brand_new_bert.push_to_hub("brand_new_bert")
|
||||
# Uncomment the following line to push to an organization.
|
||||
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
|
||||
```
|
||||
|
||||
It is worth spending some time to create fitting model cards for each checkpoint. The model cards should highlight the
|
||||
|
@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Load pretrained instances with an AutoClass
|
||||
|
||||
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
|
||||
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -95,6 +95,14 @@ Easily reuse the same checkpoint to load an architecture for a different task:
|
||||
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
For PyTorch models, the `from_pretrained()` method uses `torch.load()` which internally uses `pickle` and is known to be insecure. In general, never load a model that could have come from an untrusted source, or that could have been tampered with. This security risk is partially mitigated for public models hosted on the Hugging Face Hub, which are [scanned for malware](https://huggingface.co/docs/hub/security-malware) at each commit. See the [Hub documentation](https://huggingface.co/docs/hub/security) for best practices like [signed commit verification](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) with GPG.
|
||||
|
||||
TensorFlow and Flax checkpoints are not affected, and can be loaded within PyTorch architectures using the `from_tf` and `from_flax` kwargs for the `from_pretrained` method to circumvent this issue.
|
||||
|
||||
</Tip>
|
||||
|
||||
Generally, we recommend using the `AutoTokenizer` class and the `AutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
|
||||
</pt>
|
||||
<tf>
|
||||
|
@ -77,7 +77,7 @@ to the normal command line arguments, or pass `debug="underflow_overflow"` when
|
||||
If you're using your own training loop or another Trainer you can accomplish the same with:
|
||||
|
||||
```python
|
||||
from .debug_utils import DebugUnderflowOverflow
|
||||
from transformers.debug_utils import DebugUnderflowOverflow
|
||||
|
||||
debug_overflow = DebugUnderflowOverflow(model)
|
||||
```
|
||||
@ -271,7 +271,7 @@ Additionally, if you're instantiating the debugger in your own code, you can adj
|
||||
its default, e.g.:
|
||||
|
||||
```python
|
||||
from .debug_utils import DebugUnderflowOverflow
|
||||
from transformers.debug_utils import DebugUnderflowOverflow
|
||||
|
||||
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
|
||||
```
|
||||
|
@ -44,7 +44,7 @@ specific language governing permissions and limitations under the License.
|
||||
Every model is different yet bears similarities with the others. Therefore most models use the same inputs, which are
|
||||
detailed here alongside usage examples.
|
||||
|
||||
<a id='input-ids'></a>
|
||||
|
||||
|
||||
### Input IDs
|
||||
|
||||
@ -113,7 +113,7 @@ we will see
|
||||
|
||||
because this is the way a [`BertModel`] is going to expect its inputs.
|
||||
|
||||
<a id='attention-mask'></a>
|
||||
|
||||
|
||||
### Attention mask
|
||||
|
||||
@ -171,7 +171,7 @@ in the dictionary returned by the tokenizer under the key "attention_mask":
|
||||
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
|
||||
```
|
||||
|
||||
<a id='token-type-ids'></a>
|
||||
|
||||
|
||||
### Token Type IDs
|
||||
|
||||
@ -224,7 +224,7 @@ second sequence, corresponding to the "question", has all its tokens represented
|
||||
|
||||
Some models, like [`XLNetModel`] use an additional token represented by a `2`.
|
||||
|
||||
<a id='position-ids'></a>
|
||||
|
||||
|
||||
### Position IDs
|
||||
|
||||
@ -238,7 +238,7 @@ absolute positional embeddings.
|
||||
Absolute positional embeddings are selected in the range `[0, config.max_position_embeddings - 1]`. Some models use
|
||||
other types of positional embeddings, such as sinusoidal position embeddings or relative position embeddings.
|
||||
|
||||
<a id='labels'></a>
|
||||
|
||||
|
||||
### Labels
|
||||
|
||||
@ -266,7 +266,7 @@ These labels are different according to the model head, for example:
|
||||
The base models (e.g., [`BertModel`]) do not accept labels, as these are the base transformer
|
||||
models, simply outputting features.
|
||||
|
||||
<a id='decoder-input-ids'></a>
|
||||
|
||||
|
||||
### Decoder input IDs
|
||||
|
||||
@ -279,7 +279,6 @@ such models, passing the `labels` is the preferred way to handle training.
|
||||
|
||||
Please check each model's docs to see how they handle these input IDs for sequence to sequence training.
|
||||
|
||||
<a id='feed-forward-chunking'></a>
|
||||
|
||||
### Feed Forward Chunking
|
||||
|
||||
|
120
docs/source/en/hpo_train.mdx
Normal file
120
docs/source/en/hpo_train.mdx
Normal file
@ -0,0 +1,120 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
-->
|
||||
|
||||
# Hyperparameter Search using Trainer API
|
||||
|
||||
🤗 Transformers provides a [`Trainer`] class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [`Trainer`] provides API for hyperparameter search. This doc shows how to enable it in example.
|
||||
|
||||
## Hyperparameter Search backend
|
||||
|
||||
[`Trainer`] supports four hyperparameter search backends currently:
|
||||
[optuna](https://optuna.org/), [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html) and [wandb](https://wandb.ai/site/sweeps).
|
||||
|
||||
you should install them before using them as the hyperparameter search backend
|
||||
```bash
|
||||
pip install optuna/sigopt/wandb/ray[tune]
|
||||
```
|
||||
|
||||
## How to enable Hyperparameter search in example
|
||||
|
||||
Define the hyperparameter search space, different backends need different format.
|
||||
|
||||
For sigopt, see sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter), it's like following:
|
||||
```py
|
||||
>>> def sigopt_hp_space(trial):
|
||||
... return [
|
||||
... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
|
||||
... {
|
||||
... "categorical_values": ["16", "32", "64", "128"],
|
||||
... "name": "per_device_train_batch_size",
|
||||
... "type": "categorical",
|
||||
... },
|
||||
... ]
|
||||
```
|
||||
|
||||
For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py), it's like following:
|
||||
|
||||
```py
|
||||
>>> def optuna_hp_space(trial):
|
||||
... return {
|
||||
... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
|
||||
... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
|
||||
... }
|
||||
```
|
||||
|
||||
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api_docs/search_space.html), it's like following:
|
||||
|
||||
```py
|
||||
>>> def ray_hp_space(trial):
|
||||
... return {
|
||||
... "learning_rate": tune.loguniform(1e-6, 1e-4),
|
||||
... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
|
||||
... }
|
||||
```
|
||||
|
||||
For wandb, see wandb [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration), it's like following:
|
||||
|
||||
```py
|
||||
>>> def wandb_hp_space(trial):
|
||||
... return {
|
||||
... "method": "random",
|
||||
... "metric": {"name": "objective", "goal": "minimize"},
|
||||
... "parameters": {
|
||||
... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
|
||||
... "per_device_train_batch_size": {"values": [16, 32, 64, 128]},
|
||||
... },
|
||||
... }
|
||||
```
|
||||
|
||||
Define a `model_init` function and pass it to the [`Trainer`], as an example:
|
||||
```py
|
||||
>>> def model_init(trial):
|
||||
... return AutoModelForSequenceClassification.from_pretrained(
|
||||
... model_args.model_name_or_path,
|
||||
... from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||
... config=config,
|
||||
... cache_dir=model_args.cache_dir,
|
||||
... revision=model_args.model_revision,
|
||||
... use_auth_token=True if model_args.use_auth_token else None,
|
||||
... )
|
||||
```
|
||||
|
||||
Create a [`Trainer`] with your `model_init` function, training arguments, training and test datasets, and evaluation function:
|
||||
|
||||
```py
|
||||
>>> trainer = Trainer(
|
||||
... model=None,
|
||||
... args=training_args,
|
||||
... train_dataset=small_train_dataset,
|
||||
... eval_dataset=small_eval_dataset,
|
||||
... compute_metrics=compute_metrics,
|
||||
... tokenizer=tokenizer,
|
||||
... model_init=model_init,
|
||||
... data_collator=data_collator,
|
||||
... )
|
||||
```
|
||||
|
||||
Call hyperparameter search, get the best trial parameters, backend could be `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"`. direction can be`"minimize"` or `"maximize"`, which indicates whether to optimize greater or lower objective.
|
||||
|
||||
You could define your own compute_objective function, if not defined, the default compute_objective will be called, and the sum of eval metric like f1 is returned as objective value.
|
||||
|
||||
```py
|
||||
>>> best_trial = trainer.hyperparameter_search(
|
||||
... direction="maximize",
|
||||
... backend="optuna",
|
||||
... hp_space=optuna_hp_space,
|
||||
... n_trials=20,
|
||||
... compute_objective=compute_objective,
|
||||
... )
|
||||
```
|
||||
|
||||
## Hyperparameter search For DDP refinetune
|
||||
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.
|
@ -12,18 +12,18 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# 🤗 Transformers
|
||||
|
||||
State-of-the-art Machine Learning for PyTorch, TensorFlow and JAX.
|
||||
State-of-the-art Machine Learning for [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/), and [JAX](https://jax.readthedocs.io/en/latest/).
|
||||
|
||||
🤗 Transformers provides APIs to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you time from training a model from scratch. The models can be used across different modalities such as:
|
||||
🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:
|
||||
|
||||
* 📝 Text: text classification, information extraction, question answering, summarization, translation, and text generation in over 100 languages.
|
||||
* 🖼️ Images: image classification, object detection, and segmentation.
|
||||
* 🗣️ Audio: speech recognition and audio classification.
|
||||
* 🐙 Multimodal: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
|
||||
📝 **Natural Language Processing**: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.<br>
|
||||
🖼️ **Computer Vision**: image classification, object detection, and segmentation.<br>
|
||||
🗣️ **Audio**: automatic speech recognition and audio classification.<br>
|
||||
🐙 **Multimodal**: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
|
||||
|
||||
Our library supports seamless integration between three of the most popular deep learning libraries: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) and [JAX](https://jax.readthedocs.io/en/latest/). Train your model in three lines of code in one framework, and load it for inference with another.
|
||||
🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.
|
||||
|
||||
Each 🤗 Transformers architecture is defined in a standalone Python module so they can be easily customized for research and experiments.
|
||||
Join the growing community on the [Hub](https://huggingface.co/models), [forum](https://discuss.huggingface.co/), or [Discord](https://discord.com/invite/JfAtkvEtRb) today!
|
||||
|
||||
## If you are looking for custom support from the Hugging Face team
|
||||
|
||||
@ -33,19 +33,17 @@ Each 🤗 Transformers architecture is defined in a standalone Python module so
|
||||
|
||||
## Contents
|
||||
|
||||
The documentation is organized in five parts:
|
||||
The documentation is organized into five sections:
|
||||
|
||||
- **GET STARTED** contains a quick tour and installation instructions to get up and running with 🤗 Transformers.
|
||||
- **TUTORIALS** are a great place to begin if you are new to our library. This section will help you gain the basic skills you need to start using 🤗 Transformers.
|
||||
- **HOW-TO GUIDES** will show you how to achieve a specific goal like fine-tuning a pretrained model for language modeling or how to create a custom model head.
|
||||
- **CONCEPTUAL GUIDES** provides more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
|
||||
- **API** describes each class and function, grouped in:
|
||||
- **GET STARTED** provides a quick tour of the library and installation instructions to get up and running.
|
||||
- **TUTORIALS** are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.
|
||||
- **HOW-TO GUIDES** show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.
|
||||
- **CONCEPTUAL GUIDES** offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
|
||||
- **API** describes all classes and functions:
|
||||
|
||||
- **MAIN CLASSES** for the main classes exposing the important APIs of the library.
|
||||
- **MODELS** for the classes and functions related to each model implemented in the library.
|
||||
- **INTERNAL HELPERS** for the classes and functions we use internally.
|
||||
|
||||
The library currently contains JAX, PyTorch and TensorFlow implementations, pretrained model weights, usage scripts and conversion utilities for the following models.
|
||||
- **MAIN CLASSES** details the most important classes like configuration, model, tokenizer, and pipeline.
|
||||
- **MODELS** details the classes and functions related to each model implemented in the library.
|
||||
- **INTERNAL HELPERS** details utility classes and functions used internally.
|
||||
|
||||
### Supported models
|
||||
|
||||
@ -70,6 +68,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
|
||||
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
|
||||
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
|
||||
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
|
||||
1. **[Conditional DETR](model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
|
||||
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
|
||||
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
|
||||
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
|
||||
@ -79,15 +78,18 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
|
||||
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
|
||||
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
|
||||
1. **[Deformable DETR](model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
|
||||
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
|
||||
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
|
||||
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
|
||||
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
|
||||
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
|
||||
1. **[Donut](model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
|
||||
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
||||
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
|
||||
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
|
||||
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
|
||||
1. **[ERNIE](model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
|
||||
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
|
||||
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
|
||||
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
|
||||
@ -96,6 +98,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
|
||||
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
|
||||
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
|
||||
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
|
||||
1. **[GPT NeoX Japanese](model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
|
||||
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
|
||||
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
|
||||
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
|
||||
@ -105,7 +108,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
|
||||
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
|
||||
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
|
||||
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
|
||||
1. **[LayoutXLM](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
|
||||
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
|
||||
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
|
||||
@ -132,6 +135,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
|
||||
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
|
||||
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
|
||||
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||
1. **[PEGASUS-X](model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
|
||||
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
|
||||
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
|
||||
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
|
||||
@ -154,6 +158,7 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
|
||||
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
|
||||
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
|
||||
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
|
||||
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
|
||||
@ -165,14 +170,17 @@ The library currently contains JAX, PyTorch and TensorFlow implementations, pret
|
||||
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
|
||||
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
|
||||
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
|
||||
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
|
||||
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
|
||||
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
|
||||
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
|
||||
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
|
||||
1. **[ViTMSN](model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
|
||||
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
|
||||
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
|
||||
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
|
||||
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
|
||||
1. **[X-CLIP](model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
|
||||
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
|
||||
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
|
||||
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||
@ -209,6 +217,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| Conditional DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
@ -219,13 +228,16 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Deformable DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| DonutSwin | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
@ -234,14 +246,15 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
|
||||
| GPT NeoX Japanese | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| GroupViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GroupViT | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| LayoutLMv3 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| LayoutLMv3 | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
@ -255,7 +268,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| MobileViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| MobileViT | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
@ -266,6 +279,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| PEGASUS-X | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
@ -289,6 +303,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
@ -297,16 +312,19 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
|
||||
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ViTMSN | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
|
||||
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| XGLM | ✅ | ✅ | ✅ | ❌ | ✅ |
|
||||
| X-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| XGLM | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
|
@ -139,11 +139,11 @@ conda install -c huggingface transformers
|
||||
|
||||
## Cache setup
|
||||
|
||||
Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/transformers/`. This is the default directory given by the shell environment variable `TRANSFORMERS_CACHE`. On Windows, the default directory is given by `C:\Users\username\.cache\huggingface\transformers`. You can change the shell environment variables shown below - in order of priority - to specify a different cache directory:
|
||||
Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/hub`. This is the default directory given by the shell environment variable `TRANSFORMERS_CACHE`. On Windows, the default directory is given by `C:\Users\username\.cache\huggingface\hub`. You can change the shell environment variables shown below - in order of priority - to specify a different cache directory:
|
||||
|
||||
1. Shell environment variable (default): `TRANSFORMERS_CACHE`.
|
||||
2. Shell environment variable: `HF_HOME` + `transformers/`.
|
||||
3. Shell environment variable: `XDG_CACHE_HOME` + `/huggingface/transformers`.
|
||||
1. Shell environment variable (default): `HUGGINGFACE_HUB_CACHE` or `TRANSFORMERS_CACHE`.
|
||||
2. Shell environment variable: `HF_HOME`.
|
||||
3. Shell environment variable: `XDG_CACHE_HOME` + `/huggingface`.
|
||||
|
||||
<Tip>
|
||||
|
||||
|
@ -32,6 +32,7 @@ By default a [`Trainer`] will use the following callbacks:
|
||||
- [`~integrations.WandbCallback`] if [wandb](https://www.wandb.com/) is installed.
|
||||
- [`~integrations.CometCallback`] if [comet_ml](https://www.comet.ml/site/) is installed.
|
||||
- [`~integrations.MLflowCallback`] if [mlflow](https://www.mlflow.org/) is installed.
|
||||
- [`~integrations.NeptuneCallback`] if [neptune](https://neptune.ai/) is installed.
|
||||
- [`~integrations.AzureMLCallback`] if [azureml-sdk](https://pypi.org/project/azureml-sdk/) is
|
||||
installed.
