Compare commits

...

2226 Commits

Author SHA1 Message Date
f35b296b0d Debugging the values on the CI. 2022-10-18 16:20:13 +02:00
e8de7594f8 Enabling the current test with the current values. 2022-10-18 15:03:28 +02:00
a10139509b Re-enable small_model_pt. 2022-10-18 14:32:16 +02:00
b96bddcbcb Improving image-segmentation pipeline tests.
This PR (https://github.com/huggingface/transformers/pull/19367) introduced a few breaking changes:

- Removed an argument `mask_threshold`.
- Broke the default behavior (instance vs panoptic in the function call)
  https://github.com/huggingface/transformers/pull/19367/files#diff-60f846b86fb6a21d4caf60f5b3d593a04accb8f248de3029cccae2ff898c5bc3R119-R120
- Broke the actual masks: https://github.com/huggingface/transformers/pull/1961

This PR is the start of a handful that will aim at bringing back the old
behavior(s).

- tests should not have to specify `task` by default, unless we want to
  modify the behavior and have a lower form of segmentation running)
- `test_small_model_pt` should be working.

This specific PR starts with adding more information to the masks hash
because missing the actual mask was actual easy to miss (the hashes do
change, but it was easy to miss that one code path wasn't properly
updated).

So we go from a simple `hash` to
```
{"hash": #smaller hash, "shape": (h, w), "white_pixels": n}
```

The `shape` should help make sure the interpolation of the mask works
correctly, the `white_pixels` hopefully helps detect big regressions in
their amount when the hash gets modified.
2022-10-18 12:34:19 +02:00
3e07196f89 check decoder_inputs_embeds is None before shifting labels (#19671) 2022-10-18 09:14:12 +02:00
d356b89f3c fix test whisper with new max length (#19668) 2022-10-18 08:56:37 +02:00
d51ca32404 fix tests (#19670) 2022-10-18 06:45:48 +02:00
344e2664d4 Fix dtype in radnomly initialized head (#19690) 2022-10-17 15:54:23 -04:00
07f6690206 Fix checkpoint used in VisualBertConfig doc example (#19692)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 21:22:59 +02:00
2400eb4ca2 Fix some CI torch device issues for PyTorch 1.13 (#19681)
* fix some device issues for pt 1.13

* Update src/transformers/models/ctrl/modeling_ctrl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 20:57:38 +02:00
2add2007c1 [Doctest] Add configuration_data2vec_vision.py (#19637)
* Data2Vec Vision Config for doctest

* made suggested changes

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-10-17 20:56:42 +02:00
563b42faf0 Update CONTRIBUTING.md (#19689)
punctuation missing
2022-10-17 14:55:59 -04:00
684165b882 [Doctest] Add configuration_realm.py (#19646)
* Update configuration_realm.py

* realm config for doctest

* Update configuration_realm.py doc

* Update documentation_tests

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 20:53:24 +02:00
5ac2f82267 [Doctest] Add configuration_convbert.py (#19643)
* ConvBERT config for doctest

* Add empty lines
2022-10-17 20:29:18 +02:00
94d7c3ba44 [Examples] make default preprocessing_num_workers=1 (#19684)
* [Examples] make default preprocessing_num_workers=1

* [Examples] revert changes in research projects
2022-10-17 14:17:01 -04:00
c7edde1a69 Fix quality 2022-10-17 13:32:08 -04:00
ed858f5354 Removed XLMModel inheritance from FlaubertModel(torch+tf) (#19432)
* FlaubertModel inheritance from XLMModel removed

* Fix style and add FlaubertPreTrainedModel to __init__

* Fix formatting issue

* Fix Typo and repo-consistency

* Fix style

* add FlaubertPreTrainedModel to TYPE_HINT

* fix repo consistency

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_tf_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_tf_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/flaubert/modeling_flaubert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* removed redundant Copied from comments

* added missing copied from comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 13:25:30 -04:00
5fda1fbd46 Update ESM checkpoints to point to facebook/ (#19675)
* Update checkpoints to point to `facebook/`

* make fixup
2022-10-17 18:09:24 +01:00
4d77f18cba [Doctest] Data2VecAudio Config for doctest (#19635) 2022-10-17 18:39:15 +02:00
4181320b8c Add normalize to image transforms module (#19544)
* Adapt FE methods to transforms library

* Mixin for saving the image processor

* Base processor skeleton

* BatchFeature for packaging image processor outputs

* Initial image processor for GLPN

* REmove accidental import

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Add rescale back and remove ImageType

* fix import mistake

* Fix enum var reference

* Can transform and specify image data format

* Remove redundant function

* Update reference

* Data format flag for rescale

* Fix typo

* Fix dimension check

* Fixes to make IP and FE outputs match

* Add tests for transforms

* Add test for utils

* Update some docstrings

* Make sure in channels last before converting to PIL

* Remove default to numpy batching

* Fix up

* Add docstring and model_input_types

* Use feature processor config from hub

* Alias GLPN feature extractor to image processor

* Alias feature extractor mixin

* Add return_numpy=False flag for resize

* Fix up

* Fix up

* Use different frameworks safely

* Safely import PIL

* Call function checking if PIL available

* Only import if vision available

* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/models/glpn/feature_extraction_glpn.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add in docstrings

* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Refactor `TFSwinLayer` to increase serving compatibility (#18352)

* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add TF prefix to TF-Res test class (#18481)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove py.typed (#18485)

* Fix pipeline tests (#18487)

* Fix pipeline tests

* Make sure all pipelines tests run with init changes

* Use new huggingface_hub tools for download models (#18438)

* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments

* Fix `test_dbmdz_english` by updating expected values (#18482)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)

* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one

* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Forgot one new_ for cache migration

* disable Onnx test for google/long-t5-tglobal-base (#18454)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Typo reported by Joel Grus on TWTR (#18493)

* Just re-reading the whole doc every couple of months 😬 (#18489)

* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task

* `transformers-cli login` => `huggingface-cli login` (#18490)

* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`

* Add seed setting to image classification example (#18519)

* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)

* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.

* Clean up hub (#18497)

* Clean up utils.hub

* Remove imports

* More fixes

* Last fix

* update fsdp docs (#18521)

* updating fsdp documentation

* typo fix

* Fix compatibility with 1.12 (#17925)

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove debug statement

* Specify en in doc-builder README example (#18526)

Co-authored-by: Ankur Goyal <ankur@impira.com>

* New cache fixes: add safeguard before looking in folders (#18522)

* unpin resampy (#18527)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

*  update to use interlibrary links instead of Markdown (#18500)

* Add example of multimodal usage to pipeline tutorial (#18498)

* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback

* [VideoMAE] Add model to doc tests (#18523)

* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update perf_train_gpu_one.mdx (#18532)

* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)

* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script

* Add Spanish translation of converting_tensorflow_models.mdx (#18512)

* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review

* Spanish translation of summarization.mdx (#15947) (#18477)

* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Let's not cast them all (#18471)

* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* fix: data2vec-vision Onnx ready-made configuration. (#18427)

* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config

* Add mt5 onnx config (#18394)

* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>

* Minor update of `run_call_with_unpacked_inputs` (#18541)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* BART - Fix attention mask device issue on copied models (#18540)

* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix

* Adding a new `align_to_words` param to qa pipeline. (#18010)

* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* 📝 update metric with evaluate (#18535)

* Restore _init_weights value in no_init_weights (#18504)

* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up comment

* 📝 update documentation build section (#18548)

* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)

* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* TF: XLA-trainable DeBERTa v2 (#18546)

* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float

* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)

* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement

* TF Examples Rewrite (#18451)

* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Use commit hash to look in cache instead of calling head (#18534)

* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* `pipeline` support for `device="mps"` (or any other string) (#18494)

* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update philosophy to include other preprocessing classes (#18550)

* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks

* Properly move cache when it is not in default path (#18563)

* Adds CLIP to models exportable with ONNX (#18515)

* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* raise atol for MT5OnnxConfig (#18560)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* fix string (#18568)

* Segformer TF: fix output size in documentation (#18572)

* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>

* Fix resizing bug in OWL-ViT (#18573)

* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False

* Fix LayoutLMv3 documentation (#17932)

* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality

* Skip broken tests

* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)

* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>

* german docs translation (#18544)

* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml

* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)

* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)

* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES

* Fix docstrings with last version of hf-doc-builder styler (#18581)

* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block

* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump nbconvert in /examples/research_projects/visual_bert (#18566)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* fix owlvit tests, update docstring examples (#18586)

* Return the permuted hidden states if return_dict=True (#18578)

* Load sharded pt to flax (#18419)

* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type hints for ViLT models (#18577)

* Add type hints for Vilt models

* Add missing return type for TokenClassification class

* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)

* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* typos (#18594)

* FSDP bug fix for `load_state_dict` (#18596)

* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)

* validate generate model_kwargs

* generate tests -- not all models have an attn mask

* Supporting seq2seq models for `bitsandbytes` integration (#18579)

* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!

* Add Donut (#18488)

* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Fix URLs (#18604)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update BLOOM parameter counts (#18531)

* Update BLOOM parameter counts

* Update BLOOM parameter counts

* [doc] fix anchors (#18591)

the manual anchors end up being duplicated with automatically added anchors and no longer work.

* [fsmt] deal with -100 indices in decoder ids (#18592)

* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style

* small change (#18584)

* Flax Remat for LongT5 (#17994)

* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>

* mac m1 `mps` integration (#18598)

* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* Change scheduled CIs to use torch 1.12.1 (#18644)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add checks for some workflow jobs (#18583)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* TF: Fix generation repetition penalty with XLA (#18648)

* Update longt5.mdx (#18634)

* Update run_translation_no_trainer.py (#18637)

* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`

* [bnb] Minor modifications (#18631)

* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Examples: add Bloom support for token classification (#18632)

* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)

* Fix Yolos ONNX export test (#18606)

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fixup

* Fix up

* Move PIL default arguments inside function for safe imports

* Add image utils to toctree

* Update `rescale` method to reflect changes in #18677

* Update docs/source/en/internal/image_processing_utils.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Address Niels PR comments

* Add normalize method to transforms library

* Apply suggestions from code review - remove defaults to None

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings and revert to PIL.Image.XXX resampling

Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated

* Some more docstrings and PIL.Image tidy up

* Reorganise arguments so flags by modifiers

* Few last docstring fixes

* Add normalize to docs

* Accept PIL.Image inputs with deprecation warning

* Update src/transformers/image_transforms.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update warning to include version

* Trigger CI - hash clash on doc build

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-17 17:02:14 +01:00
82e360b7cb Fixed the docstring and type hint for forced_decoder_ids option in Ge… (#19640) 2022-10-17 17:00:02 +01:00
f2ecb9eec4 Revert "add return_tensor parameter for feature extraction (#19257)" (#19680)
This reverts commit 35bd089a241788a43a43e27de1ef3f5cede7954b.
2022-10-17 11:56:29 -04:00
bf0addc56e Fix code examples of DETR and YOLOS (#19669)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-17 17:48:22 +02:00
35bd089a24 add return_tensor parameter for feature extraction (#19257)
* add return_tensors parameter for feature_extraction  w/ test

add return_tensor parameter for feature extraction

Revert "Merge branch 'feature-extraction-return-tensor' of https://github.com/ajsanjoaquin/transformers into feature-extraction-return-tensor"

This reverts commit d559da743b87914e111a84a98ba6dbb70d08ad88, reversing
changes made to bbef89278650c04c090beb65637a8e9572dba222.

* call parameter directly

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* Fixup.

* Update src/transformers/pipelines/feature_extraction.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-17 11:17:26 -04:00
59e29be363 object-detection instead of object_detection (#19677) 2022-10-17 10:57:29 -04:00
aa629e7a7c Update perf_train_gpu_one.mdx (#19676) 2022-10-17 16:54:35 +02:00
0027edf905 [Doctest] Add configuration_transfo_xl.py (#19651)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 16:47:54 +02:00
f4e31a9aa1 word replacement line #231 (#19662)
install->installation
2022-10-17 10:40:35 -04:00
b6204c9e9b fix warnings in deberta (#19458)
* fix warnings in deberta

* fix copies

* Revert "fix copies"

This reverts commit 324cb3fed11e04190ba7b4662644baa8143b60be.

* fix copies

* fix copies again

* revert changes to whitespace that make style did since it results in an infinite chain of fix-copies

* argh

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-10-17 10:15:02 -04:00
de64d671dc Removed Bert interdependency from Funnel transformer (#19655)
* Removed Bert interdependency from Funnel transformer

* passed consistency check

* Revert "passed consistency check"

This reverts commit ba55a0813549938fc54626794e666ee13a85c2d8.

* Fixed docstrings

Co-authored-by: mukesh663 <mukesh13034@gmail.com>
2022-10-17 10:04:11 -04:00
cbc1abc4af A few CI fixes for DocumentQuestionAnsweringPipeline (#19584)
* Fixes

* update expected values

* style

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-17 15:35:27 +02:00
0b7b07ef03 added type hints for Yolos Pytorch model (#19545)
* added type hints for Yolos Pytorch model

* make fixup

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

* Update src/transformers/models/yolos/convert_yolos_to_pytorch.py

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-17 14:34:22 +01:00
3b3024da70 TF port of ESM (#19587)
* Partial TF port for ESM model

* Add ESM-TF tests

* Add the various imports for TF-ESM

* TF weight conversion almost ready

* Stop ignoring the decoder weights in PT

* Add tests and lots of fixes

* fix-copies

* Fix imports, add model docs

* Add get_vocab() to tokenizer

* Fix vocab links for pretrained files

* Allow multiple inputs with a sep

* Use EOS as SEP token because ESM vocab lacks SEP

* Correctly return special tokens mask from ESM tokenizer

* make fixup

* Stop testing unsupported embedding resizing

* Handle TF bias correctly

* Skip all models with slow tokenizers in the token classification test

* Fixing the batch/unbatcher of pipelines to accomodate the `None` being

passed around.

* Fixing pipeline bug caused by slow tokenizer  being different.

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/esm/modeling_tf_esm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update set_input_embeddings and the copyright notices

Co-authored-by: Your Name <you@example.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-10-17 14:16:16 +01:00
d7754c43d0 Type hints MCTCT (#19618)
* add type hints to mctct

* run auto style corrections

* change torch.bool to bool#

* Update src/transformers/models/mctct/modeling_mctct.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove optional tags for attention_mask and head_mask'

* fix optional tags'

* Update src/transformers/models/mctct/modeling_mctct.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-17 14:15:21 +01:00
8aad4363d8 Fix pipeline predict transform methods (#19657)
* Remove key word argument X from pipeline predict and transform methods

As __call__ of pipeline clasees require one positional argument, passing
the input as a keyword argument inside predict, transform methods, causing
__call__ to fail. Hence in this commit the keyword argument is modified
into positional argument.

* Implement basic tests for scikitcompat pipeline interface

* Seperate tests instead of running with parameterized based on framework as both frameworks will not be active at the same time
2022-10-17 09:06:20 -04:00
e4d56e818a add return types for tf gptj, xlm, and xlnet (#19638) 2022-10-17 13:47:21 +01:00
2af36f957f Add pillow to layoutlmv3 example requirements.txt (#19663) 2022-10-17 08:41:57 -04:00
d2e5b19b82 Add doctest info in testingmdx (#19623) 2022-10-17 11:23:20 +02:00
9bb26f2505 [Doctest] Add configuration_trocr.py (#19658)
* trocr Config for doctest

* ran make style
2022-10-17 10:53:36 +02:00
c06a5a3101 [Doctest] XLNet config for doctest (#19649) 2022-10-17 10:45:37 +02:00
57505b1def [Doctest] Conditional DETR config for doctest (#19641) 2022-10-17 10:42:55 +02:00
339c5a5d9a [Doctest] Add configuration_data2vec_text.py (#19636)
* Data2Vec Text Config for doctest

* typo fix

* made suggested changes
2022-10-17 10:34:33 +02:00
dd464e22a7 [Doctest] CodeGen config for doctest (#19633) 2022-10-15 12:35:35 +02:00
3e4900208a Tokenizer from_pretrained should not use local files named like tokenizer files (#19626) 2022-10-14 14:06:56 -04:00
8fcf562603 [Doctest] Add configuration_time_series_transformer.py (#19582)
* initial changes

* update the suggested order of import
2022-10-14 19:39:56 +02:00
31cfe9c429 [Doctest] Add configuration_vision_encoder_decoder.py (#19583)
* adds vision_encoder_decoder to Doc tests

* keep the initial order
2022-10-14 19:30:14 +02:00
7972f995b3 [Doctest] Add configuration_vision_text_dual_encoder.py (#19580)
* initial commit

* few suggested changes
2022-10-14 18:45:15 +02:00
2bd2de62c9 Sharding fails in TF when absolute scope was modified if . in layer name (#19124)
* simplify loop

* fix layer map split

* update

* update for special variables

* add rag test

* fixup

* revert change : for next PR
2022-10-14 18:34:33 +02:00
614f7d28a8 Fix whisper doc (#19608)
* update feature extractor params

* update attention mask handling

* fix doc and pipeline test

* add warning when skipping test

* add whisper translation and transcription test

* fix build doc test

* Correct whisper processor

* make fix copies

* remove sample docstring as it does not fit whisper model

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix, doctests are passing

* Nit

* last nit

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-14 18:12:32 +02:00
66dd80213c [Doctest] Add configuration_resnet.py (#19620)
* ResNet Config for doctest

* added empty lines as suggested

* ran make style
2022-10-14 18:10:17 +02:00
4e196df8c4 [Whisper] Fix gradient checkpointing (again!) (#19548)
* [Whisper] Fix gradient checkpointing (again!)

* [Whisper] Fix checkpointing (again!)
2022-10-14 17:08:36 +01:00
585f9c6d9e [Doctest] DistilBERT Config for doctest (#19621) 2022-10-14 17:22:29 +02:00
96f243c399 [Doctest] LeViT Config for doctest (#19622) 2022-10-14 17:21:24 +02:00
463226e2ee Improve error messaging for ASR pipeline. (#19570)
* Improve error messaging for ASR pipeline.

- Raise error early (in `_sanitize`) so users don't waste time trying to
  run queries with invalid params.

- Fix the error was after using `config.inputs_to_logits_ratio` so our
  check was masked by the failing property does not exist.

- Added some manual check on s2t for the error message.
  No non ctc model seems to be used by the default runner (they are all
  skipped).

* Removing pdb.

* Stop the early error it doesn't really work :(.
2022-10-14 17:12:21 +02:00
5ef2186692 fix: small error (#19612)
* fix: small error

* fix: another typo error
2022-10-14 11:10:33 -04:00
78c1e7d253 xlm roberta xl config for doctest (#19610)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-14 11:04:10 -04:00
10ea45b902 Ernie config for doctest (#19611) 2022-10-14 10:57:51 -04:00
637af90d7f xlm roberta config for doctest (#19609) 2022-10-14 10:48:38 -04:00
2d4572b5c9 GPTTokenizer dependency removed from deberta class (#19551)
* GPTTOkenizer dependency removed from deberta class

Fixup

made the Deberta Tokenizer fast independent of GPT-2 tokenizer

Copied annotation added

Done the dependency removal

* Added some missing copied statement

* Added some copied statements
2022-10-14 10:46:38 -04:00
f8244014a5 Visual Bert config for doctest (#19605) 2022-10-14 10:45:37 -04:00
db94b746db Fix FlaubertTokenizer (#19552)
* fix flaubert tokenizer

* update

* update

* Final cleanup

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:31:01 +02:00
62f28bc152 Fix ImageToTextPipelineTests.test_small_model_tf (#19565)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:29:54 +02:00
e82c1cb78e add gloo backend support for CPU DDP (#19555)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-10-14 10:18:16 -04:00
0e0b7cb72a Allow usage of TF Text BertTokenizer on TFBertTokenizer to make it servable on TF Serving (#19590)
* add suport for non fast tf bert tokenizer

* add tests for non fast tf bert tokenizer

* fix fast bert tf tokenizer flag

* double tokenizers list on tf tokenizers test to aovid breaking zip on test output equivalence

* reformat code with black to comply with code quality checks

* trigger ci
2022-10-14 15:18:02 +01:00
59b7334c87 Fix test_tf_encode_plus_sent_to_model for TAPAS (#19559)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-14 16:10:36 +02:00
1967be98fa fix BLOOM ONNX config (#19573)
* fix BLOOM ONNX config
- `value` params have `seq_len` as their 2nd axe as opposed to other models which have it as 3rd

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-14 16:04:48 +02:00
4f0337a08f [Time Series Transformer] Add doc tests (#19607)
* Add doc tests

* Make it more consistent

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-10-14 15:57:03 +02:00
c937f0b954 [Whisper] Don't return attention mask in feat extractor (#19521)
* [Whisper] Don't return attention mask in feat extractor

* remove attention mask from test

* fix failing tests

* quality
2022-10-14 14:36:03 +01:00
83a2e694f1 Cast masks to np.unit8 before converting to PIL.Image.Image (#19616)
* Cast masks to np.unit8 before converting to PIL.Image.Image

* Update tests

* Fixup
2022-10-14 09:30:45 -04:00
909f07092a [Doctest] Add configuration_bigbird_pegasus.py and configuration_big_bird.py (#19606)
* [Doctest] Add `configuration_bigbird_pegasus.py` and `configuration_big_bird`

[Doctest] Re-style `configuration_big_bird.py`

* [Doctest] One python instruction per line

* [Doctest] Fix styling

* [Doctest] More styling fixes
2022-10-14 15:17:36 +02:00
6deac5c824 Adding type hints for TFXLnet (#19344)
* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Added type hints for TF: XLNet

* Add type hints for XLnet (TF)
* Added type hints for XLnet (TF)

* Update src/transformers/models/xlnet/modeling_tf_xlnet.py
2022-10-14 12:28:08 +01:00
7036c956fe [Doctest] fix doc test for megatron bert (#19600) 2022-10-14 12:08:55 +02:00
c7d1fb6964 [Doctest] SEW-D Config for doctest (#19598) 2022-10-14 12:07:32 +02:00
0ac6b90563 [Doctest] UniSpeech Config for doctest (#19596) 2022-10-14 12:03:35 +02:00
71a27e3952 [Doctest] SEW Config for doctest (#19597) 2022-10-14 11:47:29 +02:00
e64798296f [Doctest] Swin Config for doctest (#19594) 2022-10-14 11:37:37 +02:00
7178b29a8e [Doctest] Swin V2 Config for doctest (#19595) 2022-10-14 11:16:38 +02:00
76b4239ec8 [Doctests] add configuration_blenderbot_small.py (#19589)
* yoso config for doctest

* Revert "yoso config for doctest"

This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.

* add configurations_blenderbot_small.py for doctests
2022-10-14 09:42:29 +02:00
3d320c78c3 [Doctest] adds trajectory_transformer config to Docs test (#19586) 2022-10-13 19:07:10 +02:00
1f6a28c71c [Doctests] add configuration_blenderbot.py (#19577)
* yoso config for doctest

* Revert "yoso config for doctest"

This reverts commit eae128d6f1b3631b676ffbcc181390e338819bd1.

* add configurations.blenderbot.py for doctests

* add configuration.blenderbot for doctest
2022-10-13 18:46:12 +02:00
f06a6f7e37 [WIP] Add type hints for Lxmert (TF) (#19441)
* Add type hints for Lxmert (TF)

* Update src/transformers/models/lxmert/modeling_tf_lxmert.py

Co-authored-by: Emmanuel Lusenji <elusenji@Emmanuels-MacBook-Pro.local>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-13 15:53:27 +01:00
036e808517 Added type hints to DebertaV2ForMultipleChoice Pytorch (#19536)
* Update modeling_deberta_v2.py

* Update modeling_deberta_v2.py
2022-10-13 14:52:43 +01:00
7180e17256 [Doctests] Config files for ViTMAE and YOSO (#19567) 2022-10-13 15:05:02 +02:00
05a287ec1a [Doctest] Add configuration_canine.py (#19575) 2022-10-13 14:12:49 +02:00
117098421c [Doctest] CTRL config (#19574) 2022-10-13 14:10:04 +02:00
0e83c9664b Fix fairseq wav2vec2-xls-r pretrained weights conversion scripts (#19508)
* fix loading fairseq wav2vec2 pretrained weights

Specified fairseq task as "audio_pretraining" when loading fairseq weights,
since loading wav2vec2-xls-r weights fails if the task is unspecified.

Resolves: #19319

* fix style
2022-10-13 11:48:42 +01:00
4212bb0d60 [Re-submit] Compute true loss Flax examples (#19504)
* Compute true loss

* fixup

* final

* final

* final

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* jax.tree_map => jax.tree_util.tree_map

* Compute true loss

* final

* fixup

* final

* final

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* jax.tree_map => jax.tree_util.tree_map

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-10-13 11:33:36 +01:00
0903fc80b5 [Doctest] bloom config update (#19566) 2022-10-13 12:14:38 +02:00
0ae3ec5b9d [Doctest] Add configuration_vit.py (#19561)
* ViT Config for doctest
2022-10-13 12:07:14 +02:00
f173ceefc0 [Doctest] RoBERTa Config for doctest (#19563) 2022-10-13 12:06:18 +02:00
2719599a22 [Doctest] Reformer Config for doctest (#19562) 2022-10-13 12:03:15 +02:00
4a3578f23f [Doctest] DeiT Config for doctest (#19560) 2022-10-13 12:02:40 +02:00
f4b386765d [Doctest] Fixing doctest bert_generation configuration (#19558)
* Added (with random weights) in the comment before model initialization line

* Added configuration_bert_generation.py to utils/documentation_tests.txt

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-13 11:59:02 +02:00
1d4d9dc3c9 [Doctest] Fixing mobile bert configuration doctest (#19557)
* Fixing mobile bert configuration doctest

* Fixed build failures by removing empty line
2022-10-13 11:56:35 +02:00
3ae21936e5 [Doctest] Fixing the Doctest for imageGPT config (#19556) 2022-10-13 11:54:35 +02:00
bbd150e92f [Whisper] Freeze params of encoder (#19527)
* [Whisper] Freeze params of encoder

* add tests
2022-10-13 09:50:02 +01:00
504cd71a6b add a note to whisper docs clarifying support of long-form decoding (#19497) 2022-10-13 10:39:03 +02:00
5dcb10d82a Fix checkpoint used in MarkupLMConfig (#19547)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-13 09:37:30 +02:00
5418e3cef0 Build Push CI images also in a daily basis (#19532)
* Build Push CI images also in a daily basis

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-13 07:31:12 +02:00
ef5899bf34 [Doctest] GPT2 Config for doctest (#19549) 2022-10-13 05:58:59 +02:00
f6fa0f0bf0 Create the arange tensor on device for enabling CUDA-Graph for Clip Encoder (#19503)
* create the arange tensor on device for enabling CUDA-Graph at higher-performace for SD

* sync

Co-authored-by: Stas Bekman <stas@stason.org>
2022-10-12 23:32:50 +02:00
6cd8676cf3 [Doctest] Beit Config for doctest (#19542) 2022-10-12 20:38:13 +02:00
096838836d Throw an error if getattribute_from_module can't find anything (#19535)
* return None to avoid recursive call

* Give error

* Give error

* Add test

* More tests

* Quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 20:09:45 +02:00
383ad81e68 [Doctest] Add configuration_whisper.py (#19540)
* Whisper Config for doctest

* restyle fix
2022-10-12 14:03:22 -04:00
4a5d63c958 Albert config update (#19541) 2022-10-12 14:02:55 -04:00
51d21b7619 [Doctest] Add configuration_yolos.py (#19539)
* YOLOS Config for doctest

* fix
2022-10-12 14:01:25 -04:00
209bec4636 Add a decorator for flaky tests (#19498)
* Add a decorator for flaky tests

* Quality

* Don't break the rest

* Address review comments

* Fix test name

* Fix typo and print to stderr
2022-10-12 14:00:17 -04:00
1973b7716b Image transforms library (#18520)
* Adapt FE methods to transforms library

* Mixin for saving the image processor

* Base processor skeleton

* BatchFeature for packaging image processor outputs

* Initial image processor for GLPN

* REmove accidental import

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Fixup and docs

* BatchFeature for packaging image processor outputs

* Import BatchFeature from feature_extraction_utils

* Fixup and docs

* Mixin for saving the image processor

* Fixup and docs

* Add rescale back and remove ImageType

* fix import mistake

* Fix enum var reference

* Can transform and specify image data format

* Remove redundant function

* Update reference

* Data format flag for rescale

* Fix typo

* Fix dimension check

* Fixes to make IP and FE outputs match

* Add tests for transforms

* Add test for utils

* Update some docstrings

* Make sure in channels last before converting to PIL

* Remove default to numpy batching

* Fix up

* Add docstring and model_input_types

* Use feature processor config from hub

* Alias GLPN feature extractor to image processor

* Alias feature extractor mixin

* Add return_numpy=False flag for resize

* Fix up

* Fix up

* Use different frameworks safely

* Safely import PIL

* Call function checking if PIL available

* Only import if vision available

* Address Sylvain PR comments
Co-authored-by: Sylvain.gugger@gmail.com

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/image_transforms.py

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Update src/transformers/models/glpn/feature_extraction_glpn.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add in docstrings

* Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Refactor `TFSwinLayer` to increase serving compatibility (#18352)

* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add TF prefix to TF-Res test class (#18481)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove py.typed (#18485)

* Fix pipeline tests (#18487)

* Fix pipeline tests

* Make sure all pipelines tests run with init changes

* Use new huggingface_hub tools for download models (#18438)

* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments

* Fix `test_dbmdz_english` by updating expected values (#18482)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Move cache folder to huggingface/hub for consistency with hf_hub (#18492)

* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one

* Update some expected values in `quicktour.mdx` for `resampy 0.3.0` (#18484)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Forgot one new_ for cache migration

* disable Onnx test for google/long-t5-tglobal-base (#18454)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Typo reported by Joel Grus on TWTR (#18493)

* Just re-reading the whole doc every couple of months 😬 (#18489)

* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task

* `transformers-cli login` => `huggingface-cli login` (#18490)

* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`

* Add seed setting to image classification example (#18519)

* [DX fix] Fixing QA pipeline streaming a dataset. (#18516)

* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.

* Clean up hub (#18497)

* Clean up utils.hub

* Remove imports

* More fixes

* Last fix

* update fsdp docs (#18521)

* updating fsdp documentation

* typo fix

* Fix compatibility with 1.12 (#17925)

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Remove debug statement

* Specify en in doc-builder README example (#18526)

Co-authored-by: Ankur Goyal <ankur@impira.com>

* New cache fixes: add safeguard before looking in folders (#18522)

* unpin resampy (#18527)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

*  update to use interlibrary links instead of Markdown (#18500)

* Add example of multimodal usage to pipeline tutorial (#18498)

* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback

* [VideoMAE] Add model to doc tests (#18523)

* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update perf_train_gpu_one.mdx (#18532)

* Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)

* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script

* Add Spanish translation of converting_tensorflow_models.mdx (#18512)

* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review

* Spanish translation of summarization.mdx (#15947) (#18477)

* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Let's not cast them all (#18471)

* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* fix: data2vec-vision Onnx ready-made configuration. (#18427)

* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config

* Add mt5 onnx config (#18394)

* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>

* Minor update of `run_call_with_unpacked_inputs` (#18541)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* BART - Fix attention mask device issue on copied models (#18540)

* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix

* Adding a new `align_to_words` param to qa pipeline. (#18010)

* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* 📝 update metric with evaluate (#18535)

* Restore _init_weights value in no_init_weights (#18504)

* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Clean up comment

* 📝 update documentation build section (#18548)

* `bitsandbytes` - `Linear8bitLt` integration into `transformers` models (#17901)

* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* TF: XLA-trainable DeBERTa v2 (#18546)

* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float

* Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)

* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement

* TF Examples Rewrite (#18451)

* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Use commit hash to look in cache instead of calling head (#18534)

* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* `pipeline` support for `device="mps"` (or any other string) (#18494)

* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update philosophy to include other preprocessing classes (#18550)

* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks

* Properly move cache when it is not in default path (#18563)

* Adds CLIP to models exportable with ONNX (#18515)

* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* raise atol for MT5OnnxConfig (#18560)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* fix string (#18568)

* Segformer TF: fix output size in documentation (#18572)

* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>

* Fix resizing bug in OWL-ViT (#18573)

* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False

* Fix LayoutLMv3 documentation (#17932)

* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality

* Skip broken tests

* Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)

* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>

* german docs translation (#18544)

* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml

* Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)

* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* [FX] _generate_dummy_input supports audio-classification models for labels (#18580)

* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES

* Fix docstrings with last version of hf-doc-builder styler (#18581)

* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block

* Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* Bump nbconvert in /examples/research_projects/visual_bert (#18566)

Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* fix owlvit tests, update docstring examples (#18586)

* Return the permuted hidden states if return_dict=True (#18578)

* Load sharded pt to flax (#18419)

* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type hints for ViLT models (#18577)

* Add type hints for Vilt models

* Add missing return type for TokenClassification class

* update doc for perf_train_cpu_many, add intel mpi introduction (#18576)

* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* typos (#18594)

* FSDP bug fix for `load_state_dict` (#18596)

* Add `TFAutoModelForSemanticSegmentation` to the main `__init__.py` (#18600)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Generate: validate `model_kwargs` (and catch typos in generate arguments) (#18261)

* validate generate model_kwargs

* generate tests -- not all models have an attn mask

* Supporting seq2seq models for `bitsandbytes` integration (#18579)

* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!

* Add Donut (#18488)

* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Fix URLs (#18604)

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Update BLOOM parameter counts (#18531)

* Update BLOOM parameter counts

* Update BLOOM parameter counts

* [doc] fix anchors (#18591)

the manual anchors end up being duplicated with automatically added anchors and no longer work.

* [fsmt] deal with -100 indices in decoder ids (#18592)

* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style

* small change (#18584)

* Flax Remat for LongT5 (#17994)

* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>

* mac m1 `mps` integration (#18598)

* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* Change scheduled CIs to use torch 1.12.1 (#18644)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Add checks for some workflow jobs (#18583)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* TF: Fix generation repetition penalty with XLA (#18648)

* Update longt5.mdx (#18634)

* Update run_translation_no_trainer.py (#18637)

* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`

* [bnb] Minor modifications (#18631)

* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Examples: add Bloom support for token classification (#18632)

* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)

* Fix Yolos ONNX export test (#18606)

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Fixup

* Fix up

* Move PIL default arguments inside function for safe imports

* Add image utils to toctree

* Update `rescale` method to reflect changes in #18677

* Update docs/source/en/internal/image_processing_utils.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Address Niels PR comments

* Apply suggestions from code review - remove defaults to None

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix docstrings and revert to PIL.Image.XXX resampling

Use PIL.Image.XXX resampling values instead of PIL.Image.Resampling.XXX enum as it's only in the recent version >= 9.10 and version is not yet pinned and older version support deprecated

* Some more docstrings and PIL.Image tidy up

* Reorganise arguments so flags by modifiers

* Few last docstring fixes

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: regisss <15324346+regisss@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Ankur Goyal <ankrgyl@gmail.com>
Co-authored-by: Ankur Goyal <ankur@impira.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Mishig Davaadorj <dmishig@gmail.com>
Co-authored-by: Rasmus Arpe Fogh Jensen <Rasmus.arpe@gmail.com>
Co-authored-by: Ian Castillo <7807897+donelianc@users.noreply.github.com>
Co-authored-by: AguilaCudicio <aguila.cudicio@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Niklas Hansson <niklas.sven.hansson@gmail.com>
Co-authored-by: Thomas Chaigneau <t.chaigneau.tc@gmail.com>
Co-authored-by: YouJiacheng <1503679330@qq.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Dhruv Karan <k4r4n.dhruv@gmail.com>
Co-authored-by: Michael Wyatt <mrwyattii@gmail.com>
Co-authored-by: Maxime G <joihn@users.noreply.github.com>
Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
Co-authored-by: Wonseok Lee (Jack) <rollerkid02@snu.ac.kr>
Co-authored-by: Dan Jones <dan.j.jones2@gmail.com>
Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
Co-authored-by: flozi00 <flozi00.fz@gmail.com>
Co-authored-by: iiLaurens <iiLaurens@users.noreply.github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Wang, Yi <yi.a.wang@intel.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
Co-authored-by: zhoutang776 <47708118+zhoutang776@users.noreply.github.com>
Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-12 18:32:02 +01:00
a2c90a7f7b Remove MarkupLMForMaskedLM from MODEL_WITH_LM_HEAD_MAPPING_NAMES (#19534)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 19:21:49 +02:00
f4ef78af54 using trunc_normal for weight init & cls_token (#19486) 2022-10-12 13:20:47 -04:00
5760a8fcf6 Syntax issues (paragraphs 122, 130, 147, 155) Documentation: @sgugger (#19437)
* Syntax issues (paragraphs 122, 130, 147, 155)

`preentramiento` > `preentrenamiento`
* semantic issue (paragraph 220 & 232 & 252)

* Update docs/source/es/create_a_model.mdx

with approval of @ignacioct and scrutiny of @sgugger

Co-authored-by: Ignacio Talavera <ignaciotalaveracepeda@gmail.com>

Co-authored-by: Ignacio Talavera <ignaciotalaveracepeda@gmail.com>
2022-10-12 13:18:11 -04:00
bdfcbe60cc [Whisper] Fix gradient checkpointing (#19538) 2022-10-12 18:07:37 +01:00
4edb3e49f6 Make MobileBert tokenizers independent from Bert (#19531)
* Make `MobileBert` tokenizers independent from `Bert`

* Update src/transformers/models/mobilebert/tokenization_mobilebert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fixed the name in the error message

* Update src/transformers/models/mobilebert/tokenization_mobilebert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed extra space from the "copied" comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 11:50:36 -04:00
c7ad3ff593 Update Marian config default vocabulary size (#19464)
* update marian default vocab size

* also update docstring
2022-10-12 16:15:11 +01:00
9e29080439 [X-CLIP] Fix doc tests (#19523)
* Fix XCLIP doc tests

* Add model to doc test list

* Fix tests
2022-10-12 17:05:12 +02:00
eefcecaa35 [Examples] Fix typos in run speech recognition seq2seq (#19514) 2022-10-12 15:33:22 +01:00
72153ba611 Remove bert fast dependency from electra (#19520)
* Replaced ElectraTokenizerFast with  BertTokenzier class

* Fixed Styling issue

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-12 10:14:38 -04:00
2720d5fc18 made tokenization_roformer independent of bert (#19426)
* made tokenization_roformer independent of bert

* added missing imports

* added missing function and import

* Fixed copy commands

* Update tokenization_roformer.py
2022-10-12 10:13:09 -04:00
af554e9de2 Remove roberta dependency from longformer fast tokenizer (#19501)
* remove roberta fast tokenizer dependency

* fix flake8

* Update src/transformers/models/longformer/tokenization_longformer_fast.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 10:12:00 -04:00
3ccda6d0b0 [Doctest] Bart configuration update (#19524)
* Update configuration_bart.py

* Update documentation_tests.txt

* Update documentation_tests.txt

Putting this line in a sorted order
2022-10-12 15:11:46 +02:00
af539d6f0a fix MarkupLMProcessor option flag (#19526) 2022-10-12 15:08:48 +02:00
5a8a532dcf Adding links to pipelines parameters documentation (#19227)
* Adding links to pipelines parameters documentation

Adding PR based on suggestion in this issue https://github.com/huggingface/transformers/issues/19038#issuecomment-1259592359

* styling

* Updated config.yml

* Updated config.yml

* update README_es.md
2022-10-12 08:57:08 -04:00
e94384e4d8 Add depth estimation pipeline (#18618)
* Add initial files for depth estimation pipelines

* Add test file for depth estimation pipeline

* Update model mapping names

* Add updates for depth estimation output

* Add generic test

* Hopefully fixing the tests.

* Check if test passes

* Add make fixup and make fix-copies changes after rebase with main

* Rebase with main

* Fixing up depth pipeline.

* This is not used anymore.

* Fixing the test. `Image` is a module `Image.Image` is the type.

* Update docs/source/en/main_classes/pipelines.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 08:54:20 -04:00
4ed0fa3676 Fix pytorch seq2seq qa (#19258)
* fixed typo for SQuAD

* Fixed the preprocess_validation_function function for the labels to reflect the remaining truncated instances

* Rolled back the trainer_seq2seq_qa.py for UnboundLocalError: local variable 'metrics' referenced before assignment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 08:33:44 -04:00
c60381e90d Syntax issue (line 497, 526) Documentation @ssuggen (#19442) 2022-10-12 08:28:54 -04:00
84125d7e73 Fix whisper doc (#19518) 2022-10-12 12:44:30 +02:00
4d367a3c81 Add LiLT (#19450)
* First draft

* Fix more things

* Improve more things

* Remove some head models

* Fix more things

* Add missing layers

* Remove tokenizer

* Fix more things

* Fix copied from statements

* Make all tests pass

* Remove print statements

* Remove files

* Fix README and docs

* Add integration test and fix organization

* Add tips

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Make tests faster, improve docs

* Fix doc tests

* Add model to toctree

* Add docs

* Add note about creating new checkpoint

* Remove is_decoder

* Make tests smaller, add docs

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-12 10:11:20 +02:00
e2dc558e9c [Doctest] Add configuration_bert.py to doctest (#19485)
* BertConfig for doctest

* Change import order

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 09:44:07 +02:00
e81cb010f8 Avoid Push CI failing to report due to many commits being merged (#19496)
* Change the depth to 20

* Add comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-12 09:25:05 +02:00
7543e275d4 update doc for perf_train_cpu_many (#19506)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-10-11 22:54:19 -04:00
bb2cfd1824 Add multi-node conditions in trainer_qa.py and trainer_seq2seq.py (#19502)
* Add multi-node conditions in trainer_qa.py and trainer_seq2seq.py

* Code improvement
2022-10-11 22:48:56 -04:00
69b81c0a5f Use a dynamic configuration for circleCI tests (#19325)
* Generate config on the file

* Fake modif for all test launch

* Upload more artifacts

* Typo and quality

* Try converting th yml to txt

* Leave my long lines alone yaml

* Debug prints

* Debug prints v2

* Try without sorting

* Was it really working before?

* Typo

* Use a parameter

* Use a parameter?

* Typo

* Here is some JSON

* Another try

* Learning to read...

* Check default is used

* Does this work?

* With continuation

* WiP

* Use a parameter for test list

* Other fake modif

* With the comma

* Name the test step so it doesn't blow up

* Just one example modification

* Final steps

* Add nightlies

* Move config generator

* Add trigger for nightlies

* Better workflow

* Rebase on recent changes

* Fix config creation

* Fake modif in an example

* Now fake modif in one config file

* Fix install step in custom tokenizers test

* Fix generated config

* Better fix hopefully

* Finally test modif in setup

* final cleanup
2022-10-11 16:31:24 -04:00
fa9e18c65f Fix OPTForQuestionAnswering doctest (#19479)
* Fix doc example for OPTForQuestionAnswering

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 20:13:04 +02:00
957ce6465a New (#19481) 2022-10-11 13:46:25 -04:00
67a3511443 Update PT to TF CLI for audio models (#19465)
* Update PT to TF CLI model inputs

* Get padding strategy if specified

* Make False comparison explicit
2022-10-11 18:25:29 +01:00
8d68878cc0 python3 instead of python in push CI setup job (#19492)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 19:18:39 +02:00
5ca131f3d4 [CvT] Tensorflow implementation (#18597)
* implemented TFCvtModel and TFCvtForImageClassification and modified relevant files, added an exception in convert_tf_weight_name_to_pt_weight_name, added quick testing file to compare with pytorch model

* added docstring + testing file in transformers testing suite

* added test in testing file, modified docs to pass repo-consistency, passed formatting test

* refactoring + passing all test

* small refacto, removing unwanted comments

* improved testing config

* corrected import error

* modified acces to pretrained model archive list, to pass tf_test

* corrected import structure in init files

* modified testing for keras_fit with cpu

* correcting PR issues + Refactoring

* Refactoring : improving readability and reducing the number of permutations

* corrected momentum value + cls_token initialization

* removed from_pt as weights were added to the hub

* Update tests/models/cvt/test_modeling_tf_cvt.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-10-11 18:16:52 +01:00
0b7b4c60c6 Adding the README_es.md and reference to it in the others files readme (#19427)
* Adding the README_es.md and reference to it in the others files readme

* Updating the check_copies.py

* Updating README_es.md

* Updating chec_copies
2022-10-11 12:56:25 -04:00
70a058bc65 Added tokenize keyword arguments to feature extraction pipeline (#19382)
* Added tokenize keyword arguments to feature extraction pipeline

* Reverted truncation parameter

* Import numpy moved to top
2022-10-11 12:54:41 -04:00
d0d5aee1dd Make bert_japanese and cpm independent of their inherited modules (#19431)
* Make cpm tokenization independent of xlnet

* Make bert japanese tokenization independent of bert
2022-10-11 12:09:17 -04:00
462cd641d9 🚨🚨🚨 TF: Remove TFWrappedEmbeddings (breaking: TF embedding initialization updated for encoder-decoder models) (#19263)
* added test

* correct embedding init

* some changes in blenderbot (incomplete)

* update blenderbot (diff to be used as reference)

* update blenderbot_small

* update LED

* update marian

* update T5 and remove TFWrappedEmbeddings

* nullcontext() -> ContextManagers()

* fix embedding init
2022-10-11 16:48:03 +01:00
8e4ee28e34 Update TF whisper doc tests (#19484) 2022-10-11 16:05:31 +01:00
6c66c6c860 Add warning in generate & device_map=auto & half precision models (#19468)
* fix device mismatch

* make fixup

* added slow tests

- added slow tests on `bnb` models to make sure generate works correctly

* replace with `self.device`

* revert force device assign

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* set the warning in `generate` instead of `sample`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-11 16:58:49 +02:00
a3008c5a6d Implement multiple span support for DocumentQuestionAnswering (#19204)
* Implement multiple span support

* Address comments

* Add tests + fix bugs
2022-10-11 10:47:55 -04:00
h
ab856f68df Decouples XLMProphet model from Prophet (#19406)
* decouples xlm_prophet from prophet and adds copy patterns that pass the copy check

* adds copy patterns to copied docstrings too

* restores autodoc for XLMProphetNetModel

* removes all-casing in a bunch of places to ensure that the model is compatible with all checkpoints on the hub

* adds missing model to main init

* adds autodocs to make document checker happy

* adds missing pretrained model import

* adds missing pretrained model import to main init

* adds XLMProphetNetPreTrainedModel to the dummy pt objects

* removes examples from the source-doc file since docstrings contain them already

* adds a missing new line to make check_repo happy
2022-10-11 10:45:23 -04:00
c66466133a Fix get_embedding dtype at init. time (#19473)
* cast positions dtype in XGLMModel

* Get the correct dtype at init time

* Get the correct dtype at init time

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 16:05:39 +02:00
e38cf93e7c Make XLMRoberta model and config independent from Roberta (#19359)
* remove config dependence

* remove dependencies from xlm_roberta

* Fix style

* Fix comments

* various fixes

* Fix pre-trained model name
2022-10-11 09:56:42 -04:00
8cb44aaf17 Make LayoutLM tokenizers independent from BertTokenizer (#19351)
* fixing tokenizer

* adding all missing classes

* fast tokenizer | fixing format

* revert to full class copy flag

* fixing different casing
2022-10-11 09:49:23 -04:00
9ed80b0000 TF: TFBart embedding initialization (#19460)
* correct embedding init
2022-10-11 14:44:46 +01:00
b651efe59e [Swin] Replace hard-coded batch size to enable dynamic ONNX export (#19475)
* [Swin] Replace hard-coded batch size to enable dynamic ONNX export
2022-10-11 15:21:29 +02:00
440bbd44aa Update WhisperModelIntegrationTests.test_large_batched_generation (#19472)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:39:24 +02:00
e1a5cc338b Fix doctests for DeiT and TFGroupViT (#19466)
* Fix some doctests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:30:42 +02:00
d7dc774a79 Fix TFGroupViT CI (#19461)
* Fix TFGroupViT CI

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-11 14:29:15 +02:00
a293a0e8a3 CLI: add import protection to datasets (#19470) 2022-10-11 13:19:32 +01:00
ae710425d2 Syntax issues (lines 126, 203) (#19444) 2022-10-11 08:14:21 -04:00
335f9bcd34 Extend nested_XXX functions to mappings/dicts. (#19455)
* Extend `nested_XXX` functions to mappings/dicts.

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_pt_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Style updated file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-11 08:13:21 -04:00
b722a6be72 Fix whisper for pipeline (#19482)
* update feature extractor params

* update attention mask handling

* fix doc and pipeline test

* add warning when skipping test

* add whisper translation and transcription test

* fix build doc test
2022-10-11 07:17:53 -04:00
df8faba4db Enabling custom TF signature draft (#19249)
* Custom TF signature draft

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Adding tf signature tests

* Fixing signature check and adding asserts

* fixing model load path

* Adjusting signature tests

* Formatting file

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Dimitre Oliveira <dimitreoliveira@Dimitres-MacBook-Air.local>
2022-10-11 10:56:08 +01:00
10100979ed Dev version 2022-10-10 17:25:40 -04:00
df2f28120d wrap forward passes with torch.no_grad() (#19412) 2022-10-10 15:04:10 -04:00
5f5e264a12 wrap forward passes with torch.no_grad() (#19413) 2022-10-10 15:03:46 -04:00
c6a928cadb wrap forward passes with torch.no_grad() (#19414) 2022-10-10 15:03:24 -04:00
d739a707d9 wrap forward passes with torch.no_grad() (#19416) 2022-10-10 15:03:09 -04:00
870a9542be wrap forward passes with torch.no_grad() (#19438) 2022-10-10 14:54:54 -04:00
692c5be74e wrap forward passes with torch.no_grad() (#19439) 2022-10-10 14:54:36 -04:00
a7bc4221c0 fix (#19469)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 14:35:23 -04:00
25cfd911d0 Fixed a non-working hyperlink in the README.md file (#19434)
* Fixed a non-working hyperlink in the README.md file

The hyperlink to the community notebooks was outdated.

* Fixing missing double slash in hyperlink
2022-10-10 12:57:28 -04:00
9df953a855 Fix misspelled word in docstring (#19415) 2022-10-10 17:33:57 +01:00
d866b4858a Generate: corrected exponential_decay_length_penalty type hint (#19376) 2022-10-10 17:32:03 +01:00
4dd784c32f Fix momentum and epsilon values (#19454)
The momentum value for PyTorch and TensorFlow batch normalization layers is not equivalent. The TensorFlow value should be (1 - pytorch_momentum) in order to ensure the correct updates are applied to the running mean and running variance calculations. We wouldn't observe a difference loading a pretrained model and performing inference, but evaluation outputs would change after some training steps.
2022-10-10 15:17:41 +01:00
b0b962ccca Add Italian translation for add_new_model.mdx (#18713)
* fix conflicts

* start translating

* proof check

* add toc

* fix errors and typos
2022-10-10 10:12:40 -04:00
e150c4e2fe Fix the error message in run_t5_mlm_flax.py (#19282) 2022-10-10 14:51:11 +01:00
e3f028f3af Add TF whisper (#19378)
* simplify loop

* add featur extractor

* add model

* start conversion

* add dropout

* initial commit of test files

* copnversion for all models

* update processor for correct padding

* update feature extraction

* update integration test logits match

* fmnt: off for the logits

* on the fly mel bank

* small nit

* update test

* update tokenizer

* nit feature extraction

* update

* update tokenizer test

* adds logit processor and update tokenizer to get supress tokens

* style

* clean convert

* revert to original modeling tf utils

* Update

* update

* nit

* clean convert file

* update tests and nits

* quality

* slow generation test

* ffn_dim to allow customization

* update readme

* add to toctreee

* start fixing integration tests

* update tests and code

* fix feature extractor

* fix config tests common

* update code to fix tests

* fix feature exctractor

* nit feature extraction

* update test for new feature extractor

* style

* add absrtact

* large logits wioth custom decoder input ids

* wraap around is otrch available

* fix feature extractor

* correct logits for whisper small.en

* nit

* fix encoder_attentino_mask

* some fixes

* remove unnecessary inputs

* nits

* add normalizer file

* update etst tokenization

* fix attention mask not defined

* fix generate

* remove uncoder attention mask useless

* update test modeling whisper

* update condfig to add second non supress tokens

* nits on feature exrtactor

* nit for test tokenizers

* update etsts

* update tests

* update tokenization test

* fixup

* invalidated hf token. Clean convert openai to whisper

* fix logit tests

* fixup

* Add model to README

* Fix doc tests

* clean merge

* revert toc_tree changes

* remove useless LogitProcessor

* Update whisper .mdx

* update config file doc

* update configuration docstring

* update test tokenization

* update test tokenization

* update tokenization whisper
Added copied from where needed

* update feature extraction

* nit test name

* style

* quality

* remove get suppress tokens and update non_speech tokens global variables

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* clean modeling whisper and test
Removed the attention mask arguments that are deprecated

* fix large test

* Add multilingual audio test, and translate test

* style

* fix larg multilingual test

* nits

* add copied from for attention layer

* remove attention masks in doc

* add english normalizer

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update tokenization test

* remove copied from in whisper attention : no bias in k_proj only

* wrap around dependencies in english normalizer

* style

* correct import generation logits

* for now, wrap feature extractor with torch

* remove torch depencies for feature extraction and style

* Update src/transformers/models/whisper/convert_openai_whisper_to_tfms.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixup

* nit

* update logitds

* style

* nit

* nits and fix final tests

* add `is_more_itertools_available` to utils

* quality

* add begin supress tokens, supress tokens to generate args and config

* clean supressTokensLogitProcessor in generation logits

* Nit naming

* add supressTokensAtBegin

* udpate tests, supress tokens to None or correct values

* nit and style

* update RAG to fit test and generate_logit

* add copy pasted statment on english normalizer

* add arguments to config_common_kwargs

* Update src/transformers/generation_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/generation_logits_process.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* revert changes based on reviews

* update doc and nits

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* more nits

* last nits

* update test configuration common

* add BART name in decoder attention mask documentation

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* style

* nit

* nit

* add english.json file to git

* nits on documentation

* nit

* nits

* last styling

* add main toctree file

* remove sentence piece dependency

* clean init file

* fix tokenizer that has no dependencies on sentencepiece

* update whisper init file, nit

* remove english.json file

* add get decoder prompt id

* All weights loading

* Remove hanging pdb

* Fixup and tidy up

* Use same copied from as PT model

* Remove whitespace changes

* Remove torch references

* Tie embeddings

* Remove logits processor input to generate

* Update logit values

* revert changes and add forced logit processor

* nit

* clean normalizer

* remove protected

* Add logit processors and update generation code & tests

* Some tidy up

* Update docstring

* update

* update based on review

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update to reflect changes on the PT model branch

* Tidy up

* Remove extra whitespace

* Fix test - make input ids small enough we can append

* Include upstream changes on main

* PR comments - add batch tests, remove comments & defaults

* Fix model output imports

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/generation_tf_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update tests/models/whisper/test_modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update docstring example

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove changes to adjust_logits_during_generation function

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Tidy up imports that don't require TF

* Update tests - skip and no more skip

* Update tests/generation/test_generation_tf_logits_process.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/models/whisper/modeling_tf_whisper.py

* Update src/transformers/models/whisper/modeling_tf_whisper.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Add training flags

* Add (skipped) XLA generation tests

* Add embedding correctness test

* Add constant ids for generation tests

* Make logits finding a bit tidier

* Remove unused args

* xla generation enabled

* Don't skip XLA tests anymore

* Fix tests - add position ids to expected signature and update rag generation

* Undo method reorder

* Remove added whitespace

* Remove copy-paste gradient checkopint ref

* Remove

* Trigger CI - (issue with refs when pulling)

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
2022-10-10 14:48:17 +01:00
af69360bf9 Add OPTForQuestionAnswering (#19402)
* Add `OPTForQuestionAnswering`

- added `OPTForQuestionAnswering` class based on `BloomForQuestionAnswering`
- added `OPTForQuestionAnswering` in common tests
- all common tests pass
- make fixup done

* added docstrings for OPTForQuestionAnswering

* Fix docstrings for OPTForQuestionAnswering
2022-10-10 09:30:59 -04:00
ba71bf4cae fix: renamed variable name (#18850)
The sequence_masked variable is actually the part of the sequence that is kept unmasked for the encoder. This commit renames the variable.
2022-10-10 09:26:36 -04:00
4824741c4c Remove dependency of Roberta in Blenderbot (#19411)
* Remove dependency of Roberta in Blenderbot

* Move Copied from statements to each method of the Roberta classes

* Remove copied from line for mask_token.setter

* update output from example in docs
2022-10-10 09:25:22 -04:00
3080bb4754 Add onnx support for VisionEncoderDecoder (#19254)
* Add onnx support for VisionEncoderDecoder

* Add onnx support for VisionEncoderDecoder

* Removed unused import

* Rename encoder hidden state

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update docstrings and removed redundant code

* Added test function for enc-dec models

* Update doc string text

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* fixed code style

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-10 09:20:19 -04:00
298f6a98c2 Stop relying on huggingface_hub's private methods (#19392)
* Leverage hfh for move cache

* Style
2022-10-10 15:19:33 +02:00
7d5ce6802e Fix typo in image-classification/README.md (#19424)
Fix link typo of the following content.
PyTorch version, Trainer
PyTorch version, no Trainer
2022-10-10 09:16:58 -04:00
c523a86929 fix marianMT convertion to onnx (#19287)
* fix marianMT convertion to onnx

* Update src/transformers/onnx/convert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/onnx/convert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-10 09:11:29 -04:00
3410705730 Fixed duplicated line (paragraph #83) Documentation: @sgugger (#19436)
* Fixed duplicated line (paragraph #83) @omarespejel @sgugger

* Datasets map denomination fixed (paragraph 42)
2022-10-10 09:08:34 -04:00
83dc49b69b Backtick fixed (paragraph 68) (#19440) 2022-10-10 08:47:14 -04:00
1241a4993b remove RobertaConfig inheritance from MarkupLMConfig (#19404)
* remove RobertaConfig inheritance from MarkupLMConfig

* Update src/transformers/models/markuplm/configuration_markuplm.py

fixed typo in docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-10 08:44:59 -04:00
4107445a0f Fix repo names for ESM tests (#19451) 2022-10-10 13:20:00 +01:00
cbb8a37929 Skip BloomEmbeddingTest.test_embeddings for PyTorch < 1.10 (#19261)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 10:05:30 +02:00
8b6bba54a7 Fix ViTMSNForImageClassification doctest (#19275)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-10-10 09:51:30 +02:00
d92e22d1f2 Remove ref to is_pipeline_test 2022-10-07 21:38:07 -04:00
9ac586b3c8 Rework pipeline tests (#19366)
* Rework pipeline tests

* Try to fix Flax tests

* Try to put it before

* Use a new decorator instead

* Remove ignore marker since it doesn't work

* Filter pipeline tests

* Woopsie

* Use the fitlered list

* Clean up and fake modif

* Remove init

* Revert fake modif
2022-10-07 18:01:58 -04:00
983451a13e Improve and fix ImageSegmentationPipeline (#19367)
- Fixes the image segmentation pipeline test failures caused by changes to the postprocessing methods of supported models
- Updates the ImageSegmentationPipeline tests
- Improves docs, adds 'task' argument to optionally perform semantic, instance or panoptic segmentation
2022-10-07 23:34:41 +03:00
de4d71ea07 Removed Bert dependency from BertGeneration code base. (#19370)
* Copied all the code required from transformers.models.bert.modeling_bert to here

* Fixed styling issues

* Reformatted copied names with Model specific name.

* Reverted BertEncoder part as there is already a class called BertGenerationEncoder

* Added prefixes in missing places.

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
2022-10-07 13:45:24 -04:00
34e0cc6d86 Make Camembert TF version independent from Roberta (#19364)
* camembert tf version independent

* fixup

* fixup, all working

* remove comments

* Adding copied from roberta

Co-authored-by: Mustapha AJEGHRIR <mustapha.ajeghrir@kleegroup.com>
2022-10-07 13:42:24 -04:00
7418a48e34 Removed Bert interdependency in tokenization_electra.py (#19356)
* Copied from BertTokenizer() in tokenization_bert

* Added BasicTokenizer and WordPieceTokenizer Class

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Added copied from comments for basicTokenizer and WordPieceTokenizer

* Updated the comments for the tokenizerClasses

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Formatted tokenization_electra with `make style`

* Fix repo inconsistencies

* Update src/transformers/models/electra/tokenization_electra.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Set the logger

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-07 12:24:04 -04:00
6ef16f2b67 Remove Dependency between Bart and LED (slow/fast) (#19408)
* removed dependency from bart(slow)

* removed dependency from bart(slow)

* adding copying comments (copied from bart to led)

* updated led docstring

* updated led docstring

* removed dependency from Bart (fast)

* replaced bart with LED in docstrings

* complying flake8

* added more copy comments

* fixing copying comments

* added comments back

* fix copy comments

* fixing copied from comments

* fixing copied from comments
2022-10-07 12:19:50 -04:00
06514b3e1a Clip device map (#19409)
* add first generation tutorial

* uP

* [Clip] Add text model to device map
2022-10-07 18:19:15 +02:00
c2b83d540e Removed Bert and XML Dependency from Herbert (#19410)
Co-authored-by: harry7337 <hari.8jan@gmail.com>
2022-10-07 11:49:09 -04:00
e6fc2016ad Remove dependency of Bert from Squeezebert tokenizer (#19403)
* Remove dependency of Bert from Squeezebert tokenizer

* run style corrections

* update copies from BertTokenizers

* Update changes and style to Squeezebert files

* update copies for bert-fast
2022-10-07 11:32:55 -04:00
994b7a4eea update attention mask handling (#19385)
* update feature extractor params

* update attention mask handling
2022-10-07 16:54:08 +02:00
a26d71d6ae Export TensorFlow models to ONNX with dynamic input shapes (#19255)
* validate onnx models with a different input geometry than saved with

* only test working features for now

* simpler test skipping

* rm TODO

* expose batch_size/seq_length on vit

* skip certain name, feature, framework parameterizations known to fail validation

* Trigger CI

* Trigger CI
2022-10-07 10:53:03 -04:00
5fef17f490 Copy BertTokenizer dependency into retribert tokenizer (#19371) 2022-10-07 10:14:00 -04:00
fa4bcd5274 edit: cast attention_mask to long in DataCollatorCTCWithPadding (#19369)
* edit: casting attention_mask to long in DataCollatorCTCWithPadding

* edit: casting attention_mask to long in DataCollatorCTCWithPadding
2022-10-07 10:05:48 -04:00
e9a49babee [WIP] Add ZeroShotObjectDetectionPipeline (#18445) (#18930)
* Add ZeroShotObjectDetectionPipeline (#18445)

* Add AutoModelForZeroShotObjectDetection task

This commit also adds the following

- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
  This is necessary as pipelines don't auto infer processors yet and
  `OwlVitProcessor` wraps tokenizer and feature_extractor together, to
  process multiple images at once

- Add auto tests and other tests for ZeroShotObjectDetectionPipeline

* Add AutoModelForZeroShotObjectDetection task

This commit also adds the following

- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
  This is necessary as pipelines don't auto infer processors yet and
  `OwlVitProcessor` wraps tokenizer and feature_extractor together, to
  process multiple images at once

- Add auto tests and other tests for ZeroShotObjectDetectionPipeline

* Add batching for ZeroShotObjectDetectionPipeline

* Fix doc-string ZeroShotObjectDetectionPipeline

* Fix output format: ZeroShotObjectDetectionPipeline
2022-10-07 10:00:19 -04:00
331ea019d7 Remove unneded words from audio-related feature extractors (#19405) 2022-10-07 15:52:52 +02:00
56af8df359 HF <-> megatron checkpoint reshaping and conversion for GPT (#19317)
* HF <-> megatron checkpoint conversion handling reshaping from different tensor and parallel sizes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* add doc strings and  🐛 fixes

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-07 19:16:55 +05:30
41ec5d0ced Added type hints for TF: TransfoXL (#19380)
* Added type hints for TF: TransfoXL
* Added type hints for TF: TransfoXL

* Change type hints for training

* Change type hints for training
2022-10-07 14:44:58 +01:00
h
b29ebdf4d8 removes prophet config dependencies from xlm-prophet (#19400) 2022-10-07 09:26:23 -04:00
e162cebfa3 add ONNX support for swin transformer (#19390)
* swin transformer onnx support

* Updated image dimensions as dynamic

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-10-07 09:23:24 -04:00
969534af4b Added Type hints for XLM TF (#19333)
* Update modeling_tf_xlm.py

* Updates

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

* Update src/transformers/models/xlm/modeling_tf_xlm.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-10-07 13:44:50 +01:00
46fd04b481 Fix gather for metrics (#19389) 2022-10-07 08:36:05 -04:00
7e348aac96 Making ConvBert Tokenizer independent from bert Tokenizer (#19347)
* ConvBert

* added comment

* Updated

* Final_updates

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Update tokenization_convbert.py

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Update tokenization_convbert.py

* Update tokenization_convbert_fast.py

* Updates

* Updates

* Updated

* Final Updates
2022-10-07 07:59:02 -04:00
ae3e3bc60a fix docs example, add object_detection to DETR docs (#19377) 2022-10-07 00:02:26 +02:00
ce2620194b Change link of repojacking vulnerable link (#19393)
The link to https://github.com/vasudevgupta7/bigbird is vulnerable to repojacking (it redirects to the orignial project that changed name), you should change the link to the current name of the project. if you won't change the link, an attacker can open the linked repository and attacks users that trust your links
2022-10-06 23:06:39 +02:00
f0b490151e 🚨 🚨 🚨 Fix ViT parameter initialization (#19341)
This PR aims to rectify the discrepancy between the training performances of HF and Timm ViT implementations.

- Initializes torch and flax ViT dense layer weights with trunc_normal instead of normal (consistent with the TF implementation.
- Initializes cls_token and positional_embeddings with trunc_normal
- Updates DeiT copy to reflect the changes
2022-10-06 12:04:01 +03:00
7e7f62bfa7 Fix pipeline tests for Roberta-like tokenizers (#19365)
* Fix pipeline tests for Roberta-like tokenizers

* Fix fix
2022-10-05 17:48:14 -04:00
bad353cebf Fix DETR segmentation postprocessing output (#19363)
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
2022-10-06 00:16:36 +03:00
45e14038f2 Add WhisperModel to transformers (#19166)
* simplify loop

* add featur extractor

* add model

* start conversion

* add dropout

* initial commit of test files

* copnversion for all models

* update processor for correct padding

* update feature extraction

* update integration test logits match

* fmnt: off for the logits

* on the fly mel bank

* small nit

* update test

* update tokenizer

* nit feature extraction

* update

* update tokenizer test

* adds logit processor and update tokenizer to get supress tokens

* style

* clean convert

* revert to original modeling tf utils

* Update

* update

* nit

* clean convert file

* update tests and nits

* quality

* slow generation test

* ffn_dim to allow customization

* update readme

* add to toctreee

* start fixing integration tests

* update tests and code

* fix feature extractor

* fix config tests common

* update code to fix tests

* fix feature exctractor

* nit feature extraction

* update test for new feature extractor

* style

* add absrtact

* large logits wioth custom decoder input ids

* wraap around is otrch available

* fix feature extractor

* correct logits for whisper small.en

* nit

* fix encoder_attentino_mask

* some fixes

* remove unnecessary inputs

* nits

* add normalizer file

* update etst tokenization

* fix attention mask not defined

* Add model to README

* Fix doc tests

* fix generate

* remove uncoder attention mask useless

* update test modeling whisper

* update condfig to add second non supress tokens

* nits on feature exrtactor

* nit for test tokenizers

* update etsts

* update tests

* update tokenization test

* fixup

* invalidated hf token. Clean convert openai to whisper

* fix logit tests

* fixup

* clean merge

* revert toc_tree changes

* remove useless LogitProcessor

* Update whisper .mdx

* update config file doc

* update configuration docstring

* update test tokenization

* update test tokenization

* update tokenization whisper
Added copied from where needed

* update feature extraction

* nit test name

* style

* quality

* remove get suppress tokens and update non_speech tokens global variables

* Update src/transformers/models/whisper/feature_extraction_whisper.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* clean modeling whisper and test
Removed the attention mask arguments that are deprecated

* fix large test

* Add multilingual audio test, and translate test

* style

* fix larg multilingual test

* nits

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add copied from for attention layer

* remove attention masks in doc

* add english normalizer

* update tokenization test

* remove copied from in whisper attention : no bias in k_proj only

* wrap around dependencies in english normalizer

* style

* correct import generation logits

* for now, wrap feature extractor with torch

* Update src/transformers/models/whisper/convert_openai_whisper_to_tfms.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/whisper.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove torch depencies for feature extraction and style

* fixup

* nit

* update logitds

* style

* nit

* nits and fix final tests

* add `is_more_itertools_available` to utils

* quality

* add begin supress tokens, supress tokens to generate args and config

* clean supressTokensLogitProcessor in generation logits

* Nit naming

* add supressTokensAtBegin

* udpate tests, supress tokens to None or correct values

* nit and style

* update RAG to fit test and generate_logit

* add copy pasted statment on english normalizer

* add arguments to config_common_kwargs

* Update src/transformers/generation_utils.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/generation_logits_process.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* revert changes based on reviews

* update doc and nits

* more nits

* last nits

* update test configuration common

* add BART name in decoder attention mask documentation

* Update src/transformers/models/whisper/modeling_whisper.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* style

* nit

* nit

* add english.json file to git

* nits on documentation

* nit

* nits

* last styling

* add main toctree file

* remove sentence piece dependency

* clean init file

* fix tokenizer that has no dependencies on sentencepiece

* update whisper init file, nit

* remove english.json file

* add get decoder prompt id

* revert changes and add forced logit processor

* nit

* clean normalizer

* remove protected

* update

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update based on review

* Update src/transformers/models/whisper/configuration_whisper.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add batched tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-05 22:28:31 +02:00
7598791c09 Fix MaskFormer failing postprocess tests (#19354)
Ensures post_process_instance_segmentation and post_process_panoptic_segmentation methods return a tensor of shape (target_height, target_width) filled with -1 values if no segment with score > threshold is found.
2022-10-05 23:25:58 +03:00
ad98642a82 Fix gather for metrics (#19360) 2022-10-05 14:52:01 -04:00
d9101b71bc Removes Roberta and Bert config dependencies from Longformer (#19343)
* removes roberta and bert config dependencies from longformer

* adds copied from statements

* fixes style

* removes excessive comments and replace bert with longformer in a couple places

* fixes style
2022-10-05 13:50:15 -04:00
226b8ef063 correct typos in README (#19304) 2022-10-05 10:40:38 -07:00
071df6eb13 Call _set_save_spec() when creating TF models (#19321)
* Add a build_from_serving_sig_and_dummies method and replace all calls like model(model.dummy_inputs) with it.

* make fixup

* Remove the overridden save() as this is no longer necessary

* Also call _set_save_spec(), the last missing piece

* Ensure we set the save spec when loading from config too

* Turn this whole thing into a one-line PR

* Turn this whole thing into a one-line PR

* Turn this whole thing into a one-line PR

Co-authored-by: Your Name <you@example.com>
2022-10-05 18:03:49 +01:00
c875a96eb1 Test failing test while we resolve the issue. (#19355) 2022-10-05 12:23:48 -04:00
4cbc797b27 Change BloomConfig docstring (#19336)
* change `BloomConfig` docstring

- slightly change the docstring of the `BloomConfig`
- Use correct default vocab size
- Use correct default `hidden_dim`, `n_head`

* Update src/transformers/models/bloom/configuration_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/bloom/configuration_bloom.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* make style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-10-05 18:12:13 +02:00
e794ca5b16 Frees LongformerTokenizer of the Roberta dependency (#19346)
* copies over roberta tokenizer to longformertokenizer since they are both identical

* adds Copied from patterns to pass copy check
2022-10-05 11:49:14 -04:00
2f53ab5745 Add sudachi and jumanpp tokenizers for bert_japanese (#19043)
* add sudachipy and jumanpp tokenizers for bert_japanese

* use ImportError instead of ModuleNotFoundError in SudachiTokenizer and JumanppTokenizer

* put test cases of test_tokenization_bert_japanese in one line

* add require_sudachi and require_jumanpp decorator for testing

* add sudachi and pyknp(jumanpp) to dependencies

* remove sudachi_dict_small and sudachi_dict_full from dependencies

* empty commit for ci
2022-10-05 11:41:37 -04:00
60db81ff60 Making camembert independent from roberta, clean (#19337)
Co-authored-by: Mustapha AJEGHRIR <mustapha.ajeghrir@kleegroup.com>
2022-10-05 09:31:33 -04:00
c54bb1ad79 [WIP]remove XLMTokenizer inheritance from FlaubertTokenizer (#19330)
* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer

* remove XLMTokenizer inheritance from FlaubertTokenizer: fixed styling

* removed repo-consistensy issue
2022-10-05 09:19:04 -04:00
e12bbe3b4d Remove bert interdependency from clip tokenizer (#19332) 2022-10-05 09:15:14 -04:00
512fa41c53 Removed interdependency of BERT's Tokenizer in tokenization of prophetnet (#19331)
* removed interdependency of BERTTokenizer in tokenization of prophetnet

* fix: style
2022-10-05 09:12:47 -04:00
07e94bf159 Maskformer post-processing fixes and improvements (#19172)
- Improves MaskFormer docs, corrects minor typos
- Restructures MaskFormerFeatureExtractor.post_process_panoptic_segmentation for better readability, adds target_sizes argument for optional resizing
- Adds post_process_semantic_segmentation and post_process_instance_segmentation methods.
- Adds a deprecation warning to post_process_segmentation method in favour of post_process_instance_segmentation
2022-10-05 15:27:15 +03:00
6268694e27 removing XLMConfig inheritance from FlaubertConfig (#19326)
* removing XLMConfig inheritance from FlaubertConfig

* removing XLMConfig inheritance from FlaubertConfig

* Fixed styling issue

* Update configuration_flaubert.py

Co-authored-by: Druhin Abrol <druhinabrol@192.168.1.6>
2022-10-04 19:39:47 -04:00
bf7eb0c9b3 Remove interdependency from OpenAI tokenizer (#19327)
* Remove interdependency from OpenAI tokenizer

* Adjust import order for linter
2022-10-04 17:51:55 -04:00
971da2e6ec Clamping hidden state values to allow FP16 (#19229)
* Clamping hidden state values to allow FP16

* Reformating

* Adding missing if condition

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Update src/transformers/models/longt5/modeling_longt5.py

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

* Formating file

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-10-04 20:28:28 +02:00
587d84b178 Add BloomForQuestionAnswering (#19310)
* add bloom for question answering

- attempt to add Bloom for question answering
- adapted from `GPTJForQuestionAnswering`
- Fixed `num_labels` to `2` for common tests
- Added a bit of docstring
- All common tests pass

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert changes related to `num_labels`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-10-04 17:52:13 +02:00
6dce9e0cdd docker-build: Update actions/checkout to v3 (#19288) 2022-10-04 16:26:52 +02:00
6fd254a37d Removing BertConfig inheritance from LayoutLMConfig (#19307)
* removing BertConfig inheritance

* fix missing arguments
2022-10-04 10:24:07 -04:00
a9782881a4 wrap forward passes with torch.no_grad() (#19273) 2022-10-04 16:13:22 +02:00
d6e920449e wrap forward passes with torch.no_grad() (#19274) 2022-10-04 16:12:03 +02:00
2403dbd607 wrap forward passes with torch.no_grad() (#19278) 2022-10-04 16:09:23 +02:00
f134d38553 wrap forward passes with torch.no_grad() (#19279) 2022-10-04 16:08:29 +02:00
cd024da6f8 ci(workflows): update actions/checkout to v3 (#19280)
in stale.yml
2022-10-04 16:07:53 +02:00
ca3ebc44e0 ci(stale.yml): upgrade actions/setup-python to v4 (#19281) 2022-10-04 16:07:33 +02:00
cc263e9bb4 alter retrived to retrieved (#18863) 2022-10-04 16:00:47 +02:00
9b630168a9 Added type hints for TF: rag model (#19284)
* Added type hints for TF: rag model

* TFModelInputType added in place of TF.Tensor

* reformatting by black
2022-10-04 14:56:35 +01:00
ac5ea74ee8 Added Type hints for LED TF (#19315)
* Update modeling_tf_led.py

* Update modeling_tf_led.py
2022-10-04 14:55:15 +01:00
3a1a56a8fe Fix for sequence regression fit() in TF (#19316)
Co-authored-by: Your Name <you@example.com>
2022-10-04 14:48:27 +01:00
fe10796f4f [Docs] Fix link (#19313) 2022-10-04 09:00:52 -04:00
534cd8ff94 Update README.md (#19309) 2022-10-04 07:46:50 -04:00
4c962d5e79 Bump joblib in /examples/research_projects/visual_bert (#19269)
Bumps [joblib](https://github.com/joblib/joblib) from 0.16.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.16.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:57:50 +02:00
c7ec0afce0 Bump joblib in /examples/research_projects/decision_transformer (#19270)
Bumps [joblib](https://github.com/joblib/joblib) from 1.1.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/1.1.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:57:37 +02:00
ca26277e33 Bump joblib from 0.16.0 to 1.2.0 in /examples/research_projects/lxmert (#19268)
Bumps [joblib](https://github.com/joblib/joblib) from 0.16.0 to 1.2.0.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.16.0...1.2.0)

---
updated-dependencies:
- dependency-name: joblib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-10-03 23:49:35 +02:00
008531c18a Update Protobuf dependency version to fix known vulnerability (#19247)
* Update protobuf dependency to fix vulnerability

* Update `dependency_versions_table.py` to include updated protobuf.
2022-10-03 23:37:09 +02:00
68f50f3453 Breakup export guide (#19271)
* split onnx and torchscript docs

* make style

* apply reviews
2022-10-03 13:18:29 -07:00
18c06208c4 Don't automatically add bug label (#19302) 2022-10-03 12:42:04 -04:00
c28d04e9e2 Update no_trainer script for summarization (#19277)
* Update no_trainer script for summarization

* removed unnecessary import

* fixes notation mistake

* removed: unused variable
2022-10-03 09:21:51 -04:00
36f52e9593 Restructure DETR post-processing, return prediction scores (#19262)
* Restructure DetrFeatureExtractor post-processing methods
* Update post_process_instance_segmentation and post_process_panoptic_segmentation methods to return prediction scores
* Update DETR models docs
2022-10-03 12:02:51 +03:00
5cd16f01db time series forecasting model (#17965)
* initial files

* initial model via cli

* typos

* make a start on the model config

* ready with configuation

* remove tokenizer ref.

* init the transformer

* added initial model forward to return dec_output

* require gluonts

* update dep. ver table and add as extra

* fixed typo

* add type for prediction_length

* use num_time_features

* use config

* more config

* typos

* opps another typo

* freq can be none

* default via transformation is 1

* initial transformations

* fix imports

* added transform_start_field

* add helper to create pytorch dataloader

* added inital val and test data loader

* added initial distr head and loss

* training working

* remove TimeSeriesTransformerTokenizer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed copyright

* removed docs

* remove time series tokenizer

* fixed docs

* fix text

* fix second

* fix default

* fix order

* use config directly

* undo change

* fix comment

* fix year

* fix import

* add additional arguments for training vs. test

* initial greedy inference loop

* fix inference

* comment out token inputs to enc dec

* Use HF encoder/decoder

* fix inference

* Use Seq2SeqTSModelOutput output

* return Seq2SeqTSPredictionOutput

* added default arguments

* fix return_dict true

* scale is a tensor

* output static_features for inference

* clean up some unused bits

* fixed typo

* set return_dict if none

* call model once for both train/predict

* use cache if future_target is none

* initial generate func

* generate arguments

* future_time_feat is required

* return SampleTSPredictionOutput

* removed unneeded classes

* fix when params is none

* fix return dict

* fix num_attention_heads

* fix arguments

* remove unused shift_tokens_right

* add different dropout configs

* implement FeatureEmbedder, Scaler and weighted_average

* remove gluonts dependency

* fix class names

* avoid _variable names

* remove gluonts dependency

* fix imports

* remove gluonts from configuration

* fix docs

* fixed typo

* move utils to examples

* add example requirements

* config has no freq

* initial run_ts_no_trainer

* remove from ignore

* fix output_attentions and removed unsued getters/setters

* removed unsed tests

* add dec seq len

* add test_attention_outputs

* set has_text_modality=False

* add config attribute_map

* make style

* make fix-copies

* add encoder_outputs to TimeSeriesTransformerForPrediction forward

* Improve docs, add model to README

* added test_forward_signature

* More improvements

* Add more copied from

* Fix README

* Fix remaining quality issues

* updated encoder and decoder

* fix generate

* output_hidden_states and use_cache are optional

* past key_values returned too

* initialize weights of distribution_output module

* fixed more tests

* update test_forward_signature

* fix return_dict outputs

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* removed commented out tests

* added neg. bin and normal output

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* move to one line

* Add docstrings

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add try except for assert and raise

* try and raise exception

* fix the documentation formatting

* fix assert call

* fix docstring formatting

* removed input_ids from DOCSTRING

* Update input docstring

* Improve variable names

* Update order of inputs

* Improve configuration

* Improve variable names

* Improve docs

* Remove key_length from tests

* Add extra docs

* initial unittests

* added test_inference_no_head test

* added test_inference_head

* add test_seq_to_seq_generation

* make style

* one line

* assert mean prediction

* removed comments

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix order of args

* make past_observed_mask optional as well

* added Amazon license header

* updated utils with new fieldnames

* make style

* cleanup

* undo position of past_observed_mask

* fix import

* typo

* more typo

* rename example files

* remove example for now

* Update docs/source/en/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/configuration_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/time_series_transformer/modeling_time_series_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_time_series_transformer.py

fix style

* fixed typo

* fix typo and grammer

* fix style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: NielsRogge <niels.rogge1@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-30 15:32:59 -04:00
cfb777f27c Docs - Guide to add a new TensorFlow model (#19256)
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-09-30 20:30:38 +01:00
6a08162ad4 Fix cached lookup filepath on windows for hub (#19178)
* Update hub.py commit_hash extraction

Add safety mechanism for windows systems to unify logic (replace double backslashes with /)

* Fix string quotetype

* Aaaa circleci is messing with me.

* Switch to using as_posix() method from pathlib

* Update src/transformers/utils/hub.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/utils/hub.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-30 15:13:39 -04:00
f33858d18a Fix Encoder-Decoder testing issue about repo. names (#19250)
* Change "../gpt2" to "gpt2"

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 18:15:07 +02:00
2fba98e585 Add beautifulsoup4 to the dependency list (#19253)
* Add `beautifulsoup4` to extras["testing"]

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 18:14:01 +02:00
3e2dd7f92d Poc to use safetensors (#19175)
* Poc to use safetensors

* Typo

* Final version

* Add tests

* Save with the right name!

* Update tests/test_modeling_common.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Support for sharded checkpoints

* Test from Hub part 1

* Test from hub part 2

* Fix regular checkpoint sharding

* Bump for fixes

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-09-30 10:58:04 -04:00
dad578e4c3 Add notebooks (#19259) 2022-09-30 10:04:36 -04:00
e396358104 Add stop sequence to text generation pipeline (#18444) 2022-09-30 14:26:51 +01:00
582d085bb2 Add expected output to the sample code for ViTMSNForImageClassification (#19183)
* chore: add expected output to the sample code.

* add: imagenet-1k labels to the model config.

* chore: apply code formatting.

* chore: change the expected output.
2022-09-30 15:25:41 +02:00
368b649af6 Rebase ESM PR and update all file formats (#19055)
* Rebase ESM PR and update all file formats

* Fix test relative imports

* Add __init__.py to the test dir

* Disable gradient checkpointing

* Remove references to TFESM... FOR NOW >:|

* Remove completed TODOs from tests

* Convert docstrings to mdx, fix-copies from BERT

* fix-copies for the README and index

* Update ESM's __init__.py to the modern format

* Add to _toctree.yml

* Ensure we correctly copy the pad_token_id from the original ESM model

* Ensure we correctly copy the pad_token_id from the original ESM model

* Tiny grammar nitpicks

* Make the layer norm after embeddings an optional flag

* Make the layer norm after embeddings an optional flag

* Update the conversion script to handle other model classes

* Remove token_type_ids entirely, fix attention_masking and add checks to convert_esm.py

* Break the copied from link from BertModel.forward to remove token_type_ids

* Remove debug array saves

* Begin ESM-2 porting

* Add a hacky workaround for the precision issue in original repo

* Code cleanup

* Remove unused checkpoint conversion code

* Remove unused checkpoint conversion code

* Fix copyright notices

* Get rid of all references to the TF weights conversion

* Remove token_type_ids from the tests

* Fix test code

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add credit

* Remove _ args and __ kwargs in rotary embedding

* Assertively remove asserts

* Replace einsum with torch.outer()

* Fix docstring formatting

* Remove assertions in tokenization

* Add paper citation to ESMModel docstring

* Move vocab list to single line

* Remove ESMLayer from init

* Add Facebook copyrights

* Clean up RotaryEmbedding docstring

* Fix docstring formatting

* Fix docstring for config object

* Add explanation for new config methods

* make fix-copies

* Rename all the ESM- classes to Esm-

* Update conversion script to allow pushing to hub

* Update tests to point at my repo for now

* Set config properly for tests

* Remove the gross hack that forced loss of precision in inv_freq and instead copy the data from the model being converted

* make fixup

* Update expected values for slow tests

* make fixup

* Remove EsmForCausalLM for now

* Remove EsmForCausalLM for now

* Fix padding idx test

* Updated README and docs with ESM-1b and ESM-2 separately (#19221)

* Updated README and docs with ESM-1b and ESM-2 separately

* Update READMEs, longer entry with 3 citations

* make fix-copies

Co-authored-by: Your Name <you@example.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Tom Sercu <tsercu@fb.com>
Co-authored-by: Your Name <you@example.com>
2022-09-30 14:16:25 +01:00
4fd32a1f49 Catch HFValidationError in TrainingSummary (#19252)
* Catch HfValidationError in TrainingSummary

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-30 13:45:56 +02:00
f3d2f7a6e0 Add MarkupLM (#19198)
* First draft

* Make basic test work

* Fix most tokenizer tests

* More improvements

* Make more tests pass

* Fix more tests

* Fix some code quality

* Improve truncation

* Implement feature extractor

* Improve feature extractor and add tests

* Improve feature extractor tests

* Fix pair_input test partly

* Add fast tokenizer

* Improve implementation

* Fix rebase

* Fix rebase

* Fix most of the tokenizer tests.

* propose solution for fast

* add: integration test for fasttokenizer, warning for decode, fix template in slow tokenizer

* add: modify markuplmconverter

* add: some modify on converter and tokenizerfast

* Fix style, copies

* Make fixup

* Update tokenization_markuplm.py

* Update test_tokenization_markuplm.py

* Update markuplm related

* Improve processor, add integration test

* Add processor test file

* Improve processor

* Improve processor tests

* Fix more processor tests

* Fix processor tests

* Update docstrings

* Add Copied from statements

* Add more Copied from statements

* Add code examples

* Improve code examples

* Add model to doc tests

* Adding dependency check

* Add dummy file

* Add requires_backends

* Add model to toctree

* Fix more things, disable dependency check for now

* Apply more suggestions

* Add soft dependency

* Add annotators to tests

* Fix style

* Remove from_slow=True

* Remove print statements

* Add sanity check

* Fix processor test

* Fix processor tests, add more docs

* Add doc tests for mdx file

* Add more tips

* Apply suggestions

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: lockon-n <45759388+lockon-n@users.noreply.github.com>
Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: lockon-n <dd098309@126.com>
2022-09-30 08:25:43 +02:00
49d62b0178 [Wav2Vec2] Fix None loss in doc examples (#19218)
* pass sampled_negative_indices parameter to the model to avoid getting a None loss
* concerns doc examples for Wav2Vec2ForPreTraining and Wav2Vec2ConformerForPreTraining
2022-09-29 19:23:14 +02:00
1a1893e5d8 Update Past CI report script (#19228)
* Simplify the error report

* Add status placeholder

* Add job links

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 19:22:23 +02:00
163cd15279 Add job names in Past CI artifacts (#19235)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 19:18:24 +02:00
f16bbf1475 Skip pipeline tests (#19248) 2022-09-29 12:25:15 -04:00
cca6e6fea1 Cast TF generate() inputs (#19232)
* Just stick a couple of casts into generate()

* Cast decoder_input_ids too

* Don't accidentally cast floats

* Move to _generate()

* Move to after input validation

Co-authored-by: Your Name <you@example.com>
2022-09-29 16:51:08 +01:00
01eb34ab45 Improve DETR post-processing methods (#19205)
* Ensures consistent arguments and outputs with other post-processing methods
* Adds post_process_semantic_segmentation, post_process_instance_segmentation, post_process_panoptic_segmentation, post_process_object_detection methods to DetrFeatureExtractor
* Adds deprecation warnings to post_process, post_process_segmentation and post_process_panoptic
2022-09-29 17:33:13 +03:00
655f72a689 Fix test fetching for examples (#19237)
* Fix test fetching for examples

* Fake example modif

* Debug statements

* Typo

* You need to persist the file...

* Revert change in example

* Remove debug statements
2022-09-29 09:36:42 -04:00
b79028f0b6 Fix TrainingArgs argument serialization (#19239) 2022-09-29 09:13:56 -04:00
902d30b31a Use hf_raise_for_status instead of deprecated _raise_for_status (#19244)
* Use  instead of  from huggingface_hub

* bump huggingface_hub to 0.10.0 + make deps_table_update
2022-09-29 08:58:39 -04:00
3a27ba3d18 Fix opt softmax small nit (#19243)
* fix opt softmax nit

- Use the same logic as 1eb09537550734a783c194e416029cb9bc4cb119 for consistency

* Update src/transformers/models/opt/modeling_opt.py
2022-09-29 13:40:55 +02:00
ba9e336fa3 Fix m2m_100.mdx doc example missing labels (#19149)
The `labels` variable is not defined, the `model_inputs` already contain this information.
2022-09-29 13:27:58 +02:00
0dc7b3a785 [TensorFlow] Adding GroupViT (#18020)
* chore: initial commit

* chore: adding util methods

yet to work on the nn.functional.interpolate port with align_corener=True

* chore: refactor the utils

* used tf.compat.v1.image.resize to align the F.interpolate function
* added type hints to the method signatures
* added references to the gists where one 2 one alignment of torch and tf has been shown

* chore: adding the layers

* chore: porting all the layers from torch to tf

This is the initial draft, nothing is tested yet.

* chore: aligning the layers with reference to tf clip

* chore: aligning the modules

* added demaraction comments
* added copied and adapted from comments

* chore: aligning with CLIP

* chore: wrangling the layers to keep it tf compatible

* chore: aligning the names of the layers for porting

* chore: style changes

* chore: adding docs and inits

* chore: adding tfp dependencis

the code is taken from TAPAS

* chore: initial commit for testing

* chore: aligning the vision embeddings with the vit implementatino

* chore: changing model prefix

* chore: fixing the name of the model and the layer normalization test case

* chore: every test passes but the slow ones

* chore: fix style and integration test

* chore: moving comments below decorators

* chore: make fixup and fix-copies changes

* chore: adding the Vision and Text Model to check_repo

* chore: modifying the prefix name to align it with the torch implementation

* chore: fix typo in configuration

* choer: changing the name of the model variable

* chore: adding segmentation flag

* chore: gante's review

* chore: style refactor

* chore: amy review

* chore: adding shape_list to parts that have been copied from other snippets

* chore: init batchnorm with torch defaults

* chore: adding shape_list to pass the tests

* test fix: adding seed as 0

* set seed

* chore: changing the straight through trick to fix -ve dimensinos

* chore: adding a dimension to the loss

* chore: adding reviewers and contributors names to the docs

* chore: added changes after review

* chore: code quality fixup

* chore: fixing the segmentation snippet

* chore: adding  to the layer calls

* chore: changing int32 to int64 for inputs of serving

* chore: review changes

* chore: style changes

* chore: remove from_pt=True

* fix: repo consistency

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 10:48:04 +01:00
bb6fa06f2d Add a getattr method, which replaces _module_getattr in torch.fx.Tracer from PyTorch 1.13+ (#19233) 2022-09-29 11:04:49 +02:00
9d732fd2dd XGLM - Fix Softmax NaNs when using FP16 (#18057)
* fix fp16 for xglm

* Removed misleading comment

* Fix undefined variable

Co-authored-by: Gabriele Sarti <gsarti@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-09-29 10:42:07 +02:00
99c32493e0 Fix confusing working directory in Push CI (#19234)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-29 08:36:46 +02:00
6957350c2b Focus doc around preprocessing classes (#18768)
* 📝 reframe docs around preprocessing classes

* small edits

* edits and review

* fix typo

* apply review

* clarify processor
2022-09-28 17:09:44 -07:00
990936a868 Move AutoClasses under Main Classes (#19163)
* move autoclasses to main classes

* keep auto.mdx in model_doc
2022-09-28 17:09:29 -07:00
0fc68a7e14 Fix seq2seq QA example 2022-09-28 15:45:49 -04:00
64998a57fb Fix cache names in CircleCI jobs (#19223)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-28 18:26:12 +02:00
4a0b958d61 Fix trainer seq2seq qa.py evaluate log and ft script (#19208)
* fix args option

* fix trainer eval log

* fix out of memory qa script

* do isort, black, flake

* fix tokenize target

* take it back.

* fix: comment
2022-09-28 10:55:46 -04:00
9c6aeba353 Document and validate typical_p in generation (#19128)
* Document and validate typical_p in generation
2022-09-28 15:45:05 +01:00
de359c4593 Fix doctest for TFDeiTForImageClassification (#19173)
* Fix doctest for TFDeiTForImageClassification

* Remove unnecessary tf.random.set_seed

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-28 15:53:21 +02:00
22d37a9d2c Fix deprecation warning for return_all_scores (#19217)
* Improve deprecation warning for return_all_scores

* Fix formatting
2022-09-28 08:57:43 -04:00
a357ed50e7 Generate: add warning when left padding should be used (#19067)
* add warning when left padding should be used

* PT: check for pad token; FLAX: can only check while not tracing
2022-09-28 13:07:08 +01:00
942fa8ced8 Fix small use_cache typo in the docs (#19191) 2022-09-28 13:03:20 +01:00
2df602870b Added tests for yaml and json parser (#19219)
* Added tests for yaml and json

* Added tests for yaml and json
2022-09-27 16:25:57 -04:00
2d95695825 Use math.pi instead of torch.pi in MaskFormer (#19201)
* Use math.pi

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-27 17:30:58 +02:00
34be08efcd More tests for regression in cached non existence (#19216)
* More tests for regression in cached non existence

* Style
2022-09-27 09:36:34 -04:00
e3a30e2b99 translated add_new_pipeline (#19215) 2022-09-27 08:55:41 -04:00
226b0e46d5 Add a use_parallel_residual argument to control the residual computing way (#18695)
* Add a gpt_j_residual argument to control the residual computing way

* Put duplicate code outside of the if block

* Rename parameter "gpt_j_residual" to "use_parallel_residual" and set the default value to True
2022-09-27 07:54:05 -04:00
88f597ba6a add doc for hyperparameter search (#19192)
* add doc for hyperparameter search

* update doc
2022-09-27 07:51:51 -04:00
ea540a5977 add wav2vec2_alignment (#16782)
* add wav2vec2_alignment

* Update alignment.py

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update examples/research_projects/wav2vec2/alignment.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update README.md

* fix style

* fix imports

* fix multithread

* fix bash script

* [@anton-l] Style fixes and docstrings

* [@anton-l] Style fixes and docstrings

* Update alignment.py

fix blank id in backtrack

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: anton-l <aglozhkov@gmail.com>
2022-09-27 13:12:56 +02:00
7132d55ca1 Remove unused cur_len in generation_utils.py (#18874)
* remove unused cur_len in generation_utils.py

* linting
2022-09-27 10:39:31 +02:00
a32f97c37d Fix cached_file in offline mode for cached non-existing files (#19206)
* Fix cached_file in offline mode for cached non-existing files

* Add tests

* Test with offline mode
2022-09-26 18:01:00 -04:00
ca0886395b Add warning for torchaudio <= 0.10 in MCTCTFeatureExtractor (#19203)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 23:58:02 +02:00
be4f269979 Updated hf_argparser.py (#19188)
* Changed json_file_parser function and added yaml parser function

* update hf_argparser

* Added allow_extra_keys argument
2022-09-26 17:02:57 -04:00
c20b2c7e18 Use repo_type instead of deprecated datasets repo IDs (#19202)
* Use repo_type instead of deprecated datasets repo IDs

* Add missing one in doc
2022-09-26 09:50:48 -04:00
216b2f9e80 Move the model type check (#19027)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-26 09:43:34 -04:00
ea75e9f10e Use assertAlmostEqual in BloomEmbeddingTest.test_logits (#19200)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 14:56:41 +02:00
98af4f9b54 Bump protobuf in /examples/research_projects/decision_transformer (#19176)
Bumps [protobuf](https://github.com/protocolbuffers/protobuf) from 3.19.4 to 3.19.5.
- [Release notes](https://github.com/protocolbuffers/protobuf/releases)
- [Changelog](https://github.com/protocolbuffers/protobuf/blob/main/generate_changelog.py)
- [Commits](https://github.com/protocolbuffers/protobuf/compare/v3.19.4...v3.19.5)

---
updated-dependencies:
- dependency-name: protobuf
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-26 14:55:16 +02:00
408b5e307b Remove pos arg from Perceiver's Pre/Postprocessors (#18602)
* Remove pos arg from Perceiver's Pre/Postprocessors

* Revert the removed pos args in public methods
2022-09-26 08:50:58 -04:00
71fc331746 Separate Push CI images from Scheduled CI (#19170)
* separate images

* Fix condition

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-26 10:55:42 +02:00
fa4eeb4fd3 german training, accelerate and model sharing (#19171)
* correct spelling in README

* processing

* german training

* accelerate

* german model sharing

* build doc

* ttf links

* casing
2022-09-23 14:52:09 -04:00
5da6afdd8d Update run_clip.py (#19130)
The overwrite_cache parameter is declared twice.
2022-09-23 20:48:41 +02:00
6395d1227f Fixed type hint for pipelines/check_task (#19150) 2022-09-23 20:35:19 +02:00
ece762443e Fix incorrect comments about atten mask for pytorch backend (#18728)
* fix incorrect comments about atten mask

* typo

* Update for CodeGen

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 13:52:27 -04:00
0cea8d5555 Add offline runners info in the Slack report (#19169)
* send slack report for offline runners

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 19:23:05 +02:00
49bf569830 Add doctests to Perceiver examples (#19129)
* Fix bug in example and add to tests

* Fix failing tests

* Check the size of logits

* Code style

* Try again...

* Add expected loss for PerceiverForMaskedLM doctest

Co-authored-by: Steven Anton <antonstv@amazon.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-23 19:19:35 +02:00
fe01ec343b Detr preprocessor fix (#19007)
* fix in-place preprocessing of inputs
2022-09-23 18:49:31 +03:00
7e84723fe4 Add semantic segmentation post-processing method to MobileViT (#19105)
* add post-processing method for semantic segmentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-23 16:24:28 +03:00
905635f5d3 [WIP] Trainer supporting evaluation on multiple datasets (#19158)
* support for multiple eval datasets

* support multiple datasets in seq2seq trainer

* add documentation

* update documentation

* make fixup

* revert option for multiple compute_metrics

* revert option for multiple compute_metrics

* revert added empty line
2022-09-23 09:14:53 -04:00
49629e7ba8 fix HPO DDP GPU problem (#19168)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-23 09:13:35 -04:00
8d59385f12 Fix TrainingArguments documentation (#19162)
* Fix TrainingArguments documentation

* Fix TFTrainingArguments documentation
2022-09-22 14:38:32 -04:00
3a396c59b8 fix: ckpt paths. (#19159) 2022-09-22 11:03:01 -04:00
74a3ea4737 Bump oauthlib in /examples/research_projects/decision_transformer (#19080)
Bumps [oauthlib](https://github.com/oauthlib/oauthlib) from 3.2.0 to 3.2.1.
- [Release notes](https://github.com/oauthlib/oauthlib/releases)
- [Changelog](https://github.com/oauthlib/oauthlib/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/oauthlib/oauthlib/compare/v3.2.0...v3.2.1)

---
updated-dependencies:
- dependency-name: oauthlib
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-22 17:01:40 +02:00
e5b7cff5fe update perf_train_cpu_many doc (#19151)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-22 09:20:15 -04:00
83dc6377d0 Reduce LR for TF MLM example test (#19156) 2022-09-22 08:51:27 -04:00
1b5ab39cf4 TF: check embeddings range (#19102) 2022-09-22 13:21:51 +01:00
cf6308ef9b Improve conditional detr docs (#19154)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-22 13:21:05 +02:00
2d9853b226 MSN (Masked Siamese Networks) for ViT (#18815)
* feat: modeling and conversion scripts for msn.

* chore: change license year.

* chore: remove unneeded modules.

* feat: direct loading of state_dict from remote url.

* fix: import paths.

* add: rest of the files.

* add and fix rest of the files.

Co-authored-by: Niels <niels.rogge1@gmail.com>

* chore: formatting.

* code quality fix.

* chore: remove pooler.

* feat: add classification top.

* fix: configuration object.

* add: initial test cases (one failing).

* fix: basemodeloutput.

* add: caution on using the classification head.

* add: rest of the model related files.

* add: vit msn readme.

* fix: copied from statement.

* fix: dummy objects.

* add: ViTMSNPreTrainedModel to inits.

* fix: repo consistency.

* minor change in the model doc.

* fix: tests.

* Empty-Commit

* Update src/transformers/models/vit_msn/configuration_vit_msn.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address PR comments.

* Update src/transformers/models/vit_msn/modeling_vit_msn.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* chore: put model in no_grad() and formatting.

Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-09-22 07:15:03 -04:00
4d0f8c05f5 Add accelerate support for ViLT (#18683) 2022-09-22 13:14:39 +02:00
9393f966bc [fix] Add DeformableDetrFeatureExtractor (#19140)
* Add DeformableDetrFeatureExtractor

* Fix post_process

* Fix name

* Add tests for feature extractor

* Fix doc tests

* Fix name

* Address comments

* Apply same fix to DETR and YOLOS as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-22 09:45:24 +02:00
126a739058 Add support for conditional detr (#18948)
* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* fixed style and copies

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* fixed style

* added conditional_detr files

* checked copies

* checked copies

* fixed style and copies

* fixed style and copies

* fixed hub

* fixed style

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/_toctree.yml

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/convert_conditional_detr_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fixed some doc issue

* Update docs/source/en/model_doc/conditional_detr.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* changed prefix to ConditionalDetr

* fixed docs

* Update README_ko.md

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fixed use_pretrained issue

* changed post-process

* added conditional_detr files

* checked copies

* fixed style and copies

* fixed some doc issue

* changed prefix to ConditionalDetr

* fixed docs

* added spatial_model_name

* fixed fix-copies

* Update src/transformers/models/conditional_detr/modeling_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added some copied from

* added some copied from

* added some copied from

* added some copied from

* fix style quality and copies

* fix style quality and copies

* fix style quality and copies

* add more fix-copies

* fixed some variable names & added more fix-copies

* fixed some variable names & added more fix-copies

* Update src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/conditional_detr/configuration_conditional_detr.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added more copied from

* fixed quality

* changed pretrained config

* added more copied-from and fixed the issue in feature_extraction_auto

* rebased

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Depu Meng <depumeng@Depus-MacBook-Pro.local>
2022-09-22 09:45:04 +02:00
c7fd28999f Fixed typo in generation_utils.py (#19145)
Changed "unfeasable" to "unfeasible"
2022-09-21 20:59:52 +02:00
3c7b965bcd Add some tests for check_dummies (#19146) 2022-09-21 14:54:09 -04:00
d5848a574a Allowing users to use the latest tokenizers release ! (#19139)
* Allowing users to use the latest `tokenizers` release !

* Upgrading the versions table too.
2022-09-21 17:46:04 +02:00
451df725d6 Fix dummy creation for multi-frameworks objects (#19144) 2022-09-21 11:41:45 -04:00
66154a6c87 suppoer deps from github (#19141) 2022-09-21 16:15:31 +02:00
114295c010 Refuse Datasets 2.5.0 while waiting for a patch 2022-09-21 09:37:53 -04:00
486134e5a0 Fix FlaxPretTrainedModel pt weights check (#19133)
* Fix FlaxPretTrainedModel pt weights check

* Update src/transformers/modeling_flax_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix raise comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-21 14:17:04 +02:00
e7fdfc720a Add post_process_semantic_segmentation method to DPTFeatureExtractor (#19107)
* add post-processing method for semantic segmentation

* add test for post-processing
2022-09-21 15:15:26 +03:00
da6a1b6ca1 [BugFix] Fix fsdp option on shard_grad_op. (#19131) 2022-09-21 07:56:22 -04:00
9e95706648 Add post_process_semantic_segmentation method to SegFormer (#19072)
* add post_process_semantic_segmentation method to SegformerFeatureExtractor
* add test for semantic segmentation post-processing
2022-09-21 11:40:35 +03:00
ef6741fe65 Fix GLUE MNLI when using max_eval_samples (#18722) 2022-09-21 09:33:22 +02:00
18643ff29a Skip test_export_to_onnx for LongT5 if torch < 1.11 (#19122)
* Skip if torch < 1.11

* fix quality

* fix import

* fix typo

* fix condition

* fix condition

* fix condition

* fix quality

* fix condition

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-20 21:52:18 +02:00
06f341de4f Add a missing space in a script arg documentation (#19113) 2022-09-20 21:43:32 +02:00
36b9a99433 Fix BeitFeatureExtractor postprocessing (#19119)
* return post-processed segmentations as list, add test
* use torch to resize logits
* fix assertion error if no target_size is specified
2022-09-20 18:53:40 +03:00
36e356caa4 Fix: update ltp word segmentation call in mlm_wwm (#19047)
* Fix: update ltp word segmentation call in mlm_wwm

* Fix: update ltp word segmentation call in mlm_wwm

* Fix: update ltp word segmentation call in mlm_wwm
2022-09-20 09:20:38 -04:00
de26241645 german processing (#19121)
* correct spelling in README

* processing
2022-09-20 09:18:21 -04:00
67403413bd Change document question answering pipeline to always return an array (#19071)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-20 15:17:57 +02:00
cc567e0063 Fix the wrong schedule (#19117)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-20 13:46:55 +02:00
c81ebd1c39 Beit postprocessing (#19099)
* add post_process_semantic_segmentation method to BeiTFeatureExtractor
2022-09-20 10:41:56 +03:00
261301d388 Added type hints for YolosForObjectDetection (#19086) 2022-09-20 00:04:25 +02:00
801ebd045d Add documentation of Trainer.create_model_card (#19110)
* Add documentation of Trainer.create_model_card

* Expand to TF version
2022-09-19 16:55:50 -04:00
6227078d0a HPO: keep the original logic if there's only one process, pass the trial to trainer (#19096)
need to find out solution for following cases
     *if we need to use trial in model_init, how to do it for non-main rank, sync the model with rank0 in app?
     *how to use optuna prune feature for DDP, if we do it in rank0, how does other rank know it.

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-19 16:42:18 -04:00
3b0cecb627 Don't warn of move if cache is empty (#19109) 2022-09-19 15:27:18 -04:00
6be338f1b9 correct spelling in README (#19092) 2022-09-19 19:51:43 +02:00
e7206ceab9 Improve vision models docs (#19103)
* Add tips

* Add BEiT figure

* Fix URL

* Move tip to start

* Add tip to TF model as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-19 19:22:34 +02:00
0d1ba2dd0b added type hints (#19076) 2022-09-19 14:10:21 +01:00
6f25d107fd Added type hints to ResNetForImageClassification (#19084)
* Added type hints to ResNetForImageClassification

* Resolved check_repository_consistency failure issue

Running fix-copies changed the type hints for RegNetForImageClassification in modeling_regnet.py file
2022-09-19 13:42:13 +01:00
fe5e7cea4a Add type hints for TF MPNet models (#19089)
* Added type hints for TFMPNetModel

* Added type hints for TFMPNetForMaskedLM

* Added type hints for TFMPNetForSequenceClassification

* Added type hints for TFMPNetForMultipleChoice

* Added type hints for TFMPNetForTokenClassification

* Added Type hints for TFMPNetForQuestionAnswering
2022-09-19 13:37:32 +01:00
1bbad7a2da Added Type hints for VIT MAE (#19085)
* Added Type hints for VIT MAE

* Ran make fixup
2022-09-19 13:37:18 +01:00
fbe8464b5b Added type hints for TFConvBertModel (#19088) 2022-09-19 13:28:13 +01:00
22264f933d fix working dir (#19101)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-19 07:09:24 -04:00
ba7f2173cc Add runner availability check (#19054)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-19 12:27:06 +02:00
ca485e562b Add tests for legacy load by url and fix bugs (#19078) 2022-09-16 23:20:02 +02:00
ae219532e3 german autoclass (#19049)
* german autoclass

* Update _toctree.yml
2022-09-16 16:16:00 -04:00
7d0486c106 Bump mako in /examples/research_projects/decision_transformer (#19077)
Bumps [mako](https://github.com/sqlalchemy/mako) from 1.2.0 to 1.2.2.
- [Release notes](https://github.com/sqlalchemy/mako/releases)
- [Changelog](https://github.com/sqlalchemy/mako/blob/main/CHANGES)
- [Commits](https://github.com/sqlalchemy/mako/commits)

---
updated-dependencies:
- dependency-name: mako
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-09-16 22:15:02 +02:00
56c548f17c Note about developer mode (#19075) 2022-09-16 22:12:59 +02:00
9017ba4ca4 Fix tokenizer load from one file (#19073)
* Fix tokenizer load from one file

* Add a test

* Style

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-09-16 16:11:47 -04:00
773314ab80 replace logger.warn by logger.warning (#19068) 2022-09-16 21:01:57 +02:00
5e636eee4a Add type hints for PyTorch UniSpeech, MPNet and Nystromformer (#19039)
* added type hints pytorch unispeech

* added type hints pytorch  MPNet

* added type hints nystromformer

* resolved copy inconsistencies

* make fix-copies

Co-authored-by: matt <rocketknight1@gmail.com>
2022-09-16 17:59:40 +01:00
658010c739 TF: tests for (de)serializable models with resized tokens (#19013)
* resized models that we can actually load

* separate embeddings check

* add test for embeddings out of bounds

* add fake slows
2022-09-16 16:38:08 +01:00
70ba10e6d4 Fix LeViT checkpoint (#19069)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-16 16:23:58 +02:00
bc5d0b1046 Automatically tag CLIP repos as zero-shot-image-classification (#19064)
* Add CLIP to zero-shot-image-classification

* Make mapping private as it's not used for AutoClassing
2022-09-16 15:40:38 +02:00
820cb97a3f Organize test jobs (#19058)
* Tests conditional run

* Syntax

* Deps

* Try early exit

* Another way

* Test with no tests to run

* Test all

* Typo

* Try this way

* With tests to run

* Mostly finished

* Typo

* With a modification in one file only

* No change, no tests

* Final cleanup

* Address review comments
2022-09-16 09:19:51 -04:00
d63bdf78d4 Add FP32 cast in ConvNext LayerNorm to prevent rounding errors with FP16 input (#18746)
* Adding cast to fp32 in convnext layernorm to prevent rounding errors in the case of fp16 input

* Trigger CI
2022-09-16 08:42:57 -04:00
532ca05079 [doc] Fix link in PreTrainedModel documentation (#19065) 2022-09-16 07:31:39 -04:00
c603c80f46 FX support for ConvNext, Wav2Vec2 and ResNet (#19053)
* Support for ConvNext

* Support for Wav2Vec2

* Support for Resnet

* Fix small issue in test_modeling_convnext
2022-09-16 10:57:41 +02:00
c8e40d6fa1 fix use_cache (#19060)
- set `use_cache` to `True` for consistency with other `transformers` models
2022-09-16 09:07:02 +02:00
0b5c7e4838 Adds package and requirement spec output to version check exception (#18702)
* Adds package and requirement spec output to version check exception

It's difficult to understand what package is affected when `got_ver`
here comes back None, so output the requirement and the package. The
requirement probably contains the package but let's output both for good
measure.

Non-exhaustive references for this problem aside from my own encounter:

* https://stackoverflow.com/questions/70151167/valueerror-got-ver-is-none-when-importing-tensorflow
* https://discuss.huggingface.co/t/valueerror-got-ver-is-none/17465
* https://github.com/UKPLab/sentence-transformers/issues/1186
* https://github.com/huggingface/transformers/issues/13356

I speculate that the root of the error comes from a conflict of
conda-managed and pip-managed Python packages but I've not yet proven
this.

* Combines version presence check and streamlines exception message

See also: https://github.com/huggingface/transformers/pull/18702#discussion_r953223275

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-15 12:53:36 -07:00
f3d3863255 fix arg name in BLOOM testing and remove unused arg document (#18843) 2022-09-15 20:25:32 +02:00
16242e1bf0 Run torchdynamo tests (#19056)
* Enable torchdynamo tests

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-15 11:10:16 -07:00
f7ce4f1ff7 Fix custom tokenizers test (#19052)
* Fix CI for custom tokenizers

* Add nightly tests

* Run CI, run!

* Fix paths

* Typos

* Fix test
2022-09-15 11:31:09 -04:00
68bb33d770 Fixing OPT fast tokenizer option. (#18753)
* Fixing OPT fast tokenizer option.

* Remove dependency on `pt`.

* Move it to GPT2 tokenization tests.

* Added a few tests.
2022-09-15 17:12:58 +02:00
578e18e002 🚨🚨🚨 Optimize Top P Sampler and fix edge case (#18984)
* init PR

* optimize top p and add edge case

* styling

* style

* revert tf and flax test

* add edge case test for FLAX and TF

* update doc with smallest set sampling for top p

* make style
2022-09-15 15:50:11 +02:00
2700ba66d9 Move cache: expand error message (#19051) 2022-09-15 09:39:59 -04:00
2322eb8e2f Update serving signatures and make sure we actually use them (#19034)
* Override save() to use the serving signature as the default

* Replace int32 with int64 in all our serving signatures

* Remember one very important line so as not to break every test at once

* Dtype fix for TFLED

* dtype fix for shift_tokens_right in general

* Dtype fixes in mBART and RAG

* Fix dtypes for test_unpack_inputs

* More dtype fixes

* Yet more mBART + RAG dtype fixes

* Yet more mBART + RAG dtype fixes

* Add a check that the model actually has a serving method
2022-09-15 14:34:22 +01:00
9b80a0bc18 Pin minimum PyTorch version for BLOOM ONNX export (#19046) 2022-09-15 15:22:31 +02:00
0a42b61ede Fix test_save_load for TFViTMAEModelTest (#19040)
* Fix test_save_load for TFViTMAEModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-15 15:21:57 +02:00
30a28f5227 Update image segmentation pipeline test (#18731)
* Updated test values

The image segmentation pipeline tests - tests/pipelines/test_pipelines_image_segmentation.py - were failing after the merging of #1849  (49e44b216b2559e34e945d5dcdbbe2238859e29b). This was due to the difference in rescaling. Previously the images were rescaled by `image = image / 255`. In the new commit, a `rescale` method was added, and images rescaled using `image = image * scale`. This was known to cause small differences in the processed images (see
[PR comment](https://github.com/huggingface/transformers/pull/18499#discussion_r940347575)).

Testing locally, changing the `rescale` method to divide by a scale factor (255) resulted in the tests passing. It was therefore decided the test values could be updated, as there was no logic difference between the commits.

* Use double quotes, like previous example

* Fix up
2022-09-15 07:32:31 -04:00
7743caccb9 [bnb] Small improvements on utils (#18646)
* Small replacement

- replace `modules_to_not_convert` by `module_to_not_convert`

* refactor a bit

- changed variables name
- now output a list
- change error message

* make style

* add list

* make style

* change args name

Co-authored-by: stas00 <stas00@users.noreply.github.com>

* fix comment

* fix typo

Co-authored-by: stas00 <stas00@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: stas00 <stas00@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-15 13:01:19 +02:00
8edf196310 [doc] debug: fix import (#19042)
correct the import statement
2022-09-14 16:29:58 -07:00
abca1741cf Fix a broken link for deepspeed ZeRO inference in the docs (#19001)
* Fix a broken link for deepspeed ZeRO inference

* fix link

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-14 16:21:06 -07:00
16913b3c92 Dev version 2022-09-14 14:58:20 -04:00
3774010161 Automate check for new pipelines and metadata update (#19029)
* Automate check for new pipelines and metadata update

* Add Datasets to quality extra
2022-09-14 14:06:49 -04:00
0efbb6e93e fix GPT2 token's special_tokens_mask when used with add_bos_token=True (#19036) 2022-09-14 19:32:12 +02:00
0e24548081 Add safeguards for CUDA kernel load in Deformable DETR (#19037) 2022-09-14 13:28:40 -04:00
31be02f14b TF: tf.debugging assertions without tf.running_eagerly() protection (#19030) 2022-09-14 18:19:15 +01:00
693ba2cc79 Fix GPT-NeoX doc examples (#19033) 2022-09-14 17:53:42 +02:00
4eb36f2921 Mark right save_load test as slow (#19031) 2022-09-14 10:38:39 -04:00
f5f430e5c8 Add support for Japanese GPT-NeoX-based model by ABEJA, Inc. (#18814)
* add gpt-neox-japanese model and tokenizer as new model

* Correction to PR's comment for GPT NeoX Japanese
- Fix to be able to use gpu
- Add comment # Copied... at the top of RotaryEmbedding
- Implement nn.Linear instead of original linear class
- Add generation test under @slow

* fix bias treatment for gpt-neox-japanese

* Modidy gpt-neox-japanese following PR
- add doc for bias_dropout_add
- style change following a PR comment

* add document for gpt-neox-japanese

* remove unused import from gpt-neox-japanese

* fix README for gpt-neox-japanese
2022-09-14 10:17:40 -04:00
6a9726ec0e Fix DocumentQuestionAnsweringPipelineTests (#19023)
* Fix DocumentQuestionAnsweringPipelineTests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-14 16:13:20 +02:00
1207deb806 Typo fix 2022-09-14 10:02:14 -04:00
e1224a2a0f Making save_load test slow as it times out 2022-09-14 10:01:22 -04:00
0b567aa430 Add Document QA pipeline metadata (#19028) 2022-09-14 09:25:15 -04:00
77b18783c2 Fix CI for PegasusX (#19025)
* Skip test_torchscript_output_attentions for PegasusXModelTest

* fix test_inference_no_head

* fix test_inference_head

* fix test_seq_to_seq_generation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-14 14:45:00 +02:00
77ea35b93a added type hints (#19015) 2022-09-14 12:58:05 +01:00
fc21c9be62 [CookieCutter] Clarify questions (#18959)
* Clarify cookiecutter questions

* Update first question

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-14 13:52:54 +02:00
6f8f2f6a77 Make AutoProcessor a magic loading class for all modalities (#18963)
* Make AutoProcessor a magic loading class for all modalities

* Quality
2022-09-14 07:36:12 -04:00
a2a3afbc8d PyTorch >= 1.7.0 and TensorFlow >= 2.4.0 (#19016) 2022-09-14 07:19:02 -04:00
9f4acd059f Generate: add missing comments after refactoring of generate() (#18981) 2022-09-14 11:06:29 +01:00
59407bbeb3 Add Deformable DETR (#17281)
* First draft

* More improvements

* Improve model, add custom CUDA code

* Import torch before

* Add script that imports custom layer

* Add everything in new ops directory

* Import custom layer in modeling file

* Fix ARCHIVE_MAP typo

* Creating the custom kernel on the fly.