|
||||
- [`~integrations.CodeCarbonCallback`] if [codecarbon](https://pypi.org/project/codecarbon/) is
|
||||
@ -70,6 +71,8 @@ Here is the list of the available [`TrainerCallback`] in the library:
|
||||
|
||||
[[autodoc]] integrations.CodeCarbonCallback
|
||||
|
||||
[[autodoc]] integrations.NeptuneCallback
|
||||
|
||||
## TrainerCallback
|
||||
|
||||
[[autodoc]] TrainerCallback
|
||||
|
@ -37,7 +37,7 @@ won't be possible on a single GPU.
|
||||
2. If you don't use [`Trainer`] and want to use your own Trainer where you integrated DeepSpeed
|
||||
yourself, core functionality functions like `from_pretrained` and `from_config` include integration of essential
|
||||
parts of DeepSpeed like `zero.Init` for ZeRO stage 3 and higher. To tap into this feature read the docs on
|
||||
[deepspeed-non-trainer-integration](#deepspeed-non-trainer-integration).
|
||||
[non-Trainer DeepSpeed Integration](#nontrainer-deepspeed-integration).
|
||||
|
||||
What is integrated:
|
||||
|
||||
@ -49,7 +49,7 @@ Inference:
|
||||
|
||||
1. DeepSpeed ZeRO Inference supports ZeRO stage 3 with ZeRO-Infinity. It uses the same ZeRO protocol as training, but
|
||||
it doesn't use an optimizer and a lr scheduler and only stage 3 is relevant. For more details see:
|
||||
[deepspeed-zero-inference](#deepspeed-zero-inference).
|
||||
[zero-inference](#zero-inference).
|
||||
|
||||
There is also DeepSpeed Inference - this is a totally different technology which uses Tensor Parallelism instead of
|
||||
ZeRO (coming soon).
|
||||
@ -81,7 +81,7 @@ pip install transformers[deepspeed]
|
||||
or find more details on [the DeepSpeed's GitHub page](https://github.com/microsoft/deepspeed#installation) and
|
||||
[advanced install](https://www.deepspeed.ai/tutorials/advanced-install/).
|
||||
|
||||
If you're still struggling with the build, first make sure to read [zero-install-notes](#zero-install-notes).
|
||||
If you're still struggling with the build, first make sure to read [CUDA Extension Installation Notes](trainer#cuda-extension-installation-notes).
|
||||
|
||||
If you don't prebuild the extensions and rely on them to be built at run time and you tried all of the above solutions
|
||||
to no avail, the next thing to try is to pre-build the modules before installing them.
|
||||
@ -1849,7 +1849,6 @@ In this case you usually need to raise the value of `initial_scale_power`. Setti
|
||||
|
||||
|
||||
|
||||
<a id='deepspeed-non-trainer-integration'></a>
|
||||
|
||||
## Non-Trainer Deepspeed Integration
|
||||
|
||||
|
@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Feature Extractor
|
||||
|
||||
A feature extractor is in charge of preparing input features for a multi-modal model. This includes feature extraction
|
||||
A feature extractor is in charge of preparing input features for audio or vision models. This includes feature extraction
|
||||
from sequences, *e.g.*, pre-processing audio files to Log-Mel Spectrogram features, feature extraction from images
|
||||
*e.g.* cropping image image files, but also padding, normalization, and conversion to Numpy, PyTorch, and TensorFlow
|
||||
tensors.
|
||||
|
@ -105,7 +105,7 @@ You can also write your own device map following the same format (a dictionary l
|
||||
device_map = {"shared": 0, "encoder": 0, "decoder": 1, "lm_head": 1}
|
||||
```
|
||||
|
||||
Another way to minimize the memory impact of your model is to instantiate it at a lower precision dtype (like `torch.float16`).
|
||||
Another way to minimize the memory impact of your model is to instantiate it at a lower precision dtype (like `torch.float16`) or use direct quantization techniques as described below.
|
||||
|
||||
### Model Instantiation dtype
|
||||
|
||||
@ -134,7 +134,6 @@ model = AutoModel.from_config(config)
|
||||
Due to Pytorch design, this functionality is only available for floating dtypes.
|
||||
|
||||
|
||||
|
||||
## ModuleUtilsMixin
|
||||
|
||||
[[autodoc]] modeling_utils.ModuleUtilsMixin
|
||||
|
@ -16,7 +16,7 @@ All models have outputs that are instances of subclasses of [`~utils.ModelOutput
|
||||
data structures containing all the information returned by the model, but that can also be used as tuples or
|
||||
dictionaries.
|
||||
|
||||
Let's see of this looks on an example:
|
||||
Let's see how this looks in an example:
|
||||
|
||||
```python
|
||||
from transformers import BertTokenizer, BertForSequenceClassification
|
||||
|
@ -25,10 +25,12 @@ There are two categories of pipeline abstractions to be aware about:
|
||||
- [`AudioClassificationPipeline`]
|
||||
- [`AutomaticSpeechRecognitionPipeline`]
|
||||
- [`ConversationalPipeline`]
|
||||
- [`DocumentQuestionAnsweringPipeline`]
|
||||
- [`FeatureExtractionPipeline`]
|
||||
- [`FillMaskPipeline`]
|
||||
- [`ImageClassificationPipeline`]
|
||||
- [`ImageSegmentationPipeline`]
|
||||
- [`ImageToTextPipeline`]
|
||||
- [`ObjectDetectionPipeline`]
|
||||
- [`QuestionAnsweringPipeline`]
|
||||
- [`SummarizationPipeline`]
|
||||
@ -341,6 +343,12 @@ That should enable you to do all the custom code you want.
|
||||
- __call__
|
||||
- all
|
||||
|
||||
### DocumentQuestionAnsweringPipeline
|
||||
|
||||
[[autodoc]] DocumentQuestionAnsweringPipeline
|
||||
- __call__
|
||||
- all
|
||||
|
||||
### FeatureExtractionPipeline
|
||||
|
||||
[[autodoc]] FeatureExtractionPipeline
|
||||
@ -365,6 +373,12 @@ That should enable you to do all the custom code you want.
|
||||
- __call__
|
||||
- all
|
||||
|
||||
### ImageToTextPipeline
|
||||
|
||||
[[autodoc]] ImageToTextPipeline
|
||||
- __call__
|
||||
- all
|
||||
|
||||
### NerPipeline
|
||||
|
||||
[[autodoc]] NerPipeline
|
||||
|
@ -567,14 +567,22 @@ as the model saving with FSDP activated is only available with recent fixes.
|
||||
For this, add `--fsdp full_shard` to the command line arguments.
|
||||
- SHARD_GRAD_OP : Shards optimizer states + gradients across data parallel workers/GPUs.
|
||||
For this, add `--fsdp shard_grad_op` to the command line arguments.
|
||||
- NO_SHARD : No sharding. For this, add `--fsdp no_shard` to the command line arguments.
|
||||
- To offload the parameters and gradients to the CPU,
|
||||
add `--fsdp "full_shard offload"` or `--fsdp "shard_grad_op offload"` to the command line arguments.
|
||||
- To automatically recursively wrap layers with FSDP using `default_auto_wrap_policy`,
|
||||
add `--fsdp "full_shard auto_wrap"` or `--fsdp "shard_grad_op auto_wrap"` to the command line arguments.
|
||||
- To enable both CPU offloading and auto wrapping,
|
||||
add `--fsdp "full_shard offload auto_wrap"` or `--fsdp "shard_grad_op offload auto_wrap"` to the command line arguments.
|
||||
- If auto wrapping is enabled, please add `--fsdp_min_num_params <number>` to command line arguments.
|
||||
It specifies FSDP's minimum number of parameters for Default Auto Wrapping.
|
||||
- If auto wrapping is enabled, you can either use transformer based auto wrap policy or size based auto wrap policy.
|
||||
- For transformer based auto wrap policy, please add `--fsdp_transformer_layer_cls_to_wrap <value>` to command line arguments.
|
||||
This specifies the transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block` ....
|
||||
This is important because submodules that share weights (e.g., embedding layer) should not end up in different FSDP wrapped units.
|
||||
Using this policy, wrapping happens for each block containing Multi-Head Attention followed by couple of MLP layers.
|
||||
Remaining layers including the shared embeddings are conviniently wrapped in same outermost FSDP unit.
|
||||
Therefore, use this for transformer based models.
|
||||
- For size based auto wrap policy, please add `--fsdp_min_num_params <number>` to command line arguments.
|
||||
It specifies FSDP's minimum number of parameters for auto wrapping.
|
||||
|
||||
**Few caveats to be aware of**
|
||||
- Mixed precision is currently not supported with FSDP as we wait for PyTorch to fix support for it.
|
||||
@ -583,6 +591,66 @@ More details in this [issues](https://github.com/pytorch/pytorch/issues/75676).
|
||||
More details mentioned in this [issue](https://github.com/pytorch/pytorch/issues/76501)
|
||||
(`The original model parameters' .grads are not set, meaning that they cannot be optimized separately (which is why we cannot support multiple parameter groups)`).
|
||||
|
||||
### Using Trainer for accelerated PyTorch Training on Mac
|
||||
|
||||
With PyTorch v1.12 release, developers and researchers can take advantage of Apple silicon GPUs for significantly faster model training.
|
||||
This unlocks the ability to perform machine learning workflows like prototyping and fine-tuning locally, right on Mac.
|
||||
Apple's Metal Performance Shaders (MPS) as a backend for PyTorch enables this and can be used via the new `"mps"` device.
|
||||
This will map computational graphs and primitives on the MPS Graph framework and tuned kernels provided by MPS.
|
||||
For more information please refer official documents [Introducing Accelerated PyTorch Training on Mac](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/)
|
||||
and [MPS BACKEND](https://pytorch.org/docs/stable/notes/mps.html).
|
||||
|
||||
<Tip warning={false}>
|
||||
|
||||
We strongly recommend to install PyTorch >= 1.13 (nightly version at the time of writing) on your MacOS machine.
|
||||
It has major fixes related to model correctness and performance improvements for transformer based models.
|
||||
Please refer to https://github.com/pytorch/pytorch/issues/82707 for more details.
|
||||
|
||||
</Tip>
|
||||
|
||||
**Benefits of Training and Inference using Apple Silicon Chips**
|
||||
|
||||
1. Enables users to train larger networks or batch sizes locally
|
||||
2. Reduces data retrieval latency and provides the GPU with direct access to the full memory store due to unified memory architecture.
|
||||
Therefore, improving end-to-end performance.
|
||||
3. Reduces costs associated with cloud-based development or the need for additional local GPUs.
|
||||
|
||||
**Pre-requisites**: To install torch with mps support,
|
||||
please follow this nice medium article [GPU-Acceleration Comes to PyTorch on M1 Macs](https://medium.com/towards-data-science/gpu-acceleration-comes-to-pytorch-on-m1-macs-195c399efcc1).
|
||||
|
||||
**Usage**:
|
||||
User has to just pass `--use_mps_device` argument.
|
||||
For example, you can run the offical Glue text classififcation task (from the root folder) using Apple Silicon GPU with below command:
|
||||
|
||||
```bash
|
||||
export TASK_NAME=mrpc
|
||||
|
||||
python examples/pytorch/text-classification/run_glue.py \
|
||||
--model_name_or_path bert-base-cased \
|
||||
--task_name $TASK_NAME \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--max_seq_length 128 \
|
||||
--per_device_train_batch_size 32 \
|
||||
--learning_rate 2e-5 \
|
||||
--num_train_epochs 3 \
|
||||
--output_dir /tmp/$TASK_NAME/ \
|
||||
--use_mps_device \
|
||||
--overwrite_output_dir
|
||||
```
|
||||
|
||||
**A few caveats to be aware of**
|
||||
|
||||
1. Some PyTorch operations have not been implemented in mps and will throw an error.
|
||||
One way to get around that is to set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1`,
|
||||
which will fallback to CPU for these operations. It still throws a UserWarning however.
|
||||
2. Distributed setups `gloo` and `nccl` are not working with `mps` device.
|
||||
This means that currently only single GPU of `mps` device type can be used.
|
||||
|
||||
Finally, please, remember that, 🤗 `Trainer` only integrates MPS backend, therefore if you
|
||||
have any problems or questions with regards to MPS backend usage, please,
|
||||
file an issue with [PyTorch GitHub](https://github.com/pytorch/pytorch/issues).
|
||||
|
||||
Sections that were moved:
|
||||
|
||||
[ <a href="./deepspeed#deepspeed-trainer-integration">DeepSpeed</a><a id="deepspeed"></a>
|
||||
|
@ -114,10 +114,18 @@ Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
|
||||
|
||||
[[autodoc]] AutoModelForTableQuestionAnswering
|
||||
|
||||
## AutoModelForDocumentQuestionAnswering
|
||||
|
||||
[[autodoc]] AutoModelForDocumentQuestionAnswering
|
||||
|
||||
## AutoModelForImageClassification
|
||||
|
||||
[[autodoc]] AutoModelForImageClassification
|
||||
|
||||
## AutoModelForVideoClassification
|
||||
|
||||
[[autodoc]] AutoModelForVideoClassification
|
||||
|
||||
## AutoModelForVision2Seq
|
||||
|
||||
[[autodoc]] AutoModelForVision2Seq
|
||||
@ -182,6 +190,10 @@ Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
|
||||
|
||||
[[autodoc]] TFAutoModelForImageClassification
|
||||
|
||||
## TFAutoModelForSemanticSegmentation
|
||||
|
||||
[[autodoc]] TFAutoModelForSemanticSegmentation
|
||||
|
||||
## TFAutoModelForMaskedLM
|
||||
|
||||
[[autodoc]] TFAutoModelForMaskedLM
|
||||
@ -206,6 +218,10 @@ Likewise, if your `NewModel` is a subclass of [`PreTrainedModel`], make sure its
|
||||
|
||||
[[autodoc]] TFAutoModelForTableQuestionAnswering
|
||||
|
||||
## TFAutoModelForDocumentQuestionAnswering
|
||||
|
||||
[[autodoc]] TFAutoModelForDocumentQuestionAnswering
|
||||
|
||||
## TFAutoModelForTokenClassification
|
||||
|
||||
[[autodoc]] TFAutoModelForTokenClassification
|
||||
|
@ -59,6 +59,11 @@ Tips:
|
||||
`use_relative_position_bias` attribute of [`BeitConfig`] to `True` in order to add
|
||||
position embeddings.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/beit_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> BEiT pre-training. Taken from the <a href="https://arxiv.org/abs/2106.08254">original paper.</a> </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The JAX/FLAX version of this model was
|
||||
contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/beit).
|
||||
|
||||
@ -77,6 +82,7 @@ contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code
|
||||
|
||||
[[autodoc]] BeitFeatureExtractor
|
||||
- __call__
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## BeitModel
|
||||
|
||||
|
@ -15,14 +15,14 @@ specific language governing permissions and limitations under the License.
|
||||
## Overview
|
||||
|
||||
The BLOOM model has been proposed with its various versions through the [BigScience Workshop](https://bigscience.huggingface.co/). BigScience is inspired by other open science initiatives where researchers have pooled their time and resources to collectively achieve a higher impact.
|
||||
The architecture of BLOOM is essentially similar to GPT3 (auto-regressive model for next token prediction), but has been trained on different 46 languages including code.
|
||||
The architecture of BLOOM is essentially similar to GPT3 (auto-regressive model for next token prediction), but has been trained on 46 different languages and 13 programming languages.
|
||||
Several smaller versions of the models have been trained on the same dataset. BLOOM is available in the following versions:
|
||||
|
||||
- [bloom-350m](https://huggingface.co/bigscience/bloom-350m)
|
||||
- [bloom-760m](https://huggingface.co/bigscience/bloom-760m)
|
||||
- [bloom-1b3](https://huggingface.co/bigscience/bloom-1b3)
|
||||
- [bloom-2b5](https://huggingface.co/bigscience/bloom-2b5)
|
||||
- [bloom-6b3](https://huggingface.co/bigscience/bloom-6b3)
|
||||
- [bloom-560m](https://huggingface.co/bigscience/bloom-560m)
|
||||
- [bloom-1b1](https://huggingface.co/bigscience/bloom-1b1)
|
||||
- [bloom-1b7](https://huggingface.co/bigscience/bloom-1b7)
|
||||
- [bloom-3b](https://huggingface.co/bigscience/bloom-3b)
|
||||
- [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1)
|
||||
- [bloom](https://huggingface.co/bigscience/bloom) (176B parameters)
|
||||
|
||||
|
||||
@ -54,4 +54,4 @@ Several smaller versions of the models have been trained on the same dataset. BL
|
||||
## BloomForTokenClassification
|
||||
|
||||
[[autodoc]] BloomForTokenClassification
|
||||
- forward
|
||||
- forward
|
||||
|
57
docs/source/en/model_doc/conditional_detr.mdx
Normal file
57
docs/source/en/model_doc/conditional_detr.mdx
Normal file
@ -0,0 +1,57 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Conditional DETR
|
||||
|
||||
## Overview
|
||||
|
||||
The Conditional DETR model was proposed in [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang. Conditional DETR presents a conditional cross-attention mechanism for fast DETR training. Conditional DETR converges 6.7× to 10× faster than DETR.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*The recently-developed DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings for localizing the four extremities and predicting the box, which increases the need for high-quality content embeddings and thus the training difficulty. Our approach, named conditional DETR, learns a conditional spatial query from the decoder embedding for decoder multi-head cross-attention. The benefit is that through the conditional spatial query, each cross-attention head is able to attend to a band containing a distinct region, e.g., one object extremity or a region inside the object box. This narrows down the spatial range for localizing the distinct regions for object classification and box regression, thus relaxing the dependence on the content embeddings and easing the training. Empirical results show that conditional DETR converges 6.7× faster for the backbones R50 and R101 and 10× faster for stronger backbones DC5-R50 and DC5-R101. Code is available at https://github.com/Atten4Vis/ConditionalDETR.*
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/conditional_detr_curve.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> Conditional DETR shows much faster convergence compared to the original DETR. Taken from the <a href="https://arxiv.org/abs/2108.06152">original paper</a>.</small>
|
||||
|
||||
This model was contributed by [DepuMeng](https://huggingface.co/DepuMeng). The original code can be found [here](https://github.com/Atten4Vis/ConditionalDETR).