* Import custom layer in modeling file

* More improvements

* Fix CUDA loading

* More improvements

* Improve conversion script

* Improve conversion script

* Make it work until encoder_outputs

* Make forward pass work

* More improvements

* Make logits match original implementation

* Make implementation also support single_scale model

* Add support for single_scale and dilation checkpoint

* Add support for with_box_refine model

* Support also two stage model

* Improve tests

* Fix more tests

* Make more tests pass

* Upload all models to the hub

* Clean up some code

* Improve decoder outputs

* Rename intermediate hidden states and reference points

* Improve model outputs

* Move tests to dedicated folder

* Improve model outputs

* Fix retain_grad test

* Improve docs

* Clean up and make test_initialization pass

* Improve variable names

* Add copied from statements

* Improve docs

* Fix style

* Improve docs

* Improve docs, move tests to model folder

* Fix rebase

* Remove DetrForSegmentation from auto mapping

* Apply suggestions from code review

* Improve variable names and docstrings

* Apply some more suggestions from code review

* Apply suggestion from code review

* better docs and variables names

* hint to num_queries and two_stage confusion

* remove asserts and code refactor

* add exception if two_stage is True and with_box_refine is False

* use f-strings

* Improve docs and variable names

* Fix code quality

* Fix rebase

* Add require_torch_gpu decorator

* Add pip install ninja to CI jobs

* Apply suggestion of @sgugger

* Remove DeformableDetrForObjectDetection from auto mapping

* Remove DeformableDetrModel from auto mapping

* Add model to toctree

* Add model back to mappings, skip model in pipeline tests

* Apply @sgugger's suggestion

* Fix imports in the init

* Fix copies

* Add CPU implementation

* Comment out GPU function

* Undo previous change

* Apply more suggestions

* Remove require_torch_gpu annotator

* Fix quality

* Add logger.info

* Fix logger

* Fix variable names

* Fix initializaztion

* Add missing initialization

* Update checkpoint name

* Add model to doc tests

* Add CPU/GPU equivalence test

* Add Deformable DETR to pipeline tests

* Skip model for object detection pipeline

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-09-14 11:45:21 +02:00
5a70a77bfa Add Support to Gradient Checkpointing for LongT5 (#18977)
FlaxLongT5PreTrainedModel is missing "enable_gradient_checkpointing" function. This gives an error if someone tries to enable gradient checkpointing for longt5.
This pull request fixes it.
2022-09-14 09:12:51 +01:00
4157e3cd7e new length penalty docstring (#19006) 2022-09-13 13:16:36 -04:00
f89f16a51e Re-add support for single url files in objects download (#19014) 2022-09-13 13:11:24 -04:00
ad5045e3e3 add missing require_tf for TFOPTGenerationTest (#19010)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-13 18:10:11 +02:00
d14af22c5c add DDP HPO support for optuna (#19002)
only main_process will have HPO, and pass argument to other process

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-13 17:56:20 +02:00
00fc9217d1 Fixed bug which caused overwrite_cache to always be True (#19000)
* fixed bug which caused overwrite_cache to always be True (#18967).

* reformatting changes
2022-09-13 11:29:48 -04:00
420f6c5ee3 Update default revision for document-question-answering (#18938)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-13 10:04:03 -04:00
2886f7f08a Fix tokenizer for XLMRobertaXL (#19004)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-13 14:04:14 +02:00
2848c9ce42 Add type hints for M2M (#18998)
* added type hints

* fixed typo
2022-09-13 12:58:46 +01:00
4bd36f1853 Generate: add model class validation (#18902) 2022-09-13 09:19:43 +01:00
69df33f180 Fix MaskFormerFeatureExtractor instance segmentation preprocessing bug (#18997)
* fix preprocessing for instance segmentation maps

* add support for per-image instance2class_id mapping

* edit docstrings for clarity
2022-09-13 09:36:03 +03:00
470799b3a6 Removed issue in wav2vec link (#18945)
Fix connected to [this issue](https://github.com/huggingface/transformers/issues/18944)
2022-09-12 21:59:19 +02:00
4c2e983f44 Fixed typo (#18921)
Fixed typo itmes --> items
2022-09-12 21:03:48 +02:00
1182b945a6 TF: TF 2.10 unpin + related onnx test skips (#18995) 2022-09-12 19:30:27 +01:00
7f4708e1a2 added type hints (#18996) 2022-09-12 19:11:40 +01:00
39b5bb79d9 fix checkpoint name for wav2vec2 conformer (#18994)
* fix checkpoint name for wav2vec2 conformer

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 19:39:01 +02:00
8a6928e28b TF: correct TFBart embeddings weights name when load_weight_prefix is passed (#18993) 2022-09-12 18:35:45 +01:00
c126a239bc Fix tflongformer int dtype (#18907)
* Use int64 throughout TFLongFormer

* make style

* Do some more fixed casting in TFLongFormer

* Fix some wonky "is None" conditionals

* Cast all the dtypes, salt the earth

* Fix copies to TFLED as well and do some casting there

* dtype fix in TFLongformer test

* Make fixup

* Expand tolerances on the LED tests too (I think this is a TF32 thing)

* Expand test tolerances for LED a tiny bit (probably a Tensorfloat thing again)
2022-09-12 17:51:10 +01:00
f7ceda345d Align try_to_load_from_cache with huggingface_hub (#18966)
* Align try_to_load_from_cache with huggingface_hub

* Fix tests
2022-09-12 12:09:37 -04:00
cf450b776f Fix TF start docstrings (#18991)
* Update our TF 2.0 input format tip across all models

* make style
2022-09-12 16:33:56 +01:00
adbf3a40de Remove dropout in embedding layer of OPT (#18845) 2022-09-12 16:32:38 +02:00
367026000b create Past CI results as tables for GitHub issue (#18953)
* create Past CI results as tables for GitHub issue

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 15:20:31 +02:00
0b36970371 Remove decoder_position_ids from check_decoder_model_past_large_inputs (#18980)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-12 15:19:48 +02:00
a86acb75ad add DDP HPO support for sigopt (#18931)
only main_process will have HPO, and pass argument to other process

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-12 07:37:25 -04:00
9faa9f9dac remove unused activation dropout (#18842) 2022-09-12 11:00:24 +02:00
a26114777e Revert "TF: unpin maximum TF version (#18917)" (#18972)
This reverts commit d8cf3b20875baee97f4bea64ffd17670aa57c37b.
2022-09-10 09:11:46 -04:00
d8cf3b2087 TF: unpin maximum TF version (#18917) 2022-09-10 13:33:01 +01:00
00cbadb870 RFC: Replace custom TF embeddings by Keras embeddings (#18939) 2022-09-10 11:34:49 +01:00
855dcae8bb update black target version (#18955)
* update black target version

* add comment

as per https://github.com/huggingface/transformers/pull/18955#issuecomment-1242081649

* revert change

Will only update to 3.7 after black 2023 upgrade in January
2022-09-09 17:30:05 -04:00
645f174286 Exit early in load if no weights are in the sharded state dict (#18937) 2022-09-09 15:07:09 -04:00
660e0b97bd Fix train_step, test_step and tests for CLIP (#18684)
* Fix train_step and test_step, correctly enable CLIP fit test

* Stop using get_args on older Python versions

* Don't use get_origin either

* UnionType is actually even newer, don't use that either

* Apply the same fix to test_loss_computation

* Just realized I was accidentally skipping a bunch of tests!

* Fix test_loss_computation for models without separable labels

* Fix scalar losses in test_step and train_step

* Stop committing your breakpoints

* Fix Swin loss shape

* Fix Tapas loss shape

* Shape fixes for TAPAS, DeIT, HuBERT and ViTMAE

* Add loss computation to TFMobileBertForPreTraining

* make fixup and move copied from statement

* make fixup and move copied from statement

* Correct copied from

* Add labels and next_sentence_label inputs to TFMobileBERT

* Make sure total_loss is always defined

* Update tests/test_modeling_tf_common.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Fix copied from

* Ensure CTC models get labels in tests

* Ensure CTC models get labels in tests

* Fix tests for vit_mae

* Fix tests for vit_mae

* Fix tests for vit_mae

* Reduce batch size for wav2vec2 testing because it was causing OOM

* Skip some TAPAS tests that are failing

* Skip a failing HuBERT test

* make style

* Fix mobilebertforpretraining test

* Skip Wav2Vec2 tests that use huge amounts of mem

* Skip keras_fit for Wav2Vec2 as well

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-09-09 20:01:02 +01:00
f1a6df3210 Generate: Simplify is_pad_token_not_equal_to_eos_token_id (#18933) 2022-09-09 16:44:56 +01:00
85125fcffd Neptune.ai integration improvements (#18934)
* NeptuneCallback improvements

* After review suggestions and deduplication of initial run

* Added volatile checkpoints support due to missing post-rebase commit

* Update README per review comments

- Remove list formatting
- Correct Neptune docs link

Co-authored-by: Sabine <sabine.nyholm@neptune.ai>
2022-09-09 11:37:34 -04:00
e6f221c8d4 [JAX] Replace all jax.tree_* calls with jax.tree_util.tree_* (#18361)
* [JAX] Replace all jax.tree_* calls with jax.tree_util.tree_*

* fix double tree_util
2022-09-09 15:18:56 +02:00
22f7218560 add task_type_id to BERT to support ERNIE-2.0 and ERNIE-3.0 models (#18686)
* add_ernie

* remove Tokenizer in ernie

* polish code

* format code style

* polish code

* fix style

* update doc

* make fix-copies

* change model name

* change model name

* fix dependency

* add more copied from

* rename ErnieLMHeadModel to ErnieForCausalLM
do not expose ErnieLayer
update doc

* fix

* make style

* polish code

* polish code

* fix

* fix

* fix

* fix

* fix

* final fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-09 07:36:46 -04:00
895c528886 Update translation requests contact (#18941)
* Update TRANSLATING.md

Update the contact to @GuggerSylvain

* Update docs/TRANSLATING.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-09 09:15:24 +02:00
bb6f6d5338 Add X-CLIP (#18852)
* First draft

* Improve conversion script

* Make vision encoder work

* More improvements

* Improve conversion script

* Fix quality

* Add MultiframeIntegrationTransformer

* More improvements

* Make MiT output work

* Fix quality

* Add prompts generator

* Add tests

* Fix some tests

* Fix some more tests

* Fix more tests

* Improve conversion script

* Fix model outputs

* Fix more tests

* Add XClipProcessor

* Use processor in conversion script

* Fix integration test

* Update README, fix docs

* Fix all tests

* Add MIT output to XClipOutput

* Create better variable names

* Rename XClip to XCLIP

* Extend conversion script

* Add support for large models

* Add support for 16 frame models

* Add another model'

* Fix module issue

* Apply suggestions from code review

* Add figure to docs

* Fix CLIPProcessor issue

* Apply suggestions from code review

* Delete file

* Convert more checkpoints

* Convert last checkpoint

* Update nielsr to microsoft
2022-09-08 14:50:30 +02:00
9832ac7c73 Fix LayoutXLM wrong link in README (#18932)
* fix LayoutXLM wrong link in README

* fix LayoutXLM worng link in index.mdx
2022-09-08 07:32:41 -04:00
90f6fe9155 Skip some doctests in quicktour (#18927)
* skip some code examples for doctests

* make style

* fix code snippet formatting

* separate code snippet into two blocks
2022-09-07 14:45:22 -07:00
6519150c31 Add image height and width to ONNX dynamic axes (#18915) 2022-09-07 22:42:46 +02:00
737f6ad1f7 Starts on a list of external deps required for dev (#18929)
* Starts on a list of external deps required for dev

I've found that I need to install MeCab manually on my AS Mac.

* Generalizes OS nascent dependency list

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 16:33:03 -04:00
6394221871 Fix XLA fp16 and bf16 error checking (#18913)
* Fix XLA fp16 and bf16 error checking

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 15:45:17 -04:00
6690ba3f4d pin TF 2.9.1 for self-hosted CIs (#18925)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 19:46:14 +02:00
2ef7742117 Add DocumentQuestionAnswering pipeline (#18414)
* [WIP] Skeleton of VisualQuestionAnweringPipeline extended to support LayoutLM-like models

* Fixup

* Use the full encoding

* Basic refactoring to DocumentQuestionAnsweringPipeline

* Cleanup

* Improve args, docs, and implement preprocessing

* Integrate OCR

* Refactor question_answering pipeline

* Use refactored QA code in the document qa pipeline

* Fix tests

* Some small cleanups

* Use a string type annotation for Image.Image

* Update encoding with image features

* Wire through the basic docs

* Handle invalid response

* Handle empty word_boxes properly

* Docstring fix

* Integrate Donut model

* Fixup

* Incorporate comments

* Address comments

* Initial incorporation of tests

* Address Comments

* Change assert to ValueError

* Comments

* Wrap `score` in float to make it JSON serializable

* Incorporate AutoModeLForDocumentQuestionAnswering changes

* Fixup

* Rename postprocess function

* Fix auto import

* Applying comments

* Improve docs

* Remove extra assets and add copyright

* Address comments

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-07 13:38:49 -04:00
3059d80d80 [DeepSpeed ZeRO3] Fix performance degradation in sharded models (#18911)
* [DeepSpeed] Fix performance degradation in sharded models

* style

* polish

Co-authored-by: Stas Bekman <stas@stason.org>
2022-09-07 07:44:20 -07:00
10c774cf60 remvoe _create_and_check_torch_fx_tracing in specific test files (#18667)
* remvoe _create_and_check_torch_fx_tracing defined in specific model test files

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 16:22:09 +02:00
0eabab0998 TF: final bias as a layer in seq2seq models (replicate TFMarian fix) (#18903) 2022-09-07 14:03:02 +01:00
2b9513fdab Update TF fine-tuning docs (#18654)
* Update TF fine-tuning docs

* Fix formatting

* Add some section headers so the right sidebar works better

* Squiggly it

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/training.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Explain things in the text, not the comments

* Make the two dataset creation methods into a list

* Move the advice about collation out of a <Tip>

* Edits for clarity

* Edits for clarity

* Edits for clarity

* Replace `to_tf_dataset` with `prepare_tf_dataset` in the fine-tuning pages

* Restructure the page a little bit

* Restructure the page a little bit

* Restructure the page a little bit

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-07 13:30:07 +01:00
d842f2d5b9 update the train_batch_size in case HPO change batch_size_per_device (#18918)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-09-07 08:01:30 -04:00
4f299b2446 Accelerator end training (#18910)
* add accelerator.end_training()

Some trackers need this to end their runs.

* fixup and quality

* add space

* add space again ?!?
2022-09-07 07:46:26 -04:00
7a8118947f Add checks for more workflow jobs (#18905)
* add check for scheduled CI

* Add check to other CIs

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-07 12:51:37 +02:00
c25f27fa6a [VideoMAE] Improve code examples (#18919)
* Simplify code example

* Add seed
2022-09-07 12:24:12 +02:00
0a632f076d Fix incorrect size of input for 1st strided window length in Perplexity of fixed-length models (#18906)
* update the PPL for stride 512

* fix 1st strided window size

* linting

* fix typo

* styling
2022-09-06 15:20:12 -04:00
7d5fde991d unpin slack_sdk version (#18901)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-06 18:42:00 +02:00
71ff88fa4f Further reduce the number of alls to head for cached objects (#18871)
* Further reduce the number of alls to head for cached models/tokenizers/pipelines

* Fix tests

* Address review comments
2022-09-06 12:34:37 -04:00
6678350c01 fixes bugs to handle non-dict output (#18897) 2022-09-06 16:13:34 +03:00
998a90bc7d Fix test_tf_encode_plus_sent_to_model for LayoutLMv3 (#18898)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-06 14:51:03 +02:00
f85acb4d73 Fix decode_input_ids to bare T5Model and improve doc (#18791)
* use tokenizer to output tensor

* add preprocessing for decoder_input_ids for bare T5Model

* add preprocessing to tf and flax

* linting

* linting

* Update src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/t5/modeling_tf_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/t5/modeling_t5.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-06 14:12:26 +02:00
3b19c0317b updating gather function with gather_for_metrics in run_wav2vec2_pretraining (#18877)
Co-authored-by: Arun Rajaram <arunrajaram@Aruns-MacBook-Pro.local>
2022-09-06 07:36:37 -04:00
Had
734b7e2a5a Mask t5 relative position bias then head pruned (#17968)
* add position bias head masking if heads pruned

* fix pruning function in t5 encoder

* make style

* make fix-copies

* Revert added folder

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-09-06 10:39:31 +02:00
d4dbd7ca59 Generate: get the correct beam index on eos token (#18851) 2022-09-05 19:35:47 +01:00
c6d3daba54 Update Chinese documentation (#18893)
* update the translation
2022-09-05 19:56:12 +02:00
cfd623a859 Add type hints to XLM-Roberta-XL models (#18475)
* Add type hints to XLM-Roberta-XL models

* Format
2022-09-05 13:38:08 +01:00
17c634fd5b Update perf_train_gpu_one.mdx (#18442) 2022-09-05 14:06:36 +02:00
badb9d2aaa Correct naming pegasus x (#18896)
* add first generation tutorial

* [Pegasus X] correct naming

* [Generation] Remove
2022-09-05 11:25:00 +02:00
591cfc6c90 Mention TF and Flax checkpoints (#18894) 2022-09-05 11:09:39 +02:00
7f27e002fd TF: TFMarianMTModel final logits bias as a layer (#18833)
* bias as a layer

* alias the bias (hah, it rhymes)

* add comment with info
2022-09-05 09:20:27 +01:00
65fb71bc76 Add Trainer to quicktour (#18723)
* 📝 update quicktour

* 📝 add trainer section

* 🖍 markdown table, apply feedbacks

*  make style

* add tf training section

* make style
2022-09-02 15:05:31 -05:00
ae32f3afef Finetune guide for semantic segmentation (#18640)
* 📝 first draft

* oops add to toctree

* make style

* 📝 add inference section

* 🖍 make style

* 📝 add images

* 🖍 apply feedbacks

* remove num_labels and pytorch block

* apply feedbacks, add colab notebook

Co-authored-by: Steven <stevhliu@gmail.com>
2022-09-02 14:29:51 -05:00
bf9d506137 Update docs landing page (#18590)
* 📝 update docs landing page

* 🖍 apply feedbacks

* apply feedbacks

* apply feedbacks, use <br> for list
2022-09-02 14:29:06 -05:00
53e33e6f1b PEGASUS-X (#18551)
* PegasusX Initial commit

* rename

* pegasus X implementation

* pegx update

* pegx fix

* pegasus-x fixes

* pegx updates

* cleanup

* cleanup

* cleanup

* tests

* stylefixes

* Documentation update

* Model hub fix

* cleanup

* update

* update

* testfix

* Check fix

* tweaks for merging

* style

* style

* updates for pr

* style

* change pegasus-x repo
2022-09-02 19:54:02 +02:00
ecdf9b06bc Remove cached torch_extensions on CI runners (#18868)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 18:17:58 +02:00
4e29b3f884 A script to download artifacts and perform CI error statistics (#18865)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 17:59:26 +02:00
9196f48b95 Generate: validate model_kwargs on TF (and catch typos in generate arguments) (#18651) 2022-09-02 16:25:26 +01:00
c5be7cae59 postpone bnb load until it's needed (#18859) 2022-09-02 08:22:46 -07:00
9e346f7436 Fix number of examples for iterable datasets in multiprocessing (#18856)
* Fix number of examples for iterable datasets in multiprocessing

* Add stronger check
2022-09-02 10:49:39 -04:00
0ab465a5d2 pin Slack SDK to 3.18.1 to avoid failing issue (#18869)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-02 16:49:08 +02:00
38c3cd52fb Clean up utils.hub using the latest from hf_hub (#18857)
* Clean up utils.hub using the latest from hf_hub

* Adapt test

* Address review comment

* Fix test
2022-09-02 10:30:06 -04:00
17981faf67 Add OWL-ViT to the appropriate section (#18867)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-02 15:59:25 +02:00
c60dd98e87 [LayoutLM] Add clarification to docs (#18716)
* Add clarification

* Add another clarification

* Apply suggestion

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-09-02 14:48:19 +02:00
129d73294e Fix naming issue with ImageToText pipeline (#18864)
Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
2022-09-02 07:55:30 -04:00
9b3eb81014 if learning rate is a tensor, get item (float) (#18861) 2022-09-02 07:46:31 -04:00
142e12afb4 Split docs on modality (#18205)
* update

* 🖍 add missing files

* 📝 add nested sections

* 🖍 align titles with tasks

* oops

* remove quotes from titles
2022-09-01 15:19:11 -05:00
23fab60b67 Pin revision for LayoutLMForQuestionAnswering and TFLayoutLMForQuestionAnswering tests (#18854)
* Pin revision for tests

* Fixup

* Update revision in models

* Shorten revisions

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-09-01 12:52:33 -04:00
ddb69e5af8 Add Image To Text Generation pipeline (#18821)
* Add Image2TextGenerationPipeline to supported pipelines

* Add Flax and Tensorflow support

* Add Flax and Tensorflow small tests

* Add default model for Tensorflow

* Add docstring

* Fix doc style

* Add tiny models for pytorch and flax

* Remove flax from pipeline.
Fix tests

* Use ydshieh/vit-gpt2-coco-en as a default for both PyTorch and Tensorflow

* Fix Tensorflow support

Co-authored-by: Olivier Dehaene <olivier@huggingface.co>
2022-09-01 12:07:14 -04:00
c61f116b63 Tie weights after preparing the model in run_clm (#18855) 2022-09-01 12:06:56 -04:00
1c381f3600 Cache results of is_torch_tpu_available() (#18777)
* Cache results of is_torch_tpu_available()

* Update src/transformers/utils/import_utils.py

* Update src/transformers/utils/import_utils.py
2022-09-01 11:45:33 -04:00
954e18ab97 TensorFlow MobileViT (#18555)
* initial implementation.

* add: working model till image classification.

* add: initial implementation that passes intg tests.

Co-authored-by: Amy <aeroberts4444@gmail.com>

* chore: formatting.

* add: tests (still breaking because of config mismatch).

Coo-authored-by: Yih <2521628+ydshieh@users.noreply.github.com>

* add: corrected tests and remaning changes.

* fix code style and repo consistency.

* address PR comments.

* address Amy's comments.

* chore: remove from_pt argument.

* chore: add full-stop.

* fix: TFLite model conversion in the doc.

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_tf_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply formatting.

* chore: remove comments from the example block.

* remove identation in the example.

Co-authored-by: Amy <aeroberts4444@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-09-01 10:35:15 -04:00
fe58929ad6 Adds timeout argument to training_args to avoid socket timeouts in DDP (#18562)
* chore(training_args): Adds support for timeout argument.

* fix(training_args): Passes make style through changes.

* fix(training_args): Removes wrong docstring sentence.

* fix(training_args): Fixes timeout not being JSON serializable.

* fix(training_args_sm): Also updates timeout to timeout_delta.

* fix(training_args): Fixes PR according to suggestions.
2022-09-01 10:33:53 -04:00
ab663b2274 reflect max_new_tokens in Seq2SeqTrainer (#18786)
* reflect max_new_tokens in gen_kwargs to `trainer.generate()`

* reflect max_new_tokens in `Seq2SeqTrainer`

* remove unnecessary variable

* Trigger CI

* fix style
2022-09-01 09:12:38 -04:00
f719c0377f Minor typo in prose of model outputs documentation. (#18848) 2022-09-01 12:05:40 +02:00
fafbb57df1 Pin rouge_score (#18247)
* Pin rouge_score

* Pin also in dependency_versions_table

* Update excluded versions

* Revert "Update excluded versions"

This reverts commit 0d0362df30a816108835f5c061272ee2bafec270.

* Revert "Revert "Update excluded versions""

This reverts commit 66c47af8a6baff253575631b0ba392e0354b6d56.
2022-09-01 12:04:49 +02:00
e7da38f5dc add a script to get time info. from GA workflow jobs (#18822)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-01 12:02:52 +02:00
6e016634f1 Generate: smaller TF serving test (#18840) 2022-09-01 10:53:39 +01:00
563a8d58db Delete state_dict to release memory as early as possible (#18832)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-09-01 10:55:30 +02:00
a26c752353 Unpin fsspec (#18846) 2022-09-01 10:20:15 +02:00
359f7b4b8d Create pipeline_tutorial.mdx german docs (#18625)
* Create pipeline_tutorial.mdx

* Update _toctree.yml
2022-09-01 09:57:59 +02:00
5d81a56833 Owlvit memory leak fix (#18734)
* fix memory leak
* fix typos
* use singular last hidden state variable names
* eliminate double call to self.owlvit to return last hidden states
* eliminate 2nd call to self.vision_model in OwlViTModel
2022-09-01 10:31:08 +03:00
80367cd1fb Add security warning about the from_pretrained() method (#18801)
* Add security warning about from_pretrained() method

* Add sentence about malware scanner

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-08-31 21:48:40 +02:00
7e7f743481 Add SegFormer ONNX support (#18006)
* Add ONNX support

* Make height and width dynamic axes

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-31 20:58:44 +02:00
89514f0541 Improve Text Generation doc (#18788)
* fix args for bram search decoding in generation utils

* fix missing PAD token in gpt2

* add PAD EOS change to TF

* Update src/transformers/generation_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-31 20:30:29 +02:00
86387fe87f Add an option to HfArgumentParser.parse_{dict,json_file} to raise an Exception when there extra keys (#18692)
* Update parser to track unneeded keys, off by default

* Fix formatting

* Fix docstrings and defaults in HfArgparser

* Fix formatting
2022-08-31 20:26:45 +02:00
f210e2a414 Improve GPT2 doc (#18787)
* Minor typo in GPT2 doc

* improve gpt2 label doc

* update dim of label in GPT2ForTokenClassification

* add change to tf
2022-08-31 19:26:39 +02:00
74690b62a1 Pin ffspec (#18837)
* Pin ffspec

* Typo
2022-08-31 19:04:04 +02:00
3b6943e7a3 [DETR] Add num_channels attribute (#18714)
* Add num_channels attribute

* Fix code quality

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-31 18:04:42 +02:00
811c4c9f79 fix bug: register_for_auto_class should be defined on TFPreTrainedModel instead of TFSequenceSummary (#18607) 2022-08-31 16:37:18 +02:00
ee407024c4 Update location identification (#18834) 2022-08-31 15:10:25 +02:00
e4910213be Warn on TPUs when the custom optimizer and model device are not the same (#18668)
* Check optimizer for device on TPU

* Typo
2022-08-31 08:46:31 -04:00
cdde85a0a0 oob performance improvement for cpu DDP (#18595)
* oob performance improvement for cpu DDP

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add is_psutil_available check

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-08-31 14:35:10 +02:00
c3be98ebab Fix cost condition in DetrHungarianMatcher and YolosHungarianMatcher to allow zero-cost (#18647)
* Fix loss condition in DetrHungarianMatcher

* Fix costs condition in YolosHungarianMatcher
2022-08-31 14:28:58 +02:00
fea4636cfa Pin max tf version (#18818) 2022-08-31 10:07:53 +02:00
5c4c869014 Add LayoutLMForQuestionAnswering model (#18407)
* Add LayoutLMForQuestionAnswering model

* Fix output

* Remove TF TODOs

* Add test cases

* Add docs

* TF implementation

* Fix PT/TF equivalence

* Fix loss

* make fixup

* Fix up documentation code examples

* Fix up documentation examples + test them

* Remove LayoutLMForQuestionAnswering from the auto mapping

* Docstrings

* Add better docstrings

* Undo whitespace changes

* Update tokenizers in comments

* Fixup code and remove `from_pt=True`

* Fix tests

* Revert some unexpected docstring changes

* Fix tests by overriding _prepare_for_class

Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-08-31 10:05:33 +02:00
e88e9ff045 Disable nightly CI temporarily (#18820)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-30 18:33:09 +02:00
73c6273d48 Improving the documentation for "word", within the pipeline. (#18763)
* Improving the documentation for "word", within the pipeline.

* Quality.
2022-08-30 15:29:48 +02:00
5727dfcebe Added Docstrings for Deberta and DebertaV2 [PyTorch] (#18610)
* Added Doctest for Deberta Pytorch

* Added path in documentation test file

* Added docstrings for DebertaV2

* Revert "Added docstrings for DebertaV2"

This reverts commit 307185e62a21b3bd0923444cc8a8af1747fd2600.

* Added DebertaV2 Docstrings
2022-08-30 14:46:21 +02:00
a98f6a1da0 LayoutXLMProcessor: ensure 1-to-1 mapping between samples and images, and add test for it (#18774) 2022-08-30 14:43:14 +02:00
220da3b8a1 Adds GroupViT to models exportable with ONNX (#18628)
* groupvit to onnx

* dynamic shape for pixel values dim
2022-08-30 14:31:35 +02:00
46d0e26a27 Adds OWLViT to models exportable with ONNX (#18588)
* onnx conversion for owlvit

* .T to .t()

* dynamic shapes for pixel values
2022-08-30 14:30:59 +02:00
b83796ded7 Remove ViltForQuestionAnswering from check_repo (#18762)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-30 14:15:36 +02:00
ef91a2d135 Run tests if skip condition not met (#18764)
* Run tests if skip condition not met

* Update comment - remove outdated ref to TF 2.8
2022-08-30 14:03:28 +02:00
de8548ebf3 [LayoutLMv3] Add TensorFlow implementation (#18678)
Co-authored-by: Esben Toke Christensen <esben.christensen@visma.com>
Co-authored-by: Lasse Reedtz <lasse.reedtz@visma.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-08-30 11:48:11 +01:00
7320d95d98 [Swin, Swinv2] Fix attn_mask dtype (#18803)
* Add dtype

* Fix Swinv2 as well

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-30 12:31:34 +02:00
5c702175eb up (#18805) 2022-08-30 12:30:46 +02:00
da02b4035c Add docstring for BartForCausalLM (#18795)
* add docstring for BartForCausalLM

* doc-style fic
2022-08-30 12:19:03 +02:00
8c4a11493f Revert to and safely handle flag in owlvit config (#18750) 2022-08-29 18:48:24 +02:00
da5bb29219 send model to the correct device (#18800)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 18:46:30 +02:00
f1fd460694 Add SegFormer and ViLT links (#18808)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-29 18:46:07 +02:00
169b8cde47 Fix mock in test_cached_files_are_used_when_internet_is_down (#18804) 2022-08-29 15:56:08 +02:00
8b67f20935 Fix memory leak issue in torch_fx tests (#18547)
Co-authored-by: Lysandre Debut <hi@lysand.re>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 11:43:20 +02:00
b10a3b3760 fix a possible typo in auto feature extraction (#18779) 2022-08-29 11:24:53 +02:00
5f06a09b9f fix missing block when there is no failure (#18775)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-29 09:10:13 +02:00
f2fbe44753 Fix broken link DeepSpeed documentation link (#18783)
* Fix broken link

* Trigger CI

Co-authored-by: Stas Bekman <stas@stason.org>
2022-08-28 19:32:19 -07:00
21f6f58721 Fix incomplete outputs of FlaxBert (#18772)
* Fix incomplete FlaxBert outputs

* fix big_bird electra roberta
2022-08-26 21:04:18 +02:00
62ceb4d661 [Wav2vec2 + LM Test] Improve wav2vec2 with lm tests and make torch version dependent for now (#18749)
* add first generation tutorial

* remove generation

* make version dependent expected values

* Apply suggestions from code review

* Update tests/models/wav2vec2_with_lm/test_processor_wav2vec2_with_lm.py

* fix typo
2022-08-26 14:11:55 +02:00
8869bf41fe [VisionEncoderDecoder] Add gradient checkpointing (#18697)
* add first generation tutorial

* VisionEnocderDecoder gradient checkpointing

* remove generation

* add tests
2022-08-26 14:11:27 +02:00
06a6a4bd51 CLI: Improved error control and updated hub requirement (#18752) 2022-08-25 17:08:05 +01:00
e9442440fc streamlining 'checkpointing_steps' parsing (#18755) 2022-08-25 11:00:38 -04:00
fbf382c84d Determine framework automatically before ONNX export (#18615)
* Automatic detection for framework to use when exporting to ONNX

* Log message change

* Incorporating PR comments, adding unit test

* Adding tf for pip install for run_tests_onnxruntime CI

* Restoring past changes to circleci yaml and test_onnx_v2.py, tests moved to tests/onnx/test_features.py

* Fixup

* Adding test to fetcher

* Updating circleci config to log more

* Changing test class name

* Comment typo fix in tests/onnx/test_features.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Moving torch_str/tf_str to self.framework_pt/tf

* Remove -rA flag in circleci config

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-08-25 16:31:34 +02:00
3223d49354 Add ONNX support for Longformer (#17176)
* Implement ONNX support for Longformer

Fix repo consistency check complaints

Fix value mismatches

Add pooler output for default model

Increase validation atol to accommodate multiple-choice error

Fix copies

Fix chunking for longer sequence lengths

Add future comment

* Fix issue in mask_invalid_locations

* Remove torch imports in configuration_longformer

* Change config access to fix LED

* Push opset version to support tril

* Work in review comments (mostly style)

* Add Longformer to ONNX tests
2022-08-25 08:34:42 +02:00
c55d6e4e10 examples/run_summarization_no_trainer: fixed incorrect param to hasattr (#18720)
* fixed incorrect param to hasattr

* simplified condition checks

* code cleanup
2022-08-24 12:12:42 -04:00
6667b0d7bf add warning to let the user know that the __call__ method is faster than encode + pad for a fast tokenizer (#18693)
* add warning to let the user know that the  method is slower that  for a fast tokenizer

* user warnings

* fix layoutlmv2

* fix layout*

* change warnings into logger.warning
2022-08-24 06:27:56 -04:00
dcff504e18 fixed docstring typos (#18739)
* fixed docstring typos

* Added missing colon

Co-authored-by: 김주영 <juyoung@zezedu.com>
2022-08-24 06:20:27 -04:00
e49c71fc4c Bump nbconvert from 6.3.0 to 6.5.1 in /examples/research_projects/lxmert (#18742)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.3.0 to 6.5.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.3.0...6.5.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-24 06:12:56 -04:00
5b24949669 Bump nbconvert in /examples/research_projects/visual_bert (#18741)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.3.0 to 6.5.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.3.0...6.5.1)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-24 06:12:48 -04:00
c72d7d91bf Add TF implementation of XGLMModel (#16543)
* Add TFXGLM models 

* Add todo: self.supports_xla_generation = False

Co-authored-by: Daniel Stancl <stancld@Daniels-MacBook-Pro.local>
Co-authored-by: Daniel Stancl <stancld@daniels-mbp.home>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Daniel <daniel.stancl@rossum.ai>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-08-24 10:51:05 +01:00
cecf9f9b27 fix pipeline_tutorial.mdx doctest (#18717)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-24 05:38:03 -04:00
a442884b87 Add minor doc-string change to include hp_name param in hyperparameter_search (#18700)
* Add minor doc-string change to include hp_name

* fix: missing type-information for kwargs

* fix: missing white-space in hyperparameter_search doc-strings
2022-08-24 05:07:17 -04:00
c12dbdc246 Update perf_infer_gpu_many.mdx (#18744) 2022-08-24 10:37:52 +02:00
6faf283288 CLI: Don't check the model head when there is no model head (#18733) 2022-08-23 15:38:59 +01:00
438698085c improve add_tokens docstring (#18687)
* improve add_tokens documentation

* format
2022-08-23 07:23:51 -04:00
891704b3c2 Removing warning of model type for microsoft/tapex-base-finetuned-wtq (#18711)
and friends.
2022-08-23 13:17:06 +02:00
84beb8a49b Unpin detectron2 (#18727)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-23 11:10:07 +02:00
d90a36d192 remove check for main process for trackers initialization (#18706) 2022-08-22 11:16:27 -04:00
0f257a8774 Add missing tokenizer tests - Longformer (#17677) 2022-08-22 12:13:20 +02:00
3fa45dbd91 Fix Data2VecVision ONNX test (#18587)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-22 11:28:23 +02:00
30992ef0d9 [Hotfix] pin detectron2 5aeb252 to avoid test fix (#18701)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-20 00:37:38 +02:00
1f3c2282b5 Temp fix for broken detectron2 import (#18699)
* add first generation tutorial

* [Circle CI] Temporary fix for broken detectron2 import

* remove generation
2022-08-19 22:55:33 +02:00
e95d433d77 Generate: add missing **model_kwargs in sample tests (#18696) 2022-08-19 16:14:27 +01:00
e54a1b49aa model.tie_weights() should be applied after accelerator.prepare() (#18676)
* `model.tie_weights()` should be applied after `accelerator.prepare`

Weight tying should be done after the model has been moved to XLA device as mentioned on PyTorch/XLA Troubleshooting guide [here](https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md#xla-tensor-quirks)

* format code
2022-08-18 13:46:57 -04:00
bbbb453e58 Add an examples folder for code downstream tasks (#18679)
* add examples subfolder

* mention examples in codeparrot readme

* use Trainer optimizer and scheduler type and add output_dir as argument

* add example of text-to-python and python-to-text models

* mention the downstream examples in the readme

* fix typo
2022-08-18 18:24:24 +02:00
a123eee9df [bnb] Move documentation (#18671)
* fix bnb documentation

- move bnb documentation to `infer_gpu_many`

* small refactoring

- added text on infer_gpu_one
- added a small note on infer_gpu_many
- added customized multi gpu example on infer_gpu_many

* Update docs/source/en/perf_infer_gpu_many.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply suggestions

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-08-18 17:34:48 +02:00
358fc18613 Add evaluate to examples requirements (#18666) 2022-08-18 10:57:39 -04:00
d243112b65 Fix breaking change in onnxruntime for ONNX quantization (#18336)
* Fix quantization

* Save model

* Remove unused comments

* Fix formatting
2022-08-18 10:06:16 -04:00
5987c637ee Fix repo consistency (#18682) 2022-08-18 09:47:50 -04:00
76454b08c8 Rename second input dimension from "sequence" to "num_channels" for CV models (#17976) 2022-08-18 15:13:54 +02:00
780253ce3d Rename method to avoid clash with property (#18677) 2022-08-18 12:56:27 +01:00
2c947d2939 Ping detectron2 for CircleCI tests (#18680)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-18 12:57:18 +02:00
a541d97477 Generate: validate model_kwargs on FLAX (and catch typos in generate arguments) (#18653) 2022-08-18 10:56:21 +01:00
0ea53822f8 [LongT5] Correct docs long t5 (#18669)
* add first generation tutorial

* [LongT5 Docs] Correct docs

* correct expected string

* remove incorrect file
2022-08-18 10:03:50 +02:00
582c537175 Allow users to force TF availability (#18650)
* Allow users to force TF availability

* Correctly name the envvar!
2022-08-18 03:09:09 -04:00
49e44b216b Update feature extractor methods to enable type cast before normalize (#18499)
* Update methods to optionally rescale
This is necessary to allow for casting our images / videos to numpy arrays within the feature extractors' call. We want to do this to make sure the behaviour is as expected when flags like  are False. If some transformations aren't applied, then the output type can't be unexpected e.g. a list of PIL images instead of numpy arrays.

* Cast images to numpy arrays in call to enable consistent behaviour with different configs

* Remove accidental clip changes

* Update tests to reflect the scaling logic
We write a generic  function to handle rescaling of our arrays. In order for the API to be intuitive, we take some factor c and rescale the image values by that. This means, the rescaling done in normalize and to_numpy_array are now done with array * (1/255) instead of array / 255. This leads to small differences in the resulting image. When testing, this was in the order of 1e-8, and so deemed OK
2022-08-17 19:57:07 +01:00
86d0b26d6c Fix matmul inputs dtype (#18585) 2022-08-17 15:59:43 +02:00
c99e984657 Fix Yolos ONNX export test (#18606)
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-17 10:04:49 +02:00
358478e729 Examples: add Bloom support for token classification (#18632)
* examples: add Bloom support for token classification (FLAX, PyTorch and TensorFlow)

* examples: remove support for Bloom in token classication (FLAX and TensorFlow currently have no support for it)
2022-08-17 09:50:57 +02:00
6d175c1129 [bnb] Minor modifications (#18631)
* bnb minor modifications

- refactor documentation
- add troubleshooting README
- add PyPi library on DockerFile

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* put in one block

- put bash instructions in one block

* update readme

- refactor a bit hardware requirements

* change text a bit

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* apply suggestions

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* add link to paper

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update tests/mixed_int8/README.md

* Apply suggestions from code review

* refactor a bit

* add instructions Turing & Amperer

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add A6000

* clarify a bit

* remove small part

* Update tests/mixed_int8/README.md

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-08-17 00:48:10 +02:00
25e651a2de Update run_translation_no_trainer.py (#18637)
* Update run_translation_no_trainer.py

found an error in selecting `no_decay` parameters and some small modifications when the user continues to train from a checkpoint

* fixs `no_decay` and `resume_step` issue

1. change `no_decay` list
2. if use continue to train their model from provided checkpoint, the `resume_step` will not be initialized properly if `args.gradient_accumulation_steps != 1`
2022-08-16 13:25:57 -04:00
a27195b1de Update longt5.mdx (#18634) 2022-08-16 10:20:46 -05:00
fd9aa82b07 TF: Fix generation repetition penalty with XLA (#18648) 2022-08-16 13:30:52 +01:00
81ab11124f Add checks for some workflow jobs (#18583)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-16 13:53:47 +02:00
510c2a0b32 Change scheduled CIs to use torch 1.12.1 (#18644)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-16 13:41:37 +02:00
9cf274685a mac m1 mps integration (#18598)
* mac m1 `mps` integration

* Update docs/source/en/main_classes/trainer.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* addressing comments

* Apply suggestions from code review

Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>

* resolve comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Saattrup Nielsen <47701536+saattrupdan@users.noreply.github.com>
2022-08-16 16:34:51 +05:30
d6eeb87170 Flax Remat for LongT5 (#17994)
* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* add gradient_checkpointing to examples

* Add gradient_checkpointing to run_mlm_flax

* Add remat to longt5

* Add gradient checkpointing test longt5

* Fix args errors

* Fix remaining tests

* Make fixup & quality fixes

* replace kwargs

* remove unecessary kwargs

* Make fixup changes

* revert long_t5_flax changes

* Remove return_dict and copy to LongT5

* Remove test_gradient_checkpointing

Co-authored-by: sanchit-gandhi <sanchit@huggingface.co>
2022-08-14 16:27:13 +01:00
1ccd2515ed small change (#18584) 2022-08-12 20:04:38 +02:00
b3ff7c680c [fsmt] deal with -100 indices in decoder ids (#18592)
* [fsmt] deal with -100 indices in decoder ids

Fixes: https://github.com/huggingface/transformers/issues/17945

decoder ids get the default index -100, which breaks the model - like t5 and many other models add a fix to replace -100 with the correct pad index. 

For some reason this use case hasn't been used with this model until recently - so this issue was there since the beginning it seems.

Any suggestions to how to add a simple test here? or perhaps we have something similar already? user's script is quite massive.

* style
2022-08-12 10:50:52 -07:00
37c5991843 [doc] fix anchors (#18591)
the manual anchors end up being duplicated with automatically added anchors and no longer work.
2022-08-12 10:49:59 -07:00
56ef0ba447 Update BLOOM parameter counts (#18531)
* Update BLOOM parameter counts

* Update BLOOM parameter counts
2022-08-12 19:36:18 +02:00
153d1361c7 Fix URLs (#18604)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-12 18:52:49 +02:00
2ab790e82d Add Donut (#18488)
* First draft

* Improve script

* Update script

* Make conversion work

* Add final_layer_norm attribute to Swin's config

* Add DonutProcessor

* Convert more models

* Improve feature extractor and convert base models

* Fix bug

* Improve integration tests

* Improve integration tests and add model to README

* Add doc test

* Add feature extractor to docs

* Fix integration tests

* Remove register_buffer

* Fix toctree and add missing attribute

* Add DonutSwin

* Make conversion script work

* Improve conversion script

* Address comment

* Fix bug

* Fix another bug

* Remove deprecated method from docs

* Make Swin and Swinv2 untouched

* Fix code examples

* Fix processor

* Update model_type to donut-swin

* Add feature extractor tests, add token2json method, improve feature extractor

* Fix failing tests, remove integration test

* Add do_thumbnail for consistency

* Improve code examples

* Add code example for document parsing

* Add DonutSwin to MODEL_NAMES_MAPPING

* Add model to appropriate place in toctree

* Update namespace to appropriate organization

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-12 16:40:58 +02:00
a5ca56ff15 Supporting seq2seq models for bitsandbytes integration (#18579)
* Supporting seq2seq models for `bitsandbytes` integration

- `bitsandbytes` integration supports now seq2seq models
- check if a model has tied weights as an additional check

* small modification

- tie the weights before looking at tied weights!
2022-08-12 16:15:09 +02:00
ed1924e801 Generate: validate model_kwargs (and catch typos in generate arguments) (#18261)
* validate generate model_kwargs

* generate tests -- not all models have an attn mask
2022-08-12 14:53:51 +01:00
2156619f10 Add TFAutoModelForSemanticSegmentation to the main __init__.py (#18600)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-12 15:10:00 +02:00
4eed2beca0 FSDP bug fix for load_state_dict (#18596) 2022-08-12 08:48:37 -04:00
d344534bf6 typos (#18594) 2022-08-12 08:40:53 -04:00
3cdaea47ec update doc for perf_train_cpu_many, add intel mpi introduction (#18576)
* update doc for perf_train_cpu_many, add mpi introduction

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_train_cpu_many.mdx

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-12 08:36:27 -04:00
46d09410eb Add type hints for ViLT models (#18577)
* Add type hints for Vilt models

* Add missing return type for TokenClassification class
2022-08-12 12:11:28 +01:00
bce36ee065 Load sharded pt to flax (#18419)
* initial commit

* add small test

* add cross pt tf flag to test

* fix quality

* style

* update test with new repo

* fix failing test

* update

* fix wrong param ordering

* style

* update based on review

* update related to recent new caching mechanism

* quality

* Update based on review

Co-authored-by: sgugger <sylvain.gugger@gmail.com>

* quality and style

* Update src/transformers/modeling_flax_utils.py
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-12 09:48:10 +02:00
c8b6ae858d Return the permuted hidden states if return_dict=True (#18578) 2022-08-11 17:32:11 +01:00
f28f240828 fix owlvit tests, update docstring examples (#18586) 2022-08-11 19:10:25 +03:00
05d3a43c59 Bump nbconvert in /examples/research_projects/visual_bert (#18566)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-11 10:47:31 -04:00
713ab6fde5 Bump nbconvert from 6.0.1 to 6.3.0 in /examples/research_projects/lxmert (#18565)
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 6.0.1 to 6.3.0.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/6.0.1...6.3.0)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-11 10:47:19 -04:00
c23cbdff4c Fix docstrings with last version of hf-doc-builder styler (#18581)
* Fix docstrings with last version of hf-doc-builder styler

* Remove empty Parameter block
2022-08-11 10:35:47 -04:00
42b8940b34 [FX] _generate_dummy_input supports audio-classification models for labels (#18580)
* Support audio classification architectures for labels generation, as well as provides a flag to print warnings or not

* Use ENV_VARS_TRUE_VALUES
2022-08-11 16:34:44 +02:00
d53dffec6e Deberta V2: Fix critical trace warnings to allow ONNX export (#18272)
* Fix critical trace warnings to allow ONNX export

* Force input to `sqrt` to be float type

* Cleanup code

* Remove unused import statement

* Update model sew

* Small refactor

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Use broadcasting instead of repeat

* Implement suggestion

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* Match deberta v2 changes in sew_d

* Improve code quality

* Update code quality

* Consistency of small refactor

* Match changes in sew_d

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2022-08-11 09:54:43 -04:00
5d3f037433 german docs translation (#18544)
* Create _config.py

* Create _toctree.yml

* Create index.mdx

not sure about "du / ihr" oder "sie"

* Create quicktour.mdx

* Update _toctree.yml

* Update build_documentation.yml

* Update build_pr_documentation.yml

* fix build

* Update index.mdx

* Update quicktour.mdx

* Create installation.mdx

* Update _toctree.yml
2022-08-11 09:52:27 -04:00
80468251bc Change BartLearnedPositionalEmbedding's forward method signature to support Opacus training (#18486)
* changing BartLearnedPositionalEmbedding forward signature and references to it

* removing debugging dead code (thanks style checker)

* blackened modeling_bart file

* removing copy inconsistencies via make fix-copies

* changing references to copied signatures in Bart variants

* make fix-copies once more

* using expand over repeat (thanks @michaelbenayoun)

* expand instead of repeat for all model copies

Co-authored-by: Daniel Jones <jonesdaniel@microsoft.com>
2022-08-11 09:45:04 -04:00
3f0707b2fe Skip broken tests 2022-08-11 09:33:41 -04:00
4c8ec66a74 Fix LayoutLMv3 documentation (#17932)
* fix typos

* fix sequence_length docs of LayoutLMv3Model

* delete trailing white spaces

* fix layoutlmv3 docs more

* apply make fixup & quality

* change to two versions of input docstring

* apply make fixup & quality
2022-08-11 08:51:39 -04:00
f762f373cc Fix resizing bug in OWL-ViT (#18573)
* Fixes resizing bug in OWL-ViT
* Defaults to square resize if size is set to an int
* Sets do_center_crop default value to False
2022-08-11 15:44:23 +03:00
76568d24b6 Segformer TF: fix output size in documentation (#18572)
* Segformer TF: fix output size in doc

* Segformer pytorch: fix output size in doc

Co-authored-by: Maxime Gardoni <maxime.gardoni@ecorobotix.com>
2022-08-11 10:59:37 +02:00
051311ff66 fix string (#18568) 2022-08-10 15:28:19 -07:00
9a9a525be8 raise atol for MT5OnnxConfig (#18560)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-10 22:41:58 +02:00
f62cb8313c Adds CLIP to models exportable with ONNX (#18515)
* onnx config for clip

* default opset as 14

* changes from the original repo

* input values order fix

* outputs fix

* remove unused import

* ran make fix-copies

* black format

* review comments: forward ref, import fix, model change revert, .to cleanup

* make style

* formatting fixes

* revert groupvit

* comment for cast to int32

* comment fix

* make .T as .t() for onnx conversion

* ran make fix-copies

* remove unneeded comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix copies

* remove comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-10 15:47:31 -04:00
50949fab74 Properly move cache when it is not in default path (#18563) 2022-08-10 15:46:03 -04:00
6936e7c487 Update philosophy to include other preprocessing classes (#18550)
* 📝 update philosophy to include other preprocessing classes

* 🖍 apply feedbacks
2022-08-10 13:20:39 -05:00
9d4a45509a pipeline support for device="mps" (or any other string) (#18494)
* `pipeline` support for `device="mps"` (or any other string)

* Simplify `if` nesting

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Fix? @sgugger

* passing `attr=None` is not the same as not passing `attr` 🤯

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-10 18:52:15 +02:00
0d0aada564 Use commit hash to look in cache instead of calling head (#18534)
* Use commit hash to look in cache instead of calling head

* Add tests

* Add attr for local configs too

* Stupid typos

* Fix tests

* Update src/transformers/utils/hub.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* Address Julien's comments

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-08-10 11:55:18 -04:00
6eb51450fa TF Examples Rewrite (#18451)
* Finished QA example

* Dodge a merge conflict

* Update text classification and LM examples

* Update NER example

* New Keras metrics WIP, fix NER example

* Update NER example

* Update MC, summarization and translation examples

* Add XLA warnings when shapes are variable

* Make sure batch_size is consistently scaled by num_replicas

* Add PushToHubCallback to all models

* Add docs links for KerasMetricCallback

* Add docs links for prepare_tf_dataset and jit_compile

* Correct inferred model names

* Don't assume the dataset has 'lang'

* Don't assume the dataset has 'lang'

* Write metrics in text classification

* Add 'framework' to TrainingArguments and TFTrainingArguments

* Export metrics in all examples and add tests

* Fix training args for Flax

* Update command line args for translation test

* make fixup

* Fix accidentally running other tests in fp16

* Remove do_train/do_eval from run_clm.py

* Remove do_train/do_eval from run_mlm.py

* Add tensorflow tests to circleci

* Fix circleci

* Update examples/tensorflow/language-modeling/run_mlm.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/test_tensorflow_examples.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/translation/run_translation.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update examples/tensorflow/token-classification/run_ner.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Fix save path for tests

* Fix some model card kwargs

* Explain the magical -1000

* Actually enable tests this time

* Skip text classification PR until we fix shape inference

* make fixup

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-08-10 16:49:51 +01:00
d7e2d7b40b Preserve hub-related kwargs in AutoModel.from_pretrained (#18545)
* Preserve hub-related kwargs in AutoModel.from_pretrained

* Fix tests

* Remove debug statement
2022-08-10 08:00:18 -04:00
34aad0dac0 TF: XLA-trainable DeBERTa v2 (#18546)
* fix deberta issues

* add different code paths for gpu and tpu

* shorter gpu take along axis

* Stable Dropout without tf cond

* variable must be float
2022-08-10 12:57:21 +01:00
4a51075a96 bitsandbytes - Linear8bitLt integration into transformers models (#17901)
* first commit

* correct replace function

* add final changes

- works like charm!
- cannot implement tests yet
- tested

* clean up a bit

* add bitsandbytes dependencies

* working version

- added import function
- added bitsandbytes utils file

* small fix

* small fix

- fix import issue

* fix import issues

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit

- move bitsandbytes utils to utils
- change comments on functions

* reformat docstring

- reformat docstring on init_empty_weights_8bit

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* revert bad formatting

* change to bitsandbytes

* refactor a bit

- remove init8bit since it is useless

* more refactoring

- fixed init empty weights issue
- added threshold param

* small hack to make it work

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* revmoe the small hack

* modify utils file

* make style + refactor a bit

* create correctly device map

* add correct dtype for device map creation

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

- remove with torch.grad
- do not rely on Python bool magic!

* add docstring

 - add docstring for new kwargs

* add docstring

- comment `replace_8bit_linear` function
- fix weird formatting

* - added more documentation
- added new utility function for memory footprint tracking
- colab demo to add

* few modifs

- typo doc
- force cast into float16 when load_in_8bit is enabled

* added colab link

* add test architecture + docstring a bit

* refactor a bit testing class

* make style + refactor a bit

* enhance checks

- add more checks
- start writing saving test

* clean up a bit

* male style

* add more details on doc

* add more tests

- still needs to fix 2 tests

* replace by "or"

- could not fix it from GitHub GUI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refactor a bit testing code + add readme

* make style

* fix import issue

* Update src/transformers/modeling_utils.py

Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>

* add few comments

* add more doctring + make style

* more docstring

* raise error when loaded in 8bit

* make style

* add warning if loaded on CPU

* add small sanity check

* fix small comment

* add bitsandbytes on dockerfile

* Improve documentation

- improve documentation from comments

* add few comments

* slow tests pass on the VM but not on the CI VM

* Fix merge conflict

* make style

* another test should pass on a multi gpu setup

* fix bad import in testing file

* Fix slow tests

- remove dummy batches
- no more CUDA illegal memory errors

* odify dockerfile

* Update docs/source/en/main_classes/model.mdx

* Update Dockerfile

* Update model.mdx

* Update Dockerfile

* Apply suggestions from code review

* few modifications

- lm head can stay on disk/cpu
- change model name so that test pass

* change test value

- change test value to the correct output
- torch bmm changed to baddmm in bloom modeling when merging

* modify installation guidelines

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* replace `n`by `name`

* merge `load_in_8bit` and `low_cpu_mem_usage`

* first try - keep the lm head in full precision

* better check

- check the attribute `base_model_prefix` instead of computing the number of parameters

* added more tests

* Update src/transformers/utils/bitsandbytes.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Merge branch 'integration-8bit' of https://github.com/younesbelkada/transformers into integration-8bit

* improve documentation

- fix typos for installation
- change title in the documentation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
2022-08-10 09:13:36 +02:00
8cf4a6f0a6 📝 update documentation build section (#18548) 2022-08-09 18:22:55 -05:00
38a674599c Clean up comment 2022-08-09 15:15:01 -04:00
5e2f373705 Restore _init_weights value in no_init_weights (#18504)
* Recover _init_weights value in no_init_weights

For potential nested use. 
In addition, users might modify private no_init_weights as well.

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove private variable change check

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-09 14:23:30 -04:00
0c183cc2f4 📝 update metric with evaluate (#18535) 2022-08-09 11:58:11 -05:00
9f5fe63548 Adding a new align_to_words param to qa pipeline. (#18010)
* Adding a new `align_to_words` param to qa pipeline.

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Import protection.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-08-09 18:50:02 +02:00
ab2006e3d6 BART - Fix attention mask device issue on copied models (#18540)
* attempt to fix attn mask device

* fix bart `_prepare_decoder_attention_mask`

- add correct device
- run `make fix-copies` to propagate the fix
2022-08-09 14:47:18 +02:00
6bea7b8178 Minor update of run_call_with_unpacked_inputs (#18541)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-09 14:33:41 +02:00
8cb5ecd912 Add mt5 onnx config (#18394)
* update features

* MT5OnnxConfig added with updated with tests and docs

* fix imports

* fix onnc_config_cls for mt5

Co-authored-by: Thomas Chaigneau <thomas.deeptools.ai>
2022-08-09 03:46:53 -04:00
fe785730dc fix: data2vec-vision Onnx ready-made configuration. (#18427)
* feat: add the data2vec conf that are missing https://huggingface.co/docs/transformers/serialization

* fix: wrong config
2022-08-09 03:35:05 -04:00
ab62a23d8c Let's not cast them all (#18471)
* add correct dtypes when checking for params dtype

* forward contrib credits

* Update src/transformers/modeling_utils.py

Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>

* more comments

- added more comments on why we cast only floating point parameters

* Update src/transformers/modeling_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: sgugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Thomas Wang <24695242+thomasw21@users.noreply.github.com>
2022-08-08 23:48:49 +02:00
499450ed75 Spanish translation of summarization.mdx (#15947) (#18477)
* Add Spanish translation of summarization.mdx

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-08-08 15:54:11 -04:00
ed70f24291 Add Spanish translation of converting_tensorflow_models.mdx (#18512)
* Add file in spanish docs to be translated

* Finish translation to Spanish

* Improve Spanish  wording

* Add suggested changes from review
2022-08-08 15:53:43 -04:00
a765b68aa6 Update no_trainer.py scripts to include accelerate gradient accumulation wrapper (#18473)
* Added accelerate gradient accumulation wrapper to run_image_classification_no_trainer.py example script

* make fixup changes

* PR comments

* changed input to Acceletor based on PR comment, ran make fixup

* Added comment explaining the sync_gradients statement

* Fixed lr scheduler max steps

* Changed run_clm_no_trainer.py script to use accelerate gradient accum wrapper

* Fixed all scripts except wav2vec2 pretraining to use accelerate gradient accum wrapper

* Added accelerate gradient accum wrapper for wav2vec2_pretraining_no_trainer.py script

* make fixup and lr_scheduler step inserted back into run_qa_beam_search_no_trainer.py

* removed changes to run_wav2vec2_pretraining_no_trainer.py script and fixed using wrong constant in qa_beam_search_no_trainer.py script
2022-08-08 15:52:47 -04:00
f1f5de31ed Update perf_train_gpu_one.mdx (#18532) 2022-08-08 20:33:34 +02:00
82bb682643 [VideoMAE] Add model to doc tests (#18523)
* Add videomae to doc tests

* Add pip install decord

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-08 19:28:51 +02:00
3632531ec6 Add example of multimodal usage to pipeline tutorial (#18498)
* 📝 add example of multimodal usage to pipeline tutorial

* 🖍 apply feedbacks

* 🖍 apply niels feedback
2022-08-08 11:31:31 -05:00
36b37990af update to use interlibrary links instead of Markdown (#18500) 2022-08-08 10:53:52 -05:00
ec8d26248f unpin resampy (#18527)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-08 17:44:10 +02:00
47e1676255 New cache fixes: add safeguard before looking in folders (#18522) 2022-08-08 10:22:27 -04:00
7495924007 Specify en in doc-builder README example (#18526)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-08-08 10:22:17 -04:00
aff5117f46 Remove debug statement 2022-08-08 09:54:10 -04:00
70b0d4e193 Fix compatibility with 1.12 (#17925)
* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* Fix compatibility with 1.12

* Remove pin from examples requirements

* Update torch scatter version

* fix torch.onnx.symbolic_opset12 import

* Reject bad version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-08 09:53:08 -04:00
2fecde742d update fsdp docs (#18521)
* updating fsdp documentation

* typo fix
2022-08-08 18:56:51 +05:30
377cdded7a Clean up hub (#18497)
* Clean up utils.hub

* Remove imports

* More fixes

* Last fix
2022-08-08 08:48:10 -04:00
a4562552eb [DX fix] Fixing QA pipeline streaming a dataset. (#18516)
* [DX fix] Fixing QA pipeline streaming a dataset.

QuestionAnsweringArgumentHandler would iterate over the whole dataset
effectively killing all properties of the pipeline.
This restores nice properties when using `Dataset` or `Generator` since
those are meant to be consumed lazily.

* Handling TF better.
2022-08-08 14:25:56 +02:00
88a0ce57bb Add seed setting to image classification example (#18519) 2022-08-08 08:08:11 -04:00
9129fd0377 transformers-cli login => huggingface-cli login (#18490)
* zero chance anyone's using that constant no?

* `transformers-cli login` => `huggingface-cli login`

* `transformers-cli repo create` => `huggingface-cli repo create`

* `make style`
2022-08-06 09:42:55 +02:00
8d1f9039d0 Just re-reading the whole doc every couple of months 😬 (#18489)
* Delete valohai.yaml

* NLP => ML

* typo

* website supports https

* datasets

* 60k + modalities

* unrelated link fixing for accelerate

* Ok those links were actually broken

* Fix link

* Make `AutoTokenizer` auto-link

* wording tweak

* add at least one non-nlp task
2022-08-06 09:38:55 +02:00
b8c247b6d0 Typo reported by Joel Grus on TWTR (#18493) 2022-08-05 13:29:38 -04:00
38d656041b disable Onnx test for google/long-t5-tglobal-base (#18454)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 19:27:19 +02:00
56a55d3ce4 Forgot one new_ for cache migration 2022-08-05 13:24:53 -04:00
9d64f7f00c Update some expected values in quicktour.mdx for resampy 0.3.0 (#18484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 19:17:51 +02:00
faacdf007b Move cache folder to huggingface/hub for consistency with hf_hub (#18492)
* Move cache folder to just huggingface

* Thank you VsCode for this needless import

* Move to hub

* Forgot one
2022-08-05 13:14:00 -04:00
280db2e39c Fix test_dbmdz_english by updating expected values (#18482)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 16:49:54 +02:00
5cd4032368 Use new huggingface_hub tools for download models (#18438)
* Draft new cached_file

* Initial draft for config and model

* Small fixes

* Fix first batch of tests

* Look in cache when internet is down

* Fix last tests

* Bad black, not fixing all quality errors

* Make diff less

* Implement change for TF and Flax models

* Add tokenizer and feature extractor

* For compatibility with main

* Add utils to move the cache and auto-do it at first use.

* Quality

* Deal with empty commit shas

* Deal with empty etag

* Address review comments
2022-08-05 10:12:40 -04:00
70fa1a8d26 Fix pipeline tests (#18487)
* Fix pipeline tests

* Make sure all pipelines tests run with init changes
2022-08-05 09:14:51 -04:00
c7849d9efc Remove py.typed (#18485) 2022-08-05 09:12:19 -04:00
893122f666 Add TF prefix to TF-Res test class (#18481)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-05 13:59:55 +02:00
bf174f916b Refactor TFSwinLayer to increase serving compatibility (#18352)
* Refactor `TFSwinLayer` to increase serving compatibility

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix missed parameters while refactoring

Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>

* Fix window_reverse to calculate batch size

Signed-off-by: Seunghwan Hong <harrydrippin@gmail.com>
Co-Authored-By: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2022-08-05 07:40:14 -04:00
575aa6ef1a Fix TFSwinSelfAttention to have relative position index as non-trainable weight (#18226)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
2022-08-05 07:39:40 -04:00
586dcf6b21 Fixing issue where generic model types wouldn't load properly with the pipeline (#18392)
* Adding a better error message when the model is improperly configured

within transformers.

* Update src/transformers/pipelines/__init__.py

* Black version.

* Overriding task aliases so that tokenizer+feature_extractor

values are correct.

* Fixing task aliases by overriding their names early

* X.

* Fixing feature-extraction.

* black again.

* Normalizing `translation` too.

* Fixing last few corner cases.

translation need to use its non normalized name (translation_XX_to_YY,
so that the task_specific_params are correctly overloaded).
This can be removed and cleaned up in a later PR.

`speech-encode-decoder` actually REQUIRES to pass a `tokenizer` manually
so the error needs to be discarded when the `tokenizer` is already
there.

* doc-builder fix.

* Fixing the real issue.

* Removing dead code.

* Do not import the actual config classes.
2022-08-05 08:45:07 +02:00
14928921e2 Add TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING (#18469)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-04 20:41:15 +02:00
0bf1e1aca4 Update no trainer examples for QA and Semantic Segmentation (#18474)
* swag_no_trainer updated for with gather_metrics

* Removed unused variable samples_seen

* updated examples with gather_for_metrics
2022-08-04 13:22:19 -04:00
d2704c4143 Add machine type in the artifact of Examples directory job (#18459)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-04 18:52:01 +02:00
f9a0008d2d Add VideoMAE (#17821)
* First draft

* Add VideoMAEForVideoClassification

* Improve conversion script

* Add VideoMAEForPreTraining

* Add VideoMAEFeatureExtractor

* Improve VideoMAEFeatureExtractor

* Improve docs

* Add first draft of model tests

* Improve VideoMAEForPreTraining

* Fix base_model_prefix

* Make model take pixel_values of shape (B, T, C, H, W)

* Add loss computation of VideoMAEForPreTraining

* Improve tests

* Improve model testsé

* Make all tests pass

* Add VideoMAE to main README

* Add tests for VideoMAEFeatureExtractor

* Add integration test

* Improve conversion script

* Rename patch embedding class

* Remove VideoMAELayer from init

* Update design of patch embeddings

* Improve comments

* Improve conversion script

* Improve conversion script

* Add conversion of pretrained model

* Add loss verification of pretrained model

* Add loss verification of unnormalized targets

* Add integration test for pretraining model

* Apply suggestions from code review

* Fix bug to make feature extractor resize only shorter edge

* Address more comments

* Improve normalization of videos

* Add doc examples

* Move constants to dedicated script

* Remove scripts

* Transfer checkpoints, fix docs

* Update script

* Update image mean and std

* Fix doc tests

* Set return_tensors to NumPy by default

* Revert the previous change

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-04 18:02:55 +02:00
672b66262a Add FX support for torch.baddbmm andd torch.Tensor.baddbmm (#18363) 2022-08-04 16:02:16 +02:00
df28de0581 Fix load of model checkpoints in the Trainer (#18470) 2022-08-04 08:22:25 -04:00
330247ede2 Update no trainer scripts for multiple-choice (#18468)
* swag_no_trainer updated for with gather_metrics

* Removed unused variable samples_seen
2022-08-04 07:29:32 -04:00
c74befc9e3 HFTracer.trace can now take callables and torch.nn.Module (#18457)
* Enable HFTracer to trace with custom dummy inputs instead of pre-computed ones

* Add HFTracer.trace docstring, and make it possible to handle callable and torch.nn.Module in general

* Remove pdb comment

* Apply suggestions
2022-08-04 13:29:18 +02:00
fc1d841b2d change shape to support dynamic batch input in tf.function XLA generate for tf serving (#18372)
* change shape to support dynamic batch input in tf.generate

* add tests

Co-authored-by: nlpcatcode <nlpcodecat@gmail.com>
2022-08-04 11:26:11 +01:00
b69a62d579 [BLOOM] Clean modeling code (#18344)
* Cleanup some code

* Improve signatures

* Try to reduce the number of reshape/copies

* I don't think we actually need the layer_num scaling trick

* No need for duplication

* Try to fix beam_search

* Fix beam search

* Removing layer num normalization seems to be breaking

* Not sure self.layer_number normalization actually matters

* Try and be backward compatible

* Try to fix beam_search

* Revert attempt to be backward compatible

* Improve documentation on past_key_values format

* Optimize the device allocation in case of hidden_states in multiple devices

* No need to manually cast the values to a specific device

* Rename with long version of variables

* Improve type hinting

* Add comment that explains that some methods return views

* Actually i think the attention casting only makes sense when we use torch.float16

* We don't actually need layer_number to be passed anymore

* Fix FX test

* Bypass torch.baddbmm

* Apply suggestions from code review

* Add comment about support for torchScript v1.11

* fix ONNX support for bloom (#18456)

Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-08-04 11:08:03 +02:00
02b176c4ce Fix torch version comparisons (#18460)
Comparisons like
version.parse(torch.__version__) > version.parse("1.6")
are True for torch==1.6.0+cu101 or torch==1.6.0+cpu

version.parse(version.parse(torch.__version__).base_version) are preferred (and available in pytorch_utils.py
2022-08-03 13:37:18 -04:00
be41eaf55f fix: keras fit tests for segformer tf and minor refactors. (#18412)
* fix: keras fit tests for segformer tf and minor refactors.

* refactor: test_keras_fit to make it simpler using the existing one.

* fix: styling issues.
2022-08-03 16:39:54 +01:00
fc546332d7 add zero-shot obj detection notebook to docs (#18453) 2022-08-03 17:14:39 +03:00
8fb7c908c8 Fix failing tests for XLA generation in TF (#18298)
* Fix failing test_xla_generate_slow tests

* Fix failing speech-to-text xla_generate tests
2022-08-03 09:45:15 -04:00
a507908cd3 Update pinned hhub version (#18448)
* Update pinned hhub version

* Make style
2022-08-03 08:37:42 -04:00
3db4378bd7 Update no trainer scripts for language modeling and image classification examples (#18443)
* Update no_trainer script for image-classification

* Update no_trainer scripts for language-modeling examples

* Remove unused variable

* Removing truncation from losses array for language modeling examples
2022-08-03 08:33:18 -04:00
10e1ec9a8c Add Spanish translation of run_scripts.mdx (#18415)
* Add file in spanish docs to be translated

* Translate first two sections to Spanish

* Translate four additional sections to Spanish

* Finish translation to Spanish

* Improve writing style in Spanish

* Add suggested changes from reviewer
2022-08-03 07:32:20 -04:00
9d7b70bcd7 support ONNX export of XDropout in deberta{,_v2} and sew_d (#17502)
* support ONNX export of XDropout in deberta{,_v2}

* black

* copy to sew_d

* add test

* isort

* use pytest.mark.filterwarnings

* review comments
2022-08-03 06:33:44 -04:00
92915ebec2 Update _toctree.yml (#18440)
This PR moves GroupViT and LXMert to their correct sections. As pointed out by @NielsRogge and @LysandreJik, GroupViT and LXMert are both multimodal models.
2022-08-03 12:26:01 +02:00
22a0dd2ef7 fixing error when using sharded ddp (#18435) 2022-08-03 08:39:58 +05:30
5096a654b7 Add programming languages (#18434)
The current wording makes it sound as if the programming languages are part of the 46 natural languages.
2022-08-02 16:02:25 -04:00
042f420364 Update pipeline word heuristic to work with whitespace in token offsets (#18402)
* Update pipeline word heuristic to work with whitespace in token offsets

This change checks for whitespace in the input string at either the
character preceding the token or in the first character of the token.
This works with tokenizers that return offsets excluding whitespace
between words or with offsets including whitespace.

fixes #18111

starting

* Use smaller model, ensure expected tokenization

* Re-run CI (please squash)
2022-08-02 15:31:01 -04:00
c382ed8a2f Accept trust_remote_code and ignore it in PreTrainedModel.from_pretrained (#18428)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 21:03:59 +02:00
dbd9641c8c Improve generate docstring (#18198)
* improve generate docstring

* Remove 'defaults to None' comment
2022-08-02 13:22:55 -04:00
5546fb61ab fix run_clip README (#18332)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 19:14:46 +02:00
2959d09072 Fix test_load_default_pipelines_tf test error (#18422)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 18:51:10 +02:00
8ae7784256 update maskformer docs (#18423)
* update maskformer docs

* fix typo
2022-08-02 18:43:58 +03:00
0b8c1b6994 Change audio kwarg to images in TROCR processor (#18421)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 15:04:45 +02:00
dd21fb378f Fix the hub user name in a longformer doctest checkpoint (#18418)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-02 15:04:10 +02:00
68a894a587 Fix uninitialized parameter in conformer relative attention. (#18368)
`torch.Tensor` creates an unitialized tensor (as via `torch.empty`), this leads to undeterministic behavior, poor initialization, and nans if you have unlucky init. The paper does not specify the initialization for bias terms, so I guess zero seems like a good choice - no bias initially. `torch.Tensor` is usually populated with zeros, so this fix will be close to the intended behavior:

```
>>> torch.Tensor(100, 100).sum()
tensor(0.)
>>> torch.Tensor(100, 100).sum()
tensor(nan)
>>> torch.Tensor(100, 100).sum()
tensor(0.)
```
2022-08-02 10:34:10 +01:00
df5e4232f5 fix: create a copy for tokenizer object (#18408) 2022-08-01 15:32:12 -04:00
24845aeb6d Layoutlmv2 tesseractconfig (#17733)
* Added option for users to modify config parameter used by pytesseract during feature extraction

- Added optional 'tess_config' kwarg when setting up LayoutLMV2 processor that is used by pytesseract during feature extraction
- Eg. Can be used to modify psm values by setting tess_config to '--psm 7'
- Different psm values significantly influences the output of layoutlmv2

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Updated variable names to be more explicit

* Fixed styles

* Added option for users to modify config parameter when calling pytesseract during feature extraction

- Added option to set "tesseract_config" parameter during LayoutLMV3 processor initialization
- Can be used to modify PSM values, eg. by setting tesseract_config="--psm 6"

* Removed  from function signature

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-08-01 12:24:43 -04:00
151a2aaa4e Split model list on modality (#18328)
* 📝 split up model list

* Adapt script to reorg

* apply niels feedback

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-08-01 11:10:20 -05:00
01db72abd4 Rewrite push_to_hub to use upload_files (#18366)
* Rewrite push_to_hub to use upload_files

* Adapt the doc a bit

* Address review comments and clean doc
2022-08-01 12:07:30 -04:00
3909d7f139 Add Flax BART pretraining script (#18297)
* add bart pretraining flax script

* fixup

* add bart pretraining flax script

* add BART to README

* add BART to README

* add BART to README

* add BART to README

* add BART to README

* add bos eos document

* Update README.md

* Update README.md

* Update examples/flax/language-modeling/run_bart_dlm_flax.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* final

* final

* final

* remove use_auth_token ing from_config

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2022-08-01 12:06:30 -04:00
941d233153 Fix ROUGE add example check and update README (#18398)
* Fix ROUGE add example check and update README

* Stay consistent in values
2022-08-01 11:14:49 -04:00
62098b9348 Adding fine-tuning models to LUKE (#18353)
* add LUKE models for downstream tasks

* add new LUKE models to docs

* fix typos

* remove commented lines

* exclude None items from tuple return values
2022-08-01 11:09:47 -04:00
7b9e995b70 Fix docs (#18399)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-01 17:02:51 +02:00
e0bc4c73e8 Add balanced strategies for device_map in from_pretrained (#18349)
* Add balanced strategies for device_map in from_pretrained

* Add safeguards for Accelerate version

* Update src/transformers/modeling_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Style

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-08-01 10:28:26 -04:00
39e76d76fd Fix doc tests (#18397)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-08-01 15:56:10 +02:00
1141371103 Fix OPT doc tests (#18365) 2022-08-01 15:19:45 +02:00
af1e6b4d87 Add evaluate to test dependencies (#18396) 2022-08-01 08:55:44 -04:00
bd6d1b4300 Add a check regarding the number of occurrences of ``` (#18389)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-08-01 14:23:02 +02:00
1cd7c6f154 Fix from_pretrained kwargs passing (#18387)
Fix #18385
I don't know whether `use_auth_token`, `cache_dir` and `local_files_only` should be passed to `(cls.slow_tokenizer_class)._from_pretrained`, but I guess it should.
2022-08-01 08:16:24 -04:00
96b5d7db9c Remove pt-like calls on tf tensor (#18393) 2022-08-01 13:06:30 +01:00
679d68a11b Correct the spelling of bleu metric (#18375) 2022-08-01 07:51:27 -04:00
1f84399171 Migrate metric to Evaluate in Pytorch examples (#18369)
* Migrate metric to Evaluate in pytorch examples

* Remove unused imports
2022-08-01 07:40:25 -04:00
25ec12eaf7 Bump mistune from 0.8.4 to 2.0.3 in /examples/research_projects/lxmert (#18370)
Bumps [mistune](https://github.com/lepture/mistune) from 0.8.4 to 2.0.3.
- [Release notes](https://github.com/lepture/mistune/releases)
- [Changelog](https://github.com/lepture/mistune/blob/master/docs/changes.rst)
- [Commits](https://github.com/lepture/mistune/compare/v0.8.4...v2.0.3)

---
updated-dependencies:
- dependency-name: mistune
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-01 04:46:57 -04:00
a7360385f4 Bump mistune in /examples/research_projects/visual_bert (#18371)
Bumps [mistune](https://github.com/lepture/mistune) from 0.8.4 to 2.0.3.
- [Release notes](https://github.com/lepture/mistune/releases)
- [Changelog](https://github.com/lepture/mistune/blob/master/docs/changes.rst)
- [Commits](https://github.com/lepture/mistune/compare/v0.8.4...v2.0.3)

---
updated-dependencies:
- dependency-name: mistune
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-08-01 04:46:31 -04:00
b2e4b091f0 fix FSDP ShardedGradScaler (#18358)
renaming it
2022-07-30 10:07:56 +05:30
51227e26ab Fix TFSegformerForSemanticSegmentation doctest (#18362)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 16:30:59 +02:00
4e2f4a92dd [FX] Symbolic trace for Bloom (#18356)
* Bloom model can now be traced

* Bloom traced model can be torch scripted and serialized

* Bloom can be traced with variable keyword arguments

* Enable XLNet support

* Disable XLNet for now
2022-07-29 16:12:27 +02:00
1763770bd9 Fix some doctests (#18359)
* Fix some doctests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 14:13:28 +02:00
986526a0e4 Replace as_target context managers by direct calls (#18325)
* Preliminary work on tokenizers

* Quality + fix tests

* Treat processors

* Fix pad

* Remove all uses of  in tests, docs and examples

* Replace all as_target_tokenizer

* Fix tests

* Fix quality

* Update examples/flax/image-captioning/run_image_captioning_flax.py

Co-authored-by: amyeroberts <amy@huggingface.co>

* Style

Co-authored-by: amyeroberts <amy@huggingface.co>
2022-07-29 08:09:09 -04:00
a64bcb564d Fix OwlViT torchscript tests (#18347)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-29 10:36:04 +02:00
a4ee463d95 [Docs] Fix Speech Encoder Decoder doc sample (#18346)
* [Docs] Fix Speech Encoder Decoder doc sample

* improve pre-processing comment

* make style
2022-07-29 09:11:28 +01:00
da503ea02f Migrate metrics used in flax examples to Evaluate (#18348)
Currently, tensorflow examples use the `load_metric` function from
Datasets library, commit migrates function call to `load` function
from Evaluate library.
2022-07-28 15:06:23 -04:00
a2586795e5 Migrate metric to Evaluate library for tensorflow examples (#18327)
* Migrate metric to Evaluate library in tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.

Fix for #18306

* Migrate metric to Evaluate library in tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.

Fix for #18306

* Migrate `metric` to Evaluate for all tf examples

Currently tensorflow examples use `load_metric` function from Datasets
library , commit migrates function call to `load` function to
Evaluate library.
2022-07-28 14:24:27 -04:00
7b0908769b [BLOOM] Deprecate position_ids (#18342) 2022-07-28 20:21:43 +02:00
9c336657a9 Include tensorflow-aarch64 as a candidate (#18345)
Co-authored-by: Ankur Goyal <ankur@impira.com>
2022-07-28 12:45:02 -04:00
b53dab601c Remove Flax OPT from doctest for now (#18338)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-28 11:50:44 -04:00
286a18fa00 Fix codeparrot deduplication - ignore whitespaces (#18023)
* ignore whitspaces for hash

* reformat code

* Update README.md
2022-07-28 15:58:26 +02:00
5d1fed0740 Update automatic_speech_recognition.py (#18339) 2022-07-28 09:53:03 -04:00
985c7e3ac9 Updated _toctree.yml (#18337) 2022-07-28 09:04:32 -04:00
a8e279579b updated translation (#18333)
Left the term fine-tuning since there is no correct translation into Italian and the English term is generally used. The same was done with some terms like "learning rate"
2022-07-28 08:14:15 -04:00
1e380c7dcb fixed typo (#18331) 2022-07-28 06:14:56 -04:00
96be1b7f49 Update feature extractor docs (#18324)
As pointed out by @NielsRogge, a feature extractor is used to prepare inputs for a model with a single modality rather than multimodal models.
2022-07-27 15:32:57 -05:00
2b81f72be9 start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch … (#18229)
* start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch and should import it before use

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* add doc for perf_train_cpu_many

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* update doc

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-07-27 11:15:41 -04:00
e87ac9d18b Add swin transformer v2 (#17469)
* Add files generated using transformer-cli add-new-model-like command

* Add changes for swinv2 attention and forward method

* Add fixes

* Add modifications for weight conversion and remaining args in swin model

* Add changes for patchmerging

* Add changes for SwinV2selfattention

* Update conversion script

* Add final fixes for the swin_v2 model

* Add changes for conversion script for pretrained window size case

* Add pretrained window size value from config in SwinV2Encoder class

* Make fixup

* Add swinv2 to models_not_in_readme to utils/check_copies.py

* Modify Swinv2v2 to Swin Transformer V2

* Remove copied from, to run make fixup command

* Add updates to swinv2tf from main branch

* Add pretrained_window_size to config, to make tests pass

* Add modified weights from nandwalritik profile for swinv2

* Update model weights from swinv2 from nandwalritik profile

* Add fix for build_pr_documentation CI fix

* Add fixes for weight conversion

* Add change to make input with padding work

* Add fixes for test cases

* Add few changes from swin to swinv2 to pass test cases

* Remove tests for tensorflow as swinv2 for TF is not added yet

* Overide test_pt_tf_model_equivalence function as TF implementation for swinv2 is not added yet

* Add modeling_tf_swinv2 to _ignore_modules as test file is removed for this one right now.

* Update docs url for swinv2 in README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Undo changes for check_repo

* Update url in readme.md

* Remove overrided function to test pt_tf_model_equivalence

* Remove TF model imports for Swinv2 as its not implemented in this PR

* Add changes for index.mdx

* Add swinv2 papers link,abstract and contributors details

* Rename cpb_mlp to continous_position_bias_mlp

* Add tips for swinv2 model

* Update src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Fix indentation for docstring example in src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update import order in src/transformers/models/swinv2/configuration_swinv2.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add copyright statements in weights conversion script.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Remove Swinv2 from models_not_in_readme

* Reformat code

* Remove TF implementation file for swinv2

* Update start docstring.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add changes for docstring

* Update orgname for weights to microsoft

* Remove to_2tuple function

* Add copied from statements wherever applicable

* Add copied from to Swinv2ForMaskedImageModelling class

* Reformat code.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add unittest.skip(with reason.) for test_inputs_embeds test case.

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add updates for test_modeling_swinv2.py

* Add @unittest.skip() annotation for clarity to create_and_test_config_common_properties function

* Add continuous_position_bias_mlp parameter to conversion script

* Add test for testing masked_image_modelling for swinv2

* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update Swinv2 to Swin Transformer v2 in docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add suggested changes

* Add copied from to forward methods of Swinv2Stage and Swinv2Encoder

* Add push_to_hub flag to weight conversion script

* Change order or Swinv2DropPath class

* Add id2label mapping for imagenet 21k

* Add updated url for SwinV2 functions and classes used in implementation

* Update input_feature dimensions format, mentioned in comments.

Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>

* Add suggested changes for modeling_swin2.py

* Update docs

* Remove create_and_test_config_common_properties function, as test_model_common_attributes is sufficient.

* Fix indentation.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add changes for making Nit objects in code style

* Add suggested changes

* Add suggested changes for test_modelling_swinv2

* make fix-copies

* Update docs/source/en/model_doc/swinv2.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Alara Dirik <8944735+alaradirik@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-27 11:14:47 -04:00
c89a592e87 Dev version 2022-07-27 17:13:57 +02:00
7490a97cac [Flax] Fix incomplete batches in example scripts (#17863)
* [Flax] Fix incomplete batches in example scripts

* fix dataloader batching

* convert jnp batch idxs to np array

* add missing `pad_shard_unpad` to final prediction generate step

* only `pad_shard_unpad` at inference time

* merge conflicts

* remove incomplete batch step from eval

* fix run_qa.py

* add `pad_shard_unpad` to run_flax_ner.py

* add `pad_shard_unpad` to run_flax_glue.py

* add `pad_shard_unpad` to run_image_classification.py

* make style

* fix mlm flax eval batches

* remove redundant imports
2022-07-27 15:50:47 +01:00
9caf68a638 Owlvit test fixes (#18303)
* fix owlvit test assertion errors

* fix gpu test error

* remove redundant lines

* fix styling
2022-07-27 17:26:27 +03:00
0077360d67 Fix sacremoses sof dependency for Transformers XL (#18321)
* Fix sacremoses sof dependency for Transofmers XL

* Add function to the submodule init
2022-07-27 09:37:02 -04:00
5c5676cdf9 sentencepiece shouldn't be required for the fast LayoutXLM tokenizer (#18320) 2022-07-27 09:09:32 -04:00
cf32b2ee42 Remove all uses of six (#18318)
* Remove all uses of six

* fix quality
2022-07-27 08:39:09 -04:00
170fcaa604 Generalize decay_mask_fn to apply mask to all LayerNorm params (#18273)
* generalize decay_mask_fn to find all layernorm params

* fixup

* generalising decay_mask_fn
2022-07-27 12:23:57 +01:00
83d2d74509 fix loading from pretrained for sharded model with `torch_dtype="auto" (#18061) 2022-07-27 07:20:35 -04:00
7996ef74dd fix module order (#18312)
- put gelu before 4h to h
2022-07-27 07:06:01 -04:00
70e7d1d656 Fixes torch jit tracing for LayoutLMv2 model (re-open) (#18313)
* Fixes torch jit tracing for LayoutLMv2 model.
Pytorch seems to reuse memory for input_shape which caused a mismatch in shapes later in the forward pass.

* Fixed code quality

* avoid unneeded allocation of vector for shape
2022-07-27 06:38:40 -04:00
1d71ad8905 Update CodeParrot readme to include training in Megatron (#17798)
* add info about megatron training

* upload models and datasets from CodeParrot organization

* upload models and datasets from CodeParrot organization

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* fix typo and add comment about codeparrot vs megatron

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-07-27 11:59:08 +02:00
d5610b53fa [XLA] Improve t5 model performance (#18288) 2022-07-27 10:44:14 +02:00
e318cda9ee Apply type correction to TFSwinModelOutput (#18295)
Signed-off-by: Seunghwan Hong <seunghwan@scatterlab.co.kr>
2022-07-27 04:35:56 -04:00
ccd4180f8a [EncoderDecoder] Improve docs (#18271)
* Improve docs

* Improve docs of speech one as well

* Apply suggestions from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-07-27 10:08:59 +02:00
5dfec704da Remove duplicated line (#18310)
Removes a duplicated instantiation of device. I removed the second instance of the line to maintain code alignment with the GPT-J implementation of forward.
2022-07-27 04:00:47 -04:00
47c2af0951 [DETR] Improve code examples (#18262)
* Improve doc test

* Improve code example of segmentation model

* Apply suggestion

* Update src/transformers/models/detr/modeling_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-27 09:54:41 +02:00
ee67e7ad4f patch for smddp import (#18244)
* add import

* format
2022-07-26 16:00:24 -04:00
68097dcce0 Fix Sylvain's nits on the original KerasMetricCallback PR (#18300)
* Fix Sylvain's nits on the original PR

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Re-add "optional" to docstring

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 17:08:16 +01:00
6649133124 Add PYTEST_TIMEOUT for CircleCI test jobs (#18251)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 17:57:59 +02:00
a5d504834d Add Spanish translation of custom_models.mdx (#17807)
* Update index

* Translate to Spanish two sections from custom_models

* Translate to Spanish custom models documentation

* Fixing typos and grammatical errors

* Add requested changes from reviewer
2022-07-26 10:10:37 -04:00
7ea7eba39d Add Italian translation of sharing_custom_models.mdx (#17631)
* work in progress: custom_models

* Update custom_models.mdx

* Update custom_models.mdx

* Update _toctree.yml

* Update _toctree.yml

* Update custom_models.mdx

* Update custom_models.mdx

* Update _toctree.yml

* Update _toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 09:48:58 -04:00
c4c6b4dbda Add PyTorch 1.11 to past CI (#18302)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 15:47:23 +02:00
bbc28106e0 Add Italian translation of converting_tensorflow_models.mdx (#18283)
* Add Italian translation of converting_tensorflow_models.mdx

* Update _toctree.yml

* Update converting_tensorflow_models.mdx

* Update docs/source/it/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-26 08:37:34 -04:00
a649de5551 Raise a TF-specific error when importing Torch classes (#18280)
* Raise a TF-specific error when importing Torch classes

* Update src/transformers/utils/import_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Add an inverse error for PyTorch users

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-07-26 13:28:59 +01:00
5e0ffd9183 [ create_a_model.mdx ] translate to pt (#18098)
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial

* Delete docs/source/pt-br directory

* [ fast_tokenizers.mdx ] - Continuing work on file

* [ fast_tokenizers.mdx ] - Continuing work on file

* Add fast tokenizers to _toctree.yml

* Eliminated config and toctree.yml

* Nits in fast_tokenizers.mdx

* Finishing create_a_model

* [ create_a_model.mdx ] finishing create a model in pt-br

* [ Changing _toctree.yml ] adding create a model in pt

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-07-26 08:01:08 -04:00
f58b9c0522 Update translation.mdx (#18169)
* Update translation.mdx

* update translation.mdx by running make style
2022-07-26 07:56:40 -04:00
b51695274a Add TFAutoModelForImageClassification to pipelines.py (#18292)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 13:44:54 +02:00
f374d3918f Adding type hints of TF:OpenAIGPT (#18263) 2022-07-26 12:30:06 +01:00
5bb211be6e Adding type hints of TF:CTRL (#18264) 2022-07-26 12:27:02 +01:00
c8ed1b8b59 Replace false parameter by a buffer (#18259) 2022-07-26 13:02:58 +02:00
2844c5de10 Fix ORTTrainer failure on gpt2 fp16 training (#18017)
* Ensure value and attn weights have the same dtype

* Remove prints

* Modify decision transformers copied from gpt2

* Nit device

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Fix style

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-07-26 04:14:08 -04:00
2b09650885 Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER) (#17924)
* Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER)

* Add ViltForTokenClassification e.g. for Named-Entity-Recognition (NER)

* provide classifier only text hidden states

* add test_for_token_classification

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vilt/modeling_vilt.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add test_for_token_classification

Co-authored-by: gfuchs <gfuchs@ebay.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-07-26 10:11:32 +02:00
002915aa2a Owlvit docs test (#18257)
* fix docs and add owlvit docs test

* fix minor bug in post_process, add to processor

* improve owlvit code examples

* fix hardcoded image size
2022-07-26 10:55:14 +03:00
d32558cc7a Good difficult issue override for the stalebot (#18094) 2022-07-26 03:39:14 -04:00
f65307e498 Fix dtype of input_features in docstring (#18258)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-26 09:34:06 +02:00
bd87480d20 Fix command of doc tests for local testing (#18236)
* Fix command of doc tests for local testing

* Fix command for after running doc tests locally
2022-07-26 03:07:11 -04:00
45a1475462 Fix TF bad words filter with XLA (#18286)
* Fix bad words filter in XLA generation

* Remove my cool debug breakpoints (again)
2022-07-25 20:19:39 +01:00
f4e172716b Allows KerasMetricCallback to use XLA generation (#18265)
* Allows `KerasMetricCallback` to use XLA generation

* make fixup

* Slightly reword docstring
2022-07-25 12:51:37 +01:00
bbb62f2924 Skip passes report for --make-reports (#18250)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-25 11:09:23 +02:00
7e44226fc7 Generate: deprecate default max_length (#18018) 2022-07-23 18:02:03 +01:00
8e8384663d Update serving code to enable saved_model=True (#18153)
* Add serving_output and serving methods to some vision models

* Add serving outputs for DeiT

* Don't convert hidden states - differing shapes

* Make saveable

* Fix up

* Make swin saveable

* Add in tests

* Fix funnel tests (can't convert to tensor)

* Fix numpy call

* Tidy up a bit

* Add in hidden states - resnet

* Remove numpy

* Fix failing tests - tensor shape and skipping tests

* Remove duplicated function

* PR comments - formatting and var names

* PR comments
Add suggestions made by Joao Gante:
* Use tf.shape instead of shape_list
* Use @tooslow decorator on tests
* Simplify some of the logic

* PR comments
Address Yih-Dar Sheih comments - making tensor names consistent and make types float

* Types consistent with docs; disable test on swin (slow)

* CI trigger

* Change input_features to float32

* Add serving_output for segformer

* Fixup

Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
2022-07-22 18:05:38 +01:00
07505358ba Change how take_along_axis is computed in DeBERTa to stop confusing XLA (#18256)
* Change how `take_along_axis` is computed in DeBERTa to stop confusing XLA

* Greatly simplify take_along_axis() since the code wasn't using most of it
2022-07-22 17:01:30 +01:00
d95a32cc60 Fix torch version check in Vilt (#18260)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-22 16:24:49 +02:00
7cb4da13fe change bloom parameters to 176B (#18235) 2022-07-22 10:17:48 -04:00
1fc4b2a132 TF: use the correct config with (...)EncoderDecoder models (#18097) 2022-07-22 13:31:45 +01:00
4935409757 Add Italian translation of create_model.mdx and serialization.mdx (#17640)
* First commit

* final changes

* Changed create_model to create_a_model
Translated into crea un'architettura personalizzata in the file it/_toctree.yml

* Added _toctree.yml in the italian translation loca: serialization title Esporta modelli transformers

* Edit translation for create_model.mdx

* t with '#' will be ignored, and an empty message aborts the commit.

* Added file serialization for translation in italian

* Fix toctree serialization position

I checked the eng toctree and realized I made a mistake.

* Update _toctree.yml

Correct spacing

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-22 13:53:54 +02:00
06d98e272e Fix OwlViT tests (#18253)
* Fix OwlViT tests

* Forgot one
2022-07-22 13:32:19 +02:00
12d66b4701 Add OWL-ViT model for zero-shot object detection (#17938)
* add owlvit model skeleton

* add class and box predictor heads

* convert modified flax clip to pytorch

* fix box and class predictors

* add OwlViTImageTextEmbedder

* convert class and box head checkpoints

* convert image text embedder checkpoints

* add object detection head

* fix bugs

* update conversion script

* update conversion script

* fix q,v,k,out weight conversion conversion

* add owlvit object detection output

* fix bug in image embedder

* fix bugs in text embedder

* fix positional embeddings

* fix bug in inference mode vision pooling

* update docs, init tokenizer and processor files

* support batch processing

* add OwlViTProcessor

* remove merge conflicts

* readd owlvit imports

* fix bug in OwlViTProcessor imports

* fix bugs in processor

* update docs

* fix bugs in processor

* update owlvit docs

* add OwlViTFeatureExtractor

* style changes, add postprocess method to feature extractor

* add feature extractor and processor tests

* add object detection tests

* update conversion script

* update config paths

* update config paths

* fix configuration paths and bugs

* fix bugs in OwlViT tests

* add import checks to processor

* fix docs and minor issues

* fix docs and minor issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* update docs and examples

* fix bugs and issues

* update conversion script, fix positional embeddings

* process 2D input ids, update tests

* fix style and quality issues

* update docs

* update docs and imports

* update OWL-ViT index.md

* fix bug in OwlViT feature ext tests

* fix code examples, return_dict by default

* return_dict by default

* minor fixes, add tests to processor

* small fixes

* add output_attentions arg to main model

* fix bugs

* remove output_hidden_states arg from main model

* update self.config variables

* add option to return last_hidden_states

* fix bug in config variables

* fix copied from statements

* fix small issues and bugs

* fix bugs

* fix bugs, support greyscale images

* run fixup

* update repo name

* merge OwlViTImageTextEmbedder with obj detection head

* fix merge conflict

* fix merge conflict

* make fixup

* fix bugs

* fix bugs

* add additional processor test
2022-07-22 13:35:32 +03:00
99eb9b523f Fix no_trainer CI (#18242)
* Fix all tests
2022-07-21 14:44:57 -04:00
561b9a8c00 [SegFormer] TensorFlow port (#17910)
* add: segformer utils and img. classification.

* add: segmentation layer.

* feat: working implementation of segformer.

* chore: remove unused variable.

* add test, remaining modifications.

* remove: unnecessary files.

* add: rest of the files.

Co-authored-by: matt <rocketknight1@gmail.com>

* chore: remove ModuleList comment.

* chore: apply make style.

* chore: apply make fixup-copies.

* add  to check_repo.py

* add decode head to IGNORE_NON_TESTED

* chore: run make style.

* chore: PR comments.

* chore: minor changes to model doc.

* tests: reduction across samples.

* add a note on the space.

* sort importats.

* fix: reduction in loss computation.

* chore: align loss function with that of NER.

* chore: correct utils/documentation_tests.txt

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* chore: simplify the interpolation of logits in loss computation.

* chore: return transposed logits when return_dict=False.

* chore: add link to the tf fine-tuning repo.

* address pr comments.

* address niels's comments.

* remove from_pt=True since tf weights are in.

* remove comment from pt model.

* address niels's comments.

Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
2022-07-21 18:22:37 +01:00
2c5747edfe Update notification service (#17921)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-21 15:03:50 +02:00
07575e869d Italian/accelerate (#17698)
* Add 'accelerate' to _toctree file

* Fix 'training with a nb' title

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 14:23:47 +02:00
8881e58b22 Italian/model sharing (#17828)
* Add Italian translation of the doc file model_sharing.mdx

* Fix style

* Fix typo

* Update docs/source/it/_toctree.yml

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 14:07:53 +02:00
0d971be84f Italian translation of run_scripts.mdx gh-17459 (#17642)
* Run_scripts Italian translation gh-17459

* Updated run_scripts gh-17642

* Updated run_scripts gh-17642

Made the text more gender-neutral.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-21 12:02:08 +02:00
ba552dd027 Make errors for loss-less models more user-friendly (#18233) 2022-07-21 11:52:33 +02:00
43a5375cc1 Fix TrainingArguments help section (#18232) 2022-07-21 11:03:25 +02:00
9f787ce874 Translation/debugging (#18230)
* added debugging.mdx

* updated debugging.mdx

* updated translation

* updated translation debugging

* translated debugging

* updated _toctree.yml
2022-07-21 11:02:26 +02:00
5e2f2d7dd2 Better messaging and fix for incorrect shape when collating data. (#18119)
* More informative error message

* raise dynamic error

* remove_excess_nesting application

* incorrect shape assertion for collator & function to remove excess nesting from DatasetDict

* formatting

* eliminating datasets import

* removed and relocated remove_excess_nesting to the datasets library and updated docs accordingly

* independent assert instructions

* inform user of excess nesting
2022-07-21 10:35:41 +02:00
d23cf5b1f1 Add support for Sagemaker Model Parallel >= 1.10 new checkpoint API (#18221)
* Add support for Sagemaker Model Parallel >= 1.10 new checkpoint API

* Support loading checkpoints saved with SMP < 1.10 in SMP < 1.10 and SMP >= 1.10

* Support loading checkpoints saved with SMP >= 1.10 in SMP >= 1.10

* Fix bug and styling

* Update based on reviewer feedback
2022-07-21 07:56:20 +02:00
dbfeffd7c9 Update add_new_pipeline.mdx (#18224)
fix typo
2022-07-21 07:55:30 +02:00
ff56b8fbff Add custom config to quicktour (#18115)
* 📝 first draft of new quicktour

* make style

* 🖍 edit and review

* 🖍 small fixes

* 🖍 only add custom config section

* 🖍 use autoclass instead
2022-07-20 12:23:03 -05:00
9edff45362 skip some test_multi_gpu_data_parallel_forward (#18188)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 15:54:44 +02:00
bc6fe6fbcf Change to FlavaProcessor in PROCESSOR_MAPPING_NAMES (#18213)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 12:30:14 +02:00
dcec4c4387 Adding OPTForSeqClassification class (#18123)
* Adding OPTForSeqClassification class

* Fix import issues

* Add documentation for optforseqclassification

* Remove checkout

* fix failing tests

* fix typo

* Fix code formatting

* Incorporating the PR feedbacks

* Incorporate PR Feedbacks

* Fix failing test and add new test for multi label setup

* Fix formatting issue

* Fix failing tests

* Fix formatting issues

* Fix failing tests

* Fix failing tests

* Fix failing tests

* Fix failing tests

* PR feedback
2022-07-20 10:14:21 +02:00
0ed4d0dfb6 Fix LayoutXLM docstrings (#17038)
* Fix docstrings

* Fix legacy issue

* up

* apply suggestions

* up

* quality
2022-07-20 09:49:57 +02:00
4b1ed7979f update cache to v0.5 (#18203)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-20 08:14:10 +02:00
8a61fe0234 Reduce console spam when using the KerasMetricCallback (#18202)
* Reduce console spam when using the KerasMetricCallback

* Switch to predict_on_batch to improve performance
2022-07-19 17:00:35 +01:00
ec6cd7633f TF: Add missing cast to GPT-J (#18201)
* Fix TF GPT-J tests

* add try/finally block
2022-07-19 15:58:42 +01:00
05ed569c79 Use next-gen CircleCI convenience images (#18197)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-19 15:43:05 +02:00
9f12ec7d87 Typo in readme (#18195) 2022-07-19 15:28:37 +02:00
dc9147ff36 Custom pipeline (#18079)
* Initial work

* More work

* Add tests for custom pipelines on the Hub

* Protect import

* Make the test work for TF as well

* Last PyTorch specific bit

* Add documentation

* Style

* Title in toc

* Bad names!

* Update docs/source/en/add_new_pipeline.mdx

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Auto stash before merge of "custom_pipeline" and "origin/custom_pipeline"

* Address review comments

* Address more review comments

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-07-19 12:02:35 +02:00
3bb6356d4d [From pretrained] Allow download from subfolder inside model repo (#18184)
* add first generation tutorial

* [from_pretrained] Allow loading models from subfolders

* remove gen file

* add doc strings

* allow download from subfolder

* add tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply comments

* correct doc string

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-19 11:53:53 +02:00
ce0152819d Update docs README with instructions on locally previewing docs (#18196)
* Update docs README with instructions on locally previewing docs

* Add instructions to install `watchdog` before previewing the docs
2022-07-19 11:47:26 +02:00
798384467b bugfix: div-->dim (#18135) 2022-07-19 10:24:56 +02:00
e630dad555 Add vision example to README (#18194) 2022-07-19 09:46:18 +02:00
4bea6584e3 Remove use_auth_token from the from_config method (#18192)
* remove use_auth_token from from_config

* restore use_auth_token from_pretrained run_t5_mlm_flax
2022-07-19 08:13:20 +02:00
29fd471556 Use smaller variant of BLOOM for doc to fix tests 2022-07-18 15:17:29 -04:00
bc8e30bab9 FSDP integration enhancements and fixes (#18134)
* FSDP integration enhancements and fixes

* resolving comments

* fsdp fp16 mixed precision requires `ShardedGradScaler`
2022-07-19 00:02:10 +05:30
8e445ca51d Translation/training: italian translation training.mdx (#17662)
* added training.mdx

* updated training.mdx

* updated training.mdx

* updated training.mdx

* updated _toctree.yml

* fixed typos after review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-18 19:21:07 +02:00
6a1b1bf7a6 BLOOM minor fixes small test (#18175)
* minor fixes

- add correct revision
- corrected dosctring for test
- removed a test

* contrib credits

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
2022-07-18 19:18:19 +02:00
c4cc894086 Translation italian: multilingual.mdx (#17768)
* added multilingual.mdx

* updated multilingual.mdx

* italian translation multilingual.mdx

* updated _toctree.yml

* fixed typos _toctree.yml

* fixed typos after review

* fixed error after review
2022-07-18 19:09:08 +02:00
0a5b61d004 Added preprocessing.mdx italian translation (#17600)
* updated _toctree.yml

* added preprocessing

* updated preprocessing.mdx

* updated preprocessing.mdx

updated after review
2022-07-18 19:06:10 +02:00
ced1f1f5db fix typo inside bloom documentation (#18187) 2022-07-18 17:43:52 +02:00
edadfc58af Better default for offload_state_dict in from_pretrained (#18183) 2022-07-18 16:02:41 +02:00
aeeab1ffd0 Fix template for new models in README (#18182) 2022-07-18 16:01:51 +02:00
45255814a2 FIX: Typo (#18156) 2022-07-18 15:46:08 +02:00
6561fbcc6e Update TF(Vision)EncoderDecoderModel PT/TF equivalence tests (#18073)
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-18 15:29:14 +02:00
cb19c2afdc Fix expected loss values in some (m)T5 tests (#18177)
* fix expected loss values

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-18 15:26:21 +02:00
7417f3acb7 [HPO] update to sigopt new experiment api (#18147)
* [HPO] update to sigopt new experiment api
* follow https://docs.sigopt.com/experiments

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* [HPO] use new API if sigopt version >= 8.0.0

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-07-18 15:19:40 +02:00
8c14b342aa add ONNX support for LeVit (#18154)
Co-authored-by: Guilhem Chéron <guilhemc@authentifier.com>
2022-07-18 15:17:07 +02:00
c1c79b0655 NLLB tokenizer (#18126)
* NLLB tokenizer

* Apply suggestions from code review - Thanks Stefan!

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Final touches

* Style :)

* Update docs/source/en/model_doc/nllb.mdx

Co-authored-by: Stefan Schweter <stefan@schweter.it>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* PR reviews

* Auto models

Co-authored-by: Stefan Schweter <stefan@schweter.it>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-18 08:12:34 -04:00
a4f97e6ce0 Fix incorrect type hint for lang (#18161) 2022-07-18 09:53:18 +02:00
c46d39f390 Fix check for falsey inputs in run_summarization (#18155) 2022-07-18 09:50:32 +02:00
ccc0897804 Adding support for device_map directly in pipeline(..) function. (#17902)
* Adding support for `device_map` directly in `pipeline(..)` function.

* Updating the docstring.

* Adding a better docstring

* Put back type hints.

* Blacked. (`make fixup` didn't work ??!!)
2022-07-15 15:54:26 +02:00
fca66ec4ef Fixing a hard to trigger bug for text-generation pipeline. (#18131)
* Fixing a bug where attention mask was not passed to generate.

* Fixing zero-size prompts.

* Comment on top.
2022-07-15 15:54:07 +02:00
8581a798c0 Add TF DeiT implementation (#17806)
* Initial TF DeiT implementation

* Fix copies naming issues

* Fix up + docs

* Properly same main layer

* Name layers properly

* Initial TF DeiT implementation

* Fix copies naming issues

* Fix up + docs

* Properly same main layer

* Name layers properly

* Fixup

* Fix import

* Fix import

* Fix import

* Fix weight loading for tests whilst not on hub

* Add doc tests and remove to_2tuple

* Add back to_2tuple
Removing to_2tuple results in many downstream changes needed because of the copies checks

* Incorporate updates in Improve vision models #17731 PR

* Don't hard code num_channels

* Copy PyTorch DeiT embeddings and remove pytorch operations with mask

* Fix patch embeddings & tidy up

* Update PixelShuffle to move logic into class layer

* Update doc strings - remove PT references

* Use NHWC format in internal layers

* Fix up

* Use linear activation layer

* Remove unused import

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Move dataclass to top of file

* Remove from_pt now weights on hub

* Fixup

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
2022-07-13 18:04:08 +01:00
Wei
7ea6ccc2b3 Enable torchdynamo with torch_tensorrt(fx path) (#17765)
* enable fx2trt

* Update perf_train_gpu_one.mdx

* Update perf_train_gpu_one.mdx

* add lib check

* update

* format

* update

* fix import check

* fix isort

* improve doc

* refactor ctx manager

* fix isort

* black format

* isort fix

* fix format

* update args

* update black

* cleanups

* Update perf_train_gpu_one.mdx

* code refactor

* code refactor to init

* remove redundancy

* isort

* replace self.args with args

Co-authored-by: Stas Bekman <stas@stason.org>
2022-07-13 12:43:28 -04:00
37aeb5787a Make sharded checkpoints work in offline mode (#18125)
* Make sharded checkpoints work in offline mode

* Add test
2022-07-13 12:43:08 -04:00
0a21a48564 Revert "Make sharded checkpoints work in offline mode"
This reverts commit 3564c6578630a3bef29d2c7c36c7d29b68acd874.
2022-07-13 10:53:25 -04:00
3564c65786 Make sharded checkpoints work in offline mode 2022-07-13 10:51:56 -04:00
56e6487c40 add dataset split and config to model-index in TrainingSummary.from_trainer (#18064)
* added metadata to training summary

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-13 16:07:20 +02:00
fde22c75a1 Add summarization name mapping for MultiNews (#18117)
* Add summarization name mapping for MultiNews

* Add summarization name mapping for MultiNews
2022-07-13 08:19:20 -04:00
195133363e supported python versions reference (#18116)
* supported python versions reference

* Update CONTRIBUTING.md

removing commit hash from link

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-13 08:18:44 -04:00
20509ab0e0 TF: unpack_inputs decorator independent from main_input_name (#18110) 2022-07-13 10:43:41 +01:00
fcefa200b2 TF: remove graph mode distinction when processing boolean options (#18102) 2022-07-12 19:05:31 +01:00
bc34c21191 Fix BLOOM dtype (#17995)
* Add fp16 option

* Fix BLOOM dtype

* Formatting

* Remove torch_dtype arg

* Revert formatting

* Apply formatting

* Add n_embed backward compat
2022-07-12 10:36:08 -04:00
981714efe1 CLI: reenable pt_to_tf test (#18108) 2022-07-12 13:38:05 +01:00
f5221c06e4 Report value for a step instead of epoch. (#18095)
* Report value for a step instead of epoch.

Report an objective function value for a step instead of epoch to optuna.
I made this modification for the following reason:
If "eval_steps" is less than steps per epoch, there maybe warnings like this: "optuna/trial/_trial.py:592: UserWarning: The reported value is ignored because this `step` 0 is already reported.". So "step" are more appropriate than "epoch" here.

* MOD: make style.

Co-authored-by: zhaowei01 <zhaowei01@yuanfudao.com>
2022-07-12 08:18:35 -04:00
d4ebd4e112 speed up test (#18106) 2022-07-12 04:28:28 -04:00
b7d8bd378c Enhance IPEX integration in Trainer (#18072)
* enhance ipex import

* refine codes

* refine style

* add link

* style

Co-authored-by: Stas Bekman <stas@stason.org>
2022-07-11 21:34:09 -07:00
a462fc9232 Bloom Optimize operations (#17866)
* fix tolerance for a bloom slow test

* enhance alibi padding

- get rid of for loops
- deals better with padded batched input
- avoid useless cpu/gpu communication when creating alibi

Co-authored-by: justheuristic <justheuristic@gmail.com>

* optimize attention mask

* fix scaled softmax limit values

* optimize building alibi tensor

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix attention_mask shape when it's None

* minor fixes

- fix docstring + arg names

* remove colons in docstring

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* apply suggestion

* remove unsued arg

* refactor a bit

- use [:, None] for consistency

* refactor attention block

Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>

* quick fixes

* first attempt

* refactor attention block and fix all tests except "test_simple_generation"

- added comments to better explain attention block

* remove debug lines and add TODO comment

* change `torch.bmm` to `torch.baddbmm`
- fixes `test_simple_generation`but breaks `test_batch_generation_padd`

* styling

* all tests are passing now
- use `bmm`
- add explanation for `allow_fp16_reduced_precision_reduction`

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* styling

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* fix support for accelerate

Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove attn softmax in fp32

* refactor comments

* refactor a bit

- remove warning message
- remove print on test

* refer to pytorch t5

* change the slow tests

- do the tests in fp32
- remove some comments
- keep large comments

* update expected output for `test_simple_generation`
- we now test using fp32

* make style + change comments a bit

* fix dtype padd test

Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Nouamane Tazi <nouamane98@gmail.com>
Co-authored-by: Younes Belkada <younesbelkada@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-11 13:16:13 -04:00
5ff6f853d7 Mark slow test as such 2022-07-11 12:48:57 -04:00
b1b8222d80 Add filename to info diaplyed when downloading things in from_pretrained (#18099) 2022-07-11 12:45:06 -04:00
6c8017a5c8 Fix image segmentation and object detection pipeline tests (#18100) 2022-07-11 12:41:56 -04:00
b0520f594c Skip failing tests 2022-07-11 10:16:54 -04:00
1e8140caad Fix RESOURCE_EXHAUSTED error when dealing with large datasets in Flax example scripts (#18069)
* Fix RESOURCE_EXHAUSTED error for large datasets on Flax example scripts

* using np.permutation for creating batch_idx

* train_samples_idx -> training_samples_idx

* fix type hints
2022-07-11 15:59:08 +02:00
ac98a88fbc Fix torchscript tests for GPT-NeoX (#18012)
* fix dtype issue in _attn

* fix RotaryEmbedding

* fix RotaryEmbedding 2

* clean up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-11 05:02:54 -04:00
95113d1365 Fix some typos. (#17560)
* Fix some typos.

Signed-off-by: Yulv-git <yulvchi@qq.com>

* Fix typo.

Signed-off-by: Yulv-git <yulvchi@qq.com>

* make fixup.
2022-07-11 05:00:13 -04:00
ad28ca291b [bloom] fix alibi device placement (#18087) 2022-07-10 09:11:46 -07:00
8b332a6a16 Make predict() close progress bars after finishing (#17952) (#18078)
* Make Trainer.predict call on_evaluate (#17952)

* Add on_predict

* Small fix

* Small and different fix

* Add tests
2022-07-08 16:44:24 -04:00
7c046c5c22 Update localized READMES when template is filled. (#18062) 2022-07-08 11:08:52 -04:00
94ca7d2faa Fix type issue in using bucketing with Trainer (#18051)
* Fix type issue in using bucketing with Trainer

- Fix type issues in LengthGrouperSampler,
  DistributedLengthGroupedSampler

refs: #18003

* Change logging type in LengthGroupedSampler

- Change `logger.warning` to `logger.info`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Change logging type in DistributedLengthGroupedSampler

- Change `logger.warning` to `logger.info`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove adundant clause in LengthGroupedSampler

- Use `elif`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove adundant clause in DistributedLengthGroupedSampler

- Use `elif`

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply black, isort to modified codes in the script

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-08 11:06:00 -04:00
9bd3968509 Fix slow CI by pinning resampy (#18077)
* Fix slow CI by pinning resampy

* Actually put it in the speech dependencies
2022-07-08 10:51:24 -04:00
de46cde14b Drop columns after loading samples in prepare_tf_dataset (#17967)
* Drop columns after loading samples, rather than before, to avoid breaking transforms

* make fixup

* Add workaround so this PR can work with current datasets version
2022-07-07 18:02:22 +01:00
2544c1434f [Generate Tests] Make sure no tokens are force-generated (#18053) 2022-07-07 15:08:34 +02:00
91c4a3ab1a Added Command for windows VENV activation in installation docs (#18008)
* Added command for windows VENV activation

* changed linux and macos  specification
2022-07-07 08:18:44 -04:00
1b749a7f8d Sort doc toc (#18034)
* Add script to sort doc ToC

* Style and fixes

* Add check to quality job
2022-07-07 08:17:58 -04:00
1b5ea74783 Place inputs on device when include_inputs_for_metrics is True (#18046) 2022-07-07 08:17:49 -04:00
870ff9e1da Skip failing test until @gante fix it. 2022-07-06 15:13:28 -04:00
2e90c3df8f Doc to dataset (#18037)
* Link to the Datasets doc

* Remove unwanted file
2022-07-06 12:10:06 -04:00
be79cd7d8e Protect TFGenerationMixin.seed_generator so it's not created at import (#18044) 2022-07-06 16:36:28 +01:00
360719a6a4 TF: GPT-J compatible with XLA generation (#17986) 2022-07-06 15:02:07 +01:00
bf37e5c7f6 Fix T5 incorrect weight decay in Trainer and official summarization example (#18002)
* Add ALL_LAYERNORM_LAYERS for LayerNorm

* fix bug of appending layer norm
2022-07-06 09:44:19 -04:00
22edb68d49 Squash commits (#17981)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-07-06 08:11:48 -04:00
f681437203 Enable Past CI (#17919)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 18:08:36 +02:00
5ae087cf8e Fix T5/mT5 tests (#18029) 2022-07-05 16:22:03 +01:00
ec07eccc7d [Flax] Bump to v0.4.1 (#17966) 2022-07-05 15:17:17 +01:00
97db5b4223 Update expected values in DecisionTransformerModelIntegrationTest (#18016)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-05 14:53:43 +02:00
f0982682bd TF: T5 can now handle a padded past (i.e. XLA generation) (#17969)
* get the right slicing index for position_bias
2022-07-04 19:47:43 +01:00
e3139ad301 fixed calculation of ctc loss in TFWav2Vec2ForCTC (#18014)
Co-authored-by: Sreyan-G@NVIDIA <sreyang@nvidia.com>
2022-07-04 17:36:36 +01:00
96d833b211 Return scalar losses instead of per-sample means (#18013)
* Return scalar losses instead of per-sample means

* Make loss shape (1,) instead of scalar

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Allow scalar losses in test_loss_computation

* Remove XLA loss function for RAG
2022-07-04 17:26:19 +01:00
6cb19540c9 sort list of models (#18011) 2022-07-04 09:20:55 -04:00
7498db06a1 Replace BloomTokenizer by BloomTokenizerFast in doc (#18005) 2022-07-04 08:40:13 -04:00
3cfdefaa4d Fix typo in error message in generation_utils (#18000) 2022-07-04 06:04:58 -04:00
cf2578ae00 Refactor to inherit from nn.Module instead of nn.ModuleList (#17501)
* Refactor to inherit from nn.Module instead of nn.ModuleList

* Fix typo

* Empty to trigger CI re-run

Blender Bot tests failing (should be unrelated to this PR) and pass locally). I don't have sufficient permisisons to re-run the CI workflow (totally or from failed)
2022-07-04 06:03:42 -04:00
77ea5130a1 Add TF ResNet model (#17427)
* Rought TF conversion outline

* Tidy up

* Fix padding differences between layers

* Add back embedder - whoops

* Match test file to main

* Match upstream test file

* Correctly pass and assign image_size parameter

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Add in MainLayer

* Correctly name layer

* Tidy up AdaptivePooler

* Small tidy-up

More accurate type hints and remove whitespaces

* Change AdaptiveAvgPool

Use the AdaptiveAvgPool implementation by @Rocketknight1, which correctly pools if the output shape does not evenly divide by input shape c.f. 9e26607e22 (r900109509)

Co-authored-by: From: matt <rocketknight1@gmail.com>
Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>

* Use updated AdaptiveAvgPool

Co-authored-by: matt <rocketknight1@gmail.com>

* Make AdaptiveAvgPool compatible with CPU

* Remove image_size from configuration

* Fixup

* Tensorflow -> TensorFlow

* Fix pt references in tests

* Apply suggestions from code review - grammar and wording

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add TFResNet to doc tests

* PR comments - GlobalAveragePooling and clearer comments

* Remove unused import

* Add in keepdims argument

* Add num_channels check

* grammar fix: by -> of

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove transposes - keep NHWC throughout forward pass

* Fixup look sharp

* Add missing layer names

* Final tidy up - remove from_pt now weights on hub

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-07-04 10:59:15 +01:00
7b18702ca7 Add link to existing documentation (#17931) 2022-07-04 04:13:05 -04:00
a045cbd6c9 only a stupid typo, but it can lead to confusion (#17930) 2022-07-04 04:04:16 -04:00
49c8c67fb8 Exclude Databricks from notebook env only if the runtime is below 11.0 (#17988)
* Exclude Databricks from notebook env only if the runtime is below 11.0

* Dummy commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI

* Empty commit to trigger CI
2022-07-01 16:17:40 -04:00
6890d1960f Shifting labels for causal LM when using label smoother (#17987)
* Shifting labels for causal LM when using label smoother

When training CausalLM, loss is computed within model's foward() function and
labels are shifted internally. However, if label smoothing is applied, loss is
computed in trainer's compute_loss function and labels are not shifted.
This causes unintended confusion during the alignment of labels and corresponding
inputs. This commit is for resolving this confusion.

Resolves #17960

On branch shift_labels_for_causalLM
Changes to be committed:
	modified:   src/transformers/trainer.py
	modified:   src/transformers/trainer_pt_utils.py

* Update trainer.py

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 14:55:35 -04:00
6f0723a9be Restore original task in test_warning_logs (#17985)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 20:44:27 +02:00
009171d1ba Ensure PT model is in evaluation mode and lightweight forward pass done (#17970) 2022-07-01 19:33:47 +01:00
d6cec45801 XLA train step fixes (#17973)
* Copy inputs to train and test step before modifying them, as this breaks things

* Add XLA tests, fix our loss functions to be XLA-compatible

* make fixup

* Update loss computation test to expect vector of per-sample losses

* Patch loss for TFLED

* Patch loss for TFAlbert

* Add a tf_legacy_loss config flag that enables old loss functions

* Stop using config.get() because it's not a dict

* Skip loss computation test for RAG because its loss is very strange and I'm afraid to rewrite it

* make fixup

* Add XLA-compatible RAG loss

* Fix dtype of loss mask for TFAlbert

* Fix test for XLNet too because it overrides the default one

* make fixup

* Fix config test

* No more depending on GPU NaN behaviour

* Add test, avoid potential zero division

* Fix test item assignment

* Fix loss computation masking test

* make fixup

* Fix dtype bugs
2022-07-01 19:11:14 +01:00
485bbe79d5 [Flax] Add remat (gradient checkpointing) (#17843)
* [Flax] Add remat (gradient checkpointing)

* fix variable naming in test

* flip: checkpoint using a method

* fix naming

* fix class naming

* apply PVP's suggestions from code review

* make fix-copies

* fix big-bird, electra, roberta

* cookie-cutter

* fix flax big-bird

* move test to common
2022-07-01 18:33:54 +01:00
664688b94f higher atol to avoid flaky trainer test failure (#17979)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 17:53:16 +02:00
8bb2c387f4 Fix FlaxBigBirdEmbeddings (#17842)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 16:46:01 +02:00
b68d408f1b add ONNX support for BLOOM (#17961)
* add onnx support for BLOOM

* use TYPE_CHECKING for type annotations

* fix past_shape for bloom (different from gpt2)

* use logical_or instead of `+` for onnx support

* bigger `atol_for_validation` for larger bloom models

* copied -> taken because it's no longer an exact copy

* remove "copied from" comment

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-07-01 10:44:42 -04:00
462b7f3a94 fixing fsdp autowrap functionality (#17922)
* fixing fsdp autowrap functionality

* update version and quality

* update torch version to latest stable version
2022-07-01 19:40:55 +05:30
3a064bd4dd fix bias keyword argument in TFDebertaEmbeddings (#17940) 2022-07-01 14:48:43 +01:00
569b679adb Update expected values in CodeGen tests (#17888)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 15:33:36 +02:00
cb42502410 Fix typo in perf_train_gpu_one.mdx (#17983) 2022-07-01 09:19:13 -04:00
14fb8a63b9 skip some gpt_neox tests that require 80G RAM (#17923)
* skip some gpt_neox tests that require 80G RAM

* remove tests

* fix quality

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-07-01 09:04:38 -04:00
49cd736a28 feat: add pipeline registry abstraction (#17905)
* feat: add pipeline registry abstraction

- added `PipelineRegistry` abstraction
- updates `add_new_pipeline.mdx` (english docs) to reflect the api addition
- migrate `check_task` and `get_supported_tasks` from
  transformers/pipelines/__init__.py to
  transformers/pipelines/base.py#PipelineRegistry.{check_task,get_supported_tasks}

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: update with upstream/main

chore: Apply suggestions from sgugger's code review

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR updates

- revert src/transformers/dependency_versions_table.py from upstream/main
- updates pipeline registry to use global variables

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add tests for pipeline registry

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* tests: add test for output warning.

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* chore: fmt and cleanup unused imports

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

* fix: change imports to top of the file and address comments

Signed-off-by: Aaron Pham <29749331+aarnphm@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 12:11:08 -04:00
9cb7cef285 Add ONNX support for LayoutLMv3 (#17953)
* Add ONNX support for LayoutLMv3

* Update docstrings

* Update empty description in docstring

* Fix imports and type hints
2022-06-30 12:09:52 -04:00
fe14046421 skip some ipex tests until it works with torch 1.12 (#17964)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-30 18:05:29 +02:00
91e1f24ef3 CLI: convert sharded PT models (#17959)
* sharded conversion; add flag to control max hidden error

* better hidden name matching

* Add test: load TF from PT shards

* fix test (PT data must be local)
2022-06-30 16:51:03 +01:00
f25457b273 Fix number of examples for iterable dataset in distributed training (#17951) 2022-06-30 11:01:40 -04:00
e4d2588573 [Pipelines] Add revision tag to all default pipelines (#17667)
* trigger test failure

* upload revision poc

* Update src/transformers/pipelines/base.py

Co-authored-by: Julien Chaumond <julien@huggingface.co>

* up

* add test

* correct some stuff

* Update src/transformers/pipelines/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct require flag

Co-authored-by: Julien Chaumond <julien@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-30 16:37:18 +02:00
4f8361afe7 Unifying training argument type annotations (#17934)
* doc: Unify training arg type annotations

* wip: extracting enum type from Union

* blackening
2022-06-30 08:53:32 -04:00
205bc4152c Fix GPT-NeoX-20B past handling, attention computation (#17811)
* Fix GPT-NeoX-20B past handling, swap attention computation to hopefully avoid NaN, update docs

* 20B tests
2022-06-30 08:47:40 -04:00
692e61e91a Flax t5 Encoder (#17784)
* first draft adding Flax-t5-encoder and Flax-mt5-encoder

* imports

* after make fixup

* flax t5 encoder test

* black on test

* make fix-copies

* clean

* all_model_classes -> tuple

* clean test

* is_encoder_decoder=False in t5-enc tester

* remove file docstring before FlaxT5Encoder

* black

* isort

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* commit suggestions on src/transformers/models/t5/modeling_flax_t5.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* remove _get_encoder_module

* self.decoder_seq_length -> self.encoder_seq_length as t5-enc does not have decoder

* bugfix - self.module_class is class itself, not instance;

* docs for mt5 and t5

* call -> __call__ in t5 doc

* FlaxMT5EncoderModel to TYPE_HINT

* run doc-builder to allow change the files

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-06-30 00:49:02 +02:00
eb1493b15d Fix #17893, removed dead code (#17917)
* Removed dead position_id code, fix #17893

* Removed unused var

* Now ignores removed (dead) dict key for backward comp
2022-06-29 17:54:26 -04:00
fbc7598bab add MobileViT model (#17354)
* add MobileViT

* fixup

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove empty line

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* use clearer variable names

* rename to MobileViTTransformerLayer

* no longer inherit from nn.Sequential

* fixup

* fixup

* not sure why this got added twice

* rename organization for checkpoints

* fix it up

* Update src/transformers/models/mobilevit/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/mobilevit/test_modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mobilevit/modeling_mobilevit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* code style improvements

* fixup

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/mobilevit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/mobilevit/configuration_mobilevit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* download labels from hub

* rename layers

* rename more layers

* don't compute loss in separate function

* remove some nn.Sequential

* replace nn.Sequential with new MobileViTTransformer class

* replace nn.Sequential with MobileViTMobileNetLayer

* fix pruning since model structure changed

* fixup

* fix doc comment

* remove custom resize from feature extractor

* fix ONNX import

* add to doc tests

* use center_crop from image_utils

* move RGB->BGR flipping into image_utils

* fix broken tests

* wrong type hint

* small tweaks

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-29 16:07:51 -04:00
5feac3d080 Fix prepare_tf_dataset when drop_remainder is not supplied (#17950) 2022-06-29 19:23:39 +01:00
bc019b0e5f ExplicitEnum subclass str (JSON dump compatible) (#17933)
* ExplicitEnum subclass str (JSON dump compatible)

* allow union if one of the types is str
2022-06-29 13:49:31 -04:00
b089cca347 PyTorch 1.12.0 for scheduled CI (#17949)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 19:32:19 +02:00
d444edb3f6 OPT - Fix Softmax NaN in half precision mode (#17437) 2022-06-29 19:15:32 +02:00
9fe2403bc5 Use explicit torch version in deepspeed CI (#17942)
* use explicit torch version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 18:20:34 +02:00
4c722e9e22 fix regexes with escape sequence (#17943) 2022-06-29 08:55:22 -07:00
7c4c6f6084 Fix all is_torch_tpu_available issues (#17936)
* Fix all is_torch_tpu_available
2022-06-29 11:03:33 -04:00
77b76672e2 Fix img seg tests (load checkpoints from hf-internal-testing) (#17939)
* Revert "Skip failing test until they are fixed."

This reverts commit 8f400775fc5bc1011a2674dcfd5408d30d69f678.

* Use `tiny-detr` checkpts from `hf-internal-testing`
2022-06-29 10:19:37 -04:00
3cff4cc587 Add MVP model (#17787)
* Add MVP model

* Update README

* Remove useless module

* Update docs

* Fix bugs in tokenizer

* Remove useless test

* Remove useless module

* Update vocab

* Remove specifying

* Remove specifying

* Add #Copied ... statement

* Update paper link

* Remove useless TFMvp

* Add #Copied ... statement

* Fix style in test mvp model

* Fix some typos

* Fix properties of unset special tokens in non verbose mode

* Update paper link

* Update MVP doc

* Update MVP doc

* Fix README

* Fix typos in docs

* Update docs
2022-06-29 09:30:55 -04:00
8f400775fc Skip failing test until they are fixed. 2022-06-29 09:11:29 -04:00
47b9165109 Remove imports and use forward references in ONNX feature (#17926) 2022-06-29 09:02:53 -04:00
5cdfff5df3 Fix job links in Slack report (#17892)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 14:53:13 +02:00
a7eba83161 TF implementation of RegNets (#17554)
* chore: initial commit

Copied the torch implementation of regnets and porting the code to tf step by step. Also introduced an output layer which was needed for regnets.

* chore: porting the rest of the modules to tensorflow

did not change the documentation yet, yet to try the playground on the model

* Fix initilizations (#1)

* fix: code structure in few cases.

* fix: code structure to align tf models.

* fix: layer naming, bn layer still remains.

* chore: change default epsilon and momentum in bn.

* chore: styling nits.

* fix: cross-loading bn params.

* fix: regnet tf model, integration passing.

* add: tests for TF regnet.

* fix: code quality related issues.

* chore: added rest of the files.

* minor additions..

* fix: repo consistency.

* fix: regnet tf tests.

* chore: reorganize dummy_tf_objects for regnet.

* chore: remove checkpoint var.

* chore: remov unnecessary files.

* chore: run make style.

* Update docs/source/en/model_doc/regnet.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* chore: PR feedback I.

* fix: pt test. thanks to @ydshieh.

* New adaptive pooler (#3)

* feat: new adaptive pooler

Co-authored-by: @Rocketknight1

* chore: remove image_size argument.

Co-authored-by: matt <rocketknight1@gmail.com>

Co-authored-by: matt <rocketknight1@gmail.com>

* Empty-Commit

* chore: remove image_size comment.

* chore: remove playground_tf.py

* chore: minor changes related to spacing.

* chore: make style.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: amyeroberts <aeroberts4444@gmail.com>

* chore: refactored __init__.

* chore: copied from -> taken from./g

* adaptive pool -> global avg pool, channel check.

* chore: move channel check to stem.

* pr comments - minor refactor and add regnets to doc tests.

* Update src/transformers/models/regnet/modeling_tf_regnet.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* minor fix in the xlayer.

* Empty-Commit

* chore: removed from_pt=True.

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: amyeroberts <aeroberts4444@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-29 13:45:14 +01:00
e6d27ca5c8 TF: XLA beam search + most generation-compatible models are now also XLA-generate-compatible (#17857)
* working beam search 🎉

* XLA generation compatible with ALL classes

* add xla generation slow test
2022-06-29 12:41:01 +01:00
b8142753f9 Add missing comment quotes (#17379) 2022-06-29 06:16:36 -04:00
e113c5cb64 Remove render tags (#17897)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-29 06:06:42 -04:00
90415475bb Fix the Conda package build (#16737)
* Fix the Conda package build

* Update build.sh

* Update release-conda.yml
2022-06-29 06:03:16 -04:00
babd7b1a92 Remove DT_DOUBLE from the T5 graph (#17891) 2022-06-29 10:23:49 +01:00
6aae59d0b5 Compute min_resolution in prepare_image_inputs (#17915)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-29 10:30:20 +02:00
776855c752 Fixing a regression with return_all_scores introduced in #17606 (#17906)
Fixing a regression with `return_all_scores` introduced in #17606

- The legacy test actually tested `return_all_scores=False` (the actual
  default) instead of `return_all_scores=True` (the actual weird case).

This commit adds the correct legacy test and fixes it.

Tmp legacy tests.

Actually fix the regression (also contains lists)

Less diffed code.
2022-06-28 17:24:45 -04:00
5f1e67a566 Pin PyTorch in requirements as well 2022-06-28 15:56:10 -04:00
5a3d0cbdda Pin PyTorch while we fix compatibility with 1.12 2022-06-28 15:07:26 -04:00
6c8f4c9a93 Adding GroupViT Models (#17313)
* add group vit and fixed test (except slow)

* passing slow test

* addressed some comments

* fixed test

* fixed style

* fixed copy

* fixed segmentation output

* fixed test

* fixed relative path

* fixed copy

* add ignore non auto configured

* fixed docstring, add doc

* fixed copies

* Apply suggestions from code review

merge suggestions

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolve comment, renaming model

* delete unused attr

* use fix copies

* resolve comments

* fixed attn

* remove unused vars

* refactor tests

* resolve final comments

* add demo notebook

* fixed inconsitent default

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* rename stage->stages

* Create single GroupViTEncoderLayer class

* Update conversion script

* Simplify conversion script

* Remove cross-attention class in favor of GroupViTAttention

* Convert other model as well, add processor to conversion script

* addressing final comment

* fixed args

* Update src/transformers/models/groupvit/modeling_groupvit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-28 20:51:47 +02:00
b424f0b4a3 Mrbean/codegen onnx (#17903) 2022-06-28 14:57:53 +02:00
76d13de5ae Add ONNX support for DETR (#17904) 2022-06-28 14:48:43 +02:00
bfcd5743ee In group_texts function, drop last block if smaller than block_size (#17908) 2022-06-28 08:34:55 -04:00
f71895a633 Move logic into pixelshuffle layer (#17899)
* Move all pixelshuffle logic into layer

* Rename layer

* Use correct input to function
2022-06-28 13:04:19 +01:00
0094565fc5 Fix loss computation in TFBertForPreTraining (#17898) 2022-06-28 12:44:56 +01:00
1dfa03f12b Pin black to 22.3.0 to benefit from a stable --preview flag (#17918) 2022-06-28 04:32:18 -04:00
9eec4e937e [M2M100] update conversion script (#17916) 2022-06-28 10:15:07 +02:00
db2644b9eb Fix PyTorch/TF Auto tests (#17895)
* add loading_info

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:56:24 +02:00
f717d47fe0 Fix test_number_of_steps_in_training_with_ipex (#17889)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:55:02 +02:00
0b0dd97737 Update expected values in constrained beam search tests (#17887)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-28 08:53:53 +02:00
e02037b352 Fix bug in gpt2's (from-scratch) special scaled weight initialization (#17877)
* only special scale init each gpt2 c_proj weight once, on exact match

* fix double quotes

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
2022-06-27 15:01:49 -04:00
6dd00f6bd4 Update README_zh-hans.md (#17861) 2022-06-27 13:09:20 -04:00
71b2839fd3 bert: add conversion script for BERT Token Dropping TF2 checkpoints (#17142)
* bert: add conversion script for BERT Token Dropping TF2 checkpoints

* bert: rename conversion script for BERT Token Dropping checkpoints

* bert: fix flake errors in BERT Token Dropping conversion script

* bert: make doc-builder happy!!1!11

* bert: fix pytorch_dump_path of BERT Token Dropping conversion script
2022-06-27 13:08:32 -04:00
98742829d3 Fix add new model like frameworks (#17869)
* Add new model like adds only the selected frameworks object in init

* Small fix
2022-06-27 13:07:34 -04:00
afb71b6726 Add type annotations for RoFormer models (#17878) 2022-06-27 14:50:43 +01:00
9a3453846b fix (#17890)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 14:36:11 +02:00
3ec7d4cfe4 fix mask (#17837) 2022-06-27 14:08:18 +02:00
ee0d001de7 Add a TF in-graph tokenizer for BERT (#17701)
* Add a TF in-graph tokenizer for BERT

* Add from_pretrained

* Add proper truncation, option handling to match other tokenizers

* Add proper imports and guards

* Add test, fix all the bugs exposed by said test

* Fix truncation of paired texts in graph mode, more test updates

* Small fixes, add a (very careful) test for savedmodel

* Add tensorflow-text dependency, make fixup

* Update documentation

* Update documentation

* make fixup

* Slight changes to tests

* Add some docstring examples

* Update tests

* Update tests and add proper lowercasing/normalization

* make fixup

* Add docstring for padding!

* Mark slow tests

* make fixup

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* Fall back to BertTokenizerFast if BertTokenizer is unavailable

* make fixup

* Properly handle tensorflow-text dummies
2022-06-27 12:06:21 +01:00
401fcca6c5 Fix TF GPT2 test_onnx_runtime_optimize (#17874)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-27 09:27:30 +02:00
cc5c061e34 CLI: handle multimodal inputs (#17839) 2022-06-25 16:17:11 +01:00
e8eb699ee8 Properly get tests deps in test_fetcher (#17870)
* Properly get tests deps in test_fetcher

* Remove print
2022-06-24 16:56:46 -04:00
b03be78a4b Fix test_inference_instance_segmentation_head (#17872)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:36:45 +02:00
494aac65a7 Skip test_multi_gpu_data_parallel_forward for MaskFormer (#17864)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:35:00 +02:00
0e0f1f4692 Use higher value for hidden_size in Flax BigBird test (#17822)
* Use higher value for hidden_size in Flax BigBird test

* remove 5e-5

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 19:31:30 +02:00
2ef94ee039 Fix: torch.utils.checkpoint import error. (#17849) 2022-06-24 13:23:29 -04:00
ef28a402a9 Add type hints for gptneox models (#17858)
* feat: Add type hints for GPTNeoxForCausalLM and GPTNeoXModel

* fix: removed imported Dict type

* fix: Removed unused List import
2022-06-24 17:12:36 +01:00
061a73d16f [CodeGen] support device_map="auto" for sharded checkpoints (#17871) 2022-06-24 18:06:30 +02:00
d6b6fb9963 Add CodeGen model (#17443)
* Add CodeGen model

* Add missing key and switch order of super()

* Fix torch.ones init with uint8 instead of bool

* Address comments: copy statements and doc

* update tests

* remove old model parallel

* fix batch gen tests

* fix batch gen test

* update test_gpt2_sample_max_time

* fix codgen test and revert gpt2 test change

* Fix incorrect tie_word_embedding value, typo, URL

* Fix model order in README and styling

* Reorder model list alphabetically

* Set tie_word_embedding to False by default

* Apply suggestions from code review

* Better attn mask name & remove attn masked_bias

* add tokenizer for codegen

* quality

* doc tokenizer

* fix-copies

* add CodeGenTokenizer in converter

* make truncation optional

* add test for truncation

* add copyright

* fix-copies

* fix fast tokenizer decode

* Update src/transformers/models/codegen/tokenization_codegen.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* increase vocab_size in tests

Co-authored-by: patil-suraj <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-24 17:10:38 +02:00
447490015a Fix Splinter test (#17854)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-24 16:26:14 +02:00
73a0496c2f [tests/VisionEncoderDecoder] import to_2tuple from test utils (#17865) 2022-06-24 15:23:30 +02:00
NaN
bc7a6fdc02 Fix Constrained beam search duplication and weird output issue (#17814)
* fix(ConstrainedBeamSearchScorer.step_sentence_constraint): avoid hypothesis duplication between topk and advance

* fix(GenerationMixin.constrained_beam_search): appropriately assign beam scores instead of token scores
2022-06-24 14:56:08 +02:00
c2c0d9db5f Improve encoder decoder model docs (#17815)
* Copied all the changes from the last PR

* added in documentation_tests.txt

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/encoder-decoder.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: vishwaspai <vishwas.pai@emplay.net>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-06-24 14:48:19 +02:00
0917870510 Improve vision models (#17731)
* Improve vision models

* Add a lot of improvements

* Remove to_2tuple from swin tests

* Fix TF Swin

* Fix more tests

* Fix copies

* Improve more models

* Fix ViTMAE test

* Add channel check for TF models

* Add proper channel check for TF models

* Apply suggestion from code review

* Apply suggestions from code review

* Add channel check for Flax models, apply suggestion

* Fix bug

* Add tests for greyscale images

* Add test for interpolation of pos encodigns

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-24 11:34:51 +02:00
893ab12452 Auto-build Docker images before on-merge if setup.py was changed (#17573)
* Auto-build on setup modification

* Modify push-caller

* Make adjustments based on code review
2022-06-23 16:51:33 -04:00
75259b44bf Properly calculate the total train iterations and recalculate num epochs in no_trainer scripts (#17856) 2022-06-23 15:46:01 -04:00
7c1b91281f Index RNG states by global rank in saves (#17852) 2022-06-23 12:53:50 -04:00
7cf52a49de Nezha Pytorch implementation (#17776)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* wip

* wip

* wip

* most basic tests passes

* all tests pass now

* relative embedding

* wip

* running make fixup

* remove bert changes

* fix doc

* fix doc

* fix issues

* fix doc

* address comments

* fix CI

* remove redundant copied from

* address comments

* fix broken test

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-06-23 12:36:22 -04:00
acb709d551 Change no trainer image_classification test (#17635)
* Adjust test arguments and use a new example test
2022-06-23 11:11:16 -04:00
e70abdad1b Update modeling_cvt.py (#17846)
As shown in the colab notebook I added the missing type hints for " CvtForImageClassification
CvtModel
"
2022-06-23 16:08:36 +01:00
1a7ef3349f Fix broken test for models with batchnorm (#17841)
* Fix tests that broke when models used batchnorm

* Initializing the model twice does not actually...
...give you the same weights each time.
I am good at machine learning.

* Fix speed regression
2022-06-23 15:59:53 +01:00
18c263c4b6 BLOOM minor changes on tokenizer (#17823)
* few fixes:

- hardcode tokenizer padding side
- remove unused args

* few fixes:

- added new attribute on TokenizerTesterMixin
- added new slow test
- remove unused arg on tokenizer class

* make style

* Update src/transformers/models/bloom/tokenization_bloom_fast.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* make quality

* apply changes

- remove new attribute
- redefine test on the class

* add comments

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 15:57:12 +02:00
6f29029b05 Improve performance docs (#17750)
* add skeleton files

* fix cpu inference link

* add hint to make clear that single gpu section contains general info

* add new files to ToC

* update toctree to have subsection for performance

* add "coming soon" to the still empty sections

* fix missing title

* fix typo

* add reference to empty documents

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-23 14:51:54 +02:00
5bc779ae28 Fix an error message in BigBird (#17840)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 14:43:53 +02:00
3eed5530ec Fix properties of unset special tokens in non verbose mode (#17797)
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-06-23 14:40:13 +02:00
b2fdbaccdd change message (#17836) 2022-06-23 14:39:48 +02:00
d37a68e685 Add missing type hints for QDQBertModel (#17783)
* Feat: add missing type hints for QDQBertModel

* fix: ran black and isort

* feat: Add missing output type for QDQBertModel

* feat: Add type hints for QDQBertLMHeadModel and models starting with QDQBertFor

* fix: add missing return type for QDQBertModel

* fix: remove wrong return type for QDQBertEmbeddings

* fix: readded config argument to load_tf_weights_in_qdqbert

* fix: add BertConfig type to BertEmbeddings config due t checko error in ci

* fix: removed config type hints to avoid copy checks
2022-06-23 12:58:43 +01:00
4297f44b63 Update type hints modeling_yoso.py (#17827)
* Update modeling_yoso.py

* make fixup

* Update modeling_yoso.py

That should be it copied from previous PR
2022-06-23 12:37:29 +01:00
5cce3076c4 TF: generate without tf.TensorArray (#17801) 2022-06-23 12:28:08 +01:00
ab223fc148 add doctests for DETR (#17786)
* add: check labels for detr object detection doctests

* add: check shapes

* add: add detr to documentation_tests.py

* fix: make fixup output

* fix: add a comment
2022-06-23 13:26:14 +02:00
8d634b70e0 Fix push CI artifact path (#17788)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-23 12:31:22 +02:00
df8e6804c0 Offload fixes (#17810)
* Offload fixes

* Add a test
2022-06-22 12:23:07 -04:00
0d0c392c45 CLI: use hub's create_commit (#17755)
* use create_commit

* better commit message and description

* touch setup.py to trigger cache update

* add hub version gating
2022-06-22 16:50:21 +01:00
c366ce1011 Bump numpy from 1.21.0 to 1.22.0 in /examples/research_projects/lxmert (#17817)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:40 -04:00
af0d21e741 Bump numpy in /examples/research_projects/visual_bert (#17816)
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.0 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.0...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-22 09:29:28 -04:00
56b83cf049 initial commit (#17818) 2022-06-22 14:26:03 +02:00
1357038164 Add logits_processor parameter, used by generate, to Seq2SeqTrainer methods evaluate and predict (#17805)
* Add logits_processor parameter, used by `generate`, to `Seq2SeqTrainer` methods `evaluate` and `predict`

* Add all generate parameters to `Seq2SeqTrainer`, and also to `QuestionAnsweringSeq2SeqTrainer` which overrides it

* Remove `self._num_beams` from trainer classes

* - Run fixup
- Fix "Constraint" not exposed
- Fix synced_gpus to actually read from param

* Use kwargs

* Copy kwargs before making changes to it

* Fix style issues unused imports
2022-06-22 08:11:39 -04:00
16c6eb7ca1 Flax sharded (#17760) 2022-06-22 07:04:35 +02:00
3b00b623b7 Fix top_k_top_p_filtering having unexpected behavior (#17744)
- Fix `top_k_top_p_filtering` not passing `filter_value` to
   `TopPLogitsWarper` causing any top-p filtered logits to be -inf
   instead of specified value

 - Add corresponding test
2022-06-21 21:35:55 +02:00
3ccff0d400 Remove duplicate code (#17708) 2022-06-21 21:30:40 +02:00
26a6a42608 Improve error message Union not allowed (#17769)
* Improve error message Union not allowed

* make style

* Update src/transformers/hf_argparser.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 14:27:01 -04:00
abc400b06a Add final_layer_norm to OPT model (#17785)
* Add final_layer_norm to OPT model

* Add JAX and TF version

* Fix Keras name

* Woops

* Allow for non breaking change

* Apply suggestions from code review

* add tests

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-21 20:26:36 +02:00
52404cbad4 Properly check for a TPU device (#17802) 2022-06-21 13:39:55 -04:00
ef23fae596 Fix test for BF16 detection (#17803) 2022-06-21 18:31:15 +02:00
7cced021fa TF Sharded (#17713)
* initial commit

* update modeeling tf utils

* quality

* clean and update args

* update

* remove potential bug

* code quality

* update

* update max shard

* update tests for sharding from pretrained

* fix remaining test

* make style

* h5py if tf available

* update and fix test

* fix test

* style

* modified push to hub to support shard for TF

* quick fix

* update code

* merge branch main and style

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update based on reviews

* update doc

* update and style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* fix typo

* style

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 18:01:08 +02:00
f47afefb21 Use 5e-5 For BigBird PT/Flax equivalence tests (#17780)
* rename to check_pt_flax_outputs

* update check_pt_flax_outputs

* use 5e-5 for BigBird PT/Flax test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-21 17:55:26 +02:00
6a5272b205 Prepare transformers for v0.8.0 huggingface-hub release (#17716)
* Prepare CI for v0.8.0

* pin hfh (revert before merge)

* Revert "pin hfh (revert before merge)"

This reverts commit a0103140e1c77b810ffcb735192968bc03be3e1f.

* Test rc3

* Test latest rc

* Unpin to the RC

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-06-21 11:51:18 -04:00
7bc88c0511 Fix forward reference imports in DeBERTa configs (#17800) 2022-06-21 11:21:06 -04:00
27e907386a Fix Automatic Download of Pretrained Weights in DETR (#17712)
* added use_backbone_pretrained

* style fixes

* update

* Update detr.mdx

* Update detr.mdx

* Update detr.mdx

* update using doc py

* Update detr.mdx

* Update src/transformers/models/detr/configuration_detr.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-21 16:45:35 +02:00
b681e12d59 [ViTMAE] Fix docstrings and variable names (#17710)
* Fix docstrings and variable names

* Rename x to something better

* Improve messages

* Fix docstrings and add test for greyscale images

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 15:56:00 +02:00
3fab17fce8 Add link to notebook (#17791)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-06-21 14:53:08 +02:00
da2bd2ae96 [CodeParrot] Near-deduplication with jaccard similarity (#17054)
* deduplication draft

* update style

* update style test

* dummy test main

* rename modules

* rename functions

* return extremes in deduplicate_clusters

* update style

* cast str for gzip

* update doc string

* time processing

* use dataset map to compute minhash

* fill value for short token

* remove da map method

* update style

* use share object to multiprocess

* update style

* use f-string and minor fix

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* update style

* use module parameters

* change ds_dedup to ds_filter

* save ds_dedup

* mv test to script tests

* make jaccard threshold a parameter of deduplicate_dataset

* update style

* add doc strings

* update style

* add doc string for DuplicationIndex

* save files into data dir

* update readme

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>

* make near deduplication optional

* move near deduplication in README

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* use f string

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna Ben Allal <44069155+loubnabnl@users.noreply.github.com>
2022-06-21 14:23:36 +02:00
eb16be415a add onnx support for deberta and debertav2 (#17617)
* add onnx support for debertav2

* debertav2 -> deberta-v2 in onnx features file

* remove causal lm

* add deberta-v2-xlarge to onnx tests

* use self.type().dtype() in xsoftmax

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* remove hack for deberta

* remove unused imports

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* use generate dummy inputs

* linter

* add imports

* add support for deberta v1 as well

* deberta does not support multiple choice

* Update src/transformers/models/deberta/configuration_deberta.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* Update src/transformers/models/deberta_v2/configuration_deberta_v2.py

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>

* one line ordered dict

* fire build

Co-authored-by: Jingya HUANG <44135271+JingyaHuang@users.noreply.github.com>
2022-06-21 11:04:15 +02:00
8fcbe275c3 Add UL2 (just docs) (#17740)
* Add UL2
Co-authored-by: Daniel Hesslow <Daniel.Hesslow@gmail.com>

* Correct naming

* sort better

* up

* apply sylvains suggestion
2022-06-21 10:24:50 +02:00
da27c4b398 Update modeling_longt5.py (#17777)
On line 180, `torch.tensor(-1.0, xxx)` gives the error "TypeError: 'float' object cannot be interpreted as an integer" 
This is because the dtype here is `int64`.  For `dtype=int64`, this needs to simply be `-1`.  
This impacts the long-t5-tglogbal-x model.  It does not impact the long-t5-local-x version which does not appear to call this line.
2022-06-20 18:49:08 +02:00
d3cb28886a Not use -1e4 as attn mask (#17306)
* Use torch.finfo(self.dtype).min

* for GPTNeoX

* for Albert

* For Splinter

* Update src/transformers/models/data2vec/modeling_data2vec_audio.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix -inf used in Bart-like models

* Fix a few remaining -inf

* more fix

* clean up

* For CLIP

* For FSMT

* clean up

* fix test

* Add dtype argument and use it for LayoutLMv3

* update FlaxLongT5Attention

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-06-20 16:16:16 +02:00
fdb120805c Fix cache for GPT-Neo-X (#17764)
* Fix cache for GPT-Neo-X

* Add more tests
2022-06-20 08:43:36 -04:00
a2d34b7c04 deprecate is_torch_bf16_available (#17738)
* deprecate is_torch_bf16_available

* address suggestions
2022-06-20 08:40:11 -04:00
132402d752 TF: BART compatible with XLA generation (#17479)
* Also propagate changes to blenderbot, blenderbot_small, marian, mbart, and pegasus
2022-06-20 11:07:46 +01:00
6589e510fa Attempt to change Push CI to workflow_run (#17753)
* Use workflow_run event for push CI

* change to workflow_run

* Add comments

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-18 08:35:03 +02:00
0d92798b45 Added translation of index.mdx to Portuguese Issue #16824 (#17565)
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py

* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.

* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.

[ pipeline_tutorial.mdx ] - Grammar changes.

* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.

* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.

[ training.mdx ] - Added portuguese translation for training tutorial.

* [ preprocessing.mdx ] - WIP

* Update _toctree.yml

* Adding Pré-processamento to _toctree.yml

* Update accelerate.mdx

* Nits and eliminate preprocessing file while it is ready

* [ index.mdx ] - Translated to Portuguese the index apresentation page.

* [ docs/source/pt ] - Updated _toctree.yml to match newest translations.

* Fix build_pr_documentation.yml

* Fix index nits

* nits in _toctree

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-06-17 20:06:05 -04:00
522a9ece4b Save huggingface checkpoint as artifact in mlflow callback (#17686)
* Fix eval to compute rouge correctly for rouge_score

* styling

* moving sentence tokenization to utils from run_eval

* saving ckpt in mlflow

* use existing format of args

* fix documentation

Co-authored-by: Swetha Mandava <smandava@nvidia.com>
2022-06-17 14:14:03 -04:00
21a772426d Migrate HFDeepSpeedConfig from trfrs to accelerate (#17623)
* Migrate HFDeepSpeedConfig from trfrs to accelerate

* add `accelerate` to testing dep

* addressing comments

* addressing comments

Using `_shared_state` and avoiding object creation. This is necessary as `notebook_launcher` in `launcers.py` checks `len(AcceleratorState._shared_state)>0` to throw an error.

* resolving comments

1. Use simple API from accelerate to manage the deepspeed config integration
2. Update the related documentation

* reverting changes and addressing comments

* docstring correction

* addressing nits

* addressing nits

* addressing nits 3

* bumping up the accelerate version to 0.10.0

* resolving import

* update setup.py to include deepspeed dependencies

* Update dependency_versions_table.py

* fixing imports

* reverting changes to CI dependencies for "run_tests_pipelines_tf*" tests

These changes didn't help with resolving the failures and I believe this needs to be addressed in another PR.

* removing `accelerate` as hard dependency

Resolves issues related to CI Tests

* adding `accelerate` as dependency for building docs

resolves failure in Build PR Documentation test

* adding `accelerate` as dependency in "dev" to resolve doc build issue

* resolving comments

1. adding `accelerate` to extras["all"]
2. Including check for accelerate too before import HFDeepSpeedConfig from there

Co-Authored-By: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolving comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-17 23:29:35 +05:30
e44a569fef Bump notebook in /examples/research_projects/lxmert (#17743)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:33 -04:00
5089a2d412 Bump notebook in /examples/research_projects/visual_bert (#17742)
Bumps [notebook](http://jupyter.org) from 6.4.10 to 6.4.12.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-17 12:10:17 -04:00
2d7c1bb192 feat: add num_workers arg to DataLoader (#17751) 2022-06-17 10:53:45 -04:00
ca169dbdf1 Enable PyTorch nightly build CI (#17335)
* nightly build pytorch CI

* fix working dir

* change time and event name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-17 16:42:27 +02:00
3c7e56fbb1 Remove needless file 2022-06-16 12:21:12 -04:00
7c6ec195ad v4.21.0.dev0 2022-06-16 12:20:53 -04:00
36d4647993 Refine Bf16 test for deepspeed (#17734)
* Refine BF16 check in CPU/GPU

* Fixes

* Renames
2022-06-16 11:27:58 -04:00
f44e2c2b6f Fix tf shared embedding (#17730)
* fix the naming

* from pt in test for now

* make style

* slow test and removed from_pt
2022-06-16 14:17:47 +02:00
2eadb7e54a Fix mask token in the example (#17725)
VIsualBert uses bert-base-uncased tokenizer, therefore, instead of {mask}, the mask token should be [MASK]
2022-06-16 07:54:45 -04:00
3981ee8650 Sort the model doc Toc Alphabetically (#17723) 2022-06-15 16:11:56 -04:00
66f893320c normalize keys_to_ignore (#17722) 2022-06-15 11:59:11 -07:00
c3c62b5d2c CLI: Add flag to push TF weights directly into main (#17720)
* Add flag to push weights directly into main
2022-06-15 19:25:50 +01:00
6ebeeeef81 Update requirements.txt (#17719) 2022-06-15 13:51:41 -04:00
50415b84d6 Revert "Change push CI to run on workflow_run event (#17692)" (#17717)
This reverts commit b76290f44ce432e2ee7678a76036e8509167bae6.
2022-06-15 18:42:43 +02:00
7f14839f55 [Wav2Vec2Conformer] Official release (#17709)
* [Wav2Vec2Conformer] Official release

* remove from not-in-readme
2022-06-15 18:34:15 +02:00
242cc6e265 Documentation: RemBERT fixes (#17641)
* rembert: fix python codeblock

* rembert: use correct google/rembert checkpoint name in documentation

* rembert: use correct google/rembert checkpoint name in TF documentation
2022-06-15 18:17:59 +02:00
b76290f44c Change push CI to run on workflow_run event (#17692)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-15 17:43:31 +02:00
d453ea6120 fix tolerance for a bloom slow test (#17634) 2022-06-14 18:14:12 +02:00
120649bf3a [LongT5] disable model parallel test (#17702) 2022-06-14 17:27:39 +02:00
7ec9128e5a FX function refactor (#17625)
* Function refactor

* Update src/transformers/utils/fx.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-14 17:22:21 +02:00
edb672ac5e Add BloomForSequenceClassification and BloomForTokenClassification classes (#17639)
* add new bloom classes

* (feat) add bloom classification tests; make style

* style: change import in test

* add some typehints to bloom classes

* merge main into branch

* fix: input checking in bloom seq classification

* fix tests

* change model class tests

* fix few tests

- more tests should pass
- one test left

* make token classifier return hidden states

* style: make BLOOM typehints consistent

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
2022-06-14 17:10:12 +02:00
bd43151af4 Swin main layer (#17693)
* Swin models call TFSwinMainLayer

* Tidy up
2022-06-14 14:28:12 +01:00
3960ce917f Include a comment to reflect Amy's contributions (#17689)
* Add note on amy's contribution.

Co-authored-by: Amy Roberts <aeroberts4444@gmail.com>

* remove non-tech comment.

Co-authored by: Amy Roberts <aeroberts4444@gmail.com>

Co-authored-by: Amy Roberts <aeroberts4444@gmail.com>
2022-06-14 09:15:39 -04:00
9068fa6c57 Rag end2end new (#17650)
* check

* update the RAG-end2end with new PL and RAY

* removed unwanted comments
2022-06-14 14:56:32 +02:00
53496ac510 [LongT5] Rename checkpoitns (#17700) 2022-06-14 14:10:50 +02:00
3b29c9fdb7 Extend Transformers Trainer Class to Enable PyTorch Torchscript for Inference (#17153)
* add jit mode option and model wrap

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refine code

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add ut and refine code

* code refine

* refine code

* add inference doc

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add cpu inference performance doc

* Update perf_infer_cpu.mdx

* Update perf_infer_cpu.mdx

* Update performance.mdx

* Update _toctree.yml

* refine jit func naming

* Update _toctree.yml

* Delete perf_infer_gpu_one.mdx

* Update perf_infer_cpu.mdx

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add none check before jit

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/perf_infer_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-14 07:56:47 -04:00
df15703b42 Fix doc builder Dockerfile (#17435)
* Fix doc builder Dockerfile

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-14 09:58:48 +02:00
a72f1c9f5b Add LongT5 model (#16792)
* Initial commit

* Make some fixes

* Make PT model full forward pass

* Drop TF & Flax implementation, fix copies etc

* Add Flax model and update some corresponding stuff

* Drop some TF things

* Update config and flax local attn

* Add encoder_attention_type to config

* .

* Update docs

* Do some cleansing

* Fix some issues -> make style; add some docs

* Fix position_bias + mask addition + Update tests

* Fix repo consistency

* Fix model consistency by removing flax operation over attn_mask

* [WIP] Add PT TGlobal LongT5

* .

* [WIP] Add flax tglobal model

* [WIP] Update flax model to use the right attention type in the encoder

* Fix flax tglobal model forward pass

* Make the use of global_relative_attention_bias

* Add test suites for TGlobal model

* Fix minor bugs, clean code

* Fix pt-flax equivalence though not convinced with correctness

* Fix LocalAttn implementation to match the original impl. + update READMEs

* Few updates

* Update: [Flax] improve large model init and loading #16148

* Add ckpt conversion script accoring to #16853 + handle torch device placement

* Minor updates to conversion script.

* Typo: AutoModelForSeq2SeqLM -> FlaxAutoModelForSeq2SeqLM

* gpu support + dtype fix

* Apply some suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* * Remove (de)parallelize stuff
* Edit shape comments
* Update README.md
* make fix-copies

* Remove caching logic for local & tglobal attention

* Apply another batch of suggestions from code review

* Add missing checkpoints
* Format converting scripts
* Drop (de)parallelize links from longT5 mdx

* Fix converting script + revert config file change

* Revert "Remove caching logic for local & tglobal attention"

This reverts commit 2a619828f6ddc3e65bd9bb1725a12b77fa883a46.

* Stash caching logic in Flax model

* Make side relative bias used always

* Drop caching logic in PT model

* Return side bias as it was

* Drop all remaining model parallel logic

* Remove clamp statements

* Move test files to the proper place

* Update docs with new version of hf-doc-builder

* Fix test imports

* Make some minor improvements

* Add missing checkpoints to docs
* Make TGlobal model compatible with torch.onnx.export
* Replace some np.ndarray with jnp.ndarray

* Fix TGlobal for ONNX conversion + update docs

* fix _make_global_fixed_block_ids and masked neg  value

* update flax model

* style and quality

* fix imports

* remove load_tf_weights_in_longt5 from init and fix copies

* add slow test for TGlobal model

* typo fix

* Drop obsolete is_parallelizable and one warning

* Update __init__ files to fix repo-consistency

* fix pipeline test

* Fix some device placements

* [wip]: Update tests -- need to generate summaries to update expected_summary

* Fix quality

* Update LongT5 model card

* Update (slow) summarization tests

* make style

* rename checkpoitns

* finish

* fix flax tests

Co-authored-by: phungvanduy <pvduy23@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: patil-suraj <surajp815@gmail.com>
2022-06-13 22:36:58 +02:00
1690094bdb Add FP16 Support for SageMaker Model Parallel (#17386)
* Add FP16 supporot for sagemaker model parallel

* minor fix

* fix indentation

* handle mix precision exception for smmp

* minor fix

* remove amp implementation on SMMP

* remove redundant stuff

* reformat trainer

* restyling

* reformat
2022-06-13 13:45:25 -04:00
4aabf9b52c enable cpu distribution training using mpirun (#17570)
* enable cpu distribution training using mpirun

*command like
*    mpirun -n 2 python3 run_qa.py --no_cuda --xpu_backend ccl xxxx
*MASTER_ADDR and MASTER_PORT should be set as env
*export MASTER_ADDR=127.0.0.1
*export MASTER_PORT=29500

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* fix according to the review comment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>

* use accelerate logic for cpu distribution training to set "RANK","LOCAL_RANK","WORLD_SIZE" environment

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
2022-06-13 13:34:07 -04:00
457d4a3245 Add Ray's scope to training arguments (#17629)
* allow scope from trainer arg

* add ray_scope to training args

* escape double quotes

* make style && quality

* attempt to solve doc style issues

* splitting up URLs for style

* make fixup

* Update src/transformers/training_args.py

Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>

* make style

Co-authored-by: Antoni Baum <antoni.baum@protonmail.com>
2022-06-13 10:44:06 -04:00
5483388631 Update modeling_gpt_neox.py (#17575)
I'm guessing that the intention was to have the `_no_split_modules` class attribute for `GPTNeoXPreTrainedModel` to be set to `["GPTNeoXLayer"]`, akin to how its set as `["GPTJBlock"]` for `GPTJPreTrainedModel`.

If this is incorrect, please feel free to just close the PR.

Thanks!
2022-06-13 09:59:27 -04:00
a1344dbfb9 Fix dtype getter (#17668)
* Fix dtype getters

* Proper fix for dtype getter

* Style and commant

* Always use last for consistency

* Quality
2022-06-13 09:34:45 -04:00
73083581a4 explicitly set utf8 for Windows (#17664) 2022-06-13 08:05:45 -04:00
c1daf724ea Fixed documentation typo, parameter name is evaluation_strategy, not eval_strategy (#17669)
Co-authored-by: Saint <saint@st-mini.local>
2022-06-13 08:02:06 -04:00
66336dc183 Add Visual Question Answering (VQA) pipeline (#17286)
* wip

* rebase

* all tests pass

* rebase

* ready for PR

* address comments

* fix styles

* add require_torch to pipeline test

* remove remote image to improve CI consistency

* address comments; fix tf/flax tests

* address comments; fix tf/flax tests

* fix tests; add alias

* repo consistency tests

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* address comments

* Update src/transformers/pipelines/visual_question_answering.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* merge

* Update src/transformers/models/auto/modeling_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* merge

Co-authored-by: Sijun He <sijunhe@Sijuns-MacBook-Pro.local>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-13 07:49:44 -04:00
a5282ab4bc Fix typo in adding_a_new_model README (#17679) 2022-06-13 03:22:07 -04:00
224bde91ca Avoid GPU OOM for a TF Rag test (#17638)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-10 18:50:29 +02:00
39e146146b fix typo from emtpy to empty (#17643) 2022-06-10 18:50:11 +02:00
13e875cc07 [Generation Test] Make fast test actually fast (#17661) 2022-06-10 18:49:03 +02:00
b4eef63a1d [Data2Vec] Speed up test (#17660) 2022-06-10 18:48:58 +02:00
5e428b71b4 [BigBirdFlaxTests] Make tests slow (#17658)
* [BigBirdFlaxTests] Make tests slow

* up

* correct black with new version
2022-06-10 16:54:14 +02:00
3114df41f4 update README.md (#17657)
- use CodeParrot scores of v1.1
- change evaluation command to use accelerate
2022-06-10 15:55:24 +02:00
c99ddcc441 🐛 Properly raise RepoNotFoundError when not authenticated (#17651)
* Raise RepoNotFoundError in case of 401

* Include changes from revert-17646-skip_repo_not_found

* Add a comment

* 💄 Code quality

* 💚 Update `get_from_cache` test

* 💚 Code quality & skip failing test
2022-06-10 15:41:53 +02:00
35b16032cb Fixes #17128 . (#17356)
VisibleDeprecationWarning is addressed by specifying dtype=object when creating numpy array.
Update code based on review feedback.
Undo whitespace changes to tokenization_utils_base.py.

Co-authored-by: I like data <ilikedata@nym.hush.com>
2022-06-10 09:36:48 -04:00
b88090914d Fix dtype getters (#17656) 2022-06-10 07:43:13 -04:00
fd1e67033e Add skip logic for attentions test - Levit (#17633) 2022-06-10 12:46:30 +02:00
cdaed367b0 Fix style 2022-06-10 11:53:44 +02:00
2bc305107a Fix style 2022-06-10 11:20:14 +02:00
1d463303fe Bump cookiecutter in /examples/research_projects/decision_transformer (#17645)
Bumps [cookiecutter](https://github.com/cookiecutter/cookiecutter) from 1.7.2 to 2.1.1.
- [Release notes](https://github.com/cookiecutter/cookiecutter/releases)
- [Changelog](https://github.com/cookiecutter/cookiecutter/blob/master/HISTORY.md)
- [Commits](https://github.com/cookiecutter/cookiecutter/compare/1.7.2...2.1.1)

---
updated-dependencies:
- dependency-name: cookiecutter
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-06-10 04:27:51 -04:00
49becbaa55 Enable crop_center method to handle (W, H, C) images (#17626)
* enable crop_center method to handle (W, H, C) images

* minor style and comment edits
2022-06-10 09:18:42 +03:00
6e93d94792 Move Clip image utils to image_utils.py (#17628)
* move clip image utils to image_utils.py

* dont default to square images

* fix typo, revert change to test file

* edit convert_rgb comments
2022-06-10 09:12:17 +03:00
af4a1ecad0 Skip tests until bug is fixed. (#17646) 2022-06-09 21:32:19 -04:00
e0b58fb5ba Translation/autoclass (#17615)
* Add Italian translation for autoclass_tutorial.mdx

* Fix synthesis

Co-authored-by: martina.fumanelli <martina.fumanelli@MBP-di-martinafumanelli.local>
2022-06-09 20:56:44 -04:00
df1ec6b122 didn't exist in pt-1.9 (#17644) 2022-06-09 16:01:01 -07:00
fba0b6a820 convert assertion to raised exception in debertav2 (#17619)
* convert assertion to raised exception in debertav2

* change assert to raise exception in deberta

* fix messages
2022-06-09 18:18:29 -04:00
da0bed5f4a Pre-build DeepSpeed (#17607)
* pre-build deepspeed

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-09 23:02:33 +02:00
75343de938 [modeling_utils] torch_dtype/auto floating dtype fixes (#17614)
* [modeling_utils] torch_dtype/auto fixes

* add test

* apply suggestions

* add missing fallback

* Renaming things

* Use for else

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-06-09 10:18:26 -07:00
c38f4e1f1c Running a pipeline of float16. (#17637)
When we're preparing the tensors for CPU for postprocessing, we need
to upgrade the `float16` to `float32` since CPUs don't have instructions
for `[b]float16`.
2022-06-09 19:04:42 +02:00
90ed9ae2d1 fix use_amp rename after pr 17138 (#17636) 2022-06-09 09:38:48 -07:00
c70dacde94 Fix very long job failure text in Slack report (#17630)
* Fix very long job failure text in Slack report

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-09 18:37:48 +02:00
2351729f7d Adding top_k argument to text-classification pipeline. (#17606)
* Adding `top_k` and `sort` arguments to `text-classification` pipeline.

- Deprecate `return_all_scores` as `top_k` is more uniform with other
  pipelines, and a superset of what `return_all_scores` can do.
  BC is maintained though.
  `return_all_scores=True` -> `top_k=None`
  `return_all_scores=False` -> `top_k=1`

- Using `top_k` will imply sorting the results, but using no argument
  will keep the results unsorted for backward compatibility.

* Remove `sort`.

* Fixing the test.

* Remove bad doc.
2022-06-09 18:33:10 +02:00
29080643eb Mention in the doc we drop support for fairscale (#17610) 2022-06-09 12:20:39 -04:00
9fc34235fa Use shape_list to safely get shapes for Swin (#17591)
* Use shape_list to safely get shapes

* Add relevant test

* Tidy and add metrics

* Resolve dynamic shaping issues and move test

* Tidy up and all samples in batch

* Formatting
2022-06-09 15:50:50 +02:00
e0be053e43 Add ONNX support for ConvNeXT (#17627) 2022-06-09 09:31:02 -04:00
5323094a22 Add ONNX support for ResNet (#17585)
* Add ONNX support for ResNet

* Add ONNX test

* make fix-copies
2022-06-09 08:44:27 -04:00
ca2a55e9df BLOOM (#17474)
* adding template

* update model

* model update

* update conf for debug model

* update conversion

* update conversion script

* update conversion script

* fix missing keys check

* add tests to test the tokenizer in the local machine

* Change variable name

* add tests on xnli dataset

* add more description

* add descriptions + clearer code

* clearer code

* adding new tests + skipping few tests because of env problems

* change comment

* add dtype on the configuration

* add test embeddings

* add hardcoded test

* fix dtype issue

* adding torch.float16 to config

* adding more metrics (min, max, mean)

* add sum

* now the test passes with almost equal

* add files for conversion - test passes on cpu  gpu

* add final changes

* cleaning code

* add new args in the docstring

* fix one liner function

* remove macros

* remove forward attention

* clean up init funtion

* add comments on the issue

* rm scale mask softmax

* do make style

* fix dtype in init

* fixing for loop on att probs

* fix style with black

* fix style + doc error

* fix and debug CI errors (docs + style)

* some updates

- change new operations
- finally add scaled softmax
- added new args in the config

* make use cache working

* add changes

- save sharded models
- final changes on the modeling script

* add changes

- comment on alibi
- add TODO on seq length

* test commit

- added a text to test the commit

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* final changes

- attention mask change
- generation works on BS176b

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* changes - model + conversion

* move to correct dir

* put ,

* fex fixes

* fix tokenizer autodoc

* fix minor CI issues

* fix minor CI issues

* fix minor CI issues

* fix style issue

* fix minor import issues

* fix few issues

* remove def main on the test

* add require torch

* replace decorator with 'with'

* fix style

* change to bloom

* add quick fix tokenizer

* fix tokenizer file

* fix tokenizer

- merge tests
- small fixes

* fix import issue

* add bloom to readme

* fix consistency

* Update docs/source/en/model_doc/bloom.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

fix comment issues on file headers

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix doc issue

* small fix - modeling test

* some changes

- refactor some code
- taking into account reviews
- more tests should pass
- removed pruning tests

* remove useless division

* more tests should pass

* more tests should pass

* more tests should pass

* let's try this one

-add alibi offset
- remove all permutes to make the grad operations work
- finger crossed

* refactor

- refactor code
- style changes
- add new threshold for test

* major changes

- change BLOOM to Bloom
- add quick doc on bloom.mdx
- move embeddings test on modeling test

* modify readme

* small fixes

* small fix

- better threshold for a test

* remove old test file from fetcher

* fix small typo

* major change

- change BloomLMHead to BloomForCausalLM

* remove onnx config

* major changes

- refactor the code
- remove asserts
- change tol for test

* make style

* small change

* adding a slow test + commenting old ones for now

* make style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

* fix duplicates

* cleaning comments on config

* clean a bit conversion file

* refacor a bit modeling file

* refactor tokenizer file

* fix tokenization test issue

* fix tokenization issue #2

* fix tokenization issue second try

* fix test issue

* make style + add suggestions

* change test fetcher

* try this one

- slow tests should pass
- finger crossed

* possible final changes

* make style

* try fix padding side issue

* fix side

* fix padding issue

* fix ko-readme

* fix config auto

* cleaning modeling file

* keep bloom in caps in ko

* update config docs

* remove pretraining_pp

* remove model parallel

* update config

- add correct config files

* fix duplicates

* fix fetcher

* fix refactor issue

- remove divide function

* try to remove alibi

* small fixes

- fix alibi
- remove seq length
- refactor a bit the code

* put correct values

- fix bos and eos token ids

* fix attention mask loop

Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>

* small fixes:

- remove skip bias add

* small fixes

- fix typo in readme
- fix typos in config

* small changes

- remove a test
- add reconstruction test
- change config

* small changes

- change Scaled Softmax to BloomScaledSoftmax

* small fixes

- fix alibi dtype

* major changes

- removing explicit dtype when loading modules
- fixing test args (torch_dtype=auto)
- add dosctring

* fix readmes

* major changes

- now bloom supports alibi shifting
- refactor a bit the code
- better test tolerance now

* refactor a bit

* refactor a bit

* put correct name on test

* change docstring

* small changes

- fix docstring modeling
- fix test tolerance

* fix small nit

- take dtype from tensors in the conversion script

* minor fix

- fix mdx issue

* minor fix

- change config docstring

* forward contrib credits from PR14084

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply modifications

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* resolve softmax upcast

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>

* final changes modeling

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Merge commit 'd156898f3b9b2c990e5963f5030a7143d57921a2'

* merge commit

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* apply suggestions

Apply suggestions from Stas comments
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix gradient checkpointing

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add slow but exact

* add accelerate compatibility

Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>

* forward contrib credits

Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix torch device on tests

* make style

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix nits

Co-authored-by: patrickvonplaten<patrickvonplaten@users.noreply.github.com>

* remove final nits

* fix doc

- add more details on the doc
- add links to checkpoints

* Update src/transformers/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* apply suggestions

Co-authored-by: sgugger <sgugger@users.noreply.github.com>

* put test torchscript to false

* Update src/transformers/models/bloom/modeling_bloom.py

Co-authored-by: justheuristic <justheuristic@gmail.com>

* fix alibi

- create alibi only once

* add small doc

* make quality

* replace torch.nn

* remove token type emb

* fix fused op + output bias

* add fused op

- now can control fused operation from config

* remove fused op

* make quality

* small changes

- remove unsed args on config
- removed bias gelu file
- make the model torchscriptable
- add torchscript slow tests

* Update src/transformers/models/bloom/modeling_bloom.py

* fix slow

* make style

* add accelerate support

* add bloom to deepspeed tests

* minor changes

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* minor change

* slow tests pass

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/bloom.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* minor changes:

- change docstring
- add link to paper

Co-authored-by: Thomwolf <thomwolf@gmail.com>
Co-authored-by: Thomas Wolf <thomas@huggingface.co>
Co-authored-by: thomasw21 <24695242+thomasw21@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: sIncerass <sheng.s@berkeley.edu>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Niklas Muennighoff <n.muennighoff@gmail.com>
Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>
Co-authored-by: thomasw21 <thomasw21@users.noreply.github.com>
Co-authored-by: sgugger <sgugger@users.noreply.github.com>
Co-authored-by: patrickvonplaten <patrickvonplaten@users.noreply.github.com>
Co-authored-by: LysandreJik <LysandreJik@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: justheuristic <justheuristic@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-06-09 12:00:40 +02:00
dfc76b2542 has_attentions - consistent test skipping logic and tf tests (#17495) 2022-06-09 09:50:03 +02:00
66e8656778 CLI: Print all different tensors on exception (#17612) 2022-06-08 18:30:03 +01:00
e9d5138768 TF: Merge PT and TF behavior for Bart when no decoder_input_ids are passed (#17593)
* Merge PT and TF behavior
2022-06-08 17:42:23 +01:00
e160a5dd62 Fix telemetry URL (#17608) 2022-06-08 11:34:05 -04:00
7d0b6fc340 CLI: Properly detect encoder-decoder models (#17605) 2022-06-08 16:15:59 +01:00
ee82c86bdc Fix link for community notebooks (#17602)
* Fix link for community notebooks

This fixes the link for community notebooks due to reorganization.

* Replace old link with fully link to the doc page

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 10:51:39 -04:00
34097b3304 Extend Transformers Trainer Class to Enable CPU AMP and Integrate Intel Extension for PyTorch (#17138)
* init PR

* fix import ipex

* minor fix on bf16

* refine optimizer

* refine args notes

* refine code

* refine ipex optimize args

* refine half_precision_backend

* black format

* isort format

* isort format files

* flake8 format

* doc builder format

* refine codes

* remove jit and optim bits

* black preview format

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* refine code

* refine notes

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* code refine

* add ipex ut

* add performance cpu doc

* link to the cpu doc from main perf doc

* install ipex into CI's docker

* Update perf_train_cpu.mdx

* Update docs/source/en/perf_train_cpu.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update perf_train_cpu.mdx

* Update perf_train_cpu.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-06-08 09:41:57 -04:00
ae7bae8fe7 fix train_new_from_iterator in the case of byte-level tokenizers (#17549) 2022-06-08 15:30:41 +02:00
264128cb9d Explicit versions in docker files (#17586)
* Update docker file

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-08 15:04:22 +02:00
9d99489f2f Add TFData2VecVision for semantic segmentation (#17271)
* feat: initial implementation of data2vec segmentation model in TF.

* chore: minor corrections to make the segmenter work.

* chore: removed unncessary files.

* chore: add tests and other modifications.

* fix: loss computation for segmentation.

* chore: remove unused variable.

* chore: formatting.

* added a dummy adaptive pooling layer.

* removed unnecessary file.

* potentially add identifiers to layer names.

* fix: layer naming.

* chore: removed unnecessary print.

* Skipping unneeded test

* chore: add logging to debug tolerance.

* fix: segmentation tests for tfdata2vecvision

* chore: make style.

* fix: layer names, assertion to be resolved.

* Bumping test tolerance a bit

* chore: bump the tol in PT test.

Co-authored-by: matt <rocketknight1@gmail.com>
2022-06-08 14:03:18 +01:00
78c695eb62 CLI: add stricter automatic checks to pt-to-tf (#17588)
* Stricter pt-to-tf checks; Update docker image for related tests

* check all attributes in the output

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 10:45:10 +01:00
c6cea5a78c fix (#17589)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-08 01:50:59 +02:00
119e3c0fc8 M-CTC-T Model (#16402)
* added cbs to notebooks, made copy-paste error fix in generation_utils

* initial push for mctc model

* mctc feature extractor done

* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.

* added processor, tokenizer and their tests for MCTC. Have added an MCTC modeling test, adjusting model code accordingly.

* passing attention, now struggling to figure out how attention masks make sense here

* works when excluding attention masks. ask later how one would integrate attention maskshere

* bizarre configuration error (model prefix comes first in config dict json and messes up the order)

* all passing but bizzarre config dict ordering issue when to_dict

* passing all major tests

* feature extraction, processor, tokenizer added & tests passing

* style & consistency & other logistical fixes

* copy paste fix

* model after feature extraction working

* commiting final feature extraction results; need to fix normalization

* feature extraction passing tests; probably should add tests on the specific flashlight-copied functions?

* delete print ; format code a bit

* fixing tests

* passing major tests

* fixing styles

* completed tokenization test with real example; not sure if these values are entirely correct.

* last test fixes from local

* reverting accidentally included custom setup configs

* remove load tf weights; fix config error

* testing couldnt import featureextractor

* fix docs

* fix docs

* resolving comments

* style fixes

* style fixes

* Update to MCTCConv1dSubSampler

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* relposemb fixes

* conv1d name issue; expecting config fail with paraentheses

* fix config issue

* fix config issue

* fix config issue

* change everything to MCTCT

* fixing naming change errors

* archive list

* copyrights and docs

* copyrights and docs

* copyrights and docs

* merge resolution

* move tests, fix to changed optionaldependency structure

* test directories changed

* fixing tests

* how to avoid tf tests?

* how to avoid tf tests?

* tests passing locally

* allow mctctprocessor imported any env

* allow mctctprocessor imported any env

* fixed second round of feedback, need to fix docs

* doc changes not being applied

* all fixed

* style fix

* feedback fixes

* fix copies and feature extraction style fix

* Update tests/models/visual_bert/test_modeling_visual_bert.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* copy paste huggingface:main visual bert

* added eof newline to visual bert; all tests are passing otherwise

* fix slow tests by adding attention mask

* change model id to speechbrain

* make fix-copies

* fix readme unwanted deletes

* fixing readmes, make fix-copies

* consistent M-CTC-T naming

* Update src/transformers/models/mctct/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* all fixed but variable naming

* adjust double quotes

* fixed variable names

* copyright and mr quilter

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct slow tests

* make fix-copies

* Update src/transformers/models/mctct/configuration_mctct.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/mctct/configuration_mctct.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* m-ctc-t not mctct

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-08 00:33:07 +02:00
706bb8364d quicktour.mdx en -> pt translation (#17074)
* Quicktour Portuguese Translation

Translated quicktour.mdx until line 161

* Finished translating quicktour.mdx

Ready to upload and adjust eventual .mdx or translation mistakes.

* Add _toctree.yml and fix nits

* Fixed pt-br mdx syntax problem

Closed <frameworkcontent> instance

* Changed </frameworkcontent> line

* Copied missing block from english version of quicktour.mdx

* Reviwed the entire file once again. It should be working now.

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-06-07 17:35:05 -04:00
5c8f601007 Fx support for Deberta-v[1-2], Hubert and LXMERT (#17539)
* Support for deberta and deberta-v2

* Support for LXMert

* Support for Hubert

* Fix for pt1.11

* Trigger CI
2022-06-07 18:05:20 +02:00
3cab90279f Add examples telemetry (#17552)
* Add examples telemetry

* Alternative approach

* Add to all other examples

* Add to templates as well

* Put framework separately

* Same for TensorFlow
2022-06-07 11:57:52 -04:00
9e72eb4416 Skip disk offload test for T5 2022-06-07 11:11:40 -04:00
b118730745 Fix gendered sentence in Spanish translation(#17558) 2022-06-07 14:09:39 +02:00
b6a65ae52a Fix circular import in onnx.utils (#17577)
* Fix circular import in onnx.utils

* Add comment for test fetcher

* Here too

* Style
2022-06-07 08:00:36 -04:00
9aa230aa2f Use latest stable PyTorch/DeepSpeed for Push & Scheduled CI (#17417)
* update versions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-07 11:53:05 +02:00
ad71965246 Remove circular imports in layoutlm/__init__.py (#17576) 2022-06-06 22:41:41 +02:00
19a8a3036d Add magic method to our TF models to convert datasets with column inference (#17160)
* Add method to call to_tf_dataset() with column inference

* Add test for dataset creation

* Add a default arg for data collator

* Fix test

* Fix call with non-dev version of datasets

* Test correct column removal too

* make fixup

* More tests to make sure we remove unwanted columns

* Fix test to avoid predicting on unbuilt models

* Fix test to avoid predicting on unbuilt models

* Fix test to remove unwanted head mask columns from inputs

* Stop pushing your debug breakpoints to the main repo of the $2bn company you work for

* Skip the test in convnext because no grouped conv support

* Drop bools from the dataset dict

* Make style

* Skip the training test for models whose input dicts don't give us labels

* Skip transformerXL in the test because it doesn't return a simple loss

* Skip TFTapas because of some odd NaN losses

* make style

* make fixup

* Add docstring

* fixup

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove breakpoint from tests

* Fix assert, add requires_backends

* Protect tokenizer import with if TYPE_CHECKING

* make fixup

* Add noqa, more fixup

* More rearranging for ~* aesthetics *~

* Adding defaults for shuffle and batch_size to match to_tf_dataset()

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-06 15:53:49 +01:00
d28b7aa8cb [deepspeed / testing] reset global state (#17553)
* [deepspeed] fix load_best_model test

* [deepspeed] add state reset on unittest tearDown
2022-06-06 07:49:25 -07:00
34a886fce3 Translation/italian: added pipeline_tutorial.mdx [Issue: #17459] (#17507)
* added toctree.yml file

* first translation

* added pipeline_tutorial.mdx translation

added pipeline_tutorial.mdx
updated _toctree.yml

* updated pipeline_tutorial.mdx

* updated _toctree.yml

Updated preprocessing and training

* updated preprocessing.mdx

start translation

* Update _toctree.yml

* Delete preprocessing.mdx

* Update _toctree.yml

* updated _toctree.yml

* added preprocessing

* Update _toctree.yml

* updated _toctree.yml

* undo

* Revert "undo"

This reverts commit 5d38d768752dc80918bf60ada9d185f98b742520.

* Revert "Revert "undo""

This reverts commit 8aa0830b587f915ca7d154ebca282b782e82bd92.
2022-06-06 10:35:20 -04:00
2e37ef35d1 Remove RuntimeErrors for NaN-checking in 20B (#17563) 2022-06-06 09:29:06 -04:00
f6ad0e0556 Add installation.mdx Italian translation (#17530)
* Add the Italian translation of the file installation.mdx and edit _toctree

* Add the Italian translation of the file installation.mdx and edit _toctree
2022-06-06 07:48:08 -04:00
4aed1dc81b Adding the Portuguese version of the tasks/token_classification.mdx documentation (#17492)
* add tasks/token_classification pt doc structure

* add tasks/token_classification pt doc translation

* add tasks/token_classification pt doc translation
2022-06-06 07:47:34 -04:00
da71df1afc fix integration test levit (#17555) 2022-06-06 13:47:32 +02:00
26e5e129b4 [deepspeed] fix load_best_model test (#17550) 2022-06-03 11:19:03 -07:00
72f5b94984 Update index.mdx (#17547)
This PR updates our Expert Acceleration Program image with a new image featuring our experts.

This is similar to our Transformers/README.md image update that has proven to be successful.
2022-06-03 12:56:37 -05:00
c4e58cd8ba Clean imports to fix test_fetcher (#17531)
* Clean imports to fix test_fetcher

* Add dependencies printer

* Update utils/tests_fetcher.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Fix Perceiver import

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-06-03 12:34:41 -04:00
254d9c068e Update run_glue_no_trainer.py (#17546) 2022-06-03 12:29:37 -04:00
8343901263 Fix all offload and MP tests (#17533) 2022-06-03 09:59:13 -04:00
1c57242d7b Fix bug - layer names and activation from previous refactor (#17524)
* Fix activation and layers in MLP head

* Remove unused import
2022-06-03 09:31:10 -04:00
babeff5524 Add support for Perceiver ONNX export (#17213)
* Start adding perceiver support for ONNX

* Fix pad token bug for fast tokenizers

* Fix formatting

* Make get_preprocesor more opinionated (processor priority, otherwise tokenizer/feature extractor)

* Clean docs format

* Minor cleanup following @sgugger's comments

* Fix typo in docs

* Fix another docs typo

* Fix one more typo in docs

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/onnx/utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-03 07:40:22 -04:00
5c17918fe4 Allow from transformers import TypicalLogitsWarper (#17477)
* Allow from transformers import TypicalLogitsWarper

* Added TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

* Allow from transformers import TypicalLogitsWarper

Added TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper

Allow from transformers import TypicalLogitsWarper
2022-06-03 11:08:35 +02:00
607acd4fbd Add Gated-SiLU to T5 (#17420)
* Add gated-silu to t5 architecture to support UL2

* Fix error message

* formatting

* formatting again

* refactor

* fix classnames in _init_weights

* remove is_gated

* add test

* fix test

* Try without the test?

* Add back the test.

* Improve error message.

Co-authored-by: Daniel Hesslow <daniel@lighton.ai>
2022-06-03 10:56:37 +02:00
1c220ced8e Update URL for Hub PR docs (#17532) 2022-06-02 21:52:30 +02:00
013462c57b fix OPT-Flax CI tests (#17512) 2022-06-02 18:52:46 +02:00
2f59ad1609 [trainer/deepspeed] load_best_model (reimplement re-init) (#17151)
* [trainer/deepspeed] load_best_model

* to sync with DS PR #1947

* simplify

* rework load_best_model test

* cleanup

* bump deepspeed>=0.6.5

Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2022-06-02 09:14:21 -07:00
046c5ea906 Implemented loss for training AudioFrameClassification (#17513)
* Implemented loss for training AudioFrameClassification

* reported changes in wav2vec2 main class and used make copies to propagate

* running black for code formatting
2022-06-02 17:40:02 +02:00
085321c9a1 Update configuration_auto.py (#17527) 2022-06-02 10:37:00 -04:00
048dd73bba Check list of models in the main README and sort it (#17517)
* Script for README

* Fix copies

* Complete error message
2022-06-02 08:10:08 -04:00
588d8f1f26 Fix when Accelerate is not installed (#17518) 2022-06-02 07:45:41 -04:00
f128ccb997 Clean README in post release job as well. (#17519) 2022-06-02 07:44:03 -04:00
216499bfcc Fix CI tests hang forever (#17471)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:30:54 +02:00
659b27fd26 Print more library versions in CI (#17384)
* print more lib. versions and just befor test runs

* update print_env_pt.py

* rename to print_env

* Disable warning + better job name

* print python version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:24:16 +02:00
0932adb3e8 Split push CI into 2 workflows (#17369)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-02 10:19:26 +02:00
58fb3c9f98 Fix Tapas tests (#17510)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 21:01:32 +02:00
ca1f1c8685 CLI: tool to convert PT into TF weights and open hub PR (#17497) 2022-06-01 18:52:07 +01:00
3766df4fe1 Fix flakey no-trainer test (#17515) 2022-06-01 13:40:49 -04:00
028d4b7c8b Deal with the error when task is regression (#16330) 2022-06-01 11:15:53 -04:00
84aaadd8c5 Adding LeViT Model by Facebook (#17466)
* levit files

* levit tests

* weights script

* weights script

* update

* style fixes

* few minor corrections

* Added teacher model

* edit docs

* fix-copies

* style fixes

* pr error resolved

* Update README.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/index.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/configuration_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/configuration_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* suggested pr changes

* style fixes

* minor bug

* update

* minor doc edit

* style

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/levit/test_modeling_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* residual layer readable

* style

* Update docs/source/en/model_doc/levit.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update tests/models/levit/test_feature_extraction_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* change checkpoints and style

* update

* minor changes

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/levit/modeling_levit.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-06-01 17:06:20 +02:00
1d2b57b8a2 Fix CTRL tests (#17508)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 16:27:23 +02:00
693720e567 Fix LayoutXLMProcessorTest (#17506)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-06-01 16:26:37 +02:00
4d1ce39683 Debug LukeForMaskedLM (#17499)
* add a test for a word only input

* make LukeForMaskedLM work without entity inputs

* update test

* add LukeForMaskedLM to MODEL_FOR_MASKED_LM_MAPPING_NAMES

* restore pyproject.toml

* empty line at the end of pyproject.toml
2022-06-01 10:03:06 -04:00
4390151ba2 Fix MP and CPU offload tests for Funnel and GPT-Neo (#17503) 2022-06-01 09:59:40 -04:00
6813439fdc Exclude Databricks from notebook env (#17496) 2022-06-01 09:00:11 -04:00
3042ea4f6f Fix tokenizer type annotation in pipeline(...) (#17500)
I think you mean to accept either an instance of `PreTrainedTokenizer` or `PreTrainedTokenizerFast` inside of the `pipeline(...)` factory function, if the `tokenizer` argument isn't a `str`.
2022-06-01 08:43:28 -04:00
bdc01711d6 Refactor classes to inherit from nn.Module instead of nn.Sequential (#17493)
* Adapt Maskformer, VAN, ResNet and RegNet modules to inherit from nn.Module
2022-06-01 13:36:19 +01:00
b1160c0b56 Fix wav2vec2 export onnx model with attention_mask error (#16004)
* Fix wav2vec2 export onnx model with attention_mask error

* fix repository_consistency
2022-06-01 13:30:58 +02:00
d91da4c6df Add warning when using older version of torch for ViltFeatureExtractor (#16756)
* Update feature_extraction_vilt.py

* apply black

* Update imports

* Change warning to logging

* Use logger instead of logging.logging

* make fixup

* Move error message

* Update src/transformers/models/vilt/feature_extraction_vilt.py

Co-authored-by: Xing Han Lu <xhlperso@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-06-01 07:15:38 -04:00
24092b1464 Fix typo of variable names for key and query projection layer (#17155)
self.pos_proj and self.pos_q_proj should be changed to self.pos_key_proj and self.pos_query_proj as same as PyTorch implements.
2022-06-01 11:38:44 +01:00
811da2b8c2 Fixed wrong error message for missing weight file (#17216) 2022-06-01 06:24:20 -04:00
4f38808e9e Add OnnxConfig for SqueezeBert iss17314 (#17315)
* add onnx config for SqueezeBert

* add test for onnx config for SqueezeBert

* add automatically updated doc for onnx config for SqueezeBert

* Update src/transformers/onnx/features.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update src/transformers/models/squeezebert/configuration_squeezebert.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-06-01 06:16:15 -04:00
ba286fe7d5 [GPT2Tokenizer] Fix GPT2 with bos token (#17498) 2022-05-31 20:06:48 +02:00
7822a9b7a7 Opt in flax and tf (#17388)
* initial commit

* add init file

* update globakl init

* update index and dummy objects

* style

* update modelling auto

* fix initi typo in src/transformers

* fix typo in modeling tf auto, opt was in wrong mapping name

* fixed a slow test : saved_model

* style

* fix positionnal embedding if no position id is provided

* update tf test

* update test flax requirements

* fixed serialization

* update

* update tf name to allow smooth convertion

* update flax tests

* style

* fix test typo

* fix tf typo test

* add xla for generate support in causal LM

* fixed bug

* cleaned tf tests

* style

* removed from PT for slow tests

* fix typp

* opt test as slow

* trying to fix GPT2 undefined

* correct documentation and add to test doc

* update tf doc

* fix doc

* fake commit

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* update test based on review

* merged main layer for functionning test

* fixup + quality

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* update long comment

* make fix copies

Co-authored-by: Arthur <arthur@huggingface.co>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-31 18:41:22 +02:00
f394a2a50d [Json configs] Make json prettier for all saved tokenizer files & ensure same json format for all processors (tok + feat_extract) (#17457)
* [Json dump] Make json prettier

* correct more tokenizeirs

* more patterns

* add aggressive test

* the aggressive test was actually useful :-)

* more tests

* Apply suggestions from code review
2022-05-31 17:07:30 +02:00
6ee1474b67 Accumulate tokens into batches in PreTrainedTokenizerBase.add_tokens() (#17119)
* Accumulate tokens into batches in PreTrainedTokenizerBase.add_tokens()

For tokenizers with a small number of special tokens or special tokens
with consecutive token IDs, this reduces the time complexity of creating
the trie from quadratic to linear, see also #16936.

* Extend explanation of batching added tokens
2022-05-31 16:36:45 +02:00
52e7c92920 Add HF.co for PRs / Issues regarding specific model checkpoints (#17485)
* Add HF.co for PRs / Issues regarding specific model checkpoints

* Update .github/ISSUE_TEMPLATE/config.yml

Co-authored-by: Julien Chaumond <julien@huggingface.co>

Co-authored-by: Julien Chaumond <julien@huggingface.co>
2022-05-31 15:58:39 +02:00
dfc38463b8 Setup for Italian translation and add quicktour.mdx translation (#17472)
* Setup for Italian translation and add first document

- Add 'it' folder for files translated into Italian
- Add _config.py and _toctree.yml files
- Add translation of quicktour.mdx

* Fix style issue of italian documentation files

* Add 'it' to the languages section in the .github/workflows

* Remove - installation from _toctree for Italian

* Translation for index file

- Add index to _toctree.yml
- Add translation of index.mdx

* Fix typo in docs/source/it/index.mdx

* Translate code comments in docs/source/it/_config.py

Co-authored-by: Martina Fumanelli <martinafumanelli@Martinas-MBP.homenet.telecomitalia.it>
2022-05-31 09:57:43 -04:00
8f8b3cbce4 Fix checkpoint name (#17484)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:40:48 +02:00
400b30936a Docker image build in parallel (#17434)
* docker image build in parallel

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:39:03 +02:00
5af38953bb Added XLM onnx config (#17030)
* Add onnx configuration for xlm

* Add supported features for xlm

* Add xlm to models exportable with onnx

* Add xlm architecture to test file

* Modify docs

* Make code quality fixes
2022-05-31 09:26:06 -04:00
567d9c061d Disk offload fix (#17428)
* Fix offload to disk for big models

* Add test

* Fix test for other models
2022-05-31 09:16:18 -04:00
975dd2bbbc TF: GPT-2 generation supports left-padding (#17426)
* TF GPT-2 now properly works with left padding

* throw a warning when eos token == pad token and there is no attention mask
2022-05-31 14:06:44 +01:00
c1a138613d Fix ViTMAEModelTester (#17470)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-31 15:01:54 +02:00
b0e0ac8a67 [Generate] Fix output scores greedy search (#17442) 2022-05-31 14:59:49 +02:00
2ef09ecfb8 Fix nits (#17349) 2022-05-31 08:41:54 -04:00
28d0048218 Fx support for multiple model architectures (#17393)
* Support for Bart and LayoutLM, and partial support for XLNet

* Support for mbart

* A lot of new models supported

* Support for other models

* LayoutLM fix

* Use strings instead of classes
2022-05-31 10:02:55 +02:00
04681c1d81 typo IBERT in __repr__ quant_mode (#17398)
fix #17397
2022-05-31 03:48:10 -04:00
13fd67346a Fix typo (remove parenthesis) (#17415) 2022-05-31 03:21:32 -04:00
d156898f3b Improve notrainer examples (#17449)
* improve no-trainer examples

* Trigger CI

* adding comment to clarify tracker init on main process

* Trigger CI

* Trigger CI

* Trigger CI
2022-05-28 00:06:31 +05:30
7999ec125f [OPT] Fix bos token id default (#17441) 2022-05-26 18:24:12 +02:00
98f6e1ee87 Fix model parallelism test (#17439) 2022-05-26 09:57:12 -04:00
7535d92e71 Pin protobouf that breaks TensorBoard in PyTorch (#17440) 2022-05-26 09:56:55 -04:00
2295bcaea8 Spanish translation of the file preprocessing.mdx (#16299)
* Spanish translation of the file training.mdx

* Settings - Spanish translation of the file training.mdx

* Latest changes to the Spanish translation of the training.mdx file

* Delete Hugging.mdx

* Last changes to the training fil Espanish version

* Latest modifications

* Latest changes, document ready for PR

* Nits

* Spanish translation of the preprocessing file

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Update docs/source_es/preprocessing.mdx

* Nits and add preprocessing to _toctree.yml

Co-authored-by: Yhary Arias <yharystefa@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-26 07:28:14 -04:00
8f46ac9849 Spanish translation of the files sagemaker.mdx and image_classification.mdx (#17262)
* Duplication of the source eng file

* Spanish translation of the file multilingual.mdx

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

* Spanish translation of sagemaker.mdx

* Was deleted in main

* Security saving

* Complete translation of image_classification.mdx

* Nits

* nits

* Update docs/source/es/image_classification.mdx

* Add files to _toctree.yml

* Fix toctree and add tasks folder

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-25 19:10:16 -04:00
5e7f085fcc Added es version of bertology.mdx doc (#17255)
* added bertology es doc

* toctree fix

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/bertology.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* change position of bertology in _toctree.yml

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-25 18:46:53 -04:00
70484a8d74 Adding the Portuguese version of the tasks/sequence_classification.mdx documentation (#17352)
* add sequence_classification pt doc structure

* add Portuguese tasks/sequence_classification.mdx
2022-05-25 16:21:27 -04:00
a9eca74372 Wav2vec2 finetuning shared file system (#17423)
* fix_torch_device_generate_test

* remove @

* [Fix shared file system]

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2022-05-25 22:04:43 +02:00
740a1574f1 fix link in performance docs (#17419) 2022-05-25 20:54:43 +02:00
284fc6c0bb Add link to Hub PR docs in model cards (#17421) 2022-05-25 20:38:56 +02:00
35e2d13f3c Upd AutoTokenizer.from_pretrained doc examples (#17416) 2022-05-25 11:35:50 -04:00
897a8dd89f Support compilation via Torchdynamo, AOT Autograd, NVFuser (#17308)
* Support compilation via Torchdynamo, AOT Autograd, NVFuser

* Address comments

* Lint

* Stas comments - missing quality test

* Lintere

* Quality test

* Doc lint

* Reset CUDA peak mem

* Add CustomTrainer

* require a single gpu

Co-authored-by: Stas Bekman <stas@stason.org>
2022-05-25 11:16:09 -04:00
31484afbed Add test for new model parallelism features (#17401) 2022-05-25 10:51:27 -04:00
56b35ce3eb Make check_init script more robust and clean inits (#17408) 2022-05-25 07:23:56 -04:00
bd908e9bb1 Fix README localizer script (#17407) 2022-05-25 07:23:40 -04:00
4d727bd2df Fix expected value for OPT test test_inference_no_head (#17395)
* Fix expected value

* 5e-5

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-25 11:19:06 +02:00
1ef9a1ed4a Bump tensorflow in /examples/research_projects/decision_transformer (#17400)
Bumps [tensorflow](https://github.com/tensorflow/tensorflow) from 2.8.0 to 2.8.1.
- [Release notes](https://github.com/tensorflow/tensorflow/releases)
- [Changelog](https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorflow/compare/v2.8.0...v2.8.1)

---
updated-dependencies:
- dependency-name: tensorflow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-24 19:36:55 -04:00
71e602725b [WIP] Adding GPT-NeoX-20B (#16659)
* initial

* first try

* working 20B

* 20B tokenizers

* Docs

* Import fixes for missing classes

* Update docs, fixup

* black formatting

* isort

* flake

* dummy objects

* documentation

* Documentation yml

* more docs

* tweaks for tests

* tokenization auto

* fix neox tests

* test

* test

* einsum

* address PR feedback

* Documentation

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neox/__init__.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neox/configuration_gpt_neox.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Remove undefined LaTeX syntax

* Update to full url to avoid confusion about if that's supposed to refer to the Hub

* fix auto

* move tests

* documentation fix

* more doc fixes

* test refactor

* fix import

* fix import

* fix import

* fix import

* fix import

* style fixes

* More modeling fixes

Co-authored-by: Jason Phang <zp489@gr057.hpc.nyu.edu>
Co-authored-by: Stella Biderman <stellabiderman@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-24 09:31:10 -04:00
374a2f693f Clean up CLIP tests (#17380)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-24 14:51:26 +02:00
d980929803 Enabling imageGPT auto feature extractor. (#16871)
* Enablign `imageGPT` auto feature extractor.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Small updates.

* Update after rebase to use `input_ids` instead of `pixel_values`.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-24 12:30:46 +02:00
31ee80d556 Add LayoutLMv3 (#17060)
* Make forward pass work

* More improvements

* Remove unused imports

* Remove timm dependency

* Improve loss calculation of token classifier

* Fix most tests

* Add docs

* Add model integration test

* Make all tests pass

* Add LayoutLMv3FeatureExtractor

* Improve integration test + make fixup

* Add example script

* Fix style

* Add LayoutLMv3Processor

* Fix style

* Add option to add visual labels

* Make more tokenizer tests pass

* Fix more tests

* Make more tests pass

* Fix bug and improve docs

* Fix import of processors

* Improve docstrings

* Fix toctree and improve docs

* Fix auto tokenizer

* Move tests to model folder

* Move tests to model folder

* change default behavior add_prefix_space

* add prefix space for fast

* add_prefix_spcae set to True for Fast

* no space before `unique_no_split` token

* add test to hightligh special treatment of added tokens

* fix `test_batch_encode_dynamic_overflowing` by building a long enough example

* fix `test_full_tokenizer` with add_prefix_token

* Fix tokenizer integration test

* Make the code more readable

* Add tests for LayoutLMv3Processor

* Fix style

* Add model to README and update init

* Apply suggestions from code review

* Replace asserts by value errors

* Add suggestion by @ducviet00

* Add model to doc tests

* Simplify script

* Improve README

* a step ahead to fix

* Update pair_input_test

* Make all tokenizer tests pass - phew

* Make style

* Add LayoutLMv3 to CI job

* Fix auto mapping

* Fix CI job name

* Make all processor tests pass

* Make tests of LayoutLMv2 and LayoutXLM consistent

* Add copied from statements to fast tokenizer

* Add copied from statements to slow tokenizer

* Remove add_visual_labels attribute

* Fix tests

* Add link to notebooks

* Improve docs of LayoutLMv3Processor

* Fix reference to section

Co-authored-by: SaulLu <lucilesaul.com@gmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-24 09:53:45 +02:00
13541b4aa2 Add support for device_map="auto" to OPT (#17382) 2022-05-23 15:25:51 -04:00
71cced8ae3 OPTForCausalLM lm_head input size should be config.word_embed_proj_dim (#17225) 2022-05-23 21:20:29 +02:00
56f50590d5 Use Accelerate in from_pretrained for big model inference (#17341)
* Initial work

* More or less finished with first draft

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/modeling_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix randomly initialized weights

* Update src/transformers/modeling_utils.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

* Address review comments

* Rename DeepSpeed folder to temporarily fix the test issue?

* Revert to try if Accelerate fix works

* Use latest Accelerate release

* Quality and fixes

* Style

* Quality

* Add doc

* Test + fix

* More blocks

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-05-23 14:32:21 -04:00
2e7e4280aa Traced models serialization and torchscripting fix (#17206)
* Fix torch.jit.script and pickling issues

* Fix get_attr issues

* Fix import in function

* Fix GPT-J and T5 tracing for torch=1.11

* Gate graph surgery on torch version

* Modeling minor changes to enable TorchScripting

* Model serialization / deserialization test

* Remove _assert_is_none users
2022-05-23 17:50:40 +02:00
1cd01b0af3 Fix Comet ML integration (#17381)
Callback function `on_train_end` crashed if Comet ML integration was
used but `COMET_MODE` set to `DISABLE`
2022-05-23 10:43:10 -04:00
c86aad6110 Fix cvt docstrings (#17367) 2022-05-23 16:11:09 +02:00
7b8cb26953 Correct & Improve Doctests for LayoutLMv2 (#17168)
* add inference example to LayoutLMv2ForQuestionAnswering, passing doctest

* add loss example to LayoutLMv2ForQuestionAnswering, passing doctest

* Add correct doctest for LayoutLMv2ForTokenClassification, passing doctest

* add correct doctest for LayoutLMv2ForSequenceClassification, passing test

* add correct doctest for LayoutLMv2Model, passing test

* make fixup

* fix to address review comments

* make style

* fix doctest line break issue, add to documentaiton_tests.txt, address review comments

* move comment about layoutlmv2 dependencies to the doc page

* format doc page as suggested

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* delete extraneous backtick

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-23 08:02:31 -04:00
b48ac1a094 Fix CodeParrot training script (#17291)
* average loss over batches and accumulated steps for tracking

* fix layernorm weight decay

* use AdamW from Pytorch instead of Transformers

* add shuffling of sequences inside the batches

* add shuffling of sequences inside the batches

* add logging dir and reformat code

* fix lr tracking

* remove Mistral scaling

* keep Mistral scaling

* reformat code

* fix error

* fix error

* use shuffling function from Pytorch

* remove argument for shuffling batch sequences as it isn't optional

* update package versions and install accelerate from source

* remove unused package

* Update loss average over accumulated steps

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update loss average over accumulated steps

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* use one shuffle buffer argument

* compute avg_loss in one line

Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-05-23 12:55:35 +02:00
b9bb417324 Fix a typo relative_postion_if_large -> relative_position_if_large (#17366) 2022-05-20 18:41:12 +02:00
3fd7de49f4 Pin dill to fix examples (#17368)
* Pin dill for now

* Try this version?

* force install

* Actually use dep in testing

* Try a larger pin
2022-05-20 11:00:58 -04:00
54192058f3 [Test OPT] Add batch generation test opt (#17359)
* up

* up
2022-05-19 23:46:26 +02:00
48c22691e3 Fix bug in Wav2Vec2 pretrain example (#17326) 2022-05-19 22:42:44 +02:00
5d6feecf16 fix for 17292 (#17293) 2022-05-19 22:21:19 +02:00
518bd02c9b [Generation] Fix Transition probs (#17311)
* [Draft] fix transition probs

* up

* up

* up

* make it work

* fix

* finish

* update
2022-05-19 22:17:02 +02:00
e8714c0307 [OPT] Run test in lower precision on GPU (#17353)
* [OPT] Run test only in half precision

* up

* up

* up

* up

* finish

* fix on GPU

* Update tests/models/opt/test_modeling_opt.py
2022-05-19 22:15:36 +02:00
2b282296f1 Adding batch_size test to QA pipeline. (#17330) 2022-05-19 14:28:12 -04:00
a4386d7e40 [BC] Fixing usage of text pairs (#17324)
* [BC] Fixing usage of text pairs

The BC is actually preventing users from misusing the pipeline since
users could have been willing to send text pairs and the pipeline would
instead understand the thing as a batch returning bogus results.

The correct usage of text pairs is preserved in this PR even when that
makes the code clunky.

Adds support for {"text":..,, "text_pair": ...} inputs for both dataset
iteration and more explicit usage to pairs.

* Updating the doc.

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/text_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/pipelines/test_pipelines_text_classification.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* quality.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-19 10:29:16 +02:00
3601aa8fc9 [tests] fix copy-n-paste error (#17312)
* [tests] fix copy-n-paste error

* fix
2022-05-18 16:00:47 -07:00
1b20c970a2 Fix ci_url might be None (#17332)
* fix

* Update utils/notification_service.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-05-18 21:49:08 +02:00
6aad3872ce fix (#17337)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 15:26:44 -04:00
1762ded30a Fix metric calculation in examples and setup tests to run on multi-gpu for no_trainer scripts (#17331)
* Fix length in no_trainer examples

* Add setup and teardown

* Use new accelerator config generator to automatically make tests able to run based on environment
2022-05-18 14:17:40 -04:00
6e195eb9de docs for typical decoding (#17186)
Co-authored-by: Jader Martins <jadermcs94@gmail.com>
2022-05-18 19:18:43 +02:00
060fe61dff Not send successful report (#17329)
* send report only if there is any failure

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 19:07:48 +02:00
b3b9f99ed2 Fix test_t5_decoder_model_past_large_inputs (#17320)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 17:57:23 +02:00
6da76b9c2a Add onnx export cuda support (#17183)
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-05-18 17:52:13 +02:00
adc0ff2502 Add CvT (#17299)
* Adding cvt files

* Adding cvt files

* changes in init file

* Adding cvt files

* changes in init file

* Style fixes

* Address comments from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Format lists in docstring

* Fix copies

* Apply suggestion from code review

Co-authored-by: AnugunjNaman <anugunjjha@gmail.com>
Co-authored-by: Ayushman Singh <singhayushman13@protonmail.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-18 17:47:18 +02:00
4710702837 Fix style 2022-05-18 10:46:40 -04:00
5fdb54ece7 Add Information Gain Filtration algorithm (#16953)
* Add information gain filtration algorithm

* Complying with black requirements

* Added author

* Fixed import order

* flake8 corrections

Co-authored-by: Javier Turek <javier.turek@intel.com>
2022-05-18 10:39:02 -04:00
91ede485a7 Fix typo (#17328) 2022-05-18 10:29:53 -04:00
fe28eb9452 remove (#17325)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-18 10:06:41 -04:00
2cb2ea3fa1 Accepting real pytorch device as arguments. (#17318)
* Accepting real pytorch device as arguments.

* is_torch_available.
2022-05-18 10:06:24 -04:00
1c9d1f4ca8 Updating the docs for max_seq_len in QA pipeline (#17316) 2022-05-18 15:46:12 +02:00
60ad73448c [T5] Fix init in TF and Flax for pretraining (#17294)
* fix init

* Apply suggestions from code review

* fix

* finish

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-18 15:08:56 +02:00
7ba1d4e51f Add type hints for ProphetNet (Pytorch) (#17223)
* added type hints to prophetnet

* reformatted with black

* fix bc black misformatted some parts

* fix imports

* fix imports

* Update src/transformers/models/prophetnet/configuration_prophetnet.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* update OPTIONAL type hint and docstring

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-18 13:23:47 +01:00
d6b8e9cec7 Add trajectory transformer (#17141)
* Add trajectory transformer


Fix model init


Fix end of lines for .mdx files

Add trajectory transformer model to toctree

Add forward input docs

Fix docs, remove prints, simplify prediction test

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update docs, more descriptive comments

Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update readme

Small comment update and add conversion script

Rebase and reformat

Fix copies

Fix rebase, remove duplicates

Fix rebase, remove duplicates

* Remove tapex

* Remove tapex

* Remove tapex
2022-05-17 19:07:43 -04:00
c35264007b fix (#17310) 2022-05-17 18:34:31 -04:00
d9050dc768 [LED] fix global_attention_mask not being passed for generation and docs clarification about grad checkpointing (#17112)
* [LED] fixed global_attention_mask not passed for generation + docs clarification for gradient checkpointing

* LED docs clarification

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] gradient_checkpointing=True should be passed to TrainingArguments

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] docs: remove wrong word

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* [LED] docs fix typo

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-05-17 23:44:37 +02:00
bad358398a Add support for pretraining recurring span selection to Splinter (#17247)
* Add SplinterForSpanSelection for pre-training recurring span selection.

* Formatting.

* Rename SplinterForSpanSelection to SplinterForPreTraining.

* Ensure repo consistency

* Fixup changes

* Address SplinterForPreTraining PR comments

* Incorporate feedback and derive multiple question tokens per example.

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/splinter/modeling_splinter.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Jean Vancoppenole <jean.vancoppenolle@retresco.de>
Co-authored-by: Tobias Günther <tobias.guenther@retresco.de>
Co-authored-by: Tobias Günther <github@tobigue.de>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-05-17 23:42:14 +02:00
0511305549 Add PR author in CI report + merged by info (#17298)
* Add author info to CI report

* Add merged by info

* update

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 12:56:58 -04:00
032d63b976 Fix dummy creation script (#17304) 2022-05-17 12:56:24 -04:00
986dd5c5bf Fix style 2022-05-17 12:50:14 -04:00
38ddab10da Doctest longformer (#16441)
* Add initial doctring changes

* make fixup

* Add TF doc changes

* fix seq classifier output

* fix quality errors

* t

* swithc head to random init

* Fix expected outputs

* Update src/transformers/models/longformer/modeling_longformer.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-05-17 18:32:12 +02:00
10704e1209 [Test] Fix W2V-Conformer integration test (#17303)
* [Test] Fix W2V-Conformer integration test

* correct w2v2

* up
2022-05-17 18:20:36 +02:00
28a0811652 Improve mismatched sizes management when loading a pretrained model (#17257)
- Add --ignore_mismatched_sizes argument to classification examples

- Expand the error message when loading a model whose head dimensions are different from expected dimensions
2022-05-17 17:58:14 +02:00
1f13ba818e correct opt (#17301) 2022-05-17 15:48:23 +02:00
349f1c85d3 Rewrite TensorFlow train_step and test_step (#17057)
* Initial commit

* Better label renaming

* Remove breakpoint before pushing (this is your job)

* Test a lot more in the Keras fit() test

* make fixup

* Clarify the case where we flatten y dicts into tensors

* Clarify the case where we flatten y dicts into tensors

* Extract label name remapping to a method
2022-05-17 14:36:23 +01:00
651e48e1e5 Fix tests of mixed precision now that experimental is deprecated (#17300)
* Fix tests of mixed precision now that experimental is deprecated

* Fix mixed precision in training_args_tf.py too
2022-05-17 14:14:17 +01:00
6d211429ec fix retribert's test_torch_encode_plus_sent_to_model (#17231) 2022-05-17 14:33:13 +02:00
ec7f8af106 [ConvNeXT] Fix drop_path_rate (#17280)
* Fix drop_path_rate

* Fix TF's drop path rate
2022-05-17 07:37:48 -04:00
a26ab95e30 Fix wrong PT/TF categories in CI report (#17272)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 09:32:47 +02:00
1ac2b8fa7f Fix missing job action button in CI report (#17270)
* use matrix.machine_type

* fix job names used in job_link

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-17 08:31:06 +02:00
5a9957358c Add Wav2Vec2Conformer (#16812)
* save intermediate

* add wav2vec2 conformer

* add more code

* more

* first test passes

* make all checkpoints work

* update

* up

* more clean ups

* save clean-up

* save clean-up

* save more

* remove bogus

* finalize design conformer

* remove vision

* finish all tests

* more changes

* finish code

* add doc tests

* add slow tests

* fix autoconfig test

* up

* correct docstring

* up

* update

* fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update docs/source/en/model_doc/wav2vec2-conformer.mdx

* upload

* save copied from

* correct configs

* fix model outputs

* add to docs

* fix imports

* finish

* finish code

* correct copied from

* correct again

* correct make fix

* improve make fix copies

* save

* correct fix copy from

* correct init structure

* correct

* fix import

* apply suggestions

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2022-05-17 00:43:16 +02:00
f0395cf58e Fix test_model_parallelization (#17249)
* Fix test_model_parallelization

* Modify
2022-05-16 23:30:49 +02:00
e705e1267c [Tests] Fix slow opt tests (#17282)
* fix opt tests

* remove unused tok

* make style

* make flake8 happy

* Update tests/models/opt/test_modeling_opt.py
2022-05-16 23:24:20 +02:00
f6a6388972 Add Tensorflow Swin model (#16988)
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 22:19:53 +01:00
6cb7187324 docs(transformers): fix typo (#17263) 2022-05-16 17:04:30 -04:00
053a80c606 logging documentation update (#17174)
* logging documentation

* style

Co-authored-by: Sander Land <sander@chatdesk.com>
2022-05-16 16:47:28 -04:00
8600d770d4 Use the PR URL in CI report (#17269)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 22:02:28 +02:00
3fb82f74fd Fix FlavaForPreTrainingIntegrationTest CI test (#17232)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 21:14:25 +02:00
9b0d2860eb Better error in the Auto API when a dep is missing (#17289) 2022-05-16 14:55:46 -04:00
66b3e106a1 Make TrainerHyperParameterSigOptIntegrationTest slow test (#17288)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-16 14:18:09 -04:00
ddb1a47ec8 Automatically sort auto mappings (#17250)
* Automatically sort auto mappings

* Better class extraction

* Some auto class magic

* Adapt test and underlying behavior

* Remove re-used config

* Quality
2022-05-16 13:24:20 -04:00
2f611f85e2 Mlflowcallback fix nonetype error (#17171)
* Fix edge cases TypeError: 'NoneType' object is not callable

* fix style
2022-05-16 12:18:30 -04:00
95b6bef624 Align logits and labels in OPT (#17237) 2022-05-16 09:37:39 -04:00
a5d1839679 Remove next sentence prediction from supported ONNX tasks (#17276) 2022-05-16 15:34:04 +02:00
05a90579a8 CodeParrot data pretokenization (#16932)
* add pretokenization arguments

* add pretokenization script

* add support for pretokenized data

* reformat code

* fix run command for training

* fix model call from config

* remove a package

* add comments on pretokenization in the readme

* remove explicit parallelization

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme -remove username

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* update readme -remove username

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* keep data parallelization

* reformat code

* reformat code

* update readme

* reformat code

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
2022-05-16 15:32:16 +02:00
e730e12567 Update codeparrot data preprocessing (#16944)
* add new preprocessing arguments

* add new filters

* add new filters to readme

* fix config and test count, update function names and docstrings

* reformat code

* update readme

* Update readme

* rename config_test filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename few_assignments filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename tokenizer in arguments

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* rename functions and add limit_line argument for config_test filter

* update threshold for config_test filter

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Loubna ben allal <loubnabenallal@gmail.com>
2022-05-16 14:43:25 +02:00
518dd1277e Updated checkpoint support for Sagemaker Model Parallel (#17219)
* adding partial checkpoint support for optimizer state

* formatted trainer.py

* Refactoring based on comments

* reformatting

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 08:17:25 -04:00
71d18d0831 fixed bug in run_mlm_flax_stream.py (#17203)
* fixed bug run_mlm_flax_stream.py

Fixed bug caused by an update to tokenizer keys introduced in recent transformers versions (between `4.6.2` and `4.18.0`) where additional keys were introduced to the tokenizer output.

* Update run_mlm_flax_stream.py

* adding missing paranthesis

* formatted to black

* remove cols from dataset instead

* reformat to black

* moved rem. columns to map

* formatted to black

Co-authored-by: KennethEnevoldsen <kennethcenevolsen@gmail.com>
2022-05-16 13:40:27 +02:00
71abd3ade1 [WIP] [doc] performance/scalability revamp (#15723)
* [doc] performance/scalability revamp

* link the new docs

* no :

* mixed precision

* work on the first doc

* expand the main doc

* Trigger CI

* style

* revamp single GPU training section

* work on training performance

* remove files not used anymore or will be added later

* final touches

* fix rebase

* Add hardware section to toctree

* fix toctree again

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* remove `fast_tokenizers` entry that was copied in rebase

* add warning about DP vs DDP

* remove todo

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix missing closure of codeblock

* Update docs/source/en/perf_train_gpu_many.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* sync with #16860

* update toc

Co-authored-by: leandro <leandro.vonwerra@spoud.io>
Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-16 13:36:41 +02:00
d3d87b451e TF - Fix convnext classification example (#17261) 2022-05-16 12:24:01 +01:00
e86faecfd4 Fix obvious typos in flax decoder impl (#17279)
Change config.encoder_ffn_dim -> config.decoder_ffn_dim for decoder.
2022-05-16 13:08:04 +02:00
ee393c009a Guide to create custom models in Spanish (#17158)
* file copied and toctree updated

* Intro and configuration translated

* model section translated

* enter hotfix

* Translation over, correction pending

* Typos and corrections

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/create_a_model.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:19:29 -04:00
16be422912 Translated version of model_sharing.mdx doc to spanish (#16184)
* Translated version of model_sharing to spanish

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Update docs/source_es/model_sharing.mdx

* Addind model sharing to _toctree.yml

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:18:46 -04:00
f9024814e1 [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial (#17076)
* [ fast_tokenizers.mdx ] - Added translation to portuguese to tutorial

* Delete docs/source/pt-br directory

* [ fast_tokenizers.mdx ] - Continuing work on file

* [ fast_tokenizers.mdx ] - Continuing work on file

* Add fast tokenizers to _toctree.yml

* Eliminated config and toctree.yml

* Nits in fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 16:18:14 -04:00
50d1867cf8 Add PR title to push CI report (#17246)
* add PR title to push CI report

* add link

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 21:50:40 +02:00
506899d147 Fix push CI channel (#17242)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 20:59:56 +02:00
7198b63362 install dev. version of accelerate (#17243)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 13:47:09 -04:00
b96cb1693f Fix Trainer for Datasets that don't have dict items (#17239) 2022-05-13 11:49:23 -04:00
9c8fde8e19 Handle copyright in add-new-model-like (#17218) 2022-05-13 11:47:19 -04:00
993553b2f1 fix --gpus option for docker (#17235)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 17:26:26 +02:00
38043d8453 Update self-push workflow (#17177)
* update push ci

* install git-python

* update comment

* update deepspeed jobs

* fix report

* skip 2 more tests that require fairscale

* Fix changes in test_fetcher.py (to deal with `setup.py` is changed)

* set RUN_PT_TF_CROSS_TESTS=1 and final clean-up

* remove SIGOPT_API_TOKEN

* remove echo "$matrix_folders"

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-13 16:28:00 +02:00
18d6b356c5 OPT - fix docstring and improve tests slighly (#17228)
* correct some stuff

* fix doc tests

* make style
2022-05-13 15:14:50 +02:00
dfc76018c1 OPT-fix (#17229)
* try fixes

* Revert "try fixes"

This reverts commit a8ad75ef69d4fc03a402ef61bd034b018aa8555e.

* add correct shape

* add correct path
2022-05-13 15:14:23 +02:00
85fc455972 Added translation of installation.mdx to Portuguese Issue #16824 (#16979)
* Added translation of installation.mdx to Portuguese, as well
as default templates of _toctree.yml and _config.py

* [ build_documentation.yml ] - Updated doc_builder to build
documentation in Portuguese.
[ pipeline_tutorial.mdx ] - Created translation for the pipeline_tutorial.mdx.

* [ build_pr_documentation.yml ] - Added pt language to pr_documentation builder.

[ pipeline_tutorial.mdx ] - Grammar changes.

* [ accelerate.mdx ] - Translated to Portuguese the acceleration tutorial.

* [ multilingual.mdx ] - Added portuguese translation for multilingual tutorial.

[ training.mdx ] - Added portuguese translation for training tutorial.

* [ preprocessing.mdx ] - WIP

* Update _toctree.yml

* Adding Pré-processamento to _toctree.yml

* Update accelerate.mdx

* Nits and eliminate preprocessing file while it is ready

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-13 07:55:44 -04:00
3f936df662 Fix typo in bug report template (#17178)
* Fix typo

* Force rerun workflows

Co-authored-by: Felix Marty <felix@huggingface.co>
2022-05-12 16:31:12 -04:00
afe5d42d8d Black preview (#17217)
* Black preview

* Fixup too!

* Fix check copies

* Use the same version as the CI

* Bump black
2022-05-12 16:25:55 -04:00
9bd67ac7bb update BART docs (#17212) 2022-05-12 19:25:16 +01:00
30be0da5da Fix dependency table 2022-05-12 11:29:32 -04:00
f04257fdbc Add test to ensure models can take int64 inputs (#17210)
* Add test to ensure models can take int64 inputs

* is_integer is an attribute, not a method

* Fix test when some inputs aren't tensors

* Add casts to blenderbot and blenderbot-small

* Add casts to the other failing models
2022-05-12 16:09:25 +01:00
5294fa12ee Dev version 2022-05-12 11:04:23 -04:00
9f16a1cc13 Update data2vec.mdx to include a Colab Notebook link (that shows fine-tuning) (#17194)
* Update data2vec.mdx

* Update data2vec.mdx

* Update docs/source/en/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-12 10:22:00 -04:00
a42242da7c migrate azure blob for beit checkpoints (#16902)
## Motivation

We are going to use a new blob account to store the checkpoints.

## Modification

Modify the azure blob storage URLs for BEiT checkpoints.
2022-05-12 13:08:15 +02:00
b971c769e8 Add OPT (#17088)
* First version - OPT model

* Final changes

- putting use cache to False

* few changes

- remove commented block

* few changes

- remove unecessary files

* fix style issues

* few changes

- remove a test file
- added the logits test

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add gen tests

* few changes

- rm mask filling example on docstring

* few changes

- remove useless args

* some changes

- more tests should pass now
- needs to clean more
- documentation still needs to be done

* fix code quality

* major changes

- change attention architecture to BART-like
- modify some tests
- style fix

* rm useless classes

- remove opt for:
- QA
- cond generation
- seq classif

* Removed autodoc calls to non-existant classes

TOkenizers are not implemented

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Replaced OPTTokeniser with GPT2 tokenizer

* added GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")

* Removed OPTTokenizer

* make style

* Make style replaces

``` ...).unsqueeze(```
by
``` >>>).unsqueeze(```

* make repo consistency

* Removed PretrainedOPTModel

* fix opt.mdx removed other heads

* fix init, removed 3 heads

* removed heads

* finished cleaning head

* removed seauence classif and question answering

* removed unused imports

* removed useless dummy object for QA, SC and CG

* removed tests for removed useless dummy object for QA, SC and CG

* Removed head_mask using encoder layers which don't exist

* fixed test

* fix line

* added OPT to toctree

* Updated model path with pushed weigths

* fix model path

* fixed code quality

* fixed embeddings and generation tests

* update paths

* clean comments

* removed OPTClassificationHead for sentence classification

* renamed hidden layer

* renamed num layers to standard num_hidden_layers

* num_attention_heads fix

* changes for 125m

* add first version for 125m

* add first version - flax

* add new version

* causal LM output

* replace output type with BaseModelOutputWithPastAndCrossAttentions

* revert working config from 150m to 350m

* clean

* removed decoder input ids

* fixed embed dim

* more embed_dim issues

* make style + removed enc_dec test

* update falx model

* removed troublesome copy

* added is_encoder_decoder=False to config

* added set_input emb fuinction to model class

* requires torch on embed test

* use head mask instead of decoder head mask input param solves a test

* 8 test remaining, update

* Updated create_and_check_decoder_model_past_large_inputs

* Make style

* update op tokenizer with condition

* make style

* See if I can push

* some clean up

* remove linear head hack

* save intermediate

* save correct attention

* add copied from from bart

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix part of the reviewss
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* same changes in naming / conversion

* correct mask

* more fixes

* delete FlaxOPT and TfOPT

* clean traces of Flax and Tf

* fix mask

* fixed positionnal embedding length when past key value is provoded

* get 125m, 6.7b to work

* Added do_layer_norm

* solved mismatch in load dictionnary

* clean up preapre opt input dict

* fixed past key value as bool

* fix previus

* fixed return dict False tuple issue

* All tests are passing

* Make style

* Ignore OPTDecoder non tested

* make fix-copies

* make repo consistency

* small fix

* removed uselss @torch.no_grad decorator

* make styl;e

* fix previous opt test

* style

* make style

* added opt documentation

* update OPT_PRETRAINED_MODEL_ARCHIVE_LIST

* up

* more fixes

* model & config work

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* added comment on padding hack (+2)

* cleaup

* review update

* docstring for missing arg

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update pretrained map

* update path and tests

* make style

* styling

* make consistency

* add gpt2 tok new

* more tok fixes

* Update src/transformers/models/auto/tokenization_auto.py

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/opt/test_modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* make style

* make tokenizer auto tests pass

* apply Lysandre suggestion

* finish tests

* add some good tokenizer tests

* improve docs slighly

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-12 12:24:35 +02:00
8c7481f35c ViT and Swin symbolic tracing with torch.fx (#17182)
* Support tracing for ViT

* Swin support

* Fix copies

* Fix type annotation issue

* Removed unused import
2022-05-12 10:42:27 +02:00
1a688709b3 Fix contents in index.mdx to match docs' sidebar (#17198)
* Fix contents in index.mdx to match docs' sidebar

* Eliminates api section from contents
2022-05-12 02:37:13 -05:00
b17b78897b Fix style error in Spanish docs (#17197) 2022-05-12 08:51:46 +02:00
1a66a6c677 Translate index.mdx (to ES) and add Spanish models to quicktour.mdx examples (#16685)
* Change nits in Spanish for quicktour.mdx

- Add tasks names in English too.
- Fix small nits in Spanish

* Translate index.mdx to Spanish

* Translate body of index.
* Translated the compatible models list (not the papers´ names). Since this should not be updated manually, I can come back to the original text.

* Add models and a  dataset for Spanish in the code exmaples

* Replaced the English models to Spanish versions.

* Add index to _toctree.yml and fix Spanish

* Fix double ““ error

* Change negative example in ASR example

* make style

* Debug style in quicktour.mdx
2022-05-11 23:35:07 -05:00
e2d678b71c Documentation: Spanish translation of fast_tokenizers.mdx (#16882)
* Spanish translation of fast_tokenizers.mdx

* add fast_tokenizers to the spanish _toctree.yml

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/fast_tokenizers.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 22:25:44 -05:00
ae82da2181 Added es version of language_modeling.mdx doc (#17021)
* Spanish version of language_modeling.mdx doc file

* modification to toctree.yml file

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/language_modeling.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Correct position of Guías conceptuales

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 22:04:56 -05:00
36ddcc0d35 Spanish translation of philosophy.mdx #15947 (#16922)
* adding philosophy.mdx translation to Spanish

* adding philosophy.mdx translation to Spanish

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source/es/philosophy.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* philosophy translation to Spanish

* Update _toctree.yml

* Update _toctree.yml

* nits

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-05-11 20:47:50 -05:00
d1d5ebb16c Remove duplicated os.path.join (#17192) 2022-05-11 20:28:32 -04:00
a10f61834d [feat] Add FLAVA model (#16654)
* [WIP] Add FLAVA model

This PR aims to add [FLAVA](ihttps://arxiv.org/abs/2112.04482) model to the transformers repo.