|
||||
|
||||
|
||||
## ConditionalDetrConfig
|
||||
|
||||
[[autodoc]] ConditionalDetrConfig
|
||||
|
||||
## ConditionalDetrFeatureExtractor
|
||||
|
||||
[[autodoc]] ConditionalDetrFeatureExtractor
|
||||
- __call__
|
||||
- pad_and_create_pixel_mask
|
||||
- post_process
|
||||
- post_process_segmentation
|
||||
- post_process_panoptic
|
||||
|
||||
## ConditionalDetrModel
|
||||
|
||||
[[autodoc]] ConditionalDetrModel
|
||||
- forward
|
||||
|
||||
## ConditionalDetrForObjectDetection
|
||||
|
||||
[[autodoc]] ConditionalDetrForObjectDetection
|
||||
- forward
|
||||
|
||||
## ConditionalDetrForSegmentation
|
||||
|
||||
[[autodoc]] ConditionalDetrForSegmentation
|
||||
- forward
|
60
docs/source/en/model_doc/deformable_detr.mdx
Normal file
60
docs/source/en/model_doc/deformable_detr.mdx
Normal file
@ -0,0 +1,60 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Deformable DETR
|
||||
|
||||
## Overview
|
||||
|
||||
The Deformable DETR model was proposed in [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
|
||||
Deformable DETR mitigates the slow convergence issues and limited feature spatial resolution of the original [DETR](detr) by leveraging a new deformable attention module which only attends to a small set of key sampling points around a reference.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*DETR has been recently proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance. However, it suffers from slow convergence and limited feature spatial resolution, due to the limitation of Transformer attention modules in processing image feature maps. To mitigate these issues, we proposed Deformable DETR, whose attention modules only attend to a small set of key sampling points around a reference. Deformable DETR can achieve better performance than DETR (especially on small objects) with 10 times less training epochs. Extensive experiments on the COCO benchmark demonstrate the effectiveness of our approach.*
|
||||
|
||||
Tips:
|
||||
|
||||
- One can use the [`AutoFeatureExtractor`] API to prepare images (and optional targets) for the model. This will instantiate a [`DetrFeatureExtractor`] behind the scenes.
|
||||
- Training Deformable DETR is equivalent to training the original [DETR](detr) model. Demo notebooks can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/DETR).
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> Deformable DETR architecture. Taken from the <a href="https://arxiv.org/abs/2010.04159">original paper</a>.</small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/fundamentalvision/Deformable-DETR).
|
||||
|
||||
## DeformableDetrFeatureExtractor
|
||||
|
||||
[[autodoc]] DeformableDetrFeatureExtractor
|
||||
- __call__
|
||||
- pad_and_create_pixel_mask
|
||||
- post_process
|
||||
- post_process_segmentation
|
||||
- post_process_panoptic
|
||||
|
||||
|
||||
## DeformableDetrConfig
|
||||
|
||||
[[autodoc]] DeformableDetrConfig
|
||||
|
||||
|
||||
## DeformableDetrModel
|
||||
|
||||
[[autodoc]] DeformableDetrModel
|
||||
- forward
|
||||
|
||||
|
||||
## DeformableDetrForObjectDetection
|
||||
|
||||
[[autodoc]] DeformableDetrForObjectDetection
|
||||
- forward
|
214
docs/source/en/model_doc/donut.mdx
Normal file
214
docs/source/en/model_doc/donut.mdx
Normal file
@ -0,0 +1,214 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
|
||||
License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
|
||||
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License. -->
|
||||
|
||||
# Donut
|
||||
|
||||
## Overview
|
||||
|
||||
The Donut model was proposed in [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by
|
||||
Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
|
||||
Donut consists of an image Transformer encoder and an autoregressive text Transformer decoder to perform document understanding
|
||||
tasks such as document image classification, form understanding and visual question answering.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Understanding document images (e.g., invoices) is a core but challenging task since it requires complex functions such as reading text and a holistic understanding of the document. Current Visual Document Understanding (VDU) methods outsource the task of reading text to off-the-shelf Optical Character Recognition (OCR) engines and focus on the understanding task with the OCR outputs. Although such OCR-based approaches have shown promising performance, they suffer from 1) high computational costs for using OCR; 2) inflexibility of OCR models on languages or types of document; 3) OCR error propagation to the subsequent process. To address these issues, in this paper, we introduce a novel OCR-free VDU model named Donut, which stands for Document understanding transformer. As the first step in OCR-free VDU research, we propose a simple architecture (i.e., Transformer) with a pre-training objective (i.e., cross-entropy loss). Donut is conceptually simple yet effective. Through extensive experiments and analyses, we show a simple OCR-free VDU model, Donut, achieves state-of-the-art performances on various VDU tasks in terms of both speed and accuracy. In addition, we offer a synthetic data generator that helps the model pre-training to be flexible in various languages and domains.*
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> Donut high-level overview. Taken from the <a href="https://arxiv.org/abs/2111.15664">original paper</a>. </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found
|
||||
[here](https://github.com/clovaai/donut).
|
||||
|
||||
Tips:
|
||||
|
||||
- The quickest way to get started with Donut is by checking the [tutorial
|
||||
notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut), which show how to use the model
|
||||
at inference time as well as fine-tuning on custom data.
|
||||
- Donut is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework.
|
||||
|
||||
## Inference
|
||||
|
||||
Donut's [`VisionEncoderDecoder`] model accepts images as input and makes use of
|
||||
[`~generation_utils.GenerationMixin.generate`] to autoregressively generate text given the input image.
|
||||
|
||||
The [`DonutFeatureExtractor`] class is responsible for preprocessing the input image and
|
||||
[`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`] decodes the generated target tokens to the target string. The
|
||||
[`DonutProcessor`] wraps [`DonutFeatureExtractor`] and [`XLMRobertaTokenizer`/`XLMRobertaTokenizerFast`]
|
||||
into a single instance to both extract the input features and decode the predicted token ids.
|
||||
|
||||
- Step-by-step Document Image Classification
|
||||
|
||||
```py
|
||||
>>> import re
|
||||
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[1]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_rvlcdip>"
|
||||
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... early_stopping=True,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... num_beams=1,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'class': 'advertisement'}
|
||||
```
|
||||
|
||||
- Step-by-step Document Parsing
|
||||
|
||||
```py
|
||||
>>> import re
|
||||
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[2]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_cord-v2>"
|
||||
>>> decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... early_stopping=True,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... num_beams=1,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'menu': {'nm': 'CINNAMON SUGAR', 'unitprice': '17,000', 'cnt': '1 x', 'price': '17,000'}, 'sub_total': {'subtotal_price': '17,000'}, 'total': {'total_price': '17,000', 'cashprice': '20,000', 'changeprice': '3,000'}}
|
||||
```
|
||||
|
||||
- Step-by-step Document Visual Question Answering (DocVQA)
|
||||
|
||||
```py
|
||||
>>> import re
|
||||
|
||||
>>> from transformers import DonutProcessor, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
|
||||
>>> processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
||||
|
||||
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
>>> model.to(device) # doctest: +IGNORE_RESULT
|
||||
|
||||
>>> # load document image from the DocVQA dataset
|
||||
>>> dataset = load_dataset("hf-internal-testing/example-documents", split="test")
|
||||
>>> image = dataset[0]["image"]
|
||||
|
||||
>>> # prepare decoder inputs
|
||||
>>> task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
||||
>>> question = "When is the coffee break?"
|
||||
>>> prompt = task_prompt.replace("{user_input}", question)
|
||||
>>> decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
||||
|
||||
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> outputs = model.generate(
|
||||
... pixel_values.to(device),
|
||||
... decoder_input_ids=decoder_input_ids.to(device),
|
||||
... max_length=model.decoder.config.max_position_embeddings,
|
||||
... early_stopping=True,
|
||||
... pad_token_id=processor.tokenizer.pad_token_id,
|
||||
... eos_token_id=processor.tokenizer.eos_token_id,
|
||||
... use_cache=True,
|
||||
... num_beams=1,
|
||||
... bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
||||
... return_dict_in_generate=True,
|
||||
... )
|
||||
|
||||
>>> sequence = processor.batch_decode(outputs.sequences)[0]
|
||||
>>> sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
||||
>>> sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
||||
>>> print(processor.token2json(sequence))
|
||||
{'question': 'When is the coffee break?', 'answer': '11-14 to 11:39 a.m.'}
|
||||
```
|
||||
|
||||
See the [model hub](https://huggingface.co/models?filter=donut) to look for Donut checkpoints.
|
||||
|
||||
## Training
|
||||
|
||||
We refer to the [tutorial notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/Donut).
|
||||
|
||||
## DonutSwinConfig
|
||||
|
||||
[[autodoc]] DonutSwinConfig
|
||||
|
||||
## DonutFeatureExtractor
|
||||
|
||||
[[autodoc]] DonutFeatureExtractor
|
||||
- __call__
|
||||
|
||||
## DonutProcessor
|
||||
|
||||
[[autodoc]] DonutProcessor
|
||||
- __call__
|
||||
- from_pretrained
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
|
||||
## DonutSwinModel
|
||||
|
||||
[[autodoc]] DonutSwinModel
|
||||
- forward
|
@ -37,6 +37,7 @@ This model was contributed by [nielsr](https://huggingface.co/nielsr). The origi
|
||||
|
||||
[[autodoc]] DPTFeatureExtractor
|
||||
- __call__
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
|
||||
## DPTModel
|
||||
|
@ -27,9 +27,9 @@ any other models (see the examples for more information).
|
||||
An application of this architecture could be to leverage two pretrained [`BertModel`] as the encoder
|
||||
and decoder for a summarization model as was shown in: [Text Summarization with Pretrained Encoders](https://arxiv.org/abs/1908.08345) by Yang Liu and Mirella Lapata.
|
||||
|
||||
## Randomly initializing [`EncoderDecoderModel`] from model configurations.
|
||||
## Randomly initializing `EncoderDecoderModel` from model configurations.
|
||||
|
||||
[`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for both the encoder and the decoder.
|
||||
[`EncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`BertModel`] configuration for the encoder and the default [`BertForCausalLM`] configuration for the decoder.
|
||||
|
||||
```python
|
||||
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
|
||||
@ -41,7 +41,7 @@ and decoder for a summarization model as was shown in: [Text Summarization with
|
||||
>>> model = EncoderDecoderModel(config=config)
|
||||
```
|
||||
|
||||
## Initialising [`EncoderDecoderModel`] from a pretrained encoder and a pretrained decoder.
|
||||
## Initialising `EncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
|
||||
|
||||
[`EncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, *e.g.* BERT, can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
|
||||
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
|
||||
@ -55,14 +55,32 @@ To do so, the `EncoderDecoderModel` class provides a [`EncoderDecoderModel.from_
|
||||
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
|
||||
```
|
||||
|
||||
## Loading an existing [`EncoderDecoderModel`] checkpoint.
|
||||
## Loading an existing `EncoderDecoderModel` checkpoint and perform inference.
|
||||
|
||||
To load fine-tuned checkpoints of the `EncoderDecoderModel` class, ['EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
|
||||
To load fine-tuned checkpoints of the `EncoderDecoderModel` class, [`EncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
|
||||
|
||||
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
|
||||
|
||||
```python
|
||||
>>> from transformers import EncoderDecoderModel
|
||||
>>> from transformers import AutoTokenizer, EncoderDecoderModel
|
||||
|
||||
>>> # load a fine-tuned seq2seq model and corresponding tokenizer
|
||||
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
|
||||
|
||||
>>> # let's perform inference on a long piece of text
|
||||
>>> ARTICLE_TO_SUMMARIZE = (
|
||||
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
|
||||
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
|
||||
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
|
||||
... )
|
||||
>>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids
|
||||
|
||||
>>> # autoregressively generate summary (uses greedy decoding by default)
|
||||
>>> generated_ids = model.generate(input_ids)
|
||||
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
>>> print(generated_text)
|
||||
nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow.
|
||||
```
|
||||
|
||||
## Loading a PyTorch checkpoint into `TFEncoderDecoderModel`.
|
||||
@ -116,6 +134,7 @@ target sequence).
|
||||
>>> # the forward function automatically creates the correct decoder_input_ids
|
||||
>>> loss = model(input_ids=input_ids, labels=labels).loss
|
||||
```
|
||||
|
||||
Detailed [colab](https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE?usp=sharing#scrollTo=ZwQIEhKOrJpl) for training.
|
||||
|
||||
This model was contributed by [thomwolf](https://github.com/thomwolf). This model's TensorFlow and Flax versions
|
||||
|
102
docs/source/en/model_doc/ernie.mdx
Normal file
102
docs/source/en/model_doc/ernie.mdx
Normal file
@ -0,0 +1,102 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ERNIE
|
||||
|
||||
## Overview
|
||||
ERNIE is a series of powerful models proposed by baidu, especially in Chinese tasks,
|
||||
including [ERNIE1.0](https://arxiv.org/abs/1904.09223), [ERNIE2.0](https://ojs.aaai.org/index.php/AAAI/article/view/6428),
|
||||
[ERNIE3.0](https://arxiv.org/abs/2107.02137), [ERNIE-Gram](https://arxiv.org/abs/2010.12148), [ERNIE-health](https://arxiv.org/abs/2110.07244), etc.
|
||||
|
||||
These models are contributed by [nghuyong](https://huggingface.co/nghuyong) and the official code can be found in [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) (in PaddlePaddle).
|
||||
|
||||
### How to use
|
||||
Take `ernie-1.0-base-zh` as an example:
|
||||
|
||||
```Python
|
||||
from transformers import AutoTokenizer, AutoModel
|
||||
tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
||||
model = AutoModel.from_pretrained("nghuyong/ernie-1.0-base-zh")
|
||||
```
|
||||
|
||||
### Supported Models
|
||||
|
||||
| Model Name | Language | Description |
|
||||
|:-------------------:|:--------:|:-------------------------------:|
|
||||
| ernie-1.0-base-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
| ernie-2.0-base-en | English | Layer:12, Heads:12, Hidden:768 |
|
||||
| ernie-2.0-large-en | English | Layer:24, Heads:16, Hidden:1024 |
|
||||
| ernie-3.0-base-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
| ernie-3.0-medium-zh | Chinese | Layer:6, Heads:12, Hidden:768 |
|
||||
| ernie-3.0-mini-zh | Chinese | Layer:6, Heads:12, Hidden:384 |
|
||||
| ernie-3.0-micro-zh | Chinese | Layer:4, Heads:12, Hidden:384 |
|
||||
| ernie-3.0-nano-zh | Chinese | Layer:4, Heads:12, Hidden:312 |
|
||||
| ernie-health-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
| ernie-gram-zh | Chinese | Layer:12, Heads:12, Hidden:768 |
|
||||
|
||||
You can find all the supported models from huggingface's model hub: [huggingface.co/nghuyong](https://huggingface.co/nghuyong), and model details from paddle's official
|
||||
repo: [PaddleNLP](https://paddlenlp.readthedocs.io/zh/latest/model_zoo/transformers/ERNIE/contents.html)
|
||||
and [ERNIE](https://github.com/PaddlePaddle/ERNIE/blob/repro).
|
||||
|
||||
## ErnieConfig
|
||||
|
||||
[[autodoc]] ErnieConfig
|
||||
- all
|
||||
|
||||
## Ernie specific outputs
|
||||
|
||||
[[autodoc]] models.ernie.modeling_ernie.ErnieForPreTrainingOutput
|
||||
|
||||
## ErnieModel
|
||||
|
||||
[[autodoc]] ErnieModel
|
||||
- forward
|
||||
|
||||
## ErnieForPreTraining
|
||||
|
||||
[[autodoc]] ErnieForPreTraining
|
||||
- forward
|
||||
|
||||
## ErnieForCausalLM
|
||||
|
||||
[[autodoc]] ErnieForCausalLM
|
||||
- forward
|
||||
|
||||
## ErnieForMaskedLM
|
||||
|
||||
[[autodoc]] ErnieForMaskedLM
|
||||
- forward
|
||||
|
||||
## ErnieForNextSentencePrediction
|
||||
|
||||
[[autodoc]] ErnieForNextSentencePrediction
|
||||
- forward
|
||||
|
||||
## ErnieForSequenceClassification
|
||||
|
||||
[[autodoc]] ErnieForSequenceClassification
|
||||
- forward
|
||||
|
||||
## ErnieForMultipleChoice
|
||||
|
||||
[[autodoc]] ErnieForMultipleChoice
|
||||
- forward
|
||||
|
||||
## ErnieForTokenClassification
|
||||
|
||||
[[autodoc]] ErnieForTokenClassification
|
||||
- forward
|
||||
|
||||
## ErnieForQuestionAnswering
|
||||
|
||||
[[autodoc]] ErnieForQuestionAnswering
|
||||
- forward
|
66
docs/source/en/model_doc/gpt_neox_japanese.mdx
Normal file
66
docs/source/en/model_doc/gpt_neox_japanese.mdx
Normal file
@ -0,0 +1,66 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# GPT-NeoX-Japanese
|
||||
|
||||
## Overview
|
||||
|
||||
We introduce GPT-NeoX-Japanese, which is an autoregressive language model for Japanese, trained on top of [https://github.com/EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox).
|
||||
Japanese is a unique language with its large vocabulary and a combination of hiragana, katakana, and kanji writing scripts.
|
||||
To address this distinct structure of the Japanese language, we use a [special sub-word tokenizer](https://github.com/tanreinama/Japanese-BPEEncoder_V2). We are very grateful to *tanreinama* for open-sourcing this incredibly helpful tokenizer.
|
||||
Following the recommendations from Google's research on [PaLM](https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html), we have removed bias parameters from transformer blocks, achieving better model performance. Please refer [this article](https://medium.com/ml-abeja/training-a-better-gpt-2-93b157662ae4) in detail.
|
||||
|
||||
Development of the model was led by [Shinya Otani](https://github.com/SO0529), [Takayoshi Makabe](https://github.com/spider-man-tm), [Anuj Arora](https://github.com/Anuj040), and [Kyo Hattori](https://github.com/go5paopao) from [ABEJA, Inc.](https://www.abejainc.com/). For more information on this model-building activity, please refer [here (ja)](https://tech-blog.abeja.asia/entry/abeja-gpt-project-202207).
|
||||
|
||||
### Generation
|
||||
|
||||
The `generate()` method can be used to generate text using GPT NeoX Japanese model.
|
||||
|
||||
```python
|
||||
>>> from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseTokenizer
|
||||
|
||||
>>> model = GPTNeoXJapaneseForCausalLM.from_pretrained("abeja/gpt-neox-japanese-2.7b")
|
||||
>>> tokenizer = GPTNeoXJapaneseTokenizer.from_pretrained("abeja/gpt-neox-japanese-2.7b")
|
||||
|
||||
>>> prompt = "人とAIが協調するためには、"
|
||||
|
||||
>>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||||
|
||||
>>> gen_tokens = model.generate(
|
||||
... input_ids,
|
||||
... do_sample=True,
|
||||
... temperature=0.9,
|
||||
... max_length=100,
|
||||
... )
|
||||
>>> gen_text = tokenizer.batch_decode(gen_tokens, skip_special_tokens=True)[0]
|
||||
|
||||
>>> print(gen_text)
|
||||
人とAIが協調するためには、AIと人が共存し、AIを正しく理解する必要があります。
|
||||
```
|
||||
|
||||
## GPTNeoXJapaneseConfig
|
||||
|
||||
[[autodoc]] GPTNeoXJapaneseConfig
|
||||
|
||||
## GPTNeoXJapaneseTokenizer
|
||||
|
||||
[[autodoc]] GPTNeoXJapaneseTokenizer
|
||||
|
||||
## GPTNeoXJapaneseModel
|
||||
|
||||
[[autodoc]] GPTNeoXJapaneseModel
|
||||
- forward
|
||||
|
||||
## GPTNeoXJapaneseForCausalLM
|
||||
|
||||
[[autodoc]] GPTNeoXJapaneseForCausalLM
|
||||
- forward
|
@ -26,7 +26,7 @@ Tips:
|
||||
- You may specify `output_segmentation=True` in the forward of `GroupViTModel` to get the segmentation logits of input texts.
|
||||
- The quickest way to get started with GroupViT is by checking the [example notebooks](https://github.com/xvjiarui/GroupViT/blob/main/demo/GroupViT_hf_inference_notebook.ipynb) (which showcase zero-shot segmentation inference). One can also check out the [HuggingFace Spaces demo](https://huggingface.co/spaces/xvjiarui/GroupViT) to play with GroupViT.
|
||||
|
||||
This model was contributed by [xvjiarui](https://huggingface.co/xvjiarui).
|
||||
This model was contributed by [xvjiarui](https://huggingface.co/xvjiarui). The TensorFlow version was contributed by [ariG23498](https://huggingface.co/ariG23498) with the help of [Yih-Dar SHIEH](https://huggingface.co/ydshieh), [Amy Roberts](https://huggingface.co/amyeroberts), and [Joao Gante](https://huggingface.co/joaogante).
|
||||
The original code can be found [here](https://github.com/NVlabs/GroupViT).
|
||||
|
||||
|
||||
@ -59,3 +59,20 @@ The original code can be found [here](https://github.com/NVlabs/GroupViT).
|
||||
|
||||
[[autodoc]] GroupViTVisionModel
|
||||
- forward
|
||||
|
||||
## TFGroupViTModel
|
||||
|
||||
[[autodoc]] TFGroupViTModel
|
||||
- call
|
||||
- get_text_features
|
||||
- get_image_features
|
||||
|
||||
## TFGroupViTTextModel
|
||||
|
||||
[[autodoc]] TFGroupViTTextModel
|
||||
- call
|
||||
|
||||
## TFGroupViTVisionModel
|
||||
|
||||
[[autodoc]] TFGroupViTVisionModel
|
||||
- call
|
@ -67,7 +67,8 @@ occurs. Those can be obtained using the Python Image Library (PIL) library for e
|
||||
```python
|
||||
from PIL import Image
|
||||
|
||||
image = Image.open("name_of_your_document - can be a png file, pdf, etc.")
|
||||
# Document can be a png, jpg, etc. PDFs must be converted to images.
|
||||
image = Image.open(name_of_your_document).convert("RGB")
|
||||
|
||||
width, height = image.size
|
||||
```
|
||||
@ -107,6 +108,10 @@ This model was contributed by [liminghao1630](https://huggingface.co/liminghao16
|
||||
|
||||
[[autodoc]] LayoutLMForTokenClassification
|
||||
|
||||
## LayoutLMForQuestionAnswering
|
||||
|
||||
[[autodoc]] LayoutLMForQuestionAnswering
|
||||
|
||||
## TFLayoutLMModel
|
||||
|
||||
[[autodoc]] TFLayoutLMModel
|
||||
@ -122,3 +127,7 @@ This model was contributed by [liminghao1630](https://huggingface.co/liminghao16
|
||||
## TFLayoutLMForTokenClassification
|
||||
|
||||
[[autodoc]] TFLayoutLMForTokenClassification
|
||||
|
||||
## TFLayoutLMForQuestionAnswering
|
||||
|
||||
[[autodoc]] TFLayoutLMForQuestionAnswering
|
||||
|
@ -26,17 +26,18 @@ Tips:
|
||||
|
||||
- In terms of data processing, LayoutLMv3 is identical to its predecessor [LayoutLMv2](layoutlmv2), except that:
|
||||
- images need to be resized and normalized with channels in regular RGB format. LayoutLMv2 on the other hand normalizes the images internally and expects the channels in BGR format.
|
||||
- text is tokenized using byte-pair encoding (BPE), as opposed to WordPiece.
|
||||
- text is tokenized using byte-pair encoding (BPE), as opposed to WordPiece.
|
||||
Due to these differences in data preprocessing, one can use [`LayoutLMv3Processor`] which internally combines a [`LayoutLMv3FeatureExtractor`] (for the image modality) and a [`LayoutLMv3Tokenizer`]/[`LayoutLMv3TokenizerFast`] (for the text modality) to prepare all data for the model.
|
||||
- Regarding usage of [`LayoutLMv3Processor`], we refer to the [usage guide](layoutlmv2#usage-LayoutLMv2Processor) of its predecessor.
|
||||
- Regarding usage of [`LayoutLMv3Processor`], we refer to the [usage guide](layoutlmv2#usage-layoutlmv2processor) of its predecessor.
|
||||
- Demo notebooks for LayoutLMv3 can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3).
|
||||
- Demo scripts can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/layoutlmv3).
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/layoutlmv3_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> LayoutLMv3 architecture. Taken from the <a href="https://arxiv.org/abs/2204.08387">original paper</a>. </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/layoutlmv3).
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr). The TensorFlow version of this model was added by [chriskoo](https://huggingface.co/chriskoo), [tokec](https://huggingface.co/tokec), and [lre](https://huggingface.co/lre). The original code can be found [here](https://github.com/microsoft/unilm/tree/master/layoutlmv3).
|
||||
|
||||
|
||||
## LayoutLMv3Config
|
||||
@ -83,3 +84,23 @@ This model was contributed by [nielsr](https://huggingface.co/nielsr). The origi
|
||||
|
||||
[[autodoc]] LayoutLMv3ForQuestionAnswering
|
||||
- forward
|
||||
|
||||
## TFLayoutLMv3Model
|
||||
|
||||
[[autodoc]] TFLayoutLMv3Model
|
||||
- call
|
||||
|
||||
## TFLayoutLMv3ForSequenceClassification
|
||||
|
||||
[[autodoc]] TFLayoutLMv3ForSequenceClassification
|
||||
- call
|
||||
|
||||
## TFLayoutLMv3ForTokenClassification
|
||||
|
||||
[[autodoc]] TFLayoutLMv3ForTokenClassification
|
||||
- call
|
||||
|
||||
## TFLayoutLMv3ForQuestionAnswering
|
||||
|
||||
[[autodoc]] TFLayoutLMv3ForQuestionAnswering
|
||||
- call
|
||||
|
@ -37,7 +37,7 @@ Tips:
|
||||
- [`LongT5ForConditionalGeneration`] is an extension of [`T5ForConditionalGeneration`] exchanging the traditional
|
||||
encoder *self-attention* layer with efficient either *local* attention or *transient-global* (*tglobal*) attention.
|
||||
- Unlike the T5 model, LongT5 does not use a task prefix. Furthermore, it uses a different pre-training objective
|
||||
inspired by the pre-training of `[PegasusForConditionalGeneration]`.
|
||||
inspired by the pre-training of [`PegasusForConditionalGeneration`].
|
||||
- LongT5 model is designed to work efficiently and very well on long-range *sequence-to-sequence* tasks where the
|
||||
input sequence exceeds commonly used 512 tokens. It is capable of handling input sequences of a length up to 16,384 tokens.
|
||||
- For *Local Attention*, the sparse sliding-window local attention operation allows a given token to attend only `r`
|
||||
|
@ -152,3 +152,23 @@ This model was contributed by [ikuyamada](https://huggingface.co/ikuyamada) and
|
||||
|
||||
[[autodoc]] LukeForEntitySpanClassification
|
||||
- forward
|
||||
|
||||
## LukeForSequenceClassification
|
||||
|
||||
[[autodoc]] LukeForSequenceClassification
|
||||
- forward
|
||||
|
||||
## LukeForMultipleChoice
|
||||
|
||||
[[autodoc]] LukeForMultipleChoice
|
||||
- forward
|
||||
|
||||
## LukeForTokenClassification
|
||||
|
||||
[[autodoc]] LukeForTokenClassification
|
||||
- forward
|
||||
|
||||
## LukeForQuestionAnswering
|
||||
|
||||
[[autodoc]] LukeForQuestionAnswering
|
||||
- forward
|
||||
|
@ -55,11 +55,9 @@ tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="en
|
||||
src_text = "Life is like a box of chocolates."
|
||||
tgt_text = "La vie est comme une boîte de chocolat."
|
||||
|
||||
model_inputs = tokenizer(src_text, return_tensors="pt")
|
||||
with tokenizer.as_target_tokenizer():
|
||||
labels = tokenizer(tgt_text, return_tensors="pt").input_ids
|
||||
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
||||
|
||||
loss = model(**model_inputs, labels=labels) # forward pass
|
||||
loss = model(**model_inputs).loss # forward pass
|
||||
```
|
||||
|
||||
- Generation
|
||||
|
@ -155,7 +155,7 @@ Example of translating english to many romance languages, using old-style 2 char
|
||||
## MarianTokenizer
|
||||
|
||||
[[autodoc]] MarianTokenizer
|
||||
- as_target_tokenizer
|
||||
- build_inputs_with_special_tokens
|
||||
|
||||
## MarianModel
|
||||
|
||||
|
@ -33,7 +33,7 @@ Tips:
|
||||
`get_num_masks` function inside in the `MaskFormerLoss` class of `modeling_maskformer.py`. When training on multiple nodes, this should be
|
||||
set to the average number of target masks across all nodes, as can be seen in the original implementation [here](https://github.com/facebookresearch/MaskFormer/blob/da3e60d85fdeedcb31476b5edd7d328826ce56cc/mask_former/modeling/criterion.py#L169).
|
||||
- One can use [`MaskFormerFeatureExtractor`] to prepare images for the model and optional targets for the model.
|
||||
- To get the final segmentation, depending on the task, you can call [`~MaskFormerFeatureExtractor.post_process_semantic_segmentation`] or [`~MaskFormerFeatureExtractor.post_process_panoptic_segmentation`]. Both tasks can be solved using [`MaskFormerForInstanceSegmentation`] output, the latter needs an additional `is_thing_map` to know which instances must be merged together..
|
||||
- To get the final segmentation, depending on the task, you can call [`~MaskFormerFeatureExtractor.post_process_semantic_segmentation`] or [`~MaskFormerFeatureExtractor.post_process_panoptic_segmentation`]. Both tasks can be solved using [`MaskFormerForInstanceSegmentation`] output, panoptic segmentation accepts an optional `label_ids_to_fuse` argument to fuse instances of the target object/s (e.g. sky) together.
|
||||
|
||||
The figure below illustrates the architecture of MaskFormer. Taken from the [original paper](https://arxiv.org/abs/2107.06278).
|
||||
|
||||
|
@ -34,8 +34,8 @@ model is multilingual it expects the sequences in a different format. A special
|
||||
source and target text. The source text format is `X [eos, src_lang_code]` where `X` is the source text. The
|
||||
target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
|
||||
|
||||
The regular [`~MBartTokenizer.__call__`] will encode source text format, and it should be wrapped
|
||||
inside the context manager [`~MBartTokenizer.as_target_tokenizer`] to encode target text format.
|
||||
The regular [`~MBartTokenizer.__call__`] will encode source text format passed as first argument or with the `text`
|
||||
keyword, and target text format passed with the `text_label` keyword argument.
|
||||
|
||||
- Supervised training
|
||||
|
||||
@ -46,13 +46,11 @@ inside the context manager [`~MBartTokenizer.as_target_tokenizer`] to encode tar
|
||||
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
|
||||
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
||||
|
||||
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
|
||||
>>> with tokenizer.as_target_tokenizer():
|
||||
... labels = tokenizer(expected_translation_romanian, return_tensors="pt")
|
||||
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
|
||||
|
||||
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
|
||||
>>> # forward pass
|
||||
>>> model(**inputs, labels=batch["labels"])
|
||||
>>> model(**inputs)
|
||||
```
|
||||
|
||||
- Generation
|
||||
@ -108,11 +106,9 @@ tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_
|
||||
src_text = " UN Chief Says There Is No Military Solution in Syria"
|
||||
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
||||
|
||||
model_inputs = tokenizer(src_text, return_tensors="pt")
|
||||
with tokenizer.as_target_tokenizer():
|
||||
labels = tokenizer(tgt_text, return_tensors="pt").input_ids
|
||||
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
||||
|
||||
model(**model_inputs, labels=labels) # forward pass
|
||||
model(**model_inputs) # forward pass
|
||||
```
|
||||
|
||||
- Generation
|
||||
@ -154,7 +150,6 @@ tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
||||
## MBartTokenizer
|
||||
|
||||
[[autodoc]] MBartTokenizer
|
||||
- as_target_tokenizer
|
||||
- build_inputs_with_special_tokens
|
||||
|
||||
## MBartTokenizerFast
|
||||
|
@ -48,7 +48,6 @@ This model was contributed by [cwkeam](https://huggingface.co/cwkeam). The origi
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
- as_target_processor
|
||||
|
||||
|
||||
## MCTCTModel
|
||||
|
@ -22,12 +22,40 @@ The abstract from the paper is the following:
|
||||
|
||||
Tips:
|
||||
|
||||
- MobileViT is more like a CNN than a Transformer model. It does not work on sequence data but on batches of images. Unlike ViT, there are no embeddings. The backbone model outputs a feature map.