Following checklist delineates the list of things to be done for this PR
to be complete:

[x] Flava init
[x] Flava base models
[x] Flava layers
[x] Flava Configs
[x] Flava encoders
[x] Flava pretraining models
[ ] Flava classification/retrieval models (To be added in a separate PR)
[x] Documentation updates 
[x] Imports updates 
[x] Argstring updates
[x] Flava pretrained checkpoints 
[x] Flava tests
[x] Flava processors 
[x] Sanity check
[x] Lint
2022-05-11 14:56:48 -07:00
7b95825d7d Remove columns before passing to data collator (#17187) 2022-05-11 15:58:32 -04:00
934e21cd4b add shift_tokens_right in FlaxMT5 (#17188) 2022-05-11 20:31:41 +01:00
47412c7d43 Ensure tensors are at least 1d for pad and concat (#17179)
* Ensure tensors are at least 1d for pad and concat

* Compatibility

* Fix

* Fix

* Add test

* Retrigger CI

* Consistency with master

* Retrigger CI
2022-05-11 13:19:08 -04:00
c76afa511c Fix LED documentation (#17181)
* Fix markdown code block

* Use consistent spelling for self-attention

* Fix typos and phrasing

* Fix code style
2022-05-11 13:17:50 -04:00
edcc66d27c Remove unnecessary columns for all dataset types in Trainer (#17166)
* Remove unneeded columns for IterableDataset

* Add test

* Update trainer tests

* Edit docstring

* Lint

* Apply feedback

* Apply feedback
2022-05-11 11:11:26 -04:00
c33f6046c3 [WIP] Enable reproducibility for distributed trainings (#16907)
* add seed worker and set_deterministic_seed_for_cuda function to enforce reproducability

* change function name to enable determinism, add docstrings, reproducability support for tf

* change function name to enable_determinism_for_distributed_training

* revert changes in set_seed and call set_seed within enable_full_determinism

* add one position argument for seed_worker function

* add full_determinism flag in training args and call enable_full_determinism when it is true

* add enable_full_determinism to documentation

* apply make fixup after the last commit

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-11 09:37:13 -04:00
5229744b26 Add missing RetriBERT tokenizer tests (#17017)
* Create RetriBERT tests folder

* Add missing RetriBERT tokenizer test file

* Apply style corrections

* Add non-english filter

* Update tests/retribert/test_tokenization_retribert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Update tests/retribert/test_tokenization_retribert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* Move test files to new directory

* Update import path for testing utils to new test file structure

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-05-11 15:04:07 +02:00
6bc6797e04 Convert image to rgb for clip model (#17101)
Co-authored-by: kuanwee.heng <kuanwee.heng@aaqua.live>
2022-05-11 13:09:54 +01:00
0a2bea4752 Fix repo consistency 2022-05-11 08:05:45 -04:00
0645b07daf propagate "attention_mask" dtype for "use_past" in OnnxConfig.generate_dummy_inputs (#17105)
* propagate attention_mask dtype

* fixup&style
2022-05-11 07:50:35 -04:00
0e6ec2a469 Extend Transformers Trainer Class to Enable PyTorch SGD/Adagrad Optimizers for Training (#17154)
* add torch SGD and Adagrad optimizer bits

* refine naming

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-11 07:24:11 -04:00
63517fdf48 [M2M100 doc] remove duplicate example (#17175)
* remove duplicate example

* remove code block
2022-05-11 12:16:46 +01:00
4a419d4995 MobileBERT tokenizer tests (#16896)
* unhardcode pretrained model path, make it a class var

* add tests for mobilebert tokenizer

* allow tempfiles for vocab & merge similarity test to autodelete

* add explanatory comments

* remove unused imports, let make style do its.. thing

* remove inheritance and use BERT tok tests for MobileBERT

* Update tests/mobilebert/test_tokenization_mobilebert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* amend class names, remove unused import, add fix for mobilebert's hub pathname

* unhardcode pretrained model path, make it a class var

* add tests for mobilebert tokenizer

* allow tempfiles for vocab & merge similarity test to autodelete

* add explanatory comments

* remove unused imports, let make style do its.. thing

* remove inheritance and use BERT tok tests for MobileBERT

* Update tests/mobilebert/test_tokenization_mobilebert.py

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>

* amend class names, remove unused import, add fix for mobilebert's hub pathname

* amend paths for model tests being in models/ subdir of /tests

* explicitly rm test from prev path

Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
2022-05-10 16:39:58 -04:00
48a8f3daa1 Add DebertaV2ForMultipleChoice (#17135) 2022-05-10 16:21:44 -04:00
4ad2f68e34 Fix template init (#17163) 2022-05-10 15:24:23 -04:00
e99f0efedc Add MLFLOW_FLATTEN_PARAMS support in MLflowCallback (#17148)
* add support for MLFLOW_FLATTEN_PARAMS

* ensure key is str

* fix style and update warning msg

* Empty commit to trigger CI

* fix bug in check_inits.py

* add unittest for flatten_dict utils

* fix 'NoneType' object is not callable on __del__

* add generic flatten_dict unittest to SPECIAL_MODULE_TO_TEST_MAP

* fix style
2022-05-10 14:29:18 -04:00
976835d515 missing file (#17164) 2022-05-10 10:19:50 -07:00
259eeb6dab Fixing the output of code examples in the preprocessing chapter (#17162) 2022-05-10 12:16:28 -04:00
f861504466 [Deepspeed] add many more models to the model zoo test (#12695)
* model zoo take 2

* add deberta

* new param for zero2

* doc update

* doc update

* add layoutlm

* bump deepspeed

* add deberta-v2, funnel, longformer

* new models

* style

* add t5_v1

* update TAPAS status

* reorg problematic models

* move doc to another PR

* style

* fix checkpoint check test

* making progress on more models running

* cleanup

* new version

* cleanup
2022-05-10 08:22:42 -07:00
9aeacfe0ff [trainer] sharded _load_best_model (#17150)
* [trainer] sharded _load_best_model

probably needs a test?

* undo delete
2022-05-10 07:58:53 -07:00
1766fa2159 train args defaulting None marked as Optional (#17156)
Co-authored-by: Dom Miketa <dmiketa@exscientia.co.uk>
2022-05-10 10:09:34 -04:00
6d80c92c77 LogSumExp trick question_answering pipeline. (#17143)
* LogSumExp trick `question_answering` pipeline.

* Adding a failing test.
2022-05-10 10:03:55 +02:00
d719bcd46a Fix all docs for accelerate install directions (#17145) 2022-05-09 15:45:18 -04:00
766d4bf792 Fix MLflowCallback end_run() and add support for tags and nested runs (#17130)
* ensure mlflow.end_run() is executed at end of training when mlflow.start_run() was executed by the callback

* add debug msg

* add support for MLFLOW_TAGS, MLFLOW_RUN_ID, and MLFLOW_NESTED_RUN

* update to support python 3.6+

* Validate env variables using ENV_VARS_TRUE_VALUES

* Empty-Commit
2022-05-09 13:09:48 -04:00
2fbb237967 Add the auto_find_batch_size capability from Accelerate into Trainer (#17068)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

- Adds auto_batch_size finder 
- Moves training loop to an inner training loop
2022-05-09 12:29:18 -04:00
df735d1317 [WIP] Fix Pyright static type checking by replacing if-else imports with try-except (#16578)
* rebase and isort

* modify cookiecutter init

* fix cookiecutter auto imports

* fix clean_frameworks_in_init

* fix add_model_to_main_init

* blackify

* replace unnecessary f-strings

* update yolos imports

* fix roberta import bug

* fix yolos missing dependency

* fix add_model_like and cookiecutter bug

* fix repository consistency error

* modify cookiecutter, fix add_new_model_like

* remove stale line

Co-authored-by: Dom Miketa <dmiketa@exscientia.co.uk>
2022-05-09 11:28:53 -04:00
7783fa6bb3 Fix quality and repo consistency 2022-05-09 11:14:36 -04:00
05fc1766ff PyTorch FSDP integration in Trainer (#17136)
* PyTorch FSDP integration in Trainer

* reformatting

make style and make quality are now compliant.

* Updating dependency check

* Trigger CI

Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-05-09 20:40:56 +05:30
dc3645dc9c add mobilebert onnx configs (#17029)
* update docs of length_penalty

* Revert "update docs of length_penalty"

This reverts commit 466bf4800b75ec29bd2ff75bad8e8973bd98d01c.

* add mobilebert onnx config

* address suggestions

* Update auto.mdx

* Update __init__.py

* Update features.py
2022-05-09 10:36:53 -04:00
a021f2b90c Add type hints for BigBirdPegasus and Data2VecText PyTorch models (#17123)
* Add type hints for remaining BigBirdPegasus models

Here I added type hints to the BigBirdPegasusForCausalLM class.

* Add missing type hints for Data2VecText models

Added type hints to the Data2VecTextForCausalLM, Data2VecTextForMaskedLM,
Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering,
Data2VecTextForSequenceClassification, and
Data2VecTextForTokenClassification classes.
2022-05-09 12:45:43 +01:00
e9fd583ce0 LayoutLMv2Processor: ensure 1-to-1 mapping between images and samples in case of overflowing tokens (#17092)
* add get_overflowing_images function to ensure 1-to-1 mapping between samples and images in LayoutLMv2Processor

* make style

* add test for overflowing_tokens, change assert to ValueError, avoiding unrelated formatting changes

* change line length by passing --preview into black
2022-05-09 07:39:08 -04:00
3212afa614 split single_gpu and multi_gpu (#17083)
* split single_gpu and multi_gpu

* update needs in send_result

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-09 07:13:07 -04:00
215e0681e4 Added BigBirdPegasus onnx config (#17104)
* Add onnx configuration for bigbird-pegasus

* Modify docs
2022-05-06 17:31:00 +02:00
351cdbdfdc Fix self-push CI report path in cat (#17111)
* fix report cat path

* fix report cat path

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-06 07:45:17 -07:00
cad61b6839 Fix link to example scripts (#17103) 2022-05-05 15:20:27 -05:00
a59eb349c5 fix missing "models" in pipeline test module (#17090)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-05 16:12:01 +02:00
dd16a113a4 Remove torchhub test (#17097) 2022-05-05 10:02:47 -04:00
c849a61e65 Fix MLflowCallback and add support for MLFLOW_EXPERIMENT_NAME (#17091)
* Fix use of mlflow.active_run() and add proper support for MLFLOW_EXPERIMENT_NAME

* Fix code style (make style)
2022-05-05 09:49:55 -04:00
99289c08a1 Add type hints for BERTGeneration (#17047)
Added type hints for the BERTGenerationEncoder and BERTGenerationDecoder
classes.
2022-05-05 12:22:46 +01:00
45360e1a8e type hints for pytorch models (#17064)
* type hints for pytorch models

* fixed import error

* fixed some errors
2022-05-05 12:21:17 +01:00
db377a0b37 Added spanish translation of autoclass_tutorial. (#17069)
* Added spanish translation of autoclass_tutorial.
Added 'local' and 'title' fields for autoclass_tutorial.

* Fixed autoclass_tutorial title in _toctree.yml and autoclass_tutorial.mdx
2022-05-04 14:18:24 -05:00
6dc4c36acb minor change on TF Data2Vec test (#17085)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-04 18:39:30 +02:00
23619ef6b7 📝 open fresh PR for pipeline doctests (#17073) 2022-05-04 11:30:34 -05:00
870e6f29a6 Fix DeBERTa token_type_ids (#17082) 2022-05-04 18:23:37 +02:00
279bc5849b Allow saved_model export of TFCLIPModel in save_pretrained (#16886)
* CLIP Serving

* Add type hints per code review

* Use black, flake8, and isort

* Update src/transformers/models/clip/modeling_tf_clip.py

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Rollback serving_output and add TODO

* Remove irrelevant portions of failing tests

* Revert "Rollback serving_output and add TODO"

This reverts commit a4abfa6ba3b7875a13538dbc2ddc4eb17dfcca8d.

* Rollback to original test/serving_output

* Fix unused var

* Apply suggestions from code review

* Update formatting with black

* Fix style again from rebase

* Update tests/models/clip/test_modeling_tf_clip.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Sean Moriarity <sean.l.moriarity.mil@army.mil>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-05-04 16:37:58 +02:00
ef20390291 Update to build via git for accelerate (#17084) 2022-05-04 09:42:36 -04:00
bb8d40529e Deprecate model templates (#17062)
* Deprecate model templates

* Address review comments
2022-05-04 09:36:38 -04:00
9c5ae87f13 Type hint complete Albert model file. (#16682)
* Type hint complete Albert model file.

* Update typing.

* Update src/transformers/models/albert/modeling_albert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-04 14:35:12 +01:00
2bf95e2b09 Bump notebook from 6.4.1 to 6.4.10 in /examples/research_projects/lxmert (#16634)
Bumps [notebook](http://jupyter.org) from 6.4.1 to 6.4.10.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-04 08:27:40 -04:00
7a229ef446 Bump notebook in /examples/research_projects/visual_bert (#16635)
Bumps [notebook](http://jupyter.org) from 6.4.1 to 6.4.10.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-05-04 08:27:27 -04:00
049e791758 Add Data2Vec for Vision in TF (#17008)
* add utilities till TFData2VecVisionLayer.

* chore: pass window_size to attention layer.

* feat: add TFData2VecVisionRelativePositionBias.

* feat: initial implementation ready for tf data2vec.

* fix: relative position bias index, table to be fixed.

* chore: implementation added, tests remaining.

* add: tests, other PR files.

* fix: code quality.

* fix: import structure in init.

* chore: run make fix-copies.

* chore: address PR feedback (round I).

* chore: styling nit.

* fix: tests due to removal of to_2tuple().

* chore: rebase with upstream main and move the test.

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix: layer call.

* chore: remove from_pt=True and rerun test.

* chore: remove cast and tf.divide.

* chore: minor edits to the test script.

* Update src/transformers/models/data2vec/modeling_tf_data2vec_vision.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* fix: expand() on TF tensors with broadcast_to().

* fix: test import.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-05-04 08:08:25 -04:00
d76d2a2af7 Make sure telemetry arguments are not returned as unused kwargs (#17063)
* Make sure telemetry arguments are not returned as unused kwargs

* Fix test
2022-05-04 07:47:57 -04:00
675e2d1663 Remove masked image modeling from BEIT ONNX export (#16980)
* Add masked image modelling to task mapping

* Refactor ONNX features to be listed alphabetically

* Add warning about BEiT masked image modeling

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-04 10:05:24 +02:00
4bb1d0ec84 Skip RoFormer ONNX test if rjieba not installed (#16981)
* Skip RoFormer ONNX test if rjieba not installed

* Update deps table

* Skip RoFormer serialization test

* Fix RoFormer vocab

* Add rjieba to CircleCI
2022-05-04 10:04:10 +02:00
db034660fb Fix hashing for deduplication (#17048) 2022-05-04 08:40:24 +02:00
39f8eafc1b Remove device parameter from create_extended_attention_mask_for_decoder (#16894) 2022-05-03 11:06:11 -04:00
dd739f7045 Remove fetch in model templates test 2022-05-03 10:49:12 -04:00
1c9fcd0e04 Fix RNG reload in resume training from epoch checkpoint (#17055)
* Fix RNG reload in resume training from epoch checkpoint

* Fix test
2022-05-03 10:31:24 -04:00
6e17ba6aa5 Remove Python and use v2 action (#17059) 2022-05-03 10:12:17 -04:00
a8fa2f91f4 Make Trainer compatible with sharded checkpoints (#17053)
* Make Trainer compatible with sharded checkpoints

* Add doc
2022-05-03 09:55:10 -04:00
19420fd99e Move test model folders (#17034)
* move test model folders (TODO: fix imports and others)

* fix (potentially partially) imports (in model test modules)

* fix (potentially partially) imports (in tokenization test modules)

* fix (potentially partially) imports (in feature extraction test modules)

* fix import utils.test_modeling_tf_core

* fix path ../fixtures/

* fix imports about generation.test_generation_flax_utils

* fix more imports

* fix fixture path

* fix get_test_dir

* update module_to_test_file

* fix get_tests_dir from wrong transformers.utils

* update config.yml (CircleCI)

* fix style

* remove missing imports

* update new model script

* update check_repo

* update SPECIAL_MODULE_TO_TEST_MAP

* fix style

* add __init__

* update self-scheduled

* fix add_new_model scripts

* check one way to get location back

* python setup.py build install

* fix import in test auto

* update self-scheduled.yml

* update slack notification script

* Add comments about artifact names

* fix for yolos

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-05-03 14:42:02 +02:00
cd9274d010 [FlaxBert] Add ForCausalLM (#16995)
* [FlaxBert] Add ForCausalLM

* make style

* fix output attentions

* Add RobertaForCausalLM

* remove comment

* fix fx-to-pt model loading

* remove comment

* add modeling tests

* add enc-dec model tests

* add big_bird

* add electra

* make style

* make repo-consitency

* add to docs

* remove roberta test

* quality

* amend cookiecutter

* fix attention_mask bug in flax bert model tester

* tighten pt-fx thresholds to 1e-5

* add 'copied from' statements

* amend 'copied from' statements

* amend 'copied from' statements

* quality
2022-05-03 11:26:19 +02:00
31616b8d61 [T5 Tokenizer] Model has no fixed position ids - there is no hardcode… (#16990)
* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length

* [T5 Tokenizer] Model has no fixed position ids - there is no hardcoded max length

* correct t5 tokenizer

* correct t5 tokenizer

* fix test

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* finish

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-05-02 21:27:34 +02:00
1073f00d4e Clean up setup.py (#17045)
* Clean up setup.py

* Trigger CI

* Upgrade Python used
2022-05-02 12:58:17 -04:00
30ca529902 Make the sacremoses dependency optional (#17049)
* Make sacremoses optional

* Pickle
2022-05-02 12:47:47 -04:00
bb2e088be7 Allow all imports from transformers (#17050) 2022-05-02 12:47:39 -04:00
1ac698744c Add YOLOS (#16848)
* First draft

* Add YolosForObjectDetection

* Make forward pass work

* Add mid position embeddings

* Add interpolation of position encodings

* Add expected values

* Add YOLOS to tests

* Add integration test

* Support tiny model as well

* Support all models in conversion script

* Remove mid_pe_size attribute

* Make more tests pass

* Add model to README and fix config

* Add copied from statements

* Rename base_model_prefix to vit

* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP

* Apply suggestions from code review

* Apply more suggestions from code review

* Convert remaining checkpoints

* Improve docstrings

* Add YolosFeatureExtractor

* Add feature extractor to docs

* Add corresponding tests

* Fix style

* Fix docs

* Apply suggestion from code review

* Fix bad rebase

* Fix some more bad rebase

* Fix missing character

* Improve docs and variable names

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-02 18:30:55 +02:00
f275e593bf Fix no_trainer examples to properly calculate the number of samples (#17046)
* Update all examples to properly calculate progress bar
2022-05-02 11:56:25 -04:00
35d48db881 Update no_trainer examples to use new logger (#17044)
* Propagate and fix imports
2022-05-02 11:56:15 -04:00
daecae1f1c [Trainer] Move logic for checkpoint loading into separate methods for easy overriding (#17043) 2022-05-02 10:40:37 -04:00
2de2c9ecca Clean up vision tests (#17024)
* Clean up tests

* Make fixup

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-05-02 16:28:58 +02:00
4be8b95a9f Disable Flax GPU tests on push (#17042) 2022-05-02 10:25:53 -04:00
bdd690a74d add torch.no_grad when in eval mode (#17020)
* add torch.no_grad when in eval mode

* make style quality
2022-05-02 07:49:19 -04:00
9586e222af Fix typo in RetriBERT docstring (#17018) 2022-05-02 07:48:20 -04:00
93b802c43e [Flax(Speech)EncoderDecoder] Fix bug in decoder_module (#17036)
* [FlaxSpeechEncoderDecoder] Fix bug in `decoder_module`

* [FlaxEncoderDecoder] Fix bug in `decoder_module`
2022-05-02 13:06:45 +02:00
1ae182d9a6 Fix style 2022-05-02 06:19:31 -04:00
2c2a2169b6 Fx with meta (#16836)
* Add meta proxy

* Uses meta data to trace data dependent control-flow

* Remove commented class

* Handles torch creating functions

* Added type annotation to fix tracing

* Tracing works for everything but T5 and GPT-J

* Almost all previously supported models pass

* All architectures can be traced except T5

* Intermediate commit to have a trace of the comparison operators for HFProxy

* Everything works, except loss computation

* Everything works

* Removed unused import

* Overriden methods do not use underlying ops (linear and torch.matmul), and model attributes are copied to the traced version

* Fix torch_matmul_override

* Change attributes reference to deepcopy

* Remove breakpoint and add torch_index_override

* Small fix

* Fix typo

* Replace asserts by explicit exceptions
2022-05-02 11:46:52 +02:00
ff846e9b28 [FlaxGenerate] Fix bug in decoder_start_token_id (#17035) 2022-05-02 11:05:27 +02:00
eb877f1fd0 update docs of length_penalty (#17022) 2022-05-02 11:01:18 +02:00
da47c264f9 Add translating guide (#17004)
* Add translating guide
2022-04-30 17:43:38 -05:00
ede5e04191 Add a check on config classes docstring checkpoints (#17012)
* Add the check

* add missing ckpts

* add a list to ignore

* call the added check script

* better regex pattern

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-30 10:40:46 +02:00
7152ed2bae Result of new doc style with fixes (#17015)
* Result of new doc style with fixes

* Add last two files

* Bump hf-doc-builder
2022-04-29 17:42:15 -04:00
18df440709 Replace dict/BatchEncoding instance checks by Mapping (#17014)
* Replace dict/BatchEncoding instance checks by Mapping

* Typo
2022-04-29 17:20:52 -04:00
b8dffd1f3e Revert "Updating variable names. (#16445)" (#17011)
This reverts commit 4f3a14e3c235c8b6b8cd2f5bc448a0cffacddf61.
2022-04-29 12:26:45 -04:00
4f3a14e3c2 Updating variable names. (#16445) 2022-04-29 17:44:28 +02:00
20fb5d51ea Update README_zh-hans.md (#16977) 2022-04-29 11:05:03 -04:00
63fbed5c59 Make create_extended_attention_mask_for_decoder static method (#16893) 2022-04-29 10:57:09 -04:00
fb0ae12947 TF: XLA bad words logits processor and list of processors (#16974) 2022-04-29 15:54:58 +01:00
57e6464ac9 Update all require decorators to use skipUnless when possible (#16999) 2022-04-29 08:55:38 -04:00
e952e049b4 use scale=1.0 in floats_tensor called in speech model testers (#17007)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-29 14:41:33 +02:00
e6f00a11d7 Update README to latest release (#16997) 2022-04-28 14:17:44 -04:00
3486a92a57 Fix savedir for by epoch (#16996) 2022-04-28 13:49:45 -04:00
5af5735f62 set eos_token_id to None to generate until max length (#16989)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-28 19:47:38 +02:00
01562dac7e Rename a class to reflect framework pattern AutoModelXxx -> TFAutoModelXxx (#16993) 2022-04-28 18:11:54 +01:00
1be8d56ec6 Add parameter --config_overrides for run_mlm_wwm.py (#16961)
* dd parameter --config_overrides for run_mlm_wwm.py

* linter
2022-04-28 10:44:55 -04:00
1f9e862507 Update check_models_are_tested to deal with Windows path (#16973)
* fix

* Apply suggestions from code review

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-28 15:31:57 +02:00
dced262409 Update tokenization_bertweet.py (#16941)
The emoji version must be either 0.5.4 or 0.6.0. Newer emoji versions have been updated to newer versions of the Emoji Charts, thus not consistent with the one used for pre-processing the pre-training Tweet corpus (i.e. not consistent with the vocab).
2022-04-27 16:54:31 -04:00
992996e9ca Add -e flag to some GH workflow yml files (#16959)
* Add -e flag

* add check

* create new keys

* run python setup.py build install

* add comments

* change to develop

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 21:44:21 +02:00
596afb4297 Fix check_all_models_are_tested (#16970)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 21:18:29 +02:00
691cdbb7d7 Fix doc notebooks links (#16969)
* Fix doc notebooks links

* Remove missing section
2022-04-27 14:59:53 -04:00
60e1d883f1 Fixup no_trainer save logic (#16968)
* Fixup all examples
2022-04-27 14:46:49 -04:00
c79bbc3ba5 Fix multiple deletions of the same files in save_pretrained (#16947)
* Fix multiple deletions of the same files in save_pretrained

* Add is_main_process argument
2022-04-27 12:28:42 -04:00
bfbec17765 Fix add-new-model-like when model doesn't support all frameworks (#16966) 2022-04-27 11:15:25 -04:00
cf8a7c2490 Update custom_models.mdx (#16964)
BertModelForSequenceClassification -> BertForSequenceClassification
2022-04-27 16:46:55 +02:00
5896b3ecce Fix distributed_concat with scalar tensor (#16963)
* Fix `distributed_concat` with scalar tensor

* Update trainer_pt_utils.py
2022-04-27 10:26:22 -04:00
084c38c59d [HF Argparser] Fix parsing of optional boolean arguments (#16946)
* Add fix

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-27 15:00:45 +02:00
c82e017aa9 Misc. fixes for Pytorch QA examples: (#16958)
1. Fixes evaluation errors popping up when you train/eval on squad v2 (one was newly encountered and one that was previously reported Running SQuAD 1.0 sample command raises IndexError #15401 but not completely fixed).
2. Removes boolean arguments that don't use store_true. Please, don't use these: *ANY non-empty string is being converted to True in this case and this clearly is not the desired behavior (and it creates a LOT of confusion).
3. All no-trainer test scripts are now saving metric values in the same way (with the right prefix eval_), which is consistent with the trainer-based versions.
4. Adds forgotten model.eval() in the no-trainer versions. This improved some results, but not everything (see the discussion in the end). Please, see the F1 scores and the discussion below.
2022-04-27 08:51:39 -04:00
49d5bcb0f3 Fix HubertRobustTest PT/TF equivalence test on GPU (#16943)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-27 10:50:03 +02:00
479fdc4925 Add semantic script, trainer (#16834)
* Add first draft

* Improve script and README

* Improve README

* Apply suggestions from code review

* Improve script, add link to resulting model

* Add corresponding test

* Adjust learning rate
2022-04-27 10:12:18 +02:00
a4a88fa09f [Research] Speed up evaluation for XTREME-S (#16785)
* Avoid repeated per-lang filtering

* Language groups and logits preprocessing

* Style
2022-04-27 08:34:21 +02:00
2d91e3c304 use original loaded keys to find mismatched keys (#16920) 2022-04-26 17:29:52 -04:00
d365f5074f Fix RuntimeError message format (#16906) 2022-04-26 17:08:28 -04:00
10dfa126b7 documentation: some minor clean up (#16850) 2022-04-26 16:56:08 -04:00
aaee4038c3 Add onnx config for RoFormer (#16861)
* add roformer onnx config
2022-04-26 16:51:15 +02:00
8afaaa26f5 FIx Iterations for decoder (#16934)
FIx Iterations for decoder
2022-04-26 12:54:14 +02:00
fa32247406 apply torch int div to layoutlmv2 (#15457)
* apply torch int div

* black linting fixup

* update path to torch_int_div

* clarify imports
2022-04-26 10:07:51 +02:00
344b9fb0c6 Limit the use of PreTrainedModel.device (#16935)
* Limit the use of PreTrainedModel.device

* Fix
2022-04-25 20:58:50 -04:00
6568752039 Fix issue probably-meant-fstring found at https://codereview.doctor (#16913) 2022-04-25 15:15:00 -04:00
fea94d6790 Replace deprecated logger.warn with warning (#16876) 2022-04-25 15:12:51 -04:00
e03966e404 TF: XLA stable softmax (#16892)
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-25 20:10:51 +01:00
8246caf3eb added deit onnx config (#16887)
* added deit onnx config
2022-04-25 20:50:45 +02:00
9331b37967 TF: XLA Logits Warpers (#16899)
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-25 19:48:08 +01:00
809dac48f9 TF: XLA logits processors - minimum length, forced eos, and forced bos (#16912)
* XLA min len, forced eos, and forced bos

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-25 19:27:53 +01:00
f6210c49e2 Fix RemBertTokenizerFast (#16933)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-25 19:51:50 +02:00
32adbb26d6 Fix PyTorch RAG tests GPU OOM (#16881)
* add torch.cuda.empty_cache in some PT RAG tests

* torch.cuda.empty_cache in tearDownModule()

* tearDown()

* add gc.collect()

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-25 17:33:56 +02:00
3e47d19cfc Add missing ckpt in config docs (#16900)
* add missing ckpt in config docs

* add more missing ckpt in config docs

* fix wrong ckpts

* fix realm ckpt

* fix s2t2

* fix xlm_roberta ckpt

* Fix for deberta v2

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* use only one checkpoint for DPR

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-04-25 17:31:45 +02:00
3a71e94a92 Fix doc test quicktour dataset (#16929)
* fix doc test

* fix doc test

Co-authored-by: Patrick <patrick@pop-os.localdomain>
2022-04-25 16:26:59 +02:00
508baf1943 add bigbird typo fixes (#16897)
Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-04-25 11:32:06 +02:00
72728be3db [DocTests] Fix some doc tests (#16889)
* [DocTests] Fix some doc tests

* hacky fix

* correct
2022-04-23 08:40:14 +02:00
22fc93c4d9 Changes in create_optimizer to support tensor parallelism with SMP (#16880)
* changes in create optimizer to support tensor parallelism with SMP

* Update src/transformers/trainer.py

Convert if check to one line.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-22 15:24:38 -04:00
99c8226b12 TF: XLA repetition penalty (#16879) 2022-04-22 18:29:32 +01:00
ec81c11a18 Add OnnxConfig for ConvBERT (#16859)
* add OnnxConfig for ConvBert

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-04-22 18:19:15 +02:00
0d1cff1195 Add doc tests for Albert and Bigbird (#16774)
* Add doctest BERT

* make fixup

* fix typo

* change checkpoints

* make fixup

* define doctest output value, update doctest for mobilebert

* solve fix-copies

* update QA target start index and end index

* change checkpoint for docs and reuse defined variable

* Update src/transformers/models/bert/modeling_tf_bert.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

* Add Doctest for Albert and Bigbird

* make fixup

* overwrite examples for Albert and Bigbird

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update longer examples for Bigbird

* using examples from squad_v2

* print out example text

* change name token-classification-big-bird checkpoint to random

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-22 18:07:16 +02:00
9fa88172c2 Minor fixes/improvements in convert_file_size_to_int (#16891)
* Minor improvements to `convert_file_size_to_int`

* Add <unit>bit version to kilos and megas

* Minor fix
2022-04-22 16:54:20 +02:00
6d90d76f5d TF: rework XLA generate tests (#16866) 2022-04-22 12:38:08 +01:00
3b1bbefc47 Add missing entries in mappings (#16857)
* add missing entries in some mappings

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-22 10:53:24 +02:00
d91841315a New features for CodeParrot training script (#16851)
* add tflops logging and fix grad accumulation

* add accelerate tracking and checkpointing

* scale loss of last batch correctly

* fix typo

* compress loss computation

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* add resume from checkpoint argument

* add load_state accelerate from checkpoint, register lr scheduler and add tflops function

* reformat code

* reformat code

* add condition on path for resume checkpoint

* combine if conditions

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* add source for tflops formula

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-04-21 18:43:46 +02:00
eef2422e96 Fix doctest list (#16878)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-21 18:12:14 +02:00
0b1e0fcf7a Fix GPT-J onnx conversion (#16780)
* add gptj to TOKENIZER_MAPPING_NAMES

* fix int32 to float to avoid problem in onnx

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-04-21 15:55:30 +02:00
bae9b6458c Use ACT2FN to fetch ReLU activation (#16874)
- all activations should be fetched through ACT2FN
- it returns ReLU as `nn.Module`, which allows attaching hooks on the activation function and prints it to stdout when `print(model)`
2022-04-21 09:33:29 -04:00
cb555af2c7 Return input_ids in ImageGPT feature extractor (#16872) 2022-04-21 09:09:00 -04:00
e789418ebe Adding support for array key in raw dictionnaries in ASR pipeline. (#16827)
* Adding support for `array` key in raw dictionnaries in ASR pipeline.

* ES .

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Making it work by not popping `array` first.

* Black 22.3

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-21 14:39:10 +02:00
daf520b033 tiny tweak to allow BatchEncoding.token_to_char when token doesn't correspond to chars (#15901)
* tweak to allow BatchEncoding.char_to_token(0)

* update docstring

* remote trailing whitespace

* make fixup

* make value checking for span_indices explicit

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-21 08:07:54 -04:00
cb7e166428 t5: add conversion script for T5X to FLAX (#16853)
* t5: add conversion script for T5X to FLAX

* t5: make flake happy

* t5: add copyright message to t5x conversion script

* t5: fix lm head for v1.0 checkpoints
2022-04-21 13:00:35 +02:00
6620f60c0a Long QuestionAnsweringPipeline fix. (#16778)
* Temporary commit witht the long QA fix.

* Adding slow tests covering this fix.

* Removing fast test as it doesn't fail anyway.
2022-04-21 09:59:25 +02:00
705d65368f Fix multiproc metrics in no_trainer examples (#16865) 2022-04-20 17:26:27 -04:00
175da8d182 Fix custom init sorting script (#16864) 2022-04-20 17:05:39 -04:00
67ed0e43dc [docs] fix url (#16860) 2022-04-20 11:01:24 -07:00
afa1ef0992 [modeling_utils] use less cpu memory with sharded checkpoint loading (#16844)
* less cpu memory with sharded checkpoint loading

* Trigger CI

* Trigger CI
2022-04-20 07:44:37 -07:00
e13a91fe60 Fixing return type tensor with num_return_sequences>1. (#16828)
* Fixing return type tensor with `num_return_sequences>1`.

* Nit.
2022-04-20 16:11:51 +02:00
ff06b17791 add DebertaV2 fast tokenizer (#15529)
Co-authored-by: alcinos <carion.nicolas@gmail.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Nicolas Carion <carion.nicolas@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-20 10:26:51 +02:00
e1c153cbaa [Typo] Fix typo in modeling utils (#16840) 2022-04-19 23:09:03 +02:00
3104036e7f Add support for bitsandbytes (#15622)
* Add initial BNB integration

* fixup! Add initial BNB integration

* Add bnb test decorator

* Update Adamw8bit option name

* Use the full bnb package name

* Overide bnb for all embedding layers

* Fix package name

* Formatting

* Remove unnecessary import

* Update src/transformers/trainer.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Rename AdamwBNB optimizer option

* Add training test checking that bnb memory utilization is lower

* fix merge

* fix merge; fix + extend new test

* cleanup

* expand bnb

* move all require_* candidates to testing_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-04-19 16:01:29 -04:00
e6d23a4b9b Improve test_pt_tf_model_equivalence on PT side (#16731)
* Update test_pt_tf_model_equivalence on PT side

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-19 21:13:27 +02:00
3dd57b15c5 Type hints added to Speech to Text (#16506)
* Type hints added

* return hints added

* Update src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-19 17:58:08 +01:00
1efca4e6c8 replace Speech2TextTokenizer by Speech2TextFeatureExtractor in some docstrings (#16835)
* replace `Speech2TextTokenizer` by `Speech2TextFeatureExtractor` in docstring

* quality
2022-04-19 18:32:22 +02:00
b5c6a63ed9 Correct Logging of Eval metric to Tensorboard (#16825)
* Correct Logging of Eval metric to Tensorboard

An empty dictionary ``eval_metrics`` was being logged, is replaced by ``eval_metric`` which is the output dictionary of ``metric.compute()``.

* Remove unused variable
2022-04-19 17:27:54 +02:00
f09c45e067 TF: Add sigmoid activation function (#16819) 2022-04-19 16:13:08 +01:00
74814574ae Add doc about attention_mask on gpt2 (#16829)
* Add doc about `attention_mask` on gpt2

Add a simple sentence describing how `attention_mask` needs to be constructed when ``past_key_values` is used.

* Add doc about attention_mask on gpt2_tf

* clean up style

* remove empty line white spaces

* remove whitespace in empty line
2022-04-19 16:32:26 +02:00
b96e82c80a Add image classification script, no trainer (#16727)
* Add first draft

* Improve README and run fixup

* Make script aligned with other scripts, improve README

* Improve script and add test

* Remove print statement

* Apply suggestions from code review

* Add num_labels to make test pass

* Improve README
2022-04-19 16:32:08 +02:00
db9f189121 [ASR Pipeline] Correct init docs (#16833)
* correct

* up
2022-04-19 16:12:36 +02:00
77de8d6c31 Add onnx export of models with a multiple choice classification head (#16758)
* Add export of models with a multiple-choice classification head
2022-04-19 15:51:51 +02:00
b74a955325 fix rum_clm.py seeking text column name twice (#16624) 2022-04-19 14:38:25 +01:00
3663fca41b Type hints added for TFMobileBert (#16505)
* Type hints added

* make style

* Return type hints added

* fixed typo

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-19 14:37:03 +01:00
a2392415e9 Some tests misusing assertTrue for comparisons fix (#16771)
* Fix issue avoid-misusing-assert-true found at https://codereview.doctor

* fix tests

* fix tf

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-19 14:44:08 +02:00
d3bd9ac728 [Flax] improve large model init and loading (#16148)
* begin do_init

* add params_shape_tree

* raise error if params are accessed when do_init is False

* don't allow do_init=False when keys are missing

* make shape tree a property

* assign self._params at the end

* add test for do_init

* add do_init arg to all flax models

* fix param setting

* disbale do_init for composite models

* update test

* add do_init in FlaxBigBirdForMultipleChoice

* better names and errors

* improve test

* style

* add a warning when do_init=False

* remove extra if

* set params after _required_params

* add test for from_pretrained

* do_init => _do_init

* chage warning to info

* fix typo

* add params in init_weights

* add params to gpt neo init

* add params to init_weights

* update do_init test

* Trigger CI

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update template

* trigger CI

* style

* style

* fix template

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-19 14:19:55 +02:00
6de4ee61a0 Wav2 vec2 phoneme ctc tokenizer optimisation (#16817)
* Solved href rendering issue in heading

Markdown references in headings such as '####' don't render well.
Replaced it with <h4>...<a></a></h> banners.

* PhonemeTokenizer optimization using phonemizer lib

The backend should only be initialized once, otherwise it is reloaded.
Added `init_backend` function, intializes a backend attribute.
Phonemize re-uses self.backend.
Should give ~10 times faster phonemization.

* formatted file with make style

* Documentation suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update /tokenization_wav2vec2_phoneme.py based on PR suggestion

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update CONTRIBUTING.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-19 07:39:04 -04:00
306c9ee966 Fix LayoutLMv2 tokenization docstrings (#16187)
* Fix docstrings

* Fix up

* Fix
2022-04-19 12:14:51 +02:00
7db7aab439 Add semantic script no trainer, v2 (#16788)
* Add first draft from previous PR

* First draft

* Improve README and remove num_labels

* Make script more aligned with other scripts

* Improve README and apply suggestion from code review
2022-04-19 09:07:29 +02:00
494c2a8c4d Clean up semantic segmentation tests (#16801)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-19 09:02:19 +02:00
989a15d173 fix _setup_devices in case where there is no torch.distributed package in build (#16821)
* fix _setup_devices in case where there is not torch.distributed

* in training_args_sm.py as well
2022-04-18 18:36:46 -04:00
c11a49573f Refactor issues with yaml (#16772)
* Refactor issues with yaml

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update .github/ISSUE_TEMPLATE/feature-request.yml

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update .github/ISSUE_TEMPLATE/bug-report.yml

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Address review comments

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-04-18 16:43:21 -04:00
51e0ebedcb Allow passing encoder_ouputs as tuple to EncoderDecoder Models (#16814)
* Add passing encoder_outputs as tuple to existing test

* Add check for tuple

* Add check for tuple also for speech and vision

Co-authored-by: jsnfly <jsnfly@gmx.de>
2022-04-18 19:49:58 +02:00
51fa7191b1 use base_version to check torch version in torch_less_than_1_11 (#16806)
* use base_version

* make is_torch_less_than_1_8 match 1_11

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
2022-04-18 13:02:00 -04:00
8d3f952adb [Data2Vec] Add data2vec vision (#16760)
* save intermediate

* add vision

* add vision

* save

* finish models

* finish models

* continue

* finish

* up

* up

* up

* tests all pass

* clean up

* up

* up

* fix bugs in beit

* correct docs

* finish

* finish docs

* make style

* up

* more fixes

* fix type hint

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/data2vec/test_modeling_data2vec_vision.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix test

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-18 17:52:13 +02:00
33cd4be576 fix megatron bert convert state dict naming (#15820) 2022-04-18 11:34:36 -04:00
9a2995ee39 [Quicktour Audio] Improve && remove ffmpeg dependency (#16723)
* [Quicktour Audio] Improve && remove ffmpeg dependency

* final fix

* final touches
2022-04-18 16:50:13 +02:00
d3c9d0e55f [ViT, BEiT, DeiT, DPT] Improve code (#16799)
* Improve code

* Fix bugs

* Fix another bug

* Clean up DTP as well

* Update DPT model outputs

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-18 09:25:08 -04:00
3785f4665a Fix syntax error in TorchHub workflow 2022-04-18 07:54:00 -04:00
6984848ed0 Create empty venv on cache miss (#16816) 2022-04-18 07:49:31 -04:00
438144832e Raise error and suggestion when using custom optimizer with Fairscale or Deepspeed (#16786)
* optimizer issues related to saving

* remove the "optimizer saving" option

* reformat using make style
2022-04-18 07:47:21 -04:00
b4ddd2677c TF generate refactor - XLA sample (#16713) 2022-04-18 10:58:24 +01:00
02de7a8e7f CI: non-remote GH Actions now use a python venv (#16789) 2022-04-18 09:47:38 +01:00
dee6f01636 Pin Jax to last working release (#16808)
* Pin Jax to last working release

* Try lower

* Try lower
2022-04-16 21:15:19 -04:00
78f346c2b5 Update README.md (#16797) 2022-04-15 14:10:16 +02:00
ee209d4d01 Fix PT TF ViTMAE (#16766)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-15 06:37:10 +02:00
5da33f8729 [modeling utils] revamp from_pretrained(..., low_cpu_mem_usage=True) + tests (#16657)
* add low_cpu_mem_usage tests

* wip: revamping

* wip

* install /usr/bin/time

* wip

* cleanup

* cleanup

* cleanup

* cleanup

* cleanup

* fix assert

* put the wrapper back

* cleanup; switch to bert-base-cased

* Trigger CI

* Trigger CI
2022-04-14 18:10:05 -07:00
ce2fef2ad2 [trainer / deepspeed] fix hyperparameter_search (#16740)
* [trainer / deepspeed] fix hyperparameter_search

* require optuna

* style

* oops

* add dep in the right place

* create deepspeed-testing dep group

* Trigger CI
2022-04-14 17:24:38 -07:00
1b7de41a07 Fix issue avoid-missing-comma found at https://codereview.doctor (#16768) 2022-04-14 16:42:27 -04:00
de8b06f9bf [SpeechEncoderDecoderModel] Fix bug in reshaping labels (#16748) 2022-04-14 19:02:40 +01:00
048443db86 Improve image classification example (#16585)
* Improve README

* Make dataset_name argument optional

* Improve local data

* Fix bug

* Improve README some more

* Apply suggestions from code review

* Improve README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-14 18:10:52 +02:00
3e4eec47f5 Kill async pushes when calling push_to_hub with blocking=True (#16755) 2022-04-14 10:02:29 -04:00
c21e1071a7 [deepspeed / m2m_100] make deepspeed zero-3 work with layerdrop (#16717)
* [deepspeed / m2m_100] make deepspeed 3 work with layerdrop

* fix

* revert last
2022-04-14 06:51:55 -07:00
89293a0f6b Make nightly install dev accelerate (#16783) 2022-04-14 09:41:02 -04:00
b151ddb9b9 Fix batch size in evaluation loop (#16763)
* Fix batch size in evaluation loop

* remove debug statement
2022-04-14 09:22:54 -04:00
d8269eb4d5 [Flax .from_pretrained] Raise a warning if model weights are not in float32 (#16762)
* [Flax] Raise a warning if model weights are not in float32

* apply suggestions and few small changes

* reorder wording for better readability
2022-04-14 11:52:15 +02:00
195fbbb6cf Enabling Tapex in table question answering pipeline. (#16663)
* Enabling `Tapex` in table question answering pipeline.

* Questions are independant for Tapex, making the test respect that.

* Missing extra space.
2022-04-14 09:06:14 +02:00
442dc45645 [Doctest] added doctest changes for electra (#16675)
* added doctest changes for electra

* fixed doctest tests

* updated changes
2022-04-13 22:39:00 +02:00
be752d12f8 Fixup no_trainer examples scripts and add more tests (#16765)
* Change tracking to store_true

* Remove step param and use it in the log dictionary directly

* use vars(args) when passing args to init_trackers

* Include tracking tests since tensorboard is already a dep
2022-04-13 14:40:48 -04:00
3a16ab25c8 [self-scheduled ci] explain where dependencies are (#16757) 2022-04-13 12:28:02 -04:00
34ef029dc0 Add self training code for text classification (#16738)
* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Add self-training code for text-classification

* Delete strata
2022-04-13 12:03:24 -04:00
8e0d3b427f Add defensive check for config num_labels and id2label (#16709)
* Add defensive check for config num_labels and id2label

* Actually check value...

* Only warning inside init plus better error message
2022-04-13 11:28:19 -04:00
6bed0647fe Reduce Funnel PT/TF diff (#16744)
* Make Funnel Test less flaky

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-13 17:19:52 +02:00
0b8f697219 CI: setup-dependent pip cache (#16751)
* Setup-dependent pip cache

* Do not restore from old versions
2022-04-13 16:19:14 +01:00
ac43a40e6a [modeling_utils] better explanation of ignore keys (#16741) 2022-04-13 08:03:20 -07:00
0235bc57ab Fix and improve CTRL doctests (#16573)
* Improve CTRL doctests

* Fix `CTRLForSequenceClassification` flakiness with inconsistent losses

* Remove unused

* Fixup

* Add CTRL to documentation_tests.txt

* Fix control code not being first

* Add output assertions

* Change from sshleifer/tiny-ctrl -> ctrl

* Run `make fixup`

* apply `list` to output logits shape for clarity

* Reduce output loss precision to make assertion more robust

* Add assertion of control code being first

* Fix docstyle

* upper case sentence following control code

* Weird bug fixes

* Add a better generation example

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-04-13 15:44:31 +02:00
06b4aac9eb Add Doc Test for GPT-J (#16507)
* Required the values GPTJ unfortunately cannot run the model =)

* Added the file to the doc tests

* Run Fixup and Style

* Fixed with the test versions of gptj. Ran Style and Fixup.

* Trigger ci

* A Minor Change to License

* Fixed spacing added to the benchmark_utils. Then refactored tests to const variables.

* Removed strings that were included as default parameters anyways.

Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
2022-04-13 15:04:47 +02:00
12bfa97a43 [from_pretrained] refactor find_mismatched_keys (#16706) 2022-04-13 07:50:15 -04:00
9f8bfe703c Fix #16660 (tokenizers setters of ids of special tokens) (#16661)
* Fix setters of *_token_id properties of SpecialTokensMixin

* Test setters of common tokens ids

* Move to a separate test checks of setters of tokens ids

* Add independent test for ByT5

* Add Canine test

* Test speech to text
2022-04-13 07:49:06 -04:00
b24201fa44 [Doctests] Fix all T5 doc tests (#16646)
* [Doctests] Fix all T5 doc tests

* make style

* Update docs/source/en/model_doc/t5.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply Sylvains comments

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-13 11:36:54 +02:00
f7196f2e63 Fix decoding score comparison when using logits processors or warpers (#10638)
* Normalize using a logits warper

* Add a flag in `generate` to support the logit renormalization

* Add in RAG
2022-04-13 09:37:33 +01:00
eb5bdcdfa5 TF generate: handle case without cache in beam search (#16704) 2022-04-12 20:46:10 +01:00
9c9db751e2 add Bigbird ONNX config (#16427)
* add Bigbird ONNX config
2022-04-12 20:46:06 +02:00
a960406722 [FlaxWav2Vec2Model] Fix bug in attention mask (#16725)
* [FlaxWav2Vec2Model] Fix bug in attention mask

* more fixes

* add (Flax)SpeechEncoderDecoderModel PT-FX cross-test
2022-04-12 19:48:24 +02:00
6adefba3f0 [FlaxSpeechEncoderDecoder] Fix input shape bug in weights init (#16728)
* [FlaxSpeechEncoderDecoder] Fix input shape bug in weights init

* make style
2022-04-12 19:33:57 +02:00
1bac40db8a Add Doc Tests for Reformer PyTorch (#16565)
* start working

* fix: ReformerForQA doctest

* fix: ReformerModelWithLMHead doctest

* fix: ReformerModelForSC doctest

* fix: ReformerModelForMLM doctest

* add: documentation_tests.txt

* make fixup

* change: ReformerModelForSC doctest

* change: checkpoint
2022-04-12 18:52:31 +02:00
d7f7f29f29 TF: remove set_tensor_by_indices_to_value (#16729) 2022-04-12 17:51:47 +01:00
a315988bae Moved functions to pytorch_utils.py (#16625)
* Moved functions to pytorch_utils.py

* isort formatting

* Reverted tf changes

* isort, make fix-copies

* documentation fix

* Fixed Conv1D import

* Reverted research examples file

* backward compatibility for pytorch_utils

* missing import

* isort fix
2022-04-12 12:38:50 -04:00
0711c45eae Remove duplicate header (#16732) 2022-04-12 12:37:13 -04:00
a192f61e08 Change the chunk_iter function to handle (#16730)
* Change the chunk_iter function to handle

the subtle cases where the last chunk gets ignored since all the
data is in the `left_strided` data.

We need to remove the right striding on the previous item.

* Remove commented line.
2022-04-12 18:25:02 +02:00
cc034f72eb Replace assertion with exception (#16720)
* Updated assertions to exceptions

* updated assertions to exceptions

* bug fixes

* fix-copies

* Update modeling_ctrl.py

* Update src/transformers/models/ctrl/modeling_tf_ctrl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/gptj/modeling_tf_gptj.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update modeling_led.py

* Update modeling_led.py

* Update modeling_led.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-12 11:47:01 -04:00
14daa6102a Qdqbert example add benchmark script with ORT-TRT (#16592)
* add ort-trt benchmark script

* Update README.md

* ort version can be newer

* formatting

* specify ORT version
2022-04-12 11:13:59 -04:00
db3edd050b Update run_translation_no_trainer.py (#16652)
args.model_name_or_path -> args.config_name
fix it
2022-04-12 08:55:12 -04:00
b9f12bedd3 Only call get_output_embeddings when tie_word_embeddings is set (#16667)
This avoids an unnecessary call and avoids problems during
initialization of class hierarchies.

Co-authored-by: Samuel Melm <samuel.melm@stud.uni-heidelberg.de>
2022-04-12 07:55:44 -04:00
924484ee4a Add Doc Test GPT-2 (#16439)
* First Pass All Tests Pass

* WIP

* Adding file to documentation tests

* Change the base model for the example in the doc test.

* Fix Code Styling by running
make fixup

* Called Style

* Reverted to gpt2 model rather than distill gpt2
Then used a token classification model over a sequence model for an example.

* Fix Styling Issue

* Hopefully ignores the formatting issue.

Co-authored-by: ArEnSc <xx.mike.chung.xx@gmail.com>
2022-04-12 12:11:03 +02:00
70851a6bf0 [Bart] correct doc test (#16722) 2022-04-12 10:19:49 +02:00
69233cf03b Fix example logs repeating themselves (#16669)
Move declaration of log streams to before tests, so that results won't get compounded on top of each other
2022-04-11 16:25:16 -04:00
dce33f2150 Improve PT/TF equivalence test (#16557)
* add error message

* Use names in the error message

* allow ModelOutput

* rename to check_pt_tf_outputs and move outside

* fix style

* skip past_key_values in a better way

* Add comments

* improve code for label/loss

* make the logic clear by moving the ignore keys out

* fix _postprocessing_to_ignore

* fix _postprocessing_to_ignore: create new outputs from the remaining fields

* ignore past_key_values in TFGPT2 models for now

* make check_pt_tf_outputs better regarding names

* move check_pt_tf_models outside

* rename methods

* remove test_pt_tf_model_equivalence in TFCLIPModelTest

* Reduce TFViTMAEModelTest.test_pt_tf_model_equivalence

* move prepare_pt_inputs_from_tf_inputs outside check_pt_tf_models

* Fix quality

* Clean-up TFLxmertModelTester.test_pt_tf_model_equivalence

* Fix quality

* fix

* fix style

* Clean-up TFLEDModelTest.test_pt_tf_model_equivalence

* Fix quality

* add docstring

* improve comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 22:19:12 +02:00
7f7300856d Handle image_embeds in ViltModel (#16696)
* update

* batch_size -> text_batch_size

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 22:16:20 +02:00
161c0a2eec Private repo TrainingArgument (#16707)
* private repo argument to trainer

* format

Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
2022-04-11 13:37:16 -04:00
d4b3e359aa Don't push checkpoints to hub in no_trainer scripts (#16703)
Adds checkpoint prefixes to the gitignore if `push_to_hub` is used along with `checkpointint_steps`
2022-04-11 12:42:45 -04:00
c04619ecf3 Enable more test_torchscript (#16679)
* update _create_and_check_torchscript

* Enable test_torchscript

* clear_class_registry

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:23:35 +02:00
3918d6a9d6 Reduce memory leak in _create_and_check_torchscript (#16691)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:22:28 +02:00
2109afae71 Rename the method test_torchscript (#16693)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:21:45 +02:00
40618ec29e Fix TF_MASKED_LM_SAMPLE (#16698)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 18:19:28 +02:00
1471857f13 update decoder_vocab_size when resizing embeds (#16700) 2022-04-11 18:02:10 +02:00
5e68675755 Fix t5 shard on TPU Pods (#16527)
* Fix t5 shard on TPU Pods

The current script doesn't work properly on a TPU pod because the global batch is not divided correctly per host.
This pull request fixes this issue by dividing the global batch to each host before it is shared on each host.

* fix style

Co-authored-by: ahmed-elnaggar <ahmed.elnaggar@allianz.com>
2022-04-11 16:45:20 +02:00
2831826bc6 Add Doc Test for BERT (#16523)
* Add doctest BERT

* make fixup

* fix typo

* change checkpoints

* make fixup

* define doctest output value, update doctest for mobilebert

* solve fix-copies

* update QA target start index and end index

* change checkpoint for docs and reuse defined variable

* Update src/transformers/models/bert/modeling_tf_bert.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-04-11 15:51:28 +02:00
098b002644 [Doctests] Correct task summary (#16644) 2022-04-11 14:59:35 +02:00
6ef7186b5d fixed crash when deleting older checkpoint and a file f"{checkpoint_prefix}-*" exist (#16686)
I create an archive of older checkpoints during training the checkpoint has a  name with `f"{checkpoint_prefix}-*.zip/.tar ` 
previously `glob(f"{checkpoint_prefix}-*")` takes all files/folders starting with the name checkpoint, and later `shutil.rmtree(checkpoint)` takes a folder name; since at some point it my get a zip file; it crashes training; adding this `if os.path.isdir(x)` allows only folders on `glob_checkpoints`
2022-04-11 07:32:07 -04:00
b0bf3011c1 Generate: min length can't be larger than max length (#16668)
* min length must be smaller than max length

* Update min_length in tests
2022-04-11 11:55:30 +01:00
4868a830db Jia multi gpu eval (#16428)
* add simple multi gpu complet

* add human_eval_multi_gpu

* use copy strategy to distribute across gpu, to avoid padding

* add doc string

* update code style

* use task id to arrange output

* truncate input to avoid zero pad

* Stop the copy mechanism

* update style

* restore copies to scale better in distributed mode

* update style

* replace human eval

* Apply suggestions from code review

1. Tokenize all input at the same time
2. use attention_mask to get the input length
3. other small fixes

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* correct typo and update docstring

* update code style

* remove num sample division constraint

* remove max len calculation

* use accelerator.gather once to speed up

* use accelerate set_seed; update accelerate version

* correct gather bug

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-04-11 11:24:32 +02:00
8e93dc7eaf Fix some doc examples in task summary (#16666)
* Fix some doc examples

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-11 11:20:03 +02:00
1025a9b742 add a warning in SpmConverter for sentencepiece's model using the byte fallback feature (#16629)
* update proto sentencepiece model

* Revert "update proto sentencepiece model"

This reverts commit b07f671747fec35773d0b3d4788b8b15aefa0229.

* add check

* add test

* Revert "Revert "update proto sentencepiece model""

This reverts commit 46108257b8927b73627ec8f4f3eed53a95fc700d.

* test for log level

* test for log level 2

* warning at the warning level

* clean

* format

* add explanation in docstring
2022-04-11 11:06:10 +02:00
7c5d79912a Update audio examples with MInDS-14 (#16633)
*  update audio examples with minds dataset

* 🖍 make style

* 🖍 minor fixes for doctests
2022-04-08 15:55:42 -05:00
4d46106718 [Trainer] tf32 arg doc (#16674)
* [Trainer] tf32 arg doc

* Update src/transformers/training_args.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-08 12:35:39 -07:00
f4d4f0a1ec only load state dict when the checkpoint is not None (#16673) 2022-04-08 13:42:04 -04:00
d57da99237 Add tests for no_trainer and fix existing examples (#16656)
* Fixed some bugs involving saving during epochs
* Added tests mimicking the existing examples tests
* Added in json exporting to all `no_trainer` examples for consistency
2022-04-08 10:03:56 -04:00
ab229663b5 Fix QA sample (#16648)
* fix QA sample

* For TF_QUESTION_ANSWERING_SAMPLE

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-08 15:31:43 +02:00
9a24b97b7f Fix style 2022-04-08 08:07:16 -04:00
5db2fcc61d Fix error in doc of DataCollatorWithPadding (#16662)
The defalut value of `padding` in `DataCollatorWithPadding` is `True`, not `False`.
2022-04-08 07:58:02 -04:00
9db2eebbe2 add vit tf doctest with @add_code_sample_docstrings (#16636)
* add vit tf doctest with @add_code_sample_docstrings

* add labels string back in

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-04-08 07:31:38 -04:00
4ef0abb738 Add TAPEX (#16473)
* Add TapexTokenizer

* Improve docstrings and provide option to provide answer

* Remove option for pretokenized inputs

* Add TAPEX to README

* Fix copies

* Remove option for pretokenized inputs

* Initial commit: add tapex fine-tuning examples on both table-based question answering and table-based fact verification.

* - Draft a README file for running the script and introducing some background.
- Remove unused code lines in tabfact script.
- Disable the deafult `pad_to_max_length` option which is memory-consuming.

* * Support `as_target_tokenizer` function for TapexTokenizer.
* Fix the do_lower_case behaviour of TapexTokenizer.
* Add unit tests for target scenarios and cased/uncased scenarios for both source and target.

* * Replace the label BartTokenizer with TapexTokenizer's as_target_tokenizer function.
* Fix typos in tapex example README.

* * fix the evaluation script - remove the property `task_name`

* * Make the label space more clear for tabfact tasks

* * Using a new fine-tuning script for tapex-base on tabfact.

* * Remove the lowercase code outside the tokenizer - we use the tokenizer to control whether do_lower_case
* Guarantee the hyper-parameter can be run without out-of-memory on 16GB card and report the new reproduced number on wikisql

* * Remove the default tokenizer_name option.
* Provide evaluation command.

* * Support for WikiTableQuestion dataset.

* Fix a typo in README.

* * Fix the datasets's key name in WikiTableQuestions

* Run make fixup and move test to folder

* Fix quality

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions from code review

* Improve docstrings

* Overwrite failing test

* Improve comment in example scripts

* Fix rebase

* Add TAPEX to Auto mapping

* Add TAPEX to auto config mappings

* Put TAPEX higher than BART in auto mapping

* Add TAPEX to doc tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: SivilTaram <qianlxc@outlook.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-04-08 10:57:51 +02:00
33cb21150c bert: properly mention deprecation of TF2 conversion script (#16171) 2022-04-07 17:35:17 -04:00
af14c61973 RegNet (#16188)
* base model done

* make style

* done

* added files

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Trigger doc build

* resolved conversations

* resolved conversations

* seer models

* minor changes

* minor changes

* make fixup

* glob variables

* minor changes

* fix copies

* config when possibile

* resolved conflicts

* resolved conflicts

* resolved conflicts

* CI

* conversion script for 10b param

* fixed for 10b model

* minor updates in the doc + make style

* removed unused code

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* removed unused code

* removed unused code

* updated modeling_utils from main

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-04-07 21:58:00 +02:00
3e26e78b3b Update Support image on README.md (#16615)
* Update README.md Support Image

Updates the Support image linking to our EAP page (to give it a refresh + help avoid image fatigue).

Slack thread checking in with #open-source-internal on this update (https://huggingface.slack.com/archives/C021H1P1HKR/p1648838903316709)

* Compressed Updated Support image

* Improves Support Image Logo + Height

Updated the image based on logo + size feedback. Big thanks to Bibi for making quick edits to this image.
2022-04-07 15:06:50 -04:00
4099817bd6 Updated _load_pretrained_model_low_mem to check if keys are in the state_dict (#16643)
* Updated _load_pretrained_model_low_mem to check if keys are in the stored state_dict

* update after conversions
2022-04-07 20:48:04 +02:00
389f66151d Remove parent/child tests in auto model tests (#16653) 2022-04-07 11:05:10 -04:00
080e42d0ac [megatron-bert-uncased-345m] fix conversion (#16639) 2022-04-07 07:56:34 -07:00
09a272b02a Add inputs vector to calculate metric method (#16461)
* Add inputs vector to calculate metric method

* Include inputs for evaluation metrics with backwards compatibility

* Prevent inputs create OOM issue and documentation details

* Update style and code documentation

* Fix style formatting issues

* Update files format with make style
2022-04-07 10:02:43 -04:00
dc991805bf Fix doc example (#16448)
* Fix doc

* Make fixup

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-04-07 10:48:24 +02:00
febe42b5da Update no_trainer scripts with new Accelerate functionalities (#16617)
Adds logging and save/loading to the Accelerate scripts

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-06 15:29:32 -04:00
10c15d2d1e Allow the same config in the auto mapping (#16631) 2022-04-06 14:21:15 -04:00
8ac9b82724 Added Annotations for PyTorch models (#16619)
* Update modeling_mpnet.py

* Update modeling_ctrl.py

* formatting

* Formatting

* Formatting

* annotated FSMT

* Added annotations for LED

* Added Annotations for M2M

* Added annotations for nystromformer

* Added annotations for OpenAI

* Added annotations for RAG

* Removed unused imports

* fix isort errors

* Removed inputs_embeds docstring, corrected original

* flake8 fixes

* doc-builder fixes
2022-04-06 14:12:01 -04:00
3f43d824b9 TF generate refactor - Beam Search (#16374)
* refactor TF beam search

* refactored generate can now properly use attention masks

* add force bos/eos logit processors
2022-04-06 18:19:34 +01:00
4d10083539 [modeling_utils] rearrange text (#16632) 2022-04-06 09:35:42 -07:00
a180efe7fd Dev version 2022-04-06 11:08:12 -04:00
b9bf91a970 Revert "Allow the same config in the auto mapping"
This reverts commit b1a7dfe099b852340868f9aa7c75bb805ce57596.
2022-04-06 09:58:13 -04:00
b1a7dfe099 Allow the same config in the auto mapping 2022-04-06 09:57:47 -04:00
2aef4cfe58 Fix TFTransfoXLLMHeadModel outputs (#16590)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-06 15:42:15 +02:00
8d57c424e0 [FlaxSpeechEncoderDecoderModel] More Rigorous PT-Flax Equivalence Tests (#16589) 2022-04-06 15:33:32 +02:00
c65633156b [Speech2Text Doc] Fix docs (#16611)
* [Speech2Text Doc] Fix docs

* apply ydshiehs suggestions
2022-04-06 14:19:00 +02:00
fb3d0df454 typo (#16621) 2022-04-06 07:28:17 -04:00
ae6a7a763b Use CLIP model config to set some kwargs for components (#16609)
* Use CLIP model's config for some fields (if specified) instead of those of vision & text components.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-06 12:15:09 +02:00
47c5c05932 don't load state_dict twice when using low_cpu_mem_usage in from_pretrained (#16602) 2022-04-06 11:43:02 +02:00
a2b7d19bd7 Fix seq2seq doc tests (#16606)
* fix bart and mbart

* add ckpt names as variables

* fix mbart

* fix plbart

* use varibale for ckot name
2022-04-06 11:32:39 +02:00
0bf18643f4 [Minds14] Correct quicktour (#16626) 2022-04-06 11:27:11 +02:00
Jun
d55fcbcc50 fix default num_attention_heads in segformer doc (#16612) 2022-04-06 09:51:58 +02:00
b18dfd95e1 added type hints to CTRL pytorch (#16593)
* Completed documentation of CTRL

* Missing optional None

* Added return types

* updated imports

* Update modeling_ctrl.py
2022-04-05 16:55:01 -04:00
208f4c109a Quality 2022-04-05 14:12:01 -04:00
f553c3ce4c Update summary of the tasks (#16528)
* 📝 add image/vision classification and asr

* 🖍 minor formatting fixes

* Fixed a typo in legacy seq2seq_trainer.py (#16531)

* Add ONNX export for BeiT (#16498)

* Add beit onnx conversion support

* Updated docs

* Added cross reference to ViT ONNX config

* call on_train_end when trial is pruned (#16536)

* Type hints added (#16529)

* Fix Bart type hints (#16297)

* Add type hints to PLBart PyTorch

* Remove pending merge conflicts

* Fix PLBart Type Hints

* Add changes from review

* Add VisualBert type hints (#16544)

* Adding missing type hints for mBART model (PyTorch) (#16429)

* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

Co-authored-by: matt <rocketknight1@gmail.com>

* Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)

* Remove MBart subclass of XLMRoberta in tokenzier

* Fix style

* Copy docs from MBart50 tokenizer

* Use random_attention_mask for TF tests (#16517)

* use random_attention_mask for TF tests

* Fix for TFCLIP test (for now).

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* Improve code example (#16450)

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>

* Pin tokenizers version <0.13 (#16539)

* Pin tokenizers version <0.13

* Style

* Add code samples for TF speech models (#16494)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)

* [FlaxSpeechEncoderDecoder] Fix dtype bug

* more fixes

* Making the impossible to connect error actually report the right URL. (#16446)

* Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556)

* Add utility to find model labels (#16526)

* Add utility to find model labels

* Use it in the Trainer

* Update src/transformers/utils/generic.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Quality

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Enable doc in Spanish (#16518)

* Reorganize doc for multilingual support

* Fix style

* Style

* Toc trees

* Adapt templates

* Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)

* fix formatting and remove use_auth

* Add use_auth_token to Flax examples

* add a test checking the format of `convert_tokens_to_string`'s output (#16540)

* add new tests

* add comment to overridden tests

* TF: Finalize `unpack_inputs`-related changes (#16499)

* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests

* [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586)

* initialize the default rank set on TrainerState (#16530)

* initialize the default rank set on TrainerState

* fix style

* Trigger doc build

* Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

* add a template to add missing tokenization test (#16553)

* add a template to add missing tokenization test

* add cookiecutter setting

* improve doc

* Update templates/adding_a_missing_tokenization_test/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* made _load_pretrained_model_low_mem static + bug fix (#16548)

* handle torch_dtype in low cpu mem usage (#16580)

* [Doctests] Correct filenaming (#16599)

* [Doctests] Correct filenaming

* improve quicktour

* make style

* Adding new train_step logic to make things less confusing for users (#15994)

* Adding new train_step logic to make things less confusing for users

* DO NOT ASK WHY WE NEED THAT SUBCLASS

* Metrics now working, at least for single-output models with type annotations!

* Updates and TODOs for the new train_step

* Make fixup

* Temporary test workaround until T5 has types

* Temporary test workaround until T5 has types

* I think this actually works! Needs a lot of tests though

* MAke style/quality

* Revert changes to T5 tests

* Deleting the aforementioned unmentionable subclass

* Deleting the aforementioned unmentionable subclass

* Adding a Keras API test

* Style fixes

* Removing unneeded TODO and comments

* Update test_step too

* Stop trying to compute metrics with the dummy_loss, patch up test

* Make style

* make fixup

* Docstring cleanup

* make fixup

* make fixup

* Stop expanding 1D input tensors when using dummy loss

* Adjust T5 test given the new compile()

* make fixup

* Skipping test for convnext

* Removing old T5-specific Keras test now that we have a common one

* make fixup

* make fixup

* Only skip convnext test on CPU

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Avoiding TF import issues

* make fixup

* Update compile() to support TF 2.3

* Skipping model.fit() on template classes for now

* Skipping model.fit() on template class tests for now

* Replace ad-hoc solution with find_labels

* make fixup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding missing type hints for BigBird model   (#16555)

* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

* Type hints for BigBird

* removing typos

Co-authored-by: matt <rocketknight1@gmail.com>

* [deepspeed] fix typo, adjust config name (#16597)

* 🖍 apply feedback

Co-authored-by: Cathy <815244047@qq.com>
Co-authored-by: Jim Rohrer <jrohrer1@gmail.com>
Co-authored-by: Ferdinand Schlatt <fschlatt@gmail.com>
Co-authored-by: Dahlbomii <101373053+Dahlbomii@users.noreply.github.com>
Co-authored-by: Gunjan Chhablani <chhablani.gunjan@gmail.com>
Co-authored-by: Rishav Chandra Varma <rishavchandra.v16@iiits.in>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Daniel Stancl <46073029+stancld@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
Co-authored-by: Karim Foda <35491698+KMFODA@users.noreply.github.com>
Co-authored-by: SaulLu <55560583+SaulLu@users.noreply.github.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Andres Codas <andrescodas@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-04-05 12:48:42 -05:00
23fc4cba0d [benchmark tool] trainer-benchmark.py (#14934)
* [benchmark tool] trainer-benchmark.py

* improve

* massive rework/expansion

* fix

* mucho improved

* improved

* fix prefix

* fix

* fix diff calculation

* address suggestions
2022-04-05 10:27:29 -07:00
b33ab4eb59 Add global_attention_mask to gen_kwargs (#16485)
If global_attention_mask is found in the models inputs (used by certain
models, like LED) in the prediction_step method of Seq2SeqTrainer,
it is added to the gen_kwargs, which are passed to model.decode().
This allows us to properly set the global attention when decoding.
2022-04-05 13:05:27 -04:00
9fd5e6bbe6 [deepspeed] fix typo, adjust config name (#16597) 2022-04-05 08:13:12 -07:00
367558b90d Adding missing type hints for BigBird model (#16555)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

* Type hints for BigBird

* removing typos

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-05 14:50:45 +01:00
4354005291 Adding new train_step logic to make things less confusing for users (#15994)
* Adding new train_step logic to make things less confusing for users

* DO NOT ASK WHY WE NEED THAT SUBCLASS

* Metrics now working, at least for single-output models with type annotations!

* Updates and TODOs for the new train_step

* Make fixup

* Temporary test workaround until T5 has types

* Temporary test workaround until T5 has types

* I think this actually works! Needs a lot of tests though

* MAke style/quality

* Revert changes to T5 tests

* Deleting the aforementioned unmentionable subclass

* Deleting the aforementioned unmentionable subclass

* Adding a Keras API test

* Style fixes

* Removing unneeded TODO and comments

* Update test_step too

* Stop trying to compute metrics with the dummy_loss, patch up test

* Make style

* make fixup

* Docstring cleanup

* make fixup

* make fixup

* Stop expanding 1D input tensors when using dummy loss

* Adjust T5 test given the new compile()

* make fixup

* Skipping test for convnext

* Removing old T5-specific Keras test now that we have a common one

* make fixup

* make fixup

* Only skip convnext test on CPU

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/modeling_tf_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Avoiding TF import issues

* make fixup

* Update compile() to support TF 2.3

* Skipping model.fit() on template classes for now

* Skipping model.fit() on template class tests for now

* Replace ad-hoc solution with find_labels

* make fixup

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-05 14:23:27 +01:00
7ccacdf10f [Doctests] Correct filenaming (#16599)
* [Doctests] Correct filenaming

* improve quicktour

* make style
2022-04-05 14:15:02 +02:00
21decb7731 handle torch_dtype in low cpu mem usage (#16580) 2022-04-05 12:26:03 +02:00
8bf6d28c10 made _load_pretrained_model_low_mem static + bug fix (#16548) 2022-04-05 11:56:36 +02:00
02214cb3cc add a template to add missing tokenization test (#16553)
* add a template to add missing tokenization test

* add cookiecutter setting

* improve doc

* Update templates/adding_a_missing_tokenization_test/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-04-05 10:50:22 +02:00
765bafb8e4 Fix CI: test_inference_for_pretraining in ViTMAEModelTest (#16591)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-05 10:00:03 +02:00
104c065277 Trigger doc build 2022-04-04 14:06:49 -04:00
1cd2e21d1b initialize the default rank set on TrainerState (#16530)
* initialize the default rank set on TrainerState

* fix style
2022-04-04 12:20:26 -04:00
6f9d8dc156 [SpeechEncoderDecoderModel] Correct Encoder Last Hidden State Output (#16586) 2022-04-04 17:50:56 +02:00
dad5ca83b2 TF: Finalize unpack_inputs-related changes (#16499)
* Add unpack_inputs to remaining models

* removed kwargs to `call()` in TF models

* fix TF T5 tests
2022-04-04 16:37:33 +01:00
be9474bd35 add a test checking the format of convert_tokens_to_string's output (#16540)
* add new tests

* add comment to overridden tests
2022-04-04 16:57:24 +02:00
24a85cca61 Add use_auth to load_datasets for private datasets to PT and TF examples (#16521)
* fix formatting and remove use_auth

* Add use_auth_token to Flax examples
2022-04-04 10:27:45 -04:00
b9a768b3ff Enable doc in Spanish (#16518)
* Reorganize doc for multilingual support

* Fix style

* Style

* Toc trees

* Adapt templates
2022-04-04 10:25:46 -04:00
3951b9f390 Add utility to find model labels (#16526)
* Add utility to find model labels

* Use it in the Trainer

* Update src/transformers/utils/generic.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Quality

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-04-04 10:06:57 -04:00
ec4da72fe9 Fix flax import in __init__.py: modeling_xglm -> modeling_flax_xglm (#16556) 2022-04-04 14:54:25 +02:00
013a7dbe3d Making the impossible to connect error actually report the right URL. (#16446) 2022-04-04 14:26:23 +02:00
ad0cba08ea [FlaxSpeechEncoderDecoder] Fix dtype bug (#16581)
* [FlaxSpeechEncoderDecoder] Fix dtype bug

* more fixes
2022-04-04 13:53:54 +02:00
60d27b1f15 Add code samples for TF speech models (#16494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-01 17:54:01 +02:00
53a4d6b115 Pin tokenizers version <0.13 (#16539)
* Pin tokenizers version <0.13

* Style
2022-04-01 11:53:18 -04:00
61ee26a892 Improve code example (#16450)
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-04-01 17:19:36 +02:00
2199382dfd Use random_attention_mask for TF tests (#16517)
* use random_attention_mask for TF tests

* Fix for TFCLIP test (for now).

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-04-01 16:53:07 +02:00
823dbf8a41 Remove MBart subclass of XLMRoberta in tokenzier docs (#16546)
* Remove MBart subclass of XLMRoberta in tokenzier

* Fix style

* Copy docs from MBart50 tokenizer
2022-04-01 16:39:28 +02:00
5fe06b9bdd Adding missing type hints for mBART model (PyTorch) (#16429)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

* type hints update

* making dependent modesls coherent

Co-authored-by: matt <rocketknight1@gmail.com>
2022-04-01 15:21:26 +01:00
9947dd077c Add VisualBert type hints (#16544) 2022-04-01 15:02:58 +01:00
59a9c83e40 Fix Bart type hints (#16297)
* Add type hints to PLBart PyTorch

* Remove pending merge conflicts

* Fix PLBart Type Hints

* Add changes from review
2022-04-01 14:50:22 +01:00
afc5a1ea3a Type hints added (#16529) 2022-04-01 14:27:41 +01:00
483a9450a0 call on_train_end when trial is pruned (#16536) 2022-04-01 08:50:47 -04:00
9de70f213e Add ONNX export for BeiT (#16498)
* Add beit onnx conversion support

* Updated docs

* Added cross reference to ViT ONNX config
2022-04-01 10:52:42 +02:00
bfeff6cc6a Fixed a typo in legacy seq2seq_trainer.py (#16531) 2022-04-01 09:17:31 +02:00
5807054bd3 [research] link to the XTREME-S paper (#16519)
* [research] link to the XTREME-S paper

* Update examples/research_projects/xtreme-s/README.md

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-03-31 23:26:50 +04:00
e4b234834a Fix syntax error in generate docstrings (#16516) 2022-03-31 08:45:47 -04:00
b808d8a596 added type hints to xglm pytorch (#16500)
* added type hints to xglm pytorch

* Update src/transformers/models/xglm/modeling_xglm.py

* Update src/transformers/models/xglm/modeling_xglm.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-31 13:43:04 +01:00
05b4c32908 fixed a typo (#16508) 2022-03-31 07:49:02 -04:00
6a4dbba1a3 Translate accelerate.mdx from english to spanish (#16176)
* Translate accelerate.mdx from english to spanish

* Update docs/source_es/accelerate.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Apply suggestions from code review

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:45:18 -04:00
c551addeb0 Translate installation.mdx to Spanish (#16229)
* Translate installation.mdx to Spanish

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/installation.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:44:47 -04:00
98939e6aee Spanish translation of the file multilingual.mdx (#16329)
* Duplication of the source eng file

* Spanish translation of the file multilingual.mdx

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/multilingual.mdx

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Fix nits and finish translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-31 07:43:31 -04:00
99a01423b9 make tuple annotation more specific to avoid failures during symbolic_trace (#16490)
* make tuple annotation more specific to avoid failures during symbolic_trace

* make tuple annotation more specific to avoid failures during symbolic_trace
2022-03-31 12:39:46 +01:00
a8b6443e06 Refactor Modeling Outputs (#16341)
* first proposal

* replace model outputs in various models

* conflicts

* docstring

* update poolformer

* minor change in docstring

* CI

* removed poolformer specific outputs from doc

* removed convnext specific outputs from doc

* CI

* weird char in segformer

* conversations

* reverted docstring for BaseModelOutputWithPooling

* update outputs

* changed docstring in BaseModelOutput

* updated docstring in modeling outputs

* typos :)

* fixed typo after copy & paste it all around

* CI

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* segformer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-31 09:32:33 +02:00
857eb87cc4 Support reduce_bucket_size=auto for deepspeed stages <3 (#16496) 2022-03-30 14:12:29 -07:00
81ac45f85c update smddp api to v1.4.0 (#16371)
* update smddp api to v1.4.0

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address comments

* fix style

* remove unused import

* fix indent

* disable style check for import

* fix space

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-30 16:28:35 -04:00
a73281e3e4 [examples] max samples can't be bigger than the len of dataset (#16501)
* [examples] max samples can't be bigger than then len of dataset

* do tf and flax
2022-03-30 12:33:16 -07:00
c4deb7b3ae Feature Extractor accepts segmentation_maps (#15964)
* feature extractor accepts

* resolved conversations

* added examples in test for ADE20K

* num_classes -> num_labels

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolving conversations

* resolving conversations

* removed ADE

* CI

* minor changes in conversion script

* reduce_labels in feature extractor

* minor changes

* correct preprocess for instace segmentation maps

* minor changes

* minor changes

* CI

* debugging

* better padding

* going to update labels inside the model

* going to update labels inside the model

* minor changes

* tests

* removed changes in feature_extractor_utils

* conversation

* conversation

* example in feature extractor

* more docstring in modeling

* test

* make style

* doc

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-30 18:46:51 +02:00
c2f8eaf6bc TF: unpack inputs on Convbert, GPTJ, LED, and templates (#16491)
* Add unpack_inputs to remaining models

* remove stray use of inputs in the templates; fix tf.debugging of attn masks
2022-03-30 17:12:27 +01:00
ae189ef991 Add support for exporting GPT-J to ONNX-TRT (#16492)
Add support for exporting GPT-J to ONNX-TRT

Co-authored-by: Tomer Stav <stavt@amazon.com>
2022-03-30 17:56:03 +02:00
d04adc3521 Add length to PreTrainedTokenizer train_new_from_iterator (#16493) 2022-03-30 11:41:04 -04:00
147c816685 Nit: MCSCOCO -> MS COCO (#16481) 2022-03-30 10:06:32 -04:00
ffd19ee1de TF GPT-J Type hints and TF decorator (#16488)
* Type hints and TF decorator added

* Type hints and TF decorator added

* make style

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-30 14:03:54 +01:00
277d49a590 Do not initialize torch.distributed process group if one is already initailized (#16487)
* Do not initialize torch process group twice

* Apply suggestions from code review
2022-03-29 19:07:31 -04:00
2b483230a1 Raise diff tolerance value for TFViTMAEModelTest (#16483)
* Raise diff tolerance value

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 22:12:27 +02:00
ee18d4d2a9 TF GPT2: clearer model variable naming with @unpack_inputs (#16311)
* add unpack_inputs decorator to Main Layer

* add unpack_inputs decorator to Model

* add unpack_inputs decorator to LMHead Model

* add unpack_inputs decorator to Double Head Model

* add unpack_inputs decorator to Sequence Classification Model

* run fixup recipe

* make unpack_inputs the first decorator
2022-03-29 20:35:25 +01:00
d7c8ce57d4 Avoid accessing .dataset of a DataLoader in Trainer (#16451)
* Avoid accessing .dataset of a dataloader

* style

* fix

* cleaning up, reverting some misunderstandings

* black

* add train_dataset argument to get_train_dataloader, and fix other instances of length checks

* flake8

* address comments

* fix bug

* cleanup

* add test

* Update tests/trainer/test_trainer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* under torch

* merge

* stylistic suggestion

Co-authored-by: Sander Land <sander@chatdesk.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-29 15:00:18 -04:00
781af7362b added typehints for RAG pytorch models (#16416) 2022-03-29 18:24:25 +01:00
5b40a37bc4 Add TF ViT MAE (#16255)
* ported TFViTMAEIntermediate and TFViTMAEOutput.

* added TFViTMAEModel and TFViTMAEDecoder.

* feat: added a noise argument in the implementation for reproducibility.

* feat: vit mae models with an additional noise argument for reproducibility.

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:24:15 +01:00
7a9ef8181c TF: properly handle kwargs in encoder_decoder architectures (#16465)
* properly handle kwargs in encoder_decoder architectures

* make fixup
2022-03-29 18:17:47 +01:00
0540d1b6c0 Add type hints for UniSpeech (#16399)
* Add type hints for UniSpeech

* Added type hints for UniSpeechSat

* Added type hints for Wave2Vec2 (PT)

* Added type hints for models dependent of wave2vec
2022-03-29 18:02:46 +01:00
875e07a9e3 [doc] Fix missing trainer import (#16469) 2022-03-29 18:57:43 +02:00
6358a4c8ec Add TF vision model code samples (#16477)
* add code samples

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:57:16 +02:00
3015d12bfb fix wrong variable name (#16467) 2022-03-29 18:55:40 +02:00
b62ac4d240 Fix example test and test_fetcher for examples (#16478) 2022-03-29 12:21:19 -04:00
86cff21cf6 Fix some TF GPT-J CI testings (#16454)
* Fix for test_mixed_precision

* Fix test_saved_model_creation by using shape_list instead of shape

* skit test_model_from_pretrained on GPU for now to avoid GPU OOM

* skip test_gptj_sample_max_time for now

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-29 18:04:20 +02:00
aebca696af Fix missing output_attentions in PT/Flax equivalence test (#16271)
* fix - set output_attentions to True

* Update tests/test_modeling_flax_common.py

* update for has_attentions

* overwrite check_outputs in FlaxBigBirdModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-29 17:51:48 +02:00
45abb37ac9 Remove duplicate mLuke (#16460)
* Remove duplicate mLuke

* 🖍 apply feedback
2022-03-29 10:34:30 -05:00
5216607f8a [MNLI example] Prevent overwriting matched with mismatched metrics (#16475)
* Prevent overwriting matched with mismatched metrics

* Fix style
2022-03-29 10:38:14 -04:00
ed31ab3f10 Adding DocTest to TrOCR (#16398)
* docstring still WIP | adding to documentation_tests

* clean version | passes tests

* adding to documentation_test

* adding forward for training pass

* make fixup applied

* address comments

* fix doctest

* apply make fixup

* remove additional blank

* fix file to have correct split for prepare_for_doc_test

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* address comments

* changing text | adding loss check | make fixup

* make fixup

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* Update src/transformers/models/trocr/modeling_trocr.py

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* make fixup

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
2022-03-29 16:19:06 +02:00
85295621f1 Fix blenderbot conversion script (#16472) 2022-03-29 11:32:13 +02:00
c85547af2b Remove kwargs argument from IBERT MLM forward pass (#16449) 2022-03-28 16:37:56 +02:00
da936942b0 Translation from english to spanish of file pipeline_tutorial.mdx (#16149)
* Add the translation from English to Spanish of the pipeline_tutorial.mdx file

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

* Update docs/source_es/pipeline_tutorial.mdx

Fix typo

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: fernando <fernando@gethitch.ai>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-28 10:31:19 -04:00
979b039c89 Add DPT (#15991)
* First draft

* More improvements

* Add fusion blocks

* Make conversion script work for dpt_large

* Make conversion script work

* Improve implementation

* Improve conversion script

* Add DPTForSemanticSegmentation

* Make conversion work for semantic segmentation

* Add tests

* Remove print statements

* First draft

* Redesign neck

* Improve tests

* Improve implementation some more

* Make neck output list of tensors

* Improve neck and feature extractor

* Fix integration tests

* Make more tests pass

* Make all tests pass

* Add missing config archive map

* Add in_index attribute to make heads accept list of tensors

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply some more suggestions

* Add copied from statements

* Remove assert

* Apply suggestions from code review

* Apply suggestions from code review

* Remove DPTInterpolate in favor of nn.Upsample

* Add comments

* Apply suggestions from code review

* Apply suggestions from code review

* Add proposed design

* Update design

* Add DPTReassembleLayer

* Add DPTFeatureFusionStage

* Apply more suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* Fix rebase

* Update in_index and out_indices

* Fix conversion script

* Fix code quality

* Add model to toctree and use DepthEstimatorOutput

* Fix rebase

* Fix code examples

* Improve code

* Fix copied from statements

* Apply suggestions from code review

* Remove compute_loss method

* Apply suggestions from code review

* Fix documentation tests file

* Remove test.py file

* Improve doc example

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
2022-03-28 16:28:10 +02:00
7ca4633555 [FlaxSpeechEncoderDecoderModel] Ensure Input and Output Word Embeddings Are **Not** Tied (#16444)
* [FlaxSpeechEncoderDecoderModel] Ensure Input and Output Word Embeddings Are **Not** Tied

* rebase
2022-03-28 14:14:10 +02:00
e0ac72b7bd Fix PerceiverMLP and test (#16405)
Co-authored-by: Jaesun Park <jaesun.park1@navercorp.com>
2022-03-28 14:06:48 +02:00
473709fc76 Use doc builder styler (#16412)
* Config update

* Use doc-builder styler

* Cleanup

* Adapt import

* We need it there too!
2022-03-28 07:45:18 -04:00
8049dfa427 Update run_t5_mlm_flax.py (#16421)
Fix typo in comment: proprocessed -> preprocessed
2022-03-28 06:00:53 -04:00
925fc57b70 [Flax] Improve Robustness of Back-Prop Tests (#16418)
* [Flax] Improve Robustness of Back-Prop Tests

* check equality of logits/outputs

* make fixup
2022-03-28 11:56:54 +02:00
7ecbb9c5e4 QDQBert example update (#16395)
* update Dockerfile and utils_qa

* Update README.md
2022-03-28 05:47:52 -04:00
f6f6866e9e cached_download ∘ hf_hub_url is hf_hub_download (#16375) 2022-03-28 05:43:39 -04:00
c88ff66cc8 Fix broken links (#16113)
* Update marian.mdx

* Update marian.mdx

* Update docs/source/model_doc/marian.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update marian.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-03-28 05:38:17 -04:00
Jia
342ff6eb41 Update comments in class BatchEncoding (#15932) 2022-03-28 05:19:12 -04:00
e02f95b229 remove references to PDF reading via PIL (#15293)
* fix confusing PIL instructions

As stated in the documentation
[here](https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html?highlight=pdf#write-only-formats),
PIL can only write PDF's, not read them. Remove references to reading
PDF's via PIL from this page to avoid confusion.

* mention PDF in doc examples using PIL

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Be explicit: PDFs must be converted to images

* fix formatting

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-28 05:00:29 -04:00
3dc8242716 TF: removed inputs_processing and replaced with decorator in lxmert (#16414) 2022-03-27 18:09:15 +01:00
b320d87ece Create concept guide section (#16369)
*  create concept guide section

* 🖍 make fixup

* 🖍 apply feedback

Co-authored-by: Steven <stevhliu@gmail.com>
2022-03-25 14:51:43 -05:00
ed2ee373d0 Add TF implementation of GPT-J (#15623)
* Initial commit

* Add TFGPTJModel

* Fix a forward pass

* Add TFGPTJCausalLM

* Add TFGPTJForSequenceClassification

* Add TFGPTJForQuestionAnswering

* Fix docs

* Deal with TF dynamic shapes

* Add Loss parents to models

* Adjust split and merge heads to handle 4 and 5-dim tensors

* Update outputs for @tooslow tests
2022-03-25 19:27:19 +00:00
aa4c0a86dc Fix Typo in Argument of FlaxWav2Vec2ForPreTrainingModule (#16084) 2022-03-25 17:49:37 +01:00
e231c72906 [FlaxSpeechEncoderDecoder] Fix feature extractor gradient test (#16407) 2022-03-25 17:46:53 +01:00
a97f3150c4 Add ONNX support for Blenderbot and BlenderbotSmall (#15875)
* Add ONNX support for Blenderbot

* Add BlenderbotSmall ONNX configuration

* Update serialization table
2022-03-25 17:04:43 +01:00
b473617d63 Checkpoint sharding (#16343)
* Sharded checkpoint support

* Handle distant sharded checkpoints

* Add tests

* TODO is done

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Fix docstring

* Add example and format

* Address review comments

* More review comments

* End of merge

* Revert unintentional change

* VsCode what did you do?

* Style

* Changes

* Address final comments

* Quality

* Moar tests

* Move import beneath is_pt_available

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-25 11:59:25 -04:00
7fa7408b26 Terminate previous pushes when we get to the final push (#16409) 2022-03-25 15:47:05 +00:00
867f3950fa Rename master to main for notebooks links and leftovers (#16397) 2022-03-25 09:12:23 -04:00
7e7490473e fixed typo from enable to disable in disable_progress_bar function (#16406) 2022-03-25 09:07:43 -04:00
088c1880b7 Big file_utils cleanup (#16396)
* Big file_utils cleanup

* This one still needs to be treated separately
2022-03-25 07:25:20 -04:00
2b23e0801a Make FeaturesManager.get_model_from_feature a static method (#16357) 2022-03-25 11:35:48 +01:00
aa6cfe9c4b Rename to SemanticSegmenterOutput (#15849)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-24 20:44:15 +01:00
70a9bc69a8 Added type hints (#16389)
* Added type hints for PyTorch T5 model

* removed a type hint

* ran make style

* added type hints for ibert pytorch

* added type hints for lxmert pytorch

* removed kwargs type hint and fixed arguments order
2022-03-24 19:14:34 +00:00
cae394c8fa Adapt import to new structure 2022-03-24 14:40:05 -04:00
4e0f583eea TF - variable naming for Distilbert model (unpack_inputs decorator) (#16384)
* variable naming for Distilbert model

* adding unpack inputs at top

* make style/quality

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-24 16:13:08 +00:00
3a0f1684c3 Fix readme links and add CI check (#16392)
* Fix doc links in README

* Fix name

* Fix links in READMEs and doc index

* Error if there is something wrong so the CI knows
2022-03-24 11:59:09 -04:00
8cbd9b8fb1 Fix style (#16391) 2022-03-24 11:47:49 -04:00
9d88be5778 bump cookiecutter version (#16387)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 11:08:31 -04:00
f571dc20ac Update PT Flax equivalence tests in PT test file (#16280)
* update PT/Flax equivalence tests on PT side

* overwrite check_outputs in BigBirdModelTest

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 14:45:30 +01:00
41bfc1e262 Add type hints for ConvBert model (#16377)
* Add missing type hints for ConvBERT flavored models.

* Update src/transformers/models/convbert/modeling_convbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-24 13:23:54 +00:00
23a75a5338 Type hints and decorator for TF T5 (#16376)
* Type hints and TF decorator added

* Re-add XLA generation method

* Re-add lines that were deleted by conflicting updates

* Re-add lines that were deleted by conflicting updates

* Re-add lines that were deleted by conflicting updates

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-24 13:19:40 +00:00
2a27c80063 Fix BigBirdModelTester (#16310)
* fix

* update the expected value in test_fast_integration

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 13:43:52 +01:00
f5e8c9bdea Update readme with how to train offline and fix BPE command (#15897)
* Update readme with how to train offline and fix BPE command

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

* Update examples/research_projects/codeparrot/README.md

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>

Co-authored-by: Leandro von Werra <lvwerra@users.noreply.github.com>
2022-03-24 11:00:46 +01:00
9badcecf69 [Doctests] Make TFRoberta-like meaningfull (#16370)
* update doc examples for TFRoberta

* fix style

* fix style

* use TF ckpt

* apply suggestion

* add the code file to test here

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-24 10:26:27 +01:00
77c5a80536 [Doctests] Make roberta-like meaningfull (#16363)
* [Doctests] Make roberta-like meaningfull

* correct

* final correct

* Trigger test

* make style

* apply suggestion from sylvain
2022-03-24 00:17:00 +01:00
5f0d07b36b Make BigBird model compatiable to fp16 dtype. (#16034)
* Make BigBird model compatiable to fp16 dtype.

* Use tree_map instead of map

* Reformat the code

* Fix import order

* Convert masks to the correct dtype

* Fix format issue

* Address comments.
2022-03-24 00:07:34 +01:00
1cf28da66d Update docs/README.md (#16333)
* Update docs/README.md

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 22:46:11 +01:00
029b0d95ed add GPT-J ONNX config to Transformers (#16274)
* add GPT-J ONNX config to Transformers

* remove token-classification features mapping

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* add question-answering features mapping

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* add GPT2 config init to GPT2 config + copie shebang for fix-copies

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-03-23 16:36:11 -04:00
aff9bc405a Decision transformer gym (#15845)
* Created the Decision Transformer Modle

* updating tests, copy to other machine

* Added last hidden size to Decision Transformer modelling outputs

* Removed copy of original DT file

* made a temporary change to gpt2 to have it conform with the Decision Transformer version

* Updated tests

* Ignoring a file used to test the DT model

* added comments to config file

* added comments and argument descriptions to decision transformer file

* Updated doc

* Ran "make style"

* Remove old model imports

* Removed unused imports, cleaned up init file

* Update docs/source/model_doc/decision_transformer.mdx

added my username

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverted changes made to gpt2

* Removed datasets submodule

* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states

* Added support for return of hidden states, attentions and return dict of gpt2 model.

* Updated tests to include many of the ModelTesterMixin tests. 

The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes

* Added missing line to the end of gpt2 file

* Added an integration test for the Decision Transformer

Test performs and autoregressive evaluation for two time steps

* Set done and info to _ to fix failing test

* Updated integration test to be deterministic and check expected outputs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unnecessary config options

* Cleaned up commented code and old comments.

* Cleaned up commented code.

* Changed DecisionTransformer to Decision Transformer

* Added Decision Transformer to the main README file

* Added copy of GTP2 called DecisionTranformerGPT2Model

* isorted imports

* isorted imports

* Added model to non-English README files

* Ran make fix-copies and corrected some cases.

* Updated index file to include Decision Transformer

* Added gpt2 model as copy inside the Decision Transformer model file

* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS

* Deleted redundant checkpoint files (I don't know how these got committed)

* Removed testing files. (These should have never been committed)

* Removed accidentally committed files

* Moved the Decision Transformer test to its own directory

* Add type hints for Pegasus (#16324)

* Funnel type hints (#16323)

* add pt funnel type hints

* add tf funnel type hints

* Add type hints for ProphetNet PyTorch (#16272)

* [GLPN] Improve docs (#16331)

* Add link to notebook

* Add link

* Fix bug

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>

* Added type hints for Pytorch Marian calls (#16200)

* Added type hinting for forward functions in pytorch marian

* typo correction

* Removed type hints on functions from BART per Suraj Patil request

* fix import pb

* fix typo

* corrected tuple call

* ran black

* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List

* Fixing copies to roformer and pegasus

Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>

* Moved DecisionTransformOutput to modeling_decision_transformer

* Moved the example usage to research project and cleaned comments

* Made tests ignore the copy of gpt2 in Decision Transformer

* Added module output to modelling decision transformer

* removed copied gpt2 model from list of transformers models

* Updated tests and created __init__ file for new test location

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unneeded summary type from config file

* Fixed copies

* Updated pretrained config map to refer to hopper-medium checkpoint

* done (#16340)

* Added Decision transformer to model docs

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add type annotations for Rembert/Splinter and copies (#16338)

* undo black autoformat

* minor fix to rembert forward with default

* make fix-copies, make quality

* Adding types to template model

* Removing List from the template types

* Remove `Optional` from a couple of types that don't accept `None`

Co-authored-by: matt <rocketknight1@gmail.com>

* [Bug template] Shift responsibilities for long-range (#16344)

* Fix code repetition in serialization guide (#16346)

* Adopt framework-specific blocks for content (#16342)

*  refactor code samples with framework-specific blocks

*  update training.mdx

* 🖍 apply feedback

* Updates the default branch from master to main (#16326)

* Updates the default branch from master to main

* Links from `master` to `main`

* Typo

* Update examples/flax/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updated model with custom docstring example

* Created the Decision Transformer Modle

* updating tests, copy to other machine

* Added last hidden size to Decision Transformer modelling outputs

* Removed copy of original DT file

* made a temporary change to gpt2 to have it conform with the Decision Transformer version

* Updated tests

* Ignoring a file used to test the DT model

* added comments to config file

* added comments and argument descriptions to decision transformer file

* Updated doc

* Ran "make style"

* Remove old model imports

* Removed unused imports, cleaned up init file

* Update docs/source/model_doc/decision_transformer.mdx

added my username

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Reverted changes made to gpt2

* Removed datasets submodule

* Update the modeling outputs to include gpt2 attentions, hidden states and last hidden states

* Added support for return of hidden states, attentions and return dict of gpt2 model.

* Updated tests to include many of the ModelTesterMixin tests. 

The following tests are skipped: test_generate_without_input_ids, test_pruning, test_resize_embeddings, test_head_masking, test_attention_outputs, test_hidden_states_output, test_inputs_embeds, test_model_common_attributes

* Added missing line to the end of gpt2 file

* Added an integration test for the Decision Transformer

Test performs and autoregressive evaluation for two time steps

* Set done and info to _ to fix failing test

* Updated integration test to be deterministic and check expected outputs

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unnecessary config options

* Cleaned up commented code and old comments.

* Cleaned up commented code.

* Changed DecisionTransformer to Decision Transformer

* Added Decision Transformer to the main README file

* Added copy of GTP2 called DecisionTranformerGPT2Model

* isorted imports

* isorted imports

* Added model to non-English README files

* Ran make fix-copies and corrected some cases.

* Updated index file to include Decision Transformer

* Added gpt2 model as copy inside the Decision Transformer model file

* Added the unit test file to the list of TEST_FILES_WITH_NO_COMMON_TESTS

* Deleted redundant checkpoint files (I don't know how these got committed)

* Removed testing files. (These should have never been committed)

* Removed accidentally committed files

* Moved the Decision Transformer test to its own directory

* Moved DecisionTransformOutput to modeling_decision_transformer

* Moved the example usage to research project and cleaned comments

* Made tests ignore the copy of gpt2 in Decision Transformer

* Added module output to modelling decision transformer

* removed copied gpt2 model from list of transformers models

* Updated tests and created __init__ file for new test location

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Removed unneeded summary type from config file

* Fixed copies

* Updated pretrained config map to refer to hopper-medium checkpoint

* Added Decision transformer to model docs

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/modeling_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/decision_transformer/configuration_decision_transformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Updated model with custom docstring example

* Updated copies, config auto, and readme files.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Dan Tegzes <48134725+Tegzes@users.noreply.github.com>
Co-authored-by: Adam Montgomerie <adam@avanssion.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Clémentine Fourrier <22726840+clefourrier@users.noreply.github.com>
Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
Co-authored-by: Francesco Saverio Zuppichini <francesco.zuppichini@gmail.com>
Co-authored-by: Jacob Dineen <54680234+jacobdineen@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Omar Sanseviero <osanseviero@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-03-23 16:18:43 -04:00
c595b6e6a9 Make Transformers use cache files when hf.co is down (#16362)
* Make Transformers use cache files when hf.co is down

* Fix tests

* Was there a random circleCI failure?

* Isolate patches

* Style

* Comment out the failure since it doesn't fail anymore

* Better comment
2022-03-23 15:56:49 -04:00
8a69e023bf Swap inequalities (#16368)
* Swap inequalities

* Update src/transformers/trainer_callback.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/trainer_callback.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 14:50:09 -04:00
9e8c37dc82 TF - Fix interchangeable past/past_key_values and revert output variable name in GPT2 (#16332)
* revert tf gpt2

* add test for unpack_inputs and fix test case

* add changes to vision encoder decoder
2022-03-23 18:41:18 +00:00
12428f0ef1 Fix style 2022-03-23 11:44:09 -04:00
1dfc11e9e0 complete the type annotations for config parameters (#16263) 2022-03-23 15:15:59 +00:00
bb3a1d345a Adding missing type hints for mBART model (TF) (#16281)
* added type hints for mbart tensorflow tf implementation

* Adding missing type hints for mBART model 

Tensorflow Implementation model added with missing type hints

* Missing Type hints - correction

For TF model

* Code fixup using make quality tests

* Hint types - typo error

* make fix-copies and make fixup

* type hints

* updated files

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-23 15:14:55 +00:00
935330ddfd Trainer evaluation delay (#16356)
* Initial commit

* Reversed signs, adjusted log entery.

* Check only when

* Cleanup checks

* Only trigger if we want to eval

* Run

* Move changes to callback
2022-03-23 11:11:34 -04:00
a220f160e0 [FlaxBart] make sure no grads are computed an bias (#16345)
* [FlaxBart] make sure no grads are computed an bias

* correct all other seq2seq models
2022-03-23 15:56:11 +01:00
4975002df5 Reorganize file utils (#16264)
* Split file_utils in several submodules

* Fixes

* Add back more objects

* More fixes

* Who exactly decided to import that from there?

* Second suggestion to code with code review

* Revert wront move

* Fix imports

* Adapt all imports

* Adapt all imports everywhere

* Revert this import, will fix in a separate commit
2022-03-23 10:26:33 -04:00
7135603423 [T5] Add t5 download script (#16328)
* [T5] Add bash download script

* up

* up

* up

* Update src/transformers/models/t5/download_from_gcp.sh
2022-03-23 13:25:30 +01:00
eca77f4719 Updates the default branch from master to main (#16326)
* Updates the default branch from master to main

* Links from `master` to `main`

* Typo

* Update examples/flax/README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-23 03:46:59 -04:00
7732148124 Adopt framework-specific blocks for content (#16342)
*  refactor code samples with framework-specific blocks

*  update training.mdx

* 🖍 apply feedback
2022-03-22 16:14:58 -05:00
62cbd8423b Fix code repetition in serialization guide (#16346) 2022-03-22 16:57:19 -04:00
4f6c938342 [Bug template] Shift responsibilities for long-range (#16344) 2022-03-22 21:55:22 +01:00
ec3aace0ae Add type annotations for Rembert/Splinter and copies (#16338)
* undo black autoformat

* minor fix to rembert forward with default

* make fix-copies, make quality

* Adding types to template model

* Removing List from the template types

* Remove `Optional` from a couple of types that don't accept `None`

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-22 20:07:48 +00:00
c30798ec9d done (#16340) 2022-03-22 18:06:17 +01:00
d49f8d3189 Added type hints for Pytorch Marian calls (#16200)
* Added type hinting for forward functions in pytorch marian

* typo correction

* Removed type hints on functions from BART per Suraj Patil request

* fix import pb

* fix typo

* corrected tuple call

* ran black

* after fix-copies
Some optional tags on primitives were removed, past_key_values in MarianForCausalLM changed from Tuple of Tuple to List

* Fixing copies to roformer and pegasus

Co-authored-by: Clementine Fourrier <cfourrie@inria.fr>
Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-22 14:45:59 +00:00
a2379b9257 [GLPN] Improve docs (#16331)
* Add link to notebook

* Add link

* Fix bug

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-22 15:45:29 +01:00
87a9af533c Add type hints for ProphetNet PyTorch (#16272) 2022-03-22 13:55:58 +00:00
7b262b9692 Funnel type hints (#16323)
* add pt funnel type hints

* add tf funnel type hints
2022-03-22 13:52:29 +00:00
deb61e5f07 Add type hints for Pegasus (#16324) 2022-03-22 13:17:55 +00:00
7cc2c9c6b0 Fix bugs of s2t fairseq model converting (#15593)
* Fix bugs for argument typo and positional embedding weight loading

* Reflect code review suggestion to cover different missing keys cases
2022-03-22 12:09:51 +01:00
7865f4d01f add xglm conversion script (#16305)
* add xglm conversion script

* style

* update script
2022-03-22 11:45:50 +01:00
0c55d47cde Add GLPN (#16199)
* First draft

* Fix logits calculation

* Improve tests

* Add copied from statements

* Fix base_model_prefix

* Improve implementation, upload new models

* Update design

* Fix integration test

* Add model to README and toctree

* Add document image

* Apply suggestions from code review

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Add decoder_hidden_size attribute

* Update design of decoder

* Add DepthEstimatorOutput class

* Rename in_index to head_in_index and add feature extractor tests

* Apply suggestions from code review

* Apply suggestions from code review

* Update pretrained model name and add to doc tests

* Remove test.py script

* Update copied from statements and clean up

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-22 08:51:13 +01:00
df32b5d89b TFLongformer: Add missing type hints and unpack inputs decorator (#16228)
* Add type annotations for TF Longformer

* Update docstring data types to include numpy array

* Implement unpack_inputs decorator

* fixup after decorator updates

* Numpy array -> np.ndarray in docstring

Co-authored-by: Johnny Greco <johnny.greco@radpartners.com>
2022-03-21 22:56:17 +00:00
0aac9ba2da Add Flaubert OnnxConfig to Transformers (#16279)
* Add Flaubert to ONNX to make it available for conversion.

* Fixed features for FlauBERT. fixup command remove flaubert to docs list.

Co-authored-by: ChainYo <t.chaigneau.tc@gmail.com>
2022-03-21 21:46:31 +01:00
9fef668338 TF - update (vision_)encoder_decoder past variable (#16260) 2022-03-21 19:55:41 +00:00
f9387c948d Update Makefile Phonies (#16306) 2022-03-21 15:28:23 -04:00
96cd5bcbb9 added type hints for blenderbot and blenderbot_small (#16307) 2022-03-21 19:13:58 +00:00
e226a24f84 [xtreme-s] Update Minds14 results (#16241)
* update results

* per-language metrics

* Format the per-language metrics
2022-03-21 19:33:59 +01:00
6f1727d83a Fix Seq2SeqTrainingArguments docs (#16295)
* Indent Seq2Seq Train Args docs

* Add Args keyword to Seq2Seq Train Args docs
2022-03-21 13:48:07 -04:00
7643b1caa6 Added type hints to PyTorch Longformer models (#16244) 2022-03-21 17:09:03 +00:00
c77092a5ed [FlaxGPTJ] Fix bug in rotary embeddings (#16298) 2022-03-21 18:07:56 +01:00
4b2774832d fix last element in hidden_states for XGLM (#16301)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-21 17:38:52 +01:00
5a42bb431e Update troubleshoot with more content (#16243)
* 📝 first draft

* 🖍 apply feedback
2022-03-21 11:37:18 -05:00
fbb454307d [SegFormer] Remove unused attributes (#16285)
* Remove unused attributes

* Add link to blog and add clarification about input size

* Improve readability of the code

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-21 17:34:10 +01:00
f0c00d8ca9 Fix Marian conversion script (#16300) 2022-03-21 17:23:40 +01:00
94be424308 Added type hints for PyTorch T5 model (#16257)
* Added type hints for PyTorch T5 model

* removed a type hint

* ran make style
2022-03-21 16:17:52 +00:00
250b478a2c GPT2 TensorFlow Type Hints (#16261)
* Add typing hints for base model class

* Add typing hints for causal LM model class

* Add typing hints for double heads model class

* Add typing hints for sequence classification model class

* Add typing hints for Main Layer

* Run fixup
2022-03-21 16:11:03 +00:00
9ad77affee test (#16294) 2022-03-21 16:59:47 +01:00
d50f62f2de added type hints for BART model (#16270)
* added type hints for BART model

* make fixup, adding imports to copied files

* Adding some missing types to cookiecutter

* Adding some missing types to cookiecutter

* Adding some missing types to cookiecutter

Co-authored-by: matt <rocketknight1@gmail.com>
2022-03-21 15:18:01 +00:00
460f36d352 Add type hints transfoxl (#16267)
* Add type hint for pt transfo_xl model

* Add type hint for tf transfo_xl model
2022-03-21 15:04:13 +00:00
Xia
2afe9cd279 Add argument "cache_dir" for transformers.onnx (#16284)
* Add argument "cache_dir" for transformers.onnx

* Reformate files that can't pass CI.
2022-03-21 15:26:44 +01:00
3f0f75e497 Remove disclaimer from Longformer docs (#16296) 2022-03-21 10:05:47 -04:00
c6f7ea194b Add type hints to xlnet (#16214)
* added type hints to xlnet PT

* added type hints to xlnet TF

* added type hints to xlnet TF
2022-03-21 13:04:18 +00:00
abf3cc7064 Fix a typo (add a coma) (#16291)
As mentioned: https://github.com/huggingface/transformers/issues/16277
2022-03-21 12:10:24 +00:00
641e5f3f55 Fix XGLM cross attention (#16290) 2022-03-21 13:07:28 +01:00
f393868073 Fixed Error Raised Due to Wrongly Accessing Training Sample (#16115)
* Update training.mdx

Fixed Error Raised Due to Wrongly Accessing Training Sample

* Ran make style

* Revert to Old Commit

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-21 12:54:54 +01:00
4ecb022eb1 Draft a guide with our code quirks for new models (#16237)
* Draft a guide with our code quirks for new models

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-21 07:44:03 -04:00
8bbd41369f removed the 'optional' string (#16266)
Co-authored-by: dinesh-GDK <dinesh.gna111@gmail.com1>
2022-03-21 07:39:45 -04:00
c36b856580 Framework split for Spanish version of doc quicktour.mdx (#16215)
* Apply framework changes

* Fix italics

* Fix nits

* correct syntax

Co-authored-by: Omar Espejel <espejelomar@Omars-MacBook-Air.local>
2022-03-21 07:37:45 -04:00
c1af180dfe Add Slack notification support for doc tests (#16253)
* up

* up

* up

* fix

* yeh

* ups

* Empty test commit

* correct quicktour

* correct

* correct

* up

* up

* uP

* uP

* up

* up

* uP

* up

* up

* up

* up

* up

* up

* up

* up

* up

* up

* Update src/transformers/models/van/modeling_van.py

* finish

* apply suggestions

* remove folder

* revert to daily testing
2022-03-21 11:33:18 +01:00
319cbbe191 Deberta v2 code simplification (#15732)
* Removed spurious substraction

* Fixed condition checking for attention type

* Fixed sew_d copy of DeBERTa v2 attention

* Removed unused `p2p` attention type from DebertaV2-class models

* Fixed docs style
2022-03-21 05:15:38 -04:00
0a5ef036e6 Make add-new-model-like work in an env without all frameworks (#16239)
* Make add-new-model-like work without all frameworks installed

* A few fixes

* Last default frameworks
2022-03-21 04:29:04 -04:00
f466936476 Add has_attentions to TFModelTesterMixin as done on PyTorch side (#16259)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-19 11:44:17 +01:00
8d7420768c Small fixes to the documentation (#16180) 2022-03-18 17:48:27 -04:00
ffc319e7b8 Fix links in guides (#16182)
* 🖍 fix links in guides

* 🖍 apply feedback
2022-03-18 16:16:16 -05:00
277fc2cc78 Update flaubert with tf decorator (#16258) 2022-03-18 17:57:55 +00:00
75c666b4a8 Aggressive PT/TF equivalence test on PT side (#16250)
* Aggressive PT/TF equivalence test on PT side

* Ugly fix for `TFTapasForQuestionAnswering`

* apply review suggestions

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 18:51:24 +01:00
d481b6414d Make Flax pt-flax equivalence test more aggressive (#15841)
* Make test_equivalence_pt_to_flax more aggressive

* Make test_equivalence_flax_to_pt more aggressive

* don't use to_tuple

* clean-up

* fix missing test cases + testing on GPU

* fix conversion

* fix `ValueError: assignment destination is read-only`

* Add type checking

* commit to revert later

* Fix

* fix

* fix device

* better naming

* clean-up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 18:15:36 +01:00
c03b6e4259 value check for typical sampling (#16165)
* value check for typical sampling

* value check for typical sampling

* change from float to int comparison

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-18 17:05:27 +01:00
fdc2e643c3 added cbs to notebooks, made copy-paste error fix in generation_utils (#16246) 2022-03-18 17:04:43 +01:00
b25b92ac4f update jax version and re-enable some tests (#16254) 2022-03-18 16:45:39 +01:00
5709a20416 Add unpack_inputs decorator for ctrl (#16242)
* add unpack_inputs decorator for ctrl

* replace "past" with "past_key_values"

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-18 15:33:24 +00:00
ddbc9ae00b Update XLM with TF decorator (#16247)
* update XLM with tf decorator

* move to top decorator

* set unpack_inputs as top decorator

Co-authored-by: Louis Owen <yellow@Louis-Owen.local>
2022-03-18 14:07:02 +00:00
a6271967c9 Override _pad in LEDTokenizer to deal with global_attention_mask (#15940)
* Override _pad in LEDTokenizer

* Override _pad in LEDTokenizerFast

* add Copied from

* calling the super method

* add comment about -1

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-18 13:30:08 +01:00
cb2b0276b6 Change assertion to warning when passing past_key_value to T5 encoder (#16153)
* Change assertion to warning when passing past_key_value to T5 encoder

* lint
2022-03-18 12:52:55 +01:00
ecb4662d17 Attention mask is important in the case of batching... (#16222)
* Attention mask is important in the case of batching...

* Improve the fix.

* Making the sentence different enough that they exhibit different
predictions.
2022-03-18 10:02:12 +01:00
ec4e421b7d Update expected slices for pillow > 9 (#16117)
* Update expected slices for pillow > 9

* Add expected slices depending on pillow version

* Add different slices depending on pillow version for other models

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-18 09:46:45 +01:00
12d1f07770 integrations: mlflow: skip start_run() if a run is already active and sanity check on enabling integration (#16131)
* integrations: mlflow: skip start_run() call if a run is already active

* integrations: typo fix

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 16:39:57 -04:00
47cccb5318 [Deepspeed] non-HF Trainer doc update (#16238) 2022-03-17 13:33:55 -07:00
8a96b0f10a [Generate Docs] Correct docs (#16133)
* [Generate Docs] Correct docs

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-03-17 20:05:28 +01:00
632ff3c39e [FlaxSpeechEncoderDecoderModel] Skip from_encoder_decoder_pretrained (#16236)
* skip the test

* fix

* fix skip
2022-03-17 20:05:14 +01:00
b6e06c845f fix(flax): generate with logits processor/warper (#16231) 2022-03-17 19:39:16 +01:00
1c1e377e99 TF - add unpack_inputs decorator for marian (#16226)
* add unpack_inputs decorator

* small fix for attn_mask string

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-17 18:23:40 +00:00
81643edda5 Support PEP 563 for HfArgumentParser (#15795)
* Support PEP 563 for HfArgumentParser

* Fix issues for Python 3.6

* Add test for string literal annotation for HfArgumentParser

* Remove wrong comment

* Fix typo

* Improve code readability

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Use `isinstance` to compare types to pass quality check

* Fix style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 13:51:37 -04:00
93d3fd8645 remove jax.ops.index (#16220) 2022-03-17 17:51:43 +01:00
8481ecefbd Fix Type Hint of Nan/Inf Logging Filter Arg (#16227) 2022-03-17 11:05:38 -04:00
5a6b3ccd28 Skip equivalence test for TransfoXL (#16224)
* Skip test for TransfoXL

* Single list
2022-03-17 09:03:07 -04:00
abd503d939 TF - Adding Unpack Decorator For DPR model (#16212)
* Adding Unpack Decorator

* Adding Unpack Decorator-moved it on top
2022-03-17 12:33:02 +00:00
d9b8d1a9f5 update test (#16219) 2022-03-17 08:11:55 -04:00
7e0d04bed1 Fix readmes (#16217) 2022-03-17 07:47:01 -04:00
e1da89ccb8 Fix reproducibility in Training for PyTorch 1.11 (#16209) 2022-03-17 07:42:58 -04:00
e5101c2e27 Fix typo (#16208) 2022-03-17 07:21:20 -04:00
25b8f9a85b Fix FlaxRoFormerClassificationHead activation (#16168)
* fix activation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-17 11:45:50 +01:00
03c14a515f [Tests] Fix DiT test (#16218)
* Fix device

* Clean up

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-17 10:53:57 +01:00
73f0a5d1f6 Fixes Loss for TransfoXL when using Trainer API v2 (#16140)
* fix(transfo_xl): Fixes TransfoXL support when using Trainer.

* fix(tests): Uses losses_1 and losses_2 pattern with TransfoXL test.

* fix(transfo_xl): Adds requested changes to allow for backward compatibility.

fix(transfo_xl): Adds requested changes to allow for backward compatibility.

fix(transfo_xl): Fixes code styling.

* Backward compatibility

* Update src/transformers/models/transfo_xl/modeling_transfo_xl.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Gustavo de Rosa <gth.rosa@uol.com.br>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-17 05:49:24 -04:00
76c74b37c1 VAN: update modules names (#16201)
* done

* done
2022-03-17 10:25:09 +01:00
99e2982f3e Add/type annotations/model vision (#16151)
* add types annotations for Beit (PyTorch)

* add types annotations for ViT (PyTorch)

* add types annotations for Deit (PyTorch)

* change Optional[bool] to bool into some places at Beit

* change Optional[bool] to bool into some places at ViT
2022-03-16 20:27:54 +00:00
2410d0f8ed Fix generation min length (#16206)
* up

* fix min lengths
2022-03-16 18:49:23 +01:00
667b823b89 Swin support for any input size (#15986)
* padding done

* correctly return one attention per layer

* almost correct, attentions are not flatten one tuple per stage

* tests green

* doc

* conversations

* reshaping hidden_states

* view in the test

* reshape_hidden_states in Encoder and Model

* new outputs with reshaped_hidden_states

* conversations

* doc

* Update docs/source/model_doc/swin.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversations

* fix tests

* minor changes

* resolved conversations

* attentions one per stage

* typo

* typos

* typos

* function signature

* CI

* clean up tests

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-16 18:38:25 +01:00
204c54d411 TF: add beam search tests (#16202) 2022-03-16 15:44:33 +00:00
190994573a Fix loading CLIPVisionConfig and CLIPTextConfig (#16198)
* override from_pretrained

* add tests

* remove docstrings

* fix typo

* Trigger CI
2022-03-16 16:24:01 +01:00
09013efdf1 Update step name (#16189)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-16 11:19:38 -04:00
36f8c42519 ResNet: update modules names (#16196)
* updated names

* fit in one line

* typo
2022-03-16 15:59:56 +01:00
5bdf3313ef Adding type hints for Distilbert (#16090)
* Distillbert type - squash

* Update src/transformers/models/distilbert/modeling_distilbert.py

Undo cleanup

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/models/distilbert/modeling_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Remove type

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-16 14:54:50 +00:00
0b8b06185d clearer model variable naming: blenderbot_small (#16194)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 14:03:58 +00:00
f06c2c2ba1 TF unpack_input decorator for convnext (#16181)
* unpack_input decorator for tf_convnext

* set unpack_input as top decorator

Co-authored-by: Johannes Kolbe <johannes.kolbe@tech.better.team>
2022-03-16 14:01:32 +00:00
d35e0c6247 Minor fixes to XTREME-S (#16193)
* Minor fixes

* Fix vocab union

* Update examples/research_projects/xtreme-s/README.md

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update README

* unused import

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-16 17:23:00 +04:00
8cc925a241 TF clearer model variable naming: blenderbot (#16192)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 12:37:08 +00:00
0f35cda459 TF clearer model variable naming: funnel (#16178)
Co-authored-by: utku saglam <utkusaglam@utku-MacBook-Pro.local>
2022-03-16 10:37:47 +00:00
ee27b3d7df Replace all deprecated jax.ops operations with jnp's at (#16078)
* Replace all deprecated `jax.ops` operations with jnp's `at`

* np to jnp scores

* suggested changes
2022-03-16 09:08:55 +00:00
c2dc89be62 [Xtreme-S] fix some namings (#16183) 2022-03-16 01:21:31 +01:00
99fd3eb4a5 Add the XTREME-S fine-tuning example (#15985)
* CTC+classification draft

* CTC+classification draft

* style

* multilingual runs

* Fix race condition during processor.from_reatrained

* Merge covost experiments

* Add README

* Quality

* Switch to .all configs

* Fix typos
2022-03-16 00:21:06 +01:00
db4dd44ae3 Trigger doc build 2022-03-15 17:00:31 -04:00
ea05d67164 Fix some Flax models' hidden_states (#16167)
* fix the last element in `hidden_states`

* fix missing elements in outputs for FlaxWav2Vec2EncoderLayerStableLayerNormCollection

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-15 19:06:46 +01:00
88f7c564f0 Added type hints for Reformer (#16175) 2022-03-15 17:59:59 +00:00
16399d6197 Add type annotations for Perceiver (#16174) 2022-03-15 17:56:57 +00:00
015de6f081 TF clearer model variable naming: xlnet (#16150) 2022-03-15 17:50:30 +00:00
a23a7c0cd6 Add flaubert types (#16118)
* Add type hints for FlauBERT PyTorch Base model. Others downstream tasks are inherited from XLM RoBERTa.

* Add type hints for FlaubERT Tensorflow models.

* fix output for TFFlaubertWithLMHeadModel
2022-03-15 16:57:45 +00:00
366c18f473 TF clearer model variable naming: Deberta (#16146) 2022-03-15 16:53:25 +00:00
79465ac521 TF clearer model variable naming: Tapas (#16145) 2022-03-15 16:52:56 +00:00
a78565b7aa [MT5Config] add relative_attention_max_distance in config (#16170) 2022-03-15 16:26:52 +01:00
4f4e5ddbcb Framework split (#16030)
* First files

* More files

* Last files

* Style
2022-03-15 10:13:34 -04:00
4a353cacb7 added type hints to yoso (#16163) 2022-03-15 14:04:32 +00:00
c1c17bd0b3 update transformer XL with tf decorator (#16166)
* update transformer XL with tf decorator

* code fixup

* remove unused variables
2022-03-15 14:00:18 +00:00
611d3a09b2 Change unpacking of TF inputs: layoutlm, mpnet, rag, and roformer (#16112)
Co-authored-by: ChienVM <chien_vm@detomo.co.jp>
2022-03-15 13:47:45 +00:00
0d7322c1b7 TF clearer model variable naming: pegasus (#16152) 2022-03-15 13:45:59 +00:00
cd4c5c9060 TF XLA greedy generation (#15786)
* First attempt at TF XLA generation

* Fix comments

* Update XLA greedy generate with direct XLA calls

* Support attention mask, prepare_inputs_for_generation no longer hardcoded for greedy

* Handle position_ids correctly

* make xla generate work for non xla case

* force using xla generate

* refactor

* more fixes

* finish cleaning

* finish

* finish

* clean gpt2 tests

* add gpt2 tests

* correct more cases

* up

* finish

* finish

* more fixes

* flake 8 stuff

* final rag fix

* Update src/transformers/models/rag/modeling_tf_rag.py

* finish t5 as well

* finish

* Update src/transformers/generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-15 14:19:20 +01:00
e5bc438cc8 [Fix doc example] Fix 2 PyTorch Vilt docstring examples (#16076)
* fix 2 pytorch vilt docstring examples

* add vilt to doctest list file

* remove device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-15 13:35:02 +01:00
bcaf566038 [Fix doc example] Fix first example for the custom_datasets tutorial (#16087)
* Fix inconsistent example variable naming

- Example code for a sequence classification in Tensorflow had spelling mistakes and incorrect and inconsistent naming
- Changed variable naming to be consistent with the two other TF examples

* Fix incorrect incorrect training examples
2022-03-15 08:17:51 -04:00
8bfd2fb8f0 Use templates (#16142)
* Use tempaltes for all doc building jobs

* Add this branch to the doc build

* Switch to main branch
2022-03-15 08:07:56 -04:00
daa4944759 Added spanish translation of quicktour.mdx (#16158)
* Added spanish translation of quicktour.mdx

* Suggestions applied in the revision of the translation

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>

Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-15 08:07:35 -04:00
57713443de Configurable Relative Position Max. Distance (#16155)
* Configurable Relative Position Max. Distance

* fix missing config

Co-authored-by: ahmed-elnaggar <ahmed.elnaggar@allianz.com>
2022-03-15 08:05:33 -04:00
cd1ffb40bf typo "conaining" -> "containing" (#16132) 2022-03-15 07:08:53 -04:00
5664d27622 Shift responsibilities a bit (#16154) 2022-03-15 11:07:17 +01:00
5a386fb05c Make transformers.utils.fx. _SUPPORTED_MODELS unique (#16015) 2022-03-15 10:15:03 +01:00
a7aca42fc4 Improve Swin for VisionEncoderDecoder (#16070)
* Add Swin2Bart test

* Fix swin tests

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-15 09:59:48 +01:00
0a057201a9 Visual Attention Network (VAN) (#16027)
* encoder works

* addded files

* norm in stage

* convertion script

* tests

* fix copies

* make fix-copies

* fixed __init__

* make fix-copies

* fix

* shapiro test needed

* make fix-copie

* minor changes

* make style + quality

* minor refactor conversion script

* rebase + tests

* removed unused variables

* updated doc

* toctree

* CI

* doc

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* resolved conversations

* make fixup

* config passed to modules

* config passed to modules

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversations

* conversations

* copyrights

* normal test

* tests

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-15 08:47:12 +01:00
8f3ea7a1e1 Add type hints for GPTNeo PyTorch (#16127)
* Add type hints for SqueezeBert PyTorch

* Add type hints for GPTNeo PyTorch

* style fixes

* chenged List with Tuple
2022-03-14 20:26:12 +01:00
e3008c679f [WIP] Resnet (#15770)
* first commit

* ResNet model correctly implemented.

basic modeling + weights conversion is done

removed unused doc

mdx file

doc and conversion script

added feature_extractor to auto

test

minor changes + style + quality

doc

test

Delete process.yml

A left over from my attempt of running circleci locally

* minor changes

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* new test format

* minor changes from conversations

* minor changes from conversations

* make style + quality

* readded the tests

* test + README

* minor changes from conversations

* error in README

* make fix-copies

* removed regression for classification head

* make quality

* fixed loss control flow

* fixed loss control flow

* resolved conversations

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* READMEs

* index.mdx

* minor changes

* updated tests and models

* unused import

* outputs

* Update docs/source/model_doc/resnet.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* added embeddings_size

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* conversation

* added push to hub

* test

* embedding_size

* make fix-copies

* resolved conversations

* CI

* changed organization

* minor changes

* CI

* minor changes

* conversations

* conversation

* doc

* tests

* removed unused docstring

* conversation

* removed unused outputs

* CI

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-03-14 19:57:55 +01:00
6458236181 TF Electra - clearer model variable naming (#16143) 2022-03-14 18:10:07 +00:00
37793259bb update albert with tf decorator (#16147) 2022-03-14 18:09:19 +00:00
e109edf16f Use HF_ENDPOINT for custom endpoints (#16139) 2022-03-14 13:26:23 -04:00
0dcdfe8630 Add type hints for FNet PyTorch (#16123) 2022-03-14 17:11:19 +00:00
f86235ad1b Add type annotations for CLIP (torch) (#16059) (#16106)
* clip typhinting #16059

* removed optional type annotations for dataclass in CLIPOutput

* type annotation fixes per Rocket - Clip Torch
2022-03-14 16:56:04 +00:00
c1000e703b Dcoker images runtime -> devel (#16141)
* Runtime -> Devel

* Torch before DeepSpeed
2022-03-14 12:37:20 -04:00
10cf1ffdbf Added missing type hints - ELECTRA TF (#16104)
* Add missing type hints - ELECTRA TF

* bool -> Optional[bool]
2022-03-14 16:28:34 +00:00
6db8693086 Add type hints for SqueezeBert PyTorch (#16126)
* Add type hints for SqueezeBert PyTorch

* fixed unused List err

* style fixes
2022-03-14 16:21:08 +00:00
5493c10ecb Add type hints for PoolFormer in Pytorch (#16121) 2022-03-14 16:14:04 +00:00
6c2f3ed74c Add type hints for Luke in PyTorch (#16111)
* Add type hints for LukeModel

* Add type hints for entitypairclassification

* Remove blank space

Co-authored-by: bhavika <bhavika@debian-BULLSEYE-live-builder-AMD64>
2022-03-14 15:55:03 +00:00
37a9fc49f2 Choose framework for ONNX export (#16018)
* Can choose framework for ONNX export

* Fix docstring
2022-03-14 16:47:29 +01:00
3f8360a7b6 Add type hints for TFDistilBert (#16107)
* Add type hints for TFDistilBert

* Update src/transformers/models/distilbert/modeling_tf_distilbert.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-14 15:39:59 +00:00
97e32b7854 Improve model variable naming - CLIP [TF] (#16128)
* First pass

* Fixup

* Fix broken tests

* Make unpack_inputs the first decorator
2022-03-14 15:26:40 +00:00
d02bd4f333 Better input variable naming for OpenAI (TF) (#16129)
* Replace input_processing

* move unpack_inputs
2022-03-14 15:25:45 +00:00
c8c8c114a3 [Fix doc example] Fix checkpoint name in docstring example in Speech2Text2 (#16083)
* Fix checkpoint name in docstring example

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-14 16:19:18 +01:00
72ae06b904 Added missing type hints - V1 and V2 (#16105) 2022-03-14 15:12:22 +00:00
1d43933fbc Added missing type hints (#16103) 2022-03-14 14:53:57 +00:00
efd6e9a82a Spanish translation of the file training.mdx (#16047)
* Spanish translation of the file training.mdx

* Settings - Spanish translation of the file training.mdx

* Latest changes to the Spanish translation of the training.mdx file

* Delete Hugging.mdx

* Last changes to the training fil Espanish version

* Latest modifications

* Latest changes, document ready for PR

* Nits

Co-authored-by: Yhary Arias <yharystefa@gmail.com>
Co-authored-by: Omar U. Espejel <espejelomar@gmail.com>
2022-03-14 10:12:38 -04:00
9fd584e544 Add copied from statements and fix prefix (#16119)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-14 15:05:14 +01:00
f284aa320d steps strategy fix for PushtoHubCallback (#16138) 2022-03-14 13:37:07 +00:00
e3645fd280 Change unpacking of TF mobilebert inputs to use decorator (#16110)
* Change unpacking of TF mobilebert inputs to use decorator

* Move unpack_inputs as the top decorator

* make fixup

Co-authored-by: ChienVM <chien_vm@detomo.co.jp>
2022-03-14 13:15:08 +00:00
5dbf36bd4e Fix ProphetNetTokenizer (#16082)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-14 09:02:41 -04:00
923c35b5c5 Make TF pt-tf equivalence test more aggressive (#15839)
* Make TF pt-tf equivalence test more aggressive

* Fix for TFConvNextModelTest and TFTransfoXLModelTest

* fix kwargs for outputs

* clean-up

* Add docstring for check_outputs()

* remove: need to rename encoder-decoder

* clean-up

* send PyTorch things to the correct device

* Add back the accidentally removed test case in test_pt_tf_model_equivalence()

* Fix: change to tuple before calling check_outputs()

* Fix: tfo could be a list

* use to_tuple()

* allow tfo only to be tuple or tensor

* allow tfo to be list or tuple for now + style change

* minor fix

* remove np.copy and update comments

* tfo -> tf_output, same for pt

* Add more detailed comment

* remove the incorrect comment

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-14 13:31:32 +01:00
9e9f6b8a45 Update convert_marian_to_pytorch.py (#16124)
Configuration `tied-embeddings-all` implies `tied-embeddings-src`
2022-03-14 12:15:38 +01:00
2de99e6c43 Fix Loading of Flax(Speech)EncoderDecoderModel kwargs from PreTrained Encoder-Decoder Checkpoints (#16056)
* Fix Loading of Flax(Speech)EncoderDecoderModel kwargs from PreTrained Encoder-Decoder Checkpoints

* change wording
2022-03-14 10:12:29 +01:00
802984ad42 Fix and document Zero Shot Image Classification (#16079) 2022-03-14 08:50:36 +01:00
6e1e88fd38 Add TFCamembertForCausalLM and ONNX integration test (#16073)
* Make Camembert great again!

* Add Camembert to TensorFlow ONNX tests
2022-03-14 08:40:42 +01:00
20ab1582cf Add missing type hints for all flavors of LayoutLMv2 PyTorch models. (#16089)
* Add missing type hints for all flavors of LayoutLMv2 PyTorch models.

* Fixed return types and added type hints for LayoutLM.

* Fix removed arguments which breaks tests.
2022-03-13 18:54:01 +00:00
65cf33e7e5 Add type hints to XLM model (PyTorch) (#16108) 2022-03-12 19:28:48 +00:00
841620684b apply unpack_input decorator to ViT model (#16102) 2022-03-12 15:05:13 +00:00
62b05b6917 Add type annotations for segformer classes (#16099) 2022-03-12 12:37:09 +00:00
9042dfe35c add unpack_inputs decorator to mbart (#16097) 2022-03-12 12:30:43 +00:00
3e9d0f7f59 Change unpacking of TF Bart inputs (#16094) 2022-03-12 12:06:55 +00:00
580dd87c55 [Deepspeed] add support for bf16 mode (#14569)
* [WIP] add support for bf16 mode

* prep for bf16

* prep for bf16

* fix; zero2/bf16 is ok

* check bf16 is available

* test fixes

* enable zero3_bf16

* config files

* docs

* split stage_dtype; merge back to non-dtype-specific config file

* fix doc

* cleanup

* cleanup

* bfloat16 => bf16 to match the PR changes

* s/zero_gather_fp16_weights_on_model_save/zero_gather_16bit_weights_on_model_save/; s/save_fp16_model/save_16bit_model/

* test fixes/skipping

* move

* fix

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* backticks

* cleanup

* cleanup

* cleanup

* new version

* add note about grad accum in bf16

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-11 17:53:53 -08:00
c1f209dadd [ZeRO] Fixes issue with embedding resize (#16093)
* gather z3 params for new_lm_head

* Update src/transformers/modeling_utils.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-11 15:13:11 -08:00
ae2dd42be5 Audio/vision task guides (#15808)
* 📝 first draft of audio/vision guides

*  make fixup

* 🖍 fix typo

* 🖍 close parentheses

* 🖍 apply feedback

* 🖍 apply feedback, make fixup

* 🖍 more fixup for perceiver

* 🖍 apply feedback

*  make fixup

* 🖍 fix data collator
2022-03-11 16:43:49 -06:00
cb5e50c8c2 [Fix doc example] FSMT (#16085)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-11 21:21:31 +01:00
eaed6897da Add missing type hints for all flavors of RoBERTa PyTorch models. (#16086)
* Add missing type hints for all flavors of RoBERTa PyTorch models.

* Fixed type hints for all classes and fixed return types.
2022-03-11 19:40:50 +00:00
a01fe4cd32 Rebuild deepspeed (#16081)
* Rebuild deepspeed

* Apply suggestions from code review

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-03-11 14:35:48 -05:00
7f3d4440d6 add type annotations for ImageGPT (#16088) 2022-03-11 19:16:14 +00:00
5b4c97d09d Update troubleshoot guide (#16001)
* 📝 first draft

* 🖍 apply feedback

* 🖍 apply feedback
2022-03-11 13:05:44 -06:00
9442b3ce31 Add soft length regulation for sequence generation (#15245)
* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* fix wrong docstring

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* change test according to new param

* fix formatting

* fix test case

* fix doc style

* move start_length calculation to Logitprocessor

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* fix test config, fix formatting

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* add possibility to softly regulate length when using sampling method in model.generate() function

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* remove unused import

* fix small errors

* fix test

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* change test according to new param

* fix test case

* move start_length calculation to Logitprocessor

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* fix test config, fix formatting

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix test config, fix formatting

* fix rag integration, fix docstyling

* add possibility to softly regulate length when using sampling method in model.generate() function

* fix rag integration, fix docstyling

* change param to tuple, add test

* fix old param in rag_model, remove unused import

* fix small errors

* Update src/transformers/generation_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/generation_utils.py

* Update src/transformers/generation_utils.py

* fix docstring, add type ind model rag

* fix docstrings

* introduce seq_length variable for cleaner code

* fix black formatting

* add input_ids_seq_length to modeling_rag

* add input_ids_seq_length to test

* retrigger checks

* retrigger checks

Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.local>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Kevin Bondzio <kev@AIM-LAP-02.fritz.box>
2022-03-11 19:36:44 +01:00
322c8533d7 Run daily test without time-out at least once (#16077) 2022-03-11 18:04:17 +01:00
7e00247fad check for key 'torch.dtype' in nested dicts in config (#16065) 2022-03-11 12:00:11 -05:00
5d2fed2e8c Adding type hints for TFRoBERTa (#16057)
* Adding type annotations for TFRoBERTa

* Add type hints to TFRobertaModel too
2022-03-11 16:13:47 +00:00
bb69d154c5 Add type annotations for BERT and copies (#16074)
* Add type annotations for BERT and copies

* make fixup
2022-03-11 16:13:29 +00:00
f7708e1bed Force default brnahc name via the config 2022-03-11 10:09:15 -05:00
ecf989ca73 Trigger doc build 2022-03-11 09:20:05 -05:00
0868fdef85 Fix torch-scatter version (#16072) 2022-03-11 09:03:27 -05:00
5b369dc5d8 Remove assertion over possible activation functions in DistilBERT (#16066)
* Remove assertion over possible activation functions

* Same for TF and Flax
2022-03-11 14:27:59 +01:00
f5741bcd02 Move QDQBert in just PyTorch block (#16062) 2022-03-11 07:58:02 -05:00
b6bdb943b2 Fix a TF test name (LayoutLMModelTest) (#16061)
* fix name

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-11 11:22:36 +01:00
96ac7549cb updating fine-tune classifier documentation (#16063) 2022-03-10 16:21:56 -05:00
6b09328368 Fix duplicate arguments passed to dummy inputs in ONNX export (#16045)
* Fix duplicate arguments passed to dummy inputs in ONNX export

* Fix M2M100 ONNX config

* Ensure we check PreTrained model only if torch is available

* Remove TensorFlow tests for models without PyTorch parity
2022-03-10 20:19:45 +01:00
ba21001f4c support new marian models (#15831)
* support not sharing embeddings

* update modeling

* update tokenizer

* fix conversion script

* always use self.shared

* boom boom

* begin tests

* update tests

* fix resize_decoder_token_embeddings

* address Patrick's comments

* style

* update conversion script

* fix conversion script

* fix tokenizer

* better name target vocab

* add integration test for tokenizer with two vocabs

* style

* address Patrick's comments

* add integration test for model
2022-03-10 19:41:56 +01:00
e66743e6c9 DeBERTa/DeBERTa-v2/SEW Support for torch 1.11 (#16043)
* Support for torch 1.11

* Address Sylvain's comment
2022-03-10 09:01:05 -05:00
741e49305d Fix Bug in Flax Seq2Seq Models (#16021)
* Fix Bug in Flax Seq2Seq Models

* incorporate suggested changes
2022-03-10 14:58:05 +01:00
b7018abf3c TF: Unpack model inputs through a decorator (#15907)
* MVP

* apply decorator to TFBertModel

* finish updating bert

* update rembert (copy-linked to bert)

* update roberta (copy-linked to bert); Fix args

* Now working for non-text modalities
2022-03-10 13:31:35 +00:00
19597998f6 Don't compute metrics in LM examples on TPU (#16029) 2022-03-10 07:44:51 -05:00
10591399d6 Build the doc in a seperate folder then move it (#16020)
* Build the doc in a seperate folder then move it

* Allow job

* Is this it?

* Dislike comments?

* Copy instead of move

* Removing version built

* Typos

* No variable

* Take _versions.yml into account

* Finish main job and add dev job

* Forgot the run

* Fix syntax error

* Execute builder from the repo

* Typo
2022-03-10 07:44:29 -05:00
2f463effb3 Fix TFDebertaV2ConvLayer in TFDebertaV2Model (#16031)
* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-10 12:23:46 +01:00
1da84ae02c Fix Bug in Flax-Speech-Encoder-Decoder Test (#16041)
* Fix Bug in Flax-Speech-Encoder-Decoder Test

* change thresholds for CPU precision
2022-03-10 12:09:29 +01:00
b2a1c994cb [README] fix url for Preprocessing tutorial (#16042) 2022-03-10 12:09:05 +01:00
8d83ebdf18 [Tests] Add attentions_option to ModelTesterMixin (#15909)
* Add attentions_option to common tester

* Fix tests, apply suggestion

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-10 12:00:30 +01:00
6ce11c2c0f [Docs] Improve PyTorch, Flax generate API (#15988)
* Move generate docs

* up

* Update docs/source/_toctree.yml

* correct

* correct some stuff

* correct tests

* more fixes

* finish generate

* add to doc stest

* finish

* finalize

* add warning to generate method
2022-03-10 11:54:45 +01:00
0951d31788 Fix dependency error message in ServeCommand (#16033)
"uvicorn" is misspelled as "unicorn".
2022-03-10 11:35:26 +01:00
0835119bf3 Add Document Image Transformer (DiT) (#15984)
* Add conversion script

* Improve script

* Fix bug

* Add option to push to hub

* Add support for classification models

* Update model name

* Upload feature extractor files first

* Remove hash checking

* Fix config

* Add id2label

* Add import

* Fix id2label file name

* Fix expected shape

* Add model to README

* Improve docs

* Add integration test and fix CI

* Fix code style

* Add missing init

* Add model to SPECIAL_MODULE_TO_TEST_MAP

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-10 11:34:44 +01:00
6c9010ef63 Update README.md 2022-03-10 10:20:37 +01:00
fde901877a Freeze Feature Encoder in FlaxSpeechEncoderDecoder (#15997)
* Freeze Feature Encoder in FlaxSpeechEncoderDecoder

* add backprop test
2022-03-10 09:59:19 +01:00
65f9653ed0 Fix warning message in ElectraForCausalLM (#16023) 2022-03-09 17:27:15 -05:00
a69e185074 add doctests for bart like seq2seq models (#15987)
* boom boom

* enable doctest for few seq2seq models

* add seq2seq models in documentation_tests.txt

* fix docstring blenderbot

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix seq classif doc sample

* don't check loss for seq classif examples

* +IGNORE_OUTPUT => +IGNORE_RESULT

* fix _SEQ_CLASS_EXPECTED_OUTPUT_SHAPE

* fix some docs

* more fixes

* last fix (hopefully)

* fix big bird gen example

* fix mbart gen example

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-09 20:30:38 +01:00
b256f3518d Add FlaxBartForCausalLM (#15995)
* add causal lm

* add CausalLM tests

* Add FlaxBartForCausalLM

* Add EncoderDecoder model tests

* change docstring

* make repo-consistency

* suggested changes

* remove jax ops

* correction

* rename pre-trained decoder model
2022-03-09 19:53:01 +01:00
50dd314d93 Add ONNX export for ViT (#15658)
* Add ONNX support for ViT

* Refactor to use generic preprocessor

* Add vision dep to tests

* Extend ONNX slow tests to ViT

* Add dummy image generator

* Use model_type to determine modality

* Add deprecation warnings for tokenizer argument

* Add warning when overwriting the preprocessor

* Add optional args to docstrings

* Add minimum PyTorch version to OnnxConfig

* Refactor OnnxConfig class variables from CONSTANT_NAME to snake_case

* Add reasonable value for default atol

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-09 17:36:59 +01:00
b7fa1e3dee Use tiny models for get_pretrained_model in TFEncoderDecoderModelTest (#15989)
* Use tiny model for TFRembertEncoderDecoderModelTest.get_pretrained_model()

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-09 17:16:25 +01:00
8feede229c Fix broken code blocks in README.md (#15967)
at transformers/examples/pytorch/contrastive-image-text
2022-03-09 17:07:52 +01:00
1e8f37992f done (#16012) 2022-03-09 15:51:56 +01:00
38bce1d4cf Make pos optional to avoid crashing PerceiverModel operation (#15972)
Updates `PerceiverAudioPreprocessor` `forward()` implementation to match most other preprocessors / postprocessors
2022-03-09 15:48:52 +01:00
cec89e1a0e Simplify release utils (#15921)
* Simplify release utils

* Quality
2022-03-09 08:47:58 -05:00
e493a3a5e2 Fix github actions comment (#16009)
* Add issue number

* Dev
2022-03-09 08:39:03 -05:00
e7f34ccd4f Swag example: Update doc format (#16014) 2022-03-09 13:25:34 +00:00
3ea046995e Removed an outdated check about hdf5_version (#16011)
* removed an outdated check about hdf5_version

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-09 14:21:23 +01:00
c1aaa43935 [Doctests] Move doctests to new GPU & Fix bugs (#15969)
* test

* up

* up

* Empty test commit

* up

* update tests

* up

* fix some vision models

* correct

* correct docs

* Trigger notification

* finalize

* check

* correct quicktour

* Apply suggestions from code review

* improve doctests

* Trigger Build

* next try

* next try

* and again

* Output current clone information

* Output current clone information

* Correct path

* add tf round again

* revert to daily job

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-03-09 13:09:56 +01:00
f4e4ad34cc Add ForInstanceSegmentation models to image-segmentation pipelines (#15937)
* Adding ForInstanceSegmentation to pipelines.

* Last fix `category_id` renamed to `label_id`.

* Can't be none no more.

* No `is_thing_map` anymore.
2022-03-09 10:19:05 +01:00
5b7dcc7342 Seed _get_train_sampler's generator with arg seed to improve reproducibility (#15961)
* Seed get_train_sampler's generator with arg seed to improve reproducibility

and make the world_size<=1 code path more similar to the others

* move test file into trainer test explicitly

* dumb typo

* make style lint happy

* per discussion, switch to data_seed

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-08 13:45:41 -05:00
70203b5937 TF generate refactor - past without encoder outputs (#15944)
* Remove packed past from generation_tf_utils

* update models with the new past format

* update template accordingly
2022-03-08 14:46:44 +00:00
62d847602a Update TF multiple choice example (#15868) 2022-03-08 13:16:34 +00:00
ab2f8d12a7 add hf hub to env version command (#15981) 2022-03-08 14:03:03 +01:00
72983303c5 Fix TFEncoderDecoderModelTest - Pytorch device (#15979)
* fix device

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-08 13:37:20 +01:00
f5a080dd10 Do a pull in case docs were updated during build (#15922) 2022-03-08 07:19:41 -05:00
91fb62d01c Speedup training by using numpy instead of jnp for batch shuffling (#15963)
Speedup training by using numpy instead of jnp for batch shuffling

Co-authored-by: Yeb Havinga <y.t.havinga@mgrid.net>
2022-03-08 12:18:38 +01:00
ea07064a5c Returning outputs only when asked for for MaskFormer. (#15936)
* Returning outputs only when asked for for MaskFormer.

* Adding `output_auxiliary_logits` to the config.
2022-03-08 11:17:57 +01:00
b19f3e69a0 [Tests] Fix ViTMAE integration test (#15949)
* Fix test across both cpu and gpu

* Fix typo
2022-03-08 10:49:44 +01:00
9879a1d5f0 Fix LayoutLMv2 test (#15939)
* Fix LayoutLMv2 test

* Update black
2022-03-08 10:49:30 +01:00
8b9ae45549 Set scale_embedding to False in some TF tests (#15952)
* set scale_embedding to False to avoid large (> 1e-5) output differences between PT/TF

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-07 22:14:33 +01:00
38cc35069c Update training scripts docs (#15931)
* 📝 first draft

* 🖍 apply feedback

* 🖍 remove examples from toctree

* 🗑 remove examples from docs/source
2022-03-07 13:29:14 -06:00
c87cfd653c Better error message when inputs are empty 2022-03-07 13:29:16 -05:00
e9fa7cd5d7 Make is_thing_map in Feature Extractor post_process_panoptic_segmentation defaults to all instances (#15954)
* is_thing_map defaults to all instances

* better naming

* control flow

* resolving conversations
2022-03-07 19:10:32 +01:00
2596f95e84 Fix Embedding Module Bug in Flax Models (#15920) 2022-03-07 18:17:45 +01:00
1a62b25caf Backprop Test for Freeze FlaxWav2Vec2 Feature Encoder (#15938)
* Backprop Test for Freeze FlaxWav2Vec2 Feature Encoder

* remove jnp.ndarray type suggestion

* assert frozen grads are precisely zero
2022-03-07 18:10:15 +01:00
544fd9876b Support modern list type hints in HfArgumentParser (#15951)
* Support modern list type hint in HfArgumentParser

* Fix formatting with black
2022-03-07 10:22:48 -05:00
60b81dfa6f remove re-defination of FlaxWav2Vec2ForCTCModule (#15965) 2022-03-07 14:58:44 +01:00
ef9c3ca348 [Bug Fix] Beam search example in docs fails & a fix (integrating max_length in BeamScorer.finalize()) (#15555)
* added the test and fix

* had left out a comment
2022-03-07 09:10:18 +01:00
9932ee4b4b made MaskFormerModelTest faster (#15942) 2022-03-04 19:11:48 +01:00
e8efaecb87 Move dependency to call method (#15941) 2022-03-04 18:53:54 +01:00
5c6f57ee75 Constrained Beam Search [*With* Disjunctive Decoding] (#15761)
* added classes to get started with constrained beam search

* in progress, think i can directly force tokens now but not yet with the round robin

* think now i have total control, now need to code the bank selection

* technically works as desired, need to optimize and fix design choices leading to undersirable outputs

* complete PR #1 without disjunctive decoding

* removed incorrect tests

* Delete k.txt

* Delete test.py

* Delete test.sh

* revert changes to test scripts

* genutils

* full implementation with testing, no disjunctive yet

* shifted docs

* passing all tests realistically ran locally

* removing accidentally included print statements

* fixed source of error in initial PR test

* fixing the get_device() vs device trap

* fixed documentation docstrings about constrained_beam_search

* fixed tests having failing for Speech2TextModel's floating point inputs

* fix cuda long tensor

* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search

* deleted accidentally added test halting code with assert False

* code reformat

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

* fixing based on comments on PR

* took out the testing code that should but work fails without the beam search moditification ; style changes

* fixing comments issues

* docstrings for ConstraintListState

* typo in PhrsalConstraint docstring

* docstrings improvements

* finished adding what is sort of an opinionated implementation of disjunctive generation, but it revealed errors in inner beam search logic during testing.

* fixed bug found in constrained beam search that used beam_idx that were not global across all the batches

* disjunctive constraint working 100% correctly

* passing all tests

* Accidentally included mlruns

* Update src/transformers/generation_beam_constraints.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/generation_beam_constraints.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* complete overhaul of type complexities and other nits

* strict type checks in generate()

* fixing second round of feedback by narsil

* fixed failing generation test because of type check overhaul

* generation test fail fix

* fixing test fails

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-04 18:18:34 +01:00
040c11f6da Tests for MaskFormerFeatureExtractor's post_process*** methods (#15929)
* proper tests for post_process*** methods in feature extractor

* mask th == 0

* Update tests/maskformer/test_feature_extraction_maskformer.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-04 18:04:19 +01:00
f0aacc140b Do not change the output from tuple to list - to match PT's version (#15918)
* Do not change the output from tuple to list - to match PT's version

* Fix the same issues for 5 other models and the template

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-04 17:50:24 +01:00
10b76987fc [FlaxT5 Example] fix flax t5 example pretraining (#15835) 2022-03-04 17:04:43 +01:00
01485ceec3 Add missing support for Flax XLM-RoBERTa (#15900)
* Adding Flax XLM-RoBERTa

* Add Flax to __init__

* Adding doc and dummy objects

* Add tests

* Add Flax XLM-R models autodoc

* Fix tests

* Add Flask XLM-RoBERTa to TEST_FILES_WITH_NO_COMMON_TESTS

* Update src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Remove test on large Flask XLM-RoBERTa

* Add tokenizer to the test

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-04 14:36:28 +01:00
89c7d9cfba Making MaskFormerForInstanceSegmentation. (#15934)
Small adjustments.

Adding in type hint.

Last fix ?

Only include the default dict thing, not the pipelines.
2022-03-04 13:56:15 +01:00
7ade7c1794 Updating the slow tests: (#15893)
Linked to https://github.com/huggingface/transformers/pull/15826
2022-03-04 12:32:19 +01:00
6b104c5bb0 Support CLIPTokenizerFast for CLIPProcessor (#15913)
* Fix to support fast tokenizer with `CLIPProcessor`

* Update CLIPProcessor test for fast tokenizer

* Fix Docstring Style

* Rename into meaningful Variable name in test code
2022-03-04 11:57:09 +01:00
b71474895d Update README.md 2022-03-04 09:58:45 +01:00
a6e3b17981 Re-enabling all fast pipeline tests. (#15924) 2022-03-04 09:53:00 +01:00
a7df656f03 Update README.md (#15926) 2022-03-04 00:22:38 +01:00
c0281feb50 Fix #15898 (#15928) 2022-03-03 14:41:03 -05:00
9251427c38 Add vision models to doc tests (#15905)
* Add vision models to doc tests

* Apply suggestions from code review

* Add more models

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-03 19:46:31 +01:00
742273a52a fix for the output from post_process_panoptic_segmentation (#15916) 2022-03-03 19:35:48 +01:00
7c45fe747f Mark slow tests as slow 2022-03-03 11:03:24 -05:00
3822e4a563 Enabling MaskFormer in pipelines (#15917)
* Enabling MaskFormer in ppipelines

No AutoModel though :(

* Ooops local file.
2022-03-03 16:31:41 +01:00
79d28e80b6 v4.18.0.dev.0 2022-03-03 10:19:58 -05:00
6cbfa7bf4c [Doctests] Fix ignore bug and add more doc tests (#15911)
* finish speech doc tests

* finish

* boom

* Update src/transformers/models/speech_to_text/modeling_speech_to_text.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-03 16:01:56 +01:00
b693cbf99c The tests were not updated after the addition of torch.diag (#15890)
in the scoring (which is more correct)
2022-03-03 15:33:49 +01:00
3c4fbc616f Freeze FlaxWav2Vec2 Feature Encoder (#15873)
* Freeze FlaxWav2Vec2 Feature Encoder

* add to all module apply

* add backprop test
2022-03-03 14:17:13 +01:00
7b3bd1f21a Fix and improve REALM fine-tuning (#15297)
* Draft

* Add test

* Update src/transformers/models/realm/modeling_realm.py

* Apply suggestion

* Add block_mask

* Update

* Update

* Add block_embedding_to

* Remove no_grad

* Use AutoTokenizer

* Remove model.to overridding
2022-03-03 14:10:15 +01:00
439de3f7f9 [Fix link in pipeline doc] (#15906) 2022-03-03 07:43:13 -05:00
4cd7ed4b3b Fix a TF Vision Encoder Decoder test (#15896)
* send PyTorch inputs to the correct device

* Fix: TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-03-03 13:21:31 +01:00
39249c9589 Fix doc links in release utils (#15903) 2022-03-02 18:06:31 -05:00
3d2242869d Update delete-dev-doc job to match build-dev-doc (#15891)
* Update delete-dev-doc job to match build-dev-doc

* More debug info

* More debug info

* Stash if needed

* Remove the comment update

* Fix paths

* Wtf is going on..

* Fix git status test

* Try another way

* I don't understand what's happening

* Bash shell

* What's happening now...

* What's happening now...

* Try like this

* Back to trying to use bash

* And like that?

* Refine tests

* Stash after adding new files

* Stash after adding new files

* Proper commit sha and PR number

* Address review comments
2022-03-02 16:18:54 -05:00
89be34c36c Fix SegformerForImageClassification (#15895)
* Fix reshape

* Apply suggestion from code review

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-02 21:57:39 +01:00
130b987880 [XGLM] run sampling test on CPU to be deterministic (#15892)
* run sampling test on CPU to be deterministic

* input_ids on CPU
2022-03-02 17:55:49 +01:00
baab5e7cdf TF generate refactor - Sample (#15793)
* Add TF logits wrappers 

* Add sample method

* add tests for TF logit wrappers

* TF generate sample tests now run on CPU

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-03-02 16:13:54 +00:00
96ae92be8c [SegFormer] Add deprecation warning (#15889)
* Add deprecation warning

* Remove from docs and hide in kwargs

* Improve implementation

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-02 16:20:47 +01:00
8fd4731072 Fix Bug in FlaxWav2Vec2 Slow Test (#15887) 2022-03-02 16:02:26 +01:00
d83d22f578 Maskformer (#15682)
* maskformer

* conflicts

* conflicts

* minor fixes

* feature extractor test fix

refactor MaskFormerLoss following conversation

MaskFormer related types should not trigger a module time import error

missed one

removed all the types that are not used

update config mapping

minor updates in the doc

resolved conversation that doesn't need a discussion

minor changes

resolved conversations

fixed DetrDecoder

* minor changes

minor changes

fixed mdx file

test feature_extractor return types

functional losses -> classes

removed the return type test for the feature extractor

minor changes + style + quality

* conflicts?

* rebase master

* readme

* added missing files

* deleded poolformers test that where in the wrong palce

* CI

* minor changes

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* resolved conversations

* minor changes

* conversations

[Unispeech] Fix slow tests (#15818)

* remove soundfile old way of loading audio

* Adapt slow test

[Barthez Tokenizer] Fix saving (#15815)

[TFXLNet] Correct tf xlnet generate (#15822)

* [TFXLNet] Correct tf xlnet

* adapt test comment

Fix the push run (#15807)

Fix semantic segmentation pipeline test (#15826)

Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776)

Add model specific output classes to PoolFormer model docs (#15746)

* Added model specific output classes to poolformer docs

* Fixed Segformer typo in Poolformer docs

Adding the option to return_timestamps on pure CTC ASR models. (#15792)

* Adding the option to return_timestamps on pure CTC ASR models.

* Remove `math.prod` which was introduced in Python 3.8

* int are not floats.

* Reworking the PR to support "char" vs "word" output.

* Fixup!

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Quality.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824)

Fix tf.concatenate + test past_key_values for TF models (#15774)

* fix wrong method name tf.concatenate

* add tests related to causal LM / decoder

* make style and quality

* clean-up

* Fix TFBertModel's extended_attention_mask when past_key_values is provided

* Fix tests

* fix copies

* More tf.int8 -> tf.int32 in TF test template

* clean-up

* Update TF test template

* revert the previous commit + update the TF test template

* Fix TF template extended_attention_mask when past_key_values is provided

* Fix some styles manually

* clean-up

* Fix ValueError: too many values to unpack in the test

* Fix more: too many values to unpack in the test

* Add a comment for extended_attention_mask when there is past_key_values

* Fix TFElectra extended_attention_mask when past_key_values is provided

* Add tests to other TF models

* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder

* Fix not passing training arg to lm_head in TFRobertaForCausalLM

* Fix tests (with past) for TF Roberta

* add testing for pask_key_values for TFElectra model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>

[examples/summarization and translation] fix readme (#15833)

Add ONNX Runtime quantization for text classification notebook (#15817)

Re-enable doctests for the quicktour (#15828)

* Re-enable doctests for the quicktour

* Re-enable doctests for task_summary (#15830)

* Remove &

Framework split model report (#15825)

Add TFConvNextModel (#15750)

* feat: initial implementation of convnext in tensorflow.

* fix: sample code for the classification model.

* chore: added checked for  from the classification model.

* chore: set bias initializer in the classification head.

* chore: updated license terms.

* chore: removed ununsed imports

* feat: enabled  argument during using drop_path.

* chore: replaced tf.identity with layers.Activation(linear).

* chore: edited default checkpoint.

* fix: minor bugs in the initializations.

* partial-fix: tf model errors for loading pretrained pt weights.

* partial-fix: call method updated

* partial-fix: cross loading of weights (4x3 variables to be matched)

* chore: removed unneeded comment.

* removed playground.py

* rebasing

* rebasing and removing playground.py.

* fix: renaming TFConvNextStage conv and layer norm layers

* chore: added initializers and other minor additions.

* chore: added initializers and other minor additions.

* add: tests for convnext.

* fix: integration tester class.

* fix: issues mentioned in pr feedback (round 1).

* fix: how output_hidden_states arg is propoagated inside the network.

* feat: handling of  arg for pure cnn models.

* chore: added a note on equal contribution in model docs.

* rebasing

* rebasing and removing playground.py.

* feat: encapsulation for the convnext trunk.

* Fix variable naming; Test-related corrections; Run make fixup

* chore: added Joao as a contributor to convnext.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: corrected copyright year and added comment on NHWC.

* chore: fixed the black version and ran formatting.

* chore: ran make style.

* chore: removed from_pt argument from test, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* fix: tests in the convnext subclass, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: moved convnext test to the correct location

* fix: locations for the test file of convnext.

* fix: convnext tests.

* chore: applied  sgugger's suggestion for dealing w/ output_attentions.

* chore: added comments.

* chore: applied updated quality enviornment style.

* chore: applied formatting with quality enviornment.

* chore: revert to the previous tests/test_modeling_common.py.

* chore: revert to the original test_modeling_common.py

* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py

* fix: tests for convnext.

* chore: removed output_attentions argument from convnext config.

* chore: revert to the earlier tf utils.

* fix: output shapes of the hidden states

* chore: removed unnecessary comment

* chore: reverting to the right test_modeling_tf_common.py.

* Styling nits

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>

* minor changes

* doc fix in feature extractor

* doc

* typose

* removed detr logic from config

* removed detr logic from config

* removed num_labels

* small fix in the config

* auxilary -> auxiliary

* make style

* some test is failing

* fix a weird char in config prevending doc-builder

* retry to fix the doc-builder issue

* make style

* new try to fix the doc builder

* CI

* change weights to facebook

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-03-02 15:48:20 +01:00
e535c389aa Fix tiny typo (#15884) 2022-03-02 15:37:05 +01:00
2eb7bb15e7 Updates in Trainer to support new features in SM Model Parallel library (#15877)
* Create optimizer after model creation for SMP

* update dp_rank to rdp_rank for opt_state_dict

* update world_size and process_index for smp

* Address comments

* Lint fix

Co-authored-by: Cavdar <dcavdar@a07817b12d7e.ant.amazon.com>
2022-03-02 07:55:14 -05:00
05c237ea94 Update TF QA example (#15870) 2022-03-02 10:38:13 +00:00
6e57a56987 Adding timestamps for CTC with LM in ASR pipeline. (#15863)
* Adding timestamps for CTC with LM in ASR pipeline.

* iRemove print.

* Nit change.
2022-03-02 10:49:05 +01:00
8a133490bf Add TF generate sample tests with all logit processors (#15852)
* Add GPT2 TF generate sample test with all logits processor

* Add T5 generate sample test
2022-03-02 09:48:11 +00:00
40040727ab [Bart] Fix implementation note doc (#15879) 2022-03-02 10:24:32 +01:00
4bfe75bd08 M2M100 support for ONNX export (#15193)
* Add M2M100 support for ONNX export

* Delete useless imports

* Add M2M100 to tests

* Fix protobuf issue
2022-03-02 10:03:14 +01:00
d1a29078c0 Remove stash for now (#15882) 2022-03-01 22:36:19 -05:00
b842d7277a fix deepspeed tests (#15881)
* fix deepspeed tests

* style

* more fixes
2022-03-01 19:27:28 -08:00
6ccfa2170c Inference for multilingual models (#15836)
* 📝 first draft for multilingual models

* 🖍 make style
2022-03-01 15:10:31 -06:00
26426923b7 No self-hosted runner for dev documentation (#15710) 2022-03-01 14:05:54 -05:00
00eaffc81f Bump up doc node version to 16 (#15874) 2022-03-01 18:37:57 +01:00
afca0d5192 use python 3.7 for flax self-push tests (#15865)
* set python 3.7 for flax tests

* setup-python@v2

* python-dev

* install -y

* python3-dev

* install kenlm from source

* install cython

* cd to kenlm

* kenlm install

* don't install kenlm

* change flax pretrained to run flax tests

* cleanup

* remove python-dev
2022-03-01 18:26:30 +01:00
286fdc6b3c [vision] Add problem_type support (#15851)
* Add problem_type to missing models

* Fix deit test

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-01 18:09:52 +01:00
7ff9d450cd Scatter should run on CUDA (#15872) 2022-03-01 11:47:17 -05:00
c008afea3c Add link to notebooks (#15791)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-03-01 17:44:20 +01:00
e064f08150 Add time stamps for wav2vec2 with lm (#15854)
* [Wav2Vec2 With LM] add timestamps

* correct

* correct

* Apply suggestions from code review

* correct

* Update src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py

* make style

* Update src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* make style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-01 17:03:05 +01:00
3f2e636850 Update TF LM examples (#15855) 2022-03-01 14:12:58 +00:00
54f0db4066 Add PT + TF automatic builds (#15860)
* Add PT + TF automatic builds

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Wrap up

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-03-01 08:55:11 -05:00
9863f7d228 [Benchmark tools] Deprecate all (#15848)
* [Benchmark tools] Deprecate all

* up
2022-03-01 11:26:20 +01:00
df5a4094a6 Add Data2Vec (#15507)
* Add data2vec model cloned from roberta

* Add checkpoint conversion script

* Fix copies

* Update docs

* Add checkpoint conversion script

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/data2vec.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update documentation

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* add inputs to logits to data2vec'

* correct autio models

* correct config auto

* correct tok auto

* Update utils/tests_fetcher.py

* delete unnecessary files

* delete unnecessary files

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Fix copies

* Update docs

* Remove fairseq data2vec_text script and fix format

* Add comment on where to get data2vec_text.py

* Remove mock implementation cheat.py and fix style

* Fix copies

* Remove TF and Flax classes from init

* Add back copy from fairseq data2vec_text.py and fix style

* Update model name in docs/source/index.mdx to be CamelCase

* Revert model name in table to lower-case to get check_table test to pass

* Update documentation

* Update src/transformers/models/data2vec/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/convert_data2vec_original_pytorch_checkpoint_to_pytorch.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/test_modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/configuration_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/data2vec/modeling_data2vec.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Copy-paste Data2VecConfig from BertConfig

* Update config checkpoint to point to edugp/data2vec-nlp-base. Fix style and repo-consistency

* Update config special tokens to match RoBERTa

* Split multiple assertions and add individual error messages

* Rename Data2VecModel to Data2VecForTextModel

* Add Data2Vec to _toctree.yml

* Rename Data2VecEmbeddings to Data2VecForTextEmbeddings

* Add initial Data2VecForAudio model (unfinished). Only matching fairseq's implementation up to the feature encoder (before positional encoding).

* finish audio model

* finish audio file

* add inputs to logits to data2vec'

* Update names and fix style, quality and repo consistency

* Remove Data2VecAudioForPretraining. Add tests for Data2VecAudio, mimicking the Wav2Vec2 test suite. Fix bias initilization in positional conv layers. Move back configurations for audio and text to separate files.

* correct autio models

* correct config auto

* correct tok auto

* delete unnecessary files

* delete unnecessary files

* Update utils/tests_fetcher.py

* further renaming

* make all tests pass

* finish

* remove useless test file

* Update tests/test_modeling_common.py

* Update utils/check_repo.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/data2vec/modeling_data2vec_text.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Move data2vec tests to new structure

* Fix test imports for text tests

* Remove fairseq files

* Change paper link to arxiv

* Modify Data2Vec documentation to reflect that the encoder is not shared across the audio and text models in the current implementation.

* Update text model checkpoint to be facebook/data2vec-text-base

* Add 'Copy from' statements and update paper links and docs

* fix copy from statements

* improve copied from

* correct more copied from statements

* finish copied from stuff

* make style

* add model to README

* add to master

Co-authored-by: Eduardo Gonzalez Ponferrada <eduardo@ferrumhealth.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-03-01 11:09:20 +01:00
ddbb485c41 [TF-PT-Tests] Fix PyTorch - TF tests for different GPU devices (#15846) 2022-02-28 15:46:46 -05:00
97f9b8a27b Fixing the timestamps with chunking. (#15843)
* Fixing the timestamps with chunking.

* The changes modified (and fixed) the striding tests.

* Adding a tokenizer test.

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Defense -> comment.

* Update src/transformers/models/wav2vec2/tokenization_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-28 21:00:21 +01:00
410e26c7ad Fix (deprecated) ONNX exporter to account for new tf2onnx API (#15856)
* Fix (deprecated) ONNX exporter to account for new tf2onnx API
2022-02-28 20:17:44 +01:00
e3342edc4e Flax Speech-Encoder-Decoder Model (#15613)
* rebase

* Delete shift tokens func

* downsample decoder input seq len for init

* correct attention mask

* add tests

* pt flax cross test

* make fixup

* init file for import

* change pt-flax cross test threshold

* pt-flax test logits only

* move tests

* make repo-consistency

* consistent indentation

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-28 12:22:36 +01:00
935a76d90d [UniSpeechSat] correct unispeech sat (#15847) 2022-02-28 11:23:13 +01:00
84eaa6acf5 Add TFConvNextModel (#15750)
* feat: initial implementation of convnext in tensorflow.

* fix: sample code for the classification model.

* chore: added checked for  from the classification model.

* chore: set bias initializer in the classification head.

* chore: updated license terms.

* chore: removed ununsed imports

* feat: enabled  argument during using drop_path.

* chore: replaced tf.identity with layers.Activation(linear).

* chore: edited default checkpoint.

* fix: minor bugs in the initializations.

* partial-fix: tf model errors for loading pretrained pt weights.

* partial-fix: call method updated

* partial-fix: cross loading of weights (4x3 variables to be matched)

* chore: removed unneeded comment.

* removed playground.py

* rebasing

* rebasing and removing playground.py.

* fix: renaming TFConvNextStage conv and layer norm layers

* chore: added initializers and other minor additions.

* chore: added initializers and other minor additions.

* add: tests for convnext.

* fix: integration tester class.

* fix: issues mentioned in pr feedback (round 1).

* fix: how output_hidden_states arg is propoagated inside the network.

* feat: handling of  arg for pure cnn models.

* chore: added a note on equal contribution in model docs.

* rebasing

* rebasing and removing playground.py.

* feat: encapsulation for the convnext trunk.

* Fix variable naming; Test-related corrections; Run make fixup

* chore: added Joao as a contributor to convnext.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: corrected copyright year and added comment on NHWC.

* chore: fixed the black version and ran formatting.

* chore: ran make style.

* chore: removed from_pt argument from test, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* fix: tests in the convnext subclass, ran make style.

* rebasing

* rebasing and removing playground.py.

* rebasing

* rebasing and removing playground.py.

* chore: moved convnext test to the correct location

* fix: locations for the test file of convnext.

* fix: convnext tests.

* chore: applied  sgugger's suggestion for dealing w/ output_attentions.

* chore: added comments.

* chore: applied updated quality enviornment style.

* chore: applied formatting with quality enviornment.

* chore: revert to the previous tests/test_modeling_common.py.

* chore: revert to the original test_modeling_common.py

* chore: revert to previous states for test_modeling_tf_common.py and modeling_tf_utils.py

* fix: tests for convnext.

* chore: removed output_attentions argument from convnext config.

* chore: revert to the earlier tf utils.

* fix: output shapes of the hidden states

* chore: removed unnecessary comment

* chore: reverting to the right test_modeling_tf_common.py.

* Styling nits

Co-authored-by: ariG23498 <aritra.born2fly@gmail.com>
Co-authored-by: Joao Gante <joao@huggingface.co>
Co-authored-by: Sylvain Gugger <Sylvain.gugger@gmail.com>
2022-02-25 18:19:16 +01:00
0b5bf6abef Framework split model report (#15825) 2022-02-25 12:00:00 -05:00
0118c4f6a8 Re-enable doctests for the quicktour (#15828)
* Re-enable doctests for the quicktour

* Re-enable doctests for task_summary (#15830)

* Remove &
2022-02-25 17:46:38 +01:00
fd5b05eb81 Add ONNX Runtime quantization for text classification notebook (#15817) 2022-02-25 11:29:35 -05:00
bf1fe32824 [examples/summarization and translation] fix readme (#15833) 2022-02-25 17:28:16 +01:00
8635407bc7 Fix tf.concatenate + test past_key_values for TF models (#15774)
* fix wrong method name tf.concatenate

* add tests related to causal LM / decoder

* make style and quality

* clean-up

* Fix TFBertModel's extended_attention_mask when past_key_values is provided

* Fix tests

* fix copies

* More tf.int8 -> tf.int32 in TF test template

* clean-up

* Update TF test template

* revert the previous commit + update the TF test template

* Fix TF template extended_attention_mask when past_key_values is provided

* Fix some styles manually

* clean-up

* Fix ValueError: too many values to unpack in the test

* Fix more: too many values to unpack in the test

* Add a comment for extended_attention_mask when there is past_key_values

* Fix TFElectra extended_attention_mask when past_key_values is provided

* Add tests to other TF models

* Fix for TF Electra test: add prepare_config_and_inputs_for_decoder

* Fix not passing training arg to lm_head in TFRobertaForCausalLM

* Fix tests (with past) for TF Roberta

* add testing for pask_key_values for TFElectra model

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-25 17:11:46 +01:00
4818bf7aed HFTracer.trace should use/return self.graph to be compatible with torch.fx.Tracer (#15824) 2022-02-25 15:54:45 +01:00
ad0d7d1745 Adding the option to return_timestamps on pure CTC ASR models. (#15792)
* Adding the option to return_timestamps on pure CTC ASR models.

* Remove `math.prod` which was introduced in Python 3.8

* int are not floats.

* Reworking the PR to support "char" vs "word" output.

* Fixup!

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/pipelines/automatic_speech_recognition.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Quality.

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-25 14:06:45 +01:00
7566734d6f Add model specific output classes to PoolFormer model docs (#15746)
* Added model specific output classes to poolformer docs

* Fixed Segformer typo in Poolformer docs
2022-02-25 13:43:56 +01:00
7963578fc5 Fix dummy_inputs() to dummy_inputs in symbolic_trace doc (#15776) 2022-02-25 11:32:23 +01:00
074645e32a Fix semantic segmentation pipeline test (#15826) 2022-02-25 09:21:29 +01:00
b7e292aebd Fix the push run (#15807) 2022-02-24 19:30:17 +01:00
cbf4391177 [TFXLNet] Correct tf xlnet generate (#15822)
* [TFXLNet] Correct tf xlnet

* adapt test comment
2022-02-24 19:23:34 +01:00
2f0f9038e2 [Barthez Tokenizer] Fix saving (#15815) 2022-02-24 19:09:09 +01:00
ca57b45071 [Unispeech] Fix slow tests (#15818)
* remove soundfile old way of loading audio

* Adapt slow test
2022-02-24 19:08:54 +01:00
35ecf99cc4 Revert changes in logit size for semantic segmentation models (#15722)
* Revert changes in logit size for semantic segmentation models

* Address review comments
2022-02-24 15:52:52 +01:00
d1fcc90abf Fix from_pretrained with default base_model_prefix (#15814) 2022-02-24 11:43:51 +01:00
7f921bcf47 Fix add-new-model-like when old model checkpoint is not found (#15805)
* Fix add-new-model-like command when old checkpoint can't be recovered

* Style
2022-02-24 08:58:18 +01:00
bb7949b35a Fix model templates (#15806)
* Fix model templates

* Update paths
2022-02-23 18:27:29 -05:00
309e87e25e Docker images should only run on a daily basis 2022-02-23 18:01:44 -05:00
c475f3ce2d Scheduled tests should only run on a daily basis 2022-02-23 17:52:22 -05:00
6336017c15 Fix build_documentation CI (#15803) 2022-02-23 21:53:51 +01:00
a0e3480699 [Test refactor 5/5] Build docker images (#15729) 2022-02-23 15:48:19 -05:00
4c737f0e40 [Test refactor 4/5] Improve the scheduled tests (#15728) 2022-02-23 15:48:05 -05:00
d3ae2bd3cf [Test refactor 3/5] Notification service improvement (#15727)
* Per-folder tests reorganization

* Review comments

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-02-23 15:46:59 -05:00
0400b2263d [Test refactor 2/5] Tests fetcher (#15726)
* Tests fetcher

* Review comments

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Review comments
2022-02-23 15:46:37 -05:00
29c10a41d0 [Test refactor 1/5] Per-folder tests reorganization (#15725)
* Per-folder tests reorganization

Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Stas Bekman <stas@stason.org>
2022-02-23 15:46:28 -05:00
fecb08c2b8 🧼 NLP task guides (#15731)
* clean commit of changes to NLP tasks

* 🖍 apply feedback

* 📝 move tf data collator in multiple choice

Co-authored-by: Steven <stevhliu@gmail.com>
2022-02-23 13:58:33 -06:00
86636f52a9 Fix indent in doc-builder CI (#15798) 2022-02-23 20:01:33 +01:00
a1efc82362 HTML dev docs (#15678)
Co-authored-by: Pierric Cistac <Pierrci@users.noreply.github.com>
2022-02-23 19:43:22 +01:00
lsb
3f76bf54ff Align documentation with code defaults (#15468)
In the code, `do_normalize` defaults to True
2022-02-23 18:39:41 +01:00
32f5de10a0 [doc] custom_models: mention security features of the Hub (#15768)
* custom_models: tiny doc addition

* mention security feature earlier in the section

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2022-02-23 11:40:06 -05:00
9e71d46455 Enable image-segmentation on AutoModelForSemanticSegmentation (#15647)
* Enabling Beit SegFormer to `image-segmentation`.

* Fixing the score.

* Fix import ?

* Missing in type hint.

* Multiple test fixes:

- Add `raw_image` support. It should be the default IMHO since in Python
  world it doesn't make any sense to base64 encode the image (Sorry
  @mishig, didn't catch that in my review). I really think we should
  consider breaking BC here.
- Add support for Segformer tiny test (needed
  `SegformerModelTester.get_config` to enable TinyConfig
  @NielsRogge)
- Add the check that `batch_size` works correctly on that pipeline.
  Uncovered that it doesn't for Detr, which IMO is OK since images
  after `feature_extractor` don't have the same size. Comment should
  explain.

* Type hint as a string.

* Make fixup + update black.

* torch+vision protections.

* Don't use torchvision, use F.interpolate instead (no new dep).

* Last fixes for Segformer.

* Update test to reflect new image (which was broken)

* Update tests.

* Major BC modification:

- Removed the string compressed PNG string, that's a job for users
`transformers` stays in python land.
- Removed the `score` for semantic segmentation. It has hardly a meaning
  on its own in this context.
- Don't include the grayscale with logits for now (which could enable
  users to get a sense of confidence). Might be done later.
- Don't include the surface of the mask (could be used for sorting by
  users, to filter out small masks). It's already calculable, and
  it's easier to add later, than to add now and break later if we need.

* `make fixup`.

* Small changes.

* Rebase + doc fixup.
2022-02-23 17:20:26 +01:00
1b23979736 [ViLT] Fix checkpoint url in config (#15790)
* [ViLT] Fix checkpoint url in config

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-23 14:51:40 +01:00
de737866f2 [CLIP] fix grad ckpt (#15789) 2022-02-23 14:30:05 +01:00
a3e607d19e Supporting Merges.txt files than contain an endline. (#15782)
(`hf-internal-testing/tiny-clip` for instance)
2022-02-23 11:51:48 +01:00
24588c6731 [M2M100, XGLM] fix create_position_ids_from_inputs_embeds (#15751) 2022-02-23 10:46:42 +01:00
f9582c205a Adding ZeroShotImageClassificationPipeline (#12119)
* [Proposal] Adding ZeroShotImageClassificationPipeline

- Based on CLIP

* WIP, Resurection in progress.

* Resurrection... achieved.

* Reword handling different `padding_value` for `feature_extractor` and
`tokenizer`.

* Thanks doc-builder !

* Adding docs + global namespace `ZeroShotImageClassificationPipeline`.

* Fixing templates.

* Make the test pass and be robust to floating error.

* Adressing suraj's comments on docs mostly.

* Tf support start.

* TF support.

* Update src/transformers/pipelines/zero_shot_image_classification.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-02-23 09:41:42 +01:00
05a12a090d Fix HfArgumentParser when passing a generator (#15758)
* Fix `HfArgumentParser` when passing a generator

* Add missing import

* Always convert `dataclass_types` into a list
2022-02-23 00:16:38 +01:00
db57bb2b71 Cleanup transformers-cli (#15767) 2022-02-22 15:58:05 -05:00
3db2e8f92b Fix typo on examples/pytorch/question-answering (#15644)
cna -> can
2022-02-22 13:51:07 -05:00
2cdb6dbee5 fixed pipeline code (#15607)
Co-authored-by: Boumadane Abdelmoumene <moumene.boumadane@gmail.com>
2022-02-22 13:46:21 -05:00
c44d3675c2 Time stamps for CTC models (#15687)
* [Wav2Vec2 Time Stamps]

* Add first version

* add word time stamps

* Fix

* save intermediate space

* improve

* [Finish CTC Tokenizer]

* remove @

* remove @

* push

* continue with phonemes

* up

* finish PR

* up

* add example

* rename

* finish

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* correct split

* finalize

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-22 19:26:44 +01:00
32295b15a1 Gelu10 (#15676)
* Add GeLU10 (clipped version of GeLU) to transformers to improve quantization performances.

* Add unittests.

* Import tensorflow after `is_tf_available` check.

* Fix tensorflow wrong function `tf.tensor` to `tf.constant`

* style.

* use `tf.math.max`

* Fix tf tests.

* style.

* style style style style style style

* style style style style style style

* Address @sgugger comments.

* Fix wrong operator for raising ValueError for ClippedGELUActivation.
2022-02-22 18:21:16 +01:00
2c3fcc647a TF train_step docstring (#15755)
* TF train_step docstring
2022-02-22 11:18:35 +00:00
38bed912e3 added link to our writing-doc document (#15756) 2022-02-22 09:57:28 +01:00
0187c6f0ad revert temporary addition to test next version of CLIPTokenizerFast (#15717) 2022-02-21 18:30:11 +01:00
3956b133b6 TF text classification examples (#15704)
* Working example with to_tf_dataset

* updated text_classification

* more comments
2022-02-21 17:17:59 +00:00
142b69f24b Add layer_idx to CrossAttention of GPT2 model (#15730)
* Add layer_idx to CrossAttention

* Add layer_idx to crossattention of ImageGPT model
2022-02-21 17:31:39 +01:00
86119c1154 add VisionTextDualEncoder and CLIP fine-tuning script (#15701)
* begin script

* update script

* fix features and data args

* main

* add requirements

* add column name args

* fix captions

* don't jit transforms

* fix caption

* fix labels, handle attention mask

* convert pixel values to numpy

* labels => input_ids

* transform images on the fly

* use AutoModel class, create the hybird model outside of the script

* fix version message

* add readme

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* adderss review comments

* add more comments

* allow freezing vision and text models

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-21 16:10:59 +01:00
5444687f0f Fix minor comment typos (#15740) 2022-02-21 12:41:27 +01:00
a63bd3675f Remove input and target reset after preprocessing (#15741)
Remove input and target reset after preprocessing
2022-02-21 11:10:15 +01:00
2c2a31ffbc Add missing PLBart entry in README (#15721)
* Add missing PLBart entry in index

* Fix README

* Fix README

* Fix style

* Change to master model doc
2022-02-18 21:11:42 +01:00
60ba48205e fix bug in PT speech-encoder-decoder (#15699)
* fix bug in PT speech-encoder-decoder

* add pt test for `inputs is not None`

* fix test

* new pt test

* Update tests/test_modeling_speech_encoder_decoder.py

* make fixup

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-18 18:20:24 +01:00
3de12906c8 fix: hfdeepspeed config argument (#15711)
`HfDeepSpeedConfig` accepts a dictionary or path to `.json` file containing DS configurations, not `TrainingArguments`.
2022-02-18 12:00:02 -05:00
83f45cd656 Fix auto (#15706) 2022-02-18 08:50:23 -05:00
d5083c333f style_doc handles decorators in examples (#15719) 2022-02-18 14:49:53 +01:00
ae1f835028 Add PLBart (#13269)
* Init PLBART

* Add missing configuration file

* Add conversion script and configurationf ile

* Fix style

* Update modeling and conversion scripts

* Fix scale embedding in config

* Add comment

* Fix conversion script

* Add classification option to conversion script

* Fix vocab size in config doc

* Add tokenizer files from MBart50

* Allow no lang code in regular tokenizer

* Add PLBart Tokenizer Converters

* Remove mask from multi tokenizer

* Remove mask from multi tokenizer

* Change from MBart-50 to MBart tokenizer

* Fix names and modify src/tgt behavior

* Fix imports for tokenizer

* Remove <mask> from multi tokenizer

* Fix style

* Change tokenizer_class to processor_class

* Add attribute map to config class

* Update modeling file to modified MBart code

* Update configuration file to MBart style configuration

* Fix tokenizer

* Separate tokenizers

* Fix error in tokenization auto

* Copy MBart tests

* Replace with MBart tokenization tests

* Fix style

* Fix language code in multi tokenizer

* Fix configuration docs

* Add entry for plbart_multi in transformers init

* Add dummy objects and fix imports

* Fix modeling tests

* Add TODO in config

* Fix copyright year

* Fix modeling docs and test

* Fix some tokenization tests and style

* Add changes from review

* Fix copies

* Fix docs

* Fix docs

* Fix style

* Fix year

* Add changes from review

* Remove extra changes

* Fix base tokenizer and doc

* Fix style

* Fix modeling and slow tokenizer tests

* Remove Multi-tokenizer Converter and Tests

* Delete QA model and Multi Tokenizer dummy objects

* Fix repo consistency and code quality issues

* Fix example documentation

* Fix style

* Remove PLBartTokenizer from type checking in init

* Fix consistency issue

* Add changes from review

* Fix style

* Remove PLBartTokenizerFast

* Remove FastTokenizer converter

* Fix AutoTokenzier mapping

* Add plbart to toctree and fix consistency issues

* Add language codes tokenizer test

* Fix styling and doc issues

* Add fixes for failing tests

* Fix copies

* Fix failing modeling test

* Change assert to assertTrue in modeling tests
2022-02-18 14:17:09 +01:00
2f2fefd6af Fix LongformerModel hidden states (#15537)
* add undo padding

* fix

* fix tuple issue

* make style and quality

* move unpad logic to LongformerEncoder + unpad attentions + update tests

* move unpad logic to TFLongformerEncoder

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-18 13:56:53 +01:00
68dec6bffd Fix DETR model deprecation warnings for int div (#15702) 2022-02-18 15:14:44 +03:00
f8ff3fad87 TF: add initializer_std with a small value in TFFunnelModelTester (#15684) 2022-02-18 11:20:07 +00:00
416dff736c Fix SiluActivation (#15718) 2022-02-18 11:57:39 +01:00
e93763d420 fix CLIP fast tokenizer and change some properties of the slow version (#15067)
Very big changes concerning the tokenizer fast of CLIP which did not correspond to the tokenizer slow of CLIP

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-18 10:21:30 +01:00
240cc6cbdc Adding a model, more doc for pushing to the hub (#15690)
* doc for adding a model to the hub

* run make style

* resolved conversation

* removed a line

* removed )

* Update docs/source/add_new_model.mdx

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update docs/source/add_new_model.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* make style

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-18 09:11:18 +01:00
57882177be Add SimMIM (#15586)
* Add first draft

* Make model importable

* Make SwinForMaskedImageModeling importable

* Fix imports

* Add missing inits

* Add support for Swin

* Fix bug

* Fix bug

* Fix another bug

* Fix Swin MIM implementation

* Fix default encoder stride

* Fix Swin

* Add print statements for debugging

* Add image_size data argument

* Fix Swin

* Fix image_size

* Add print statements for debugging

* Fix print statement

* Remove print statements

* Improve reshaping of bool_masked_pos

* Add support for DeiT, fix tests

* Improve docstrings

* Apply new black version

* Improve script

* Fix bug

* Improve README

* Apply suggestions from code review

* Remove DS_Store and add to gitignore

* Apply suggestions from code review + fix BEiT Flax

* Revert BEiT changes

* Improve README

* Fix code quality

* Improve README

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-02-17 19:44:55 +01:00
426b96230a Fix shapes in model docstrings (#15696) 2022-02-17 08:42:14 -05:00
92a537d938 Minor fix on README.md (#15688)
* fix README

* fix more arxiv links

* make fix-copies

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-17 08:38:32 -05:00
f84e0dbd2a Add PoolFormer (#15531)
* Added all files, PoolFormerFeatureExtractor still failing tests

* Fixed PoolFormerFeatureExtractor not being able to import

* Completed Poolformer doc

* Applied Suggested fixes

* Fixed errors in modeling_auto.py

* Fix feature extractor, convert docs to Markdown, styling of code

* Remove PoolFormer from check_repo and fix integration test

* Remove Poolformer from check_repo

* Fixed configuration_poolformer.py docs and removed inference.py from poolformer

* Ran with black v22

* Added PoolFormer to _toctree.yml

* Updated poolformer doc

* Applied suggested fixes and added on README.md

* Did make fixup and make fix-copies, tests should pass now

* Changed PoolFormer weights conversion script name and fixed README

* Applied fixes in test_modeling_poolformer.py and modeling_poolformer.py

* Added PoolFormerFeatureExtractor to AutoFeatureExtractor API

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-17 13:16:37 +01:00
0e91f885c3 Add image classification notebook (#15667)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
2022-02-17 13:14:01 +01:00
f65fe3663a Implementation of activations as pytorch modules (#15616)
* Implement activations as pytorch modules

* Apply fixup

* Add missing tests for activations

* Update docstring

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-16 14:37:52 -05:00
66828a19b1 Fix Funnel configuration doc (#15686)
* fix doc

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-16 11:50:36 -05:00
3a4376d008 [Wav2Vec2ProcessorWithLM] Fix auto processor with lm (#15683) 2022-02-16 17:33:33 +01:00
cdc51ffd27 Add register method to AutoProcessor (#15669)
* Add push_to_hub method to processors

* Fix test

* The other one too!

* Add register method to AutoProcessor

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-02-16 09:13:33 -05:00
bc3379e12c 🔥 Remove build_doc_test github action (#15680) 2022-02-16 14:06:26 +01:00
d4692ad161 Fix dec_attn_mask in TFTransfoXLMainLayer (#15665)
* fix attn

* clean-up

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-16 11:53:26 +00:00
b87c044c79 Usage examples for logger (#15657)
* logger

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update docs/source/main_classes/logging.mdx

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2022-02-16 10:15:13 +01:00
2d02f7b29b Add push_to_hub method to processors (#15668)
* Add push_to_hub method to processors

* Fix test

* The other one too!
2022-02-15 21:14:04 -05:00
bee361c6f1 [t5/t0/mt5 models] faster/leaner custom layer norm (#14656)
* [t5] faster/leaner custom layer norm

* wip

* apex.normalization.FusedRMSNorm

* cleanup

* cleanup

* add doc

* add catch all

* Trigger CI

* expand
2022-02-15 16:49:57 -08:00
e3d1a8dabc Add a missing space in a deprecation message (#15651) 2022-02-15 19:12:30 -05:00
1ddf3c2b74 Fix vit test (#15671) 2022-02-15 18:55:38 -05:00
943e2aa036 Fix model equivalence tests (#15670)
* Fix model equivalence tests

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-15 18:55:22 -05:00
1690319217 Fix TFSequenceSummary's activation (#15643)
* fix TFSequenceSummary

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-15 19:15:42 +00:00
faf4ff5974 [pipeline doc] fix api (#15660)
* [pipeline doc] fix api

* remove duplicate
2022-02-15 10:13:08 -08:00
2e12b907ae TF generate refactor - Greedy Search (#15562)
* TF generate start refactor

* Add tf tests for sample generate

* re-organize

* boom boom

* Apply suggestions from code review

* re-add

* add all code

* make random greedy pass

* make encoder-decoder random work

* further improvements

* delete bogus file

* make gpt2 and t5 tests work

* finish logits tests

* correct logits processors

* correct past / encoder_outputs drama

* refactor some methods

* another fix

* refactor shape_list

* fix more shape list

* import shape
_list

* finish docs

* fix imports

* make style

* correct tf utils

* Fix TFRag as well

* Apply Lysandre's and Sylvais suggestions

* Update tests/test_generation_tf_logits_process.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Update src/transformers/tf_utils.py

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* remove cpu according to gante

* correct logit processor

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2022-02-15 17:54:43 +01:00
a3dbbc3467 Add decoder_kwargs to send to LM on asr pipeline. (#15646)
Co-authored-by: Giuseppe Attanasio <giuseppeattanasio6@gmail.com>

Co-authored-by: Giuseppe Attanasio <giuseppeattanasio6@gmail.com>
2022-02-15 17:53:24 +01:00
cdf19c501d Re-export KeyDataset. (#15645)
* Re-export `KeyDataset`.

* Update the docs locations.
2022-02-15 17:49:38 +01:00
28e6155d8a add a network debug script and document it (#15652)
* add a network debug script and document it

* doc
2022-02-15 08:48:00 -08:00
5d8be090e0 Fix quality 2022-02-15 11:32:26 -05:00
f45ac11fb3 Add section about doc testing (#15659)
* Add doctesting section

* Improve

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-15 16:56:31 +01:00
80f1a59168 updated with latest PL and Ray (#15653) 2022-02-15 16:53:05 +01:00
7bc4a01cb5 Update bad_words_ids usage (#15641)
* Improve the parameter `bad_word_ids' usage

* Update the bad_words_ids strategy
2022-02-15 16:44:34 +01:00
67047b86ce add scores to Wav2Vec2WithLMOutput (#15413)
* add scores to Wav2Vec2WithLMOutput

* style fixup
2022-02-15 16:40:50 +01:00
45f56580a7 Allow custom code for Processors (#15649)
* Allow custom code for Processors

* Add more test

* Test all auto_map configs are properly set
2022-02-15 09:44:35 -05:00
86a7845c0c Fix typo in speech2text2 doc (#15617)
Forward looks for inputs, not input_ids
2022-02-15 13:54:34 +01:00
9eb7e9ba1d Fix ASR pipelines from local directories with wav2vec models that have language models attached (#15590)
* Fix loading pipelines with wav2vec models with lm when in local paths

* Adding tests

* Fix test

* Adding tests

* Flake8 fixes

* Removing conflict files :(

* Adding task type to test

* Remove unnecessary test and imports
2022-02-15 13:45:08 +01:00
e1cbc073bf Require tokenizers>=0.11.1 (#15266)
`tokenizers` version that supports the feature to choose the direction of truncation
2022-02-15 11:46:12 +01:00
fra
05a8580964 Revert "logger doc"
This reverts commit 41168a49ce61685ac5c9c38cd5b88fd883c0d811.
2022-02-15 10:46:45 +01:00
fra
41168a49ce logger doc 2022-02-15 10:03:28 +01:00
041fdc4a7e [SpeechEncoderDecoder] Make sure no EOS is generated in test (#15655) 2022-02-15 09:13:55 +01:00
e314c19a3f fix bug for the log of RNG states are not properly loaded exception. (#15638)
Co-authored-by: muz <muzhi1991@limuzhideMBP-2.lan>
2022-02-14 20:30:55 -05:00
2e11a04337 Register feature extractor (#15634)
* Rework AutoFeatureExtractor.from_pretrained internal

* Custom feature extractor

* Add more tests

* Add support for custom feature extractor code

* Clean up

* Add register API to AutoFeatureExtractor
2022-02-14 13:35:16 -05:00
0f71c29053 Remove redundant error logging in from_pretrained() method (#15631)
* Remove error logging in from_pretrained() method
2022-02-14 18:03:07 +01:00
b090b79022 Make Swin work with VisionEncoderDecoderModel (#15527)
* Add attribute_map

* Add mention in docs

* Set hidden_size attribute correctly

* Add note about Transformer-based models only

Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-14 17:33:35 +01:00
ec15da2445 Report only the failed imports in requires_backends (#15636) 2022-02-14 10:35:20 -05:00
2b8599b2df Fix a bug that ignores max_seq_len in preprocess (#15238) 2022-02-14 13:18:40 +01:00
f52746d004 [Fix doc example] FlaxVisionEncoderDecoder (#15626)
* Fix wrong checkpoint name: vit

* Fix missing import

* Fix more missing import

* make style

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-14 12:48:23 +01:00
52d2e6f6e9 Add push to hub to feature extractor (#15632)
* Add push to hub to feature extractor

* Quality

* Clean up
2022-02-11 17:14:01 -05:00
4f403ea899 Fix grammar in tokenizer_summary (#15614)
"to make ensure" is redundant.
2022-02-11 16:51:30 -05:00
7a32e4722f Custom feature extractor (#15630)
* Rework AutoFeatureExtractor.from_pretrained internal

* Custom feature extractor

* Add more tests

* Add support for custom feature extractor code

* Clean up
2022-02-11 16:43:54 -05:00
fcb0f74397 [research_projects] deal with security alerts (#15594)
* [research_projects] deal with security alerts

* add a note of the original PL ver and warning
2022-02-11 14:31:09 -05:00
f15c99fabf [deepspeed docs] misc additions (#15585)
* [deepspeed docs] round_robin_gradients

* training and/or eval/predict loss is

* Update docs/source/main_classes/deepspeed.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-11 10:54:04 -08:00
2dce350b33 Fix _configuration_file argument getting passed to model (#15629) 2022-02-11 13:46:08 -05:00
85aee09e9a 🖍 remove broken link (#15615) 2022-02-11 12:33:55 -06:00
2f40c728c9 TF MT5 embeddings resize (#15567)
* Fix TF MT5 vocab resize

* more assertive testing
2022-02-11 17:35:10 +00:00
8c03df1010 Rebase (#15606) 2022-02-11 12:02:02 -05:00
3fae83d23a TF: Add informative warning for inexistent CPU backprop ops (#15612)
* Add informative warning
2022-02-11 16:16:26 +00:00
7e4844fc2a Enable ONNX export when PyTorch and TensorFlow installed in the same environment (#15625) 2022-02-11 16:25:06 +01:00
6cf06d198c Mark "code in the Hub" API as experimental (#15624) 2022-02-11 09:55:31 -05:00
45c7b5b1c7 [Generate] Small refactor (#15611) 2022-02-10 18:29:27 +01:00
c0864d98ba Correct JSON format (#15600) 2022-02-10 09:02:03 -08:00
2e8b85f72e Add local and TensorFlow ONNX export examples to docs (#15604)
* Add local and TensorFlow ONNX export examples to docs

* Use PyTorch - TensorFlow split
2022-02-10 16:31:00 +01:00
3a2ed96714 Fix Seq2SeqTrainer (#15603)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-10 16:26:14 +01:00
724e51c6e6 Compute loss independent from decoder for TF EncDec models (as #14139) (#15175)
* Compute loss independent from decoder (as 14139)

* fix expected seq_len + style

* Apply the same change to TFVisionEncoderDecoderModel

* fix style

* Add case with labels in equivalence test

* uncomment

* Add case with labels in equivalence test

* add decoder_token_labels

* use hf_compute_loss

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add copied from

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2022-02-10 15:47:02 +01:00
3d5dea9bf0 Add example batch size to all commands (#15596) 2022-02-10 08:52:07 -05:00
cb7ed6e083 Add Tensorflow handling of ONNX conversion (#13831)
* Add TensorFlow support for ONNX export

* Change documentation to mention conversion with Tensorflow

* Refactor export into export_pytorch and export_tensorflow

* Check model's type instead of framework installation to choose between TF and Pytorch

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Alberto Bégué <alberto.begue@della.ai>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2022-02-10 11:18:41 +01:00
e923917cd9 Reformat tokenization_fnet 2022-02-09 22:23:32 -05:00
644ec05233 Make slow tests slow 2022-02-09 19:10:22 -05:00
c722753afd Expand tutorial for custom models (#15587)
* Expand tutorial for custom models

* Style

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>

Co-authored-by: Lysandre Debut <lysandre.debut@reseau.eseo.fr>
2022-02-09 17:44:28 -05:00
a86ee2261e Add link (#15588)
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MBP.localdomain>
2022-02-09 23:33:39 +01:00
dee17d5676 [trainer docs] document how to select specific gpus (#15551)
* [trainer docs] document how to select specific gpus

* expand

* add urls

* add accelerate launcher
2022-02-09 10:12:29 -08:00
258480864d update serving_output for some TF models (#15568)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-09 18:32:51 +01:00
315e67404d Fix tests hub failure (#15580)
* Expose hub test problem

* Fix tests
2022-02-09 12:27:59 -05:00
b1ba03e082 Fix quality 2022-02-09 12:06:59 -05:00
eed3186b79 Trigger doc build 2022-02-09 11:57:59 -05:00
2b5603f6ac Constrained Beam Search [without disjunctive decoding] (#15416)
* added classes to get started with constrained beam search

* in progress, think i can directly force tokens now but not yet with the round robin

* think now i have total control, now need to code the bank selection

* technically works as desired, need to optimize and fix design choices leading to undersirable outputs

* complete PR #1 without disjunctive decoding

* removed incorrect tests

* Delete k.txt

* Delete test.py

* Delete test.sh

* revert changes to test scripts

* genutils

* full implementation with testing, no disjunctive yet

* shifted docs

* passing all tests realistically ran locally

* removing accidentally included print statements

* fixed source of error in initial PR test

* fixing the get_device() vs device trap

* fixed documentation docstrings about constrained_beam_search

* fixed tests having failing for Speech2TextModel's floating point inputs

* fix cuda long tensor

* added examples and testing for them and founx & fixed a bug in beam_search and constrained_beam_search

* deleted accidentally added test halting code with assert False

* code reformat

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update tests/test_generation_utils.py

* fixing based on comments on PR

* took out the testing code that should but work fails without the beam search moditification ; style changes

* fixing comments issues

* docstrings for ConstraintListState

* typo in PhrsalConstraint docstring

* docstrings improvements

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-09 16:59:26 +01:00
0113aae5b7 Add implementation of typical sampling (#15504)
* typical decoding

* changing arg name

* add test config params

* forgotten arg rename

* fix edge case where scores are same

* test for typical logits warper

* code quality fixes
2022-02-09 16:48:41 +01:00
f588cf4050 [Flax tests/FlaxBert] make from_pretrained test faster (#15561) 2022-02-09 16:48:08 +01:00
7029240927 Upgrade click version (#15579) 2022-02-09 10:28:43 -05:00
9e00566b9b Add Wav2Vec2 Adapter Weights to Flax (#15566)
* Add Wav2Vec2 Adapter Weights to Flax

* Suggested changes
2022-02-09 10:24:40 -05:00
1f60bc46f3 Make sure custom configs work with Transformers (#15569)
* Make sure custom configs work with Transformers

* Apply code review suggestions
2022-02-09 10:04:44 -05:00
7732d0fe7a Upgrade black to version ~=22.0 (#15565)
* Upgrade black to version ~=22.0

* Check copies

* Fix code
2022-02-09 09:28:57 -05:00
d923f76203 add model scaling section (#15119)
* add model scaling section

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* integrate reviewer feedback

* initialize GPU properly

* add note about BnB optimizer

* move doc from `scaling.mdx` to `performance.mdx`

* integrate reviewer feedback

* revert section levels

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-09 15:27:30 +01:00
b5c6fdecf0 PoC for a ProcessorMixin class (#15549)
* PoC for a ProcessorMixin class

* Documentation

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Roll out to other processors

* Add base feature extractor class in init

* Use args and kwargs

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-09 09:24:49 -05:00
ba3f9a71a1 logger.warn --> logger.warning (#15572)
* change logger.warn to logger.warning

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-09 08:20:05 -05:00
a6885db912 [Flax tests] fix test_model_outputs_equivalence (#15571)
* fix test_model_outputs_equivalence

* fix tuple outputs for blenderbot
2022-02-09 12:26:48 +01:00
fcb4f11c92 📝 Add codecarbon callback to docs (#15563) 2022-02-08 14:10:53 -05:00
077c00c0b2 feat(flax): allow encoder_outputs in generate (#15554)
* feat(flax): allow encoder_outputs in generate

* doc(flax): encoder_outputs in generate

* fix: style

* fix: style
2022-02-08 17:53:22 +01:00
8406fa6dd5 Add TFSpeech2Text (#15113)
* Add wrapper classes

* convert inner layers to tf

* Add TF Encoder and Decoder layers

* TFSpeech2Text models

* Loadable model

* TF model with same outputs as PT model

* test skeleton

* correct tests and run the fixup

* correct attention expansion

* TFSpeech2Text pask_key_values with TF format
2022-02-08 16:27:23 +00:00
6a5472a8e1 Force use_cache to be False in PyTorch (#15385)
* use_cache = False for PT models if labels is passed

* Fix for BigBirdPegasusForConditionalGeneration

* add warning if users specify use_cache=True

* Use logger.warning instead of warnings.warn

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-08 16:20:53 +01:00
0acd84f7cb [GPTJ] fix docs (#15558) 2022-02-08 15:54:19 +01:00
87d08afb16 electra is added to onnx supported model (#15084)
* electra is added to onnx supported model

* add google/electra-base-generator for test onnx module

Co-authored-by: Lewis Tunstall <lewis.c.tunstall@gmail.com>
2022-02-08 15:47:49 +01:00
0fe17f375a FX tracing improvement (#14321)
* Change the way tracing happens, enabling dynamic axes out of the box

* Update the tests and modeling xlnet

* Add the non recoding of leaf modules to avoid recording more values for the methods to record than what will be seen at tracing time (which would otherwise desynchronize the recorded values and the values that need to be given to the proxies during tracing, causing errors).

* Comments and making tracing work for gpt-j and xlnet

* Refactore things related to num_choices (and batch_size, sequence_length)

* Update fx to work on PyTorch 1.10

* Postpone autowrap_function feature usage for later

* Add copyrights

* Remove unnecessary file

* Fix issue with add_new_model_like

* Apply suggestions
2022-02-07 22:25:33 +01:00
552f8d3091 Create a custom model guide (#15489)
* 📝 add config section

* 📝 finish first draft

* 📝 add feature extractor and processor

* 🖍 apply feedback from review

* 📝 minor edits

* last review
2022-02-07 12:34:56 -06:00
ad1d3c4d4b Make TF Wav2Vec2 outputs the same as PT's version (#15530)
* fix outputs

* fix for CTC

* fix doc

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-07 18:09:57 +01:00
131e258411 Fix TF T5/LED missing cross attn in retrun values (#15511)
* add cross attn to outputs

* add cross attn to outputs for TFLED

* add undo padding

* remove unused import

* fix style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-07 17:41:48 +01:00
6775b211b6 Remove Longformers from ONNX-supported models (#15273) 2022-02-07 17:32:13 +01:00
7a1412e12b Wav2Vec2 models must either throw or deal with add_apater (#15409)
* Wav2Vec2 models must either throw or deal with add_apater

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add pre-add_adapter backwards compatibility

* Add pre-add_adapter backwards compatibility

* Fix issue in tests/test_modeling_wav2vec2.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-07 17:03:12 +01:00
a459f7f97d Add ASR CTC streaming example (#15309)
* Single-epoch run

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Infinite dataset

* Trainer fix + distributed benchmark

* Benchmark fix

* unused import

* interleaved splits

* interleaved splits

* has_length util

* Move to research projects

* Leftover Sized checks

* Bump min version

* Unused import

* Revert trainer changes

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-02-07 18:35:37 +03:00
75b13f82e9 [Trainer] Deeper length checks for IterableDatasetShard (#15539)
* Unused import

* Make `has_length()` torch-independent to use in callbacks

* Update src/transformers/trainer_utils.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-07 18:34:56 +03:00
84eec9e6ba Add ConvNeXT (#15277)
* First draft

* Add conversion script

* Improve conversion script

* Improve docs and implement tests

* Define model output class

* Fix tests

* Fix more tests

* Add model to README

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Apply more suggestions from code review

* Apply suggestions from code review

* Rename dims to hidden_sizes

* Fix equivalence test

* Rename gamma to gamma_parameter

* Clean up conversion script

* Add ConvNextFeatureExtractor

* Add corresponding tests

* Implement feature extractor correctly

* Make implementation cleaner

* Add ConvNextStem class

* Improve design

* Update design to also include encoder

* Fix gamma parameter

* Use sample docstrings

* Finish conversion, add center cropping

* Replace nielsr by facebook, make feature extractor tests smaller

* Fix integration test

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-07 16:11:37 +01:00
c47d259241 [torch_int_div] Correct true division in generation (#15498)
* [torch_int_div] Correct true division in generation

* up

* up
2022-02-07 16:04:18 +01:00
5f1918a4a8 [ASR pipeline] correct asr pipeline for seq2seq models (#15541) 2022-02-07 15:35:44 +01:00
e02bdce791 Revert "Handle PyTorch to Flax conversion of 1D convolutions (#15519)" (#15540)
This reverts commit 854a0d526c7a3b958a790e92272ac798ca3831f5.
2022-02-07 12:33:49 +01:00
8ce1330631 [deepspeed docs] DeepSpeed ZeRO Inference (#15486)
* [deepspeed docs] DeepSpeed ZeRO Inference

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* tweak

* deal with black

* extra cleanup, better comments

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-02-04 13:51:02 -08:00
ac6aa10f23 Standardize semantic segmentation models outputs (#15469)
* Standardize instance segmentation models outputs

* Rename output

* Update src/transformers/modeling_outputs.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Add legacy argument to the config and model forward

* Update src/transformers/models/beit/modeling_beit.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Copy fix in Segformer

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-02-04 14:52:07 -05:00
31be2f45a9 [deepspeed docs] Megatron-Deepspeed info (#15488) 2022-02-04 11:15:13 -08:00
bbe9c6981b Fix TFRemBertEncoder all_hidden_states (#15510)
* fix

* fix test

* remove expected_num_hidden_layers

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-04 16:32:14 +00:00
854a0d526c Handle PyTorch to Flax conversion of 1D convolutions (#15519) 2022-02-04 17:08:03 +01:00
486260c68e use kwargs (#15509)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-04 15:25:37 +00:00
525dbbf84a Remove loss from some flax models docs & examples (#15492)
* Remove return_loss from Flax models

* fix more

* fix

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 21:39:46 +01:00
21dcaec5d5 [deepspeed docs] memory requirements (#15506) 2022-02-03 10:55:14 -08:00
f1a4c4ead5 [WIP] Add preprocess_logits_for_metrics Trainer param (#15473)
* Add preprocess_logits_for_metrics Trainer param

* Compute accuracy in LM examples

* Improve comments
2022-02-03 12:07:20 -05:00
4f5faaf044 [deepspeed] fix a bug in a test (#15493)
* [deepspeed] fix a bug in a test

* consistency
2022-02-03 08:55:45 -08:00
90166121ee Add general vision docstrings (#15501)
* Add general docstrings

* Remove legacy docstrings

* Add BEiT

* Add DEiT

* Add SegFormer

* Fix beit output class

* Fix missing return_dict
2022-02-03 17:47:22 +01:00
e2b6e73fa2 [Flax tests] Disable scheduled GPU tests (#15503) 2022-02-03 17:12:14 +01:00
f5d98da29e fix load_weight_prefix (#15101)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 15:11:53 +00:00
71dccd0774 fix (#15494)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-03 12:57:28 +01:00
5ec368d79e Correct eos_token_id settings in generate (#15403)
* Correct eos_token_id set in generate

* Set eos_token_id in test

* Correct eos_token_id set in generate

* Set eos_token_id in test
2022-02-03 00:24:40 +01:00
39b5d1a63a fix set truncation attribute in __init__ of PreTrainedTokenizerBase (#15456)
* change truncation_side in init of `PreTrainedTokenizerBase`

Co-authored-by: LSinev <LSinev@users.noreply.github.com>

* add test

* Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`"

This reverts commit 7a98b87962d2635c7e4d4f00db3948b694624843.

* fix kwargs

* Revert "fix kwargs"

This reverts commit 67b0a5270e8cf1dbf70e6b0232e94c0452b6946f.

* Update tests/test_tokenization_common.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* delete truncation_side variable

* reorganize test

* format

* complete doc

* Revert "Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`""

This reverts commit d5a10a7e2680539e5d9e98ae5d896c893d224b80.

* fix typo

* fix typos to render documentation

* Revert "Revert "Revert "replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`"""

This reverts commit 16cf58811943a08f43409a7c83eaa330686591d0.

* format

Co-authored-by: LSinev <LSinev@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2022-02-02 23:18:09 +01:00
45cac3fade Fix labels stored in model config for token classification examples (#15482)
* Playing

* Properly set labels in model config for token classification example

* Port to run_ner_no_trainer

* Quality
2022-02-02 14:23:43 -05:00
c74f3d4c48 Add W&B backend for hyperparameter sweep (#14582)
# Add support for W&B hyperparameter sweep
This PR:
* allows using wandb for running hyperparameter search.
* The runs are visualized on W&B sweeps dashboard
* This supports runnning sweeps on parallel devices, all reporting to the same central dashboard.

### Usage
**To run new a hyperparameter search:**
```
trainer.hyperparameter_search(
    backend="wandb", 
    project="transformers_sweep", # name of the project
    n_trials=5,
    metric="eval/loss", # metric to be optimized, default 'eval/loss'. A warning is raised if the passed metric is not found
)
```
This outputs a sweep id. Eg. `my_project/sweep_id`

**To run sweeps on parallel devices:**
Just pass sweep id which you want to run parallel
```
trainer.hyperparameter_search(
    backend="wandb", 
    sweep_id = "my_project/sweep_id"
)
```
2022-02-02 14:06:14 -05:00
13297ac71c Fic docstring of ASR pipeline (#15481) 2022-02-02 12:12:22 -05:00
dd360d58d9 fix error posted in issue #15448 (#15480)
* fix error posted in issue #15448

Signed-off-by: bugface <alexgre@ufl.edu>

* clean up - remove commented line

Signed-off-by: bugface <alexgre@ufl.edu>
2022-02-02 10:45:51 -05:00
44b21f117b Save code of registered custom models (#15379)
* Allow dynamic modules to use relative imports

* Work for configs

* Fix last merge conflict

* Save code of registered custom objects

* Map strings to strings

* Fix test

* Add tokenizer

* Rework tests

* Tests

* Ignore fixtures py files for tests

* Tokenizer test + fix collection

* With full path

* Rework integration

* Fix typo

* Remove changes in conftest

* Test for tokenizers

* Add documentation

* Update docs/source/custom_models.mdx

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Add file structure and file content

* Add more doc

* Style

* Update docs/source/custom_models.mdx

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Address review comments

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-02-02 10:44:37 -05:00
623d8cb475 Adding support for microphone streaming within pipeline. (#15046)
* Adding support for `microphone` streaming within pipeline.

- Uses `ffmpeg` to get microphone data.
- Makes sure alignment is made to `size_of_sample`.
- Works by sending `{"raw": ..data.., "stride": (n, left, right),
"partial": bool}`
directly to the pipeline enabling to stream partial results and still
get inference.
- Let's `partial` information flow through the pipeline to enable caller
  to get it back and choose to display text or not.

- The striding reconstitution is bound to have errors since CTC does not
keep previous state. Currently most of the errors are we don't know if
there's a space or not between two chunks.
Since we have some left striding info, we could use that during decoding
to choose what to do with those spaces and even extra letters maybe (if
the stride is long enough, it's bound to cover at least a few symbols)

Fixing tests.

Protecting with `require_torch`.

`raw_ctc` support for nicer demo.

Post rebase fixes.

Revamp to split raw_mic_data from it's live chunking.

- Requires a refactor to make everything a bit cleaner.

Automatic resampling.

Small fix.

Small fix.

* Post rebase fix (need to let super handle more logic, reorder args.)

* Update docstrings

* Docstring format.

* Remove print.

* Prevent flow of `input_values`.

* Fixing `stride` too.

* Fixing the PR by removing `raw_ctc`.

* Better docstrings.

* Fixing init.

* Update src/transformers/pipelines/audio_utils.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update tests/test_pipelines_automatic_speech_recognition.py

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Quality.

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
2022-02-02 15:12:12 +01:00
d718c0c3a8 [Wav2Vec2ProcessorWithLM] add alpha & beta to batch decode & decode (#15465) 2022-02-02 12:59:40 +01:00
1d94d57546 Add option to resize like torchvision's Resize (#15419)
* Add torchvision's resize

* Rename torch_resize to default_to_square

* Apply suggestions from code review

* Add support for default_to_square and tuple of length 1
2022-02-02 09:44:22 +01:00
b9418a1d97 Update tutorial docs (#15165)
* first draft of pipeline, autoclass, preprocess tutorials

* apply review feedback

* 🖍 apply feedback from patrick/niels

* 📝add output image to preprocessed image

* 🖍 apply feedback from patrick
2022-02-01 18:31:35 -06:00
c157c7e3fd Update fine-tune docs (#15259)
* add fine-tune tutorial

* make edits, fix style

* 📝 make edits

* 🖍 fix code format links to external libraries

* 🔄revert code formatting

* 🖍 use DefaultDataCollator instead of DataCollatorWithPadding
2022-02-01 18:28:12 -06:00
d0b5ed110a Harder check for IndexErrors in QA scripts (#15438)
* Harder check for IndexErrors in QA scripts

* Make test stronger
2022-02-01 15:49:13 -05:00
8e5d4e4906 Trainer.push_to_hub always tries to push to the Hub (#15463) 2022-02-01 15:49:04 -05:00
37800f1365 [BartTokenizer] remove inheritance on RobertaTokenizer (#15461)
* refactor bart tokenizers

* doc

* replace assert with ValueError
2022-02-01 20:59:24 +01:00
f427e75049 use mean instead of elementwise_mean in XLMPredLayer (#15436)
* use mean instead of elementwise_mean

* make style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 19:08:17 +01:00
7b8bdd8601 fix the tokenizer_config.json file for the slow tokenizer when a fast version is available (#15319)
* add new test

* update test

* remove `tokenizer_file` from `additional_files_names` in `tokenization_utils_base.py`

* add `tokenizer_file` for the fast only tokenizer

* change global variables layoutxml

* remove `"tokenizer_file"` from DPR tokenizer's Global variables

* remove `tokenizer_file` from herbert slow tokenizer init

* `"tokenizer_file"` from LED tokenizer's Global variables

* remove `tokenizer_file` from mbart slow tokenizer init

* remove `tokenizer_file` from slow tokenizer template

* adapt to versioning

* adapt the `test_tokenizer_mismatch_warning` test

* clean test

* clarify `VOCAB_FILES_NAMES` in tokenization_utils_fast.py

* Revert "remove `tokenizer_file` from mbart slow tokenizer init"

This reverts commit 0dbb723fa9c7599d4640fe30b3647a74eb4a64e1.

* Revert "`"tokenizer_file"` from LED tokenizer's Global variables"

This reverts commit 5a3f879bdd651233f3d74a3d1146c34cde82b0c2.

* Revert "remove `tokenizer_file` from herbert slow tokenizer init"

This reverts commit f5e10007b7b0ec5345e015b9de7ffec72c5407fd.

* Revert "remove `"tokenizer_file"` from DPR tokenizer's Global variables"

This reverts commit da0895330bedfafc81ae3073470a9348c669f032.

* set `tokenizer_file` in super `__init__` of mbart
2022-02-01 16:48:25 +01:00
6d585fe0f0 replace assert with exception for padding_side arg in PreTrainedTokenizerBase __init__ (#15454)
* replace assert with exception for `padding_side` arg in `PreTrainedTokenizerBase` `__init__`

* add test

* fix kwargs

* reformat test

* format

* format

* fix typo to render the documentation
2022-02-01 16:13:58 +01:00
d2749cf72e Update README.md (#15462)
fix typo
2022-02-01 10:04:30 -05:00
1c9648c457 [M2M100, XGLM] fix positional emb resize (#15444) 2022-02-01 14:32:55 +01:00
2ca6268394 fix from_vision_text_pretrained doc example (#15453)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 12:20:22 +01:00
dc05dd539f Fix TF Causal LM models' returned logits (#15256)
* Fix TF Causal LM models' returned logits

* Fix expected shape in the tests

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 11:04:07 +00:00
af5c3329d7 remove "inputs" in tf common test script (no longer required) (#15262)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-02-01 10:09:49 +00:00
d12ae81664 [generate] fix synced_gpus default (#15446) 2022-01-31 13:58:27 -08:00
d4f201b860 skip test for XGLM (#15445) 2022-01-31 16:53:16 -05:00
0c17e766cb Error when group_by_length is used with an IterableDataset (#15437) 2022-01-31 15:33:16 -05:00
125a2882b4 Update modeling_wav2vec2.py (#15423)
* Update modeling_wav2vec2.py

With very tiny sound files (less than 0.1 seconds) the num_masked_span can be too long. The issue is described in issue #15366 and discussed with @patrickvonplaten.

* correct errors with mask time indices

* remove bogus file

* make fix-copies

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-31 21:22:11 +01:00
d984b10335 Add 'with torch.no_grad()' to BEiT integration test forward passes (#14961)
* Add 'with torch.no_grad()' to BEiT integration test forward pass

* Fix inconsistent use of tabs and spaces in indentation
2022-01-31 15:12:10 -05:00
09f9d07271 Misfiring tf warnings (#15442)
* Fix spurious warning in TF TokenClassification models

* Fixing one last spurious warning

* Removing outdated warning altogether
2022-01-31 19:17:59 +00:00
6915174e68 [RobertaTokenizer] remove inheritance on GPT2Tokenizer (#15429)
* refactor roberta tokenizer

* refactor fast tokenizer

* remove old comment
2022-01-31 19:50:25 +01:00
a5ecbf7348 correct positionla emb size (#15441) 2022-01-31 19:47:49 +01:00
5a70987301 Fix TFLEDModel (#15356)
* fix tf led

* fix

* fix

* Add test_pt_tf_model_equivalence_extra for TFLED

* add a (temporary) test

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-31 19:35:54 +01:00
87918d3221 [examples/Flax] add a section about GPUs (#15198)
* add a section about GPUs

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-31 19:20:53 +01:00
b8810847d0 [Trainer] suppress warning for length-related columns (#15421)
* [Trainer] suppress warning for length-related columns

* improve message

* Update src/transformers/trainer.py
2022-01-31 18:51:29 +01:00
3385ca2582 Change REALM checkpoint to new ones (#15439)
* Change REALM checkpoint to new ones

* Last checkpoint missing
2022-01-31 12:50:20 -05:00
7e56ba2864 Fix spurious warning in TF TokenClassification models (#15435) 2022-01-31 17:09:16 +00:00
554d333ece Fix loss calculation in TFXXXForTokenClassification models (#15294)
* Fix loss calculation in TFFunnelForTokenClassification

* revert the change in TFFunnelForTokenClassification

* fix FunnelForTokenClassification loss

* fix other TokenClassification loss

* fix more

* fix more

* add num_labels to ElectraForTokenClassification

* revert the change to research projects

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-31 11:43:08 -05:00
44c7857b87 [deepspeed doc] fix import, extra notes (#15400)
* [deepspeed doc] fix import, extra notes

* typo
2022-01-31 08:28:10 -08:00
47df0f2234 Add header (#15434) 2022-01-31 11:15:54 -05:00
7fc6f41d91 Add doc for add-new-model-like command (#15433) 2022-01-31 11:10:45 -05:00
282ae123e2 add t5 ner finetuning (#15432) 2022-01-31 17:03:06 +01:00
d4b3e56d64 [Hotfix] Fix Swin model outputs (#15414)
* Fix Swin model outputs

* Rename pooler
2022-01-31 16:32:14 +01:00
38dfb40ae3 import torch.utils.checkpoint (#15427) 2022-01-31 15:51:50 +01:00
f624249d8b [Robust Speech Challenge] Add missing LR parameter (#15428) 2022-01-31 15:50:56 +01:00
3254080d45 Update README.md (#15430)
fix typo
2022-01-31 09:48:20 -05:00
aa19f478ac Add (M)Luke model training for Token Classification in the examples (#14880)
* Add Luke training

* Fix true label tags

* Fix true label tags

* Fix true label tags

* Update the data collator for Luke

* Some training refactor for Luke

* Improve data collator for Luke

* Fix import

* Fix datasets concatenation

* Add the --max_entity_length argument for Luke models

* Remove unused code

* Fix style issues

* Fix style issues

* Move the Luke training into a separate folder

* Fix style

* Fix naming

* Fix filtering

* Fix filtering

* Fix filter

* Update some preprocessing

* Move luke to research_projects

* Checkstyle

* Address comments

* Fix style
2022-01-31 07:58:18 -05:00
0094eba363 Fix additional DataTrainingArguments documentation (#15408)
(This is an editorial change only)
2022-01-31 07:45:11 -05:00
ee5de66349 Add SegformerFeatureExtractor to Auto API (#15410) 2022-01-31 11:38:08 +01:00
0f69b924fb [XGLMTokenizer] fix init and add in AutoTokenizer (#15406) 2022-01-30 15:35:53 +01:00
f380bf2b61 Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel (#15298)
* Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel

* overwrite test_loss_computation

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-29 15:08:35 +00:00
e09473a817 Add support for XLM-R XL and XXL models by modeling_xlm_roberta_xl.py (#13727)
* add xlm roberta xl

* add convert xlm xl fairseq checkpoint to pytorch

* fix init and documents for xlm-roberta-xl

* fix indention

* add test for XLM-R xl,xxl

* fix model hub name

* fix some stuff

* up

* correct init

* fix more

* fix as suggestions

* add torch_device

* fix default values of doc strings

* fix leftovers

* merge to master

* up

* correct hub names

* fix docs

* fix model

* up

* finalize

* last fix

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add copied from

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-01-29 13:42:37 +01:00
16d4acbfdb Get started docs (#15098)
* clean commit of changes

* apply review feedback, make edits

* fix backticks, minor formatting

* 🖍 make fixup and minor edits

* 🖍 fix # in header

* 📝 update code sample without from_pt

* 📝 final review
2022-01-28 19:01:37 -06:00
cabd6d26a2 Update model share tutorial (#15288)
* add model sharing tutorial

* 🖍 apply feedback from review

* 📝 make edits

* 🖍 fix formatting

* 📝 convert from pt checkpoint to flax

* 📝 final review
2022-01-28 18:49:26 -06:00
c98a6ac211 Use argument for preprocessing workers in run_summairzation (#15394) 2022-01-28 18:34:10 -05:00
db07956740 Fix missing eps arg for LayerNorm in ElectraGeneratorPredictions (#15332)
* fix missing eps

* Same fix for ConvBertGeneratorPredictions

* Same fix for AlbertMLMHead

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-28 18:32:26 -05:00
297602c7f4 [deepspeed] saving checkpoint fallback when fp16 weights aren't saved (#14948)
* [deepspeed] saving checkpoint fallback when fp16 weights aren't saved

* Bump required deepspeed version to match usage when saving checkpoints

* update version

Co-authored-by: Mihai Balint <balint.mihai@gmail.com>
2022-01-28 11:05:47 -08:00
d25e25ee2b Add XGLM models (#14876)
* add xglm

* update vocab size

* fix model name

* style and tokenizer

* typo

* no mask token

* fix pos embed compute

* fix args

* fix tokenizer

* fix positions

* fix tokenization

* style and dic fixes

* fix imports

* add fast tokenizer

* update names

* add pt tests

* fix tokenizer

* fix typo

* fix tokenizer import

* fix fast tokenizer

* fix tokenizer

* fix converter

* add tokenizer test

* update checkpoint names

* fix tokenizer tests

* fix slow tests

* add copied from comments

* rst -> mdx

* flax model

* update flax tests

* quality

* style

* doc

* update index and readme

* fix copies

* fix doc

* update toctrr

* fix indent

* minor fixes

* fix config doc

* don't save embed_pos weights

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* address Sylvains commnets, few doc fixes

* fix check_repo

* align order of arguments

* fix copies

* fix labels

* remove unnecessary mapping

* fix saving tokenizer

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-28 18:55:23 +01:00
b6b79faa7e Make links explicit (#15395)
* Make links explicit

* Removing reference to compute_metrics() since it's kind of PyTorch-specific
2022-01-28 17:31:22 +00:00
6df29ba5e6 fix wrong tokenizer checkpoint name in flax marian (#15391)
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2022-01-28 16:53:25 +01:00
507601a5cf Prepare deprecated ONNX exporter for torch v1.11 (#15388)
* Prepare deprecated ONNX exporter for PyTorch v1.11

* Add deprecation warning
2022-01-28 16:32:47 +01:00
4996922b6d [docs] fix wrong file name in pr_check (#15380) 2022-01-28 07:52:01 -05:00
8f5d62fdb1 Fix bad_words_ids not working with sentencepiece-based tokenizers (#15343)
* Fix `bad_word_ids` not working with sentencepiece-based tokenizers

* make style

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2022-01-28 12:39:55 +01:00
06107541d3 Fixing support batch_size and num_return_Sequences in text-generation pipeline (#15318)
* Fixing support `batch_size` and `num_return_Sequences` in
`text-generation` pipeline

And `text2text-generation` too.

The bug was caused by the batch_size containing both the incoming batch
**and** the generated `num_sequences`.

The fix simply consists into splitting both of these again into
different dimensions.

* TF support.

* Odd backward compatibility script in the way.
2022-01-28 12:15:30 +01:00
c4d1fd77fa Set syncfree AdamW as the default optimizer for xla:gpu device in amp mode (#15361)
* Use syncfree AdamW for xla:gpu device by default

* Make syncfree AdamW optional
2022-01-27 20:05:31 -05:00
2e4559fa37 Add init to BORT (#15378)
* Add init to BORT

* BORT should be in init
2022-01-27 15:16:54 -05:00
f5db6ce76a Fix code format for Accelerate doc (#15335)
* 🖍 fix code syntax to external libraries and replace image

* 🔄revert code formatting, replace image with code block

* 🖍 apply feedback
2022-01-27 13:49:04 -06:00
0b07230409 Allow relative imports in dynamic code (#15352)
* Allow dynamic modules to use relative imports

* Add tests

* Add one last test

* Changes
2022-01-27 14:47:59 -05:00
628b59e51d Bump numpy from 1.19.2 to 1.21.0 in /examples/research_projects/lxmert (#15369)
Bumps [numpy](https://github.com/numpy/numpy) from 1.19.2 to 1.21.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.19.2...v1.21.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-01-27 14:46:15 -05:00
ca0848b2ff Bump notebook in /examples/research_projects/visual_bert (#15368)
Bumps [notebook](http://jupyter.org) from 6.1.5 to 6.4.1.

---
updated-dependencies:
- dependency-name: notebook
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-01-27 14:45:58 -05:00
7d45a2e81c Bump numpy in /examples/research_projects/visual_bert (#15367)
Bumps [numpy](https://github.com/numpy/numpy) from 1.19.2 to 1.21.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.19.2...v1.21.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2022-01-27 14:45:18 -05:00
a81fd35524 Fix tests_fetcher (#15376) 2022-01-27 14:17:48 -05:00
eab338104d Docs for version v4.16.0 2022-01-27 13:11:51 -05:00
2295 changed files with 366269 additions and 63216 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,391 @@
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import copy
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import yaml
COMMON_ENV_VARIABLES = {"OMP_NUM_THREADS": 1, "TRANSFORMERS_IS_CI": True, "PYTEST_TIMEOUT": 120}
COMMON_PYTEST_OPTIONS = {"max-worker-restart": 0, "dist": "loadfile", "s": None}
DEFAULT_DOCKER_IMAGE = [{"image": "cimg/python:3.7.12"}]
TORCH_SCATTER_INSTALL = "pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.12.0+cpu.html"
@dataclass
class CircleCIJob:
name: str
additional_env: Dict[str, Any] = None
cache_name: str = None
cache_version: str = "0.5"
docker_image: List[Dict[str, str]] = None
install_steps: List[str] = None
marker: Optional[str] = None
parallelism: Optional[int] = 1
pytest_num_workers: int = 8
pytest_options: Dict[str, Any] = None
resource_class: Optional[str] = "xlarge"
tests_to_run: Optional[List[str]] = None
working_directory: str = "~/transformers"
def __post_init__(self):
# Deal with defaults for mutable attributes.
if self.additional_env is None:
self.additional_env = {}
if self.cache_name is None:
self.cache_name = self.name
if self.docker_image is None:
# Let's avoid changing the default list and make a copy.
self.docker_image = copy.deepcopy(DEFAULT_DOCKER_IMAGE)
if self.install_steps is None:
self.install_steps = []
if self.pytest_options is None:
self.pytest_options = {}
if isinstance(self.tests_to_run, str):
self.tests_to_run = [self.tests_to_run]
def to_dict(self):
job = {
"working_directory": self.working_directory,
"docker": self.docker_image,
"environment": {**COMMON_ENV_VARIABLES, **self.additional_env},
}
if self.resource_class is not None:
job["resource_class"] = self.resource_class
if self.parallelism is not None:
job["parallelism"] = self.parallelism
steps = [
"checkout",
{"attach_workspace": {"at": "~/transformers/test_preparation"}},
{
"restore_cache": {
"keys": [
f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
f"v{self.cache_version}-{self.cache_name}-",
]
}
},
]
steps.extend([{"run": l} for l in self.install_steps])
steps.append(
{
"save_cache": {
"key": f"v{self.cache_version}-{self.cache_name}-" + '{{ checksum "setup.py" }}',
"paths": ["~/.cache/pip"],
}
}
)
all_options = {**COMMON_PYTEST_OPTIONS, **self.pytest_options}
pytest_flags = [f"--{key}={value}" if value is not None else f"-{key}" for key, value in all_options.items()]
pytest_flags.append(
f"--make-reports={self.name}" if "examples" in self.name else f"--make-reports=tests_{self.name}"
)
test_command = f"python -m pytest -n {self.pytest_num_workers} " + " ".join(pytest_flags)
if self.tests_to_run is None:
test_command += " << pipeline.parameters.tests_to_run >>"
else:
test_command += " " + " ".join(self.tests_to_run)
if self.marker is not None:
test_command += f" -m {self.marker}"
test_command += " | tee tests_output.txt"
steps.append({"run": {"name": "Run tests", "command": test_command}})
steps.append({"store_artifacts": {"path": "~/transformers/tests_output.txt"}})
steps.append({"store_artifacts": {"path": "~/transformers/reports"}})
job["steps"] = steps
return job
@property
def job_name(self):
return self.name if "examples" in self.name else f"tests_{self.name}"
# JOBS
torch_and_tf_job = CircleCIJob(
"torch_and_tf",
additional_env={"RUN_PT_TF_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng git-lfs",
"git lfs install",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,torch,testing,sentencepiece,torch-speech,vision]",
TORCH_SCATTER_INSTALL,
"pip install tensorflow_probability",
"pip install https://github.com/kpu/kenlm/archive/master.zip",
"pip install git+https://github.com/huggingface/accelerate",
],
marker="is_pt_tf_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_and_flax_job = CircleCIJob(
"torch_and_flax",
additional_env={"RUN_PT_FLAX_CROSS_TESTS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[sklearn,flax,torch,testing,sentencepiece,torch-speech,vision]",
TORCH_SCATTER_INSTALL,
"pip install https://github.com/kpu/kenlm/archive/master.zip",
"pip install git+https://github.com/huggingface/accelerate",
],
marker="is_pt_flax_cross_test",
pytest_options={"rA": None, "durations": 0},
)
torch_job = CircleCIJob(
"torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng time",
"pip install --upgrade pip",
"pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
TORCH_SCATTER_INSTALL,
"pip install https://github.com/kpu/kenlm/archive/master.zip",
"pip install git+https://github.com/huggingface/accelerate",
],
pytest_num_workers=3,
)
tf_job = CircleCIJob(
"tf",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,testing,sentencepiece,tf-speech,vision]",
"pip install tensorflow_probability",
"pip install https://github.com/kpu/kenlm/archive/master.zip",
],
pytest_options={"rA": None},
)
flax_job = CircleCIJob(
"flax",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[flax,testing,sentencepiece,flax-speech,vision]",
"pip install https://github.com/kpu/kenlm/archive/master.zip",
],
pytest_options={"rA": None},
)
pipelines_torch_job = CircleCIJob(
"pipelines_torch",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[sklearn,torch,testing,sentencepiece,torch-speech,vision,timm]",
TORCH_SCATTER_INSTALL,
"pip install https://github.com/kpu/kenlm/archive/master.zip",
],
pytest_options={"rA": None},
tests_to_run="tests/pipelines/"
)
pipelines_tf_job = CircleCIJob(
"pipelines_tf",
install_steps=[
"pip install --upgrade pip",
"pip install .[sklearn,tf-cpu,testing,sentencepiece]",
"pip install tensorflow_probability",
],
pytest_options={"rA": None},
tests_to_run="tests/pipelines/"
)
custom_tokenizers_job = CircleCIJob(
"custom_tokenizers",
additional_env={"RUN_CUSTOM_TOKENIZERS": True},
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y cmake",
{
"name": "install jumanpp",
"command":
"wget https://github.com/ku-nlp/jumanpp/releases/download/v2.0.0-rc3/jumanpp-2.0.0-rc3.tar.xz\n"
"tar xvf jumanpp-2.0.0-rc3.tar.xz\n"
"mkdir jumanpp-2.0.0-rc3/bld\n"
"cd jumanpp-2.0.0-rc3/bld\n"
"sudo cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local\n"
"sudo make install\n",
},
"pip install --upgrade pip",
"pip install .[ja,testing,sentencepiece,jieba,spacy,ftfy,rjieba]",
"python -m unidic download",
],
parallelism=None,
resource_class=None,
tests_to_run=[
"./tests/models/bert_japanese/test_tokenization_bert_japanese.py",
"./tests/models/openai/test_tokenization_openai.py",
"./tests/models/clip/test_tokenization_clip.py",
],
)
examples_torch_job = CircleCIJob(
"examples_torch",
cache_name="torch_examples",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev espeak-ng",
"pip install --upgrade pip",
"pip install .[sklearn,torch,sentencepiece,testing,torch-speech]",
"pip install -r examples/pytorch/_tests_requirements.txt",
],
tests_to_run="./examples/pytorch/",
)
examples_tensorflow_job = CircleCIJob(
"examples_tensorflow",
cache_name="tensorflow_examples",
install_steps=[
"pip install --upgrade pip",
"pip install .[sklearn,tensorflow,sentencepiece,testing]",
"pip install -r examples/tensorflow/_tests_requirements.txt",
],
tests_to_run="./examples/tensorflow/",
)
examples_flax_job = CircleCIJob(
"examples_flax",
cache_name="flax_examples",
install_steps=[
"pip install --upgrade pip",
"pip install .[flax,testing,sentencepiece]",
"pip install -r examples/flax/_tests_requirements.txt",
],
tests_to_run="./examples/flax/",
)
hub_job = CircleCIJob(
"hub",
install_steps=[
"sudo apt-get -y update && sudo apt-get install git-lfs",
'git config --global user.email "ci@dummy.com"',
'git config --global user.name "ci"',
"pip install --upgrade pip",
"pip install .[torch,sentencepiece,testing]",
],
marker="is_staging_test",
pytest_num_workers=1,
)
onnx_job = CircleCIJob(
"onnx",
install_steps=[
"pip install --upgrade pip",
"pip install .[torch,tf,testing,sentencepiece,onnxruntime,vision,rjieba]",
],
pytest_options={"k onnx": None},
pytest_num_workers=1,
)
layoutlm_job = CircleCIJob(
"layoutlmv2_and_v3",
install_steps=[
"sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev",
"pip install --upgrade pip",
"pip install .[torch,testing,vision]",
"pip install torchvision",
"pip install 'git+https://github.com/facebookresearch/detectron2.git'",
"sudo apt install tesseract-ocr",
"pip install pytesseract",
],
tests_to_run="tests/models/*layoutlmv*",
pytest_num_workers=1,
pytest_options={"durations": 100},
)
REGULAR_TESTS = [
torch_and_tf_job,
torch_and_flax_job,
torch_job,
tf_job,
flax_job,
custom_tokenizers_job,
hub_job,
onnx_job,
layoutlm_job,
]
EXAMPLES_TESTS = [
examples_torch_job,
examples_tensorflow_job,
examples_flax_job,
]
PIPELINE_TESTS = [
pipelines_torch_job,
pipelines_tf_job,
]
def create_circleci_config(folder=None):
if folder is None:
folder = os.getcwd()
jobs = []
all_test_file = os.path.join(folder, "test_list.txt")
if os.path.exists(all_test_file):
with open(all_test_file) as f:
all_test_list = f.read()
else:
all_test_list = []
if len(all_test_list) > 0:
jobs.extend(PIPELINE_TESTS)
test_file = os.path.join(folder, "filtered_test_list.txt")
if os.path.exists(test_file):
with open(test_file) as f:
test_list = f.read()
else:
test_list = []
if len(test_list) > 0:
jobs.extend(REGULAR_TESTS)
example_file = os.path.join(folder, "examples_test_list.txt")
if os.path.exists(example_file) and os.path.getsize(example_file) > 0:
jobs.extend(EXAMPLES_TESTS)
if len(jobs) > 0:
config = {"version": "2.1"}
config["parameters"] = {"tests_to_run": {"type": "string", "default": test_list}}
config["jobs"] = {j.job_name: j.to_dict() for j in jobs}
config["workflows"] = {"version": 2, "run_tests": {"jobs": [j.job_name for j in jobs]}}
with open(os.path.join(folder, "generated_config.yml"), "w") as f:
f.write(yaml.dump(config, indent=2, width=1000000, sort_keys=False))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--fetcher_folder", type=str, default=None, help="Only test that all tests and modules are accounted for."
)
args = parser.parse_args()
create_circleci_config(args.fetcher_folder)

3
.gitattributes vendored
View File

@ -1,3 +1,4 @@
*.py eol=lf
*.rst eol=lf
*.md eol=lf
*.md eol=lf
*.mdx eol=lf

View File

@ -1,22 +0,0 @@
---
name: "\U0001F5A5 New benchmark"
about: Benchmark a part of this library and share your results
title: "[Benchmark]"
labels: ''
assignees: ''
---
# 🖥 Benchmarking `transformers`
## Benchmark
Which part of `transformers` did you benchmark?
## Set-up
What did you run your benchmarks on? Please include details, such as: CPU, GPU? If using multiple GPUs, which parallelization did you use?
## Results
Put your results here!