|
||||
- MobileViT is more like a CNN than a Transformer model. It does not work on sequence data but on batches of images. Unlike ViT, there are no embeddings. The backbone model outputs a feature map. You can follow [this tutorial](https://keras.io/examples/vision/mobilevit) for a lightweight introduction.
|
||||
- One can use [`MobileViTFeatureExtractor`] to prepare images for the model. Note that if you do your own preprocessing, the pretrained checkpoints expect images to be in BGR pixel order (not RGB).
|
||||
- The available image classification checkpoints are pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet-1k) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes).
|
||||
- The segmentation model uses a [DeepLabV3](https://arxiv.org/abs/1706.05587) head. The available semantic segmentation checkpoints are pre-trained on [PASCAL VOC](http://host.robots.ox.ac.uk/pascal/VOC/).
|
||||
- As the name suggests MobileViT was desgined to be performant and efficient on mobile phones. The TensorFlow versions of the MobileViT models are fully compatible with [TensorFlow Lite](https://www.tensorflow.org/lite).
|
||||
|
||||
This model was contributed by [matthijs](https://huggingface.co/Matthijs). The original code and weights can be found [here](https://github.com/apple/ml-cvnets).
|
||||
You can use the following code to convert a MobileViT checkpoint (be it image classification or semantic segmentation) to generate a
|
||||
TensorFlow Lite model:
|
||||
|
||||
```py
|
||||
from transformers import TFMobileViTForImageClassification
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
model_ckpt = "apple/mobilevit-xx-small"
|
||||
model = TFMobileViTForImageClassification.from_pretrained(model_ckpt)
|
||||
|
||||
converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
||||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||||
converter.target_spec.supported_ops = [
|
||||
tf.lite.OpsSet.TFLITE_BUILTINS,
|
||||
tf.lite.OpsSet.SELECT_TF_OPS,
|
||||
]
|
||||
tflite_model = converter.convert()
|
||||
tflite_filename = model_ckpt.split("/")[-1] + ".tflite"
|
||||
with open(tflite_filename, "wb") as f:
|
||||
f.write(tflite_model)
|
||||
```
|
||||
|
||||
The resulting model will be just **about an MB** making it a good fit for mobile applications where resources and network
|
||||
bandwidth can be constrained.
|
||||
|
||||
|
||||
This model was contributed by [matthijs](https://huggingface.co/Matthijs). The TensorFlow version of the model was contributed by [sayakpaul](https://huggingface.co/sayakpaul). The original code and weights can be found [here](https://github.com/apple/ml-cvnets).
|
||||
|
||||
|
||||
## MobileViTConfig
|
||||
@ -38,6 +66,7 @@ This model was contributed by [matthijs](https://huggingface.co/Matthijs). The o
|
||||
|
||||
[[autodoc]] MobileViTFeatureExtractor
|
||||
- __call__
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## MobileViTModel
|
||||
|
||||
@ -53,3 +82,18 @@ This model was contributed by [matthijs](https://huggingface.co/Matthijs). The o
|
||||
|
||||
[[autodoc]] MobileViTForSemanticSegmentation
|
||||
- forward
|
||||
|
||||
## TFMobileViTModel
|
||||
|
||||
[[autodoc]] TFMobileViTModel
|
||||
- call
|
||||
|
||||
## TFMobileViTForImageClassification
|
||||
|
||||
[[autodoc]] TFMobileViTForImageClassification
|
||||
- call
|
||||
|
||||
## TFMobileViTForSemanticSegmentation
|
||||
|
||||
[[autodoc]] TFMobileViTForSemanticSegmentation
|
||||
- call
|
||||
|
@ -91,7 +91,6 @@ UN-Chef sagt, es gibt keine militärische Lösung in Syrien
|
||||
## NllbTokenizer
|
||||
|
||||
[[autodoc]] NllbTokenizer
|
||||
- as_target_tokenizer
|
||||
- build_inputs_with_special_tokens
|
||||
|
||||
## NllbTokenizerFast
|
||||
|
@ -57,8 +57,8 @@ OWL-ViT is a zero-shot text-conditioned object detection model. OWL-ViT uses [CL
|
||||
... box = [round(i, 2) for i in box.tolist()]
|
||||
... if score >= score_threshold:
|
||||
... print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
|
||||
Detected a photo of a cat with confidence 0.243 at location [1.42, 50.69, 308.58, 370.48]
|
||||
Detected a photo of a cat with confidence 0.298 at location [348.06, 20.56, 642.33, 372.61]
|
||||
Detected a photo of a cat with confidence 0.707 at location [324.97, 20.44, 640.58, 373.29]
|
||||
Detected a photo of a cat with confidence 0.717 at location [1.46, 55.26, 315.55, 472.17]
|
||||
```
|
||||
|
||||
This model was contributed by [adirik](https://huggingface.co/adirik). The original code can be found [here](https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit).
|
||||
|
45
docs/source/en/model_doc/pegasus_x.mdx
Normal file
45
docs/source/en/model_doc/pegasus_x.mdx
Normal file
@ -0,0 +1,45 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# PEGASUS-X
|
||||
|
||||
## Overview
|
||||
|
||||
The PEGASUS-X model was proposed in [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao and Peter J. Liu.
|
||||
|
||||
PEGASUS-X (PEGASUS eXtended) extends the PEGASUS models for long input summarization through additional long input pretraining and using staggered block-local attention with global tokens in the encoder.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*While large pretrained Transformer models have proven highly capable at tackling natural language tasks, handling long sequence inputs continues to be a significant challenge. One such task is long input summarization, where inputs are longer than the maximum input context of most pretrained models. Through an extensive set of experiments, we investigate what model architectural changes and pretraining paradigms can most efficiently adapt a pretrained Transformer for long input summarization. We find that a staggered, block-local Transformer with global encoder tokens strikes a good balance of performance and efficiency, and that an additional pretraining phase on long sequences meaningfully improves downstream summarization performance. Based on our findings, we introduce PEGASUS-X, an extension of the PEGASUS model with additional long input pretraining to handle inputs of up to 16K tokens. PEGASUS-X achieves strong performance on long input summarization tasks comparable with much larger models while adding few additional parameters and not requiring model parallelism to train.*
|
||||
|
||||
Tips:
|
||||
|
||||
* PEGASUS-X uses the same tokenizer as PEGASUS.
|
||||
|
||||
This model was contributed by [zphang](<https://huggingface.co/zphang). The original code can be found [here](https://github.com/google-research/pegasus).
|
||||
|
||||
## PegasusXConfig
|
||||
|
||||
[[autodoc]] PegasusXConfig
|
||||
|
||||
|
||||
## PegasusXModel
|
||||
|
||||
[[autodoc]] PegasusXModel
|
||||
- forward
|
||||
|
||||
|
||||
## PegasusXForConditionalGeneration
|
||||
|
||||
[[autodoc]] PegasusXForConditionalGeneration
|
||||
- forward
|
@ -45,8 +45,9 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
|
||||
|
||||
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
|
||||
|
||||
In cases where the language code is needed, The regular [`~PLBartTokenizer.__call__`] will encode source text format, and it should be wrapped
|
||||
inside the context manager [`~PLBartTokenizer.as_target_tokenizer`] to encode target text format.
|
||||
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
|
||||
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
|
||||
it's passed with the `text_target` keyword argument.
|
||||
|
||||
- Supervised training
|
||||
|
||||
@ -56,11 +57,7 @@ inside the context manager [`~PLBartTokenizer.as_target_tokenizer`] to encode ta
|
||||
>>> tokenizer = PLBartTokenizer.from_pretrained("uclanlp/plbart-base", src_lang="en_XX", tgt_lang="python")
|
||||
>>> example_python_phrase = "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])"
|
||||
>>> expected_translation_english = "Returns the maximum value of a b c."
|
||||
>>> inputs = tokenizer(example_python_phrase, return_tensors="pt")
|
||||
>>> with tokenizer.as_target_tokenizer():
|
||||
... labels = tokenizer(expected_translation_english, return_tensors="pt")
|
||||
>>> inputs["labels"] = labels["input_ids"]
|
||||
>>> # forward pass
|
||||
>>> inputs = tokenizer(example_python_phrase, text_target=expected_translation_english, return_tensors="pt")
|
||||
>>> model(**inputs)
|
||||
```
|
||||
|
||||
@ -88,7 +85,6 @@ inside the context manager [`~PLBartTokenizer.as_target_tokenizer`] to encode ta
|
||||
## PLBartTokenizer
|
||||
|
||||
[[autodoc]] PLBartTokenizer
|
||||
- as_target_tokenizer
|
||||
- build_inputs_with_special_tokens
|
||||
|
||||
## PLBartModel
|
||||
|
@ -93,6 +93,7 @@ SegFormer's results on the segmentation datasets like ADE20k, refer to the [pape
|
||||
|
||||
[[autodoc]] SegformerFeatureExtractor
|
||||
- __call__
|
||||
- post_process_semantic_segmentation
|
||||
|
||||
## SegformerModel
|
||||
|
||||
|
@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Speech Encoder Decoder Models
|
||||
|
||||
The [`SpeechEncoderDecoderModel`] can be used to initialize a speech-sequence-to-text-sequence model
|
||||
The [`SpeechEncoderDecoderModel`] can be used to initialize a speech-to-text model
|
||||
with any pretrained speech autoencoding model as the encoder (*e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert)) and any pretrained autoregressive model as the decoder.
|
||||
|
||||
The effectiveness of initializing speech-sequence-to-text-sequence models with pretrained checkpoints for speech
|
||||
@ -20,9 +20,96 @@ recognition and speech translation has *e.g.* been shown in [Large-Scale Self- a
|
||||
Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli,
|
||||
Alexis Conneau.
|
||||
|
||||
An example of how to use a [`SpeechEncoderDecoderModel`] for inference can be seen in
|
||||
[Speech2Text2](speech_to_text_2).
|
||||
An example of how to use a [`SpeechEncoderDecoderModel`] for inference can be seen in [Speech2Text2](speech_to_text_2).
|
||||
|
||||
## Randomly initializing `SpeechEncoderDecoderModel` from model configurations.
|
||||
|
||||
[`SpeechEncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`Wav2Vec2Model`] configuration for the encoder
|
||||
and the default [`BertForCausalLM`] configuration for the decoder.
|
||||
|
||||
```python
|
||||
>>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel
|
||||
|
||||
>>> config_encoder = Wav2Vec2Config()
|
||||
>>> config_decoder = BertConfig()
|
||||
|
||||
>>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
||||
>>> model = SpeechEncoderDecoderModel(config=config)
|
||||
```
|
||||
|
||||
## Initialising `SpeechEncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
|
||||
|
||||
[`SpeechEncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained Transformer-based speech model, *e.g.* [Wav2Vec2](wav2vec2), [Hubert](hubert) can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
|
||||
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
|
||||
Initializing [`SpeechEncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder).
|
||||
To do so, the `SpeechEncoderDecoderModel` class provides a [`SpeechEncoderDecoderModel.from_encoder_decoder_pretrained`] method.
|
||||
|
||||
```python
|
||||
>>> from transformers import SpeechEncoderDecoderModel
|
||||
|
||||
>>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
... "facebook/hubert-large-ll60k", "bert-base-uncased"
|
||||
... )
|
||||
```
|
||||
|
||||
## Loading an existing `SpeechEncoderDecoderModel` checkpoint and perform inference.
|
||||
|
||||
To load fine-tuned checkpoints of the `SpeechEncoderDecoderModel` class, [`SpeechEncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
|
||||
|
||||
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
|
||||
|
||||
```python
|
||||
>>> from transformers import Wav2Vec2Processor, SpeechEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
>>> import torch
|
||||
|
||||
>>> # load a fine-tuned speech translation model and corresponding processor
|
||||
>>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
|
||||
>>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15")
|
||||
|
||||
>>> # let's perform inference on a piece of English speech (which we'll translate to German)
|
||||
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||||
>>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values
|
||||
|
||||
>>> # autoregressively generate transcription (uses greedy decoding by default)
|
||||
>>> generated_ids = model.generate(input_values)
|
||||
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
>>> print(generated_text)
|
||||
Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heißen zu können.
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model on a dataset of (speech, text) pairs.
|
||||
As you can see, only 2 inputs are required for the model in order to compute a loss: `input_values` (which are the
|
||||
speech inputs) and `labels` (which are the `input_ids` of the encoded target sequence).
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, AutoFeatureExtractor, SpeechEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> encoder_id = "facebook/wav2vec2-base-960h" # acoustic model encoder
|
||||
>>> decoder_id = "bert-base-uncased" # text decoder
|
||||
|
||||
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(decoder_id)
|
||||
>>> # Combine pre-trained encoder and pre-trained decoder to form a Seq2Seq model
|
||||
>>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id)
|
||||
|
||||
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
|
||||
>>> model.config.pad_token_id = tokenizer.pad_token_id
|
||||
|
||||
>>> # load an audio input and pre-process (normalise mean/std to 0/1)
|
||||
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||||
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values
|
||||
|
||||
>>> # load its corresponding transcription and tokenize to generate labels
|
||||
>>> labels = tokenizer(ds[0]["text"], return_tensors="pt").input_ids
|
||||
|
||||
>>> # the forward function automatically creates the correct decoder_input_ids
|
||||
>>> loss = model(**input_features).loss
|
||||
>>> loss.backward()
|
||||
```
|
||||
|
||||
## SpeechEncoderDecoderConfig
|
||||
|
||||
|
@ -120,7 +120,6 @@ See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
- as_target_processor
|
||||
|
||||
## Speech2TextModel
|
||||
|
||||
|
@ -114,7 +114,6 @@ See [model hub](https://huggingface.co/models?filter=speech2text2) to look for S
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
- as_target_processor
|
||||
|
||||
## Speech2Text2ForCausalLM
|
||||
|
||||
|
47
docs/source/en/model_doc/swinv2.mdx
Normal file
47
docs/source/en/model_doc/swinv2.mdx
Normal file
@ -0,0 +1,47 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# Swin Transformer V2
|
||||
|
||||
## Overview
|
||||
|
||||
The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.*
|
||||
|
||||
Tips:
|
||||
- One can use the [`AutoFeatureExtractor`] API to prepare images for the model.
|
||||
|
||||
This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik).
|
||||
The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
|
||||
|
||||
|
||||
## Swinv2Config
|
||||
|
||||
[[autodoc]] Swinv2Config
|
||||
|
||||
## Swinv2Model
|
||||
|
||||
[[autodoc]] Swinv2Model
|
||||
- forward
|
||||
|
||||
## Swinv2ForMaskedImageModeling
|
||||
|
||||
[[autodoc]] Swinv2ForMaskedImageModeling
|
||||
- forward
|
||||
|
||||
## Swinv2ForImageClassification
|
||||
|
||||
[[autodoc]] transformers.Swinv2ForImageClassification
|
||||
- forward
|
@ -187,12 +187,15 @@ ignored. The code example below illustrates all of this.