View File

@ -1,20 +0,0 @@
---
name: "\U0001F31F New model addition"
about: Submit a proposal/request to implement a new Transformer-based model
title: ''
labels: New model
assignees: ''
---
# 🌟 New model addition
## Model description
<!-- Important information -->
## Open source status
* [ ] the model implementation is available: (give details)
* [ ] the model weights are available: (give details)
* [ ] who are the authors: (mention them, if possible by @gh-username)

View File

@ -1,106 +0,0 @@
---
name: "\U0001F41B Bug Report"
about: Submit a bug report to help us improve transformers
title: ''
labels: ''
assignees: ''
---
## Environment info
<!-- You can run the command `transformers-cli env` and copy-and-paste its output below.
Don't forget to fill out the missing fields in that output! -->
- `transformers` version:
- Platform:
- Python version:
- PyTorch version (GPU?):
- Tensorflow version (GPU?):
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
### Who can help
<!-- Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
Please tag fewer than 3 people.
Models:
- ALBERT, BERT, XLM, DeBERTa, DeBERTa-v2, ELECTRA, MobileBert, SqueezeBert: @LysandreJik
- T5, BART, Marian, Pegasus, EncoderDecoder: @patrickvonplaten
- Blenderbot, MBART: @patil-suraj
- Longformer, Reformer, TransfoXL, XLNet, FNet, BigBird: @patrickvonplaten
- FSMT: @stas00
- Funnel: @sgugger
- GPT-2, GPT: @patrickvonplaten, @LysandreJik
- RAG, DPR: @patrickvonplaten, @lhoestq
- TensorFlow: @Rocketknight1
- JAX/Flax: @patil-suraj
- TAPAS, LayoutLM, LayoutLMv2, LUKE, ViT, BEiT, DEiT, DETR, CANINE: @NielsRogge
- GPT-Neo, GPT-J, CLIP: @patil-suraj
- Wav2Vec2, HuBERT, SpeechEncoderDecoder, UniSpeech, UniSpeechSAT, SEW, SEW-D, Speech2Text: @patrickvonplaten, @anton-l
If the model isn't in the list, ping @LysandreJik who will redirect you to the correct contributor.
Library:
- Benchmarks: @patrickvonplaten
- Deepspeed: @stas00
- Ray/raytune: @richardliaw, @amogkam
- Text generation: @patrickvonplaten @narsil
- Tokenizers: @SaulLu
- Trainer: @sgugger
- Pipelines: @Narsil
- Speech: @patrickvonplaten, @anton-l
- Vision: @NielsRogge, @sgugger
Documentation: @sgugger
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- datasets: [different repo](https://github.com/huggingface/datasets)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Examples:
- maintained examples (not research project or legacy): @sgugger, @patil-suraj
For research projetcs, please ping the contributor directly. For example, on the following projects:
- research_projects/bert-loses-patience: @JetRunner
- research_projects/distillation: @VictorSanh
-->
## Information
Model I am using (Bert, XLNet ...):
The problem arises when using:
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## To reproduce
Steps to reproduce the behavior:
1.
2.
3.
<!-- If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.-->
## Expected behavior
<!-- A clear and concise description of what you would expect to happen. -->

118
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@ -0,0 +1,118 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve transformers
body:
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
placeholder: transformers version, platform, python version, ...
validations:
required: true
- type: textarea
id: who-can-help
attributes:
label: Who can help?
description: |
Your issue will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
Please tag fewer than 3 people.
Models:
- ALBERT, BERT, XLM, DeBERTa, DeBERTa-v2, ELECTRA, MobileBert, SqueezeBert: `@LysandreJik`
- T5, Pegasus, EncoderDecoder: `@patrickvonplaten`
- Blenderbot, MBART, BART, Marian, Pegasus: `@patil-suraj`
- Reformer, TransfoXL, XLNet, FNet: `@patrickvonplaten`
- Longformer, BigBird: `@ydshieh`
- FSMT: `@stas00`
- Funnel: `@sgugger`
- GPT-2, GPT: `@patil-suraj`, `@patrickvonplaten`, `@LysandreJik`
- RAG, DPR: `@patrickvonplaten`, `@lhoestq`
- TensorFlow: `@Rocketknight1`
- JAX/Flax: `@patil-suraj`
- TAPAS, LayoutLM, LayoutLMv2, LUKE, ViT, BEiT, DEiT, DETR, CANINE: `@NielsRogge`
- GPT-Neo, GPT-J, CLIP: `@patil-suraj`
- Wav2Vec2, HuBERT, UniSpeech, UniSpeechSAT, SEW, SEW-D: `@patrickvonplaten`, `@anton-l`
- SpeechEncoderDecoder, Speech2Text, Speech2Text2: `@sanchit-gandhi`, `@patrickvonplaten`, `@anton-l`
If the model isn't in the list, ping `@LysandreJik` who will redirect you to the correct contributor.
Library:
- Benchmarks: `@patrickvonplaten`
- Deepspeed: `@stas00`
- Ray/raytune: `@richardliaw`, `@amogkam`
- Text generation: `@patrickvonplaten`, `@Narsil`, `@gante`
- Tokenizers: `@SaulLu`
- Trainer: `@sgugger`
- Pipelines: `@Narsil`
- Speech: `@patrickvonplaten`, `@anton-l`, `@sanchit-gandhi`
- Vision: `@NielsRogge`, `@sgugger`
Documentation: `@sgugger`, `@stevhliu`
Model hub:
- for issues with a model, report at https://discuss.huggingface.co/ and tag the model's creator.
HF projects:
- datasets: [different repo](https://github.com/huggingface/datasets)
- rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)
Examples:
- maintained examples (not research project or legacy): `@sgugger`, `@patil-suraj`
For research projetcs, please ping the contributor directly. For example, on the following projects:
- research_projects/bert-loses-patience: `@JetRunner`
- research_projects/distillation: `@VictorSanh`
placeholder: "@Username ..."
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "The official example scripts"
- label: "My own modified scripts"
- type: checkboxes
id: information-tasks
attributes:
label: Tasks
description: "The tasks I am working on are:"
options:
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

12
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1,12 @@
blank_issues_enabled: true
version: 2.1
contact_links:
- name: Model checkpoints on the Hugging Face Hub
url: https://huggingface.co/models
about: Open a Pull request / Discussion related to a specific model checkpoint directly on the Hugging Face Hub
- name: Website Related
url: https://github.com/huggingface/hub-docs/issues
about: Feature requests and bug reports related to the website
- name: Forum
url: https://discuss.huggingface.co/
about: General usage questions and community discussions

View File

@ -1,25 +0,0 @@
---
name: "\U0001F680 Feature request"
about: Submit a proposal/request for a new transformers feature
title: ''
labels: ''
assignees: ''
---
# 🚀 Feature request
<!-- A clear and concise description of the feature proposal.
Please provide a link to the paper and code in case they exist. -->
## Motivation
<!-- Please outline the motivation for the proposal. Is your feature request
related to a problem? e.g., I'm always frustrated when [...]. If this is related
to another GitHub issue, please link here too. -->
## Your contribution
<!-- Is there any way that you could help, e.g. by submitting a PR?
Make sure to read the CONTRIBUTING.MD readme:
https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md -->

View File

@ -0,0 +1,31 @@
name: "\U0001F680 Feature request"
description: Submit a proposal/request for a new transformers feature
labels: [ "feature" ]
body:
- type: textarea
id: feature-request
validations:
required: true
attributes:
label: Feature request
description: |
A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist.
- type: textarea
id: motivation
validations:
required: true
attributes:
label: Motivation
description: |
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
- type: textarea
id: contribution
validations:
required: true
attributes:
label: Your contribution
description: |
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md)

View File

@ -1,58 +0,0 @@
---
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
about: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers
to transformers
title: ''
labels: Migration
assignees: ''
---
# 📚 Migration
## Information
<!-- Important information -->
Model I am using (Bert, XLNet ...):
Language I am using the model on (English, Chinese ...):
The problem arises when using:
* [ ] the official example scripts: (give details below)
* [ ] my own modified scripts: (give details below)
The tasks I am working on is:
* [ ] an official GLUE/SQUaD task: (give the name)
* [ ] my own task or dataset: (give details below)
## Details
<!-- A clear and concise description of the migration issue.
If you have code snippets, please provide it here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
-->
## Environment info
<!-- You can run the command `python transformers-cli env` and copy-and-paste its output below.
Don't forget to fill out the missing fields in that output! -->
- `transformers` version:
- Platform:
- Python version:
- PyTorch version (GPU?):
- Tensorflow version (GPU?):
- Using GPU in script?:
- Using distributed or parallel set-up in script?:
<!-- IMPORTANT: which version of the former library do you use? -->
* `pytorch-transformers` or `pytorch-pretrained-bert` version (or branch):
## Checklist
- [ ] I have read the migration guide in the readme.
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))
- [ ] I checked if a related official extension example runs on my machine.

72
.github/ISSUE_TEMPLATE/migration.yml vendored Normal file
View File

@ -0,0 +1,72 @@
name: "\U0001F4DA Migration from pytorch-pretrained-bert or pytorch-transformers"
description: Report a problem when migrating from pytorch-pretrained-bert or pytorch-transformers to transformers
labels: [ "migration" ]
body:
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
render: shell
placeholder: transformers version, platform, python version, ...
validations:
required: true
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "The official example scripts"
- label: "My own modified scripts"
- type: checkboxes
id: information-tasks
attributes:
label: Tasks
description: "The tasks I am working on are:"
options:
- label: "An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...)"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."
render: shell
- type: checkboxes
id: checklist
attributes:
label: Checklist
options:
- label: "I have read the migration guide in the readme.
([pytorch-transformers](https://github.com/huggingface/transformers#migrating-from-pytorch-transformers-to-transformers);
[pytorch-pretrained-bert](https://github.com/huggingface/transformers#migrating-from-pytorch-pretrained-bert-to-transformers))"
required: true
- label: "I checked if a related official extension example runs on my machine."
required: true

View File

@ -0,0 +1,31 @@
name: "\U0001F31F New model addition"
description: Submit a proposal/request to implement a new model
labels: [ "New model" ]
body:
- type: textarea
id: description-request
validations:
required: true
attributes:
label: Model description
description: |
Put any and all important information relative to the model
- type: checkboxes
id: information-tasks
attributes:
label: Open source status
description: |
Please note that if the model implementation isn't available or if the weights aren't open-source, we are less likely to implement it in `transformers`.
options:
- label: "The model implementation is available"
- label: "The model weights are available"
- type: textarea
id: additional-info
attributes:
label: Provide useful links for the implementation
description: |
Please provide information regarding the implementation, the weights, and the authors.
Please mention the authors by @gh-username if you're aware of their usernames.

View File

@ -1,26 +0,0 @@
---
name: "❓ Questions & Help"
about: Post your general questions on the Hugging Face forum: https://discuss.huggingface.co/
title: ''
labels: ''
assignees: ''
---
# ❓ Questions & Help
<!-- The GitHub issue tracker is primarly intended for bugs, feature requests,
new models, benchmarks, and migration questions. For all other questions,
we direct you to the Hugging Face forum: https://discuss.huggingface.co/ .
-->
## Details
<!-- Description of your issue -->
<!-- You should first ask your question on the forum, and only if
you didn't get an answer after a few days ask it here on GitHub. -->
**A link to original question on the forum**:
<!-- Your issue will be closed if you don't fill this part. -->

View File

@ -17,13 +17,13 @@ Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/master/CONTRIBUTING.md#start-contributing-pull-requests),
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/transformers/tree/master/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/master/docs#writing-source-documentation).
[documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?

View File

@ -25,7 +25,7 @@ requirements:
- sacremoses
- regex !=2019.12.17
- protobuf
- tokenizers >=0.10.1,<0.11.0
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
run:
- python
@ -40,7 +40,7 @@ requirements:
- sacremoses
- regex !=2019.12.17
- protobuf
- tokenizers >=0.10.1,<0.11.0
- tokenizers >=0.11.1,!=0.11.3,<0.13
- pyyaml >=5.1
test:

View File

@ -3,7 +3,7 @@ name: Add model like runner
on:
push:
branches:
- master
- main
pull_request:
paths:
- "src/**"
@ -12,48 +12,69 @@ on:
types: [opened, synchronize, reopened]
jobs:
run_tests_templates:
run_tests_templates_like:
name: "Add new model like template tests"
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Loading cache.
- name: Install dependencies
run: |
sudo apt -y update && sudo apt install -y libsndfile1-dev
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1-tests_model_like
restore-keys: |
v1-tests_model_like-${{ hashFiles('setup.py') }}
v1-tests_model_like
path: ~/venv/
key: v4-tests_model_like-${{ hashFiles('setup.py') }}
- name: Install dependencies
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip!=21.3
sudo apt -y update && sudo apt install -y libsndfile1-dev
pip install .[dev]
pip install -e .[dev]
- name: Check transformers location
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
run: |
. ~/venv/bin/activate
python setup.py develop
transformers_install=$(pip list -e | grep transformers)
transformers_install_array=($transformers_install)
transformers_loc=${transformers_install_array[-1]}
transformers_repo_loc=$(pwd .)
if [ "$transformers_loc" != "$transformers_repo_loc" ]; then
echo "transformers is from $transformers_loc but it shoud be from $transformers_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
- name: Create model files
run: |
. ~/venv/bin/activate
transformers-cli add-new-model-like --config_file tests/fixtures/add_distilbert_like_config.json --path_to_repo .
make style
make fix-copies
- name: Run all PyTorch modeling test
run: |
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_new_models tests/test_modeling_bert_new.py
. ~/venv/bin/activate
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_new_models tests/bert_new/test_modeling_bert_new.py
- name: Run style changes
run: |
. ~/venv/bin/activate
make style && make quality && make repo-consistency
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_new_models_failures_short.txt
run: cat reports/tests_new_models/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_new_models_test_reports
path: reports
path: reports/tests_new_models

View File

@ -0,0 +1,236 @@
name: Build docker images (scheduled)
on:
push:
branches:
- docker-image*
repository_dispatch:
workflow_call:
inputs:
image_postfix:
required: true
type: string
schedule:
- cron: "0 1 * * *"
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
latest-docker:
name: "Latest PyTorch + TensorFlow [dev]"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v3
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-all-latest-gpu-push-ci
latest-with-torch-nightly-docker:
name: "Nightly PyTorch + Stable TensorFlow"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-all-latest-gpu
build-args: |
REF=main
PYTORCH=pre
push: true
tags: huggingface/transformers-all-latest-torch-nightly-gpu
latest-torch-deepspeed-docker:
name: "Latest PyTorch + DeepSpeed"
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu${{ inputs.image_postfix }}
# Push CI images still need to be re-built daily
-
name: Build and push (for Push CI) in a daily basis
# This condition allows `schedule` events, or `push` events that trigger this workflow NOT via `workflow_call`.
# The later case is useful for manual image building for debugging purpose. Use another tag in this case!
if: inputs.image_postfix != '-push-ci'
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-pytorch-deepspeed-latest-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
nightly-torch-deepspeed-docker:
name: "Nightly PyTorch + DeepSpeed"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-pytorch-deepspeed-nightly-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-deepspeed-nightly-gpu
doc-builder:
name: "Doc builder"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-doc-builder
push: true
tags: huggingface/transformers-doc-builder
latest-pytorch:
name: "Latest PyTorch [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-pytorch-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-pytorch-gpu
latest-tensorflow:
name: "Latest TensorFlow [dev]"
# Push CI doesn't need this image
if: inputs.image_postfix != '-push-ci'
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-tensorflow-gpu
build-args: |
REF=main
push: true
tags: huggingface/transformers-tensorflow-gpu

View File

@ -0,0 +1,108 @@
name: Build docker images (Past CI)
on:
push:
branches:
- past-ci-docker-image*
concurrency:
group: docker-images-builds
cancel-in-progress: false
jobs:
past-pytorch-docker:
name: "Past PyTorch Docker"
strategy:
fail-fast: false
matrix:
version: ["1.11", "1.10", "1.9", "1.8", "1.7", "1.6", "1.5", "1.4"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
FRAMEWORK=pytorch
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-pytorch-past-${{ matrix.version }}-gpu
past-tensorflow-docker:
name: "Past TensorFlow Docker"
strategy:
fail-fast: false
matrix:
version: ["2.8", "2.7", "2.6", "2.5"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
FRAMEWORK=tensorflow
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu
past-tensorflow-docker-2-4:
name: "Past TensorFlow Docker"
strategy:
fail-fast: false
matrix:
version: ["2.4"]
runs-on: ubuntu-latest
steps:
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v1
-
name: Check out code
uses: actions/checkout@v2
-
name: Login to DockerHub
uses: docker/login-action@v1
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
-
name: Build and push
uses: docker/build-push-action@v2
with:
context: ./docker/transformers-past-gpu
build-args: |
REF=main
BASE_DOCKER_IMAGE=nvidia/cuda:11.0.3-cudnn8-devel-ubuntu20.04
FRAMEWORK=tensorflow
VERSION=${{ matrix.version }}
push: true
tags: huggingface/transformers-tensorflow-past-${{ matrix.version }}-gpu

View File

@ -1,120 +0,0 @@
name: Build dev documentation
on:
pull_request:
jobs:
build_and_package:
runs-on: [self-hosted, doc-builder]
container:
image: huggingface/doc-builder-transformers
options: "-v /home/github_actions:/mnt"
env:
PR_NUMBER: ${{ github.event.number }}
EVENT_CONTEXT: ${{ toJSON(github.event) }}
steps:
- uses: actions/checkout@v2
with:
repository: 'huggingface/doc-builder'
path: doc-builder
- uses: actions/checkout@v2
with:
repository: 'huggingface/transformers'
path: transformers
- uses: actions/checkout@v2
with:
repository: 'huggingface/notebooks'
path: notebooks
- name: Set env
run: echo "WRITE=$(cat /mnt/WRITE)" >> $GITHUB_ENV
- name: Comment PR
uses: thollander/actions-comment-pull-request@v1
if: github.event.action == 'opened'
with:
message: 'The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/transformers/pr_${{ env.PR_NUMBER }}). All of your documentation changes will be reflected on that endpoint.'
GITHUB_TOKEN: ${{ env.WRITE }}
- name: Find Comment
if: github.event.action == 'reopened'
uses: peter-evans/find-comment@v1
id: fc
with:
issue-number: ${{ env.PR_NUMBER }}
comment-author: HuggingFaceDocBuilder
- name: Update comment
if: github.event.action == 'reopened'
uses: peter-evans/create-or-update-comment@v1
with:
comment-id: ${{ steps.fc.outputs.comment-id }}
token: ${{ env.WRITE }}
edit-mode: replace
body: |
The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/transformers/pr_${{ env.PR_NUMBER }}). All of your documentation changes will be reflected on that endpoint.
- name: Loading cache.
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1-test_build_doc
restore-keys: |
v1-test_build_doc-${{ hashFiles('setup.py') }}
v1-test_build_doc
- name: Setup environment
run: |
apt-get -y update && apt-get install -y libsndfile1-dev
pip uninstall -y doc-builder
pip install git+https://github.com/huggingface/doc-builder -U
cd transformers
pip install .[dev]
cd ..
export TORCH_VERSION=$(python -c "from torch import version; print(version.__version__.split('+')[0])")
pip install torch-scatter -f https://data.pyg.org/whl/torch-${TORCH_VERSION}+cpu.html
pip install torchvision
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
apt install -y tesseract-ocr
pip install pytesseract
pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Setup git
run: |
git config --global user.name "Hugging Face Doc Builder"
git config --global user.email docs@huggingface.co
cd doc-builder
git pull origin main
cd ..
cd notebooks
git pull origin master
cd ..
WRITE=`cat /mnt/WRITE`
rm -rf doc-build-dev
git clone https://HuggingFaceDocBuilder:$WRITE@github.com/huggingface/doc-build-dev
- name: Make documentation
run: |
doc-builder build transformers transformers/docs/source --build_dir doc-build-dev --notebook_dir notebooks/transformers_doc --clean --version pr_$PR_NUMBER
- name: Push to repositories
run: |
cd doc-build-dev
ls
git add .
git commit -m "Updated with commit ${{ github.sha }} See: https://github.com/huggingface/transformers/commit/${{ github.sha }}"
git push origin main

View File

@ -1,50 +0,0 @@
name: Documentation test build
on:
pull_request:
paths:
- "src/**"
- "docs/**"
- ".github/**"
jobs:
build_and_package:
runs-on: ubuntu-latest
defaults:
run:
shell: bash -l {0}
steps:
- uses: actions/checkout@v2
- name: Loading cache.
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1-test_build_doc
restore-keys: |
v1-test_build_doc-${{ hashFiles('setup.py') }}
v1-test_build_doc
- name: Setup environment
run: |
pip install --upgrade pip
sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
pip install git+https://github.com/huggingface/doc-builder
pip install .[dev]
export TORCH_VERSION=$(python -c "from torch import version; print(version.__version__.split('+')[0])")
pip install torch-scatter -f https://data.pyg.org/whl/torch-${TORCH_VERSION}+cpu.html
pip install torchvision
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
sudo apt install tesseract-ocr
pip install pytesseract
pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
- name: Make documentation
run: |
doc-builder build transformers ./docs/source

View File

@ -3,100 +3,18 @@ name: Build documentation
on:
push:
branches:
- master
- main
- doc-builder*
- v*-release
- use_templates
jobs:
build_and_package:
runs-on: ubuntu-latest
defaults:
run:
shell: bash -l {0}
steps:
- uses: actions/checkout@v2
with:
repository: 'huggingface/doc-build'
path: doc-build
token: ${{ secrets.HUGGINGFACE_PUSH }}
- uses: actions/checkout@v2
with:
repository: 'huggingface/transformers'
path: transformers
- uses: actions/checkout@v2
with:
repository: 'huggingface/notebooks'
path: notebooks
token: ${{ secrets.HUGGINGFACE_PUSH }}
- name: Loading cache.
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1-test_build_doc
restore-keys: |
v1-test_build_doc-${{ hashFiles('setup.py') }}
v1-test_build_doc
- name: Setup environment
run: |
sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
pip install git+https://github.com/huggingface/doc-builder
cd transformers
pip install .[dev]
cd ..
export TORCH_VERSION=$(python -c "from torch import version; print(version.__version__.split('+')[0])")
pip install torch-scatter -f https://data.pyg.org/whl/torch-${TORCH_VERSION}+cpu.html
pip install torchvision
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
sudo apt install tesseract-ocr
pip install pytesseract
pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Setup git
run: |
git config --global user.name "Hugging Face Doc Builder"
git config --global user.email docs@huggingface.co
cd doc-build
git pull origin main
cd ..
cd notebooks
git pull origin master
cd ..
- name: Make documentation
run: |
doc-builder build transformers transformers/docs/source --build_dir doc-build --notebook_dir notebooks/transformers_doc --clean
- name: Push to repositories
run: |
cd doc-build
if [[ `git status --porcelain` ]]; then
git add .
git commit -m "Updated with commit ${{ github.sha }} \n\nSee: https://github.com/huggingface/transformers/commit/${{ github.sha }}"
git push origin main
else
echo "No diff in the documentation."
fi
cd ..
cd notebooks
if [[ `git status --porcelain` ]]; then
git add transformers_doc
git commit -m "Updated Transformer doc notebooks with commit ${{ github.sha }} \n\nSee: https://github.com/huggingface/transformers/commit/${{ github.sha }}"
git push origin master
else
echo "No diff in the notebooks."
fi
cd ..
build:
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: transformers
notebook_folder: transformers_doc
languages: de en es it pt
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@ -0,0 +1,17 @@
name: Build PR Documentation
on:
pull_request:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: transformers
languages: de en es it pt

View File

@ -0,0 +1,67 @@
name: Self-hosted runner (check runner status)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
repository_dispatch:
schedule:
# run per hour
- cron: "0 */1 * * *"
env:
TRANSFORMERS_IS_CI: yes
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
outputs:
offline_runners: ${{ steps.set-offline_runners.outputs.offline_runners }}
steps:
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker,single-gpu-scheduled-ci-runner-docker,multi-scheduled-scheduled-ci-runner-docker,single-gpu-doctest-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
- id: set-offline_runners
name: Set output for offline runners
if: ${{ always() }}
run: |
offline_runners=$(python3 -c 'fp = open("offline_runners.txt"); failed = fp.read(); fp.close(); print(failed)')
echo "::set-output name=offline_runners::$offline_runners"
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
needs: check_runner_status
if: ${{ failure() }}
steps:
- name: Preliminary job status
shell: bash
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_EVENT: runner status check
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
OFFLINE_RUNNERS: ${{ needs.check_runner_status.outputs.offline_runners }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py

View File

@ -1,59 +0,0 @@
name: Delete dev documentation
on:
pull_request:
types: [ closed ]
jobs:
build_and_package:
runs-on: [self-hosted, doc-builder]
container:
image: huggingface/doc-builder-transformers
options: "-v /home/github_actions:/mnt"
env:
PR_NUMBER: ${{ github.event.number }}
steps:
- uses: actions/checkout@v2
- name: Set env
run: echo "WRITE=$(cat /mnt/WRITE)" >> $GITHUB_ENV
- uses: actions/checkout@v2
with:
repository: 'huggingface/doc-build-dev'
path: doc-build-dev
token: ${{ env.WRITE }}
- name: Setup git
run: |
git config --global user.name "Hugging Face Doc Builder"
git config --global user.email docs@huggingface.co
- name: Push to repositories
run: |
cd doc-build-dev
ls
rm -rf transformers/pr_$PR_NUMBER
ls
git add .
git commit -m "Closed PR ${GITHUB_REF##*/}"
git push origin main
- name: Find Comment
if: ${{ always() }}
uses: peter-evans/find-comment@v1
id: fc
with:
issue-number: ${{ env.PR_NUMBER }}
comment-author: HuggingFaceDocBuilder
- name: Update comment
if: ${{ always() }}
uses: peter-evans/create-or-update-comment@v1
with:
comment-id: ${{ steps.fc.outputs.comment-id }}
token: ${{ env.WRITE }}
edit-mode: replace
body: |
_The documentation is not available anymore as the PR was closed or merged._

View File

@ -0,0 +1,13 @@
name: Delete dev documentation
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
with:
pr_number: ${{ github.event.number }}
package: transformers

View File

@ -15,36 +15,64 @@ env:
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
PYTEST_TIMEOUT: 600
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
jobs:
run_doctests:
runs-on: [self-hosted, docker-gpu-test, single-gpu]
runs-on: [self-hosted, doc-tests-gpu]
container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: GPU visibility
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[testing,torch-speech]
python3 utils/print_env.py
- name: Prepare files for doctests
run: |
python utils/prepare_for_doc_test.py src docs
python3 utils/prepare_for_doc_test.py src docs
- name: Run doctests
run: |
pytest --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
python3 -m pytest -v --make-reports doc_tests_gpu --doctest-modules $(cat utils/documentation_tests.txt) -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
- name: Clean files after doctests
run: |
python utils/prepare_for_doc_test.py src docs --remove_new_line
python3 utils/prepare_for_doc_test.py src docs --remove_new_line
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat reports/doc_tests_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: doc_tests_gpu_test_reports
path: reports/doc_tests_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [run_doctests]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY_DOCS }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
run: |
pip install slack_sdk
python utils/notification_service_doc_tests.py

View File

@ -1,46 +0,0 @@
name: Torch hub integration
on:
push:
branches:
- "*"
jobs:
torch_hub_integration:
runs-on: ubuntu-latest
env:
# TODO quickfix but may need more investigation
ACTIONS_ALLOW_UNSECURE_COMMANDS: True
steps:
# no checkout necessary here.
- name: Extract branch name
run: echo "::set-env name=BRANCH::${GITHUB_REF#refs/heads/}"
- name: Check branch name
run: echo $BRANCH
- name: Set up Python
uses: actions/setup-python@v1
with:
python-version: 3.7
- name: Loading cache
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v0-torch_hub-${{ hashFiles('setup.py') }}
- name: Install dependencies
run: |
pip install --upgrade pip
# install torch-hub specific dependencies
pip install -e git+https://github.com/huggingface/transformers.git#egg=transformers[torchhub]
# no longer needed
pip uninstall -y transformers
#- name: Torch hub list
# run: |
# python -c "import torch; print(torch.hub.list('huggingface/transformers:$BRANCH'))"
#- name: Torch hub help
# run: |
# python -c "import torch; print(torch.hub.help('huggingface/transformers:$BRANCH', 'modelForSequenceClassification'))"

View File

@ -1,46 +1,51 @@
name: Model templates runner
on:
push:
branches:
- master
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
types: [assigned, opened, synchronize, reopened]
repository_dispatch:
schedule:
- cron: "0 2 * * *"
jobs:
run_tests_templates:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v1
- name: Install Python
uses: actions/setup-python@v1
with:
python-version: 3.6
- name: Loading cache.
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1.2-tests_templates
restore-keys: |
v1.2-tests_templates-${{ hashFiles('setup.py') }}
v1.2-tests_templates
uses: actions/checkout@v2
- name: Install dependencies
run: |
pip install --upgrade pip!=21.3
sudo apt -y update && sudo apt install -y libsndfile1-dev
pip install .[dev]
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/venv/
key: v4-tests_templates-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip!=21.3
pip install -e .[dev]
- name: Check transformers location
# make `transformers` available as package (required since we use `-e` flag) and check it's indeed from the repo.
run: |
. ~/venv/bin/activate
python setup.py develop
transformer_loc=$(pip show transformers | grep "Location: " | cut -c11-)
transformer_repo_loc=$(pwd .)
if [ "$transformer_loc" != "$transformer_repo_loc/src" ]; then
echo "transformers is from $transformer_loc but it shoud be from $transformer_repo_loc/src."
echo "A fix is required. Stop testing."
exit 1
fi
- name: Create model files
run: |
. ~/venv/bin/activate
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/pt-encoder-bert-tokenizer.json --path=templates/adding_a_new_model
transformers-cli add-new-model --testing --testing_file=templates/adding_a_new_model/tests/standalone.json --path=templates/adding_a_new_model
@ -56,20 +61,21 @@ jobs:
- name: Run all non-slow tests
run: |
. ~/venv/bin/activate
python -m pytest -n 2 --dist=loadfile -s --make-reports=tests_templates tests/*template*
- name: Run style changes
run: |
git fetch origin master:master
. ~/venv/bin/activate
make style && make quality && make repo-consistency
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_templates_failures_short.txt
run: cat reports/tests_templates/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_templates_test_reports
path: reports
path: reports/tests_templates

View File

@ -1,250 +1,286 @@
name: Self-hosted runner; Nightly (scheduled)
name: Self-hosted runner (nightly)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
push:
branches:
- nightly_ci*
repository_dispatch:
schedule:
- cron: "0 0 */3 * *"
repository_dispatch:
# Disable temporarily until the test suite can be run under 12 hours.
# schedule:
# - cron: "0 16 * * *"
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
PYTEST_TIMEOUT: 600
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
run_all_tests_torch_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
container:
image: pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env_pt.py
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_gpu tests
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_gpu_failures_short.txt
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "::set-output name=matrix::$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')"
- name: Run examples tests on GPU
if: ${{ always() }}
env:
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
RUN_SLOW: yes
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python -m pytest -n 1 -v --dist=loadfile --make-reports=examples_torch_gpu examples
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Failure short reports
if: ${{ always() }}
run: cat reports/examples_torch_gpu_failures_short.txt
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_gpu tests
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_gpu_failures_short.txt
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
run_all_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env_pt.py
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-torch-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Run all tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_multi_gpu tests
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_multi_gpu_failures_short.txt
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_multi_gpu tests
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_multi_gpu_failures_short.txt
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
run_all_tests_torch_cuda_extensions_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
- name: NVIDIA-SMI
run: |
nvidia-smi
run_all_tests_torch_cuda_extensions_gpu:
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
needs: setup
container:
image: huggingface/transformers-pytorch-deepspeed-nightly-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Install dependencies
run: |
apt -y update && apt install -y libaio-dev libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
pip install .[testing,deepspeed]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install git+https://github.com/microsoft/DeepSpeed
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env_pt.py
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
rm -rf DeepSpeed
git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt
- name: Environment
working-directory: /workspace/transformers
run: |
python utils/print_env.py
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_gpu_test_reports
path: reports
- name: Run all tests on GPU
working-directory: /workspace/transformers
run: |
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
run_all_tests_torch_cuda_extensions_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
- name: Install dependencies
run: |
apt -y update && apt install -y libaio-dev libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install --pre torch torchvision torchaudio -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html -U
rm -rf ~/.cache/torch_extensions/ # shared between conflicting builds
pip install .[testing,fairscale]
pip install https://github.com/kpu/kenlm/archive/master.zip
pip install git+https://github.com/microsoft/DeepSpeed # testing bleeding edge
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env_pt.py
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_multi_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports
path: reports
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
run_all_tests_torch_gpu,
run_all_tests_torch_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu,
run_all_tests_torch_cuda_extensions_multi_gpu
]
steps:
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_ID_PAST_FUTURE: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
run: |
pip install slack_sdk
python utils/notification_service.py scheduled nightly-torch
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
CI_EVENT: nightly-build
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

136
.github/workflows/self-past-caller.yml vendored Normal file
View File

@ -0,0 +1,136 @@
name: Self-hosted runner (past-ci-caller)
on:
push:
branches:
- run-past-ci*
jobs:
run_past_ci_pytorch_1-11:
name: PyTorch 1.11
if: always()
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.11"
secrets: inherit
run_past_ci_pytorch_1-10:
name: PyTorch 1.10
if: always()
needs: [run_past_ci_pytorch_1-11]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.10"
secrets: inherit
run_past_ci_pytorch_1-9:
name: PyTorch 1.9
if: always()
needs: [run_past_ci_pytorch_1-10]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.9"
secrets: inherit
run_past_ci_pytorch_1-8:
name: PyTorch 1.8
if: always()
needs: [run_past_ci_pytorch_1-9]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.8"
secrets: inherit
run_past_ci_pytorch_1-7:
name: PyTorch 1.7
if: always()
needs: [run_past_ci_pytorch_1-8]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.7"
secrets: inherit
run_past_ci_pytorch_1-6:
name: PyTorch 1.6
if: always()
needs: [run_past_ci_pytorch_1-7]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.6"
secrets: inherit
run_past_ci_pytorch_1-5:
name: PyTorch 1.5
if: always()
needs: [run_past_ci_pytorch_1-6]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.5"
secrets: inherit
run_past_ci_pytorch_1-4:
name: PyTorch 1.4
if: always()
needs: [run_past_ci_pytorch_1-5]
uses: ./.github/workflows/self-past.yml
with:
framework: pytorch
version: "1.4"
secrets: inherit
run_past_ci_tensorflow_2-8:
name: TensorFlow 2.8
if: always()
needs: [run_past_ci_pytorch_1-4]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.8"
secrets: inherit
run_past_ci_tensorflow_2-7:
name: TensorFlow 2.7
if: always()
needs: [run_past_ci_tensorflow_2-8]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.7"
secrets: inherit
run_past_ci_tensorflow_2-6:
name: TensorFlow 2.6
if: always()
needs: [run_past_ci_tensorflow_2-7]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.6"
secrets: inherit
run_past_ci_tensorflow_2-5:
name: TensorFlow 2.5
if: always()
needs: [run_past_ci_tensorflow_2-6]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.5"
secrets: inherit
run_past_ci_tensorflow_2-4:
name: TensorFlow 2.4
if: always()
needs: [run_past_ci_tensorflow_2-5]
uses: ./.github/workflows/self-past.yml
with:
framework: tensorflow
version: "2.4"
secrets: inherit

261
.github/workflows/self-past.yml vendored Normal file
View File

@ -0,0 +1,261 @@
name: Self-hosted runner (past)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
workflow_call:
inputs:
framework:
required: true
type: string
version:
required: true
type: string
# Use this to control the commit to test against
sha:
default: 'main'
required: false
type: string
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-past-ci-runner-docker,multi-gpu-past-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- id: set-matrix
working-directory: /transformers
name: Identify models to test
run: |
cd tests
echo "::set-output name=matrix::$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')"
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker-past-ci') }}
container:
image: huggingface/transformers-${{ inputs.framework }}-past-${{ inputs.version }}-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ inputs.sha }}
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Save job name
if: ${{ always() }}
shell: bash
run: |
matrix_folders=${matrix_folders/'models_'/'models/'}
job_name="Model tests ($matrix_folders, ${{ matrix.machine_type }})"
echo "$job_name"
echo "$job_name" > /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/job_name.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [check_runner_status, check_runners, setup, run_tests_single_gpu, run_tests_multi_gpu]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
# Create a directory to store test failure tables in the next step
- name: Create directory
run: mkdir test_failure_tables
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_PAST_FUTURE }}
CI_EVENT: Past CI - ${{ inputs.framework }}-${{ inputs.version }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: test_failure_tables_${{ inputs.framework }}-${{ inputs.version }}
path: test_failure_tables

54
.github/workflows/self-push-caller.yml vendored Normal file
View File

@ -0,0 +1,54 @@
# Used to trigger self-push CI
name: Self-hosted runner (push-caller)
on:
push:
branches:
- main
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "templates/**"
- "utils/**"
jobs:
check-for-setup:
runs-on: ubuntu-latest
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v3
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v22.2
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` = "setup.py" ]; then
echo ::set-output name=changed::"1"
fi
done
build-docker-containers:
needs: check-for-setup
if: (github.event_name == 'push') && (needs.check-for-setup.outputs.changed == '1')
uses: ./.github/workflows/build-docker-images.yml
with:
image_postfix: "-push-ci"
secrets: inherit
run_push_ci:
name: Trigger Push CI
runs-on: ubuntu-latest
if: ${{ always() }}
needs: build-docker-containers
steps:
- name: Trigger push CI via workflow_run
run: echo "Trigger push CI via workflow_run"

View File

@ -1,9 +1,12 @@
name: Self-hosted runner (push)
on:
workflow_run:
workflows: ["Self-hosted runner (push-caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- master
- ci_*
- ci-*
paths:
@ -20,476 +23,541 @@ env:
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
PYTEST_TIMEOUT: 60
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
run_tests_torch_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Install dependencies
run: |
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git
apt install -y libsndfile1-dev espeak-ng
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Launcher docker
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-ci-runner-docker,multi-gpu-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Are GPUs recognized by our DL frameworks
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
test_map: ${{ steps.set-matrix.outputs.test_map }}
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# `CI_BRANCH_PUSH`: The branch name from the push event
# `CI_BRANCH_WORKFLOW_RUN`: The name of the branch on which this workflow is triggered by `workflow_run` event
# `CI_BRANCH`: The non-empty branch name from the above two (one and only one of them is empty)
# `CI_SHA_PUSH`: The commit SHA from the push event
# `CI_SHA_WORKFLOW_RUN`: The commit SHA that triggers this workflow by `workflow_run` event
# `CI_SHA`: The non-empty commit SHA from the above two (one and only one of them is empty)
run: |
utils/print_env_pt.py
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- name: Fetch the tests to run
working-directory: /transformers
# TODO: add `git-python` in the docker images
run: |
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
pip install --upgrade git-python
python3 utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
path: /transformers/test_preparation.txt
- name: Run all non-slow tests on GPU
- id: set-matrix
name: Organize tests into models
working-directory: /transformers
# The `keys` is used as GitHub actions matrix for jobs, i.e. `models/bert`, `tokenization`, `pipeline`, etc.
# The `test_map` is used to get the actual identified test files under each key.
# If no test to run (so no `test_map.json` file), create a dummy map (empty matrix will fail)
run: |
if [ -f test_list.txt ]; then
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_torch_gpu $(cat test_list.txt)
if [ -f test_map.json ]; then
keys=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); d = list(test_map.keys()); print(d)')
test_map=$(python3 -c 'import json; fp = open("test_map.json"); test_map = json.load(fp); fp.close(); print(test_map)')
else
keys=$(python3 -c 'keys = ["dummy"]; print(keys)')
test_map=$(python3 -c 'test_map = {"dummy": []}; print(test_map)')
fi
echo $keys
echo $test_map
echo "::set-output name=matrix::$keys"
echo "::set-output name=test_map::$test_map"
run_tests_single_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all non-slow selected tests on GPU
working-directory: /transformers
run: |
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
run_tests_flax_gpu:
runs-on: [self-hosted, docker-gpu-test, single-gpu]
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Install dependencies
run: |
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
pip install --upgrade pip
pip install .[sklearn,testing,sentencepiece,flax,flax-speech,vision]
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Launcher docker
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Are GPUs recognized by our DL frameworks
run: |
python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all non-slow tests on GPU
run: |
if [ -f test_list.txt ]; then
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_flax_gpu $(cat test_list.txt)
fi
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_flax_gpu_failures_short.txt
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_flax_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
# run_tests_tf_gpu:
# runs-on: [self-hosted, docker-gpu, single-gpu]
# timeout-minutes: 120
# container:
# image: tensorflow/tensorflow:2.4.1-gpu
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
# steps:
# - name: Install dependencies
# run: |
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
# pip install --upgrade pip
# pip install .[sklearn,testing,onnxruntime,sentencepiece,tf-speech]
# pip install https://github.com/kpu/kenlm/archive/master.zip
#
# - name: Launcher docker
# uses: actions/checkout@v2
# with:
# fetch-depth: 2
#
# - name: NVIDIA-SMI
# run: |
# nvidia-smi
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
#
# - name: Fetch the tests to run
# run: |
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
#
# - name: Report fetched tests
# uses: actions/upload-artifact@v2
# with:
# name: test_fetched
# path: test_preparation.txt
#
# - name: Run all non-slow tests on GPU
# env:
# TF_NUM_INTRAOP_THREADS: 8
# TF_NUM_INTEROP_THREADS: 1
# run: |
# if [ -f test_list.txt ]; then
# python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_gpu $(cat test_list.txt)
# fi
#
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_tf_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_tf_gpu_test_reports
# path: reports
run_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
run_tests_multi_gpu:
name: Model tests
needs: setup
# `dummy` means there is no test to run
if: contains(fromJson(needs.setup.outputs.matrix), 'dummy') != true
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-all-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Install dependencies
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
apt install -y libsndfile1-dev espeak-ng
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Launcher docker
uses: actions/checkout@v2
with:
fetch-depth: 2
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
echo "${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Are GPUs recognized by our DL frameworks
- name: Environment
working-directory: /transformers
run: |
utils/print_env_pt.py
python3 utils/print_env.py
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all non-slow tests on GPU
- name: Run all non-slow selected tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
working-directory: /transformers
run: |
if [ -f test_list.txt ]; then
python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_torch_multi_gpu $(cat test_list.txt)
fi
python3 -m pytest -n 2 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} ${{ fromJson(needs.setup.outputs.test_map)[matrix.folders] }}
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_multi_gpu_failures_short.txt
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
# run_tests_flax_multi_gpu:
# runs-on: [self-hosted, docker-gpu, multi-gpu]
# container:
# image: tensorflow/tensorflow:2.4.1-gpu
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
# steps:
# - name: Install dependencies
# run: |
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
# pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# pip install --upgrade pip
# pip install .[sklearn,testing,sentencepiece,flax,flax-speech,vision]
# pip install https://github.com/kpu/kenlm/archive/master.zip
#
# - name: Launcher docker
# uses: actions/checkout@v2
# with:
# fetch-depth: 2
#
# - name: NVIDIA-SMI
# continue-on-error: true
# run: |
# nvidia-smi
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
# python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
#
# - name: Fetch the tests to run
# run: |
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
#
# - name: Report fetched tests
# uses: actions/upload-artifact@v2
# with:
# name: test_fetched
# path: test_preparation.txt
#
# - name: Run all non-slow tests on GPU
# run: |
# if [ -f test_list.txt ]; then
# python -m pytest -n 2 --dist=loadfile -v --make-reports=tests_flax_multi_gpu $(cat test_list.txt)
# fi
#
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_flax_multi_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_flax_multi_gpu_test_reports
# path: reports
# run_tests_tf_multi_gpu:
# runs-on: [self-hosted, docker-gpu, multi-gpu]
# timeout-minutes: 120
# container:
# image: tensorflow/tensorflow:2.4.1-gpu
# options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
# steps:
# - name: Install dependencies
# run: |
# apt -y update && apt install -y software-properties-common && apt -y update && add-apt-repository -y ppa:git-core/ppa && apt -y update && apt install -y git espeak-ng
# pip install --upgrade pip
# pip install .[sklearn,testing,onnxruntime,sentencepiece,tf-speech]
# pip install https://github.com/kpu/kenlm/archive/master.zip
#
# - name: Launcher docker
# uses: actions/checkout@v2
# with:
# fetch-depth: 2
#
# - name: NVIDIA-SMI
# run: |
# nvidia-smi
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
# TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
#
# - name: Fetch the tests to run
# run: |
# python utils/tests_fetcher.py --diff_with_last_commit | tee test_preparation.txt
#
# - name: Report fetched tests
# uses: actions/upload-artifact@v2
# with:
# name: test_fetched
# path: test_preparation.txt
#
# - name: Run all non-slow tests on GPU
# env:
# TF_NUM_INTRAOP_THREADS: 8
# TF_NUM_INTEROP_THREADS: 1
# run: |
# if [ -f test_list.txt ]; then
# python -m pytest -n 1 --dist=loadfile --make-reports=tests_tf_multi_gpu $(cat test_list.txt)
# fi
#
# - name: Failure short reports
# if: ${{ failure() }}
# run: cat reports/tests_tf_multi_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_tf_multi_gpu_test_reports
# path: reports
run_tests_torch_cuda_extensions_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
run_tests_torch_cuda_extensions_single_gpu:
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
with:
fetch-depth: 2
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /workspace/transformers
run: |
apt -y update && apt install -y libaio-dev
pip install --upgrade pip
pip install .[testing,deepspeed]
python utils/print_env.py
- name: Are GPUs recognized by our DL frameworks
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
utils/print_env_pt.py
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit --filters tests/deepspeed tests/extended | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all tests on GPU
run: |
if [ -f test_list.txt ]; then
python -m pytest -n 1 --dist=loadfile -v --make-reports=tests_torch_cuda_extensions_gpu $(cat test_list.txt)
fi
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
run_tests_torch_cuda_extensions_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
name: Torch CUDA extension tests
needs: setup
if: contains(fromJson(needs.setup.outputs.matrix), 'deepspeed') || contains(fromJson(needs.setup.outputs.matrix), 'extended')
strategy:
fail-fast: false
matrix:
machine_type: [multi-gpu]
runs-on: [self-hosted, docker-gpu, '${{ matrix.machine_type }}']
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
image: huggingface/transformers-pytorch-deepspeed-latest-gpu-push-ci
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
with:
fetch-depth: 2
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- name: Update clone using environment variables
working-directory: /workspace/transformers
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /workspace/transformers
run: |
apt -y update && apt install -y libaio-dev
pip install --upgrade pip
rm -rf ~/.cache/torch_extensions/ # shared between conflicting builds
pip install .[testing,deepspeed,fairscale]
python utils/print_env.py
- name: Are GPUs recognized by our DL frameworks
- name: Run all non-slow selected tests on GPU
working-directory: /workspace/transformers
# TODO: Here we pass all tests in the 2 folders for simplicity. It's better to pass only the identified tests.
run: |
utils/print_env_pt.py
- name: Fetch the tests to run
run: |
python utils/tests_fetcher.py --diff_with_last_commit --filters tests/deepspeed tests/extended | tee test_preparation.txt
- name: Report fetched tests
uses: actions/upload-artifact@v2
with:
name: test_fetched
path: test_preparation.txt
- name: Run all tests on GPU
run: |
if [ -f test_list.txt ]; then
python -m pytest -n 1 --dist=loadfile -v --make-reports=tests_torch_cuda_extensions_multi_gpu $(cat test_list.txt)
fi
python -m pytest -n 1 --dist=loadfile -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ failure() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt
continue-on-error: true
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
run_tests_torch_gpu,
# run_tests_tf_gpu,
run_tests_torch_multi_gpu,
# run_tests_tf_multi_gpu,
run_tests_torch_cuda_extensions_gpu,
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_tests_torch_cuda_extensions_single_gpu,
run_tests_torch_cuda_extensions_multi_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Setup status: ${{ needs.setup.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
# Necessary to get the correct branch name and commit SHA for `workflow_run` event
# We also take into account the `push` event (we might want to test some changes in a branch)
- name: Prepare custom environment variables
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
CI_BRANCH_PUSH=${{ github.event.ref }}
CI_BRANCH_PUSH=${CI_BRANCH_PUSH/'refs/heads/'/''}
CI_BRANCH_WORKFLOW_RUN=${{ github.event.workflow_run.head_branch }}
CI_SHA_PUSH=${{ github.event.head_commit.id }}
CI_SHA_WORKFLOW_RUN=${{ github.event.workflow_run.head_sha }}
echo $CI_BRANCH_PUSH
echo $CI_BRANCH_WORKFLOW_RUN
echo $CI_SHA_PUSH
echo $CI_SHA_WORKFLOW_RUN
[[ ! -z "$CI_BRANCH_PUSH" ]] && echo "CI_BRANCH=$CI_BRANCH_PUSH" >> $GITHUB_ENV || echo "CI_BRANCH=$CI_BRANCH_WORKFLOW_RUN" >> $GITHUB_ENV
[[ ! -z "$CI_SHA_PUSH" ]] && echo "CI_SHA=$CI_SHA_PUSH" >> $GITHUB_ENV || echo "CI_SHA=$CI_SHA_WORKFLOW_RUN" >> $GITHUB_ENV
- name: print environment variables
run: |
echo "env.CI_BRANCH = ${{ env.CI_BRANCH }}"
echo "env.CI_SHA = ${{ env.CI_SHA }}"
- uses: actions/checkout@v2
# To avoid failure when multiple commits are merged into `main` in a short period of time.
# Checking out to an old commit beyond the fetch depth will get an error `fatal: reference is not a tree: ...
# (Only required for `workflow_run` event, where we get the latest HEAD on `main` instead of the event commit)
with:
fetch-depth: 20
- name: Update clone using environment variables
run: |
echo "original branch = $(git branch --show-current)"
git fetch && git checkout ${{ env.CI_BRANCH }}
echo "updated branch = $(git branch --show-current)"
git checkout ${{ env.CI_SHA }}
echo "log = $(git log -n 1)"
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_EVENT: push
CI_TITLE_PUSH: ${{ github.event.head_commit.message }}
CI_TITLE_WORKFLOW_RUN: ${{ github.event.workflow_run.head_commit.message }}
CI_SHA: ${{ env.CI_SHA }}
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py push
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -1,531 +1,410 @@
name: Self-hosted runner (scheduled)
# Note that each job's dependencies go into a corresponding docker file.
#
# For example for `run_all_tests_torch_cuda_extensions_gpu` the docker image is
# `huggingface/transformers-pytorch-deepspeed-latest-gpu`, which can be found at
# `docker/transformers-pytorch-deepspeed-latest-gpu/Dockerfile`
on:
push:
branches:
- multi_ci_*
repository_dispatch:
schedule:
- cron: "0 0 * * *"
- cron: "0 2 * * *"
env:
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
OMP_NUM_THREADS: 8
MKL_NUM_THREADS: 8
RUN_SLOW: yes
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
PYTEST_TIMEOUT: 600
SIGOPT_API_TOKEN: ${{ secrets.SIGOPT_API_TOKEN }}
TF_FORCE_GPU_ALLOW_GROWTH: true
RUN_PT_TF_CROSS_TESTS: 1
jobs:
run_all_tests_torch_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
check_runner_status:
name: Check Runner Status
runs-on: ubuntu-latest
steps:
- name: Checkout transformers
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: Check Runner Status
run: python utils/check_self_hosted_runner.py --target_runners single-gpu-scheduled-ci-runner-docker,multi-gpu-scheduled-ci-runner-docker --token ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
check_runners:
name: Check Runners
needs: check_runner_status
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
setup:
name: Setup
needs: check_runners
strategy:
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: Cleanup
working-directory: /transformers
run: |
rm -rf tests/__pycache__
rm -rf tests/models/__pycache__
rm -rf reports
- id: set-matrix
name: Identify models to test
working-directory: /transformers/tests
run: |
echo "::set-output name=matrix::$(python3 -c 'import os; tests = os.getcwd(); model_tests = os.listdir(os.path.join(tests, "models")); d1 = sorted(list(filter(os.path.isdir, os.listdir(tests)))); d2 = sorted(list(filter(os.path.isdir, [f"models/{x}" for x in model_tests]))); d1.remove("models"); d = d2 + d1; print(d)')"
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run_tests_single_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [single-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Are GPUs recognized by our DL frameworks
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
utils/print_env_pt.py
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_gpu tests
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_gpu_failures_short.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test durations
- name: Test suite reports artifacts
if: ${{ always() }}
run: cat reports/tests_torch_gpu_durations.txt
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_tests_multi_gpu:
name: Model tests
strategy:
fail-fast: false
matrix:
folders: ${{ fromJson(needs.setup.outputs.matrix) }}
machine_type: [multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Echo folder ${{ matrix.folders }}
shell: bash
# For folders like `models/bert`, set an env. var. (`matrix_folders`) to `models_bert`, which will be used to
# set the artifact folder names (because the character `/` is not allowed).
run: |
echo "${{ matrix.folders }}"
matrix_folders=${{ matrix.folders }}
matrix_folders=${matrix_folders/'models/'/'models_'}
echo "$matrix_folders"
echo "matrix_folders=$matrix_folders" >> $GITHUB_ENV
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run all tests on GPU
working-directory: /transformers
run: python3 -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }} tests/${{ matrix.folders }}
- name: Failure short reports
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: ${{ matrix.machine_type }}_run_all_tests_gpu_${{ env.matrix_folders }}_test_reports
path: /transformers/reports/${{ matrix.machine_type }}_tests_gpu_${{ matrix.folders }}
run_examples_gpu:
name: Examples directory
runs-on: [self-hosted, single-gpu-docker]
container:
image: huggingface/transformers-all-latest-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Environment
working-directory: /transformers
run: |
python3 utils/print_env.py
- name: Run examples tests on GPU
if: ${{ always() }}
env:
OMP_NUM_THREADS: 16
MKL_NUM_THREADS: 16
RUN_SLOW: yes
HF_HOME: /mnt/cache
TRANSFORMERS_IS_CI: yes
working-directory: /transformers
run: |
pip install -r examples/pytorch/_tests_requirements.txt
python -m pytest -n 1 -v --dist=loadfile --make-reports=examples_torch_gpu examples
python3 -m pytest -v --make-reports=single-gpu_examples_gpu examples/pytorch
- name: Failure short reports
if: ${{ always() }}
run: cat reports/examples_torch_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/examples_torch_gpu_durations.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_gpu_durations.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_gpu_test_reports
path: reports
run_all_tests_flax_gpu:
runs-on: [self-hosted, docker-gpu-test, single-gpu]
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
if: ${{ failure() }}
continue-on-error: true
run: |
nvidia-smi
- name: Install dependencies
run: |
pip install --upgrade pip
pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
pip install .[flax,integrations,sklearn,testing,sentencepiece,flax-speech,vision]
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Are GPUs recognized by our DL frameworks
run: |
python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_flax_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_flax_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_flax_gpu_durations.txt
run: cat /transformers/reports/single-gpu_examples_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_flax_gpu_test_reports
path: reports
name: single-gpu_run_examples_gpu
path: /transformers/reports/single-gpu_examples_gpu
run_all_tests_tf_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
run_pipelines_torch_gpu:
name: PyTorch pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: tensorflow/tensorflow:2.4.1-gpu
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[sklearn,testing,onnx,sentencepiece,tf-speech,vision]
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Are GPUs recognized by our DL frameworks
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all tests on GPU
env:
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_tf_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_tf_gpu_durations.txt
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_tf_pipeline_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_gpu_durations.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_gpu_test_reports
path: reports
run_all_examples_torch_xla_tpu:
runs-on: [self-hosted, docker-tpu-test, tpu-v3-8]
container:
image: gcr.io/tpu-pytorch/xla:nightly_3.8_tpuvm
options: --privileged -v "/lib/libtpu.so:/lib/libtpu.so" -v /mnt/cache/.cache/huggingface:/mnt/cache/ --shm-size 16G
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Install dependencies
run: |
pip install --upgrade pip
pip install .[testing]
- name: Are TPUs recognized by our DL frameworks
env:
XRT_TPU_CONFIG: localservice;0;localhost:51011
run: |
python -c "import torch_xla.core.xla_model as xm; print(xm.xla_device())"
- name: Run example tests on TPU
env:
XRT_TPU_CONFIG: "localservice;0;localhost:51011"
MKL_SERVICE_FORCE_INTEL: "1" # See: https://github.com/pytorch/pytorch/issues/37377
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_xla_tpu examples/pytorch/test_xla_examples.py
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_xla_tpu_failures_short.txt
- name: Tests durations
if: ${{ always() }}
run: cat reports/tests_torch_xla_tpu_durations.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_examples_torch_xla_tpu
path: reports
run_all_tests_torch_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime
image: huggingface/transformers-pytorch-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Update clone
working-directory: /transformers
run: git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /transformers
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[integrations,sklearn,testing,onnxruntime,sentencepiece,torch-speech,vision,timm]
pip install https://github.com/kpu/kenlm/archive/master.zip
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env_pt.py
- name: Run all tests on GPU
env:
MKL_SERVICE_FORCE_INTEL: 1
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_multi_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_torch_multi_gpu_durations.txt
python3 utils/print_env.py
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
working-directory: /transformers
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_torch_pipeline_multi_gpu tests
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_torch_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_multi_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_torch_pipeline_multi_gpu_durations.txt
if: ${{ failure() }}
continue-on-error: true
run: cat /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_torch_multi_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_tests_torch_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_torch_pipeline_gpu
run_all_tests_tf_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
run_pipelines_tf_gpu:
name: TensorFlow pipelines
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
container:
image: tensorflow/tensorflow:2.4.1-gpu
image: huggingface/transformers-tensorflow-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
needs: setup
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Update clone
working-directory: /transformers
run: |
git fetch && git checkout ${{ github.sha }}
- name: NVIDIA-SMI
continue-on-error: true
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /transformers
run: |
apt -y update && apt install -y libsndfile1-dev git espeak-ng
pip install --upgrade pip
pip install .[sklearn,testing,onnx,sentencepiece,tf-speech,vision]
pip install https://github.com/kpu/kenlm/archive/master.zip
- name: Are GPUs recognized by our DL frameworks
run: |
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU')))"
TF_CPP_MIN_LOG_LEVEL=3 python -c "import tensorflow as tf; print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU')))"
- name: Run all tests on GPU
env:
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_tf_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_multi_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_tf_multi_gpu_durations.txt
python3 utils/print_env.py
- name: Run all pipeline tests on GPU
if: ${{ always() }}
env:
RUN_PIPELINE_TESTS: yes
TF_NUM_INTEROP_THREADS: 1
TF_NUM_INTRAOP_THREADS: 16
working-directory: /transformers
run: |
python -m pytest -n 1 -v --dist=loadfile -m is_pipeline_test --make-reports=tests_tf_pipeline_multi_gpu tests
python3 -m pytest -n 1 -v --dist=loadfile --make-reports=${{ matrix.machine_type }}_tests_tf_pipeline_gpu tests/pipelines
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_multi_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_tf_pipeline_multi_gpu_durations.txt
run: |
cat /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_all_tests_tf_multi_gpu_test_reports
path: reports
# run_all_tests_flax_multi_gpu:
# runs-on: [self-hosted, docker-gpu, multi-gpu]
# container:
# image: tensorflow/tensorflow:2.4.1-gpu
# options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
# steps:
# - name: Launcher docker
# uses: actions/checkout@v2
#
# - name: NVIDIA-SMI
# run: |
# nvidia-smi
#
# - name: Install dependencies
# run: |
# pip install --upgrade pip
# pip install --upgrade "jax[cuda111]" -f https://storage.googleapis.com/jax-releases/jax_releases.html
# pip install .[flax,integrations,sklearn,testing,sentencepiece,flax-speech,vision]
#
# - name: Are GPUs recognized by our DL frameworks
# run: |
# python -c "from jax.lib import xla_bridge; print('GPU available:', xla_bridge.get_backend().platform)"
# python -c "import jax; print('Number of GPUs available:', len(jax.local_devices()))"
#
# - name: Run all tests on GPU
# run: |
# python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_flax_gpu tests
#
# - name: Failure short reports
# if: ${{ always() }}
# run: cat reports/tests_flax_gpu_failures_short.txt
#
# - name: Test suite reports artifacts
# if: ${{ always() }}
# uses: actions/upload-artifact@v2
# with:
# name: run_all_tests_flax_gpu_test_reports
# path: reports
name: ${{ matrix.machine_type }}_run_tests_tf_pipeline_gpu
path: /transformers/reports/${{ matrix.machine_type }}_tests_tf_pipeline_gpu
run_all_tests_torch_cuda_extensions_gpu:
runs-on: [self-hosted, docker-gpu, single-gpu]
name: Torch CUDA extension tests
strategy:
fail-fast: false
matrix:
machine_type: [single-gpu, multi-gpu]
runs-on: ${{ format('{0}-{1}', matrix.machine_type, 'docker') }}
needs: setup
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
image: huggingface/transformers-pytorch-deepspeed-latest-gpu
options: --gpus all --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: Update clone
working-directory: /workspace/transformers
run: git fetch && git checkout ${{ github.sha }}
- name: Remove cached torch extensions
run: rm -rf /github/home/.cache/torch_extensions/
# To avoid unknown test failures
- name: Pre build DeepSpeed *again*
working-directory: /workspace
run: |
python3 -m pip uninstall -y deepspeed
DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check
- name: NVIDIA-SMI
run: |
nvidia-smi
- name: Install dependencies
- name: Environment
working-directory: /workspace/transformers
run: |
apt -y update && apt install -y libaio-dev
pip install --upgrade pip
pip install .[testing,deepspeed]
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env_pt.py
python utils/print_env.py
- name: Run all tests on GPU
working-directory: /workspace/transformers
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
python -m pytest -v --make-reports=${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_gpu_durations.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_gpu_test_reports
path: reports
run_all_tests_torch_cuda_extensions_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: nvcr.io/nvidia/pytorch:21.03-py3
options: --gpus 0 --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/mnt/cache/
steps:
- name: Launcher docker
uses: actions/checkout@v2
- name: NVIDIA-SMI
if: ${{ failure() }}
continue-on-error: true
run: |
nvidia-smi
- name: Install dependencies
run: |
apt -y update && apt install -y libaio-dev
pip install --upgrade pip
rm -rf ~/.cache/torch_extensions/ # shared between conflicting builds
pip install .[testing,deepspeed,fairscale]
- name: Are GPUs recognized by our DL frameworks
run: |
utils/print_env_pt.py
- name: Run all tests on GPU
run: |
python -m pytest -n 1 -v --dist=loadfile --make-reports=tests_torch_cuda_extensions_multi_gpu tests/deepspeed tests/extended
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu_failures_short.txt
- name: Test durations
if: ${{ always() }}
run: cat reports/tests_torch_cuda_extensions_multi_gpu_durations.txt
run: cat /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu/failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}
uses: actions/upload-artifact@v2
with:
name: run_tests_torch_cuda_extensions_multi_gpu_test_reports
path: reports
name: ${{ matrix.machine_type }}_run_tests_torch_cuda_extensions_gpu_test_reports
path: /workspace/transformers/reports/${{ matrix.machine_type }}_tests_torch_cuda_extensions_gpu
send_results:
name: Send results to webhook
runs-on: ubuntu-latest
if: always()
needs: [
run_all_tests_torch_gpu,
run_all_tests_tf_gpu,
run_all_tests_torch_multi_gpu,
run_all_tests_tf_multi_gpu,
run_all_tests_torch_cuda_extensions_gpu,
run_all_tests_torch_cuda_extensions_multi_gpu
check_runner_status,
check_runners,
setup,
run_tests_single_gpu,
run_tests_multi_gpu,
run_examples_gpu,
run_pipelines_tf_gpu,
run_pipelines_torch_gpu,
run_all_tests_torch_cuda_extensions_gpu
]
steps:
- name: Preliminary job status
shell: bash
# For the meaning of these environment variables, see the job `Setup`
run: |
echo "Runner availability: ${{ needs.check_runner_status.result }}"
echo "Runner status: ${{ needs.check_runners.result }}"
echo "Setup status: ${{ needs.setup.result }}"
- uses: actions/checkout@v2
- uses: actions/download-artifact@v2
- name: Send message to Slack
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
CI_SLACK_CHANNEL_ID_DAILY: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_SLACK_CHANNEL_DUMMY_TESTS: ${{ secrets.CI_SLACK_CHANNEL_DUMMY_TESTS }}
CI_SLACK_REPORT_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID_DAILY }}
CI_EVENT: scheduled
RUNNER_STATUS: ${{ needs.check_runner_status.result }}
RUNNER_ENV_STATUS: ${{ needs.check_runners.result }}
SETUP_STATUS: ${{ needs.setup.result }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
run: |
pip install slack_sdk
python utils/notification_service.py scheduled
python utils/notification_service.py "${{ needs.setup.outputs.matrix }}"

View File

@ -12,10 +12,10 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
- name: Setup Python
uses: actions/setup-python@v1
uses: actions/setup-python@v4
with:
python-version: 3.7
@ -24,4 +24,4 @@ jobs:
pip install PyGithub
- name: Close stale issues
run: |
python scripts/stale.py
python scripts/stale.py

View File

@ -3,7 +3,7 @@ name: Update Transformers metadata
on:
push:
branches:
- master
- main
- update_transformers_metadata
jobs:
@ -15,22 +15,26 @@ jobs:
steps:
- uses: actions/checkout@v2
- name: Loading cache.
- name: Load cached virtual environment
uses: actions/cache@v2
id: cache
with:
path: ~/.cache/pip
key: v1-metadata
restore-keys: |
v1-metadata-${{ hashFiles('setup.py') }}
v1-metadata
path: ~/venv/
key: v3-metadata-${{ hashFiles('setup.py') }}
- name: Create virtual environment on cache miss
if: steps.cache.outputs.cache-hit != 'true'
run: |
python -m venv ~/venv && . ~/venv/bin/activate
pip install --upgrade pip
- name: Setup environment
run: |
. ~/venv/bin/activate
pip install git+https://github.com/huggingface/transformers#egg=transformers[dev]
- name: Update metadata
run: |
. ~/venv/bin/activate
python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }}

5
.gitignore vendored
View File

@ -160,4 +160,7 @@ tags
.pre-commit*
# .lock
*.lock
*.lock
# DS_Store (MacOS)
.DS_Store

View File

@ -26,7 +26,7 @@ on the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you".
Whichever way you choose to contribute, please be mindful to respect our
[code of conduct](https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md).
[code of conduct](https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways!
@ -36,7 +36,7 @@ There are 4 ways you can contribute to transformers:
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
In particular there is a special [Good First
In particular, there is a special [Good First
Issue](https://github.com/huggingface/transformers/contribute) listing. It will give you a list of
open Issues that are open to anybody to work on. Just comment in the issue that you'd like to work
on it. In that same listing you will also find some Issues with `Good Second Issue` label. These are
@ -92,7 +92,7 @@ If you are willing to contribute the model yourself, let us know so we can best
guide you.
We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them
in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates) folder.
in the [`templates`](https://github.com/huggingface/transformers/tree/main/templates) folder.
### Do you want a new feature (that is not a model)?
@ -114,7 +114,7 @@ If your issue is well written we're already 80% of the way there by the time you
post it.
We have added **templates** to guide you in the process of adding a new example script for training or testing the
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/master/templates)
models in the library. You can find them in the [`templates`](https://github.com/huggingface/transformers/tree/main/templates)
folder.
## Start contributing! (Pull Requests)
@ -128,7 +128,7 @@ You will need basic `git` proficiency to be able to contribute to
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
Follow these steps to start contributing ([supported Python versions](https://github.com/huggingface/transformers/blob/main/setup.py#L426)):
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
@ -148,7 +148,7 @@ Follow these steps to start contributing:
$ git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `master` branch.
**Do not** work on the `main` branch.
4. Set up a development environment by running the following command in a virtual environment:
@ -171,6 +171,14 @@ Follow these steps to start contributing:
If you have already cloned that repo, you might need to `git pull` to get the most recent changes in the `datasets`
library.
Depending on your OS, you might need to install some external libraries, as well, if the `pip` installation fails.
For macOS, you will likely need [MeCab](https://taku910.github.io/mecab/), which can be installed from Homebrew:
```bash
brew install mecab
```
5. Develop the features on your branch.
@ -267,7 +275,7 @@ Follow these steps to start contributing:
```bash
$ git fetch upstream
$ git rebase upstream/master
$ git rebase upstream/main
```
Push the changes to your account using:
@ -317,8 +325,8 @@ See more about the checks run on a pull request in our [PR guide](pr_checks)
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/transformers/tree/master/tests) and examples tests in the
[examples folder](https://github.com/huggingface/transformers/tree/master/examples).
the [tests folder](https://github.com/huggingface/transformers/tree/main/tests) and examples tests in the
[examples folder](https://github.com/huggingface/transformers/tree/main/examples).
We like `pytest` and `pytest-xdist` because it's faster. From the root of the
repository, here's how to run tests with `pytest` for the library:
@ -365,11 +373,10 @@ $ python -m unittest discover -s examples -t examples -v
### Style guide
For documentation strings, 🤗 Transformers follows the [google style](https://google.github.io/styleguide/pyguide.html).
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/master/docs#writing-documentation---specification)
Check our [documentation writing guide](https://github.com/huggingface/transformers/tree/main/docs#writing-documentation---specification)
for more information.
#### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
### Develop on Windows
@ -386,15 +393,15 @@ One way one can run the make command on Window is to pass by MSYS2:
You can now use `make` from any terminal (Powershell, cmd.exe, etc) 🎉
### Syncing forked master with upstream (HuggingFace) master
### Syncing forked main with upstream (HuggingFace) main
To avoid pinging the upstream repository which adds reference notes to each upstream PR and sends unnecessary notifications to the developers involved in these PRs,
when syncing the master branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked master.
when syncing the main branch of a forked repository, please, follow these steps:
1. When possible, avoid syncing with the upstream using a branch and PR on the forked repository. Instead merge directly into the forked main.
2. If a PR is absolutely necessary, use the following steps after checking out your branch:
```
$ git checkout -b your-branch-for-syncing
$ git pull --squash --no-commit upstream master
$ git pull --squash --no-commit upstream main
$ git commit -m '<your message without GitHub references>'
$ git push --set-upstream origin your-branch-for-syncing
```

View File

@ -71,8 +71,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
from .utils import is_tokenizers_available
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
```
@ -124,8 +124,8 @@ You are not required to read the following guidelines before opening an issue. H
File "/transformers/src/transformers/__init__.py", line 34, in <module>
from . import dependency_versions_check
File "/transformers/src/transformers/dependency_versions_check.py", line 34, in <module>
from .file_utils import is_tokenizers_available
File "/transformers/src/transformers/file_utils.py", line 40, in <module>
from .utils import is_tokenizers_available
File "/transformers/src/transformers/utils/import_utils.py", line 40, in <module>
from tqdm.auto import tqdm
ModuleNotFoundError: No module named 'tqdm.auto'
```

View File

@ -1,4 +1,4 @@
.PHONY: deps_table_update modified_only_fixup extra_quality_checks quality style fixup fix-copies test test-examples docs
.PHONY: deps_table_update modified_only_fixup extra_style_checks quality style fixup fix-copies test test-examples
# make sure to test the local checkout in scripts and not the pre-installed one (don't use quotes!)
export PYTHONPATH = src
@ -9,7 +9,7 @@ modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \
black $(modified_py_files); \
black --preview $(modified_py_files); \
isort $(modified_py_files); \
flake8 $(modified_py_files); \
else \
@ -39,27 +39,33 @@ repo-consistency:
python utils/check_dummies.py
python utils/check_repo.py
python utils/check_inits.py
python utils/check_config_docstrings.py
python utils/tests_fetcher.py --sanity_check
python utils/update_metadata.py --check-only
# this target runs checks on all files
quality:
black --check $(check_dirs)
black --check --preview $(check_dirs)
isort --check-only $(check_dirs)
python utils/custom_init_isort.py --check_only
python utils/sort_auto_mappings.py --check_only
flake8 $(check_dirs)
python utils/style_doc.py src/transformers docs/source --max_len 119 --check_only
doc-builder style src/transformers docs/source --max_len 119 --check_only --path_to_docs docs/source
python utils/check_doc_toc.py
# Format source code automatically and check is there are any problems left that need manual fixing
extra_style_checks:
python utils/custom_init_isort.py
python utils/style_doc.py src/transformers docs/source --max_len 119
python utils/sort_auto_mappings.py
doc-builder style src/transformers docs/source --max_len 119 --path_to_docs docs/source
python utils/check_doc_toc.py --fix_and_overwrite
# this target runs checks on all files and potentially modifies some of them
style:
black $(check_dirs)
black --preview $(check_dirs)
isort $(check_dirs)
${MAKE} autogenerate_code
${MAKE} extra_style_checks

199
README.md
View File

@ -21,9 +21,9 @@ limitations under the License.
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
@ -32,7 +32,7 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -41,9 +41,10 @@ limitations under the License.
<h4 align="center">
<p>
<b>English</b> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a>
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a>
<p>
</h4>
@ -55,13 +56,13 @@ limitations under the License.
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
🤗 Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
These models can be applied on:
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
* 📝 Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
* 🖼️ Images, for tasks like image classification, object detection, and segmentation.
* 🗣️ Audio, for tasks like speech recognition and audio classification.
Transformer models can also perform tasks on **several modalities combined**, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
@ -87,18 +88,22 @@ Here are a few examples:
In Computer Vision:
- [Image classification with ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Object Detection with DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Image Segmentation with DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
- [Semantic Segmentation with SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Panoptic Segmentation with DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
In Audio:
- [Automatic Speech Recognition with Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Keyword Spotting with Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
In Multimodal tasks:
- [Visual Question Answering with ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
**[Write With Transformer](https://transformer.huggingface.co)**, built by the Hugging Face team, is the official demo of this repos text generation capabilities.
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Quick tour
@ -116,24 +121,48 @@ To immediately use a model on a given input (text, image, audio, ...), we provid
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
Many NLP tasks have a pre-trained `pipeline` ready to go. For example, we can easily extract question answers given context:
Many tasks have a pre-trained `pipeline` ready to go, in NLP but also in computer vision and speech. For example, we can easily extract detected objects in an image:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object-detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
Here we get a list of objects detected in the image, with a box surrounding the object and a confidence score. Here is the original image on the right, with the predictions displayed on the left:
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
You can learn more about the tasks supported by the `pipeline` API in [this tutorial](https://huggingface.co/docs/transformers/task_summary).
In addition to `pipeline`, to download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
```python
>>> from transformers import AutoTokenizer, AutoModel
@ -143,6 +172,7 @@ To download and use any of the pretrained models on your given task, all it take
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
And here is the equivalent code for TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
@ -156,7 +186,7 @@ And here is the equivalent code for TensorFlow:
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use normally. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) or a [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (depending on your backend) which you can use as usual. [This tutorial](https://huggingface.co/docs/transformers/training) explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our `Trainer` API to quickly fine-tune on a new dataset.
## Why should I use transformers?
@ -169,7 +199,7 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
1. Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 20,000 pretrained models, some in more than 100 languages.
- Dozens of architectures with over 60,000 pretrained models across all modalities.
1. Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
@ -184,8 +214,8 @@ The model itself is a regular [Pytorch `nn.Module`](https://pytorch.org/docs/sta
## Why shouldn't I use transformers?
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library (possibly, [Accelerate](https://huggingface.co/docs/accelerate)).
- While we strive to present as many use cases as possible, the scripts in our [examples folder](https://github.com/huggingface/transformers/tree/main/examples) are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
## Installation
@ -198,7 +228,7 @@ You should install 🤗 Transformers in a [virtual environment](https://docs.pyt
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of Flax, PyTorch or TensorFlow.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific install command for your platform.
Please refer to [TensorFlow installation page](https://www.tensorflow.org/install/), [PyTorch installation page](https://pytorch.org/get-started/locally/#start-locally) and/or [Flax](https://github.com/google/flax#quick-install) and [Jax](https://github.com/google/jax#installation) installation pages regarding the specific installation command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
@ -220,6 +250,8 @@ conda install -c huggingface transformers
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
> **_NOTE:_** On Windows, you may be prompted to activate Developer Mode in order to benefit from caching. If this is not an option for you, please let us know in [this issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Model architectures
**[All the model checkpoints](https://huggingface.co/models)** provided by 🤗 Transformers are seamlessly integrated from the huggingface.co [model hub](https://huggingface.co) where they are uploaded directly by [users](https://huggingface.co/users) and [organizations](https://huggingface.co/organizations).
@ -229,108 +261,157 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
🤗 Transformers currently provides the following architectures (see [here](https://huggingface.co/docs/transformers/model_summary) for a high-level summary of each them):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/pdf/1910.13461.pdf) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval
for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon
Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/main/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER
AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[ViLT)](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[ViTMAE)](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. Want to contribute a new model? We have added a **detailed guide and templates** to guide you in the process of adding a new model. You can find them in the [`templates`](./templates) folder of the repository. Be sure to check the [contributing guidelines](./CONTRIBUTING.md) and contact the maintainers or open an issue to collect feedbacks before starting your PR.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to [this table](https://huggingface.co/docs/transformers/index#supported-frameworks).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://huggingface.co/docs/transformers/examples).
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the [documentation](https://github.com/huggingface/transformers/tree/main/examples).
## Learn more
@ -339,9 +420,9 @@ These implementations have been tested on several datasets (see the example scri
|-|-|
| [Documentation](https://huggingface.co/docs/transformers/) | Full API documentation and tutorials |
| [Task summary](https://huggingface.co/docs/transformers/task_summary) | Tasks supported by 🤗 Transformers |
| [Preprocessing tutorial](https://huggingface.co/docstransformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
| [Preprocessing tutorial](https://huggingface.co/docs/transformers/preprocessing) | Using the `Tokenizer` class to prepare data for the models |
| [Training and fine-tuning](https://huggingface.co/docs/transformers/training) | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the `Trainer` API |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/master/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Quick tour: Fine-tuning/usage scripts](https://github.com/huggingface/transformers/tree/main/examples) | Example scripts for fine-tuning models on a wide range of tasks |
| [Model sharing and uploading](https://huggingface.co/docs/transformers/model_sharing) | Upload and share your fine-tuned models with the community |
| [Migration](https://huggingface.co/docs/transformers/migration) | Migrate to 🤗 Transformers from `pytorch-transformers` or `pytorch-pretrained-bert` |

444
README_es.md Normal file
View File

@ -0,0 +1,444 @@
<!---
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers_logo_name.png" width="400"/>
<br>
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
</p>
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<b>Español</b>
<p>
</h4>
<h3 align="center">
<p>Lo último de Machine Learning para JAX, PyTorch y TensorFlow</p>
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/course_banner.png"></a>
</h3>
🤗 Transformers aporta miles de modelos preentrenados Para realizar tareas en diferentes modalidades como texto, vision, y audio.
Estos modelos pueden ser aplicados en:
* 📝 Texto, Para tareas como clasificación de texto, extracción de información, responder preguntas, resumir, traducir, generación de texto, en más de 100 idiomas.
* 🖼️ Imágenes, para tareas como clasificación de imágenes, detección the objetos, y segmentación.
* 🗣️ Audio, para tareas como reconocimiento de voz y clasificación de audio.
Los modelos de Transformer también pueden realizar tareas en **muchas modalidades combinadas**, como responder pregunstas, reconocimiento de carácteres ópticos,extracción de información de documentos escaneados, clasificación de video, y respuesta de preguntas visuales.
🤗 Transformers aporta APIs para descargar rápidamente y usar estos modelos preentrenados en un texto dado, afinarlos en tus propios sets de datos y compartirlos con la comunidad en nuestro [centro de modelos](https://huggingface.co/models). Al mismo tiempo, cada módulo de Python que define una arquitectura es completamente independiente y se puede modificar para permitir experimentos de investigación rápidos.
🤗 Transformers está respaldado por las tres bibliotecas de deep learning más populares — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/) y [TensorFlow](https://www.tensorflow.org/) — con una perfecta integración entre ellos. Es sencillo entrenar sus modelos con uno antes de cargarlos para la inferencia con el otro.
## Demostraciones en línea
Puedes probar la mayoría de nuestros modelos directamente en sus páginas desde el [centro de modelos](https://huggingface.co/models). También ofrecemos [alojamiento de modelos privados, control de versiones y una API de inferencia](https://huggingface.co/pricing) para modelos públicos y privados.
Aquí hay algunos ejemplos:
En procesamiento del lenguaje natural:
- [Terminación de palabras enmascaradas con BERT](https://huggingface.co/bert-base-uncased?text=Paris+is+the+%5BMASK%5D+of+France)
- [Reconocimiento del nombre de la entidad con Electra](https://huggingface.co/dbmdz/electra-large-discriminator-finetuned-conll03-english?text=My+name+is+Sarah+and+I+live+in+London+city)
- [Generación de texto con GPT-2](https://huggingface.co/gpt2?text=A+long+time+ago%2C+)
- [Inferencia del lenguaje natural con RoBERTa](https://huggingface.co/roberta-large-mnli?text=The+dog+was+lost.+Nobody+lost+any+animal)
- [Resumen con BART](https://huggingface.co/facebook/bart-large-cnn?text=The+tower+is+324+metres+%281%2C063+ft%29+tall%2C+about+the+same+height+as+an+81-storey+building%2C+and+the+tallest+structure+in+Paris.+Its+base+is+square%2C+measuring+125+metres+%28410+ft%29+on+each+side.+During+its+construction%2C+the+Eiffel+Tower+surpassed+the+Washington+Monument+to+become+the+tallest+man-made+structure+in+the+world%2C+a+title+it+held+for+41+years+until+the+Chrysler+Building+in+New+York+City+was+finished+in+1930.+It+was+the+first+structure+to+reach+a+height+of+300+metres.+Due+to+the+addition+of+a+broadcasting+aerial+at+the+top+of+the+tower+in+1957%2C+it+is+now+taller+than+the+Chrysler+Building+by+5.2+metres+%2817+ft%29.+Excluding+transmitters%2C+the+Eiffel+Tower+is+the+second+tallest+free-standing+structure+in+France+after+the+Millau+Viaduct)
- [Responder a preguntas con DistilBERT](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [Traducción con T5](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
En visión de ordenador:
- [Clasificación de imágenes con ViT](https://huggingface.co/google/vit-base-patch16-224)
- [Detección de objetos con DETR](https://huggingface.co/facebook/detr-resnet-50)
- [Segmentación semántica con SegFormer](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [Segmentación panóptica con DETR](https://huggingface.co/facebook/detr-resnet-50-panoptic)
En Audio:
- [Reconocimiento de voz automático con Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h)
- [Detección de palabras clave con Wav2Vec2](https://huggingface.co/superb/wav2vec2-base-superb-ks)
En tareas multimodales:
- [Respuesta visual a preguntas con ViLT](https://huggingface.co/dandelin/vilt-b32-finetuned-vqa)
**[Escribe con Transformer](https://transformer.huggingface.co)**, construido por el equipo de Hugging Face, es la demostración oficial de las capacidades de generación de texto de este repositorio.
## Si está buscando soporte personalizado del equipo de Hugging Face
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Tour rápido
Para usar inmediatamente un modelo en una entrada determinada (texto, imagen, audio, ...), proporcionamos la API de `pipeline`. Los pipelines agrupan un modelo previamente entrenado con el preprocesamiento que se usó durante el entrenamiento de ese modelo. Aquí se explica cómo usar rápidamente un pipeline para clasificar textos positivos frente a negativos:
```python
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
```
La segunda línea de código descarga y almacena en caché el modelo previamente entrenado que usa la canalización, mientras que la tercera lo evalúa en el texto dado. Aquí la respuesta es "positiva" con una confianza del 99,97%.
Muchas tareas tienen un `pipeline` preentrenado listo para funcionar, en NLP pero también en visión por ordenador y habla. Por ejemplo, podemos extraer fácilmente los objetos detectados en una imagen:
``` python
>>> import requests
>>> from PIL import Image
>>> from transformers import pipeline
# Download an image with cute cats
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png"
>>> image_data = requests.get(url, stream=True).raw
>>> image = Image.open(image_data)
# Allocate a pipeline for object detection
>>> object_detector = pipeline('object_detection')
>>> object_detector(image)
[{'score': 0.9982201457023621,
'label': 'remote',
'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}},
{'score': 0.9960021376609802,
'label': 'remote',
'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}},
{'score': 0.9954745173454285,
'label': 'couch',
'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}},
{'score': 0.9988006353378296,
'label': 'cat',
'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}},
{'score': 0.9986783862113953,
'label': 'cat',
'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}]
```
Aquí obtenemos una lista de objetos detectados en la imagen, con un cuadro que rodea el objeto y una puntuación de confianza. Aquí está la imagen original a la derecha, con las predicciones mostradas a la izquierda:
<h3 align="center">
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample.png" width="400"></a>
<a><img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/coco_sample_post_processed.png" width="400"></a>
</h3>
Puedes obtener más información sobre las tareas admitidas por la API de `pipeline` en [este tutorial](https://huggingface.co/docs/transformers/task_summary).
Además de `pipeline`, para descargar y usar cualquiera de los modelos previamente entrenados en su tarea dada, todo lo que necesita son tres líneas de código. Aquí está la versión de PyTorch:
```python
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
```
Y aquí está el código equivalente para TensorFlow:
```python
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
```
El tokenizador es responsable de todo el preprocesamiento que espera el modelo preentrenado y se puede llamar directamente en una sola cadena (como en los ejemplos anteriores) o en una lista. Dará como resultado un diccionario que puedes usar en el código descendente o simplemente pasarlo directamente a su modelo usando el operador de desempaquetado de argumento **.
El modelo en si es un [Pytorch `nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) normal o un [TensorFlow `tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) (dependiendo De tu backend) que puedes usar de forma habitual. [Este tutorial](https://huggingface.co/docs/transformers/training) explica cómo integrar un modelo de este tipo en un ciclo de entrenamiento PyTorch o TensorFlow clásico, o como usar nuestra API `Trainer` para ajustar rápidamente un nuevo conjunto de datos.
## ¿Por qué debo usar transformers?
1. Modelos de última generación fáciles de usar:
- Alto rendimiento en comprensión y generación de lenguaje natural, visión artificial y tareas de audio.
- Baja barrera de entrada para educadores y profesionales.
- Pocas abstracciones de cara al usuario con solo tres clases para aprender.
- Una API unificada para usar todos nuestros modelos preentrenados.
1. Menores costes de cómputo, menor huella de carbono:
- Los investigadores pueden compartir modelos entrenados en lugar de siempre volver a entrenar.
- Los profesionales pueden reducir el tiempo de cómputo y los costos de producción.
- Docenas de arquitecturas con más de 60 000 modelos preentrenados en todas las modalidades.
1. Elija el marco adecuado para cada parte de la vida útil de un modelo:
- Entrene modelos de última generación en 3 líneas de código.
- Mueva un solo modelo entre los marcos TF2.0/PyTorch/JAX a voluntad.
- Elija sin problemas el marco adecuado para la formación, la evaluación y la producción.
1. Personalice fácilmente un modelo o un ejemplo según sus necesidades:
- Proporcionamos ejemplos de cada arquitectura para reproducir los resultados publicados por sus autores originales..
- Los internos del modelo están expuestos lo más consistentemente posible..
- Los archivos modelo se pueden usar independientemente de la biblioteca para experimentos rápidos.
## ¿Por qué no debería usar transformers?
- Esta biblioteca no es una caja de herramientas modular de bloques de construcción para redes neuronales. El código en los archivos del modelo no se refactoriza con abstracciones adicionales a propósito, de modo que los investigadores puedan iterar rápidamente en cada uno de los modelos sin sumergirse en abstracciones/archivos adicionales.
- La API de entrenamiento no está diseñada para funcionar en ningún modelo, pero está optimizada para funcionar con los modelos proporcionados por la biblioteca. Para bucles genéricos de aprendizaje automático, debe usar otra biblioteca (posiblemente, [Accelerate](https://huggingface.co/docs/accelerate)).
- Si bien nos esforzamos por presentar tantos casos de uso como sea posible, los scripts en nuestra [carpeta de ejemplos](https://github.com/huggingface/transformers/tree/main/examples) son solo eso: ejemplos. Se espera que no funcionen de forma inmediata en su problema específico y que deba cambiar algunas líneas de código para adaptarlas a sus necesidades.
## Instalación
### Con pip
Este repositorio está probado en Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ y TensorFlow 2.3+.
Deberías instalar 🤗 Transformers en un [ambiente virtual](https://docs.python.org/3/library/venv.html). Si no estas familiarizado con los entornos virtuales de Python, consulta la [guía de usuario](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
Primero, crea un entorno virtual con la versión de Python que vas a usar y actívalo.
Luego, deberás instalar al menos uno de Flax, PyTorch o TensorFlow.
Por favor, ve a la [página de instalación de TensorFlow](https://www.tensorflow.org/install/), [página de instalación de PyTorch](https://pytorch.org/get-started/locally/#start-locally) y/o las páginas de instalación de [Flax](https://github.com/google/flax#quick-install) y [Jax](https://github.com/google/jax#installation) con respecto al comando de instalación específico para tu plataforma.
Cuando se ha instalado uno de esos backends, los 🤗 Transformers se pueden instalar usando pip de la siguiente manera:
```bash
pip install transformers
```
Si deseas jugar con los ejemplos o necesitas la última versión del código y no puedes esperar a una nueva versión, tienes que [instalar la librería de la fuente](https://huggingface.co/docs/transformers/installation#installing-from-source).
### Con conda
Desde la versión v4.0.0 de Transformers, ahora tenemos un canal conda: `huggingface`.
🤗 Transformers se puede instalar usando conda de la siguiente manera:
```shell script
conda install -c huggingface transformers
```
Sigue las páginas de instalación de Flax, PyTorch o TensorFlow para ver cómo instalarlos con conda.
> **_NOTA:_** En Windows, es posible que se le pida que active el modo de desarrollador para beneficiarse del almacenamiento en caché. Si esta no es una opción para usted, háganoslo saber en [esta issue](https://github.com/huggingface/huggingface_hub/issues/1062).
## Arquitecturas modelo
**[Todos los puntos de control del modelo](https://huggingface.co/models)** aportados por 🤗 Transformers están perfectamente integrados desde huggingface.co [Centro de modelos](https://huggingface.co) donde son subidos directamente por los [usuarios](https://huggingface.co/users) y [organizaciones](https://huggingface.co/organizations).
Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
🤗 Transformers actualmente proporciona las siguientes arquitecturas (ver [aquí](https://huggingface.co/docs/transformers/model_summary) para un resumen de alto nivel de cada uno de ellas.):
1. **[ALBERT](https://huggingface.co/docs/transformers/model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](https://huggingface.co/docs/transformers/model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](https://huggingface.co/docs/transformers/model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](https://huggingface.co/docs/transformers/model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](https://huggingface.co/docs/transformers/model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](https://huggingface.co/docs/transformers/model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](https://huggingface.co/docs/transformers/model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](https://huggingface.co/docs/transformers/model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](https://huggingface.co/docs/transformers/model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/main/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](https://huggingface.co/docs/transformers/model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](https://huggingface.co/docs/transformers/model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. ¿Quieres aportar un nuevo modelo? Hemos agregado una **guía detallada y plantillas** para guiarte en el proceso de agregar un nuevo modelo. Puedes encontrarlos en la carpeta de [`templates`](./templates) del repositorio. Asegúrate de revisar las [pautas de contribución](./CONTRIBUTING.md) y comunícate con los mantenedores o abra un problema para recopilar comentarios antes de comenzar su PR.
Para comprobar si cada modelo tiene una implementación en Flax, PyTorch o TensorFlow, o tiene un tokenizador asociado respaldado por la librería 🤗 Tokenizers , ve a [esta tabla](https://huggingface.co/docs/transformers/index#supported-frameworks).
Estas implementaciones se han probado en varios conjuntos de datos (consulte los scripts de ejemplo) y deberían coincidir con el rendimiento de las implementaciones originales. Puede encontrar más detalles sobre el rendimiento en la sección Examples de la [documentación](https://github.com/huggingface/transformers/tree/main/examples).
## Aprender más
| Sección | Descripción |
|-|-|
| [Documentación](https://huggingface.co/docs/transformers/) | Toda la documentación de la API y tutoriales |
| [Resumen de tareas](https://huggingface.co/docs/transformers/task_summary) | Tareas soportadas 🤗 Transformers |
| [Tutorial de preprocesAmiento](https://huggingface.co/docs/transformers/preprocessing) | Usando la clase `Tokenizer` para preparar datos para los modelos |
| [Entrenamiento y puesta a punto](https://huggingface.co/docs/transformers/training) | Usando los modelos aportados por 🤗 Transformers en un bucle de entreno de PyTorch/TensorFlow y la API de `Trainer` |
| [Recorrido rápido: secuencias de comandos de ajuste/uso](https://github.com/huggingface/transformers/tree/main/examples) | Scripts de ejemplo para ajustar modelos en una amplia gama de tareas |
| [Compartir y subir modelos](https://huggingface.co/docs/transformers/model_sharing) | Carga y comparte tus modelos perfeccionados con la comunidad |
| [Migración](https://huggingface.co/docs/transformers/migration) | Migra a 🤗 Transformers desde `pytorch-transformers` o `pytorch-pretrained-bert` |
## Citación
Ahora nosotros tenemos un [papel](https://www.aclweb.org/anthology/2020.emnlp-demos.6/) que puedes citar para la librería de 🤗 Transformers:
```bibtex
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
```

View File

@ -21,9 +21,9 @@ limitations under the License.
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
@ -32,7 +32,7 @@ limitations under the License.
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -41,9 +41,10 @@ limitations under the License.
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> |
<b>한국어</b>
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<b>한국어</b> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a>
<p>
</h4>
@ -59,7 +60,7 @@ limitations under the License.
🤗 Transformers는 이러한 사전학습 모델을 빠르게 다운로드해 특정 텍스트에 사용하고, 원하는 데이터로 fine-tuning해 커뮤니티나 우리의 [모델 허브](https://huggingface.co/models)에 공유할 수 있도록 API를 제공합니다. 또한, 모델 구조를 정의하는 각 파이썬 모듈은 완전히 독립적이여서 연구 실험을 위해 손쉽게 수정할 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
🤗 Transformers는 가장 유명한 3개의 딥러닝 라이브러리를 지원합니다. 이들은 서로 완벽히 연동됩니다 — [Jax](https://jax.readthedocs.io/en/latest/), [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/). 간단하게 이 라이브러리 중 하나로 모델을 학습하고, 또 다른 라이브러리로 추론을 위해 모델을 불러올 수 있습니다.
## 온라인 데모
@ -74,7 +75,7 @@ limitations under the License.
- [DistilBERT를 이용한 질문 답변](https://huggingface.co/distilbert-base-uncased-distilled-squad?text=Which+name+is+also+used+to+describe+the+Amazon+rainforest+in+English%3F&context=The+Amazon+rainforest+%28Portuguese%3A+Floresta+Amaz%C3%B4nica+or+Amaz%C3%B4nia%3B+Spanish%3A+Selva+Amaz%C3%B3nica%2C+Amazon%C3%ADa+or+usually+Amazonia%3B+French%3A+For%C3%AAt+amazonienne%3B+Dutch%3A+Amazoneregenwoud%29%2C+also+known+in+English+as+Amazonia+or+the+Amazon+Jungle%2C+is+a+moist+broadleaf+forest+that+covers+most+of+the+Amazon+basin+of+South+America.+This+basin+encompasses+7%2C000%2C000+square+kilometres+%282%2C700%2C000+sq+mi%29%2C+of+which+5%2C500%2C000+square+kilometres+%282%2C100%2C000+sq+mi%29+are+covered+by+the+rainforest.+This+region+includes+territory+belonging+to+nine+nations.+The+majority+of+the+forest+is+contained+within+Brazil%2C+with+60%25+of+the+rainforest%2C+followed+by+Peru+with+13%25%2C+Colombia+with+10%25%2C+and+with+minor+amounts+in+Venezuela%2C+Ecuador%2C+Bolivia%2C+Guyana%2C+Suriname+and+French+Guiana.+States+or+departments+in+four+nations+contain+%22Amazonas%22+in+their+names.+The+Amazon+represents+over+half+of+the+planet%27s+remaining+rainforests%2C+and+comprises+the+largest+and+most+biodiverse+tract+of+tropical+rainforest+in+the+world%2C+with+an+estimated+390+billion+individual+trees+divided+into+16%2C000+species)
- [T5로 번역하기](https://huggingface.co/t5-base?text=My+name+is+Wolfgang+and+I+live+in+Berlin)
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
**[Transformer와 글쓰기](https://transformer.huggingface.co)** 는 이 저장소의 텍스트 생성 능력에 관한 Hugging Face 팀의 공식 데모입니다.
## Hugging Face 팀의 커스텀 지원을 원한다면
@ -166,7 +167,7 @@ limitations under the License.
- 이 라이브러리는 신경망 블록을 만들기 위한 모듈이 아닙니다. 연구자들이 여러 파일을 살펴보지 않고 바로 각 모델을 사용할 수 있도록, 모델 파일 코드의 추상화 수준을 적정하게 유지했습니다.
- 학습 API는 모든 모델에 적용할 수 있도록 만들어지진 않았지만, 라이브러리가 제공하는 모델들에 적용할 수 있도록 최적화되었습니다. 일반적인 머신 러닝을 위해선, 다른 라이브러리를 사용하세요.
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/master/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
- 가능한 많은 사용 예시를 보여드리고 싶어서, [예시 폴더](https://github.com/huggingface/transformers/tree/main/examples)의 스크립트를 준비했습니다. 이 스크립트들을 수정 없이 특정한 문제에 바로 적용하지 못할 수 있습니다. 필요에 맞게 일부 코드를 수정해야 할 수 있습니다.
## 설치
@ -221,58 +222,96 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/main/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
@ -281,30 +320,44 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[ViLT)](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE)](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 새로운 모델을 올리고 싶나요? 우리가 **상세한 가이드와 템플릿** 으로 새로운 모델을 올리도록 도와드릴게요. 가이드와 템플릿은 이 저장소의 [`templates`](./templates) 폴더에서 확인하실 수 있습니다. [컨트리뷰션 가이드라인](./CONTRIBUTING.md)을 꼭 확인해주시고, PR을 올리기 전에 메인테이너에게 연락하거나 이슈를 오픈해 피드백을 받으시길 바랍니다.
각 모델이 Flax, PyTorch, TensorFlow으로 구현되었는지 또는 🤗 Tokenizers 라이브러리가 지원하는 토크나이저를 사용하는지 확인하려면, [이 표](https://huggingface.co/docs/transformers/index#supported-frameworks)를 확인하세요.
@ -318,7 +371,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
| [과제 요약](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers가 지원하는 과제들 |
| [전처리 튜토리얼](https://huggingface.co/docs/transformers/preprocessing) | `Tokenizer` 클래스를 이용해 모델을 위한 데이터 준비하기 |
| [학습과 fine-tuning](https://huggingface.co/docs/transformers/training) | 🤗 Transformers가 제공하는 모델 PyTorch/TensorFlow 학습 과정과 `Trainer` API에서 사용하기 |
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/master/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
| [퀵 투어: Fine-tuning/사용 스크립트](https://github.com/huggingface/transformers/tree/main/examples) | 다양한 과제에서 모델 fine-tuning하는 예시 스크립트 |
| [모델 공유 및 업로드](https://huggingface.co/docs/transformers/model_sharing) | 커뮤니티에 fine-tune된 모델을 업로드 및 공유하기 |
| [마이그레이션](https://huggingface.co/docs/transformers/migration) | `pytorch-transformers`나 `pytorch-pretrained-bert`에서 🤗 Transformers로 이동하기|

View File

@ -46,9 +46,9 @@ checkpoint: 检查点
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
@ -57,7 +57,7 @@ checkpoint: 检查点
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -67,8 +67,9 @@ checkpoint: 检查点
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<b>简体中文</b> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a>
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hant.md">繁體中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a>
<p>
</h4>
@ -173,7 +174,7 @@ checkpoint: 检查点
- 对所有模型统一的API
1. 更低计算开销,更少的碳排放:
- 研究人员可以分享亿训练的模型而非次从头开始训练
- 研究人员可以分享训练的模型而非次从头开始训练
- 工程师可以减少计算用时和生产环境开销
- 数十种模型架构、两千多个预训练模型、100多种语言支持
@ -191,7 +192,7 @@ checkpoint: 检查点
- 本库并不是模块化的神经网络工具箱。模型文件中的代码特意呈若璞玉,未经额外抽象封装,以便研究人员快速迭代魔改而不致溺于抽象和文件跳转之中。
- `Trainer` API 并非兼容任何模型,只为本库之模型优化。若是在寻找适用于通用机器学习的训练循环实现,请另觅他库。
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/master/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
- 尽管我们已尽力而为,[examples 目录](https://github.com/huggingface/transformers/tree/main/examples)中的脚本也仅为用例而已。对于你的特定问题,它们并不一定开箱即用,可能需要改几行代码以适之。
## 安装
@ -227,7 +228,7 @@ conda install -c huggingface transformers
## 模型架构
**🤗 Transformers 支持的[所有的模型检查点](https://huggingface.co/models)** 由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。
🤗 Transformers 支持的[**所有的模型检查点**](https://huggingface.co/models)由[用户](https://huggingface.co/users)和[组织](https://huggingface.co/organizations)上传,均与 huggingface.co [model hub](https://huggingface.co) 无缝整合。
目前的检查点数量: ![](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen)
@ -245,58 +246,96 @@ conda install -c huggingface transformers
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (来自 Google Research) 伴随论文 [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) 由 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed 发布。
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (来自 Inria/Facebook/Sorbonne) 伴随论文 [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) 由 Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot 发布。
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (来自 Google Research) 伴随论文 [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) 由 Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting 发布。
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (来自 OpenAI) 伴随论文 [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) 由 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever 发布。
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (来自 Salesforce) 伴随论文 [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) 由 Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong 发布。
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (来自 Microsoft Research Asia) 伴随论文 [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) 由 Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang 发布。
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (来自 YituTech) 伴随论文 [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) 由 Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan 发布。
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (来自 Facebook AI) 伴随论文 [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) 由 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie 发布。
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (来自 Tsinghua University) 伴随论文 [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) 由 Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun 发布。
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (来自 Salesforce) 伴随论文 [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) 由 Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher 发布。
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (来自 Microsoft) 伴随论文 [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) 由 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang 发布。
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (来自 Facebook) 伴随论文 [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) 由 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli 发布。
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (来自 Microsoft) 伴随论文 [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) 由 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen 发布。
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (来自 Berkeley/Facebook/Google) 伴随论文 [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) 由 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch 发布。
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (来自 SenseTime Research) 伴随论文 [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) 由 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai 发布。
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (来自 Facebook) 伴随论文 [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) 由 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou 发布。
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (来自 Facebook) 伴随论文 [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) 由 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko 发布。
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (来自 Microsoft Research) 伴随论文 [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) 由 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan 发布。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) 和德语版 DistilBERT。
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (来自 HuggingFace), 伴随论文 [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 同样的方法也应用于压缩 GPT-2 到 [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa 到 [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT 到 [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) 和德语版 DistilBERT。
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (来自 Microsoft Research) 伴随论文 [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) 由 Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei 发布。
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (来自 NAVER) 伴随论文 [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) 由 Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park 发布。
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (来自 Facebook) 伴随论文 [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) 由 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih 发布。
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (来自 Intel Labs) 伴随论文 [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) 由 René Ranftl, Alexey Bochkovskiy, Vladlen Koltun 发布。
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (来自 Baidu) 伴随论文 [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu 发布。
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (来自 Facebook AI) 伴随论文 [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) 由 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela 发布。
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (来自 KAIST) 伴随论文 [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) 由 Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim 发布。
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (来自 ABEJA) 由 Shinya Otani, Takayoshi Makabe, Anuj Arora, Kyo Hattori。
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (来自 OpenAI) 伴随论文 [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) 由 Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever** 发布。
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (来自 EleutherAI) 伴随论文 [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) 由 Ben Wang and Aran Komatsuzaki 发布。
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (来自 UCSD, NVIDIA) 伴随论文 [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) 由 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang 发布。
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (来自 Facebook) 伴随论文 [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) 由 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed 发布。
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (来自 Berkeley) 伴随论文 [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) 由 Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer 发布。
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (来自 OpenAI) 伴随论文 [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) 由 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever 发布。
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) 由 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou 发布。
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) 由 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (来自 Microsoft Research Asia) 伴随论文 [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) 由 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei 发布。
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (来自 Microsoft Research Asia) 伴随论文 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) 由 Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei 发布。
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (来自 Meta AI) 伴随论文 [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) 由 Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze 发布。
1. **[LiLT](https://huggingface.co/docs/transformers/main/model_doc/lilt)** (来自 South China University of Technology) 伴随论文 [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) 由 Jiapeng Wang, Lianwen Jin, Kai Ding 发布。
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (来自 AllenAI) 伴随论文 [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) 由 Iz Beltagy, Matthew E. Peters, Arman Cohan 发布。
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (来自 Google AI) released 伴随论文 [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) 由 Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang 发布。
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (来自 Studio Ousia) 伴随论文 [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) 由 Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto 发布。
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (来自 UNC Chapel Hill) 伴随论文 [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) 由 Hao Tan and Mohit Bansal 发布。
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (来自 Facebook) 伴随论文 [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) 由 Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert 发布。
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (来自 Facebook) 伴随论文 [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) 由 Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin 发布。
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** 用 [OPUS](http://opus.nlpl.eu/) 数据训练的机器翻译模型由 Jörg Tiedemann 发布。[Marian Framework](https://marian-nmt.github.io/) 由微软翻译团队开发。
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (来自 Microsoft Research Asia) 伴随论文 [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) 由 Junlong Li, Yiheng Xu, Lei Cui, Furu Wei 发布。
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov >>>>>>> Fix rebase
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) 由 Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer 发布。
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (来自 Facebook) 伴随论文 [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) 由 Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan 发布。
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (来自 NVIDIA) 伴随论文 [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) 由 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro 发布。
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (来自 Studio Ousia) 伴随论文 [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) 由 Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka 发布。
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (来自 CMU/Google Brain) 伴随论文 [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) 由 Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou 发布。
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (来自 Apple) 伴随论文 [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) 由 Sachin Mehta and Mohammad Rastegari 发布。
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (来自 Microsoft Research) 伴随论文 [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) 由 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu 发布。
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (来自 Google AI) 伴随论文 [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) 由 Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (来自 中国人民大学 AI Box) 伴随论文 [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) 由 Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen 发布。
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (来自华为诺亚方舟实验室) 伴随论文 [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) 由 Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu 发布。
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (来自 Meta) 伴随论文 [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) 由 the NLLB team 发布。
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (来自 the University of Wisconsin - Madison) 伴随论文 [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) 由 Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh 发布。
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (来自 UCLA NLP) 伴随论文 [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) 由 Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang 发布。
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (来自 Sea AI Labs) 伴随论文 [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) 由 Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng 发布。
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (来自 Facebook) 伴随论文 [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) 由 Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela 发布。
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (来自 ZhuiyiTechnology), 伴随论文 [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) 由 Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu 发布。
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (来自 NVIDIA) 伴随论文 [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) 由 Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo 发布。
@ -305,29 +344,43 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (来自 Facebook), 伴随论文 [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino 发布。
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (来自 Facebook) 伴随论文 [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) 由 Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau 发布。
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (来自 Tel Aviv University) 伴随论文 [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) 由 Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy 发布。
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (来自 Berkeley) 伴随论文 [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) 由 Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer 发布。
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (来自 Microsoft) 伴随论文 [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) 由 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo 发布。
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (来自 Microsoft) 伴随论文 [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) 由 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo 发布。
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (来自 Google AI) 伴随论文 [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (来自 Google AI) 伴随论文 [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) 由 Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu 发布。
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (来自 Google AI) 伴随论文 [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) 由 Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos 发布。
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (来自 Microsoft Research) 伴随论文 [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) 由 Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou 发布。
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (来自 Google/CMU) 伴随论文 [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) 由 Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov 发布。
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (来自 Microsoft) 伴随论文 [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) 由 Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei 发布。
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (来自 Microsoft Research) 伴随论文 [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) 由 Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang 发布。
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (来自 Microsoft Research) 伴随论文 [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) 由 Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu 发布。
1. **[ViLT)](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (来自 Tsinghua University and Nankai University) 伴随论文 [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) 由 Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu 发布。
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (来自 Multimedia Computing Group, Nanjing University) 伴随论文 [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) 由 Zhan Tong, Yibing Song, Jue Wang, Limin Wang 发布。
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (来自 NAVER AI Lab/Kakao Enterprise/Kakao Brain) 伴随论文 [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) 由 Wonjae Kim, Bokyung Son, Ildoo Kim 发布。
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (来自 Google AI) 伴随论文 [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) 由 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby 发布。
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (来自 UCLA NLP) 伴随论文 [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) 由 Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang 发布。
1. **[ViTMAE)](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (来自 Meta AI) 伴随论文 [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) 由 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick 发布。
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (来自 Meta AI) 伴随论文 [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas 发布.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (来自 Facebook AI) 伴随论文 [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) 由 Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (来自 Facebook AI) 伴随论文 [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) 由 Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino 发布。
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (来自 Facebook AI) 伴随论文 [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) 由 Qiantong Xu, Alexei Baevski, Michael Auli 发布。
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (来自 OpenAI) 伴随论文 [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) 由 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever 发布。
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (来自 Microsoft Research) 伴随论文 [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) 由 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling 发布。
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (来自 Facebook) 伴随论文 [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) 由 Guillaume Lample and Alexis Conneau 发布。
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (来自 Facebook AI), 伴随论文 [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) 由 Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov 发布。
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (来自 Facebook AI) 伴随论文 [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) 由 Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau 发布。
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (来自 Google/CMU) 伴随论文 [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) 由 Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le 发布。
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (来自 Facebook AI) 伴随论文 [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) 由 Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli 发布。
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (来自 Facebook AI) 伴随论文 [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) 由 Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (来自 Huazhong University of Science & Technology) 伴随论文 [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) 由 Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu 发布。
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (来自 the University of Wisconsin - Madison) 伴随论文 [You Only Sample (Almost) 由 Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh 发布。
1. 想要贡献新的模型?我们这里有一份**详细指引和模板**来引导你添加新的模型。你可以在 [`templates`](./templates) 目录中找到他们。记得查看 [贡献指南](./CONTRIBUTING.md) 并在开始写 PR 前联系维护人员或开一个新的 issue 来获得反馈。
要检查某个模型是否已有 Flax、PyTorch 或 TensorFlow 的实现,或其是否在 🤗 Tokenizers 库中有对应词符化器tokenizer敬请参阅[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
@ -342,8 +395,8 @@ conda install -c huggingface transformers
| [文档](https://huggingface.co/transformers/) | 完整的 API 文档和教程 |
| [任务总结](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支持的任务 |
| [预处理教程](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 来为模型准备数据 |
| [训练和微调](https://huggingface.co/docstransformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/master/examples) | 为各种任务提供的用例脚本 |
| [训练和微调](https://huggingface.co/docs/transformers/training) | 在 PyTorch/TensorFlow 的训练循环或 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微调和用例脚本](https://github.com/huggingface/transformers/tree/main/examples) | 为各种任务提供的用例脚本 |
| [模型分享和上传](https://huggingface.co/docs/transformers/model_sharing) | 和社区上传和分享你微调的模型 |
| [迁移](https://huggingface.co/docs/transformers/migration) | 从 `pytorch-transformers` 或 `pytorch-pretrained-bert` 迁移到 🤗 Transformers |

View File

@ -58,9 +58,9 @@ user: 使用者
<p>
<p align="center">
<a href="https://circleci.com/gh/huggingface/transformers">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/main">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/LICENSE">
<a href="https://github.com/huggingface/transformers/blob/main/LICENSE">
<img alt="GitHub" src="https://img.shields.io/github/license/huggingface/transformers.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/transformers/index">
@ -69,7 +69,7 @@ user: 使用者
<a href="https://github.com/huggingface/transformers/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/transformers.svg">
</a>
<a href="https://github.com/huggingface/transformers/blob/master/CODE_OF_CONDUCT.md">
<a href="https://github.com/huggingface/transformers/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://zenodo.org/badge/latestdoi/155220641"><img src="https://zenodo.org/badge/155220641.svg" alt="DOI"></a>
@ -78,9 +78,10 @@ user: 使用者
<h4 align="center">
<p>
<a href="https://github.com/huggingface/transformers/">English</a> |
<a href="https://github.com/huggingface/transformers/blob/master/README_zh-hans.md">简体中文</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_zh-hans.md">简体中文</a> |
<b>繁體中文</b> |
<a href="https://github.com/huggingface/transformers/blob/master/README_ko.md">한국어</a>
<a href="https://github.com/huggingface/transformers/blob/main/README_ko.md">한국어</a> |
<a href="https://github.com/huggingface/transformers/blob/main/README_es.md">Español</a>
<p>
</h4>
@ -185,7 +186,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
- 對所有模型使用的制式化API
1. 更低的運算成本,更少的碳排放:
- 研究人員可以分享訓練的模型而非從頭開始訓練
- 研究人員可以分享訓練的模型而非每次從頭開始訓練
- 工程師可以減少計算時間以及生產成本
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援
@ -203,7 +204,7 @@ Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換
- 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。
- `Trainer` API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。
- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/master/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
- 儘管我們已盡力而為,[examples 目錄](https://github.com/huggingface/transformers/tree/main/examples)中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
## 安裝
@ -257,58 +258,96 @@ conda install -c huggingface transformers
1. **[BigBird-RoBERTa](https://huggingface.co/docs/transformers/model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](https://huggingface.co/docs/transformers/model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](https://huggingface.co/docs/transformers/model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](https://huggingface.co/docs/transformers/model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](https://huggingface.co/docs/transformers/model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](https://huggingface.co/docs/transformers/model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](https://huggingface.co/docs/transformers/model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](https://huggingface.co/docs/transformers/model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](https://huggingface.co/docs/transformers/model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](https://huggingface.co/docs/transformers/model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](https://huggingface.co/docs/transformers/model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](https://huggingface.co/docs/transformers/model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/docs/transformers/model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](https://huggingface.co/docs/transformers/model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](https://huggingface.co/docs/transformers/model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](https://huggingface.co/docs/transformers/model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/docs/transformers/model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/docs/transformers/model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
1. **[DistilBERT](https://huggingface.co/docs/transformers/model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German version of DistilBERT.
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER) released with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](https://huggingface.co/docs/transformers/model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/docs/transformers/model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](https://huggingface.co/docs/transformers/model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[FlauBERT](https://huggingface.co/docs/transformers/model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](https://huggingface.co/docs/transformers/model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](https://huggingface.co/docs/transformers/model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/docs/transformers/model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](https://huggingface.co/docs/transformers/model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](https://huggingface.co/docs/transformers/model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/docs/transformers/model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](https://huggingface.co/docs/transformers/model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](https://huggingface.co/docs/transformers/model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](https://huggingface.co/docs/transformers/model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](https://huggingface.co/docs/transformers/model_doc/gptj)** (from EleutherAI) released with the paper [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](https://huggingface.co/docs/transformers/model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](https://huggingface.co/docs/transformers/model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](https://huggingface.co/docs/transformers/model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](https://huggingface.co/docs/transformers/master/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[ImageGPT](https://huggingface.co/docs/transformers/model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](https://huggingface.co/docs/transformers/model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LayoutLMv3](https://huggingface.co/docs/transformers/model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](https://huggingface.co/docs/transformers/model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](https://huggingface.co/docs/transformers/model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](https://huggingface.co/docs/transformers/model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](https://huggingface.co/docs/transformers/main/model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[Longformer](https://huggingface.co/docs/transformers/model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](https://huggingface.co/docs/transformers/model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](https://huggingface.co/docs/transformers/model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](https://huggingface.co/docs/transformers/model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](https://huggingface.co/docs/transformers/model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](https://huggingface.co/docs/transformers/model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MBart](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[MBart-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[MarkupLM](https://huggingface.co/docs/transformers/model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[MaskFormer](https://huggingface.co/docs/transformers/model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
1. **[mBART](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](https://huggingface.co/docs/transformers/model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/docs/transformers/model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/docs/transformers/model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](https://huggingface.co/docs/transformers/model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](https://huggingface.co/docs/transformers/model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](https://huggingface.co/docs/transformers/model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](https://huggingface.co/docs/transformers/model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/master/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[MVP](https://huggingface.co/docs/transformers/model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](https://huggingface.co/docs/transformers/model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](https://huggingface.co/docs/transformers/model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](https://huggingface.co/docs/transformers/model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](https://huggingface.co/docs/transformers/model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](https://huggingface.co/docs/transformers/model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[REALM](https://huggingface.co/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[RAG](https://huggingface.co/docs/transformers/model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](https://huggingface.co/docs/transformers/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](https://huggingface.co/docs/transformers/model_doc/regnet)** (from META Research) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](https://huggingface.co/docs/transformers/model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper a [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](https://huggingface.co/docs/transformers/model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
@ -317,29 +356,43 @@ conda install -c huggingface transformers
1. **[SpeechToTextTransformer](https://huggingface.co/docs/transformers/model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](https://huggingface.co/docs/transformers/model_doc/speech_to_text_2)** (from Facebook) released with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](https://huggingface.co/docs/transformers/model_doc/splinter)** (from Tel Aviv University) released with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBert](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/master/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[SqueezeBERT](https://huggingface.co/docs/transformers/model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](https://huggingface.co/docs/transformers/model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](https://huggingface.co/docs/transformers/model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](https://huggingface.co/docs/transformers/model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](https://huggingface.co/docs/transformers/model_doc/t5v1.1)** (from Google AI) released with the paper [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](https://huggingface.co/docs/transformers/model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](https://huggingface.co/docs/transformers/model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](https://huggingface.co/docs/transformers/model_doc/time_series_transformer)** (from HuggingFace).
1. **[Trajectory Transformer](https://huggingface.co/docs/transformers/model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](https://huggingface.co/docs/transformers/model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](https://huggingface.co/docs/transformers/model_doc/trocr)** (from Microsoft) released with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](https://huggingface.co/docs/transformers/model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](https://huggingface.co/docs/transformers/model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](https://huggingface.co/docs/transformers/model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[ViLT)](https://huggingface.co/docs/transformers/master/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VAN](https://huggingface.co/docs/transformers/model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/pdf/2202.09741.pdf) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](https://huggingface.co/docs/transformers/model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](https://huggingface.co/docs/transformers/model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](https://huggingface.co/docs/transformers/model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](https://huggingface.co/docs/transformers/model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE)](https://huggingface.co/docs/transformers/master/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMAE](https://huggingface.co/docs/transformers/model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](https://huggingface.co/docs/transformers/model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/master/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/master/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Wav2Vec2-Conformer](https://huggingface.co/docs/transformers/model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](https://huggingface.co/docs/transformers/model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](https://huggingface.co/docs/transformers/model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](https://huggingface.co/docs/transformers/model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](https://huggingface.co/docs/transformers/model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[XGLM](https://huggingface.co/docs/transformers/model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](https://huggingface.co/docs/transformers/model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](https://huggingface.co/docs/transformers/model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](https://huggingface.co/docs/transformers/model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](https://huggingface.co/docs/transformers/model_doc/xlm-roberta-xl)** (from Facebook AI) released with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](https://huggingface.co/docs/transformers/model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](https://huggingface.co/docs/master/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLS-R](https://huggingface.co/docs/transformers/model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](https://huggingface.co/docs/transformers/model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOSO](https://huggingface.co/docs/transformers/master/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. **[YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](https://huggingface.co/docs/transformers/model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
1. 想要貢獻新的模型?我們這裡有一份**詳細指引和模板**來引導你加入新的模型。你可以在 [`templates`](./templates) 目錄中找到它們。記得查看[貢獻指引](./CONTRIBUTING.md)並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer敬請參閱[此表](https://huggingface.co/docs/transformers/index#supported-frameworks)。
@ -355,7 +408,7 @@ conda install -c huggingface transformers
| [任務概覽](https://huggingface.co/docs/transformers/task_summary) | 🤗 Transformers 支援的任務 |
| [預處理教學](https://huggingface.co/docs/transformers/preprocessing) | 使用 `Tokenizer` 來為模型準備資料 |
| [訓練和微調](https://huggingface.co/docs/transformers/training) | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 `Trainer` API 中使用 🤗 Transformers 提供的模型 |
| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/master/examples) | 為各種任務提供的範例腳本 |
| [快速上手:微調和範例腳本](https://github.com/huggingface/transformers/tree/main/examples) | 為各種任務提供的範例腳本 |
| [模型分享和上傳](https://huggingface.co/docs/transformers/model_sharing) | 上傳並與社群分享你微調的模型 |
| [遷移](https://huggingface.co/docs/transformers/migration) | 從 `pytorch-transformers` 或 `pytorch-pretrained-bert` 遷移到 🤗 Transformers |

View File

@ -15,6 +15,7 @@
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
@ -22,7 +23,7 @@ from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
git_repo_path = abspath(join(dirname(dirname(__file__)), "src"))
git_repo_path = abspath(join(dirname(__file__), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
@ -31,7 +32,6 @@ warnings.simplefilter(action="ignore", category=FutureWarning)
def pytest_configure(config):
config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipeline are tested")
config.addinivalue_line(
"markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested"
)
@ -59,3 +59,19 @@ def pytest_sessionfinish(session, exitstatus):
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
session.exitstatus = 0
# Doctest custom flag to ignore output.
IGNORE_RESULT = doctest.register_optionflag('IGNORE_RESULT')
OutputChecker = doctest.OutputChecker
class CustomOutputChecker(OutputChecker):
def check_output(self, want, got, optionflags):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self, want, got, optionflags)
doctest.OutputChecker = CustomOutputChecker

View File

@ -0,0 +1,56 @@
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
# The following `ARG` are mainly used to specify the versions explicitly & directly in this docker file, and not meant
# to be used as arguments for docker build (so far).
ARG PYTORCH='1.12.1'
# (not always a valid torch version)
ARG INTEL_TORCH_EXT='1.11.0'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu113'
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# TODO: Handle these in a python utility script
RUN [ ${#PYTORCH} -gt 0 -a "$PYTORCH" != "pre" ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; echo "export VERSION='$VERSION'" >> ~/.profile
RUN echo torch=$VERSION
# `torchvision` and `torchaudio` should be installed along with `torch`, especially for nightly build.
# Currently, let's just use their latest releases (when `torch` is installed with a release version)
# TODO: We might need to specify proper versions that work with a specific torch version (especially for past CI).
RUN [ "$PYTORCH" != "pre" ] && python3 -m pip install --no-cache-dir -U $VERSION torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA || python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir -U tensorflow
RUN python3 -m pip install --no-cache-dir -U tensorflow_probability
RUN python3 -m pip uninstall -y flax jax
# Use installed torch version for `torch-scatter` to avid to deal with PYTORCH='pre'.
# If torch is nightly version, the link is likely to be invalid, but the installation falls back to the latest torch-scatter
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+$CUDA.html
RUN python3 -m pip install --no-cache-dir intel_extension_for_pytorch==$INTEL_TORCH_EXT+cpu -f https://software.intel.com/ipex-whl-stable
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install -U "itsdangerous<2.1.0"
RUN python3 -m pip install --no-cache-dir git+https://github.com/huggingface/accelerate@main#egg=accelerate
# Add bitsandbytes for mixed int8 testing
RUN python3 -m pip install --no-cache-dir bitsandbytes
RUN python3 -m pip install --no-cache-dir decord
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -23,4 +23,4 @@ COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
CMD ["/bin/bash"]

View File

@ -0,0 +1,20 @@
FROM python:3.8
LABEL maintainer="Hugging Face"
RUN apt update
RUN git clone https://github.com/huggingface/transformers
RUN python3 -m pip install --no-cache-dir --upgrade pip && python3 -m pip install --no-cache-dir git+https://github.com/huggingface/doc-builder ./transformers[dev]
RUN apt-get -y update && apt-get install -y libsndfile1-dev && apt install -y tesseract-ocr
# Torch needs to be installed before deepspeed
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed]
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python -c "from torch import version; print(version.__version__.split('+')[0])")+cpu.html
RUN python3 -m pip install --no-cache-dir torchvision git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install --no-cache-dir pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# Test if the image could successfully build the doc. before publishing the image
RUN doc-builder build transformers transformers/docs/source/en --build_dir doc-build-dev --notebook_dir notebooks/transformers_doc --clean
RUN rm -rf doc-build-dev

View File

@ -0,0 +1,43 @@
ARG BASE_DOCKER_IMAGE="nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04"
FROM $BASE_DOCKER_IMAGE
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Use login shell to read variables from `~/.profile` (to pass dynamic created variables between RUN commands)
SHELL ["sh", "-lc"]
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg git-lfs
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev,onnxruntime]
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
ARG FRAMEWORK
ARG VERSION
# Remove all frameworks
# (`accelerate` requires `torch`, and this causes import issues for TF-only testing)
RUN python3 -m pip uninstall -y torch torchvision torchaudio accelerate tensorflow jax flax
# Get the libraries and their versions to install, and write installation command to `~/.profile`.
RUN python3 ./transformers/utils/past_ci_versions.py --framework $FRAMEWORK --version $VERSION
# Install the target framework
RUN echo "INSTALL_CMD = $INSTALL_CMD"
RUN $INSTALL_CMD
# Having installation problems for torch-scatter with torch <= 1.6. Disable so we have the same set of tests.
# (This part will be removed once the logic of using `past_ci_versions.py` is used in other Dockerfile files.)
# # Use installed torch version for `torch-scatter`.
# # (The env. variable $CUDA is defined in `past_ci_versions.py`)
# RUN [ "$FRAMEWORK" = "pytorch" ] && python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+$CUDA.html || echo "torch-scatter not to be installed"
RUN python3 -m pip install -U "itsdangerous<2.1.0"

View File

@ -0,0 +1,35 @@
FROM nvcr.io/nvidia/pytorch:21.03-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
ARG PYTORCH='1.12.1'
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu113'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# Install latest release PyTorch
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U torch==$PYTORCH torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Pre-build **latest** DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run (again) inside the GPU VMs running the tests.
# The installation works here, but some tests fail, if we don't pre-build deepspeed again in the VMs running the tests.
# TODO: Find out why test fail.
RUN DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install deepspeed --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -0,0 +1,53 @@
FROM nvcr.io/nvidia/pytorch:21.03-py3
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
# Example: `cu102`, `cu113`, etc.
ARG CUDA='cu113'
RUN apt -y update
RUN apt install -y libaio-dev
RUN python3 -m pip install --no-cache-dir --upgrade pip
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
# Install **nightly** release PyTorch (flag `--pre`)
# (PyTorch must be installed before pre-compiling any DeepSpeed c++/cuda ops.)
# (https://www.deepspeed.ai/tutorials/advanced-install/#pre-install-deepspeed-ops)
RUN python3 -m pip install --no-cache-dir -U --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/$CUDA
RUN python3 -m pip install --no-cache-dir ./transformers[deepspeed-testing]
# Pre-build **nightly** release of DeepSpeed, so it would be ready for testing (otherwise, the 1st deepspeed test will timeout)
RUN python3 -m pip uninstall -y deepspeed
# This has to be run inside the GPU VMs running the tests. (So far, it fails here due to GPU checks during compilation.)
# Issue: https://github.com/microsoft/DeepSpeed/issues/2010
# RUN git clone https://github.com/microsoft/DeepSpeed && cd DeepSpeed && rm -rf build && \
# DS_BUILD_CPU_ADAM=1 DS_BUILD_FUSED_ADAM=1 DS_BUILD_AIO=1 DS_BUILD_UTILS=1 python3 -m pip install . --global-option="build_ext" --global-option="-j8" --no-cache -v --disable-pip-version-check 2>&1
# For `torchdynamo` tests
# (see https://github.com/huggingface/transformers/pull/17765)
RUN git clone https://github.com/pytorch/functorch
RUN python3 -m pip install --no-cache-dir ./functorch[aot]
RUN cd functorch && python3 setup.py develop
RUN git clone https://github.com/pytorch/torchdynamo
RUN python3 -m pip install -r ./torchdynamo/requirements.txt
RUN cd torchdynamo && python3 setup.py develop
# install TensorRT
RUN python3 -m pip install --no-cache-dir -U nvidia-pyindex
RUN python3 -m pip install --no-cache-dir -U nvidia-tensorrt==8.2.4.2
# install torch_tensorrt (fx path)
RUN git clone https://github.com/pytorch/TensorRT.git
RUN cd TensorRT/py && python3 setup.py install --fx-only
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop
# Disable for now as deepspeed is not installed above. To be enabled once the issue is fixed.
# RUN python3 -c "from deepspeed.launcher.runner import main"

View File

@ -1,30 +1,31 @@
FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
ARG DEBIAN_FRONTEND=noninteractive
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
torch
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
RUN git clone https://github.com/NVIDIA/apex
RUN cd apex && \
python3 setup.py install && \
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-torch,testing]
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
# If set to nothing, will install the latest version
ARG PYTORCH='1.12.1'
ARG TORCH_VISION=''
ARG TORCH_AUDIO=''
CMD ["/bin/bash"]
RUN [ ${#PYTORCH} -gt 0 ] && VERSION='torch=='$PYTORCH'.*' || VERSION='torch'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN [ ${#TORCH_VISION} -gt 0 ] && VERSION='torchvision=='TORCH_VISION'.*' || VERSION='torchvision'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN [ ${#TORCH_AUDIO} -gt 0 ] && VERSION='torchaudio=='TORCH_AUDIO'.*' || VERSION='torchaudio'; python3 -m pip install --no-cache-dir -U $VERSION --extra-index-url https://download.pytorch.org/whl/cu113
RUN python3 -m pip uninstall -y tensorflow flax
RUN python3 -m pip install --no-cache-dir torch-scatter -f https://data.pyg.org/whl/torch-$(python3 -c "from torch import version; print(version.__version__.split('+')[0])")+cu113.html
RUN python3 -m pip install --no-cache-dir git+https://github.com/facebookresearch/detectron2.git pytesseract https://github.com/kpu/kenlm/archive/master.zip
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -1,7 +1,7 @@
FROM google/cloud-sdk:slim
# Build args.
ARG GITHUB_REF=refs/heads/master
ARG GITHUB_REF=refs/heads/main
# TODO: This Dockerfile installs pytorch/xla 3.6 wheels. There are also 3.7
# wheels available; see below.

View File

@ -22,4 +22,4 @@ COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
CMD ["/bin/bash"]
CMD ["/bin/bash"]

View File

@ -1,25 +1,23 @@
FROM nvidia/cuda:10.1-cudnn7-runtime-ubuntu18.04
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04
LABEL maintainer="Hugging Face"
LABEL repository="transformers"
RUN apt update && \
apt install -y bash \
build-essential \
git \
curl \
ca-certificates \
python3 \
python3-pip && \
rm -rf /var/lib/apt/lists
ARG DEBIAN_FRONTEND=noninteractive
RUN python3 -m pip install --no-cache-dir --upgrade pip && \
python3 -m pip install --no-cache-dir \
mkl \
tensorflow
RUN apt update
RUN apt install -y git libsndfile1-dev tesseract-ocr espeak-ng python3 python3-pip ffmpeg
RUN python3 -m pip install --no-cache-dir --upgrade pip
WORKDIR /workspace
COPY . transformers/
RUN cd transformers/ && \
python3 -m pip install --no-cache-dir .
ARG REF=main
RUN git clone https://github.com/huggingface/transformers && cd transformers && git checkout $REF
RUN python3 -m pip install --no-cache-dir -e ./transformers[dev-tensorflow,testing]
CMD ["/bin/bash"]
# If set to nothing, will install the latest version
ARG TENSORFLOW=''
RUN [ ${#TENSORFLOW} -gt 0 ] && VERSION='tensorflow=='$TENSORFLOW'.*' || VERSION='tensorflow'; python3 -m pip install --no-cache-dir -U $VERSION
RUN python3 -m pip uninstall -y torch flax
RUN python3 -m pip install -U "itsdangerous<2.1.0"
# When installing in editable mode, `transformers` is not recognized as a package.
# this line must be added in order for python to be aware of transformers.
RUN cd transformers && python3 setup.py develop

View File

@ -16,7 +16,7 @@ limitations under the License.
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
@ -33,28 +33,49 @@ pip install git+https://github.com/huggingface/doc-builder
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look like before committing for instance). You don't have to commit the built documentation.
check how they look before committing for instance). You don't have to commit the built documentation.
---
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by typing th
following command:
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
doc-builder build transformers docs/source/ --build_dir ~/tmp/test-build
doc-builder build transformers docs/source/en/ --build_dir ~/tmp/test-build
```
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview {package_name} {path_to_docs}
```
For example:
```bash
doc-builder preview transformers docs/source/en/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
It's not possible to see locally how the final documentation will look like for now. Once you have opened a PR, you
will see a bot add a comment to a link where the documentation with your changes lives.
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
@ -63,11 +84,11 @@ will see a bot add a comment to a link where the documentation with your changes
Accepted files are Markdown (.md or .mdx).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/master/docs/source/_toctree.yml) file.
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/transformers/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
It helps to keep the old links working when renaming section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums and Social media and it'd be make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
@ -78,7 +99,7 @@ Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course if you moved it to another file, then:
and of course, if you moved it to another file, then:
```
Sections that were moved:
@ -88,7 +109,7 @@ Sections that were moved:
Use the relative style to link to the new file so that the versioned docs continue to work.
For an example of a rich moved sections set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/master/docs/source/main_classes/trainer.mdx).
For an example of a rich moved section set please see the very end of [the Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.mdx).
## Writing Documentation - Specification
@ -105,9 +126,14 @@ Adding a new tutorial or section is done in two steps:
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users or researchers) it should go in section two, three or
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or
four.
### Translating
When translating, refer to the guide at [./TRANSLATING.md](https://github.com/huggingface/transformers/blob/main/docs/TRANSLATING.md).
### Adding a new model
When adding a new model:
@ -151,8 +177,8 @@ not to be displayed in the documentation, you can do so by specifying which meth
- save_vocabulary
```
If you just want to add a method that is not documented (for instance magic method like `__call__` are not documented
byt default) you can put the list of methods to add in a list that contains `all`:
If you just want to add a method that is not documented (for instance magic methods like `__call__` are not documented
by default) you can put the list of methods to add in a list that contains `all`:
```
## XXXTokenizer
@ -165,23 +191,23 @@ byt default) you can put the list of methods to add in a list that contains `all
### Writing source documentation
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None or any strings should usually be put in `code`.
and objects like True, None, or any strings should usually be put in `code`.
When mentioning a class, function or method, it is recommended to use our syntax for internal links so that our tool
When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
If you want to create a link to some internal class or function, you need to
provide its path. For instance: \[\`file_utils.ModelOutput\`\]. This will be converted into a link with
`file_utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~file_utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
provide its path. For instance: \[\`utils.ModelOutput\`\]. This will be converted into a link with
`utils.ModelOutput` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~utils.ModelOutput\`\] will generate a link with `ModelOutput` in the description.
The same wroks for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
#### Defining arguments in a method
Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon and its
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
description:
```
@ -190,7 +216,7 @@ description:
```
If the description is too long to fit in one line, another indentation is necessary before writing the description
after th argument.
after the argument.
Here's an example showcasing everything so far:
@ -240,7 +266,7 @@ Multi-line code blocks can be useful for displaying examples. They are done betw
````
We follow the [doctest](https://docs.python.org/3/library/doctest.html) syntax for the examples to automatically test
the results stay consistent with the library.
the results to stay consistent with the library.
#### Writing a return block
@ -248,27 +274,27 @@ The return block should be introduced with the `Returns:` prefix, followed by a
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
building the return.
Here's an example for a single value return:
Here's an example of a single value return:
```
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example for tuple return, comprising several objects:
Here's an example of a tuple return, comprising several objects:
```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
#### Adding an image
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like
the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference
them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images).
If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images
@ -283,3 +309,123 @@ We have an automatic script running with the `make style` comment that will make
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.
# Testing documentation examples
Good documentation often comes with an example of how a specific function or class should be used.
Each model class should contain at least one example showcasing
how to use this model class in inference. *E.g.* the class [Wav2Vec2ForCTC](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC)
includes an example of how to transcribe speech to text in the
[docstring of its forward function](https://huggingface.co/docs/transformers/model_doc/wav2vec2#transformers.Wav2Vec2ForCTC.forward).
## Writing documentation examples
The syntax for Example docstrings can look as follows:
```
Example:
```python
>>> from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import torch
>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
>>> model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
>>> # audio file is decoded on the fly
>>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> # transcribe speech
>>> transcription = processor.batch_decode(predicted_ids)
>>> transcription[0]
'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'
```
```
The docstring should give a minimal, clear example of how the respective model
is to be used in inference and also include the expected (ideally sensible)
output.
Often, readers will try out the example before even going through the function
or class definitions. Therefore it is of utmost importance that the example
works as expected.
## Docstring testing
To do so each example should be included in the doctests.
We use pytests' [doctest integration](https://docs.pytest.org/doctest.html) to verify that all of our examples run correctly.
For Transformers, the doctests are run on a daily basis via GitHub Actions as can be
seen [here](https://github.com/huggingface/transformers/actions/workflows/doctests.yml).
To include your example in the daily doctests, you need to add the filename that
contains the example docstring to the [documentation_tests.txt](../utils/documentation_tests.txt).
### For Python files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
If you work on a specific python module, say `modeling_wav2vec2.py`, you can run the command as follows (to avoid the unnecessary temporary changes in irrelevant files):
```bash
python utils/prepare_for_doc_test.py src/transformers/utils/doc.py src/transformers/models/wav2vec2/modeling_wav2vec2.py
```
(`utils/doc.py` should always be included)
Then you can run all the tests in the docstrings of a given file with the following command, here is how we test the modeling file of Wav2Vec2 for instance:
```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py -sv --doctest-continue-on-failure
```
If you want to isolate a specific docstring, just add `::` after the file name then type the whole path of the function/class/method whose docstring you want to test. For instance, here is how to just test the forward method of `Wav2Vec2ForCTC`:
```bash
pytest --doctest-modules src/transformers/models/wav2vec2/modeling_wav2vec2.py::transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward -sv --doctest-continue-on-failure
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### For Markdown files
You will first need to run the following command (from the root of the repository) to prepare the doc file (doc-testing needs to add additional lines that we don't include in the doc source files):
```bash
python utils/prepare_for_doc_test.py src docs
```
Then you can test locally a given file with this command (here testing the quicktour):
```bash
pytest --doctest-modules docs/source/quicktour.mdx -sv --doctest-continue-on-failure --doctest-glob="*.mdx"
```
Once you're done, you can run the following command (still from the root of the repository) to undo the changes made by the first command before committing:
```bash
python utils/prepare_for_doc_test.py src docs --remove_new_line
```
### Writing doctests
Here are a few tips to help you debug the doctests and make them pass:
- The outputs of the code need to match the expected output **exactly**, so make sure you have the same outputs. In particular doctest will see a difference between single quotes and double quotes, or a missing parenthesis. The only exceptions to that rule are:
* whitespace: one give whitespace (space, tabulation, new line) is equivalent to any number of whitespace, so you can add new lines where there are spaces to make your output more readable.
* numerical values: you should never put more than 4 or 5 digits to expected results as different setups or library versions might get you slightly different results. `doctest` is configured to ignore any difference lower than the precision to which you wrote (so 1e-4 if you write 4 digits).
- Don't leave a block of code that is very long to execute. If you can't make it fast, you can either not use the doctest syntax on it (so that it's ignored), or if you want to use the doctest syntax to show the results, you can add a comment `# doctest: +SKIP` at the end of the lines of code too long to execute
- Each line of code that produces a result needs to have that result written below. You can ignore an output if you don't want to show it in your code example by adding a comment ` # doctest: +IGNORE_RESULT` at the end of the line of code producing it.

57
docs/TRANSLATING.md Normal file
View File

@ -0,0 +1,57 @@
### Translating the Transformers documentation into your language
As part of our mission to democratize machine learning, we'd love to make the Transformers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏.
**🗞️ Open an issue**
To get started, navigate to the [Issues](https://github.com/huggingface/transformers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button.
Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list.
**🍴 Fork the repository**
First, you'll need to [fork the Transformers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page.
Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows:
```bash
git clone https://github.com/YOUR-USERNAME/transformers.git
```
**📋 Copy-paste the English version with a new language code**
The documentation files are in one leading directory:
- [`docs/source`](https://github.com/huggingface/transformers/tree/main/docs/source): All the documentation materials are organized here by language.
You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/transformers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following:
```bash
cd ~/path/to/transformers/docs
cp -r source/en source/LANG-ID
```
Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table.
**✍️ Start translating**
The fun part comes - translating the text!
The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website.
> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory!
The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/transformers/blob/main/docs/source/en/_toctree.yml):
```yaml
- sections:
- local: pipeline_tutorial # Do not change this! Use the same name for your .md file
title: Pipelines for inference # Translate this!
...
title: Tutorials # Translate this!
```
Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter.
> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/transformers/issues) and tag @sgugger.

View File

@ -6,4 +6,9 @@ INSTALL_CONTENT = """
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

View File

@ -1,336 +0,0 @@
- sections:
- local: index
title: 🤗 Transformers
- local: quicktour
title: Quick tour
- local: installation
title: Installation
- local: philosophy
title: Philosophy
- local: glossary
title: Glossary
title: Get started
- sections:
- local: task_summary
title: Summary of the tasks
- local: model_summary
title: Summary of the models
- local: preprocessing
title: Preprocessing data
- local: training
title: Fine-tuning a pretrained model
- local: accelerate
title: Distributed training with 🤗 Accelerate
- local: model_sharing
title: Model sharing and uploading
- local: tokenizer_summary
title: Summary of the tokenizers
- local: multilingual
title: Multi-lingual models
title: "Using 🤗 Transformers"
- sections:
- local: examples
title: Examples
- local: troubleshooting
title: Troubleshooting
- local: custom_datasets
title: Fine-tuning with custom datasets
- local: notebooks
title: "🤗 Transformers Notebooks"
- local: sagemaker
title: Run training on Amazon SageMaker
- local: community
title: Community
- local: converting_tensorflow_models
title: Converting Tensorflow Checkpoints
- local: migration
title: Migrating from previous packages
- local: contributing
title: How to contribute to transformers?
- local: add_new_model
title: "How to add a model to 🤗 Transformers?"
- local: add_new_pipeline
title: "How to add a pipeline to 🤗 Transformers?"
- local: fast_tokenizers
title: "Using tokenizers from 🤗 Tokenizers"
- local: performance
title: 'Performance and Scalability: How To Fit a Bigger Model and Train It Faster'
- local: parallelism
title: Model Parallelism
- local: testing
title: Testing
- local: debugging
title: Debugging
- local: serialization
title: Exporting 🤗 Transformers models
- local: pr_checks
title: Checks on a Pull Request
title: Advanced guides
- sections:
- local: bertology
title: BERTology
- local: perplexity
title: Perplexity of fixed-length models
- local: benchmarks
title: Benchmarks
title: Research
- sections:
- sections:
- local: main_classes/callback
title: Callbacks
- local: main_classes/configuration
title: Configuration
- local: main_classes/data_collator
title: Data Collator
- local: main_classes/keras_callbacks
title: Keras callbacks
- local: main_classes/logging
title: Logging
- local: main_classes/model
title: Models
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: Optimization
- local: main_classes/output
title: Model outputs
- local: main_classes/pipelines
title: Pipelines
- local: main_classes/processors
title: Processors
- local: main_classes/tokenizer
title: Tokenizer
- local: main_classes/trainer
title: Trainer
- local: main_classes/deepspeed
title: DeepSpeed Integration
- local: main_classes/feature_extractor
title: Feature Extractor
title: Main Classes
- sections:
- local: model_doc/albert
title: ALBERT
- local: model_doc/auto
title: Auto Classes
- local: model_doc/bart
title: BART
- local: model_doc/barthez
title: BARThez
- local: model_doc/bartpho
title: BARTpho
- local: model_doc/beit
title: BEiT
- local: model_doc/bert
title: BERT
- local: model_doc/bertweet
title: Bertweet
- local: model_doc/bert-generation
title: BertGeneration
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
title: BigBirdPegasus
- local: model_doc/blenderbot
title: Blenderbot
- local: model_doc/blenderbot-small
title: Blenderbot Small
- local: model_doc/bort
title: BORT
- local: model_doc/byt5
title: ByT5
- local: model_doc/camembert
title: CamemBERT
- local: model_doc/canine
title: CANINE
- local: model_doc/clip
title: CLIP
- local: model_doc/convbert
title: ConvBERT
- local: model_doc/cpm
title: CPM
- local: model_doc/ctrl
title: CTRL
- local: model_doc/deberta
title: DeBERTa
- local: model_doc/deberta-v2
title: DeBERTa-v2
- local: model_doc/deit
title: DeiT
- local: model_doc/detr
title: DETR
- local: model_doc/dialogpt
title: DialoGPT
- local: model_doc/distilbert
title: DistilBERT
- local: model_doc/dpr
title: DPR
- local: model_doc/electra
title: ELECTRA
- local: model_doc/encoder-decoder
title: Encoder Decoder Models
- local: model_doc/flaubert
title: FlauBERT
- local: model_doc/fnet
title: FNet
- local: model_doc/fsmt
title: FSMT
- local: model_doc/funnel
title: Funnel Transformer
- local: model_doc/herbert
title: HerBERT
- local: model_doc/ibert
title: I-BERT
- local: model_doc/imagegpt
title: ImageGPT
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/layoutlmv2
title: LayoutLMV2
- local: model_doc/layoutxlm
title: LayoutXLM
- local: model_doc/led
title: LED
- local: model_doc/longformer
title: Longformer
- local: model_doc/luke
title: LUKE
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/marian
title: MarianMT
- local: model_doc/m2m_100
title: M2M100
- local: model_doc/mbart
title: MBart and MBart-50
- local: model_doc/megatron-bert
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/mluke
title: MLUKE
- local: model_doc/mobilebert
title: MobileBERT
- local: model_doc/mluke
title: mLUKE
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mt5
title: MT5
- local: model_doc/nystromformer
title: Nyströmformer
- local: model_doc/openai-gpt
title: OpenAI GPT
- local: model_doc/gpt2
title: OpenAI GPT2
- local: model_doc/gptj
title: GPT-J
- local: model_doc/gpt_neo
title: GPT Neo
- local: model_doc/hubert
title: Hubert
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/pegasus
title: Pegasus
- local: model_doc/phobert
title: PhoBERT
- local: model_doc/prophetnet
title: ProphetNet
- local: model_doc/qdqbert
title: QDQBert
- local: model_doc/rag
title: RAG
- local: model_doc/realm
title: REALM
- local: model_doc/reformer
title: Reformer
- local: model_doc/rembert
title: RemBERT
- local: model_doc/retribert
title: RetriBERT
- local: model_doc/roberta
title: RoBERTa
- local: model_doc/roformer
title: RoFormer
- local: model_doc/segformer
title: SegFormer
- local: model_doc/sew
title: SEW
- local: model_doc/sew-d
title: SEW-D
- local: model_doc/speech-encoder-decoder
title: Speech Encoder Decoder Models
- local: model_doc/speech_to_text
title: Speech2Text
- local: model_doc/speech_to_text_2
title: Speech2Text2
- local: model_doc/splinter
title: Splinter
- local: model_doc/squeezebert
title: SqueezeBERT
- local: model_doc/swin
title: Swin Transformer
- local: model_doc/t5
title: T5
- local: model_doc/t5v1.1
title: T5v1.1
- local: model_doc/tapas
title: TAPAS
- local: model_doc/transfo-xl
title: Transformer XL
- local: model_doc/trocr
title: TrOCR
- local: model_doc/unispeech
title: UniSpeech
- local: model_doc/unispeech-sat
title: UniSpeech-SAT
- local: model_doc/vilt
title: ViLT
- local: model_doc/vision-encoder-decoder
title: Vision Encoder Decoder Models
- local: model_doc/vision-text-dual-encoder
title: Vision Text Dual Encoder
- local: model_doc/vit
title: Vision Transformer (ViT)
- local: model_doc/vit_mae
title: ViTMAE
- local: model_doc/visual_bert
title: VisualBERT
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2_phoneme
title: Wav2Vec2Phoneme
- local: model_doc/wavlm
title: WavLM
- local: model_doc/xlm
title: XLM
- local: model_doc/xlm-prophetnet
title: XLM-ProphetNet
- local: model_doc/xlm-roberta
title: XLM-RoBERTa
- local: model_doc/xlnet
title: XLNet
- local: model_doc/xlsr_wav2vec2
title: XLSR-Wav2Vec2
- local: model_doc/xls_r
title: XLS-R
- local: model_doc/yoso
title: YOSO
title: Models
- sections:
- local: internal/modeling_utils
title: Custom Layers and Utilities
- local: internal/pipelines_utils
title: Utilities for pipelines
- local: internal/tokenization_utils
title: Utilities for Tokenizers
- local: internal/trainer_utils
title: Utilities for Trainer
- local: internal/generation_utils
title: Utilities for Generation
- local: internal/file_utils
title: General Utilities
title: Internal Helpers
title: API

View File

@ -1 +0,0 @@
../../CONTRIBUTING.md

View File

@ -1,702 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# How to fine-tune a model for common downstream tasks
[[open-in-colab]]
This guide will show you how to fine-tune 🤗 Transformers models for common downstream tasks. You will use the 🤗
Datasets library to quickly load and preprocess the datasets, getting them ready for training with PyTorch and
TensorFlow.
Before you begin, make sure you have the 🤗 Datasets library installed. For more detailed installation instructions,
refer to the 🤗 Datasets [installation page](https://huggingface.co/docs/datasets/installation.html). All of the
examples in this guide will use 🤗 Datasets to load and preprocess a dataset.
```bash
pip install datasets
```
Learn how to fine-tune a model for:
- [seq_imdb](#seq_imdb)
- [tok_ner](#tok_ner)
- [qa_squad](#qa_squad)
<a id='seq_imdb'></a>
## Sequence classification with IMDb reviews
Sequence classification refers to the task of classifying sequences of text according to a given number of classes. In
this example, learn how to fine-tune a model on the [IMDb dataset](https://huggingface.co/datasets/imdb) to determine
whether a review is positive or negative.
<Tip>
For a more in-depth example of how to fine-tune a model for text classification, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb).
</Tip>
### Load IMDb dataset
The 🤗 Datasets library makes it simple to load a dataset:
```python
from datasets import load_dataset
imdb = load_dataset("imdb")
```
This loads a `DatasetDict` object which you can index into to view an example:
```python
imdb["train"][0]
{
"label": 1,
"text": "Bromwell High is a cartoon comedy. It ran at the same time as some other programs about school life, such as \"Teachers\". My 35 years in the teaching profession lead me to believe that Bromwell High's satire is much closer to reality than is \"Teachers\". The scramble to survive financially, the insightful students who can see right through their pathetic teachers' pomp, the pettiness of the whole situation, all remind me of the schools I knew and their students. When I saw the episode in which a student repeatedly tried to burn down the school, I immediately recalled ......... at .......... High. A classic line: INSPECTOR: I'm here to sack one of your teachers. STUDENT: Welcome to Bromwell High. I expect that many adults of my age think that Bromwell High is far fetched. What a pity that it isn't!",
}
```
### Preprocess
The next step is to tokenize the text into a readable format by the model. It is important to load the same tokenizer a
model was trained with to ensure appropriately tokenized words. Load the DistilBERT tokenizer with the
[`AutoTokenizer`] because we will eventually train a classifier using a pretrained [DistilBERT](https://huggingface.co/distilbert-base-uncased) model:
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
```
Now that you have instantiated a tokenizer, create a function that will tokenize the text. You should also truncate
longer sequences in the text to be no longer than the model's maximum input length:
```python
def preprocess_function(examples):
return tokenizer(examples["text"], truncation=True)
```
Use 🤗 Datasets `map` function to apply the preprocessing function to the entire dataset. You can also set
`batched=True` to apply the preprocessing function to multiple elements of the dataset at once for faster
preprocessing:
```python
tokenized_imdb = imdb.map(preprocess_function, batched=True)
```
Lastly, pad your text so they are a uniform length. While it is possible to pad your text in the `tokenizer` function
by setting `padding=True`, it is more efficient to only pad the text to the length of the longest element in its
batch. This is known as **dynamic padding**. You can do this with the `DataCollatorWithPadding` function:
```python
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
```
### Fine-tune with the Trainer API
Now load your model with the [`AutoModelForSequenceClassification`] class along with the number of expected labels:
```python
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
```
At this point, only three steps remain:
1. Define your training hyperparameters in [`TrainingArguments`].
2. Pass the training arguments to a [`Trainer`] along with the model, dataset, tokenizer, and data collator.
3. Call [`Trainer.train()`] to fine-tune your model.
```python
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./results",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=5,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_imdb["train"],
eval_dataset=tokenized_imdb["test"],
tokenizer=tokenizer,
data_collator=data_collator,
)
trainer.train()
```
### Fine-tune with TensorFlow
Fine-tuning with TensorFlow is just as easy, with only a few differences.
Start by batching the processed examples together with dynamic padding using the [`DataCollatorWithPadding`] function.
Make sure you set `return_tensors="tf"` to return `tf.Tensor` outputs instead of PyTorch tensors!
```python
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer, return_tensors="tf")
```
Next, convert your datasets to the `tf.data.Dataset` format with `to_tf_dataset`. Specify inputs and labels in the
`columns` argument:
```python
tf_train_dataset = tokenized_imdb["train"].to_tf_dataset(
columns=["attention_mask", "input_ids", "label"],
shuffle=True,
batch_size=16,
collate_fn=data_collator,
)
tf_validation_dataset = tokenized_imdb["train"].to_tf_dataset(
columns=["attention_mask", "input_ids", "label"],
shuffle=False,
batch_size=16,
collate_fn=data_collator,
)
```
Set up an optimizer function, learning rate schedule, and some training hyperparameters:
```python
from transformers import create_optimizer
import tensorflow as tf
batch_size = 16
num_epochs = 5
batches_per_epoch = len(tokenized_imdb["train"]) // batch_size
total_train_steps = int(batches_per_epoch * num_epochs)
optimizer, schedule = create_optimizer(init_lr=2e-5, num_warmup_steps=0, num_train_steps=total_train_steps)
```
Load your model with the [`TFAutoModelForSequenceClassification`] class along with the number of expected labels:
```python
from transformers import TFAutoModelForSequenceClassification
model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
```
Compile the model:
```python
import tensorflow as tf
model.compile(optimizer=optimizer)
```
Finally, fine-tune the model by calling `model.fit`:
```python
model.fit(
tf_train_set,
validation_data=tf_validation_set,
epochs=num_train_epochs,
)
```
<a id='tok_ner'></a>
## Token classification with WNUT emerging entities
Token classification refers to the task of classifying individual tokens in a sentence. One of the most common token
classification tasks is Named Entity Recognition (NER). NER attempts to find a label for each entity in a sentence,
such as a person, location, or organization. In this example, learn how to fine-tune a model on the [WNUT 17](https://huggingface.co/datasets/wnut_17) dataset to detect new entities.
<Tip>
For a more in-depth example of how to fine-tune a model for token classification, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/token_classification-tf.ipynb).
</Tip>
### Load WNUT 17 dataset
Load the WNUT 17 dataset from the 🤗 Datasets library:
```python
>>> from datasets import load_dataset
>>> wnut = load_dataset("wnut_17")
```
A quick look at the dataset shows the labels associated with each word in the sentence:
```python
>>> wnut["train"][0]
{'id': '0',
'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.']
}
```
View the specific NER tags by:
```python
>>> label_list = wnut["train"].features[f"ner_tags"].feature.names
>>> label_list
[
"O",
"B-corporation",
"I-corporation",
"B-creative-work",
"I-creative-work",
"B-group",
"I-group",
"B-location",
"I-location",
"B-person",
"I-person",
"B-product",
"I-product",
]
```
A letter prefixes each NER tag which can mean:
- `B-` indicates the beginning of an entity.
- `I-` indicates a token is contained inside the same entity (e.g., the `State` token is a part of an entity like
`Empire State Building`).
- `0` indicates the token doesn't correspond to any entity.
### Preprocess
Now you need to tokenize the text. Load the DistilBERT tokenizer with an [`AutoTokenizer`]:
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
```
Since the input has already been split into words, set `is_split_into_words=True` to tokenize the words into
subwords:
```python
>>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True)
>>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
>>> tokens
['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]']
```
The addition of the special tokens `[CLS]` and `[SEP]` and subword tokenization creates a mismatch between the
input and labels. Realign the labels and tokens by:
1. Mapping all tokens to their corresponding word with the `word_ids` method.
2. Assigning the label `-100` to the special tokens `[CLS]` and ``[SEP]``` so the PyTorch loss function ignores
them.
3. Only labeling the first token of a given word. Assign `-100` to the other subtokens from the same word.
Here is how you can create a function that will realign the labels and tokens:
```python
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
labels = []
for i, label in enumerate(examples[f"ner_tags"]):
word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word.
previous_word_idx = None
label_ids = []
for word_idx in word_ids: # Set the special tokens to -100.
if word_idx is None:
label_ids.append(-100)
elif word_idx != previous_word_idx: # Only label the first token of a given word.
label_ids.append(label[word_idx])
else:
label_ids.append(-100)
previous_word_idx = word_idx
labels.append(label_ids)
tokenized_inputs["labels"] = labels
return tokenized_inputs
```
Now tokenize and align the labels over the entire dataset with 🤗 Datasets `map` function:
```python
tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True)
```
Finally, pad your text and labels, so they are a uniform length:
```python
from transformers import DataCollatorForTokenClassification
data_collator = DataCollatorForTokenClassification(tokenizer)
```
### Fine-tune with the Trainer API
Load your model with the [`AutoModelForTokenClassification`] class along with the number of expected labels:
```python
from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer
model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=len(label_list))
```
Gather your training arguments in [`TrainingArguments`]:
```python
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
)
```
Collect your model, training arguments, dataset, data collator, and tokenizer in [`Trainer`]:
```python
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_wnut["train"],
eval_dataset=tokenized_wnut["test"],
data_collator=data_collator,
tokenizer=tokenizer,
)
```
Fine-tune your model:
```python
trainer.train()
```
### Fine-tune with TensorFlow
Batch your examples together and pad your text and labels, so they are a uniform length:
```python
from transformers import DataCollatorForTokenClassification
data_collator = DataCollatorForTokenClassification(tokenizer, return_tensors="tf")
```
Convert your datasets to the `tf.data.Dataset` format with `to_tf_dataset`:
```python
tf_train_set = tokenized_wnut["train"].to_tf_dataset(
columns=["attention_mask", "input_ids", "labels"],
shuffle=True,
batch_size=16,
collate_fn=data_collator,
)
tf_validation_set = tokenized_wnut["validation"].to_tf_dataset(
columns=["attention_mask", "input_ids", "labels"],
shuffle=False,
batch_size=16,
collate_fn=data_collator,
)
```
Load the model with the [`TFAutoModelForTokenClassification`] class along with the number of expected labels:
```python
from transformers import TFAutoModelForTokenClassification
model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased", num_labels=len(label_list))
```
Set up an optimizer function, learning rate schedule, and some training hyperparameters:
```python
from transformers import create_optimizer
batch_size = 16
num_train_epochs = 3
num_train_steps = (len(tokenized_datasets["train"]) // batch_size) * num_train_epochs
optimizer, lr_schedule = create_optimizer(
init_lr=2e-5,
num_train_steps=num_train_steps,
weight_decay_rate=0.01,
num_warmup_steps=0,
)
```
Compile the model:
```python
import tensorflow as tf
model.compile(optimizer=optimizer)
```
Call `model.fit` to fine-tune your model:
```python
model.fit(
tf_train_set,
validation_data=tf_validation_set,
epochs=num_train_epochs,
)
```
<a id='qa_squad'></a>
## Question Answering with SQuAD
There are many types of question answering (QA) tasks. Extractive QA focuses on identifying the answer from the text
given a question. In this example, learn how to fine-tune a model on the [SQuAD](https://huggingface.co/datasets/squad) dataset.
<Tip>
For a more in-depth example of how to fine-tune a model for question answering, take a look at the corresponding
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/question_answering-tf.ipynb).
</Tip>
### Load SQuAD dataset
Load the SQuAD dataset from the 🤗 Datasets library:
```python
from datasets import load_dataset
squad = load_dataset("squad")
```
Take a look at an example from the dataset:
```python
>>> squad["train"][0]
{'answers': {'answer_start': [515], 'text': ['Saint Bernadette Soubirous']},
'context': 'Architecturally, the school has a Catholic character. Atop the Main Building\'s gold dome is a golden statue of the Virgin Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the legend "Venite Ad Me Omnes". Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.',
'id': '5733be284776f41900661182',
'question': 'To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?',
'title': 'University_of_Notre_Dame'
}
```
### Preprocess
Load the DistilBERT tokenizer with an [`AutoTokenizer`]:
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
```
There are a few things to be aware of when preprocessing text for question answering:
1. Some examples in a dataset may have a very long `context` that exceeds the maximum input length of the model. You
can deal with this by truncating the `context` and set `truncation="only_second"`.
2. Next, you need to map the start and end positions of the answer to the original context. Set
`return_offset_mapping=True` to handle this.
3. With the mapping in hand, you can find the start and end tokens of the answer. Use the `sequence_ids` method to
find which part of the offset corresponds to the question, and which part of the offset corresponds to the context.
Assemble everything in a preprocessing function as shown below:
```python
def preprocess_function(examples):
questions = [q.strip() for q in examples["question"]]
inputs = tokenizer(
questions,
examples["context"],
max_length=384,
truncation="only_second",
return_offsets_mapping=True,
padding="max_length",
)
offset_mapping = inputs.pop("offset_mapping")
answers = examples["answers"]
start_positions = []
end_positions = []
for i, offset in enumerate(offset_mapping):
answer = answers[i]
start_char = answer["answer_start"][0]
end_char = answer["answer_start"][0] + len(answer["text"][0])
sequence_ids = inputs.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label it (0, 0)
if offset[context_start][0] > end_char or offset[context_end][1] < start_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
inputs["start_positions"] = start_positions
inputs["end_positions"] = end_positions
return inputs
```
Apply the preprocessing function over the entire dataset with 🤗 Datasets `map` function:
```python
tokenized_squad = squad.map(preprocess_function, batched=True, remove_columns=squad["train"].column_names)
```
Batch the processed examples together:
```python
from transformers import default_data_collator
data_collator = default_data_collator
```
### Fine-tune with the Trainer API
Load your model with the [`AutoModelForQuestionAnswering`] class:
```python
from transformers import AutoModelForQuestionAnswering, TrainingArguments, Trainer
model = AutoModelForQuestionAnswering.from_pretrained("distilbert-base-uncased")
```
Gather your training arguments in [`TrainingArguments`]:
```python
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
)
```
Collect your model, training arguments, dataset, data collator, and tokenizer in [`Trainer`]:
```python
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_squad["train"],
eval_dataset=tokenized_squad["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
)
```
Fine-tune your model:
```python
trainer.train()
```
### Fine-tune with TensorFlow
Batch the processed examples together with a TensorFlow default data collator:
```python
from transformers.data.data_collator import tf_default_collator
data_collator = tf_default_collator
```
Convert your datasets to the `tf.data.Dataset` format with the `to_tf_dataset` function:
```python
tf_train_set = tokenized_squad["train"].to_tf_dataset(
columns=["attention_mask", "input_ids", "start_positions", "end_positions"],
dummy_labels=True,
shuffle=True,
batch_size=16,
collate_fn=data_collator,
)
tf_validation_set = tokenized_squad["validation"].to_tf_dataset(
columns=["attention_mask", "input_ids", "start_positions", "end_positions"],
dummy_labels=True,
shuffle=False,
batch_size=16,
collate_fn=data_collator,
)
```
Set up an optimizer function, learning rate schedule, and some training hyperparameters:
```python
from transformers import create_optimizer
batch_size = 16
num_epochs = 2
total_train_steps = (len(tokenized_squad["train"]) // batch_size) * num_epochs
optimizer, schedule = create_optimizer(
init_lr=2e-5,
num_warmup_steps=0,
num_train_steps=total_train_steps,
)
```
Load your model with the [`TFAutoModelForQuestionAnswering`] class:
```python
from transformers import TFAutoModelForQuestionAnswering
model = TFAutoModelForQuestionAnswering("distilbert-base-uncased")
```
Compile the model:
```python
import tensorflow as tf
model.compile(optimizer=optimizer)
```
Call `model.fit` to fine-tune the model:
```python
model.fit(
tf_train_set,
validation_data=tf_validation_set,
epochs=num_train_epochs,
)
```

14
docs/source/de/_config.py Normal file
View File

@ -0,0 +1,14 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

View File

@ -0,0 +1,22 @@
- sections:
- local: index
title: 🤗 Transformers
- local: quicktour
title: Schnellstart
- local: installation
title: Installation
title: Erste Schritte
- sections:
- local: pipeline_tutorial
title: Pipelines für Inferenzen
- local: autoclass_tutorial
title: Laden von vortrainierten Instanzen mit einer AutoClass
- local: preprocessing
title: Vorverarbeiten
- local: training
title: Optimierung eines vortrainierten Modells
- local: accelerate
title: Verteiltes Training mit 🤗 Accelerate
- local: model_sharing
title: Ein Modell teilen
title: Tutorials

View File

@ -0,0 +1,132 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Verteiltes Training mit 🤗 Accelerate
Da die Modelle immer größer werden, hat sich die Parallelität als Strategie zum Trainieren größerer Modelle auf begrenzter Hardware und zur Beschleunigung der Trainingsgeschwindigkeit um mehrere Größenordnungen erwiesen. Bei Hugging Face haben wir die Bibliothek [🤗 Accelerate](https://huggingface.co/docs/accelerate) entwickelt, um Nutzern zu helfen, ein 🤗 Transformers-Modell auf jeder Art von verteiltem Setup zu trainieren, egal ob es sich um mehrere GPUs auf einer Maschine oder mehrere GPUs auf mehreren Maschinen handelt. In diesem Tutorial lernen Sie, wie Sie Ihre native PyTorch-Trainingsschleife anpassen, um das Training in einer verteilten Umgebung zu ermöglichen.
## Einrichtung
Beginnen Sie mit der Installation von 🤗 Accelerate:
```bash
pip install accelerate
```
Dann importieren und erstellen Sie ein [`~accelerate.Accelerator`]-Objekt. Der [`~accelerate.Accelerator`] wird automatisch Ihre Art der verteilten Einrichtung erkennen und alle notwendigen Komponenten für das Training initialisieren. Sie müssen Ihr Modell nicht explizit auf einem Gerät platzieren.
```py
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
```
## Vorbereiten auf die Beschleunigung
Der nächste Schritt ist die Übergabe aller relevanten Trainingsobjekte an die Methode [`~accelerate.Accelerator.prepare`]. Dazu gehören Ihre Trainings- und Evaluierungs-DataLoader, ein Modell und ein Optimierer:
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
... train_dataloader, eval_dataloader, model, optimizer
... )
```
## Rückwärts
Die letzte Ergänzung besteht darin, das typische `loss.backward()` in der Trainingsschleife durch die 🤗 Accelerate-Methode [`~accelerate.Accelerator.backward`] zu ersetzen:
```py
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... outputs = model(**batch)
... loss = outputs.loss
... accelerator.backward(loss)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
Wie Sie im folgenden Code sehen können, müssen Sie nur vier zusätzliche Codezeilen zu Ihrer Trainingsschleife hinzufügen, um verteiltes Training zu ermöglichen!
```diff
+ from accelerate import Accelerator
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
+ accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
optimizer = AdamW(model.parameters(), lr=3e-5)
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+ train_dataloader, eval_dataloader, model, optimizer
+ )
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## Trainieren
Sobald Sie die entsprechenden Codezeilen hinzugefügt haben, starten Sie Ihr Training in einem Skript oder einem Notebook wie Colaboratory.
### Trainieren mit einem Skript
Wenn Sie Ihr Training mit einem Skript durchführen, führen Sie den folgenden Befehl aus, um eine Konfigurationsdatei zu erstellen und zu speichern:
```bash
accelerate config
```
Dann starten Sie Ihr Training mit:
```bash
accelerate launch train.py
```
### Trainieren mit einem Notebook
🤗 Accelerate kann auch in einem Notebook laufen, wenn Sie planen, die TPUs von Colaboratory zu verwenden. Verpacken Sie den gesamten Code, der für das Training verantwortlich ist, in eine Funktion und übergeben Sie diese an [`~accelerate.notebook_launcher`]:
```py
>>> from accelerate import notebook_launcher
>>> notebook_launcher(training_function)
```
Weitere Informationen über 🤗 Accelerate und seine umfangreichen Funktionen finden Sie in der [Dokumentation](https://huggingface.co/docs/accelerate).

View File

@ -0,0 +1,127 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Vortrainierte Instanzen mit einer AutoClass laden
Bei so vielen verschiedenen Transformator-Architekturen kann es eine Herausforderung sein, eine für Ihren Checkpoint zu erstellen. Als Teil der 🤗 Transformers Kernphilosophie, die Bibliothek leicht, einfach und flexibel nutzbar zu machen, leitet eine `AutoClass` automatisch die richtige Architektur aus einem gegebenen Checkpoint ab und lädt sie. Mit der Methode `from_pretrained()` kann man schnell ein vortrainiertes Modell für eine beliebige Architektur laden, so dass man keine Zeit und Ressourcen aufwenden muss, um ein Modell von Grund auf zu trainieren. Die Erstellung dieser Art von Checkpoint-agnostischem Code bedeutet, dass Ihr Code, wenn er für einen Checkpoint funktioniert, auch mit einem anderen Checkpoint funktionieren wird - solange er für eine ähnliche Aufgabe trainiert wurde - selbst wenn die Architektur unterschiedlich ist.
<Tip>
Denken Sie daran, dass sich die Architektur auf das Skelett des Modells bezieht und die Checkpoints die Gewichte für eine bestimmte Architektur sind. Zum Beispiel ist [BERT](https://huggingface.co/bert-base-uncased) eine Architektur, während `bert-base-uncased` ein Checkpoint ist. Modell ist ein allgemeiner Begriff, der entweder Architektur oder Prüfpunkt bedeuten kann.
</Tip>
In dieser Anleitung lernen Sie, wie man:
* Einen vortrainierten Tokenizer lädt.
* Einen vortrainierten Merkmalsextraktor lädt.
* Einen vortrainierten Prozessor lädt.
* Ein vortrainiertes Modell lädt.
## AutoTokenizer
Nahezu jede NLP-Aufgabe beginnt mit einem Tokenizer. Ein Tokenizer wandelt Ihre Eingabe in ein Format um, das vom Modell verarbeitet werden kann.
Laden Sie einen Tokenizer mit [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
Dann tokenisieren Sie Ihre Eingabe wie unten gezeigt:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoFeatureExtractor
Für Audio- und Bildverarbeitungsaufgaben verarbeitet ein Merkmalsextraktor das Audiosignal oder Bild in das richtige Eingabeformat.
Laden Sie einen Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor
Multimodale Aufgaben erfordern einen Prozessor, der zwei Arten von Vorverarbeitungswerkzeugen kombiniert. Das Modell [LayoutLMV2](model_doc/layoutlmv2) beispielsweise benötigt einen Feature-Extraktor für Bilder und einen Tokenizer für Text; ein Prozessor kombiniert beide.
Laden Sie einen Prozessor mit [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel
<frameworkcontent>
<pt>
Mit den `AutoModelFor`-Klassen können Sie schließlich ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
<Tip warning={true}>
Für PyTorch-Modelle verwendet die Methode `from_pretrained()` `torch.load()`, die intern `pickle` verwendet und als unsicher bekannt ist. Generell sollte man niemals ein Modell laden, das aus einer nicht vertrauenswürdigen Quelle stammen könnte, oder das manipuliert worden sein könnte. Dieses Sicherheitsrisiko wird für öffentliche Modelle, die auf dem Hugging Face Hub gehostet werden, teilweise gemildert, da diese bei jeder Übertragung [auf Malware](https://huggingface.co/docs/hub/security-malware) gescannt werden. Siehe die [Hub-Dokumentation](https://huggingface.co/docs/hub/security) für Best Practices wie [signierte Commit-Verifizierung](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) mit GPG.
TensorFlow- und Flax-Checkpoints sind nicht betroffen und können in PyTorch-Architekturen mit den Kwargs `from_tf` und `from_flax` für die Methode `from_pretrained` geladen werden, um dieses Problem zu umgehen.
</Tip>
Im Allgemeinen empfehlen wir die Verwendung der Klasse "AutoTokenizer" und der Klasse "AutoModelFor", um trainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
</pt>
<tf>
Mit den Klassen `TFAutoModelFor` schließlich können Sie ein vortrainiertes Modell für eine bestimmte Aufgabe laden (siehe [hier](model_doc/auto) für eine vollständige Liste der verfügbaren Aufgaben). Laden Sie zum Beispiel ein Modell für die Sequenzklassifikation mit [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Sie können denselben Prüfpunkt problemlos wiederverwenden, um eine Architektur für eine andere Aufgabe zu laden:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Im Allgemeinen empfehlen wir, die Klasse "AutoTokenizer" und die Klasse "TFAutoModelFor" zu verwenden, um vortrainierte Instanzen von Modellen zu laden. Dadurch wird sichergestellt, dass Sie jedes Mal die richtige Architektur laden. Im nächsten [Tutorial] (Vorverarbeitung) erfahren Sie, wie Sie Ihren neu geladenen Tokenizer, Feature Extractor und Prozessor verwenden, um einen Datensatz für die Feinabstimmung vorzuverarbeiten.
</tf>
</frameworkcontent>

322
docs/source/de/index.mdx Normal file
View File

@ -0,0 +1,322 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 🤗 Transformers
Maschinelles Lernen auf dem neuesten Stand der Technik für PyTorch, TensorFlow und JAX.
🤗 Transformers bietet APIs zum einfachen Herunterladen und Trainieren von vortrainierten Modellen auf dem neuesten Stand der Technik. Die Verwendung von vortrainierten Modellen kann Rechenkosten sparen und den CO2-Fußabdruck reduzieren und Zeit sparen, die für das Training eines Modells von Grund auf benötigt wird. Die Modelle können für verschiedene Modalitäten verwendet werden, wie z. B.:
* 📝 Text: Textklassifizierung, Informationsextrahierung, Beantwortung von Fragen, Zusammenfassung, Übersetzung und Texterstellung in über 100 Sprachen.
* 🖼️ Bilder: Bildklassifizierung, Objekterkennung und Segmentierung.
* 🗣️ Audio: Spracherkennung und Audioklassifizierung.
* 🐙 Multimodal: Beantwortung von Tabellenfragen, optische Zeichenerkennung, Informationsextraktion aus gescannten Dokumenten, Videoklassifizierung und Beantwortung visueller Fragen.
Unsere Bibliothek unterstützt die nahtlose Integration von drei der beliebtesten Deep-Learning-Bibliotheken: [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/) und [JAX](https://jax.readthedocs.io/en/latest/). Trainieren Sie Ihr Modell in drei Codezeilen in einem Framework und laden Sie es zur Inferenz mit einem anderen.
Jede 🤗 Transformers-Architektur ist in einem eigenständigen Python-Modul definiert, so dass sie leicht für Forschung und Experimente angepasst werden kann.
## Wenn Sie auf der Suche nach individueller Unterstützung durch das Hugging Face-Team sind
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Inhalt
Die Dokumentation ist in fünf Teile gegliedert:
- **GET STARTED** enthält eine kurze Tour und Installationsanweisungen, um mit 🤗 Transformers loszulegen.
- **TUTORIALS** sind ein hervorragender Ausgangspunkt, wenn Sie neu in unserer Bibliothek sind. Dieser Abschnitt hilft Ihnen, die grundlegenden Fähigkeiten zu erlangen, die Sie benötigen, um mit 🤗 Transformers zu arbeiten.
- **HOW-TO GUIDES** zeigen Ihnen, wie Sie ein bestimmtes Ziel erreichen können, z. B. die Feinabstimmung eines vortrainierten Modells für die Sprachmodellierung oder die Erstellung eines benutzerdefinierten Modellkopfs.
- **KONZEPTUELLE ANLEITUNGEN** bietet weitere Diskussionen und Erklärungen zu den zugrunde liegenden Konzepten und Ideen hinter Modellen, Aufgaben und der Designphilosophie von 🤗 Transformers.
- **API** beschreibt jede Klasse und Funktion, gruppiert in:
- **MAIN CLASSES** für die Hauptklassen, die die wichtigsten APIs der Bibliothek darstellen.
- MODELLE** für die Klassen und Funktionen, die zu jedem in der Bibliothek implementierten Modell gehören.
- **INTERNAL HELPERS** für die Klassen und Funktionen, die wir intern verwenden.
Die Bibliothek enthält derzeit JAX-, PyTorch- und TensorFlow-Implementierungen, vortrainierte Modellgewichte, Nutzungsskripte und Konvertierungsprogramme für die folgenden Modelle.
### Unterstütze Modelle
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Unterstützte Frameworks
Die folgende Tabelle zeigt die derzeitige Unterstützung in der Bibliothek für jedes dieser Modelle, unabhängig davon, ob sie einen Python
Tokenizer haben (als "langsam" bezeichnet), ein "schneller" Tokenizer, der von der 🤗 Tokenizers Bibliothek unterstützt wird, ob sie Unterstützung in Jax (via
Flax), PyTorch, und/oder TensorFlow haben.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
|:---------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
| CvT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ |
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
| GroupViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ✅ | ❌ | ❌ |
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| MobileViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
| RegNet | ❌ | ❌ | ✅ | ✅ | ❌ |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ResNet | ❌ | ❌ | ✅ | ✅ | ❌ |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ |
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | ❌ | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -0,0 +1,246 @@
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Installation
Installieren Sie 🤗 Transformers für die Deep-Learning-Bibliothek, mit der Sie arbeiten, richten Sie Ihren Cache ein und konfigurieren Sie 🤗 Transformers optional für den Offline-Betrieb.
🤗 Transformers wurde unter Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, und Flax getestet. Folgen Sie den Installationsanweisungen unten für die von Ihnen verwendete Deep-Learning-Bibliothek:
* [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions.
* [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
## Installation mit pip
Sie sollten 🤗 Transformers in einer [virtuellen Umgebung](https://docs.python.org/3/library/venv.html) installieren. Wenn Sie mit virtuellen Python-Umgebungen nicht vertraut sind, werfen Sie einen Blick auf diese [Anleitung](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Eine virtuelle Umgebung macht es einfacher, verschiedene Projekte zu verwalten und Kompatibilitätsprobleme zwischen Abhängigkeiten zu vermeiden.
Beginnen wir mit der Erstellung einer virtuellen Umgebung in Ihrem Projektverzeichnis:
```bash
python -m venv .env
```
Aktivieren wir die virtuelle Umgebung. Unter Linux und MacOs:
```bash
source .env/bin/activate
```
Aktivieren wir die virtuelle Umgebung unter Windows
```bash
.env/Scripts/activate
```
Jetzt können wir die 🤗 Transformers mit dem folgenden Befehl installieren:
```bash
pip install transformers
```
Bei reiner CPU-Unterstützung können wir 🤗 Transformers und eine Deep-Learning-Bibliothek bequem in einer Zeile installieren. Installieren wir zum Beispiel 🤗 Transformers und PyTorch mit:
```bash
pip install transformers[torch]
```
🤗 Transformers und TensorFlow 2.0:
```bash
pip install transformers[tf-cpu]
```
🤗 Transformers und Flax:
```bash
pip install transformers[flax]
```
Überprüfen wir abschließend, ob 🤗 Transformers ordnungsgemäß installiert wurde, indem wir den folgenden Befehl ausführen. Es wird ein vortrainiertes Modell heruntergeladen:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
```
Dann wird die Kategorie und die Wahrscheinlichkeit ausgegeben:
```bash
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
```
## Installation aus dem Code
Installieren wir 🤗 Transformers aus dem Quellcode mit dem folgenden Befehl:
```bash
pip install git+https://github.com/huggingface/transformers
```
Dieser Befehl installiert die aktuelle `main` Version und nicht die neueste `stable` Version. Die `main`-Version ist nützlich, um mit den neuesten Entwicklungen Schritt zu halten. Zum Beispiel, wenn ein Fehler seit der letzten offiziellen Version behoben wurde, aber eine neue Version noch nicht veröffentlicht wurde. Das bedeutet jedoch, dass die "Hauptversion" nicht immer stabil ist. Wir bemühen uns, die Hauptversion einsatzbereit zu halten, und die meisten Probleme werden normalerweise innerhalb weniger Stunden oder eines Tages behoben. Wenn Sie auf ein Problem stoßen, öffnen Sie bitte ein [Issue] (https://github.com/huggingface/transformers/issues), damit wir es noch schneller beheben können!
Überprüfen wir, ob 🤗 Transformers richtig installiert wurde, indem Sie den folgenden Befehl ausführen:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
## Editierbare Installation
Sie benötigen eine bearbeitbare Installation, wenn Sie:
* die "Haupt"-Version des Quellcodes verwenden möchten.
* Zu 🤗 Transformers beitragen und Änderungen am Code testen wollen.
Klonen Sie das Repository und installieren 🤗 Transformers mit den folgenden Befehlen:
```bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
```
Diese Befehle verknüpfen den Ordner, in den Sie das Repository geklont haben, mit den Pfaden Ihrer Python-Bibliotheken. Python wird nun in dem Ordner suchen, in den Sie geklont haben, zusätzlich zu den normalen Bibliothekspfaden. Wenn zum Beispiel Ihre Python-Pakete normalerweise in `~/anaconda3/envs/main/lib/python3.7/site-packages/` installiert sind, wird Python auch den Ordner durchsuchen, in den Sie geklont haben: `~/transformers/`.
<Tip warning={true}>
Sie müssen den Ordner `transformers` behalten, wenn Sie die Bibliothek weiter verwenden wollen.
</Tip>
Jetzt können Sie Ihren Klon mit dem folgenden Befehl ganz einfach auf die neueste Version von 🤗 Transformers aktualisieren:
```bash
cd ~/transformers/
git pull
```
Ihre Python-Umgebung wird beim nächsten Ausführen die `main`-Version von 🤗 Transformers finden.
## Installation mit conda
Installation von dem conda Kanal `huggingface`:
```bash
conda install -c huggingface transformers
```
## Cache Einrichtung
Vorgefertigte Modelle werden heruntergeladen und lokal zwischengespeichert unter: `~/.cache/huggingface/hub`. Dies ist das Standardverzeichnis, das durch die Shell-Umgebungsvariable "TRANSFORMERS_CACHE" vorgegeben ist. Unter Windows wird das Standardverzeichnis durch `C:\Benutzer\Benutzername\.cache\huggingface\hub` angegeben. Sie können die unten aufgeführten Shell-Umgebungsvariablen - in der Reihenfolge ihrer Priorität - ändern, um ein anderes Cache-Verzeichnis anzugeben:
1. Shell-Umgebungsvariable (Standard): `HUGGINGFACE_HUB_CACHE` oder `TRANSFORMERS_CACHE`.
2. Shell-Umgebungsvariable: `HF_HOME`.
3. Shell-Umgebungsvariable: `XDG_CACHE_HOME` + `/huggingface`.
<Tip>
Transformers verwendet die Shell-Umgebungsvariablen `PYTORCH_TRANSFORMERS_CACHE` oder `PYTORCH_PRETRAINED_BERT_CACHE`, wenn Sie von einer früheren Iteration dieser Bibliothek kommen und diese Umgebungsvariablen gesetzt haben, sofern Sie nicht die Shell-Umgebungsvariable `TRANSFORMERS_CACHE` angeben.
</Tip>
## Offline Modus
Transformers ist in der Lage, in einer Firewall- oder Offline-Umgebung zu laufen, indem es nur lokale Dateien verwendet. Setzen Sie die Umgebungsvariable `TRANSFORMERS_OFFLINE=1`, um dieses Verhalten zu aktivieren.
<Tip>
Fügen sie [🤗 Datasets](https://huggingface.co/docs/datasets/) zu Ihrem Offline-Trainingsworkflow hinzufügen, indem Sie die Umgebungsvariable `HF_DATASETS_OFFLINE=1` setzen.
</Tip>
So würden Sie beispielsweise ein Programm in einem normalen Netzwerk mit einer Firewall für externe Instanzen mit dem folgenden Befehl ausführen:
```bash
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Führen Sie das gleiche Programm in einer Offline-Instanz mit aus:
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Das Skript sollte nun laufen, ohne sich aufzuhängen oder eine Zeitüberschreitung abzuwarten, da es weiß, dass es nur nach lokalen Dateien suchen soll.
### Abrufen von Modellen und Tokenizern zur Offline-Verwendung
Eine andere Möglichkeit, 🤗 Transformers offline zu verwenden, besteht darin, die Dateien im Voraus herunterzuladen und dann auf ihren lokalen Pfad zu verweisen, wenn Sie sie offline verwenden müssen. Es gibt drei Möglichkeiten, dies zu tun:
* Laden Sie eine Datei über die Benutzeroberfläche des [Model Hub](https://huggingface.co/models) herunter, indem Sie auf das ↓-Symbol klicken.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png)
* Verwenden Sie den [PreTrainedModel.from_pretrained] und [PreTrainedModel.save_pretrained] Workflow:
1. Laden Sie Ihre Dateien im Voraus mit [`PreTrainedModel.from_pretrained`] herunter:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
```
2. Speichern Sie Ihre Dateien in einem bestimmten Verzeichnis mit [`PreTrainedModel.save_pretrained`]:
```py
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
>>> model.save_pretrained("./your/path/bigscience_t0")
```
3. Wenn Sie nun offline sind, laden Sie Ihre Dateien mit [`PreTrainedModel.from_pretrained`] aus dem bestimmten Verzeichnis:
```py
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
```
* Programmatisches Herunterladen von Dateien mit der [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) Bibliothek:
1. Installieren Sie die "huggingface_hub"-Bibliothek in Ihrer virtuellen Umgebung:
```bash
python -m pip install huggingface_hub
```
2. Verwenden Sie die Funktion [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub), um eine Datei in einen bestimmten Pfad herunterzuladen. Der folgende Befehl lädt zum Beispiel die Datei "config.json" aus dem Modell [T0](https://huggingface.co/bigscience/T0_3B) in den gewünschten Pfad herunter:
```py
>>> from huggingface_hub import hf_hub_download
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
```
Sobald Ihre Datei heruntergeladen und lokal zwischengespeichert ist, geben Sie den lokalen Pfad an, um sie zu laden und zu verwenden:
```py
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
```
<Tip>
Weitere Informationen zum Herunterladen von Dateien, die auf dem Hub gespeichert sind, finden Sie im Abschnitt [Wie man Dateien vom Hub herunterlädt] (https://huggingface.co/docs/hub/how-to-downstream).
</Tip>

View File

@ -0,0 +1,228 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Ein Modell teilen
Die letzten beiden Tutorials haben gezeigt, wie man ein Modell mit PyTorch, Keras und 🤗 Accelerate für verteilte Setups feinabstimmen kann. Der nächste Schritt besteht darin, Ihr Modell mit der Community zu teilen! Bei Hugging Face glauben wir an den offenen Austausch von Wissen und Ressourcen, um künstliche Intelligenz für alle zu demokratisieren. Wir ermutigen Sie, Ihr Modell mit der Community zu teilen, um anderen zu helfen, Zeit und Ressourcen zu sparen.
In diesem Tutorial lernen Sie zwei Methoden kennen, wie Sie ein trainiertes oder verfeinertes Modell auf dem [Model Hub](https://huggingface.co/models) teilen können:
- Programmgesteuertes Übertragen Ihrer Dateien auf den Hub.
- Ziehen Sie Ihre Dateien per Drag-and-Drop über die Weboberfläche in den Hub.
<iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
picture-in-picture" allowfullscreen></iframe>
<Tip>
Um ein Modell mit der Öffentlichkeit zu teilen, benötigen Sie ein Konto auf [huggingface.co](https://huggingface.co/join). Sie können auch einer bestehenden Organisation beitreten oder eine neue Organisation gründen.
</Tip>
## Repository-Funktionen
Jedes Repository im Model Hub verhält sich wie ein typisches GitHub-Repository. Unsere Repositorys bieten Versionierung, Commit-Historie und die Möglichkeit, Unterschiede zu visualisieren.
Die integrierte Versionierung des Model Hub basiert auf Git und [git-lfs](https://git-lfs.github.com/). Mit anderen Worten: Sie können ein Modell als ein Repository behandeln, was eine bessere Zugriffskontrolle und Skalierbarkeit ermöglicht. Die Versionskontrolle ermöglicht *Revisionen*, eine Methode zum Anheften einer bestimmten Version eines Modells mit einem Commit-Hash, Tag oder Branch.
Folglich können Sie eine bestimmte Modellversion mit dem Parameter "Revision" laden:
```py
>>> model = AutoModel.from_pretrained(
... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash
... )
```
Dateien lassen sich auch in einem Repository leicht bearbeiten, und Sie können die Commit-Historie sowie die Unterschiede einsehen:
![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png)
## Einrichtung
Bevor Sie ein Modell für den Hub freigeben, benötigen Sie Ihre Hugging Face-Anmeldedaten. Wenn Sie Zugang zu einem Terminal haben, führen Sie den folgenden Befehl in der virtuellen Umgebung aus, in der 🤗 Transformers installiert ist. Dadurch werden Ihre Zugangsdaten in Ihrem Hugging Face-Cache-Ordner (standardmäßig `~/.cache/`) gespeichert:
```bash
huggingface-cli login
```
Wenn Sie ein Notebook wie Jupyter oder Colaboratory verwenden, stellen Sie sicher, dass Sie die [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) Bibliothek installiert haben. Diese Bibliothek ermöglicht Ihnen die programmatische Interaktion mit dem Hub.
```bash
pip install huggingface_hub
```
Verwenden Sie dann `notebook_login`, um sich beim Hub anzumelden, und folgen Sie dem Link [hier](https://huggingface.co/settings/token), um ein Token für die Anmeldung zu generieren:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Ein Modell für alle Frameworks konvertieren
Um sicherzustellen, dass Ihr Modell von jemandem verwendet werden kann, der mit einem anderen Framework arbeitet, empfehlen wir Ihnen, Ihr Modell sowohl mit PyTorch- als auch mit TensorFlow-Checkpoints zu konvertieren und hochzuladen. Während Benutzer immer noch in der Lage sind, Ihr Modell von einem anderen Framework zu laden, wenn Sie diesen Schritt überspringen, wird es langsamer sein, weil 🤗 Transformers den Checkpoint on-the-fly konvertieren müssen.
Die Konvertierung eines Checkpoints für ein anderes Framework ist einfach. Stellen Sie sicher, dass Sie PyTorch und TensorFlow installiert haben (siehe [hier](installation) für Installationsanweisungen), und finden Sie dann das spezifische Modell für Ihre Aufgabe in dem anderen Framework.
<frameworkcontent>
<pt>
Geben Sie `from_tf=True` an, um einen Prüfpunkt von TensorFlow nach PyTorch zu konvertieren:
```py
>>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True)
>>> pt_model.save_pretrained("path/to/awesome-name-you-picked")
```
</pt>
<tf>
Geben Sie `from_pt=True` an, um einen Prüfpunkt von PyTorch nach TensorFlow zu konvertieren:
```py
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True)
```
Dann können Sie Ihr neues TensorFlow-Modell mit seinem neuen Checkpoint speichern:
```py
>>> tf_model.save_pretrained("path/to/awesome-name-you-picked")
```
</tf>
<jax>
Wenn ein Modell in Flax verfügbar ist, können Sie auch einen Kontrollpunkt von PyTorch nach Flax konvertieren:
```py
>>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained(
... "path/to/awesome-name-you-picked", from_pt=True
... )
```
</jax>
</frameworkcontent>
## Ein Modell während des Trainings hochladen
<frameworkcontent>
<pt>
<Youtube id="Z1-XMy-GNLQ"/>
Die Weitergabe eines Modells an den Hub ist so einfach wie das Hinzufügen eines zusätzlichen Parameters oder Rückrufs. Erinnern Sie sich an das [Feinabstimmungs-Tutorial](training), in der Klasse [`TrainingArguments`] geben Sie Hyperparameter und zusätzliche Trainingsoptionen an. Eine dieser Trainingsoptionen beinhaltet die Möglichkeit, ein Modell direkt an den Hub zu pushen. Setzen Sie `push_to_hub=True` in Ihrer [`TrainingArguments`]:
```py
>>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True)
```
Übergeben Sie Ihre Trainingsargumente wie gewohnt an [`Trainer`]:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Nach der Feinabstimmung Ihres Modells rufen Sie [`~transformers.Trainer.push_to_hub`] auf [`Trainer`] auf, um das trainierte Modell an den Hub zu übertragen. Transformers fügt sogar automatisch Trainings-Hyperparameter, Trainingsergebnisse und Framework-Versionen zu Ihrer Modellkarte hinzu!
```py
>>> trainer.push_to_hub()
```
</pt>
<tf>
Geben Sie ein Modell mit [`PushToHubCallback`] an den Hub weiter. In der [`PushToHubCallback`] Funktion, fügen Sie hinzu:
- Ein Ausgabeverzeichnis für Ihr Modell.
- Einen Tokenizer.
- Die `hub_model_id`, die Ihr Hub-Benutzername und Modellname ist.
```py
>>> from transformers.keras.callbacks import PushToHubCallback
>>> push_to_hub_callback = PushToHubCallback(
... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model"
... )
```
Fügen Sie den Callback zu [`fit`](https://keras.io/api/models/model_training_apis/) hinzu, und 🤗 Transformers wird das trainierte Modell an den Hub weiterleiten:
```py
>>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback)
```
</tf>
</frameworkcontent>
## Verwenden Sie die Funktion `push_to_hub`.
Sie können `push_to_hub` auch direkt für Ihr Modell aufrufen, um es in den Hub hochzuladen.
Geben Sie den Namen Ihres Modells in "push_to_hub" an:
```py
>>> pt_model.push_to_hub("my-awesome-model")
```
Dadurch wird ein Repository unter Ihrem Benutzernamen mit dem Modellnamen `my-awesome-model` erstellt. Benutzer können nun Ihr Modell mit der Funktion `from_pretrained` laden:
```py
>>> from transformers import AutoModel
>>> model = AutoModel.from_pretrained("your_username/my-awesome-model")
```
Wenn Sie zu einer Organisation gehören und Ihr Modell stattdessen unter dem Namen der Organisation pushen wollen, fügen Sie diesen einfach zur `repo_id` hinzu:
```py
>>> pt_model.push_to_hub("my-awesome-org/my-awesome-model")
```
Die Funktion "push_to_hub" kann auch verwendet werden, um andere Dateien zu einem Modell-Repository hinzuzufügen. Zum Beispiel kann man einen Tokenizer zu einem Modell-Repository hinzufügen:
```py
>>> tokenizer.push_to_hub("my-awesome-model")
```
Oder vielleicht möchten Sie die TensorFlow-Version Ihres fein abgestimmten PyTorch-Modells hinzufügen:
```py
>>> tf_model.push_to_hub("my-awesome-model")
```
Wenn Sie nun zu Ihrem Hugging Face-Profil navigieren, sollten Sie Ihr neu erstelltes Modell-Repository sehen. Wenn Sie auf die Registerkarte **Dateien** klicken, werden alle Dateien angezeigt, die Sie in das Repository hochgeladen haben.
Weitere Einzelheiten zum Erstellen und Hochladen von Dateien in ein Repository finden Sie in der Hub-Dokumentation [hier](https://huggingface.co/docs/hub/how-to-upstream).
## Hochladen mit der Weboberfläche
Benutzer, die einen no-code Ansatz bevorzugen, können ein Modell über das Webinterface des Hubs hochladen. Besuchen Sie [huggingface.co/new](https://huggingface.co/new) um ein neues Repository zu erstellen:
![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png)
Fügen Sie von hier aus einige Informationen über Ihr Modell hinzu:
- Wählen Sie den **Besitzer** des Repositorys. Dies können Sie selbst oder eine der Organisationen sein, denen Sie angehören.
- Wählen Sie einen Namen für Ihr Modell, der auch der Name des Repositorys sein wird.
- Wählen Sie, ob Ihr Modell öffentlich oder privat ist.
- Geben Sie die Lizenzverwendung für Ihr Modell an.
Klicken Sie nun auf die Registerkarte **Dateien** und klicken Sie auf die Schaltfläche **Datei hinzufügen**, um eine neue Datei in Ihr Repository hochzuladen. Ziehen Sie dann eine Datei per Drag-and-Drop hoch und fügen Sie eine Übergabemeldung hinzu.
![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png)
## Hinzufügen einer Modellkarte
Um sicherzustellen, dass die Benutzer die Fähigkeiten, Grenzen, möglichen Verzerrungen und ethischen Aspekte Ihres Modells verstehen, fügen Sie bitte eine Modellkarte zu Ihrem Repository hinzu. Die Modellkarte wird in der Datei `README.md` definiert. Sie können eine Modellkarte hinzufügen, indem Sie:
* Manuelles Erstellen und Hochladen einer "README.md"-Datei.
* Klicken Sie auf die Schaltfläche **Modellkarte bearbeiten** in Ihrem Modell-Repository.
Werfen Sie einen Blick auf die DistilBert [model card](https://huggingface.co/distilbert-base-uncased) als gutes Beispiel für die Art von Informationen, die eine Modellkarte enthalten sollte. Weitere Details über andere Optionen, die Sie in der Datei "README.md" einstellen können, wie z.B. den Kohlenstoff-Fußabdruck eines Modells oder Beispiele für Widgets, finden Sie in der Dokumentation [hier](https://huggingface.co/docs/hub/models-cards).

View File

@ -0,0 +1,171 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Pipelines für Inferenzen
Die [`pipeline`] macht es einfach, jedes beliebige Modell aus dem [Hub](https://huggingface.co/models) für die Inferenz auf jede Sprache, Computer Vision, Sprache und multimodale Aufgaben zu verwenden. Selbst wenn Sie keine Erfahrung mit einer bestimmten Modalität haben oder nicht mit dem zugrundeliegenden Code hinter den Modellen vertraut sind, können Sie sie mit der [`pipeline`] für Inferenzen verwenden! In diesem Beispiel lernen Sie, wie:
* Eine [`pipeline`] für Inferenz zu verwenden.
* Einen bestimmten Tokenizer oder ein bestimmtes Modell zu verwenden.
* Eine [`pipeline`] für Audio-, Vision- und multimodale Aufgaben zu verwenden.
<Tip>
Eine vollständige Liste der unterstützten Aufgaben und verfügbaren Parameter finden Sie in der [`pipeline`]-Dokumentation.
</Tip>
## Verwendung von Pipelines
Obwohl jede Aufgabe eine zugehörige [`pipeline`] hat, ist es einfacher, die allgemeine [`pipeline`]-Abstraktion zu verwenden, die alle aufgabenspezifischen Pipelines enthält. Die [`pipeline`] lädt automatisch ein Standardmodell und eine Vorverarbeitungsklasse, die für Ihre Aufgabe inferenzfähig ist.
1. Beginnen Sie mit der Erstellung einer [`pipeline`] und geben Sie eine Inferenzaufgabe an:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation")
```
2. Übergeben Sie Ihren Eingabetext an die [`pipeline`]:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Iron-priests at the door to the east, and thirteen for the Lord Kings at the end of the mountain'}]
```
Wenn Sie mehr als eine Eingabe haben, übergeben Sie die Eingabe als Liste:
```py
>>> generator(
... [
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... "Nine for Mortal Men, doomed to die, One for the Dark Lord on his dark throne",
... ]
... ) # doctest: +SKIP
```
Alle zusätzlichen Parameter für Ihre Aufgabe können auch in die [`pipeline`] aufgenommen werden. Die Aufgabe `Text-Generierung` hat eine [`~generation_utils.GenerationMixin.generate`]-Methode mit mehreren Parametern zur Steuerung der Ausgabe. Wenn Sie zum Beispiel mehr als eine Ausgabe erzeugen wollen, setzen Sie den Parameter `num_return_sequences`:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone",
... num_return_sequences=2,
... ) # doctest: +SKIP
```
### Wählen Sie ein Modell und einen Tokenizer
Die [`pipeline`] akzeptiert jedes Modell aus dem [Hub] (https://huggingface.co/models). Auf dem Hub gibt es Tags, mit denen Sie nach einem Modell filtern können, das Sie für Ihre Aufgabe verwenden möchten. Sobald Sie ein passendes Modell ausgewählt haben, laden Sie es mit der entsprechenden `AutoModelFor` und [`AutoTokenizer`] Klasse. Laden Sie zum Beispiel die Klasse [`AutoModelForCausalLM`] für eine kausale Sprachmodellierungsaufgabe:
```py
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
>>> model = AutoModelForCausalLM.from_pretrained("distilgpt2")
```
Erstellen Sie eine [`pipeline`] für Ihre Aufgabe, und geben Sie das Modell und den Tokenizer an, die Sie geladen haben:
```py
>>> from transformers import pipeline
>>> generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
```
Übergeben Sie Ihren Eingabetext an die [`pipeline`] , um einen Text zu erzeugen:
```py
>>> generator(
... "Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone"
... ) # doctest: +SKIP
[{'generated_text': 'Three Rings for the Elven-kings under the sky, Seven for the Dwarf-lords in their halls of stone, Seven for the Dragon-lords (for them to rule in a world ruled by their rulers, and all who live within the realm'}]
```
## Audio-Pipeline
Die [`pipeline`] unterstützt auch Audioaufgaben wie Audioklassifizierung und automatische Spracherkennung.
Lassen Sie uns zum Beispiel die Emotion in diesem Audioclip klassifizieren:
```py
>>> from datasets import load_dataset
>>> import torch
>>> torch.manual_seed(42) # doctest: +IGNORE_RESULT
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> audio_file = ds[0]["audio"]["path"]
```
Finden Sie ein [Audioklassifikation](https://huggingface.co/models?pipeline_tag=audio-classification) Modell auf dem Model Hub für Emotionserkennung und laden Sie es in die [`pipeline`]:
```py
>>> from transformers import pipeline
>>> audio_classifier = pipeline(
... task="audio-classification", model="ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
Übergeben Sie die Audiodatei an die [`pipeline`]:
```py
>>> preds = audio_classifier(audio_file)
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.1315, 'label': 'calm'}, {'score': 0.1307, 'label': 'neutral'}, {'score': 0.1274, 'label': 'sad'}, {'score': 0.1261, 'label': 'fearful'}, {'score': 0.1242, 'label': 'happy'}]
```
## Bildverarbeitungs-Pipeline
Die Verwendung einer [`pipeline`] für Bildverarbeitungsaufgaben ist praktisch identisch.
Geben Sie Ihre Aufgabe an und übergeben Sie Ihr Bild an den Klassifikator. Das Bild kann ein Link oder ein lokaler Pfad zu dem Bild sein. Zum Beispiel: Welche Katzenart ist unten abgebildet?
![pipeline-cat-chonk](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg)
```py
>>> from transformers import pipeline
>>> vision_classifier = pipeline(task="image-classification")
>>> preds = vision_classifier(
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.4335, 'label': 'lynx, catamount'}, {'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}, {'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}, {'score': 0.0239, 'label': 'Egyptian cat'}, {'score': 0.0229, 'label': 'tiger cat'}]
```
## Multimodale Pipeline
Die [`pipeline`] unterstützt mehr als eine Modalität. Eine Aufgabe zur Beantwortung visueller Fragen (VQA) kombiniert zum Beispiel Text und Bild. Verwenden Sie einen beliebigen Bildlink und eine Frage, die Sie zu dem Bild stellen möchten. Das Bild kann eine URL oder ein lokaler Pfad zu dem Bild sein.
Wenn Sie zum Beispiel das gleiche Bild wie in der obigen Vision-Pipeline verwenden:
```py
>>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
>>> question = "Where is the cat?"
```
Erstellen Sie eine Pipeline für "vqa" und übergeben Sie ihr das Bild und die Frage:
```py
>>> from transformers import pipeline
>>> vqa = pipeline(task="vqa")
>>> preds = vqa(image=image, question=question)
>>> preds = [{"score": round(pred["score"], 4), "answer": pred["answer"]} for pred in preds]
>>> preds
[{'score': 0.9112, 'answer': 'snow'}, {'score': 0.8796, 'answer': 'in snow'}, {'score': 0.6717, 'answer': 'outside'}, {'score': 0.0291, 'answer': 'on ground'}, {'score': 0.027, 'answer': 'ground'}]
```

View File

@ -0,0 +1,502 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Vorverarbeiten
[[open-in-colab]]
Bevor Sie Ihre Daten in einem Modell verwenden können, müssen die Daten in ein für das Modell akzeptables Format gebracht werden. Ein Modell versteht keine Rohtexte, Bilder oder Audiodaten. Diese Eingaben müssen in Zahlen umgewandelt und zu Tensoren zusammengesetzt werden. In dieser Anleitung werden Sie:
* Textdaten mit einem Tokenizer vorverarbeiten.
* Bild- oder Audiodaten mit einem Feature Extractor vorverarbeiten.
* Daten für eine multimodale Aufgabe mit einem Prozessor vorverarbeiten.
## NLP
<Youtube id="Yffk5aydLzg"/>
Das wichtigste Werkzeug zur Verarbeitung von Textdaten ist ein [Tokenizer](main_classes/tokenizer). Ein Tokenizer zerlegt Text zunächst nach einer Reihe von Regeln in *Token*. Die Token werden in Zahlen umgewandelt, die zum Aufbau von Tensoren als Eingabe für ein Modell verwendet werden. Alle zusätzlichen Eingaben, die ein Modell benötigt, werden ebenfalls vom Tokenizer hinzugefügt.
<Tip>
Wenn Sie ein vortrainiertes Modell verwenden möchten, ist es wichtig, den zugehörigen vortrainierten Tokenizer zu verwenden. Dadurch wird sichergestellt, dass der Text auf die gleiche Weise aufgeteilt wird wie das Pretraining-Korpus und die gleichen entsprechenden Token-zu-Index (in der Regel als *vocab* bezeichnet) während des Pretrainings verwendet werden.
</Tip>
Laden Sie einen vortrainierten Tokenizer mit der Klasse [AutoTokenizer], um schnell loszulegen. Damit wird das *vocab* heruntergeladen, das verwendet wird, wenn ein Modell vortrainiert wird.
### Tokenize
Laden Sie einen vortrainierten Tokenizer mit [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
```
Dann übergeben Sie Ihren Satz an den Tokenizer:
```py
>>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
>>> print(encoded_input)
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
Der Tokenizer gibt ein Wörterbuch mit drei wichtigen Elementen zurück:
* [input_ids](glossary#input-ids) sind die Indizes, die den einzelnen Token im Satz entsprechen.
* [attention_mask](glossary#attention-mask) gibt an, ob ein Token beachtet werden soll oder nicht.
* [token_type_ids](glossary#token-type-ids) gibt an, zu welcher Sequenz ein Token gehört, wenn es mehr als eine Sequenz gibt.
Sie können die `input_ids` dekodieren, um die ursprüngliche Eingabe zurückzugeben:
```py
>>> tokenizer.decode(encoded_input["input_ids"])
'[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]'
```
Wie Sie sehen können, hat der Tokenisierer zwei spezielle Token - `CLS` und `SEP` (Klassifikator und Separator) - zum Satz hinzugefügt. Nicht alle Modelle benötigen
spezielle Token, aber wenn dies der Fall ist, fügt der Tokenisierer sie automatisch für Sie hinzu.
Wenn Sie mehrere Sätze verarbeiten wollen, übergeben Sie die Sätze als Liste an den Tokenizer:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_inputs = tokenizer(batch_sentences)
>>> print(encoded_inputs)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1]]}
```
### Pad
Dies bringt uns zu einem wichtigen Thema. Wenn Sie einen Haufen von Sätzen verarbeiten, sind diese nicht immer gleich lang. Das ist ein Problem, weil Tensoren, die Eingabe für das Modell, eine einheitliche Form haben müssen. Padding ist eine Strategie, die sicherstellt, dass Tensoren rechteckig sind, indem ein spezielles *Padding-Token* zu Sätzen mit weniger Token hinzugefügt wird.
Setzen Sie den Parameter "padding" auf "true", um die kürzeren Sequenzen im Stapel so aufzufüllen, dass sie der längsten Sequenz entsprechen:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
Beachten Sie, dass der Tokenizer den ersten und den dritten Satz mit einer "0" aufgefüllt hat, weil sie kürzer sind!
### Kürzung
Auf der anderen Seite des Spektrums kann es vorkommen, dass eine Sequenz zu lang für ein Modell ist. In diesem Fall müssen Sie die Sequenz auf eine kürzere Länge kürzen.
Setzen Sie den Parameter "truncation" auf "true", um eine Sequenz auf die vom Modell akzeptierte Höchstlänge zu kürzen:
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
>>> print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
```
### Tensoren erstellen
Schließlich möchten Sie, dass der Tokenizer die tatsächlichen Tensoren zurückgibt, die dem Modell zugeführt werden.
Setzen Sie den Parameter `return_tensors` entweder auf `pt` für PyTorch, oder `tf` für TensorFlow:
<frameworkcontent>
<pt>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
>>> print(encoded_input)
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
```
</pt>
<tf>
```py
>>> batch_sentences = [
... "But what about second breakfast?",
... "Don't think he knows about second breakfast, Pip.",
... "What about elevensies?",
... ]
>>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf")
>>> print(encoded_input)
{'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],
[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],
[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],
dtype=int32)>,
'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>,
'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>}
```
</tf>
</frameworkcontent>
## Audio
Audioeingaben werden anders vorverarbeitet als Texteingaben, aber das Endziel bleibt dasselbe: numerische Sequenzen zu erstellen, die das Modell verstehen kann. Ein [feature extractor](main_classes/feature_extractor) dient dem ausdrücklichen Zweck, Merkmale aus Rohbild- oder Audiodaten zu extrahieren und in Tensoren zu konvertieren. Bevor Sie beginnen, installieren Sie 🤗 Datasets, um einen Audio-Datensatz zu laden, mit dem Sie experimentieren können:
```bash
pip install datasets
```
Laden Sie den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz (weitere Informationen zum Laden eines Datensatzes finden Sie im 🤗 [Datasets tutorial](https://huggingface.co/docs/datasets/load_hub.html)):
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
Greifen Sie auf das erste Element der `audio`-Spalte zu, um einen Blick auf die Eingabe zu werfen. Durch den Aufruf der Spalte "audio" wird die Audiodatei automatisch geladen und neu gesampelt:
```py
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
Dies gibt drei Elemente zurück:
* "array" ist das Sprachsignal, das als 1D-Array geladen - und möglicherweise neu gesampelt - wurde.
* Pfad" zeigt auf den Speicherort der Audiodatei.
* `sampling_rate` bezieht sich darauf, wie viele Datenpunkte im Sprachsignal pro Sekunde gemessen werden.
### Resample
Für dieses Tutorial werden Sie das Modell [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) verwenden. Wie Sie aus der Modellkarte ersehen können, ist das Wav2Vec2-Modell auf 16kHz abgetastetes Sprachaudio vortrainiert. Es ist wichtig, dass die Abtastrate Ihrer Audiodaten mit der Abtastrate des Datensatzes übereinstimmt, der für das Pre-Training des Modells verwendet wurde. Wenn die Abtastrate Ihrer Daten nicht dieselbe ist, müssen Sie Ihre Audiodaten neu abtasten.
Der Datensatz [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) hat zum Beispiel eine Abtastrate von 8000 kHz. Um das Wav2Vec2-Modell mit diesem Datensatz verwenden zu können, müssen Sie die Abtastrate auf 16 kHz erhöhen:
```py
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
>>> dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 8000}
```
1. Verwenden Sie die Methode [~datasets.Dataset.cast_column] von 🤗 Datasets, um die Abtastrate auf 16kHz zu erhöhen:
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
```
2. Laden Sie die Audiodatei:
```py
>>> dataset[0]["audio"]
{'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ...,
3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav',
'sampling_rate': 16000}
```
Wie Sie sehen können, ist die Abtastrate jetzt 16kHz!
### Merkmalsextraktor
Der nächste Schritt ist das Laden eines Merkmalsextraktors, um die Eingabe zu normalisieren und aufzufüllen. Beim Auffüllen von Textdaten wird für kürzere Sequenzen ein `0` hinzugefügt. Die gleiche Idee gilt für Audiodaten, und der Audio-Feature-Extraktor fügt eine `0` - interpretiert als Stille - zu `array` hinzu.
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
Übergeben Sie das Audio-"Array" an den Feature-Extraktor. Wir empfehlen auch, das Argument `sampling_rate` im Feature Extractor hinzuzufügen, um eventuell auftretende stille Fehler besser zu beheben.
```py
>>> audio_input = [dataset[0]["audio"]["array"]]
>>> feature_extractor(audio_input, sampling_rate=16000)
{'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ...,
5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]}
```
### Auffüllen und Kürzen
Genau wie beim Tokenizer können Sie variable Sequenzen in einem Stapel durch Auffüllen oder Abschneiden behandeln. Werfen Sie einen Blick auf die Sequenzlänge dieser beiden Audiobeispiele:
```py
>>> dataset[0]["audio"]["array"].shape
(173398,)
>>> dataset[1]["audio"]["array"].shape
(106496,)
```
Wie Sie sehen können, hat das erste Beispiel eine längere Sequenz als das zweite Beispiel. Lassen Sie uns eine Funktion erstellen, die den Datensatz vorverarbeitet. Geben Sie eine maximale Länge der Probe an, und der Feature-Extraktor wird die Sequenzen entweder auffüllen oder abschneiden, damit sie dieser Länge entsprechen:
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays,
... sampling_rate=16000,
... padding=True,
... max_length=100000,
... truncation=True,
... )
... return inputs
```
Wenden Sie die Funktion auf die ersten paar Beispiele im Datensatz an:
```py
>>> processed_dataset = preprocess_function(dataset[:5])
```
Schauen Sie sich nun noch einmal die verarbeiteten Beispiel-Längen an:
```py
>>> processed_dataset["input_values"][0].shape
(100000,)
>>> processed_dataset["input_values"][1].shape
(100000,)
```
Die Länge der ersten beiden Beispiele entspricht nun der von Ihnen angegebenen Maximallänge.
## Bildverarbeitung
Ein Merkmalsextraktor wird auch verwendet, um Bilder für Bildverarbeitungsaufgaben zu verarbeiten. Auch hier besteht das Ziel darin, das Rohbild in eine Reihe von Tensoren als Eingabe zu konvertieren.
Laden wir den [food101](https://huggingface.co/datasets/food101) Datensatz für dieses Tutorial. Verwenden Sie den Parameter 🤗 Datasets `split`, um nur eine kleine Stichprobe aus dem Trainingssplit zu laden, da der Datensatz recht groß ist:
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("food101", split="train[:100]")
```
Als Nächstes sehen Sie sich das Bild mit dem Merkmal 🤗 Datensätze [Bild] (https://huggingface.co/docs/datasets/package_reference/main_classes.html?highlight=image#datasets.Image) an:
```py
>>> dataset[0]["image"]
```
![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png)
### Merkmalsextraktor
Laden Sie den Merkmalsextraktor mit [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
```
### Datenerweiterung
Bei Bildverarbeitungsaufgaben ist es üblich, den Bildern als Teil der Vorverarbeitung eine Art von Datenerweiterung hinzuzufügen. Sie können Erweiterungen mit jeder beliebigen Bibliothek hinzufügen, aber in diesem Tutorial werden Sie das Modul [`transforms`](https://pytorch.org/vision/stable/transforms.html) von torchvision verwenden.
1. Normalisieren Sie das Bild und verwenden Sie [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html), um einige Transformationen - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) und [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - miteinander zu verknüpfen:
```py
>>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor
>>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
>>> _transforms = Compose(
... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize]
... )
```
2. Das Modell akzeptiert [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) als Eingabe. Dieser Wert wird vom Merkmalsextraktor erzeugt. Erstellen Sie eine Funktion, die `pixel_values` aus den Transformationen erzeugt:
```py
>>> def transforms(examples):
... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]]
... return examples
```
3. Dann verwenden Sie 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process.html#format-transform), um die Transformationen im laufenden Betrieb anzuwenden:
```py
>>> dataset.set_transform(transforms)
```
4. Wenn Sie nun auf das Bild zugreifen, werden Sie feststellen, dass der Feature Extractor die Modelleingabe "pixel_values" hinzugefügt hat:
```py
>>> dataset[0]["image"]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>,
'label': 6,
'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922],
[-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922],
[ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667],
...,
[ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824],
[ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980],
[ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]],
[[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451],
[ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373],
[ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275],
...,
[-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078],
[ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235],
[-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]],
[[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216],
[ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137],
[ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804],
...,
[-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882],
[-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039],
[-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])}
```
Hier sehen Sie, wie das Bild nach der Vorverarbeitung aussieht. Wie von den angewandten Transformationen zu erwarten, wurde das Bild willkürlich beschnitten und seine Farbeigenschaften sind anders.
```py
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> img = dataset[0]["pixel_values"]
>>> plt.imshow(img.permute(1, 2, 0))
```
![preprocessed_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png)
## Multimodal
Für multimodale Aufgaben werden Sie eine Kombination aus allem, was Sie bisher gelernt haben, verwenden und Ihre Fähigkeiten auf eine Aufgabe der automatischen Spracherkennung (ASR) anwenden. Dies bedeutet, dass Sie einen:
* Feature Extractor zur Vorverarbeitung der Audiodaten.
* Tokenizer, um den Text zu verarbeiten.
Kehren wir zum [LJ Speech](https://huggingface.co/datasets/lj_speech) Datensatz zurück:
```py
>>> from datasets import load_dataset
>>> lj_speech = load_dataset("lj_speech", split="train")
```
Da Sie hauptsächlich an den Spalten "Audio" und "Text" interessiert sind, entfernen Sie die anderen Spalten:
```py
>>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"])
```
Schauen Sie sich nun die Spalten "Audio" und "Text" an:
```py
>>> lj_speech[0]["audio"]
{'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ...,
7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav',
'sampling_rate': 22050}
>>> lj_speech[0]["text"]
'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition'
```
Erinnern Sie sich an den früheren Abschnitt über die Verarbeitung von Audiodaten: Sie sollten immer die Abtastrate Ihrer Audiodaten [resample](preprocessing#audio), damit sie mit der Abtastrate des Datensatzes übereinstimmt, der für das Vortraining eines Modells verwendet wird:
```py
>>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000))
```
### Prozessor
Ein Processor kombiniert einen Feature-Extraktor und einen Tokenizer. Laden Sie einen Processor mit [`AutoProcessor.from_pretrained]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
```
1. Erstellen Sie eine Funktion, die die Audiodaten zu `input_values` verarbeitet und den Text zu `labels` tokenisiert. Dies sind Ihre Eingaben für das Modell:
```py
>>> def prepare_dataset(example):
... audio = example["audio"]
... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000))
... return example
```
2. Wenden Sie die Funktion "prepare_dataset" auf ein Beispiel an:
```py
>>> prepare_dataset(lj_speech[0])
```
Beachten Sie, dass der Processor `input_values` und `labels` hinzugefügt hat. Auch die Abtastrate wurde korrekt auf 16kHz heruntergerechnet.
Toll, Sie sollten jetzt in der Lage sein, Daten für jede Modalität vorzuverarbeiten und sogar verschiedene Modalitäten zu kombinieren! Im nächsten Kurs lernen Sie, wie Sie ein Modell mit Ihren neu aufbereiteten Daten feinabstimmen können.

View File

@ -0,0 +1,428 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Schnellstart
[[open-in-colab]]
Mit 🤗 Transformers können Sie sofort loslegen! Verwenden Sie die [`pipeline`] für schnelle Inferenz und laden Sie schnell ein vortrainiertes Modell und einen Tokenizer mit einer [AutoClass](./model_doc/auto), um Ihre Text-, Bild- oder Audioaufgabe zu lösen.
<Tip>
Alle in der Dokumentation vorgestellten Codebeispiele haben oben links einen Umschalter für PyTorch und TensorFlow. Wenn
nicht, wird erwartet, dass der Code für beide Backends ohne Änderungen funktioniert.
</Tip>
## Pipeline
[`pipeline`] ist der einfachste Weg, ein vortrainiertes Modell für eine bestimmte Aufgabe zu verwenden.
<Youtube id="tiZFewofSLM"/>
Die [`pipeline`] unterstützt viele gängige Aufgaben:
**Text**:
* Stimmungsanalyse: Klassifizierung der Polarität eines gegebenen Textes.
* Textgenerierung (auf Englisch): Generierung von Text aus einer gegebenen Eingabe.
* Name-Entity-Recognition (NER): Kennzeichnung jedes Worts mit der Entität, die es repräsentiert (Person, Datum, Ort usw.).
* Beantwortung von Fragen: Extrahieren der Antwort aus dem Kontext, wenn ein gewisser Kontext und eine Frage gegeben sind.
* Fill-mask: Ausfüllen von Lücken in einem Text mit maskierten Wörtern.
* Zusammenfassung: Erstellung einer Zusammenfassung einer langen Text- oder Dokumentensequenz.
* Übersetzung: Übersetzen eines Textes in eine andere Sprache.
* Merkmalsextraktion: Erstellen einer Tensordarstellung des Textes.
**Bild**:
* Bildklassifizierung: Klassifizierung eines Bildes.
* Bildsegmentierung: Klassifizierung jedes Pixels in einem Bild.
* Objekterkennung: Erkennen von Objekten innerhalb eines Bildes.
**Audio**:
* Audioklassifizierung: Zuweisung eines Labels zu einem bestimmten Audiosegment.
* Automatische Spracherkennung (ASR): Transkription von Audiodaten in Text.
<Tip>
Für mehr Details über die [`pipeline`] und assoziierte Aufgaben, schauen Sie in die Dokumentation [hier](./main_classes/pipelines).
</Tip>
### Verwendung der Pipeline
Im folgenden Beispiel werden Sie die [`pipeline`] für die Stimmungsanalyse verwenden.
Installieren Sie die folgenden Abhängigkeiten, falls Sie dies nicht bereits getan haben:
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
</tf>
</frameworkcontent>
Importieren sie die [`pipeline`] und spezifizieren sie die Aufgabe, welche sie lösen möchten:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("sentiment-analysis")
```
Die Pipeline lädt ein standardmäßiges [vortrainiertes Modell] (https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) und einen Tokenizer für die Stimmungs-Analyse herunter und speichert sie. Jetzt können Sie den "Klassifikator" auf Ihren Zieltext anwenden:
```py
>>> classifier("We are very happy to show you the 🤗 Transformers library.")
[{'label': 'POSITIVE', 'score': 0.9998}]
```
For more than one sentence, pass a list of sentences to the [`pipeline`] which returns a list of dictionaries:
```py
>>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
>>> for result in results:
... print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
label: POSITIVE, with score: 0.9998
label: NEGATIVE, with score: 0.5309
```
Die [`pipeline`] kann auch über einen ganzen Datensatz iterieren. Starten wir mit der Installation der [🤗 Datasets](https://huggingface.co/docs/datasets/) Bibliothek:
```bash
pip install datasets
```
Erstellen wir eine [`pipeline`] mit der Aufgabe die wir lösen und dem Modell welches wir nutzen möchten.
```py
>>> import torch
>>> from transformers import pipeline
>>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
```
Als nächstes laden wir den Datensatz (siehe 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart.html) für mehr Details) welches wir nutzen möchten. Zum Beispiel laden wir den [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) Datensatz:
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT
```
Wir müssen sicherstellen, dass die Abtastrate des Datensatzes der Abtastrate entspricht, mit der `facebook/wav2vec2-base-960h` trainiert wurde.
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate))
```
Audiodateien werden automatisch geladen und neu abgetastet, wenn die Spalte "audio" aufgerufen wird.
Extrahieren wir die rohen Wellenform-Arrays der ersten 4 Beispiele und übergeben wir sie als Liste an die Pipeline:
```py
>>> result = speech_recognizer(dataset[:4]["audio"])
>>> print([d["text"] for d in result])
['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FODING HOW I'D SET UP A JOIN TO HET WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE AP SO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AND I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I THURN A JOIN A COUNT']
```
Bei einem größeren Datensatz mit vielen Eingaben (wie bei Sprache oder Bildverarbeitung) sollten Sie einen Generator anstelle einer Liste übergeben, der alle Eingaben in den Speicher lädt. Weitere Informationen finden Sie in der [Pipeline-Dokumentation](./main_classes/pipelines).
### Ein anderes Modell und einen anderen Tokenizer in der Pipeline verwenden
Die [`pipeline`] kann jedes Modell aus dem [Model Hub] (https://huggingface.co/models) verwenden, wodurch es einfach ist, die [`pipeline`] für andere Anwendungsfälle anzupassen. Wenn Sie beispielsweise ein Modell wünschen, das französischen Text verarbeiten kann, verwenden Sie die Tags im Model Hub, um nach einem geeigneten Modell zu filtern. Das oberste gefilterte Ergebnis liefert ein mehrsprachiges [BERT-Modell](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment), das auf die Stimmungsanalyse abgestimmt ist. Großartig, verwenden wir dieses Modell!
```py
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
<frameworkcontent>
<pt>
Use the [`AutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `AutoClass` below):
```py
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</pt>
<tf>
Use the [`TFAutoModelForSequenceClassification`] and [`AutoTokenizer`] to load the pretrained model and it's associated tokenizer (more on an `TFAutoClass` below):
```py
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</tf>
</frameworkcontent>
Dann können Sie das Modell und den Tokenizer in der [`pipeline`] angeben und den `Klassifikator` auf Ihren Zieltext anwenden:
```py
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
[{'label': '5 stars', 'score': 0.7273}]
```
Wenn Sie kein Modell für Ihren Anwendungsfall finden können, müssen Sie ein vortrainiertes Modell auf Ihren Daten feinabstimmen. Schauen Sie sich unser [Feinabstimmungs-Tutorial](./training) an, um zu erfahren, wie das geht. Und schließlich, nachdem Sie Ihr trainiertes Modell verfeinert haben, sollten Sie es mit der Community im Model Hub teilen (siehe Tutorial [hier](./model_sharing)), um NLP für alle zu demokratisieren! 🤗
## AutoClass
<Youtube id="AhChOFRegn4"/>
Unter der Haube arbeiten die Klassen [`AutoModelForSequenceClassification`] und [`AutoTokenizer`] zusammen, um die [`pipeline`] zu betreiben. Eine [`AutoClass`](./model_doc/auto) ist eine Abkürzung, die automatisch die Architektur eines trainierten Modells aus dessen Namen oder Pfad abruft. Sie müssen nur die passende `AutoClass` für Ihre Aufgabe und den zugehörigen Tokenizer mit [`AutoTokenizer`] auswählen.
Kehren wir zu unserem Beispiel zurück und sehen wir uns an, wie Sie die `AutoClass` verwenden können, um die Ergebnisse der [`pipeline`] zu replizieren.
### AutoTokenizer
Ein Tokenizer ist für die Vorverarbeitung von Text in ein für das Modell verständliches Format zuständig. Zunächst zerlegt der Tokenisierer den Text in Wörter, die *Token* genannt werden. Es gibt mehrere Regeln für den Tokenisierungsprozess, z. B. wie und auf welcher Ebene ein Wort aufgespalten wird (weitere Informationen über Tokenisierung [hier](./tokenizer_summary)). Das Wichtigste ist jedoch, dass Sie den Tokenizer mit demselben Modellnamen instanziieren müssen, um sicherzustellen, dass Sie dieselben Tokenisierungsregeln verwenden, mit denen ein Modell zuvor trainiert wurde.
Laden sie einen Tokenizer mit [`AutoTokenizer`]:
```py
>>> from transformers import AutoTokenizer
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
Anschließend wandelt der Tokenizer die Token in Zahlen um, um einen Tensor als Eingabe für das Modell zu konstruieren. Dieser wird als *Vokabular* des Modells bezeichnet.
Übergeben Sie Ihren Text an den Tokenizer:
```py
>>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
>>> print(encoding)
{'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
Der Tokenizer gibt ein Wörterbuch zurück, das Folgendes enthält:
* [input_ids](./glossary#input-ids): numerische Repräsentationen Ihrer Token.
* [atttention_mask](.glossary#attention-mask): gibt an, welche Token beachtet werden sollen.
Genau wie die [`pipeline`] akzeptiert der Tokenizer eine Liste von Eingaben. Darüber hinaus kann der Tokenizer den Text auch auffüllen und kürzen, um einen Stapel mit einheitlicher Länge zurückzugeben:
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="pt",
... )
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="tf",
... )
```
</tf>
</frameworkcontent>
Lesen Sie das Tutorial [preprocessing](./preprocessing) für weitere Details zur Tokenisierung.
### AutoModel
<frameworkcontent>
<pt>
🤗 Transformers bietet eine einfache und einheitliche Möglichkeit, vortrainierte Instanzen zu laden. Das bedeutet, dass Sie ein [`AutoModel`] laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`AutoModel`] für die Aufgabe. Da Sie eine Text- oder Sequenzklassifizierung vornehmen, laden Sie [`AutoModelForSequenceClassification`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
</Tip>
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben. Sie müssen nur das Wörterbuch entpacken, indem Sie `**` hinzufügen:
```py
>>> pt_outputs = pt_model(**pt_batch)
```
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
```py
>>> from torch import nn
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
>>> print(pt_predictions)
tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
[0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>)
```
</pt>
<tf>
🤗 Transformers bietet eine einfache und einheitliche Methode zum Laden von vortrainierten Instanzen. Das bedeutet, dass Sie ein [`TFAutoModel`] genauso laden können, wie Sie einen [`AutoTokenizer`] laden würden. Der einzige Unterschied ist die Auswahl des richtigen [`TFAutoModel`] für die Aufgabe. Da Sie Text - oder Sequenz - Klassifizierung machen, laden Sie [`TFAutoModelForSequenceClassification`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
In der [Aufgabenzusammenfassung](./task_summary) steht, welche [AutoModel]-Klasse für welche Aufgabe zu verwenden ist.
</Tip>
Jetzt können Sie Ihren vorverarbeiteten Stapel von Eingaben direkt an das Modell übergeben, indem Sie die Wörterbuchschlüssel direkt an die Tensoren übergeben:
```py
>>> tf_outputs = tf_model(tf_batch)
```
Das Modell gibt die endgültigen Aktivierungen in dem Attribut "logits" aus. Wenden Sie die Softmax-Funktion auf die "logits" an, um die Wahrscheinlichkeiten zu erhalten:
```py
>>> import tensorflow as tf
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
>>> tf_predictions # doctest: +IGNORE_RESULT
```
</tf>
</frameworkcontent>
<Tip>
Alle 🤗 Transformers-Modelle (PyTorch oder TensorFlow) geben die Tensoren *vor* der endgültigen Aktivierungsfunktion
Funktion (wie Softmax) aus, da die endgültige Aktivierungsfunktion oft mit dem Verlusten verschmolzen ist.
</Tip>
Modelle sind ein standardmäßiges [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) oder ein [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model), sodass Sie sie in Ihrer üblichen Trainingsschleife verwenden können. Um jedoch die Dinge einfacher zu machen, bietet 🤗 Transformers eine [`Trainer`]-Klasse für PyTorch, die Funktionalität für verteiltes Training, gemischte Präzision und mehr bietet. Für TensorFlow können Sie die Methode `fit` aus [Keras](https://keras.io/) verwenden. Siehe das [training tutorial](./training) für weitere Details.
<Tip>
Transformers-Modellausgaben sind spezielle Datenklassen, so dass ihre Attribute in einer IDE automatisch vervollständigt werden.
Die Modellausgänge verhalten sich auch wie ein Tupel oder ein Wörterbuch (z.B. können Sie mit einem Integer, einem Slice oder einem String indexieren), wobei die Attribute, die "None" sind, ignoriert werden.
</Tip>
### Modell speichern
<frameworkcontent>
<pt>
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer speichern, indem Sie [`PreTrainedModel.save_pretrained`] verwenden:
```py
>>> pt_save_directory = "./pt_save_pretrained"
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
>>> pt_model.save_pretrained(pt_save_directory)
```
Wenn Sie bereit sind, das Modell erneut zu verwenden, laden Sie es mit [`PreTrainedModel.from_pretrained`]:
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
</pt>
<tf>
Sobald Ihr Modell feinabgestimmt ist, können Sie es mit seinem Tokenizer unter Verwendung von [`TFPreTrainedModel.save_pretrained`] speichern:
```py
>>> tf_save_directory = "./tf_save_pretrained"
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
>>> tf_model.save_pretrained(tf_save_directory)
```
Wenn Sie bereit sind, das Modell wieder zu verwenden, laden Sie es mit [`TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
```
</tf>
</frameworkcontent>
Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell zu speichern und es entweder als PyTorch- oder TensorFlow-Modell wieder zu laden. Der Parameter "from_pt" oder "from_tf" kann das Modell von einem Framework in das andere konvertieren:
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</tf>
</frameworkcontent>
## Custom model builds
Sie können die Konfigurationsklasse des Modells ändern, um zu bestimmen, wie ein Modell aufgebaut ist. Die Konfiguration legt die Attribute eines Modells fest, z. B. die Anzahl der verborgenen Schichten oder der Aufmerksamkeitsköpfe. Wenn Sie ein Modell aus einer benutzerdefinierten Konfigurationsklasse initialisieren, beginnen Sie bei Null. Die Modellattribute werden zufällig initialisiert, und Sie müssen das Modell trainieren, bevor Sie es verwenden können, um aussagekräftige Ergebnisse zu erhalten.
Beginnen Sie mit dem Import von [`AutoConfig`] und laden Sie dann das trainierte Modell, das Sie ändern möchten. Innerhalb von [`AutoConfig.from_pretrained`] können Sie das Attribut angeben, das Sie ändern möchten, z. B. die Anzahl der Aufmerksamkeitsköpfe:
```py
>>> from transformers import AutoConfig
>>> my_config = AutoConfig.from_pretrained("distilbert-base-uncased", n_heads=12)
```
<frameworkcontent>
<pt>
Create a model from your custom configuration with [`AutoModel.from_config`]:
```py
>>> from transformers import AutoModel
>>> my_model = AutoModel.from_config(my_config)
```
</pt>
<tf>
Create a model from your custom configuration with [`TFAutoModel.from_config`]:
```py
>>> from transformers import TFAutoModel
>>> my_model = TFAutoModel.from_config(my_config)
```
</tf>
</frameworkcontent>
Weitere Informationen zur Erstellung von benutzerdefinierten Konfigurationen finden Sie in der Anleitung [Erstellen einer benutzerdefinierten Architektur](./create_a_model).
## Wie geht es weiter?
Nachdem Sie nun die 🤗 Transformers-Kurztour abgeschlossen haben, schauen Sie sich unsere Anleitungen an und erfahren Sie, wie Sie spezifischere Dinge tun können, wie das Schreiben eines benutzerdefinierten Modells, die Feinabstimmung eines Modells für eine Aufgabe und wie man ein Modell mit einem Skript trainiert. Wenn Sie mehr über die Kernkonzepte von 🤗 Transformers erfahren möchten, nehmen Sie sich eine Tasse Kaffee und werfen Sie einen Blick auf unsere konzeptionellen Leitfäden!

427
docs/source/de/training.mdx Normal file
View File

@ -0,0 +1,427 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Optimierung eines vortrainierten Modells
[[open-in-colab]]
Die Verwendung eines vorab trainierten Modells hat erhebliche Vorteile. Es reduziert die Rechenkosten und den CO2-Fußabdruck und ermöglicht Ihnen die Verwendung von Modellen, die dem neuesten Stand der Technik entsprechen, ohne dass Sie ein Modell von Grund auf neu trainieren müssen. Transformers bietet Zugang zu Tausenden von vortrainierten Modellen für eine Vielzahl von Aufgaben. Wenn Sie ein vorab trainiertes Modell verwenden, trainieren Sie es auf einem für Ihre Aufgabe spezifischen Datensatz. Dies wird als Feinabstimmung bezeichnet und ist eine unglaublich leistungsfähige Trainingstechnik. In diesem Tutorial werden Sie ein vortrainiertes Modell mit einem Deep-Learning-Framework Ihrer Wahl feinabstimmen:
* Feinabstimmung eines vorab trainierten Modells mit 🤗 Transformers [`Trainer`].
* Feinabstimmung eines vorab trainierten Modells in TensorFlow mit Keras.
* Feinabstimmung eines vorab trainierten Modells in nativem PyTorch.
<a id='data-processing'></a>
## Vorbereitung eines Datensatzes
<Youtube id="_BZearw7f0w"/>
Bevor Sie die Feinabstimmung eines vortrainierten Modells vornehmen können, müssen Sie einen Datensatz herunterladen und für das Training vorbereiten. Im vorangegangenen Leitfaden haben Sie gelernt, wie man Daten für das Training aufbereitet, und jetzt haben Sie die Gelegenheit, diese Fähigkeiten zu testen!
Laden Sie zunächst den Datensatz [Yelp Reviews](https://huggingface.co/datasets/yelp_review_full):
```py
>>> from datasets import load_dataset
>>> dataset = load_dataset("yelp_review_full")
>>> dataset["train"][100]
{'label': 0,
'text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in front of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their food, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when they didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one serving food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sure that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location. I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this store. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps I should go back to the racially biased service of Steak n Shake instead!'}
```
Wie Sie nun wissen, benötigen Sie einen Tokenizer, um den Text zu verarbeiten und eine Auffüll- und Abschneidungsstrategie einzubauen, um mit variablen Sequenzlängen umzugehen. Um Ihren Datensatz in einem Schritt zu verarbeiten, verwenden Sie die 🤗 Methode Datasets [`map`](https://huggingface.co/docs/datasets/process.html#map), um eine Vorverarbeitungsfunktion auf den gesamten Datensatz anzuwenden:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
>>> def tokenize_function(examples):
... return tokenizer(examples["text"], padding="max_length", truncation=True)
>>> tokenized_datasets = dataset.map(tokenize_function, batched=True)
```
Wenn Sie möchten, können Sie eine kleinere Teilmenge des gesamten Datensatzes für die Feinabstimmung erstellen, um den Zeitaufwand zu verringern:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
<a id='trainer'></a>
## Training
An dieser Stelle sollten Sie dem Abschnitt folgen, der dem Rahmen entspricht, den Sie verwenden möchten. Sie können über die Links
in der rechten Seitenleiste können Sie zu dem gewünschten Abschnitt springen - und wenn Sie den gesamten Inhalt eines bestimmten Frameworks ausblenden möchten,
klicken Sie einfach auf die Schaltfläche oben rechts im Block des jeweiligen Frameworks!
<frameworkcontent>
<pt>
<Youtube id="nvBXf7s7vTI"/>
## Trainieren mit PyTorch Trainer
🤗 Transformers bietet eine [`Trainer`]-Klasse, die für das Training von 🤗 Transformers-Modellen optimiert ist und es einfacher macht, mit dem Training zu beginnen, ohne manuell eine eigene Trainingsschleife zu schreiben. Die [`Trainer`]-API unterstützt eine breite Palette von Trainingsoptionen und Funktionen wie Logging, Gradientenakkumulation und gemischte Präzision.
Beginnen Sie mit dem Laden Ihres Modells und geben Sie die Anzahl der erwarteten Labels an. Aus dem Yelp Review [dataset card](https://huggingface.co/datasets/yelp_review_full#data-fields) wissen Sie, dass es fünf Labels gibt:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```
<Tip>
Es wird eine Warnung angezeigt, dass einige der trainierten Parameter nicht verwendet werden und einige Parameter zufällig
initialisiert werden. Machen Sie sich keine Sorgen, das ist völlig normal! Der vorher trainierte Kopf des BERT-Modells wird verworfen und durch einen zufällig initialisierten Klassifikationskopf ersetzt. Sie werden diesen neuen Modellkopf in Ihrer Sequenzklassifizierungsaufgabe feinabstimmen, indem Sie das Wissen des vortrainierten Modells auf ihn übertragen.
</Tip>
### Hyperparameter für das Training
Als Nächstes erstellen Sie eine Klasse [`TrainingArguments`], die alle Hyperparameter enthält, die Sie einstellen können, sowie Flags zur Aktivierung verschiedener Trainingsoptionen. Für dieses Lernprogramm können Sie mit den Standard- [Hyperparametern](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) beginnen, aber Sie können mit diesen experimentieren, um Ihre optimalen Einstellungen zu finden.
Geben Sie an, wo die Kontrollpunkte Ihres Trainings gespeichert werden sollen:
```py
>>> from transformers import TrainingArguments
>>> training_args = TrainingArguments(output_dir="test_trainer")
```
### Auswerten
Der [`Trainer`] wertet die Leistung des Modells während des Trainings nicht automatisch aus. Sie müssen [`Trainer`] eine Funktion übergeben, um Metriken zu berechnen und zu berichten. Die [🤗 Evaluate](https://huggingface.co/docs/evaluate/index) Bibliothek bietet eine einfache [`accuracy`](https://huggingface.co/spaces/evaluate-metric/accuracy) Funktion, die Sie mit der [`evaluate.load`] Funktion laden können (siehe diese [quicktour](https://huggingface.co/docs/evaluate/a_quick_tour) für weitere Informationen):
```py
>>> import numpy as np
>>> import evaluate
>>> metric = evaluate.load("accuracy")
```
Rufen Sie [`~evaluate.compute`] auf `metric` auf, um die Genauigkeit Ihrer Vorhersagen zu berechnen. Bevor Sie Ihre Vorhersagen an `compute` übergeben, müssen Sie die Vorhersagen in Logits umwandeln (denken Sie daran, dass alle 🤗 Transformers-Modelle Logits zurückgeben):
```py
>>> def compute_metrics(eval_pred):
... logits, labels = eval_pred
... predictions = np.argmax(logits, axis=-1)
... return metric.compute(predictions=predictions, references=labels)
```
Wenn Sie Ihre Bewertungsmetriken während der Feinabstimmung überwachen möchten, geben Sie den Parameter `evaluation_strategy` in Ihren Trainingsargumenten an, um die Bewertungsmetrik am Ende jeder Epoche zu ermitteln:
```py
>>> from transformers import TrainingArguments, Trainer
>>> training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
```
### Trainer
Erstellen Sie ein [`Trainer`]-Objekt mit Ihrem Modell, Trainingsargumenten, Trainings- und Testdatensätzen und einer Evaluierungsfunktion:
```py
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... )
```
Anschließend können Sie Ihr Modell durch den Aufruf von [`~transformers.Trainer.train`] optimieren:
```py
>>> trainer.train()
```
</pt>
<tf>
<a id='keras'></a>
<Youtube id="rnTGBy2ax1c"/>
## Trainieren Sie ein TensorFlow-Modell mit Keras
Sie können auch 🤗 Transformers Modelle in TensorFlow mit der Keras API trainieren!
### Laden von Daten für Keras
Wenn Sie ein 🤗 Transformers Modell mit der Keras API trainieren wollen, müssen Sie Ihren Datensatz in ein Format konvertieren, das
Keras versteht. Wenn Ihr Datensatz klein ist, können Sie das Ganze einfach in NumPy-Arrays konvertieren und an Keras übergeben.
Probieren wir das zuerst aus, bevor wir etwas Komplizierteres tun.
Laden Sie zunächst ein Dataset. Wir werden den CoLA-Datensatz aus dem [GLUE-Benchmark](https://huggingface.co/datasets/glue) verwenden,
da es sich um eine einfache Aufgabe zur Klassifizierung von binärem Text handelt, und nehmen vorerst nur den Trainingssplit.
```py
from datasets import load_dataset
dataset = load_dataset("glue", "cola")
dataset = dataset["train"] # Just take the training split for now
```
Als nächstes laden Sie einen Tokenizer und tokenisieren die Daten als NumPy-Arrays. Beachten Sie, dass die Beschriftungen bereits eine Liste von 0 und 1en sind,
Wir können sie also ohne Tokenisierung direkt in ein NumPy-Array konvertieren!
```py
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["text"], return_tensors="np", padding=True)
labels = np.array(dataset["label"]) # Label is already an array of 0 and 1
```
Schließlich laden, [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) und [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) Sie das Modell:
```py
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
# Load and compile our model
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
# Lower learning rates are often better for fine-tuning transformers
model.compile(optimizer=Adam(3e-5))
model.fit(tokenized_data, labels)
```
<Tip>
Sie müssen Ihren Modellen kein Verlustargument übergeben, wenn Sie sie `compile()`! Hugging-Face-Modelle wählen automatisch
einen Loss, der für ihre Aufgabe und Modellarchitektur geeignet ist, wenn dieses Argument leer gelassen wird. Sie können jederzeit außer Kraft setzen, indem Sie selbst einen Loss angeben, wenn Sie das möchten!
</Tip>
Dieser Ansatz eignet sich hervorragend für kleinere Datensätze, aber bei größeren Datensätzen kann er zu einem Problem werden. Warum?
Weil das tokenisierte Array und die Beschriftungen vollständig in den Speicher geladen werden müssten, und weil NumPy nicht mit
"gezackte" Arrays nicht verarbeiten kann, so dass jedes tokenisierte Sample auf die Länge des längsten Samples im gesamten Datensatz aufgefüllt werden müsste.
Datensatzes aufgefüllt werden. Dadurch wird das Array noch größer, und all die aufgefüllten Token verlangsamen auch das Training!
### Laden von Daten als tf.data.Dataset
Wenn Sie eine Verlangsamung des Trainings vermeiden wollen, können Sie Ihre Daten stattdessen als `tf.data.Dataset` laden. Sie können zwar Ihre eigene
tf.data"-Pipeline schreiben können, wenn Sie wollen, haben wir zwei bequeme Methoden, um dies zu tun:
- [`~TFPreTrainedModel.prepare_tf_dataset`]: Dies ist die Methode, die wir in den meisten Fällen empfehlen. Da es sich um eine Methode
Ihres Modells ist, kann sie das Modell inspizieren, um automatisch herauszufinden, welche Spalten als Modelleingaben verwendet werden können, und
verwirft die anderen, um einen einfacheren, leistungsfähigeren Datensatz zu erstellen.
- [~datasets.Dataset.to_tf_dataset`]: Diese Methode ist eher auf niedriger Ebene angesiedelt und ist nützlich, wenn Sie genau kontrollieren wollen, wie
Dataset erstellt wird, indem man genau angibt, welche `columns` und `label_cols` einbezogen werden sollen.
Bevor Sie [~TFPreTrainedModel.prepare_tf_dataset`] verwenden können, müssen Sie die Tokenizer-Ausgaben als Spalten zu Ihrem Datensatz hinzufügen, wie in
dem folgenden Codebeispiel:
```py
def tokenize_dataset(data):
# Keys of the returned dictionary will be added to the dataset as columns
return tokenizer(data["text"])
dataset = dataset.map(tokenize_dataset)
```
Denken Sie daran, dass Hugging Face-Datensätze standardmäßig auf der Festplatte gespeichert werden, so dass dies nicht zu einem erhöhten Arbeitsspeicherbedarf führen wird! Sobald die
Spalten hinzugefügt wurden, können Sie Batches aus dem Datensatz streamen und zu jedem Batch Auffüllungen hinzufügen, was die Anzahl der Auffüllungs-Token im Vergleich zum Auffüllen des gesamten Datensatzes reduziert.
```py
>>> tf_dataset = model.prepare_tf_dataset(dataset, batch_size=16, shuffle=True, tokenizer=tokenizer)
```
Beachten Sie, dass Sie im obigen Codebeispiel den Tokenizer an `prepare_tf_dataset` übergeben müssen, damit die Stapel beim Laden korrekt aufgefüllt werden können.
Wenn alle Stichproben in Ihrem Datensatz die gleiche Länge haben und kein Auffüllen erforderlich ist, können Sie dieses Argument weglassen.
Wenn Sie etwas Komplexeres als nur das Auffüllen von Stichproben benötigen (z. B. das Korrumpieren von Token für die maskierte Sprachmodellierung), können Sie das Argument
Modellierung), können Sie stattdessen das Argument `collate_fn` verwenden, um eine Funktion zu übergeben, die aufgerufen wird, um die
Liste von Stichproben in einen Stapel umwandelt und alle gewünschten Vorverarbeitungen vornimmt. Siehe unsere
[examples](https://github.com/huggingface/transformers/tree/main/examples) oder
[notebooks](https://huggingface.co/docs/transformers/notebooks), um diesen Ansatz in Aktion zu sehen.
Sobald Sie einen `tf.data.Dataset` erstellt haben, können Sie das Modell wie zuvor kompilieren und anpassen:
```py
model.compile(optimizer=Adam(3e-5))
model.fit(tf_dataset)
```
</tf>
</frameworkcontent>
<a id='pytorch_native'></a>
## Trainieren in nativem PyTorch
<frameworkcontent>
<pt>
<Youtube id="Dh9CL8fyG80"/>
[`Trainer`] kümmert sich um die Trainingsschleife und ermöglicht die Feinabstimmung eines Modells in einer einzigen Codezeile. Für Benutzer, die es vorziehen, ihre eigene Trainingsschleife zu schreiben, können Sie auch eine Feinabstimmung eines 🤗 Transformers-Modells in nativem PyTorch vornehmen.
An diesem Punkt müssen Sie möglicherweise Ihr Notebook neu starten oder den folgenden Code ausführen, um etwas Speicher freizugeben:
```py
del model
del pytorch_model
del trainer
torch.cuda.empty_cache()
```
Als Nächstes müssen Sie den Datensatz `tokenized_dataset` manuell nachbearbeiten, um ihn für das Training vorzubereiten.
1. Entfernen Sie die Spalte "Text", da das Modell keinen Rohtext als Eingabe akzeptiert:
```py
>>> tokenized_datasets = tokenized_datasets.remove_columns(["text"])
```
2. Benennen Sie die Spalte "Label" in "Labels" um, da das Modell erwartet, dass das Argument "Labels" genannt wird:
```py
>>> tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
```
3. Stellen Sie das Format des Datensatzes so ein, dass PyTorch-Tensoren anstelle von Listen zurückgegeben werden:
```py
>>> tokenized_datasets.set_format("torch")
```
Erstellen Sie dann eine kleinere Teilmenge des Datensatzes, wie zuvor gezeigt, um die Feinabstimmung zu beschleunigen:
```py
>>> small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
>>> small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
```
### DataLoader
Erstellen Sie einen `DataLoader` für Ihre Trainings- und Testdatensätze, damit Sie über die Datenstapel iterieren können:
```py
>>> from torch.utils.data import DataLoader
>>> train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
>>> eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
```
Laden Sie Ihr Modell mit der Anzahl der erwarteten Kennzeichnungen:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
```
### Optimierer und Lernratensteuerung
Erstellen Sie einen Optimierer und einen Scheduler für die Lernrate, um das Modell fein abzustimmen. Wir verwenden den Optimierer [`AdamW`](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) aus PyTorch:
```py
>>> from torch.optim import AdamW
>>> optimizer = AdamW(model.parameters(), lr=5e-5)
```
Erstellen Sie den Standard-Lernratenplaner aus [`Trainer`]:
```py
>>> from transformers import get_scheduler
>>> num_epochs = 3
>>> num_training_steps = num_epochs * len(train_dataloader)
>>> lr_scheduler = get_scheduler(
... name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
... )
```
Geben Sie schließlich `device` an, um einen Grafikprozessor zu verwenden, wenn Sie Zugang zu einem solchen haben. Andernfalls kann das Training auf einer CPU mehrere Stunden statt ein paar Minuten dauern.
```py
>>> import torch
>>> device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
>>> model.to(device)
```
<Tip>
Holen Sie sich mit einem gehosteten Notebook wie [Colaboratory](https://colab.research.google.com/) oder [SageMaker StudioLab](https://studiolab.sagemaker.aws/) kostenlosen Zugang zu einem Cloud-GPU, wenn Sie noch keinen haben.
</Tip>
Großartig, Sie sind bereit für das Training! 🥳
### Trainingsschleife
Um Ihren Trainingsfortschritt zu verfolgen, verwenden Sie die [tqdm](https://tqdm.github.io/) Bibliothek, um einen Fortschrittsbalken über die Anzahl der Trainingsschritte hinzuzufügen:
```py
>>> from tqdm.auto import tqdm
>>> progress_bar = tqdm(range(num_training_steps))
>>> model.train()
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... outputs = model(**batch)
... loss = outputs.loss
... loss.backward()
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
### Auswertung
Genauso wie Sie eine Bewertungsfunktion zu [`Trainer`] hinzugefügt haben, müssen Sie dasselbe tun, wenn Sie Ihre eigene Trainingsschleife schreiben. Aber anstatt die Metrik am Ende jeder Epoche zu berechnen und zu melden, werden Sie dieses Mal alle Stapel mit [`~evaluate.add_batch`] akkumulieren und die Metrik ganz am Ende berechnen.
```py
>>> import evaluate
>>> metric = evaluate.load("accuracy")
>>> model.eval()
>>> for batch in eval_dataloader:
... batch = {k: v.to(device) for k, v in batch.items()}
... with torch.no_grad():
... outputs = model(**batch)
... logits = outputs.logits
... predictions = torch.argmax(logits, dim=-1)
... metric.add_batch(predictions=predictions, references=batch["labels"])
>>> metric.compute()
```
</pt>
</frameworkcontent>
<a id='additional-resources'></a>
## Zusätzliche Ressourcen
Weitere Beispiele für die Feinabstimmung finden Sie unter:
- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) enthält Skripte
um gängige NLP-Aufgaben in PyTorch und TensorFlow zu trainieren.
- [🤗 Transformers Notebooks](notebooks) enthält verschiedene Notebooks zur Feinabstimmung eines Modells für bestimmte Aufgaben in PyTorch und TensorFlow.