|
||||
|
||||
>>> # encode the targets
|
||||
>>> target_encoding = tokenizer(
|
||||
... [output_sequence_1, output_sequence_2], padding="longest", max_length=max_target_length, truncation=True
|
||||
... [output_sequence_1, output_sequence_2],
|
||||
... padding="longest",
|
||||
... max_length=max_target_length,
|
||||
... truncation=True,
|
||||
... return_tensors="pt",
|
||||
... )
|
||||
>>> labels = target_encoding.input_ids
|
||||
|
||||
>>> # replace padding token id's of the labels by -100 so it's ignored by the loss
|
||||
>>> labels = torch.tensor(labels)
|
||||
>>> labels[labels == tokenizer.pad_token_id] = -100
|
||||
|
||||
>>> # forward pass
|
||||
|
@ -94,7 +94,6 @@ See the [model hub](https://huggingface.co/models?filter=trocr) to look for TrOC
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
- as_target_processor
|
||||
|
||||
## TrOCRForCausalLM
|
||||
|
||||
|
60
docs/source/en/model_doc/videomae.mdx
Normal file
60
docs/source/en/model_doc/videomae.mdx
Normal file
@ -0,0 +1,60 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# VideoMAE
|
||||
|
||||
## Overview
|
||||
|
||||
The VideoMAE model was proposed in [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
|
||||
VideoMAE extends masked auto encoders ([MAE](vit_mae)) to video, claiming state-of-the-art performance on several video classification benchmarks.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Pre-training video transformers on extra large-scale datasets is generally required to achieve premier performance on relatively small datasets. In this paper, we show that video masked autoencoders (VideoMAE) are data-efficient learners for self-supervised video pre-training (SSVP). We are inspired by the recent ImageMAE and propose customized video tube masking and reconstruction. These simple designs turn out to be effective for overcoming information leakage caused by the temporal correlation during video reconstruction. We obtain three important findings on SSVP: (1) An extremely high proportion of masking ratio (i.e., 90% to 95%) still yields favorable performance of VideoMAE. The temporally redundant video content enables higher masking ratio than that of images. (2) VideoMAE achieves impressive results on very small datasets (i.e., around 3k-4k videos) without using any extra data. This is partially ascribed to the challenging task of video reconstruction to enforce high-level structure learning. (3) VideoMAE shows that data quality is more important than data quantity for SSVP. Domain shift between pre-training and target datasets are important issues in SSVP. Notably, our VideoMAE with the vanilla ViT backbone can achieve 83.9% on Kinects-400, 75.3% on Something-Something V2, 90.8% on UCF101, and 61.1% on HMDB51 without using any extra data.*
|
||||
|
||||
Tips:
|
||||
|
||||
- One can use [`VideoMAEFeatureExtractor`] to prepare videos for the model. It will resize + normalize all frames of a video for you.
|
||||
- [`VideoMAEForPreTraining`] includes the decoder on top for self-supervised pre-training.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/videomae_architecture.jpeg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> VideoMAE pre-training. Taken from the <a href="https://arxiv.org/abs/2203.12602">original paper</a>. </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/MCG-NJU/VideoMAE).
|
||||
|
||||
|
||||
## VideoMAEConfig
|
||||
|
||||
[[autodoc]] VideoMAEConfig
|
||||
|
||||
## VideoMAEFeatureExtractor
|
||||
|
||||
[[autodoc]] VideoMAEFeatureExtractor
|
||||
- __call__
|
||||
|
||||
## VideoMAEModel
|
||||
|
||||
[[autodoc]] VideoMAEModel
|
||||
- forward
|
||||
|
||||
## VideoMAEForPreTraining
|
||||
|
||||
[[autodoc]] transformers.VideoMAEForPreTraining
|
||||
- forward
|
||||
|
||||
## VideoMAEForVideoClassification
|
||||
|
||||
[[autodoc]] transformers.VideoMAEForVideoClassification
|
||||
- forward
|
@ -12,16 +12,136 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Vision Encoder Decoder Models
|
||||
|
||||
The [`VisionEncoderDecoderModel`] can be used to initialize an image-to-text-sequence model with any
|
||||
pretrained Transformer-based vision autoencoding model as the encoder (*e.g.* [ViT](vit), [BEiT](beit), [DeiT](deit), [Swin](swin))
|
||||
## Overview
|
||||
|
||||
The [`VisionEncoderDecoderModel`] can be used to initialize an image-to-text model with any
|
||||
pretrained Transformer-based vision model as the encoder (*e.g.* [ViT](vit), [BEiT](beit), [DeiT](deit), [Swin](swin))
|
||||
and any pretrained language model as the decoder (*e.g.* [RoBERTa](roberta), [GPT2](gpt2), [BERT](bert), [DistilBERT](distilbert)).
|
||||
|
||||
The effectiveness of initializing image-to-text-sequence models with pretrained checkpoints has been shown in (for
|
||||
example) [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang,
|
||||
Zhoujun Li, Furu Wei.
|
||||
|
||||
An example of how to use a [`VisionEncoderDecoderModel`] for inference can be seen in [TrOCR](trocr).
|
||||
After such a [`VisionEncoderDecoderModel`] has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples below
|
||||
for more information).
|
||||
|
||||
An example application is image captioning, in which the encoder is used to encode the image, after which an autoregressive language model generates
|
||||
the caption. Another example is optical character recognition. Refer to [TrOCR](trocr), which is an instance of [`VisionEncoderDecoderModel`].
|
||||
|
||||
## Randomly initializing `VisionEncoderDecoderModel` from model configurations.
|
||||
|
||||
[`VisionEncoderDecoderModel`] can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default [`ViTModel`] configuration for the encoder
|
||||
and the default [`BertForCausalLM`] configuration for the decoder.
|
||||
|
||||
```python
|
||||
>>> from transformers import BertConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel
|
||||
|
||||
>>> config_encoder = ViTConfig()
|
||||
>>> config_decoder = BertConfig()
|
||||
|
||||
>>> config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
|
||||
>>> model = VisionEncoderDecoderModel(config=config)
|
||||
```
|
||||
|
||||
## Initialising `VisionEncoderDecoderModel` from a pretrained encoder and a pretrained decoder.
|
||||
|
||||
[`VisionEncoderDecoderModel`] can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained Transformer-based vision model, *e.g.* [Swin](swin), can serve as the encoder and both pretrained auto-encoding models, *e.g.* BERT, pretrained causal language models, *e.g.* GPT2, as well as the pretrained decoder part of sequence-to-sequence models, *e.g.* decoder of BART, can be used as the decoder.
|
||||
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
|
||||
Initializing [`VisionEncoderDecoderModel`] from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in [the *Warm-starting-encoder-decoder blog post*](https://huggingface.co/blog/warm-starting-encoder-decoder).
|
||||
To do so, the `VisionEncoderDecoderModel` class provides a [`VisionEncoderDecoderModel.from_encoder_decoder_pretrained`] method.
|
||||
|
||||
```python
|
||||
>>> from transformers import VisionEncoderDecoderModel
|
||||
|
||||
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
... "microsoft/swin-base-patch4-window7-224-in22k", "bert-base-uncased"
|
||||
... )
|
||||
```
|
||||
|
||||
## Loading an existing `VisionEncoderDecoderModel` checkpoint and perform inference.
|
||||
|
||||
To load fine-tuned checkpoints of the `VisionEncoderDecoderModel` class, [`VisionEncoderDecoderModel`] provides the `from_pretrained(...)` method just like any other model architecture in Transformers.
|
||||
|
||||
To perform inference, one uses the [`generate`] method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
|
||||
|
||||
```python
|
||||
>>> import requests
|
||||
>>> from PIL import Image
|
||||
|
||||
>>> from transformers import GPT2TokenizerFast, ViTFeatureExtractor, VisionEncoderDecoderModel
|
||||
|
||||
>>> # load a fine-tuned image captioning model and corresponding tokenizer and feature extractor
|
||||
>>> model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
||||
>>> tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
||||
>>> feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
||||
|
||||
>>> # let's perform inference on an image
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
>>> pixel_values = feature_extractor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> # autoregressively generate caption (uses greedy decoding by default)
|
||||
>>> generated_ids = model.generate(pixel_values)
|
||||
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
>>> print(generated_text)
|
||||
a cat laying on a blanket next to a cat laying on a bed
|
||||
```
|
||||
|
||||
## Loading a PyTorch checkpoint into `TFVisionEncoderDecoderModel`.
|
||||
|
||||
[`TFVisionEncoderDecoderModel.from_pretrained`] currently doesn't support initializing the model from a
|
||||
PyTorch checkpoint. Passing `from_pt=True` to this method will throw an exception. If there are only PyTorch
|
||||
checkpoints for a particular vision encoder-decoder model, a workaround is:
|
||||
|
||||
```python
|
||||
>>> from transformers import VisionEncoderDecoderModel, TFVisionEncoderDecoderModel
|
||||
|
||||
>>> _model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
||||
|
||||
>>> _model.encoder.save_pretrained("./encoder")
|
||||
>>> _model.decoder.save_pretrained("./decoder")
|
||||
|
||||
>>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
|
||||
... )
|
||||
>>> # This is only for copying some specific attributes of this particular model.
|
||||
>>> model.config = _model.config
|
||||
```
|
||||
|
||||
## Training
|
||||
|
||||
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model on a dataset of (image, text) pairs.
|
||||
As you can see, only 2 inputs are required for the model in order to compute a loss: `pixel_values` (which are the
|
||||
images) and `labels` (which are the `input_ids` of the encoded target sequence).
|
||||
|
||||
```python
|
||||
>>> from transformers import ViTFeatureExtractor, BertTokenizer, VisionEncoderDecoderModel
|
||||
>>> from datasets import load_dataset
|
||||
|
||||
>>> feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
|
||||
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
||||
... "google/vit-base-patch16-224-in21k", "bert-base-uncased"
|
||||
... )
|
||||
|
||||
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
|
||||
>>> model.config.pad_token_id = tokenizer.pad_token_id
|
||||
|
||||
>>> dataset = load_dataset("huggingface/cats-image")
|
||||
>>> image = dataset["test"]["image"][0]
|
||||
>>> pixel_values = feature_extractor(image, return_tensors="pt").pixel_values
|
||||
|
||||
>>> labels = tokenizer(
|
||||
... "an image of two cats chilling on a couch",
|
||||
... return_tensors="pt",
|
||||
... ).input_ids
|
||||
|
||||
>>> # the forward function automatically creates the correct decoder_input_ids
|
||||
>>> loss = model(pixel_values=pixel_values, labels=labels).loss
|
||||
```
|
||||
|
||||
This model was contributed by [nielsr](https://github.com/nielsrogge). This model's TensorFlow and Flax versions
|
||||
were contributed by [ydshieh](https://github.com/ydshieh).
|
||||
|
||||
## VisionEncoderDecoderConfig
|
||||
|
||||
|
@ -12,13 +12,6 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Vision Transformer (ViT)
|
||||
|
||||
<Tip>
|
||||
|
||||
This is a recently introduced model so the API hasn't been tested extensively. There may be some bugs or slight
|
||||
breaking changes to fix it in the future. If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title).
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
The Vision Transformer (ViT) model was proposed in [An Image is Worth 16x16 Words: Transformers for Image Recognition
|
||||
@ -63,6 +56,11 @@ Tips:
|
||||
language modeling). With this approach, the smaller ViT-B/16 model achieves 79.9% accuracy on ImageNet, a significant
|
||||
improvement of 2% to training from scratch, but still 4% behind supervised pre-training.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vit_architecture.jpg"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> ViT architecture. Taken from the <a href="https://arxiv.org/abs/2010.11929">original paper.</a> </small>
|
||||
|
||||
Following the original Vision Transformer, some follow-up works have been made:
|
||||
|
||||
- [DeiT](deit) (Data-efficient Image Transformers) by Facebook AI. DeiT models are distilled vision transformers.
|
||||
|
64
docs/source/en/model_doc/vit_msn.mdx
Normal file
64
docs/source/en/model_doc/vit_msn.mdx
Normal file
@ -0,0 +1,64 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# ViTMSN
|
||||
|
||||
## Overview
|
||||
|
||||
The ViTMSN model was proposed in [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes,
|
||||
Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas. The paper presents a joint-embedding architecture to match the prototypes
|
||||
of masked patches with that of the unmasked patches. With this setup, their method yields excellent performance in the low-shot and extreme low-shot
|
||||
regimes.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our
|
||||
approach matches the representation of an image view containing randomly masked patches to the representation of the original
|
||||
unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the
|
||||
unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures,
|
||||
while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance,
|
||||
on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy,
|
||||
and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark.*
|
||||
|
||||
Tips:
|
||||
|
||||
- MSN (masked siamese networks) is a method for self-supervised pre-training of Vision Transformers (ViTs). The pre-training
|
||||
objective is to match the prototypes assigned to the unmasked views of the images to that of the masked views of the same images.
|
||||
- The authors have only released pre-trained weights of the backbone (ImageNet-1k pre-training). So, to use that on your own image classification dataset,
|
||||
use the [`ViTMSNForImageClassification`] class which is initialized from [`ViTMSNModel`]. Follow
|
||||
[this notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb) for a detailed tutorial on fine-tuning.
|
||||
- MSN is particularly useful in the low-shot and extreme low-shot regimes. Notably, it achieves 75.7% top-1 accuracy with only 1% of ImageNet-1K
|
||||
labels when fine-tuned.
|
||||
|
||||
|
||||
<img src="https://i.ibb.co/W6PQMdC/Screenshot-2022-09-13-at-9-08-40-AM.png" alt="drawing" width="600"/>
|
||||
|
||||
<small> MSN architecture. Taken from the <a href="https://arxiv.org/abs/2204.07141">original paper.</a> </small>
|
||||
|
||||
This model was contributed by [sayakpaul](https://huggingface.co/sayakpaul). The original code can be found [here](https://github.com/facebookresearch/msn).
|
||||
|
||||
|
||||
## ViTMSNConfig
|
||||
|
||||
[[autodoc]] ViTMSNConfig
|
||||
|
||||
|
||||
## ViTMSNModel
|
||||
|
||||
[[autodoc]] ViTMSNModel
|
||||
- forward
|
||||
|
||||
|
||||
## ViTMSNForImageClassification
|
||||
|
||||
[[autodoc]] ViTMSNForImageClassification
|
||||
- forward
|
@ -62,7 +62,6 @@ This model was contributed by [patrickvonplaten](https://huggingface.co/patrickv
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
- as_target_processor
|
||||
|
||||
## Wav2Vec2ProcessorWithLM
|
||||
|
||||
@ -73,7 +72,6 @@ This model was contributed by [patrickvonplaten](https://huggingface.co/patrickv
|
||||
- save_pretrained
|
||||
- batch_decode
|
||||
- decode
|
||||
- as_target_processor
|
||||
|
||||
## Wav2Vec2 specific outputs
|
||||
|
||||
|
70
docs/source/en/model_doc/xclip.mdx
Normal file
70
docs/source/en/model_doc/xclip.mdx
Normal file
@ -0,0 +1,70 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# X-CLIP
|
||||
|
||||
## Overview
|
||||
|
||||
The X-CLIP model was proposed in [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
|
||||
X-CLIP is a minimal extension of [CLIP](clip) for video. The model consists of a text encoder, a cross-frame vision encoder, a multi-frame integration Transformer, and a video-specific prompt generator.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Contrastive language-image pretraining has shown great success in learning visual-textual joint representation from web-scale data, demonstrating remarkable "zero-shot" generalization ability for various image tasks. However, how to effectively expand such new language-image pretraining methods to video domains is still an open problem. In this work, we present a simple yet effective approach that adapts the pretrained language-image models to video recognition directly, instead of pretraining a new model from scratch. More concretely, to capture the long-range dependencies of frames along the temporal dimension, we propose a cross-frame attention mechanism that explicitly exchanges information across frames. Such module is lightweight and can be plugged into pretrained language-image models seamlessly. Moreover, we propose a video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts. Extensive experiments demonstrate that our approach is effective and can be generalized to different video recognition scenarios. In particular, under fully-supervised settings, our approach achieves a top-1 accuracy of 87.1% on Kinectics-400, while using 12 times fewer FLOPs compared with Swin-L and ViViT-H. In zero-shot experiments, our approach surpasses the current state-of-the-art methods by +7.6% and +14.9% in terms of top-1 accuracy under two popular protocols. In few-shot scenarios, our approach outperforms previous best methods by +32.1% and +23.1% when the labeled data is extremely limited.*
|
||||
|
||||
Tips:
|
||||
|
||||
- Usage of X-CLIP is identical to [CLIP](clip).
|
||||
- Demo notebooks for X-CLIP can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/X-CLIP).
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/xclip_architecture.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> X-CLIP architecture. Taken from the <a href="https://arxiv.org/abs/2208.02816">original paper.</a> </small>
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/microsoft/VideoX/tree/master/X-CLIP).
|
||||
|
||||
|
||||
## XCLIPProcessor
|
||||
|
||||
[[autodoc]] XCLIPProcessor
|
||||
|
||||
## XCLIPConfig
|
||||
|
||||
[[autodoc]] XCLIPConfig
|
||||
- from_text_vision_configs
|
||||
|
||||
## XCLIPTextConfig
|
||||
|
||||
[[autodoc]] XCLIPTextConfig
|
||||
|
||||
## XCLIPVisionConfig
|
||||
|
||||
[[autodoc]] XCLIPVisionConfig
|
||||
|
||||
## XCLIPModel
|
||||
|
||||
[[autodoc]] XCLIPModel
|
||||
- forward
|
||||
- get_text_features
|
||||
- get_video_features
|
||||
|
||||
## XCLIPTextModel
|
||||
|
||||
[[autodoc]] XCLIPTextModel
|
||||
- forward
|
||||
|
||||
## XCLIPVisionModel
|
||||
|
||||
[[autodoc]] XCLIPVisionModel
|
||||
- forward
|
@ -64,6 +64,16 @@ This model was contributed by [Suraj](https://huggingface.co/valhalla). The orig
|
||||
[[autodoc]] XGLMForCausalLM
|
||||
- forward
|
||||
|
||||
## TFXGLMModel
|
||||
|
||||
[[autodoc]] TFXGLMModel
|
||||
- call
|
||||
|
||||
## TFXGLMForCausalLM
|
||||
|
||||
[[autodoc]] TFXGLMForCausalLM
|
||||
- call
|
||||
|
||||
## FlaxXGLMModel
|
||||
|
||||
[[autodoc]] FlaxXGLMModel
|
||||
|
@ -179,10 +179,10 @@ This creates a repository under your username with the model name `my-awesome-mo
|
||||
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
|
||||
```
|
||||
|
||||
If you belong to an organization and want to push your model under the organization name instead, add the `organization` parameter:
|
||||
If you belong to an organization and want to push your model under the organization name instead, just add it to the `repo_id`:
|
||||
|
||||
```py
|
||||
>>> pt_model.push_to_hub("my-awesome-model", organization="my-awesome-org")
|
||||
>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model")
|
||||
```
|
||||
|
||||
The `push_to_hub` function can also be used to add other files to a model repository. For example, add a tokenizer to a model repository:
|
||||
@ -225,4 +225,4 @@ To make sure users understand your model's capabilities, limitations, potential
|
||||
* Manually creating and uploading a `README.md` file.
|
||||
* Clicking on the **Edit model card** button in your model repository.
|
||||
|
||||
Take a look at the DistilBert [model card](https://huggingface.co/distilbert-base-uncased) for a good example of the type of information a model card should include. For more details about other options you can control in the `README.md` file such as a model's carbon footprint or widget examples, refer to the documentation [here](https://huggingface.co/docs/hub/model-repos).
|
||||
Take a look at the DistilBert [model card](https://huggingface.co/distilbert-base-uncased) for a good example of the type of information a model card should include. For more details about other options you can control in the `README.md` file such as a model's carbon footprint or widget examples, refer to the documentation [here](https://huggingface.co/docs/hub/models-cards).
|
||||
|
@ -11,4 +11,9 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
|
||||
# Efficient Inference on a Multiple GPUs
|
||||
|
||||
This document will be completed soon with information on how to infer on a multiple GPUs. In the meantime you can check out [the guide for training on a single GPU](perf_train_gpu_one) and [the guide for inference on CPUs](perf_infer_cpu).
|
||||
This document contains information on how to efficiently infer on a multiple GPUs.
|
||||
<Tip>
|
||||
|
||||
Note: A multi GPU setup can use the majority of the strategies described in the [single GPU section](./perf_infer_gpu_one). You must be aware of simple techniques, though, that can be used for a better usage.
|
||||
|
||||
</Tip>
|
||||
|
@ -11,4 +11,66 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
|
||||
|
||||
# Efficient Inference on a Single GPU
|
||||
|
||||
This document will be completed soon with information on how to infer on a single GPU. In the meantime you can check out [the guide for training on a single GPU](perf_train_gpu_one) and [the guide for inference on CPUs](perf_infer_cpu).
|
||||
This document will be completed soon with information on how to infer on a single GPU. In the meantime you can check out [the guide for training on a single GPU](perf_train_gpu_one) and [the guide for inference on CPUs](perf_infer_cpu).
|
||||
|
||||
## `bitsandbytes` integration for Int8 mixed-precision matrix decomposition
|
||||
|
||||
Note that this feature is also totally applicable in a multi GPU setup as well.
|
||||
|
||||
From the paper [`LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale`](https://arxiv.org/abs/2208.07339), we support HuggingFace integration for all models in the Hub with a few lines of code.
|
||||
The method reduce `nn.Linear` size by 2 for `float16` and `bfloat16` weights and by 4 for `float32` weights, with close to no impact to the quality by operating on the outliers in half-precision.
|
||||
|
||||

|
||||
|
||||
Int8 mixed-precision matrix decomposition works by separating a matrix multiplication into two streams: (1) a systematic feature outlier stream matrix multiplied in fp16 (0.01%), (2) a regular stream of int8 matrix multiplication (99.9%). With this method, int8 inference with no predictive degradation is possible for very large models.
|
||||
For more details regarding the method, check out the [paper](https://arxiv.org/abs/2208.07339) or our [blogpost about the integration](https://huggingface.co/blog/hf-bitsandbytes-integration).
|
||||
|
||||

|
||||
|
||||
Note, that you would require a GPU to run mixed-8bit models as the kernels have been compiled for GPUs only. Make sure that you have enough GPU memory to store the quarter (or half if your model weights are in half precision) of the model before using this feature.
|
||||
Below are some notes to help you use this module, or follow the demos on [Google colab](#colab-demos).
|
||||
|
||||
### Requirements
|
||||
|
||||
- Make sure you run that on NVIDIA GPUs that support 8-bit tensor cores (Turing, Ampere or newer architectures - e.g. T4, RTX20s RTX30s, A40-A100).
|
||||
- Install the correct version of `bitsandbytes` by running:
|
||||
`pip install bitsandbytes>=0.31.5`
|
||||
- Install `accelerate`
|
||||
`pip install accelerate>=0.12.0`
|
||||
|
||||
### Running mixed-int8 models - single GPU setup
|
||||
|
||||
After installing the required libraries, the way to load your mixed 8-bit model is as follows:
|
||||
```py
|
||||
model_name = "bigscience/bloom-2b5"
|
||||
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
|
||||
```
|
||||
|
||||
### Running mixed-int8 models - multi GPU setup
|
||||
|
||||
The way to load your mixed 8-bit model in multiple GPUs is as follows (same command as single GPU setup):
|
||||
```py
|
||||
model_name = "bigscience/bloom-2b5"
|
||||
model_8bit = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_8bit=True)
|
||||
```
|
||||
But you can control the GPU RAM you want to allocate on each GPU using `accelerate`. Use the `max_memory` argument as follows:
|
||||
|
||||
```py
|
||||
max_memory_mapping = {0: "1GB", 1: "2GB"}
|
||||
model_name = "bigscience/bloom-3b"
|
||||
model_8bit = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, device_map="auto", load_in_8bit=True, max_memory=max_memory_mapping
|
||||
)
|
||||
```
|
||||
In this example, the first GPU will use 1GB of memory and the second 2GB.
|
||||
|
||||
### Colab demos
|
||||
|
||||
With this method you can infer on models that were not possible to infer on a Google Colab before.
|
||||
Check out the demo for running T5-11b (42GB in fp32)! Using 8-bit quantization on Google Colab:
|
||||
|
||||
[](https://colab.research.google.com/drive/1YORPWx4okIHXnjW7MSAidXN29mPVNT7F?usp=sharing)
|
||||
|
||||
Or this demo for BLOOM-3B:
|
||||
|
||||
[](https://colab.research.google.com/drive/1qOjXfQIAULfKvZqwCen8-MoWKGdSatZ4?usp=sharing)
|
120
docs/source/en/perf_train_cpu_many.mdx
Normal file
120
docs/source/en/perf_train_cpu_many.mdx
Normal file
@ -0,0 +1,120 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
-->
|
||||
|
||||
# Efficient Training on Multiple CPUs
|
||||
|
||||
When training on a single CPU is too slow, we can use multiple CPUs. This guide focuses on PyTorch-based DDP enabling distributed CPU training efficiently.
|
||||
|
||||
## Intel® oneCCL Bindings for PyTorch
|
||||
|
||||
[Intel® oneCCL](https://github.com/oneapi-src/oneCCL) (collective communications library) is a library for efficient distributed deep learning training implementing such collectives like allreduce, allgather, alltoall. For more information on oneCCL, please refer to the [oneCCL documentation](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html) and [oneCCL specification](https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html).
|
||||
|
||||
Module `oneccl_bindings_for_pytorch` (`torch_ccl` before version 1.12) implements PyTorch C10D ProcessGroup API and can be dynamically loaded as external ProcessGroup and only works on Linux platform now
|
||||
|
||||
Check more detailed information for [oneccl_bind_pt](https://github.com/intel/torch-ccl).
|
||||
|
||||
### Intel® oneCCL Bindings for PyTorch installation:
|
||||
|
||||
Wheel files are available for the following Python versions:
|
||||
|
||||
| Extension Version | Python 3.6 | Python 3.7 | Python 3.8 | Python 3.9 | Python 3.10 |
|
||||
| :---------------: | :--------: | :--------: | :--------: | :--------: | :---------: |
|
||||
| 1.12.0 | | √ | √ | √ | √ |
|
||||
| 1.11.0 | | √ | √ | √ | √ |
|
||||
| 1.10.0 | √ | √ | √ | √ | |
|
||||
|
||||
```
|
||||
pip install oneccl_bind_pt=={pytorch_version} -f https://software.intel.com/ipex-whl-stable
|
||||
```
|
||||
where `{pytorch_version}` should be your PyTorch version, for instance 1.12.0.
|
||||
Check more approaches for [oneccl_bind_pt installation](https://github.com/intel/torch-ccl).
|
||||
Versions of oneCCL and PyTorch must match.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
oneccl_bindings_for_pytorch 1.12.0 prebuilt wheel does not work with PyTorch 1.12.1 (it is for PyTorch 1.12.0)
|
||||
|
||||
</Tip>
|
||||
|
||||
## Intel® MPI library
|
||||
Use this standards-based MPI implementation to deliver flexible, efficient, scalable cluster messaging on Intel® architecture. This component is part of the Intel® oneAPI HPC Toolkit.
|
||||
|
||||
oneccl_bindings_for_pytorch is installed along with the MPI tool set. Need to source the environment before using it.
|
||||
|
||||
for Intel® oneCCL 1.12.0
|
||||
```
|
||||
oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
|
||||
source $oneccl_bindings_for_pytorch_path/env/setvars.sh
|
||||
```
|
||||
|
||||
for Intel® oneCCL whose version < 1.12.0
|
||||
```
|
||||
torch_ccl_path=$(python -c "import torch; import torch_ccl; import os; print(os.path.abspath(os.path.dirname(torch_ccl.__file__)))")
|
||||
source $torch_ccl_path/env/setvars.sh
|
||||
```
|
||||
|
||||
|
||||
The following "Usage in Trainer" takes mpirun in Intel® MPI library as an example.
|
||||
|
||||
|
||||
## Usage in Trainer
|
||||
To enable multi CPU distributed training in the Trainer with the ccl backend, users should add **`--xpu_backend ccl`** in the command arguments.
|
||||
|
||||
Let's see an example with the [question-answering example](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)
|
||||
|
||||
|
||||
The following command enables training with 2 processes on one Xeon node, with one process running per one socket. The variables OMP_NUM_THREADS/CCL_WORKER_COUNT can be tuned for optimal performance.
|
||||
```shell script
|
||||
export CCL_WORKER_COUNT=1
|
||||
export MASTER_ADDR=127.0.0.1
|
||||
mpirun -n 2 -genv OMP_NUM_THREADS=23 \
|
||||
python3 run_qa.py \
|
||||
--model_name_or_path bert-large-uncased \
|
||||
--dataset_name squad \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--per_device_train_batch_size 12 \
|
||||
--learning_rate 3e-5 \
|
||||
--num_train_epochs 2 \
|
||||
--max_seq_length 384 \
|
||||
--doc_stride 128 \
|
||||
--output_dir /tmp/debug_squad/ \
|
||||
--no_cuda \
|
||||
--xpu_backend ccl
|
||||
```
|
||||
The following command enables training with a total of four processes on two Xeons (node0 and node1, taking node0 as the main process), ppn (processes per node) is set to 2, with one process running per one socket. The variables OMP_NUM_THREADS/CCL_WORKER_COUNT can be tuned for optimal performance.
|
||||
|
||||
In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument.
|
||||
```shell script
|
||||
cat hostfile
|
||||
xxx.xxx.xxx.xxx #node0 ip
|
||||
xxx.xxx.xxx.xxx #node1 ip
|
||||
```
|
||||
Now, run the following command in node0 and **4DDP** will be enabled in node0 and node1:
|
||||
```shell script
|
||||
export CCL_WORKER_COUNT=1
|
||||
export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip
|
||||
mpirun -f hostfile -n 4 -ppn 2 \
|
||||
-genv OMP_NUM_THREADS=23 \
|
||||
python3 run_qa.py \
|
||||
--model_name_or_path bert-large-uncased \
|
||||
--dataset_name squad \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--per_device_train_batch_size 12 \
|
||||
--learning_rate 3e-5 \
|
||||
--num_train_epochs 2 \
|
||||
--max_seq_length 384 \
|
||||
--doc_stride 128 \
|
||||
--output_dir /tmp/debug_squad/ \
|
||||
--no_cuda \
|
||||
--xpu_backend ccl
|
||||
```
|
@ -288,7 +288,7 @@ Even when we set the batch size to 1 and use gradient accumulation we can still
|
||||
|
||||
Gradient checkpointing strikes a compromise between the two approaches and saves strategically selected activations throughout the computational graph so only a fraction of the activations need to be re-computed for the gradients. See [this great article](https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9) explaining the ideas behind gradient checkpointing.
|
||||
|
||||
To enable gradient checkpointing in the [`Trainer`] we only need ot pass it as a flag to the [`TrainingArguments`]. Everything else is handled under the hood:
|
||||
To enable gradient checkpointing in the [`Trainer`] we only need to pass it as a flag to the [`TrainingArguments`]. Everything else is handled under the hood:
|
||||
|
||||
```py
|
||||
training_args = TrainingArguments(
|
||||
@ -425,7 +425,7 @@ $ python examples/pytorch/translation/run_translation.py -h | grep "\-optim"
|
||||
|
||||
For example, if you have [NVIDIA/apex](https://github.com/NVIDIA/apex) installed `--optim adamw_apex_fused` will give you the fastest training experience among all supported AdamW optimizers.
|
||||
|
||||
On the other hand [8bit BNB optimizer](https://github.com/facebookresearch/bitsandbytes) can save 3/4 of memory normally used by a typical AdamW optimizer if it is configured to quantize all optimizer states, but in some situations only some optimizer states are quintized and then more memory is used. XXX: update once https://github.com/huggingface/transformers/pull/15622 is merged.
|
||||
On the other hand [8bit BNB optimizer](https://github.com/facebookresearch/bitsandbytes) can save 3/4 of memory normally used by a typical AdamW optimizer if it is configured to quantize all optimizer states, but in some situations only some optimizer states are quintized and then more memory is used.
|
||||
|
||||
Let's get a feel for the numbers and use for example use a 3B-parameter model, like `t5-3b`. Note that since a Gigabyte correpsonds to a billion bytes we can simply multiply the parameters (in billions) with the number of necessary bytes per parameter to get Gigabytes of GPU memory usage:
|
||||
|
||||
@ -609,7 +609,7 @@ for step, batch in enumerate(dataloader, start=1):
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
First we wrap the dataset in a [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader). Then we can enable gradient checkpointing by calling the model's [`~PreTrainedModel.gradient_checkpointing_enable`] method. When we initialize the [`Accelerator`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator) we can specifiy if we want to use mixed precision training and it will take care of it for us in the [`prepare`] call. During the [`prepare`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.prepare) call the dataloader will also be distributed across workers should we use multiple GPUs. We use the same 8-bit optimizer from the earlier experiments.
|
||||
First we wrap the dataset in a [`DataLoader`](https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader). Then we can enable gradient checkpointing by calling the model's [`~PreTrainedModel.gradient_checkpointing_enable`] method. When we initialize the [`Accelerator`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator) we can specifiy if we want to use mixed precision training and it will take care of it for us in the [`prepare`] call. During the [`prepare`](https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.prepare) call the dataloader will also be distributed across workers should we use multiple GPUs. We use the same 8-bit optimizer from the earlier experiments.
|
||||
|
||||
Finally, we can write the main training loop. Note that the `backward` call is handled by 🤗 Accelerate. We can also see how gradient accumulation works: we normalize the loss so we get the average at the end of accumulation and once we have enough steps we run the optimization. Now the question is: does this use the same amount of memory as the previous steps? Let's check:
|
||||
|
||||
@ -719,14 +719,17 @@ For some applications, such as pretraining large language models, applying all t
|
||||
Another use case for training on many GPUs is if the model does not fit on a single GPU with all the mentioned tricks. There are still more methods we can apply although life starts to get a bit more complicated. This usually involves some form of pipeline or tensor parallelism where the model itself is distributed across several GPUs. One can also make use of DeepSpeed which implements some of these parallelism strategies along with some more optimization to reduce the memory footprint such as partitioning the optimizer states. You can read more about this in the ["Multi-GPU training" section](perf_train_gpu_many).
|
||||
|
||||
## Inference with torchdynamo
|
||||
|
||||
TorchDynamo is a new tracer that uses Python’s frame evaluation API to automatically create FX traces from existing PyTorch programs. After capturing the FX graph, different backends can be deployed to lower the graph to an optimized engine. One solution is using the [TensorRT](https://developer.nvidia.com/tensorrt) or NVFuser as backend. You can choose one option below for performance boost.
|
||||
|
||||
```
|
||||
TrainingArguments(torchdynamo="eager") #enable eager model GPU. No performance boost
|
||||
TrainingArguments(torchdynamo="nvfuser") #enable nvfuser
|
||||
TrainingArguments(torchdynamo="fx2trt") #enable tensorRT fp32
|
||||
TrainingArguments(torchdynamo="fx2trt-f16") #enable tensorRT fp16
|
||||
```
|
||||
|
||||
This feature involves 3 different libraries. To install them, please follow the instructions below:
|
||||
- [Torchdynamo installation](https://github.com/pytorch/torchdynamo#requirements-and-setup)
|
||||
- [Functorch installation](https://github.com/pytorch/functorch#install)
|
||||
- [Torch-TensorRT(FX) installation](https://github.com/pytorch/TensorRT/blob/master/docsrc/tutorials/getting_started_with_fx_path.rst#installation)
|
||||
- [Torch-TensorRT(FX) installation](https://github.com/pytorch/TensorRT/blob/master/docsrc/tutorials/getting_started_with_fx_path.rst#installation)
|
@ -101,22 +101,32 @@ from tqdm import tqdm
|
||||
|
||||
max_length = model.config.n_positions
|
||||
stride = 512
|
||||
seq_len = encodings.input_ids.size(1)
|
||||
|
||||
nlls = []
|
||||
for i in tqdm(range(0, encodings.input_ids.size(1), stride)):
|
||||
begin_loc = max(i + stride - max_length, 0)
|
||||
end_loc = min(i + stride, encodings.input_ids.size(1))
|
||||
trg_len = end_loc - i # may be different from stride on last loop
|
||||
prev_end_loc = 0
|
||||
for begin_loc in tqdm(range(0, seq_len, stride)):
|
||||
end_loc = min(begin_loc + max_length, seq_len)
|
||||
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
|
||||
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
|
||||
target_ids = input_ids.clone()
|
||||
target_ids[:, :-trg_len] = -100
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(input_ids, labels=target_ids)
|
||||
neg_log_likelihood = outputs[0] * trg_len
|
||||
|
||||
# loss is calculated using CrossEntropyLoss which averages over input tokens.
|
||||
# Multiply it with trg_len to get the summation instead of average.
|
||||
# We will take average over all the tokens to get the true average
|
||||
# in the last step of this example.
|
||||
neg_log_likelihood = outputs.loss * trg_len
|
||||
|
||||
nlls.append(neg_log_likelihood)
|
||||
|
||||
prev_end_loc = end_loc
|
||||
if end_loc == seq_len:
|
||||
break
|
||||
|
||||
ppl = torch.exp(torch.stack(nlls).sum() / end_loc)
|
||||
```
|
||||
|
||||
@ -126,5 +136,5 @@ and the better the reported perplexity will typically be.
|
||||
|
||||
When we run the above with `stride = 1024`, i.e. no overlap, the resulting PPL is `19.64`, which is about the same
|
||||
as the `19.93` reported in the GPT-2 paper. By using `stride = 512` and thereby employing our striding window
|
||||
strategy, this jumps down to `16.53`. This is not only a more favorable score, but is calculated in a way that is
|
||||
strategy, this jumps down to `16.44`. This is not only a more favorable score, but is calculated in a way that is
|
||||
closer to the true autoregressive decomposition of a sequence likelihood.
|
||||
|
@ -14,29 +14,28 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
🤗 Transformers is an opinionated library built for:
|
||||
|
||||
- NLP researchers and educators seeking to use/study/extend large-scale transformers models
|
||||
- hands-on practitioners who want to fine-tune those models and/or serve them in production
|
||||
- engineers who just want to download a pretrained model and use it to solve a given NLP task.
|
||||
- machine learning researchers and educators seeking to use, study or extend large-scale Transformers models.
|
||||
- hands-on practitioners who want to fine-tune those models or serve them in production, or both.
|
||||
- engineers who just want to download a pretrained model and use it to solve a given machine learning task.
|
||||
|
||||
The library was designed with two strong goals in mind:
|
||||
|
||||
- Be as easy and fast to use as possible:
|
||||
1. Be as easy and fast to use as possible:
|
||||
|
||||
- We strongly limited the number of user-facing abstractions to learn, in fact, there are almost no abstractions,
|
||||
just three standard classes required to use each model: [configuration](main_classes/configuration),
|
||||
[models](main_classes/model) and [tokenizer](main_classes/tokenizer).
|
||||
[models](main_classes/model), and a preprocessing class ([tokenizer](main_classes/tokenizer) for NLP, [feature extractor](main_classes/feature_extractor) for vision and audio, and [processor](main_classes/processors) for multimodal inputs).
|
||||
- All of these classes can be initialized in a simple and unified way from pretrained instances by using a common
|
||||
`from_pretrained()` instantiation method which will take care of downloading (if needed), caching and
|
||||
loading the related class instance and associated data (configurations' hyper-parameters, tokenizers' vocabulary,
|
||||
`from_pretrained()` method which downloads (if needed), caches and
|
||||
loads the related class instance and associated data (configurations' hyperparameters, tokenizers' vocabulary,
|
||||
and models' weights) from a pretrained checkpoint provided on [Hugging Face Hub](https://huggingface.co/models) or your own saved checkpoint.
|
||||
- On top of those three base classes, the library provides two APIs: [`pipeline`] for quickly
|
||||
using a model (plus its associated tokenizer and configuration) on a given task and
|
||||
[`Trainer`]/`Keras.fit` to quickly train or fine-tune a given model.
|
||||
using a model for inference on a given task and [`Trainer`] to quickly train or fine-tune a PyTorch model (all TensorFlow models are compatible with `Keras.fit`).
|
||||
- As a consequence, this library is NOT a modular toolbox of building blocks for neural nets. If you want to
|
||||
extend/build-upon the library, just use regular Python/PyTorch/TensorFlow/Keras modules and inherit from the base
|
||||
classes of the library to reuse functionalities like model loading/saving.
|
||||
extend or build upon the library, just use regular Python, PyTorch, TensorFlow, Keras modules and inherit from the base
|
||||
classes of the library to reuse functionalities like model loading and saving. If you'd like to learn more about our coding philosophy for models, check out our [Repeat Yourself](https://huggingface.co/blog/transformers-design-philosophy) blog post.
|
||||
|
||||
- Provide state-of-the-art models with performances as close as possible to the original models:
|
||||
2. Provide state-of-the-art models with performances as close as possible to the original models:
|
||||
|
||||
- We provide at least one example for each architecture which reproduces a result provided by the official authors
|
||||
of said architecture.
|
||||
@ -48,33 +47,29 @@ A few other goals:
|
||||
- Expose the models' internals as consistently as possible:
|
||||
|
||||
- We give access, using a single API, to the full hidden-states and attention weights.
|
||||
- Tokenizer and base model's API are standardized to easily switch between models.
|
||||
- The preprocessing classes and base model APIs are standardized to easily switch between models.
|
||||
|
||||
- Incorporate a subjective selection of promising tools for fine-tuning/investigating these models:
|
||||
- Incorporate a subjective selection of promising tools for fine-tuning and investigating these models:
|
||||
|
||||
- A simple/consistent way to add new tokens to the vocabulary and embeddings for fine-tuning.
|
||||
- Simple ways to mask and prune transformer heads.
|
||||
- A simple and consistent way to add new tokens to the vocabulary and embeddings for fine-tuning.
|
||||
- Simple ways to mask and prune Transformer heads.
|
||||
|
||||
- Switch easily between PyTorch and TensorFlow 2.0, allowing training using one framework and inference using another.
|
||||
- Easily switch between PyTorch, TensorFlow 2.0 and Flax, allowing training with one framework and inference with another.
|
||||
|
||||
## Main concepts
|
||||
|
||||
The library is built around three types of classes for each model:
|
||||
|
||||
- **Model classes** such as [`BertModel`], which are 30+ PyTorch models ([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)) or Keras models ([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)) that work with the pretrained weights provided in the
|
||||
library.
|
||||
- **Configuration classes** such as [`BertConfig`], which store all the parameters required to build
|
||||
a model. You don't always need to instantiate these yourself. In particular, if you are using a pretrained model
|
||||
without any modification, creating the model will automatically take care of instantiating the configuration (which
|
||||
is part of the model).
|
||||
- **Tokenizer classes** such as [`BertTokenizer`], which store the vocabulary for each model and
|
||||
provide methods for encoding/decoding strings in a list of token embeddings indices to be fed to a model.
|
||||
- **Model classes** can be PyTorch models ([torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)), Keras models ([tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)) or JAX/Flax models ([flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen.html)) that work with the pretrained weights provided in the library.
|
||||
- **Configuration classes** store the hyperparameters required to build a model (such as the number of layers and hidden size). You don't always need to instantiate these yourself. In particular, if you are using a pretrained model without any modification, creating the model will automatically take care of instantiating the configuration (which is part of the model).
|
||||
- **Preprocessing classes** convert the raw data into a format accepted by the model. A [tokenizer](main_classes/tokenizer) stores the vocabulary for each model and provide methods for encoding and decoding strings in a list of token embedding indices to be fed to a model. [Feature extractors](main_classes/feature_extractor) preprocess audio or vision inputs, and a [processor](main_classes/processors) handles multimodal inputs.
|
||||
|
||||
All these classes can be instantiated from pretrained instances and saved locally using two methods:
|
||||
All these classes can be instantiated from pretrained instances, saved locally, and shared on the Hub with three methods:
|
||||
|
||||
- `from_pretrained()` lets you instantiate a model/configuration/tokenizer from a pretrained version either
|
||||
- `from_pretrained()` lets you instantiate a model, configuration, and preprocessing class from a pretrained version either
|
||||
provided by the library itself (the supported models can be found on the [Model Hub](https://huggingface.co/models)) or
|
||||
stored locally (or on a server) by the user,
|
||||
- `save_pretrained()` lets you save a model/configuration/tokenizer locally so that it can be reloaded using
|
||||
stored locally (or on a server) by the user.
|
||||
- `save_pretrained()` lets you save a model, configuration, and preprocessing class locally so that it can be reloaded using
|
||||
`from_pretrained()`.
|
||||
- `push_to_hub()` lets you share a model, configuration, and a preprocessing class to the Hub, so it is easily accessible to everyone.
|
||||
|
||||
|
@ -12,21 +12,21 @@ specific language governing permissions and limitations under the License.
|
||||
|
||||
# Pipelines for inference
|
||||
|
||||
The [`pipeline`] makes it simple to use any model from the [Model Hub](https://huggingface.co/models) for inference on a variety of tasks such as text generation, image segmentation and audio classification. Even if you don't have experience with a specific modality or understand the code powering the models, you can still use them with the [`pipeline`]! This tutorial will teach you to:
|
||||
The [`pipeline`] makes it simple to use any model from the [Hub](https://huggingface.co/models) for inference on any language, computer vision, speech, and multimodal tasks. Even if you don't have experience with a specific modality or aren't familiar with the underlying code behind the models, you can still use them for inference with the [`pipeline`]! This tutorial will teach you to:
|
||||
|
||||
* Use a [`pipeline`] for inference.
|
||||
* Use a specific tokenizer or model.
|
||||
* Use a [`pipeline`] for audio and vision tasks.
|
||||
* Use a [`pipeline`] for audio, vision, and multimodal tasks.
|
||||
|
||||
<Tip>
|
||||
|
||||
Take a look at the [`pipeline`] documentation for a complete list of supported tasks.
|
||||
Take a look at the [`pipeline`] documentation for a complete list of supported tasks and available parameters.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Pipeline usage
|
||||
|
||||
While each task has an associated [`pipeline`], it is simpler to use the general [`pipeline`] abstraction which contains all the specific task pipelines. The [`pipeline`] automatically loads a default model and tokenizer capable of inference for your task.
|
||||
While each task has an associated [`pipeline`], it is simpler to use the general [`pipeline`] abstraction which contains all the task-specific pipelines. The [`pipeline`] automatically loads a default model and a preprocessing class capable of inference for your task.
|
||||
|
||||
1. Start by creating a [`pipeline`] and specify an inference task:
|
||||
|
||||
@ -67,7 +67,7 @@ Any additional parameters for your task can also be included in the [`pipeline`]
|
||||
|
||||
### Choose a model and tokenizer
|
||||
|
||||
The [`pipeline`] accepts any model from the [Model Hub](https://huggingface.co/models). There are tags on the Model Hub that allow you to filter for a model you'd like to use for your task. Once you've picked an appropriate model, load it with the corresponding `AutoModelFor` and [`AutoTokenizer'] class. For example, load the [`AutoModelForCausalLM`] class for a causal language modeling task:
|
||||
The [`pipeline`] accepts any model from the [Hub](https://huggingface.co/models). There are tags on the Hub that allow you to filter for a model you'd like to use for your task. Once you've picked an appropriate model, load it with the corresponding `AutoModelFor` and [`AutoTokenizer`] class. For example, load the [`AutoModelForCausalLM`] class for a causal language modeling task:
|
||||
|
||||
```py
|
||||
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
@ -95,7 +95,7 @@ Pass your input text to the [`pipeline`] to generate some text:
|
||||
|
||||
## Audio pipeline
|
||||
|
||||
The flexibility of the [`pipeline`] means it can also be extended to audio tasks.
|
||||
The [`pipeline`] also supports audio tasks like audio classification and automatic speech recognition.
|
||||
|
||||
For example, let's classify the emotion in this audio clip:
|
||||
|
||||
@ -129,9 +129,9 @@ Pass the audio file to the [`pipeline`]:
|
||||
|
||||
## Vision pipeline
|
||||
|
||||
Finally, using a [`pipeline`] for vision tasks is practically identical.
|
||||
Using a [`pipeline`] for vision tasks is practically identical.
|
||||
|
||||
Specify your vision task and pass your image to the classifier. The imaage can be a link or a local path to the image. For example, what species of cat is shown below?
|
||||
Specify your task and pass your image to the classifier. The image can be a link or a local path to the image. For example, what species of cat is shown below?
|
||||
|
||||

|
||||
|
||||
@ -146,3 +146,26 @@ Specify your vision task and pass your image to the classifier. The imaage can b
|
||||
>>> preds
|
||||
[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}]
|
||||
```
|
||||
|
||||
## Multimodal pipeline
|
||||
|
||||
The [`pipeline`] supports more than one modality. For example, a visual question answering (VQA) task combines text and image. Feel free to use any image link you like and a question you want to ask about the image. The image can be a URL or a local path to the image.
|
||||
|
||||
For example, if you use the same image from the vision pipeline above:
|
||||
|
||||
```py
|
||||
>>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
>>> question = "Where is the cat?"
|
||||
```
|
||||
|
||||
Create a pipeline for `vqa` and pass it the image and question:
|
||||
|
||||
```py
|
||||
>>> from transformers import pipeline
|
||||
|
||||
>>> vqa = pipeline(task="vqa")
|
||||
>>> preds = vqa(image=image, question=question)
|
||||
>>> preds = [{"score": round(pred["score"], 4), "answer": pred["answer"]} for pred in preds]
|
||||
>>> preds
|
||||
[{'score': 0.911, 'answer': 'snow'}, {'score': 0.8786, 'answer': 'in snow'}, {'score': 0.6714, 'answer': 'outside'}, {'score': 0.0293, 'answer': 'on ground'}, {'score': 0.0272, 'answer': 'ground'}]
|
||||
```
|
||||
|
@ -65,13 +65,9 @@ Just in case anything slipped through the cracks, the full test suite is also ru
|
||||
|
||||
## Documentation build
|
||||
|
||||
The job `ci/circleci: build_doc` runs a build of the documentation just to make sure everything will be okay once your PR is merged. If that steps fails, you can inspect it locally by going into the `docs` folder of the Transformers repo and then typing
|
||||
The `build_pr_documentation` job builds and generates a preview of the documentation to make sure everything looks okay once your PR is merged. A bot will add a link to preview the documentation in your PR. Any changes you make to the PR are automatically updated in the preview. If the documentation fails to build, click on **Details** next to the failed job to see where things went wrong. Often, the error is as simple as a missing file in the `toctree`.
|
||||
|
||||
```bash
|
||||
make html
|
||||
```
|
||||
|
||||
Sphinx is not known for its helpful error messages, so you might have to try a few things to really find the source of the error.
|
||||
If you're interested in building or previewing the documentation locally, take a look at the [`README.md`](https://github.com/huggingface/transformers/tree/main/docs) in the docs folder.
|
||||
|
||||
## Code and documentation style
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user