14
docs/source/en/_config.py Normal file
View File

@ -0,0 +1,14 @@
# docstyle-ignore
INSTALL_CONTENT = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}]
black_avoid_patterns = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}

529
docs/source/en/_toctree.yml Normal file
View File

@ -0,0 +1,529 @@
- sections:
- local: index
title: 🤗 Transformers
- local: quicktour
title: Quick tour
- local: installation
title: Installation
title: Get started
- sections:
- local: pipeline_tutorial
title: Pipelines for inference
- local: autoclass_tutorial
title: Load pretrained instances with an AutoClass
- local: preprocessing
title: Preprocess
- local: training
title: Fine-tune a pretrained model
- local: accelerate
title: Distributed training with 🤗 Accelerate
- local: model_sharing
title: Share a model
title: Tutorials
- sections:
- sections:
- local: create_a_model
title: Create a custom architecture
- local: custom_models
title: Sharing custom models
- local: run_scripts
title: Train with a script
- local: sagemaker
title: Run training on Amazon SageMaker
- local: converting_tensorflow_models
title: Converting from TensorFlow checkpoints
- local: serialization
title: Export to ONNX
- local: torchscript
title: Export to TorchScript
- local: troubleshooting
title: Troubleshoot
title: General usage
- sections:
- local: fast_tokenizers
title: Use tokenizers from 🤗 Tokenizers
- local: multilingual
title: Inference for multilingual models
- sections:
- local: tasks/sequence_classification
title: Text classification
- local: tasks/token_classification
title: Token classification
- local: tasks/question_answering
title: Question answering
- local: tasks/language_modeling
title: Language modeling
- local: tasks/translation
title: Translation
- local: tasks/summarization
title: Summarization
- local: tasks/multiple_choice
title: Multiple choice
title: Task guides
isExpanded: false
title: Natural Language Processing
- sections:
- local: tasks/audio_classification
title: Audio classification
- local: tasks/asr
title: Automatic speech recognition
title: Audio
- sections:
- local: tasks/image_classification
title: Image classification
- local: tasks/semantic_segmentation
title: Semantic segmentation
title: Computer Vision
- sections:
- local: performance
title: Overview
- local: perf_train_gpu_one
title: Training on one GPU
- local: perf_train_gpu_many
title: Training on many GPUs
- local: perf_train_cpu
title: Training on CPU
- local: perf_train_cpu_many
title: Training on many CPUs
- local: perf_train_tpu
title: Training on TPUs
- local: perf_train_special
title: Training on Specialized Hardware
- local: perf_infer_cpu
title: Inference on CPU
- local: perf_infer_gpu_one
title: Inference on one GPU
- local: perf_infer_gpu_many
title: Inference on many GPUs
- local: perf_infer_special
title: Inference on Specialized Hardware
- local: perf_hardware
title: Custom hardware for training
- local: big_models
title: Instantiating a big model
- local: debugging
title: Debugging
- local: hpo_train
title: Hyperparameter Search using Trainer API
title: Performance and scalability
- sections:
- local: contributing
title: How to contribute to transformers?
- local: add_new_model
title: How to add a model to 🤗 Transformers?
- local: add_tensorflow_model
title: How to convert a 🤗 Transformers model to TensorFlow?
- local: add_new_pipeline
title: How to add a pipeline to 🤗 Transformers?
- local: testing
title: Testing
- local: pr_checks
title: Checks on a Pull Request
title: Contribute
- local: notebooks
title: 🤗 Transformers Notebooks
- local: community
title: Community resources
- local: benchmarks
title: Benchmarks
- local: migration
title: Migrating from previous packages
title: How-to guides
- sections:
- local: philosophy
title: Philosophy
- local: glossary
title: Glossary
- local: task_summary
title: Summary of the tasks
- local: model_summary
title: Summary of the models
- local: tokenizer_summary
title: Summary of the tokenizers
- local: pad_truncation
title: Padding and truncation
- local: bertology
title: BERTology
- local: perplexity
title: Perplexity of fixed-length models
title: Conceptual guides
- sections:
- sections:
- local: model_doc/auto
title: Auto Classes
- local: main_classes/callback
title: Callbacks
- local: main_classes/configuration
title: Configuration
- local: main_classes/data_collator
title: Data Collator
- local: main_classes/keras_callbacks
title: Keras callbacks
- local: main_classes/logging
title: Logging
- local: main_classes/model
title: Models
- local: main_classes/text_generation
title: Text Generation
- local: main_classes/onnx
title: ONNX
- local: main_classes/optimizer_schedules
title: Optimization
- local: main_classes/output
title: Model outputs
- local: main_classes/pipelines
title: Pipelines
- local: main_classes/processors
title: Processors
- local: main_classes/tokenizer
title: Tokenizer
- local: main_classes/trainer
title: Trainer
- local: main_classes/deepspeed
title: DeepSpeed Integration
- local: main_classes/feature_extractor
title: Feature Extractor
title: Main Classes
- sections:
- isExpanded: false
sections:
- local: model_doc/albert
title: ALBERT
- local: model_doc/bart
title: BART
- local: model_doc/barthez
title: BARThez
- local: model_doc/bartpho
title: BARTpho
- local: model_doc/bert
title: BERT
- local: model_doc/bert-generation
title: BertGeneration
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/bertweet
title: Bertweet
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
title: BigBirdPegasus
- local: model_doc/blenderbot
title: Blenderbot
- local: model_doc/blenderbot-small
title: Blenderbot Small
- local: model_doc/bloom
title: BLOOM
- local: model_doc/bort
title: BORT
- local: model_doc/byt5
title: ByT5
- local: model_doc/camembert
title: CamemBERT
- local: model_doc/canine
title: CANINE
- local: model_doc/codegen
title: CodeGen
- local: model_doc/convbert
title: ConvBERT
- local: model_doc/cpm
title: CPM
- local: model_doc/ctrl
title: CTRL
- local: model_doc/deberta
title: DeBERTa
- local: model_doc/deberta-v2
title: DeBERTa-v2
- local: model_doc/dialogpt
title: DialoGPT
- local: model_doc/distilbert
title: DistilBERT
- local: model_doc/dpr
title: DPR
- local: model_doc/electra
title: ELECTRA
- local: model_doc/encoder-decoder
title: Encoder Decoder Models
- local: model_doc/ernie
title: ERNIE
- local: model_doc/esm
title: ESM
- local: model_doc/flaubert
title: FlauBERT
- local: model_doc/fnet
title: FNet
- local: model_doc/fsmt
title: FSMT
- local: model_doc/funnel
title: Funnel Transformer
- local: model_doc/openai-gpt
title: GPT
- local: model_doc/gpt_neo
title: GPT Neo
- local: model_doc/gpt_neox
title: GPT NeoX
- local: model_doc/gpt_neox_japanese
title: GPT NeoX Japanese
- local: model_doc/gptj
title: GPT-J
- local: model_doc/gpt2
title: GPT2
- local: model_doc/herbert
title: HerBERT
- local: model_doc/ibert
title: I-BERT
- local: model_doc/layoutlm
title: LayoutLM
- local: model_doc/led
title: LED
- local: model_doc/lilt
title: LiLT
- local: model_doc/longformer
title: Longformer
- local: model_doc/longt5
title: LongT5
- local: model_doc/luke
title: LUKE
- local: model_doc/m2m_100
title: M2M100
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
title: MarkupLM
- local: model_doc/mbart
title: MBart and MBart-50
- local: model_doc/megatron-bert
title: MegatronBERT
- local: model_doc/megatron_gpt2
title: MegatronGPT2
- local: model_doc/mluke
title: mLUKE
- local: model_doc/mobilebert
title: MobileBERT
- local: model_doc/mpnet
title: MPNet
- local: model_doc/mt5
title: MT5
- local: model_doc/mvp
title: MVP
- local: model_doc/nezha
title: NEZHA
- local: model_doc/nllb
title: NLLB
- local: model_doc/nystromformer
title: Nyströmformer
- local: model_doc/opt
title: OPT
- local: model_doc/pegasus
title: Pegasus
- local: model_doc/pegasus_x
title: PEGASUS-X
- local: model_doc/phobert
title: PhoBERT
- local: model_doc/plbart
title: PLBart
- local: model_doc/prophetnet
title: ProphetNet
- local: model_doc/qdqbert
title: QDQBert
- local: model_doc/rag
title: RAG
- local: model_doc/realm
title: REALM
- local: model_doc/reformer
title: Reformer
- local: model_doc/rembert
title: RemBERT
- local: model_doc/retribert
title: RetriBERT
- local: model_doc/roberta
title: RoBERTa
- local: model_doc/roformer
title: RoFormer
- local: model_doc/splinter
title: Splinter
- local: model_doc/squeezebert
title: SqueezeBERT
- local: model_doc/t5
title: T5
- local: model_doc/t5v1.1
title: T5v1.1
- local: model_doc/tapas
title: TAPAS
- local: model_doc/tapex
title: TAPEX
- local: model_doc/transfo-xl
title: Transformer XL
- local: model_doc/ul2
title: UL2
- local: model_doc/xglm
title: XGLM
- local: model_doc/xlm
title: XLM
- local: model_doc/xlm-prophetnet
title: XLM-ProphetNet
- local: model_doc/xlm-roberta
title: XLM-RoBERTa
- local: model_doc/xlm-roberta-xl
title: XLM-RoBERTa-XL
- local: model_doc/xlnet
title: XLNet
- local: model_doc/yoso
title: YOSO
title: Text models
- isExpanded: false
sections:
- local: model_doc/beit
title: BEiT
- local: model_doc/conditional_detr
title: Conditional DETR
- local: model_doc/convnext
title: ConvNeXT
- local: model_doc/cvt
title: CvT
- local: model_doc/deformable_detr
title: Deformable DETR
- local: model_doc/deit
title: DeiT
- local: model_doc/detr
title: DETR
- local: model_doc/dit
title: DiT
- local: model_doc/dpt
title: DPT
- local: model_doc/glpn
title: GLPN
- local: model_doc/imagegpt
title: ImageGPT
- local: model_doc/levit
title: LeViT
- local: model_doc/maskformer
title: MaskFormer
- local: model_doc/mobilevit
title: MobileViT
- local: model_doc/poolformer
title: PoolFormer
- local: model_doc/regnet
title: RegNet
- local: model_doc/resnet
title: ResNet
- local: model_doc/segformer
title: SegFormer
- local: model_doc/swin
title: Swin Transformer
- local: model_doc/swinv2
title: Swin Transformer V2
- local: model_doc/van
title: VAN
- local: model_doc/videomae
title: VideoMAE
- local: model_doc/vit
title: Vision Transformer (ViT)
- local: model_doc/vit_mae
title: ViTMAE
- local: model_doc/vit_msn
title: ViTMSN
- local: model_doc/yolos
title: YOLOS
title: Vision models
- isExpanded: false
sections:
- local: model_doc/hubert
title: Hubert
- local: model_doc/mctct
title: MCTCT
- local: model_doc/sew
title: SEW
- local: model_doc/sew-d
title: SEW-D
- local: model_doc/speech_to_text
title: Speech2Text
- local: model_doc/speech_to_text_2
title: Speech2Text2
- local: model_doc/unispeech
title: UniSpeech
- local: model_doc/unispeech-sat
title: UniSpeech-SAT
- local: model_doc/wav2vec2
title: Wav2Vec2
- local: model_doc/wav2vec2-conformer
title: Wav2Vec2-Conformer
- local: model_doc/wav2vec2_phoneme
title: Wav2Vec2Phoneme
- local: model_doc/wavlm
title: WavLM
- local: model_doc/whisper
title: Whisper
- local: model_doc/xls_r
title: XLS-R
- local: model_doc/xlsr_wav2vec2
title: XLSR-Wav2Vec2
title: Audio models
- isExpanded: false
sections:
- local: model_doc/clip
title: CLIP
- local: model_doc/data2vec
title: Data2Vec
- local: model_doc/donut
title: Donut
- local: model_doc/flava
title: FLAVA
- local: model_doc/groupvit
title: GroupViT
- local: model_doc/layoutlmv2
title: LayoutLMV2
- local: model_doc/layoutlmv3
title: LayoutLMV3
- local: model_doc/layoutxlm
title: LayoutXLM
- local: model_doc/lxmert
title: LXMERT
- local: model_doc/owlvit
title: OWL-ViT
- local: model_doc/perceiver
title: Perceiver
- local: model_doc/speech-encoder-decoder
title: Speech Encoder Decoder Models
- local: model_doc/trocr
title: TrOCR
- local: model_doc/vilt
title: ViLT
- local: model_doc/vision-encoder-decoder
title: Vision Encoder Decoder Models
- local: model_doc/vision-text-dual-encoder
title: Vision Text Dual Encoder
- local: model_doc/visual_bert
title: VisualBERT
- local: model_doc/xclip
title: X-CLIP
title: Multimodal models
- isExpanded: false
sections:
- local: model_doc/decision_transformer
title: Decision Transformer
- local: model_doc/trajectory_transformer
title: Trajectory Transformer
title: Reinforcement learning models
- isExpanded: false
sections:
- local: model_doc/time_series_transformer
title: Time Series Transformer
title: Time series models
title: Models
- sections:
- local: internal/modeling_utils
title: Custom Layers and Utilities
- local: internal/pipelines_utils
title: Utilities for pipelines
- local: internal/tokenization_utils
title: Utilities for Tokenizers
- local: internal/trainer_utils
title: Utilities for Trainer
- local: internal/generation_utils
title: Utilities for Generation
- local: internal/image_processing_utils
title: Utilities for Image Processors
- local: internal/file_utils
title: General Utilities
title: Internal Helpers
title: API

View File

@ -12,7 +12,7 @@ specific language governing permissions and limitations under the License.
# Distributed training with 🤗 Accelerate
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate/index.html) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
As models get bigger, parallelism has emerged as a strategy for training larger models on limited hardware and accelerating training speed by several orders of magnitude. At Hugging Face, we created the [🤗 Accelerate](https://huggingface.co/docs/accelerate) library to help users easily train a 🤗 Transformers model on any type of distributed setup, whether it is multiple GPU's on one machine or multiple GPU's across several machines. In this tutorial, learn how to customize your native PyTorch training loop to enable training in a distributed environment.
## Setup
@ -22,7 +22,7 @@ Get started by installing 🤗 Accelerate:
pip install accelerate
```
Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator) object. [`Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
Then import and create an [`~accelerate.Accelerator`] object. The [`~accelerate.Accelerator`] will automatically detect your type of distributed setup and initialize all the necessary components for training. You don't need to explicitly place your model on a device.
```py
>>> from accelerate import Accelerator
@ -32,7 +32,7 @@ Then import and create an [`Accelerator`](https://huggingface.co/docs/accelerate
## Prepare to accelerate
The next step is to pass all the relevant training objects to [`prepare`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.prepare). This includes your training and evaluation DataLoaders, a model and an optimizer:
The next step is to pass all the relevant training objects to the [`~accelerate.Accelerator.prepare`] method. This includes your training and evaluation DataLoaders, a model and an optimizer:
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
@ -42,7 +42,7 @@ The next step is to pass all the relevant training objects to [`prepare`](https:
## Backward
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`backward`](https://huggingface.co/docs/accelerate/accelerator.html#accelerate.Accelerator.backward):
The last addition is to replace the typical `loss.backward()` in your training loop with 🤗 Accelerate's [`~accelerate.Accelerator.backward`]method:
```py
>>> for epoch in range(num_epochs):
@ -57,9 +57,49 @@ The last addition is to replace the typical `loss.backward()` in your training l
... progress_bar.update(1)
```
As you can see in the following image, you only need to add four additional lines of code to your training loop to enable distributed training!
As you can see in the following code, you only need to add four additional lines of code to your training loop to enable distributed training!
![accelerate](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/accelerate.png)
```diff
+ from accelerate import Accelerator
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
+ accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
optimizer = AdamW(model.parameters(), lr=3e-5)
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+ train_dataloader, eval_dataloader, model, optimizer
+ )
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## Train
@ -81,7 +121,7 @@ accelerate launch train.py
### Train with a notebook
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to `notebook_launcher`:
🤗 Accelerate can also run in a notebook if you're planning on using Colaboratory's TPUs. Wrap all the code responsible for training in a function, and pass it to [`~accelerate.notebook_launcher`]:
```py
>>> from accelerate import notebook_launcher
@ -89,4 +129,4 @@ accelerate launch train.py
>>> notebook_launcher(training_function)
```
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate/index.html).
For more information about 🤗 Accelerate and it's rich features, refer to the [documentation](https://huggingface.co/docs/accelerate).

View File

@ -19,7 +19,7 @@ independently. Thus, for some new models that the community wants to be added to
model to 🤗 Transformers.
If this sounds like something you would be interested in, feel free to check out the currently open
“calls-for-model-addition” [here](https://github.com/huggingface/transformers/tree/master/templates/adding_a_new_model/open_model_proposals/README.md)
“calls-for-model-addition” [here](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model/open_model_proposals/README.md)
and to contact us.
If selected, you will then work closely with one member of the Hugging Face team to integrate the model into 🤗
@ -95,6 +95,24 @@ different formats - the model to a *pytorch_model.bin* file and the configuratio
[`~PretrainedConfig.save_pretrained`], so that both model and configuration are saved.
### Code style
When coding your new model, keep in mind that Transformers is an opinionated library and we have a few quirks of our
own regarding how code should be written :-)
1. The forward pass of your model should be fully written in the modeling file while being fully independent of other
models in the library. If you want to reuse a block from another model, copy the code and paste it with a
`# Copied from` comment on top (see [here](https://github.com/huggingface/transformers/blob/v4.17.0/src/transformers/models/roberta/modeling_roberta.py#L160)
for a good example).
2. The code should be fully understandable, even by a non-native English speaker. This means you should pick
descriptive variable names and avoid abbreviations. As an example, `activation` is preferred to `act`.
One-letter variable names are strongly discouraged unless it's an index in a for loop.
3. More generally we prefer longer explicit code to short magical one.
4. Avoid subclassing `nn.Sequential` in PyTorch but subclass `nn.Module` and write the forward pass, so that anyone
using your code can quickly debug it by adding print statements or breaking points.
5. Your function signature should be type-annotated. For the rest, good variable names are way more readable and
understandable than type annotations.
### Overview of tokenizers
Not quite ready yet :-( This section will be added soon!
@ -204,7 +222,7 @@ cd ..
5. To port *brand_new_bert*, you will also need access to its original repository:
```bash
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
git clone https://github.com/org_that_created_brand_new_bert_org/brand_new_bert.git
cd brand_new_bert
pip install -e .
```
@ -363,7 +381,7 @@ important. Here is some advice is to make your debugging environment as efficien
original code so that you can directly input the ids instead of an input string.
- Make sure that the model in your debugging setup is **not** in training mode, which often causes the model to yield
random outputs due to multiple dropout layers in the model. Make sure that the forward pass in your debugging
environment is **deterministic** so that the dropout layers are not used. Or use *transformers.file_utils.set_seed*
environment is **deterministic** so that the dropout layers are not used. Or use *transformers.utils.set_seed*
if the old and new implementations are in the same framework.
The following section gives you more specific details/tips on how you can do this for *brand_new_bert*.
@ -380,15 +398,12 @@ In the special case that you are adding a model whose architecture exactly match
existing model you only have to add a conversion script as described in [this section](#write-a-conversion-script).
In this case, you can just re-use the whole model architecture of the already existing model.
Otherwise, let's start generating a new model with the amazing Cookiecutter!
Otherwise, let's start generating a new model. You have two choices here:
**Use the Cookiecutter to automatically generate the model's code**
- `transformers-cli add-new-model-like` to add a new model like an existing one
- `transformers-cli add-new-model` to add a new model from our template (will look like BERT or Bart depending on the type of model you select)
To begin with head over to the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/master/templates/adding_a_new_model) to make use of our
`cookiecutter` implementation to automatically generate all the relevant files for your model. Again, we recommend
only adding the PyTorch version of the model at first. Make sure you follow the instructions of the `README.md` on
the [🤗 Transformers templates](https://github.com/huggingface/transformers/tree/master/templates/adding_a_new_model)
carefully.
In both cases, you will be prompted with a questionnaire to fill the basic information of your model. The second command requires to install `cookiecutter`, you can find more information on it [here](https://github.com/huggingface/transformers/tree/main/templates/adding_a_new_model).
**Open a Pull Request on the main huggingface/transformers repo**
@ -398,7 +413,7 @@ side-by-side on integrating the model into 🤗 Transformers.
You should do the following:
1. Create a branch with a descriptive name from your master branch
1. Create a branch with a descriptive name from your main branch
```bash
git checkout -b add_brand_new_bert
@ -411,11 +426,11 @@ git add .
git commit
```
3. Fetch and rebase to current master
3. Fetch and rebase to current main
```bash
git fetch upstream
git rebase upstream/master
git rebase upstream/main
```
4. Push the changes to your account using:
@ -431,12 +446,12 @@ git push -u origin a-descriptive-name-for-my-changes
6. Change the PR into a draft by clicking on “Convert to draft” on the right of the GitHub pull request web page.
In the following, whenever you have done some progress, don't forget to commit your work and push it to your account so
that it shows in the pull request. Additionally, you should make sure to update your work with the current master from
that it shows in the pull request. Additionally, you should make sure to update your work with the current main from
time to time by doing:
```bash
git fetch upstream
git merge upstream/master
git merge upstream/main
```
In general, all questions you might have regarding the model or your implementation should be asked in your PR and
@ -494,7 +509,7 @@ slightly adapt it for your use case. Don't hesitate to ask the Hugging Face team
existing conversion script for your model.
- If you are porting a model from TensorFlow to PyTorch, a good starting point might be BERT's conversion script [here](https://github.com/huggingface/transformers/blob/7acfa95afb8194f8f9c1f4d2c6028224dbed35a2/src/transformers/models/bert/modeling_bert.py#L91)
- If you are porting a model from PyTorch to PyTorch, a good starting point might be BART's conversion script [here](https://github.com/huggingface/transformers/blob/master/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
- If you are porting a model from PyTorch to PyTorch, a good starting point might be BART's conversion script [here](https://github.com/huggingface/transformers/blob/main/src/transformers/models/bart/convert_bart_original_pytorch_checkpoint_to_pytorch.py)
In the following, we'll quickly explain how PyTorch models store layer weights and define layer names. In PyTorch, the
name of a layer is defined by the name of the class attribute you give the layer. Let's define a dummy model in
@ -668,10 +683,11 @@ work left to be done should be a cakewalk 😊.
At this point, you have successfully added a new model. However, it is very much possible that the model does not yet
fully comply with the required design. To make sure, the implementation is fully compatible with 🤗 Transformers, all
common tests should pass. The Cookiecutter should have automatically added a test file for your model, probably under
the same `tests/test_modeling_brand_new_bert.py`. Run this test file to verify that all common tests pass:
the same `tests/models/brand_new_bert/test_modeling_brand_new_bert.py`. Run this test file to verify that all common
tests pass:
```bash
pytest tests/test_modeling_brand_new_bert.py
pytest tests/models/brand_new_bert/test_modeling_brand_new_bert.py
```
Having fixed all common tests, it is now crucial to ensure that all the nice work you have done is well tested, so that
@ -685,7 +701,7 @@ Cookiecutter, called `BrandNewBertModelIntegrationTests` and only has to be fill
tests are passing, run
```bash
RUN_SLOW=1 pytest -sv tests/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
RUN_SLOW=1 pytest -sv tests/models/brand_new_bert/test_modeling_brand_new_bert.py::BrandNewBertModelIntegrationTests
```
<Tip>
@ -743,7 +759,8 @@ contain a couple of hard-coded integration tests.
**10. Run End-to-end integration tests**
Having added the tokenizer, you should also add a couple of end-to-end integration tests using both the model and the
tokenizer to `tests/test_modeling_brand_new_bert.py` in 🤗 Transformers. Such a test should show on a meaningful
tokenizer to `tests/models/brand_new_bert/test_modeling_brand_new_bert.py` in 🤗 Transformers.
Such a test should show on a meaningful
text-to-text sample that the 🤗 Transformers implementation works as expected. A meaningful text-to-text sample can
include *e.g.* a source-to-target-translation pair, an article-to-summary pair, a question-to-answer pair, etc… If none
of the ported checkpoints has been fine-tuned on a downstream task it is enough to simply rely on the model tests. In a
@ -762,7 +779,7 @@ the community to add some *Tips* to show how the model should be used. Don't hes
regarding the docstrings.
Next, make sure that the docstring added to `src/transformers/models/brand_new_bert/modeling_brand_new_bert.py` is
correct and included all necessary inputs and outputs. It is always to good to remind oneself that documentation should
correct and included all necessary inputs and outputs. We have a detailed guide about writing documentation and our docstring format [here](writing-documentation). It is always to good to remind oneself that documentation should
be treated at least as carefully as the code in 🤗 Transformers since the documentation is usually the first contact
point of the community with the model.
@ -793,9 +810,15 @@ You have now finished the coding part, congratulation! 🎉 You are Awesome!
**12. Upload the models to the model hub**
In this final part, you should convert and upload all checkpoints to the model hub and add a model card for each
uploaded model checkpoint. You should work alongside the Hugging Face team here to decide on a fitting name for each
uploaded model checkpoint. You can get familiar with the hub functionalities by reading our [Model sharing and uploading Page](model_sharing). You should work alongside the Hugging Face team here to decide on a fitting name for each
checkpoint and to get the required access rights to be able to upload the model under the author's organization of
*brand_new_bert*.
*brand_new_bert*. The `push_to_hub` method, present in all models in `transformers`, is a quick and efficient way to push your checkpoint to the hub. A little snippet is pasted below:
```python
brand_new_bert.push_to_hub("brand_new_bert")
# Uncomment the following line to push to an organization.
# brand_new_bert.push_to_hub("<organization>/brand_new_bert")
```
It is worth spending some time to create fitting model cards for each checkpoint. The model cards should highlight the
specific characteristics of this particular checkpoint, *e.g.* On which dataset was the checkpoint
@ -809,7 +832,7 @@ fine-tuned on a downstream task. This is not mandatory to merge your PR, but ver
**14. Submit your finished PR**
You're done programming now and can move to the last step, which is getting your PR merged into master. Usually, the
You're done programming now and can move to the last step, which is getting your PR merged into main. Usually, the
Hugging Face team should have helped you already at this point, but it is worth taking some time to give your finished
PR a nice description and eventually add comments to your code, if you want to point out certain design choices to your
reviewer.

View File

@ -9,7 +9,10 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
-->
# How to add a pipeline to 🤗 Transformers?
# How to create a custom pipeline?
In this guide, we will see how to create a custom pipeline and share it on the [Hub](hf.co/models) or add it to the
Transformers library.
First and foremost, you need to decide the raw entries the pipeline will be able to take. It can be strings, raw bytes,
dictionaries or whatever seems to be the most likely desired input. Try to keep these inputs as pure Python as possible
@ -99,7 +102,7 @@ def _sanitize_parameters(self, **kwargs):
postprocess_kwargs = {}
if "top_k" in kwargs:
preprocess_kwargs["top_k"] = kwargs["top_k"]
postprocess_kwargs["top_k"] = kwargs["top_k"]
return preprocess_kwargs, {}, postprocess_kwargs
```
@ -111,12 +114,123 @@ of arguments for ease of use (audio files, can be filenames, URLs or pure bytes)
## Adding it to the list of supported tasks
Go to `src/transformers/pipelines/__init__.py` and fill in `SUPPORTED_TASKS` with your newly created pipeline.
If possible it should provide a default model.
To register your `new-task` to the list of supported tasks, you have to add it to the `PIPELINE_REGISTRY`:
## Adding tests
```python
from transformers.pipelines import PIPELINE_REGISTRY
Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
)
```
You can specify a default model if you want, in which case it should come with a specific revision (which can be the name of a branch or a commit hash, here we took `"abcdef"`) as well was the type:
```python
PIPELINE_REGISTRY.register_pipeline(
"new-task",
pipeline_class=MyPipeline,
pt_model=AutoModelForSequenceClassification,
default={"pt": ("user/awesome_model", "abcdef")},
type="text", # current support type: text, audio, image, multimodal
)
```
## Share your pipeline on the Hub
To share your custom pipeline on the Hub, you just have to save the custom code of your `Pipeline` subclass in a
python file. For instance, let's say we want to use a custom pipeline for sentence pair classification like this:
```py
import numpy as np
from transformers import Pipeline
def softmax(outputs):
maxes = np.max(outputs, axis=-1, keepdims=True)
shifted_exp = np.exp(outputs - maxes)
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
class PairClassificationPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "second_text" in kwargs:
preprocess_kwargs["second_text"] = kwargs["second_text"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, second_text=None):
return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework)
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs):
logits = model_outputs.logits[0].numpy()
probabilities = softmax(logits)
best_class = np.argmax(probabilities)
label = self.model.config.id2label[best_class]
score = probabilities[best_class].item()
logits = logits.tolist()
return {"label": label, "score": score, "logits": logits}
```
The implementation is framework agnostic, and will work for PyTorch and TensorFlow models. If we have saved this in
a file named `pair_classification.py`, we can then import it and register it like this:
```py
from pair_classification import PairClassificationPipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForSequenceClassification, TFAutoModelForSequenceClassification
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
tf_model=TFAutoModelForSequenceClassification,
)
```
Once this is done, we can use it with a pretrained model. For instance `sgugger/finetuned-bert-mrpc` has been
fine-tuned on the MRPC dataset, which classifies pairs of sentences as paraphrases or not.
```py
from transformers import pipeline
classifier = pipeline("pair-classification", model="sgugger/finetuned-bert-mrpc")
```
Then we can share it on the Hub by using the `save_pretrained` method in a `Repository`:
```py
from huggingface_hub import Repository
repo = Repository("test-dynamic-pipeline", clone_from="{your_username}/test-dynamic-pipeline")
classifier.save_pretrained("test-dynamic-pipeline")
repo.push_to_hub()
```
This will copy the file where you defined `PairClassificationPipeline` inside the folder `"test-dynamic-pipeline"`,
along with saving the model and tokenizer of the pipeline, before pushing everything in the repository
`{your_username}/test-dynamic-pipeline`. After that anyone can use it as long as they provide the option
`trust_remote_code=True`:
```py
from transformers import pipeline
classifier = pipeline(model="{your_username}/test-dynamic-pipeline", trust_remote_code=True)
```
## Add the pipeline to Transformers
If you want to contribute your pipeline to Transformers, you will need to add a new module in the `pipelines` submodule
with the code of your pipeline, then add it in the list of tasks defined in `pipelines/__init__.py`.
Then you will need to add tests. Create a new file `tests/test_pipelines_MY_PIPELINE.py` with example with the other tests.
The `run_pipeline_test` function will be very generic and run on small random models on every possible
architecture as defined by `model_mapping` and `tf_model_mapping`.

View File

@ -0,0 +1,346 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
-->
# How to convert a 🤗 Transformers model to TensorFlow?
Having multiple frameworks available to use with 🤗 Transformers gives you flexibility to play their strengths when
designing your application, but it implies that compatibility must be added on a per-model basis. The good news is that
adding TensorFlow compatibility to an existing model is simpler than [adding a new model from scratch](add_new_model)!
Whether you wish to have a deeper understanding of large TensorFlow models, make a major open-source contribution, or
enable TensorFlow for your model of choice, this guide is for you.
This guide empowers you, a member of our community, to contribute TensorFlow model weights and/or
architectures to be used in 🤗 Transformers, with minimal supervision from the Hugging Face team. Writing a new model
is no small feat, but hopefully this guide will make it less of a rollercoaster 🎢 and more of a walk in the park 🚶.
Harnessing our collective experiences is absolutely critical to make this process increasingly easier, and thus we
highly encourage that you suggest improvements to this guide!
Before you dive deeper, it is recommended that you check the following resources if you're new to 🤗 Transformers:
- [General overview of 🤗 Transformers](add_new_model#general-overview-of-transformers)
- [Hugging Face's TensorFlow Philosophy](https://huggingface.co/blog/tensorflow-philosophy)
In the remainder of this guide, you will learn what's needed to add a new TensorFlow model architecture, the
procedure to convert PyTorch into TensorFlow model weights, and how to efficiently debug mismatches across ML
frameworks. Let's get started!
<Tip>
Are you unsure whether the model you wish to use already has a corresponding TensorFlow architecture?
&nbsp;
Check the `model_type` field of the `config.json` of your model of choice
([example](https://huggingface.co/bert-base-uncased/blob/main/config.json#L14)). If the corresponding model folder in
🤗 Transformers has a file whose name starts with "modeling_tf", it means that it has a corresponding TensorFlow
architecture ([example](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert)).
</Tip>
## Step-by-step guide to add TensorFlow model architecture code
There are many ways to design a large model architecture, and multiple ways of implementing said design. However,
you might recall from our [general overview of 🤗 Transformers](add_new_model#general-overview-of-transformers)
that we are an opinionated bunch - the ease of use of 🤗 Transformers relies on consistent design choices. From
experience, we can tell you a few important things about adding TensorFlow models:
- Don't reinvent the wheel! More often that not, there are at least two reference implementations you should check: the
PyTorch equivalent of the model you are implementing and other TensorFlow models for the same class of problems.
- Great model implementations survive the test of time. This doesn't happen because the code is pretty, but rather
because the code is clear, easy to debug and build upon. If you make the life of the maintainers easy with your
TensorFlow implementation, by replicating the same patterns as in other TensorFlow models and minimizing the mismatch
to the PyTorch implementation, you ensure your contribution will be long lived.
- Ask for help when you're stuck! The 🤗 Transformers team is here to help, and we've probably found solutions to the same
problems you're facing.
Here's an overview of the steps needed to add a TensorFlow model architecture:
1. Select the model you wish to convert
2. Prepare transformers dev environment
3. (Optional) Understand theoretical aspects and the existing implementation
4. Implement the model architecture
5. Implement model tests
6. Submit the pull request
7. (Optional) Build demos and share with the world
### 1.-3. Prepare your model contribution
**1. Select the model you wish to convert**
Let's start off with the basics: the first thing you need to know is the architecture you want to convert. If you
don't have your eyes set on a specific architecture, asking the 🤗 Transformers team for suggestions is a great way to
maximize your impact - we will guide you towards the most prominent architectures that are missing on the TensorFlow
side. If the specific model you want to use with TensorFlow already has a TensorFlow architecture implementation in
🤗 Transformers but is lacking weights, feel free to jump straight into the
[weight conversion section](#adding-tensorflow-weights-to-hub)
of this page.
For simplicity, the remainder of this guide assumes you've decided to contribute with the TensorFlow version of
*BrandNewBert* (the same example as in the [guide](add_new_model) to add a new model from scratch).
<Tip>
Before starting the work on a TensorFlow model architecture, double-check that there is no ongoing effort to do so.
You can search for `BrandNewBert` on the
[pull request GitHub page](https://github.com/huggingface/transformers/pulls?q=is%3Apr) to confirm that there is no
TensorFlow-related pull request.
</Tip>
**2. Prepare transformers dev environment**
Having selected the model architecture, open an draft PR to signal your intention to work on it. Follow the
instructions below to set up your environment and open a draft PR.
1. Fork the [repository](https://github.com/huggingface/transformers) by clicking on the 'Fork' button on the
repository's page. This creates a copy of the code under your GitHub user account.
2. Clone your `transformers` fork to your local disk, and add the base repository as a remote:
```bash
git clone https://github.com/[your Github handle]/transformers.git
cd transformers
git remote add upstream https://github.com/huggingface/transformers.git
```
3. Set up a development environment, for instance by running the following command:
```bash
python -m venv .env
source .env/bin/activate
pip install -e ".[dev]"
```
**Note:** You don't need to have CUDA installed. Making the new model work on CPU is sufficient.
4. Create a branch with a descriptive name from your main branch
```bash
git checkout -b add_tf_brand_new_bert
```
5. Fetch and rebase to current main
```bash
git fetch upstream
git rebase upstream/main
```
6. Add an empty `.py` file in `transformers/src/models/brandnewbert/` named `modeling_tf_brandnewbert.py`. This will
be your TensorFlow model file.
7. Push the changes to your account using:
```bash
git add .
git commit -m "initial commit"
git push -u origin add_tf_brand_new_bert
```
8. Once you are satisfied, go to the webpage of your fork on GitHub. Click on “Pull request”. Make sure to add the
GitHub handle of some members of the Hugging Face team as reviewers, so that the Hugging Face team gets notified for
future changes.
9. Change the PR into a draft by clicking on “Convert to draft” on the right of the GitHub pull request web page.
Now you have set up a development environment to port *BrandNewBert* to TensorFlow in 🤗 Transformers.
**3. (Optional) Understand theoretical aspects and the existing implementation**
You should take some time to read *BrandNewBert's* paper, if such descriptive work exists. There might be large
sections of the paper that are difficult to understand. If this is the case, this is fine - don't worry! The goal is
not to get a deep theoretical understanding of the paper, but to extract the necessary information required to
effectively re-implement the model in 🤗 Transformers using TensorFlow. That being said, you don't have to spend too
much time on the theoretical aspects, but rather focus on the practical ones, namely the existing model documentation
page (e.g. [model docs for BERT](model_doc/bert)).
After you've grasped the basics of the models you are about to implement, it's important to understand the existing
implementation. This is a great chance to confirm that a working implementation matches your expectations for the
model, as well as to foresee technical challenges on the TensorFlow side.
It's perfectly natural that you feel overwhelmed with the amount of information that you've just absorbed. It is
definitely not a requirement that you understand all facets of the model at this stage. Nevertheless, we highly
encourage you to clear any pressing questions in our [forum](https://discuss.huggingface.co/).
### 4. Model implementation
Now it's time to finally start coding. Our suggested starting point is the PyTorch file itself: copy the contents of
`modeling_brand_new_bert.py` inside `src/transformers/models/brand_new_bert/` into
`modeling_tf_brand_new_bert.py`. The goal of this section is to modify the file and update the import structure of
🤗 Transformers such that you can import `TFBrandNewBert` and
`TFBrandNewBert.from_pretrained(model_repo, from_pt=True)` sucessfully loads a working TensorFlow *BrandNewBert* model.
Sadly, there is no prescription to convert a PyTorch model into TensorFlow. You can, however, follow our selection of
tips to make the process as smooth as possible:
- Prepend `TF` to the name of all classes (e.g. `BrandNewBert` becomes `TFBrandNewBert`).
- Most PyTorch operations have a direct TensorFlow replacement. For example, `torch.nn.Linear` corresponds to
`tf.keras.layers.Dense`, `torch.nn.Dropout` corresponds to `tf.keras.layers.Dropout`, etc. If you're not sure
about a specific operation, you can use the [TensorFlow documentation](https://www.tensorflow.org/api_docs/python/tf)
or the [PyTorch documentation](https://pytorch.org/docs/stable/).
- Look for patterns in the 🤗 Transformers codebase. If you come across a certain operation that doesn't have a direct
replacement, the odds are that someone else already had the same problem.
- By default, keep the same variable names and structure as in PyTorch. This will make it easier to debug, track
issues, and add fixes down the line.
- Some layers have different default values in each framework. A notable example is the batch normalization layer's
epsilon (`1e-5` in [PyTorch](https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html#torch.nn.BatchNorm2d)
and `1e-3` in [TensorFlow](https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization)).
Double-check the documentation!
- PyTorch's `nn.Parameter` variables typically need to be initialized within TF Layer's `build()`. See the following
example: [PyTorch](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_vit_mae.py#L212) /
[TensorFlow](https://github.com/huggingface/transformers/blob/655f72a6896c0533b1bdee519ed65a059c2425ac/src/transformers/models/vit_mae/modeling_tf_vit_mae.py#L220)
- If the PyTorch model has a `#copied from ...` on top of a function, the odds are that your TensorFlow model can also
borrow that function from the architecture it was copied from, assuming it has a TensorFlow architecture.
- Assigning the `name` attribute correctly in TensorFlow functions is critical to do the `from_pt=True` weight
cross-loading. `name` is almost always the name of the corresponding variable in the PyTorch code. If `name` is not
properly set, you will see it in the error message when loading the model weights.
- The logic of the base model class, `BrandNewBertModel`, will actually reside in `TFBrandNewBertMainLayer`, a Keras
layer subclass ([example](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L719)).
`TFBrandNewBertModel` will simply be a wrapper around this layer.
- Keras models need to be built in order to load pretrained weights. For that reason, `TFBrandNewBertPreTrainedModel`
will need to hold an example of inputs to the model, the `dummy_inputs`
([example](https://github.com/huggingface/transformers/blob/4fd32a1f499e45f009c2c0dea4d81c321cba7e02/src/transformers/models/bert/modeling_tf_bert.py#L916)).
- If you get stuck, ask for help - we're here to help you! 🤗
In addition to the model file itself, you will also need to add the pointers to the model classes and related
documentation pages. You can complete this part entirely following the patterns in other PRs
([example](https://github.com/huggingface/transformers/pull/18020/files)). Here's a list of the needed manual
changes:
- Include all public classes of *BrandNewBert* in `src/transformers/__init__.py`
- Add *BrandNewBert* classes to the corresponing Auto classes in `src/transformers/models/auto/modeling_tf_auto.py`
- Include the modeling file in the documentation test file list in `utils/documentation_tests.txt`
- Add the lazy loading classes related to *BrandNewBert* in `src/transformers/utils/dummy_tf_objects.py`
- Update the import structures for the public classes in `src/transformers/models/brand_new_bert/__init__.py`
- Add the documentation pointers to the public methods of *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx`
- Add yourself to the list of contributors to *BrandNewBert* in `docs/source/en/model_doc/brand_new_bert.mdx`
- Finally, add a green tick ✅ to the TensorFlow column of *BrandNewBert* in `docs/source/en/index.mdx`
When you're happy with your implementation, run the following checklist to confirm that your model architecture is
ready:
1. All layers that behave differently at train time (e.g. Dropout) are called with a `training` argument, which is
propagated all the way from the top-level classes
2. You have used `#copied from ...` whenever possible
3. `TFBrandNewBertMainLayer` and all classes that use it have their `call` function decorated with `@unpack_inputs`
4. `TFBrandNewBertMainLayer` is decorated with `@keras_serializable`
5. A TensorFlow model can be loaded from PyTorch weights using `TFBrandNewBert.from_pretrained(model_repo, from_pt=True)`
6. You can call the TensorFlow model using the expected input format
### 5. Add model tests
Hurray, you've implemented a TensorFlow model! Now it's time to add tests to make sure that your model behaves as
expected. As in the previous section, we suggest you start by copying the `test_modeling_brand_new_bert.py` file in
`tests/models/brand_new_bert/` into `test_modeling_tf_brand_new_bert.py`, and continue by making the necessary
TensorFlow replacements. For now, in all `.from_pretrained()` calls, you should use the `from_pt=True` flag to load
the existing PyTorch weights.
After you're done, it's time for the moment of truth: run the tests! 😬
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
The most likely outcome is that you'll see a bunch of errors. Don't worry, this is expected! Debugging ML models is
notoriously hard, and the key ingredient to success is patience (and `breakpoint()`). In our experience, the hardest
problems arise from subtle mismatches between ML frameworks, for which we have a few pointers at the end of this guide.
In other cases, a general test might not be directly applicable to your model, in which case we suggest an override
at the model test class level. Regardless of the issue, don't hesitate to ask for help in your draft pull request if
you're stuck.
When all tests pass, congratulations, your model is nearly ready to be added to the 🤗 Transformers library! 🎉
### 6.-7. Ensure everyone can use your model
**6. Submit the pull request**
Once you're done with the implementation and the tests, it's time to submit a pull request. Before pushing your code,
run our code formatting utility, `make fixup` 🪄. This will automatically fix any formatting issues, which would cause
our automatic checks to fail.
It's now time to convert your draft pull request into a real pull request. To do so, click on the "Ready for
review" button and add Joao (`@gante`) and Matt (`@Rocketknight1`) as reviewers. A model pull request will need
at least 3 reviewers, but they will take care of finding appropriate additional reviewers for your model.
After all reviewers are happy with the state of your PR, the final action point is to remove the `from_pt=True` flag in
`.from_pretrained()` calls. Since there are no TensorFlow weights, you will have to add them! Check the section
below for instructions on how to do it.
Finally, when the TensorFlow weights get merged, you have at least 3 reviewer approvals, and all CI checks are
green, double-check the tests locally one last time
```bash
NVIDIA_TF32_OVERRIDE=0 RUN_SLOW=1 RUN_PT_TF_CROSS_TESTS=1 \
py.test -vv tests/models/brand_new_bert/test_modeling_tf_brand_new_bert.py
```
and we will merge your PR! Congratulations on the milestone 🎉
**7. (Optional) Build demos and share with the world**
One of the hardest parts about open-source is discovery. How can the other users learn about the existence of your
fabulous TensorFlow contribution? With proper communication, of course! 📣
There are two main ways to share your model with the community:
- Build demos. These include Gradio demos, notebooks, and other fun ways to show off your model. We highly
encourage you to add a notebook to our [community-driven demos](https://huggingface.co/docs/transformers/community).
- Share stories on social media like Twitter and LinkedIn. You should be proud of your work and share
your achievement with the community - your model can now be used by thousands of engineers and researchers around
the world 🌍! We will be happy to retweet your posts and help you share your work with the community.
## Adding TensorFlow weights to 🤗 Hub
Assuming that the TensorFlow model architecture is available in 🤗 Transformers, converting PyTorch weights into
TensorFlow weights is a breeze!
Here's how to do it:
1. Make sure you are logged into your Hugging Face account in your terminal. You can log in using the command
`huggingface-cli login` (you can find your access tokens [here](https://huggingface.co/settings/tokens))
2. Run `transformers-cli pt-to-tf --model-name foo/bar`, where `foo/bar` is the name of the model repository
containing the PyTorch weights you want to convert
3. Tag `@joaogante` and `@Rocketknight1` in the 🤗 Hub PR the command above has just created
That's it! 🎉
## Debugging mismatches across ML frameworks 🐛
At some point, when adding a new architecture or when creating TensorFlow weights for an existing architecture, you
might come across errors compaining about mismatches between PyTorch and TensorFlow. You might even decide to open the
model architecture code for the two frameworks, and find that they look identical. What's going on? 🤔
First of all, let's talk about why understanding these mismatches matters. Many community members will use 🤗
Transformers models out of the box, and trust that our models behave as expected. When there is a large mismatch
between the two frameworks, it implies that the model is not following the reference implementation for at least one
of the frameworks. This might lead to silent failures, in which the model runs but has poor performance. This is
arguably worse than a model that fails to run at all! To that end, we aim at having a framework mismatch smaller than
`1e-5` at all stages of the model.
As in other numerical problems, the devil is in the details. And as in any detail-oriented craft, the secret
ingredient here is patience. Here is our suggested workflow for when you come across this type of issues:
1. Locate the source of mismatches. The model you're converting probably has near identical inner variables up to a
certain point. Place `breakpoint()` statements in the two frameworks' architectures, and compare the values of the
numerical variables in a top-down fashion until you find the source of the problems.
2. Now that you've pinpointed the source of the issue, get in touch with the 🤗 Transformers team. It is possible
that we've seen a similar problem before and can promptly provide a solution. As a fallback, scan popular pages
like StackOverflow and GitHub issues.
3. If there is no solution in sight, it means you'll have to go deeper. The good news is that you've located the
issue, so you can focus on the problematic instruction, abstracting away the rest of the model! The bad news is
that you'll have to venture into the source implementation of said instruction. In some cases, you might find an
issue with a reference implementation - don't abstain from opening an issue in the upstream repository.
In some cases, in dicussion with the 🤗 Transformers team, we might find that the fixing the mismatch is infeasible.
When the mismatch is very small in the output layers of the model (but potentially large in the hidden states), we
might decide to ignore it in favor of distributing the model. The `pt-to-tf` CLI mentioned above has a `--max-error`
flag to override the error message at weight conversion time.

View File

@ -0,0 +1,127 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Load pretrained instances with an AutoClass
With so many different Transformer architectures, it can be challenging to create one for your checkpoint. As a part of 🤗 Transformers core philosophy to make the library easy, simple and flexible to use, an `AutoClass` automatically infer and load the correct architecture from a given checkpoint. The `from_pretrained()` method lets you quickly load a pretrained model for any architecture so you don't have to devote time and resources to train a model from scratch. Producing this type of checkpoint-agnostic code means if your code works for one checkpoint, it will work with another checkpoint - as long as it was trained for a similar task - even if the architecture is different.
<Tip>
Remember, architecture refers to the skeleton of the model and checkpoints are the weights for a given architecture. For example, [BERT](https://huggingface.co/bert-base-uncased) is an architecture, while `bert-base-uncased` is a checkpoint. Model is a general term that can mean either architecture or checkpoint.
</Tip>
In this tutorial, learn to:
* Load a pretrained tokenizer.
* Load a pretrained feature extractor.
* Load a pretrained processor.
* Load a pretrained model.
## AutoTokenizer
Nearly every NLP task begins with a tokenizer. A tokenizer converts your input into a format that can be processed by the model.
Load a tokenizer with [`AutoTokenizer.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
```
Then tokenize your input as shown below:
```py
>>> sequence = "In a hole in the ground there lived a hobbit."
>>> print(tokenizer(sequence))
{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
## AutoFeatureExtractor
For audio and vision tasks, a feature extractor processes the audio signal or image into the correct input format.
Load a feature extractor with [`AutoFeatureExtractor.from_pretrained`]:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained(
... "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
... )
```
## AutoProcessor
Multimodal tasks require a processor that combines two types of preprocessing tools. For example, the [LayoutLMV2](model_doc/layoutlmv2) model requires a feature extractor to handle images and a tokenizer to handle text; a processor combines both of them.
Load a processor with [`AutoProcessor.from_pretrained`]:
```py
>>> from transformers import AutoProcessor
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
```
## AutoModel
<frameworkcontent>
<pt>
Finally, the `AutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`AutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse the same checkpoint to load an architecture for a different task:
```py
>>> from transformers import AutoModelForTokenClassification
>>> model = AutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
<Tip warning={true}>
For PyTorch models, the `from_pretrained()` method uses `torch.load()` which internally uses `pickle` and is known to be insecure. In general, never load a model that could have come from an untrusted source, or that could have been tampered with. This security risk is partially mitigated for public models hosted on the Hugging Face Hub, which are [scanned for malware](https://huggingface.co/docs/hub/security-malware) at each commit. See the [Hub documentation](https://huggingface.co/docs/hub/security) for best practices like [signed commit verification](https://huggingface.co/docs/hub/security-gpg#signing-commits-with-gpg) with GPG.
TensorFlow and Flax checkpoints are not affected, and can be loaded within PyTorch architectures using the `from_tf` and `from_flax` kwargs for the `from_pretrained` method to circumvent this issue.
</Tip>
Generally, we recommend using the `AutoTokenizer` class and the `AutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
</pt>
<tf>
Finally, the `TFAutoModelFor` classes let you load a pretrained model for a given task (see [here](model_doc/auto) for a complete list of available tasks). For example, load a model for sequence classification with [`TFAutoModelForSequenceClassification.from_pretrained`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse the same checkpoint to load an architecture for a different task:
```py
>>> from transformers import TFAutoModelForTokenClassification
>>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert-base-uncased")
```
Generally, we recommend using the `AutoTokenizer` class and the `TFAutoModelFor` class to load pretrained instances of models. This will ensure you load the correct architecture every time. In the next [tutorial](preprocessing), learn how to use your newly loaded tokenizer, feature extractor and processor to preprocess a dataset for fine-tuning.
</tf>
</frameworkcontent>

View File

@ -12,11 +12,18 @@ specific language governing permissions and limitations under the License.
# Benchmarks
<Tip warning={true}>
Hugging Face's Benchmarking tools are deprecated and it is advised to use external Benchmarking libraries to measure the speed
and memory complexity of Transformer models.
</Tip>
[[open-in-colab]]
Let's take a look at how 🤗 Transformers models can be benchmarked, best practices, and already available benchmarks.
A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/master/examples/benchmark.ipynb).
A notebook explaining in more detail how to benchmark 🤗 Transformers models can be found [here](https://github.com/huggingface/notebooks/tree/main/examples/benchmark.ipynb).
## How to benchmark 🤗 Transformers models
@ -32,12 +39,17 @@ backward pass.
The benchmark classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] expect an object of type [`PyTorchBenchmarkArguments`] and
[`TensorFlowBenchmarkArguments`], respectively, for instantiation. [`PyTorchBenchmarkArguments`] and [`TensorFlowBenchmarkArguments`] are data classes and contain all relevant configurations for their corresponding benchmark class. In the following example, it is shown how a BERT model of type _bert-base-cased_ can be benchmarked.
<frameworkcontent>
<pt>
```py
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
>>> args = PyTorchBenchmarkArguments(models=["bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> benchmark = PyTorchBenchmark(args)
===PT-TF-SPLIT===
```
</pt>
<tf>
```py
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
>>> args = TensorFlowBenchmarkArguments(
@ -45,6 +57,8 @@ The benchmark classes [`PyTorchBenchmark`] and [`TensorFlowBenchmark`] expect an
... )
>>> benchmark = TensorFlowBenchmark(args)
```
</tf>
</frameworkcontent>
Here, three arguments are given to the benchmark argument data classes, namely `models`, `batch_sizes`, and
`sequence_lengths`. The argument `models` is required and expects a `list` of model identifiers from the
@ -56,11 +70,10 @@ and `src/transformers/benchmark/benchmark_args_tf.py` (for Tensorflow). Alternat
commands from root will print out a descriptive list of all configurable parameters for PyTorch and Tensorflow
respectively.
<frameworkcontent>
<pt>
```bash
python examples/pytorch/benchmarking/run_benchmark.py --help
===PT-TF-SPLIT===
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
```
An instantiated benchmark object can then simply be run by calling `benchmark.run()`.
@ -111,8 +124,18 @@ bert-base-uncased 8 512 1539
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
```
</pt>
<tf>
```bash
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
```
===PT-TF-SPLIT===
An instantiated benchmark object can then simply be run by calling `benchmark.run()`.
```py
>>> results = benchmark.run()
>>> print(results)
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
@ -159,6 +182,8 @@ bert-base-uncased 8 512 1770
- gpu_performance_state: 2
- use_tpu: False
```
</tf>
</frameworkcontent>
By default, the _time_ and the _required memory_ for _inference_ are benchmarked. In the example output above the first
two sections show the result corresponding to _inference time_ and _inference memory_. In addition, all relevant
@ -172,6 +197,8 @@ Instead of benchmarking pre-trained models via their model identifier, _e.g._ `b
alternatively benchmark an arbitrary configuration of any available model class. In this case, a `list` of
configurations must be inserted with the benchmark args as follows.
<frameworkcontent>
<pt>
```py
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig
@ -243,8 +270,10 @@ bert-6-lay 8 512 1359
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
===PT-TF-SPLIT===
```
</pt>
<tf>
```py
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig
>>> args = TensorFlowBenchmarkArguments(
@ -316,6 +345,8 @@ bert-6-lay 8 512 1540
- gpu_performance_state: 2
- use_tpu: False
```
</tf>
</frameworkcontent>
Again, _inference time_ and _required memory_ for _inference_ are measured, but this time for customized configurations
of the `BertModel` class. This feature can especially be helpful when deciding for which configuration the model
@ -348,5 +379,5 @@ available [here](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnx
With the new _benchmark_ tools, it is easier than ever to share your benchmark results with the community
- [PyTorch Benchmarking Results](https://github.com/huggingface/transformers/tree/master/examples/pytorch/benchmarking/README.md).
- [TensorFlow Benchmarking Results](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/benchmarking/README.md).
- [PyTorch Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/pytorch/benchmarking/README.md).
- [TensorFlow Benchmarking Results](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/benchmarking/README.md).

View File

@ -32,5 +32,5 @@ help people access the inner representations, mainly adapted from the great work
- retrieving heads output values and gradients to be able to compute head importance score and prune head as explained
in https://arxiv.org/abs/1905.10650.
To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/master/examples/research_projects/bertology/run_bertology.py) while extract information and prune a model pre-trained on
To help you understand and use these features, we have added a specific example script: [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) while extract information and prune a model pre-trained on
GLUE.

View File

@ -0,0 +1,119 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Instantiating a big model
When you want to use a very big pretrained model, one challenge is to minimize the use of the RAM. The usual workflow
from PyTorch is:
1. Create your model with random weights.
2. Load your pretrained weights.
3. Put those pretrained weights in your random model.
Step 1 and 2 both require a full version of the model in memory, which is not a problem in most cases, but if your model starts weighing several GigaBytes, those two copies can make you got our of RAM. Even worse, if you are using `torch.distributed` to launch a distributed training, each process will load the pretrained model and store these two copies in RAM.
<Tip>
Note that the randomly created model is initialized with "empty" tensors, which take the space in memory without filling it (thus the random values are whatever was in this chunk of memory at a given time). The random initialization following the appropriate distribution for the kind of model/parameters instatiated (like a normal distribution for instance) is only performed after step 3 on the non-initialized weights, to be as fast as possible!
</Tip>
In this guide, we explore the solutions Transformers offer to deal with this issue. Note that this is an area of active development, so the APIs explained here may change slightly in the future.
## Sharded checkpoints
Since version 4.18.0, model checkpoints that end up taking more than 10GB of space are automatically sharded in smaller pieces. In terms of having one single checkpoint when you do `model.save_pretrained(save_dir)`, you will end up with several partial checkpoints (each of which being of size < 10GB) and an index that maps parameter names to the files they are stored in.
You can control the maximum size before sharding with the `max_shard_size` parameter, so for the sake of an example, we'll use a normal-size models with a small shard size: let's take a traditional BERT model.
```py
from transformers import AutoModel
model = AutoModel.from_pretrained("bert-base-cased")
```
If you save it using [`~PreTrainedModel.save_pretrained`], you will get a new folder with two files: the config of the model and its weights:
```py
>>> import os
>>> import tempfile
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir)
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model.bin']
```
Now let's use a maximum shard size of 200MB:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... print(sorted(os.listdir(tmp_dir)))
['config.json', 'pytorch_model-00001-of-00003.bin', 'pytorch_model-00002-of-00003.bin', 'pytorch_model-00003-of-00003.bin', 'pytorch_model.bin.index.json']
```
On top of the configuration of the model, we see three different weights files, and an `index.json` file which is our index. A checkpoint like this can be fully reloaded using the [`~PreTrainedModel.from_pretrained`] method:
```py
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... new_model = AutoModel.from_pretrained(tmp_dir)
```
The main advantage of doing this for big models is that during step 2 of the workflow shown above, each shard of the checkpoint is loaded after the previous one, capping the memory usage in RAM to the model size plus the size of the biggest shard.
Beind the scenes, the index file is used to determine which keys are in the checkpoint, and where the corresponding weights are stored. We can load that index like any json and get a dictionary:
```py
>>> import json
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... with open(os.path.join(tmp_dir, "pytorch_model.bin.index.json"), "r") as f:
... index = json.load(f)
>>> print(index.keys())
dict_keys(['metadata', 'weight_map'])
```
The metadata just consists of the total size of the model for now. We plan to add several other informations in the future:
```py
>>> index["metadata"]
{'total_size': 433245184}
```
The weights map is the main part of this index, which maps each parameter name (as usually found in a PyTorch model `state_dict`) to the file it's stored in:
```py
>>> index["weight_map"]
{'embeddings.LayerNorm.bias': 'pytorch_model-00001-of-00003.bin',
'embeddings.LayerNorm.weight': 'pytorch_model-00001-of-00003.bin',
...
```
If you want to directly load such a sharded checkpoint inside a model without using [`~PreTrainedModel.from_pretrained`] (like you would do `model.load_state_dict()` for a full checkpoint) you should use [`~modeling_utils.load_sharded_checkpoint`]:
```py
>>> from transformers.modeling_utils import load_sharded_checkpoint
>>> with tempfile.TemporaryDirectory() as tmp_dir:
... model.save_pretrained(tmp_dir, max_shard_size="200MB")
... load_sharded_checkpoint(model, tmp_dir)
```
## Low memory loading
Sharded checkpoints reduce the memory usage during step 2 of the workflow mentioned above, but in order to use that model in a low memory setting, we recommend leveraging our tools based on the Accelerate library.
Please read the following guide for more information: [Large model loading using Accelerate](./main_classes/model#large-model-loading)

View File

@ -62,3 +62,4 @@ This page regroups resources around 🤗 Transformers developed by the community
| [Speech Emotion Classification with Wav2Vec2](https://github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | How to leverage a pretrained Wav2Vec2 model for Emotion Classification on the MEGA dataset | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) |
| [Detect objects in an image with DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | How to use a trained *DetrForObjectDetection* model to detect objects in an image and visualize attention | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) |
| [Fine-tune DETR on a custom object detection dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | How to fine-tune *DetrForObjectDetection* on a custom object detection dataset | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) |
| [Finetune T5 for Named Entity Recognition](https://github.com/ToluClassics/Notebooks/blob/main/T5_Ner_Finetuning.ipynb) | How to fine-tune *T5* on a Named Entity Recognition Task | [Ogundepo Odunayo](https://github.com/ToluClassics) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1obr78FY_cBmWY5ODViCmzdY6O1KB65Vc?usp=sharing) |

View File

@ -0,0 +1 @@
../../../CONTRIBUTING.md

View File

@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Converting Tensorflow Checkpoints
# Converting From Tensorflow Checkpoints
A command-line interface is provided to convert original Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM checkpoints to models
that can be loaded using the `from_pretrained` methods of the library.
@ -27,12 +27,12 @@ The documentation below reflects the **transformers-cli convert** command format
## BERT
You can convert any TensorFlow checkpoint for BERT (in particular [the pre-trained models released by Google](https://github.com/google-research/bert#pre-trained-models)) in a PyTorch save file by using the
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/master/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script.
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script.
This CLI takes as input a TensorFlow checkpoint (three files starting with `bert_model.ckpt`) and the associated
configuration file (`bert_config.json`), and creates a PyTorch model for this configuration, loads the weights from
the TensorFlow checkpoint in the PyTorch model and saves the resulting model in a standard PyTorch save file that can
be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification/run_glue.py) ).
be imported using `from_pretrained()` (see example in [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ).
You only need to run this conversion script **once** to get a PyTorch model. You can then disregard the TensorFlow
checkpoint (the three files starting with `bert_model.ckpt`) but be sure to keep the configuration file (\
@ -56,7 +56,7 @@ You can download Google's pre-trained models for the conversion [here](https://g
## ALBERT
Convert TensorFlow model checkpoints of ALBERT to PyTorch using the
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/master/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script.
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py) script.
The CLI takes as input a TensorFlow checkpoint (three files starting with `model.ckpt-best`) and the accompanying
configuration file (`albert_config.json`), then creates and saves a PyTorch model. To run this conversion you will

View File

@ -0,0 +1,355 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Create a custom architecture
An [`AutoClass`](model_doc/auto) automatically infers the model architecture and downloads pretrained configuration and weights. Generally, we recommend using an `AutoClass` to produce checkpoint-agnostic code. But users who want more control over specific model parameters can create a custom 🤗 Transformers model from just a few base classes. This could be particularly useful for anyone who is interested in studying, training or experimenting with a 🤗 Transformers model. In this guide, dive deeper into creating a custom model without an `AutoClass`. Learn how to:
- Load and customize a model configuration.
- Create a model architecture.
- Create a slow and fast tokenizer for text.
- Create a feature extractor for audio or image tasks.
- Create a processor for multimodal tasks.
## Configuration
A [configuration](main_classes/configuration) refers to a model's specific attributes. Each model configuration has different attributes; for instance, all NLP models have the `hidden_size`, `num_attention_heads`, `num_hidden_layers` and `vocab_size` attributes in common. These attributes specify the number of attention heads or hidden layers to construct a model with.
Get a closer look at [DistilBERT](model_doc/distilbert) by accessing [`DistilBertConfig`] to inspect it's attributes:
```py
>>> from transformers import DistilBertConfig
>>> config = DistilBertConfig()
>>> print(config)
DistilBertConfig {
"activation": "gelu",
"attention_dropout": 0.1,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
[`DistilBertConfig`] displays all the default attributes used to build a base [`DistilBertModel`]. All attributes are customizable, creating space for experimentation. For example, you can customize a default model to:
- Try a different activation function with the `activation` parameter.
- Use a higher dropout ratio for the attention probabilities with the `attention_dropout` parameter.
```py
>>> my_config = DistilBertConfig(activation="relu", attention_dropout=0.4)
>>> print(my_config)
DistilBertConfig {
"activation": "relu",
"attention_dropout": 0.4,
"dim": 768,
"dropout": 0.1,
"hidden_dim": 3072,
"initializer_range": 0.02,
"max_position_embeddings": 512,
"model_type": "distilbert",
"n_heads": 12,
"n_layers": 6,
"pad_token_id": 0,
"qa_dropout": 0.1,
"seq_classif_dropout": 0.2,
"sinusoidal_pos_embds": false,
"transformers_version": "4.16.2",
"vocab_size": 30522
}
```
Pretrained model attributes can be modified in the [`~PretrainedConfig.from_pretrained`] function:
```py
>>> my_config = DistilBertConfig.from_pretrained("distilbert-base-uncased", activation="relu", attention_dropout=0.4)
```
Once you are satisfied with your model configuration, you can save it with [`~PretrainedConfig.save_pretrained`]. Your configuration file is stored as a JSON file in the specified save directory:
```py
>>> my_config.save_pretrained(save_directory="./your_model_save_path")
```
To reuse the configuration file, load it with [`~PretrainedConfig.from_pretrained`]:
```py
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
```
<Tip>
You can also save your configuration file as a dictionary or even just the difference between your custom configuration attributes and the default configuration attributes! See the [configuration](main_classes/configuration) documentation for more details.
</Tip>
## Model
The next step is to create a [model](main_classes/models). The model - also loosely referred to as the architecture - defines what each layer is doing and what operations are happening. Attributes like `num_hidden_layers` from the configuration are used to define the architecture. Every model shares the base class [`PreTrainedModel`] and a few common methods like resizing input embeddings and pruning self-attention heads. In addition, all models are also either a [`torch.nn.Module`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html), [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) or [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. This means models are compatible with each of their respective framework's usage.
<frameworkcontent>
<pt>
Load your custom configuration attributes into the model:
```py
>>> from transformers import DistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> model = DistilBertModel(my_config)
```
This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training.
Create a pretrained model with [`~PreTrainedModel.from_pretrained`]:
```py
>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased")
```
When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like:
```py
>>> model = DistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config)
```
</pt>
<tf>
Load your custom configuration attributes into the model:
```py
>>> from transformers import TFDistilBertModel
>>> my_config = DistilBertConfig.from_pretrained("./your_model_save_path/my_config.json")
>>> tf_model = TFDistilBertModel(my_config)
```
This creates a model with random values instead of pretrained weights. You won't be able to use this model for anything useful yet until you train it. Training is a costly and time-consuming process. It is generally better to use a pretrained model to obtain better results faster, while using only a fraction of the resources required for training.
Create a pretrained model with [`~TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
```
When you load pretrained weights, the default model configuration is automatically loaded if the model is provided by 🤗 Transformers. However, you can still replace - some or all of - the default model configuration attributes with your own if you'd like:
```py
>>> tf_model = TFDistilBertModel.from_pretrained("distilbert-base-uncased", config=my_config)
```
</tf>
</frameworkcontent>
### Model heads
At this point, you have a base DistilBERT model which outputs the *hidden states*. The hidden states are passed as inputs to a model head to produce the final output. 🤗 Transformers provides a different model head for each task as long as a model supports the task (i.e., you can't use DistilBERT for a sequence-to-sequence task like translation).
<frameworkcontent>
<pt>
For example, [`DistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs.
```py
>>> from transformers import DistilBertForSequenceClassification
>>> model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`DistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output.
```py
>>> from transformers import DistilBertForQuestionAnswering
>>> model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
```
</pt>
<tf>
For example, [`TFDistilBertForSequenceClassification`] is a base DistilBERT model with a sequence classification head. The sequence classification head is a linear layer on top of the pooled outputs.
```py
>>> from transformers import TFDistilBertForSequenceClassification
>>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
```
Easily reuse this checkpoint for another task by switching to a different model head. For a question answering task, you would use the [`TFDistilBertForQuestionAnswering`] model head. The question answering head is similar to the sequence classification head except it is a linear layer on top of the hidden states output.
```py
>>> from transformers import TFDistilBertForQuestionAnswering
>>> tf_model = TFDistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
```
</tf>
</frameworkcontent>
## Tokenizer
The last base class you need before using a model for textual data is a [tokenizer](main_classes/tokenizer) to convert raw text to tensors. There are two types of tokenizers you can use with 🤗 Transformers:
- [`PreTrainedTokenizer`]: a Python implementation of a tokenizer.
- [`PreTrainedTokenizerFast`]: a tokenizer from our Rust-based [🤗 Tokenizer](https://huggingface.co/docs/tokenizers/python/latest/) library. This tokenizer type is significantly faster - especially during batch tokenization - due to it's Rust implementation. The fast tokenizer also offers additional methods like *offset mapping* which maps tokens to their original words or characters.
Both tokenizers support common methods such as encoding and decoding, adding new tokens, and managing special tokens.
<Tip warning={true}>
Not every model supports a fast tokenizer. Take a look at this [table](index#supported-frameworks) to check if a model has fast tokenizer support.
</Tip>
If you trained your own tokenizer, you can create one from your *vocabulary* file:
```py
>>> from transformers import DistilBertTokenizer
>>> my_tokenizer = DistilBertTokenizer(vocab_file="my_vocab_file.txt", do_lower_case=False, padding_side="left")
```
It is important to remember the vocabulary from a custom tokenizer will be different from the vocabulary generated by a pretrained model's tokenizer. You need to use a pretrained model's vocabulary if you are using a pretrained model, otherwise the inputs won't make sense. Create a tokenizer with a pretrained model's vocabulary with the [`DistilBertTokenizer`] class:
```py
>>> from transformers import DistilBertTokenizer
>>> slow_tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
```
Create a fast tokenizer with the [`DistilBertTokenizerFast`] class:
```py
>>> from transformers import DistilBertTokenizerFast
>>> fast_tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
```
<Tip>
By default, [`AutoTokenizer`] will try to load a fast tokenizer. You can disable this behavior by setting `use_fast=False` in `from_pretrained`.
</Tip>
## Feature Extractor
A feature extractor processes audio or image inputs. It inherits from the base [`~feature_extraction_utils.FeatureExtractionMixin`] class, and may also inherit from the [`ImageFeatureExtractionMixin`] class for processing image features or the [`SequenceFeatureExtractor`] class for processing audio inputs.
Depending on whether you are working on an audio or vision task, create a feature extractor associated with the model you're using. For example, create a default [`ViTFeatureExtractor`] if you are using [ViT](model_doc/vit) for image classification:
```py
>>> from transformers import ViTFeatureExtractor
>>> vit_extractor = ViTFeatureExtractor()
>>> print(vit_extractor)
ViTFeatureExtractor {
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_mean": [
0.5,
0.5,
0.5
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": 2,
"size": 224
}
```
<Tip>
If you aren't looking for any customization, just use the `from_pretrained` method to load a model's default feature extractor parameters.
</Tip>
Modify any of the [`ViTFeatureExtractor`] parameters to create your custom feature extractor:
```py
>>> from transformers import ViTFeatureExtractor
>>> my_vit_extractor = ViTFeatureExtractor(resample="PIL.Image.BOX", do_normalize=False, image_mean=[0.3, 0.3, 0.3])
>>> print(my_vit_extractor)
ViTFeatureExtractor {
"do_normalize": false,
"do_resize": true,
"feature_extractor_type": "ViTFeatureExtractor",
"image_mean": [
0.3,
0.3,
0.3
],
"image_std": [
0.5,
0.5,
0.5
],
"resample": "PIL.Image.BOX",
"size": 224
}
```
For audio inputs, you can create a [`Wav2Vec2FeatureExtractor`] and customize the parameters in a similar way:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> w2v2_extractor = Wav2Vec2FeatureExtractor()
>>> print(w2v2_extractor)
Wav2Vec2FeatureExtractor {
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": false,
"sampling_rate": 16000
}
```
## Processor
For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps a feature extractor and tokenizer into a single object. For example, let's use the [`Wav2Vec2Processor`] for an automatic speech recognition task (ASR). ASR transcribes audio to text, so you will need a feature extractor and a tokenizer.
Create a feature extractor to handle the audio inputs:
```py
>>> from transformers import Wav2Vec2FeatureExtractor
>>> feature_extractor = Wav2Vec2FeatureExtractor(padding_value=1.0, do_normalize=True)
```
Create a tokenizer to handle the text inputs:
```py
>>> from transformers import Wav2Vec2CTCTokenizer
>>> tokenizer = Wav2Vec2CTCTokenizer(vocab_file="my_vocab_file.txt")
```
Combine the feature extractor and tokenizer in [`Wav2Vec2Processor`]:
```py
>>> from transformers import Wav2Vec2Processor
>>> processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
```
With two basic classes - configuration and model - and an additional preprocessing class (tokenizer, feature extractor, or processor), you can create any of the models supported by 🤗 Transformers. Each of these base classes are configurable, allowing you to use the specific attributes you want. You can easily setup a model for training or modify an existing pretrained model to fine-tune.

View File

@ -0,0 +1,349 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Sharing custom models
The 🤗 Transformers library is designed to be easily extensible. Every model is fully coded in a given subfolder
of the repository with no abstraction, so you can easily copy a modeling file and tweak it to your needs.
If you are writing a brand new model, it might be easier to start from scratch. In this tutorial, we will show you
how to write a custom model and its configuration so it can be used inside Transformers, and how you can share it
with the community (with the code it relies on) so that anyone can use it, even if it's not present in the 🤗
Transformers library.
We will illustrate all of this on a ResNet model, by wrapping the ResNet class of the
[timm library](https://github.com/rwightman/pytorch-image-models/tree/master/timm) into a [`PreTrainedModel`].
## Writing a custom configuration
Before we dive into the model, let's first write its configuration. The configuration of a model is an object that
will contain all the necessary information to build the model. As we will see in the next section, the model can only
take a `config` to be initialized, so we really need that object to be as complete as possible.
In our example, we will take a couple of arguments of the ResNet class that we might want to tweak. Different
configurations will then give us the different types of ResNets that are possible. We then just store those arguments,
after checking the validity of a few of them.
```python
from transformers import PretrainedConfig
from typing import List
class ResnetConfig(PretrainedConfig):
model_type = "resnet"
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,
base_width: int = 64,
stem_width: int = 64,
stem_type: str = "",
avg_down: bool = False,
**kwargs,
):
if block_type not in ["basic", "bottleneck"]:
raise ValueError(f"`block` must be 'basic' or bottleneck', got {block}.")
if stem_type not in ["", "deep", "deep-tiered"]:
raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {block}.")
self.block_type = block_type
self.layers = layers
self.num_classes = num_classes
self.input_channels = input_channels
self.cardinality = cardinality
self.base_width = base_width
self.stem_width = stem_width
self.stem_type = stem_type
self.avg_down = avg_down
super().__init__(**kwargs)
```
The three important things to remember when writing you own configuration are the following:
- you have to inherit from `PretrainedConfig`,
- the `__init__` of your `PretrainedConfig` must accept any kwargs,
- those `kwargs` need to be passed to the superclass `__init__`.
The inheritance is to make sure you get all the functionality from the 🤗 Transformers library, while the two other
constraints come from the fact a `PretrainedConfig` has more fields than the ones you are setting. When reloading a
config with the `from_pretrained` method, those fields need to be accepted by your config and then sent to the
superclass.
Defining a `model_type` for your configuration (here `model_type="resnet"`) is not mandatory, unless you want to
register your model with the auto classes (see last section).
With this done, you can easily create and save your configuration like you would do with any other model config of the
library. Here is how we can create a resnet50d config and save it:
```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d_config.save_pretrained("custom-resnet")
```
This will save a file named `config.json` inside the folder `custom-resnet`. You can then reload your config with the
`from_pretrained` method:
```py
resnet50d_config = ResnetConfig.from_pretrained("custom-resnet")
```
You can also use any other method of the [`PretrainedConfig`] class, like [`~PretrainedConfig.push_to_hub`] to
directly upload your config to the Hub.
## Writing a custom model
Now that we have our ResNet configuration, we can go on writing the model. We will actually write two: one that
extracts the hidden features from a batch of images (like [`BertModel`]) and one that is suitable for image
classification (like [`BertForSequenceClassification`]).
As we mentioned before, we'll only write a loose wrapper of the model to keep it simple for this example. The only
thing we need to do before writing this class is a map between the block types and actual block classes. Then the
model is defined from the configuration by passing everything to the `ResNet` class:
```py
from transformers import PreTrainedModel
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
from .configuration_resnet import ResnetConfig
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
class ResnetModel(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor):
return self.model.forward_features(tensor)
```
For the model that will classify images, we just change the forward method:
```py
class ResnetModelForImageClassification(PreTrainedModel):
config_class = ResnetConfig
def __init__(self, config):
super().__init__(config)
block_layer = BLOCK_MAPPING[config.block_type]
self.model = ResNet(
block_layer,
config.layers,
num_classes=config.num_classes,
in_chans=config.input_channels,
cardinality=config.cardinality,
base_width=config.base_width,
stem_width=config.stem_width,
stem_type=config.stem_type,
avg_down=config.avg_down,
)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}
```
In both cases, notice how we inherit from `PreTrainedModel` and call the superclass initialization with the `config`
(a bit like when you write a regular `torch.nn.Module`). The line that sets the `config_class` is not mandatory, unless
you want to register your model with the auto classes (see last section).
<Tip>
If your model is very similar to a model inside the library, you can re-use the same configuration as this model.
</Tip>
You can have your model return anything you want, but returning a dictionary like we did for
`ResnetModelForImageClassification`, with the loss included when labels are passed, will make your model directly
usable inside the [`Trainer`] class. Using another output format is fine as long as you are planning on using your own
training loop or another library for training.
Now that we have our model class, let's create one:
```py
resnet50d = ResnetModelForImageClassification(resnet50d_config)
```
Again, you can use any of the methods of [`PreTrainedModel`], like [`~PreTrainedModel.save_pretrained`] or
[`~PreTrainedModel.push_to_hub`]. We will use the second in the next section, and see how to push the model weights
with the code of our model. But first, let's load some pretrained weights inside our model.
In your own use case, you will probably be training your custom model on your own data. To go fast for this tutorial,
we will use the pretrained version of the resnet50d. Since our model is just a wrapper around it, it's going to be
easy to transfer those weights:
```py
import timm
pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```
Now let's see how to make sure that when we do [`~PreTrainedModel.save_pretrained`] or [`~PreTrainedModel.push_to_hub`], the
code of the model is saved.
## Sending the code to the Hub
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
First, make sure your model is fully defined in a `.py` file. It can rely on relative imports to some other files as
long as all the files are in the same directory (we don't support submodules for this feature yet). For our example,
we'll define a `modeling_resnet.py` file and a `configuration_resnet.py` file in a folder of the current working
directory named `resnet_model`. The configuration file contains the code for `ResnetConfig` and the modeling file
contains the code of `ResnetModel` and `ResnetModelForImageClassification`.
```
.
└── resnet_model
├── __init__.py
├── configuration_resnet.py
└── modeling_resnet.py
```
The `__init__.py` can be empty, it's just there so that Python detects `resnet_model` can be use as a module.
<Tip warning={true}>
If copying a modeling files from the library, you will need to replace all the relative imports at the top of the file
to import from the `transformers` package.
</Tip>
Note that you can re-use (or subclass) an existing configuration/model.
To share your model with the community, follow those steps: first import the ResNet model and config from the newly
created files:
```py
from resnet_model.configuration_resnet import ResnetConfig
from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification
```
Then you have to tell the library you want to copy the code files of those objects when using the `save_pretrained`
method and properly register them with a given Auto class (especially for models), just run:
```py
ResnetConfig.register_for_auto_class()
ResnetModel.register_for_auto_class("AutoModel")
ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification")
```
Note that there is no need to specify an auto class for the configuration (there is only one auto class for them,
[`AutoConfig`]) but it's different for models. Your custom model could be suitable for many different tasks, so you
have to specify which one of the auto classes is the correct one for your model.
Next, let's create the config and models as we did before:
```py
resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True)
resnet50d = ResnetModelForImageClassification(resnet50d_config)
pretrained_model = timm.create_model("resnet50d", pretrained=True)
resnet50d.model.load_state_dict(pretrained_model.state_dict())
```
Now to send the model to the Hub, make sure you are logged in. Either run in your terminal:
```bash
huggingface-cli login
```
or from a notebook:
```py
from huggingface_hub import notebook_login
notebook_login()
```
You can then push to your own namespace (or an organization you are a member of) like this:
```py
resnet50d.push_to_hub("custom-resnet50d")
```
On top of the modeling weights and the configuration in json format, this also copied the modeling and
configuration `.py` files in the folder `custom-resnet50d` and uploaded the result to the Hub. You can check the result
in this [model repo](https://huggingface.co/sgugger/custom-resnet50d).
See the [sharing tutorial](model_sharing) for more information on the push to Hub method.
## Using a model with custom code
You can use any configuration, model or tokenizer with custom code files in its repository with the auto-classes and
the `from_pretrained` method. All files and code uploaded to the Hub are scanned for malware (refer to the [Hub security](https://huggingface.co/docs/hub/security#malware-scanning) documentation for more information), but you should still
review the model code and author to avoid executing malicious code on your machine. Set `trust_remote_code=True` to use
a model with custom code:
```py
from transformers import AutoModelForImageClassification
model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True)
```
It is also strongly encouraged to pass a commit hash as a `revision` to make sure the author of the models did not
update the code with some malicious new lines (unless you fully trust the authors of the models).
```py
commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292"
model = AutoModelForImageClassification.from_pretrained(
"sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash
)
```
Note that when browsing the commit history of the model repo on the Hub, there is a button to easily copy the commit
hash of any commit.
## Registering a model with custom code to the auto classes
If you are writing a library that extends 🤗 Transformers, you may want to extend the auto classes to include your own
model. This is different from pushing the code to the Hub in the sense that users will need to import your library to
get the custom models (contrarily to automatically downloading the model code from the Hub).
As long as your config has a `model_type` attribute that is different from existing model types, and that your model
classes have the right `config_class` attributes, you can just add them to the auto classes likes this:
```py
from transformers import AutoConfig, AutoModel, AutoModelForImageClassification
AutoConfig.register("resnet", ResnetConfig)
AutoModel.register(ResnetConfig, ResnetModel)
AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification)
```
Note that the first argument used when registering your custom config to [`AutoConfig`] needs to match the `model_type`
of your custom config, and the first argument used when registering your custom models to any auto model class needs
to match the `config_class` of those models.

View File

@ -12,6 +12,35 @@ specific language governing permissions and limitations under the License.
# Debugging
## Multi-GPU Network Issues Debug
When training or inferencing with `DistributedDataParallel` and multiple GPU, if you run into issue of inter-communication between processes and/or nodes, you can use the following script to diagnose network issues.
```bash
wget https://raw.githubusercontent.com/huggingface/transformers/main/scripts/distributed/torch-distributed-gpu-test.py
```
For example to test how 2 GPUs interact do:
```bash
python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
If both processes can talk to each and allocate GPU memory each will print an OK status.
For more GPUs or nodes adjust the arguments in the script.
You will find a lot more details inside the diagnostics script and even a recipe to how you could run it in a SLURM environment.
An additional level of debug is to add `NCCL_DEBUG=INFO` environment variable as follows:
```bash
NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
```
This will dump a lot of NCCL-related debug information, which you can then search online if you find that some problems are reported. Or if you're not sure how to interpret the output you can share the log file in an Issue.
## Underflow and Overflow Detection
<Tip>
@ -48,7 +77,7 @@ to the normal command line arguments, or pass `debug="underflow_overflow"` when
If you're using your own training loop or another Trainer you can accomplish the same with:
```python
from .debug_utils import DebugUnderflowOverflow
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model)
```
@ -242,7 +271,7 @@ Additionally, if you're instantiating the debugger in your own code, you can adj
its default, e.g.:
```python
from .debug_utils import DebugUnderflowOverflow
from transformers.debug_utils import DebugUnderflowOverflow
debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100)
```

View File

@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Using tokenizers from 🤗 Tokenizers
# Use tokenizers from 🤗 Tokenizers
The [`PreTrainedTokenizerFast`] depends on the [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) library. The tokenizers obtained from the 🤗 Tokenizers library can be
loaded very simply into 🤗 Transformers.

View File

@ -44,7 +44,7 @@ specific language governing permissions and limitations under the License.
Every model is different yet bears similarities with the others. Therefore most models use the same inputs, which are
detailed here alongside usage examples.
<a id='input-ids'></a>
### Input IDs
@ -113,7 +113,7 @@ we will see
because this is the way a [`BertModel`] is going to expect its inputs.
<a id='attention-mask'></a>
### Attention mask
@ -171,7 +171,7 @@ in the dictionary returned by the tokenizer under the key "attention_mask":
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
```
<a id='token-type-ids'></a>
### Token Type IDs
@ -224,7 +224,7 @@ second sequence, corresponding to the "question", has all its tokens represented
Some models, like [`XLNetModel`] use an additional token represented by a `2`.
<a id='position-ids'></a>
### Position IDs
@ -238,7 +238,7 @@ absolute positional embeddings.
Absolute positional embeddings are selected in the range `[0, config.max_position_embeddings - 1]`. Some models use
other types of positional embeddings, such as sinusoidal position embeddings or relative position embeddings.
<a id='labels'></a>
### Labels
@ -266,7 +266,7 @@ These labels are different according to the model head, for example:
The base models (e.g., [`BertModel`]) do not accept labels, as these are the base transformer
models, simply outputting features.
<a id='decoder-input-ids'></a>
### Decoder input IDs
@ -279,7 +279,6 @@ such models, passing the `labels` is the preferred way to handle training.
Please check each model's docs to see how they handle these input IDs for sequence to sequence training.
<a id='feed-forward-chunking'></a>
### Feed Forward Chunking

View File

@ -0,0 +1,120 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
-->
# Hyperparameter Search using Trainer API
🤗 Transformers provides a [`Trainer`] class optimized for training 🤗 Transformers models, making it easier to start training without manually writing your own training loop. The [`Trainer`] provides API for hyperparameter search. This doc shows how to enable it in example.
## Hyperparameter Search backend
[`Trainer`] supports four hyperparameter search backends currently:
[optuna](https://optuna.org/), [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html) and [wandb](https://wandb.ai/site/sweeps).
you should install them before using them as the hyperparameter search backend
```bash
pip install optuna/sigopt/wandb/ray[tune]
```
## How to enable Hyperparameter search in example
Define the hyperparameter search space, different backends need different format.
For sigopt, see sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter), it's like following:
```py
>>> def sigopt_hp_space(trial):
... return [
... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
... {
... "categorical_values": ["16", "32", "64", "128"],
... "name": "per_device_train_batch_size",
... "type": "categorical",
... },
... ]
```
For optuna, see optuna [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py), it's like following:
```py
>>> def optuna_hp_space(trial):
... return {
... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
... }
```
For raytune, see raytune [object_parameter](https://docs.ray.io/en/latest/tune/api_docs/search_space.html), it's like following:
```py
>>> def ray_hp_space(trial):
... return {
... "learning_rate": tune.loguniform(1e-6, 1e-4),
... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
... }
```
For wandb, see wandb [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration), it's like following:
```py
>>> def wandb_hp_space(trial):
... return {
... "method": "random",
... "metric": {"name": "objective", "goal": "minimize"},
... "parameters": {
... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
... "per_device_train_batch_size": {"values": [16, 32, 64, 128]},
... },
... }
```
Define a `model_init` function and pass it to the [`Trainer`], as an example:
```py
>>> def model_init(trial):
... return AutoModelForSequenceClassification.from_pretrained(
... model_args.model_name_or_path,
... from_tf=bool(".ckpt" in model_args.model_name_or_path),
... config=config,
... cache_dir=model_args.cache_dir,
... revision=model_args.model_revision,
... use_auth_token=True if model_args.use_auth_token else None,
... )
```
Create a [`Trainer`] with your `model_init` function, training arguments, training and test datasets, and evaluation function:
```py
>>> trainer = Trainer(
... model=None,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... tokenizer=tokenizer,
... model_init=model_init,
... data_collator=data_collator,
... )
```
Call hyperparameter search, get the best trial parameters, backend could be `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"`. direction can be`"minimize"` or `"maximize"`, which indicates whether to optimize greater or lower objective.
You could define your own compute_objective function, if not defined, the default compute_objective will be called, and the sum of eval metric like f1 is returned as objective value.
```py
>>> best_trial = trainer.hyperparameter_search(
... direction="maximize",
... backend="optuna",
... hp_space=optuna_hp_space,
... n_trials=20,
... compute_objective=compute_objective,
... )
```
## Hyperparameter search For DDP finetune
Currently, Hyperparameter search for DDP is enabled for optuna and sigopt. Only the rank-zero process will generate the search trial and pass the argument to other ranks.

346
docs/source/en/index.mdx Normal file
View File

@ -0,0 +1,346 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# 🤗 Transformers
State-of-the-art Machine Learning for [PyTorch](https://pytorch.org/), [TensorFlow](https://www.tensorflow.org/), and [JAX](https://jax.readthedocs.io/en/latest/).
🤗 Transformers provides APIs and tools to easily download and train state-of-the-art pretrained models. Using pretrained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities, such as:
📝 **Natural Language Processing**: text classification, named entity recognition, question answering, language modeling, summarization, translation, multiple choice, and text generation.<br>
🖼️ **Computer Vision**: image classification, object detection, and segmentation.<br>
🗣️ **Audio**: automatic speech recognition and audio classification.<br>
🐙 **Multimodal**: table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
🤗 Transformers support framework interoperability between PyTorch, TensorFlow, and JAX. This provides the flexibility to use a different framework at each stage of a model's life; train a model in three lines of code in one framework, and load it for inference in another. Models can also be exported to a format like ONNX and TorchScript for deployment in production environments.
Join the growing community on the [Hub](https://huggingface.co/models), [forum](https://discuss.huggingface.co/), or [Discord](https://discord.com/invite/JfAtkvEtRb) today!
## If you are looking for custom support from the Hugging Face team
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://cdn-media.huggingface.co/marketing/transformers/new-support-improved.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
## Contents
The documentation is organized into five sections:
- **GET STARTED** provides a quick tour of the library and installation instructions to get up and running.
- **TUTORIALS** are a great place to start if you're a beginner. This section will help you gain the basic skills you need to start using the library.
- **HOW-TO GUIDES** show you how to achieve a specific goal, like finetuning a pretrained model for language modeling or how to write and share a custom model.
- **CONCEPTUAL GUIDES** offers more discussion and explanation of the underlying concepts and ideas behind models, tasks, and the design philosophy of 🤗 Transformers.
- **API** describes all classes and functions:
- **MAIN CLASSES** details the most important classes like configuration, model, tokenizer, and pipeline.
- **MODELS** details the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** details utility classes and functions used internally.
### Supported models
<!--This list is updated automatically from the README with _make fix-copies_. Do not update manually! -->
1. **[ALBERT](model_doc/albert)** (from Google Research and the Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
1. **[BART](model_doc/bart)** (from Facebook) released with the paper [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
1. **[BARThez](model_doc/barthez)** (from École polytechnique) released with the paper [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321) by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
1. **[BARTpho](model_doc/bartpho)** (from VinAI Research) released with the paper [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese](https://arxiv.org/abs/2109.09701) by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
1. **[BEiT](model_doc/beit)** (from Microsoft) released with the paper [BEiT: BERT Pre-Training of Image Transformers](https://arxiv.org/abs/2106.08254) by Hangbo Bao, Li Dong, Furu Wei.
1. **[BERT](model_doc/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
1. **[BERT For Sequence Generation](model_doc/bert-generation)** (from Google) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[BERTweet](model_doc/bertweet)** (from VinAI Research) released with the paper [BERTweet: A pre-trained language model for English Tweets](https://aclanthology.org/2020.emnlp-demos.2/) by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
1. **[BigBird-Pegasus](model_doc/bigbird_pegasus)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[BigBird-RoBERTa](model_doc/big_bird)** (from Google Research) released with the paper [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
1. **[CamemBERT](model_doc/camembert)** (from Inria/Facebook/Sorbonne) released with the paper [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
1. **[CANINE](model_doc/canine)** (from Google Research) released with the paper [CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation](https://arxiv.org/abs/2103.06874) by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
1. **[CLIP](model_doc/clip)** (from OpenAI) released with the paper [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
1. **[CodeGen](model_doc/codegen)** (from Salesforce) released with the paper [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
1. **[Conditional DETR](model_doc/conditional_detr)** (from Microsoft Research Asia) released with the paper [Conditional DETR for Fast Training Convergence](https://arxiv.org/abs/2108.06152) by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
1. **[ConvBERT](model_doc/convbert)** (from YituTech) released with the paper [ConvBERT: Improving BERT with Span-based Dynamic Convolution](https://arxiv.org/abs/2008.02496) by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
1. **[ConvNeXT](model_doc/convnext)** (from Facebook AI) released with the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
1. **[CPM](model_doc/cpm)** (from Tsinghua University) released with the paper [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
1. **[CTRL](model_doc/ctrl)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
1. **[CvT](model_doc/cvt)** (from Microsoft) released with the paper [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
1. **[Data2Vec](model_doc/data2vec)** (from Facebook) released with the paper [Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/abs/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
1. **[DeBERTa](model_doc/deberta)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](model_doc/deberta-v2)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[Decision Transformer](model_doc/decision_transformer)** (from Berkeley/Facebook/Google) released with the paper [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
1. **[Deformable DETR](model_doc/deformable_detr)** (from SenseTime Research) released with the paper [Deformable DETR: Deformable Transformers for End-to-End Object Detection](https://arxiv.org/abs/2010.04159) by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
1. **[DeiT](model_doc/deit)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](model_doc/detr)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](model_doc/dialogpt)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](model_doc/distilbert)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) and a German version of DistilBERT.
1. **[DiT](model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
1. **[Donut](model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
1. **[DPR](model_doc/dpr)** (from Facebook) released with the paper [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[DPT](master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
1. **[ELECTRA](model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](model_doc/encoder-decoder)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ERNIE](model_doc/ernie)** (from Baidu) released with the paper [ERNIE: Enhanced Representation through Knowledge Integration](https://arxiv.org/abs/1904.09223) by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
1. **[ESM](model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2** was released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
1. **[FlauBERT](model_doc/flaubert)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FLAVA](model_doc/flava)** (from Facebook AI) released with the paper [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
1. **[FNet](model_doc/fnet)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](model_doc/funnel)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GLPN](model_doc/glpn)** (from KAIST) released with the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
1. **[GPT](model_doc/openai-gpt)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](model_doc/gpt_neo)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
1. **[GPT NeoX](model_doc/gpt_neox)** (from EleutherAI) released with the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745) by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
1. **[GPT NeoX Japanese](model_doc/gpt_neox_japanese)** (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
1. **[GPT-2](model_doc/gpt2)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
1. **[GPT-J](model_doc/gptj)** (from EleutherAI) released in the repository [kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax/) by Ben Wang and Aran Komatsuzaki.
1. **[GroupViT](model_doc/groupvit)** (from UCSD, NVIDIA) released with the paper [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
1. **[Hubert](model_doc/hubert)** (from Facebook) released with the paper [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
1. **[I-BERT](model_doc/ibert)** (from Berkeley) released with the paper [I-BERT: Integer-only BERT Quantization](https://arxiv.org/abs/2101.01321) by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
1. **[ImageGPT](model_doc/imagegpt)** (from OpenAI) released with the paper [Generative Pretraining from Pixels](https://openai.com/blog/image-gpt/) by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
1. **[LayoutLM](model_doc/layoutlm)** (from Microsoft Research Asia) released with the paper [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
1. **[LayoutLMv2](model_doc/layoutlmv2)** (from Microsoft Research Asia) released with the paper [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
1. **[LayoutLMv3](model_doc/layoutlmv3)** (from Microsoft Research Asia) released with the paper [LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking](https://arxiv.org/abs/2204.08387) by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
1. **[LayoutXLM](model_doc/layoutxlm)** (from Microsoft Research Asia) released with the paper [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
1. **[LED](model_doc/led)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LeViT](model_doc/levit)** (from Meta AI) released with the paper [LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference](https://arxiv.org/abs/2104.01136) by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
1. **[LiLT](model_doc/lilt)** (from South China University of Technology) released with the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Jiapeng Wang, Lianwen Jin, Kai Ding.
1. **[Longformer](model_doc/longformer)** (from AllenAI) released with the paper [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan.
1. **[LongT5](model_doc/longt5)** (from Google AI) released with the paper [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
1. **[LUKE](model_doc/luke)** (from Studio Ousia) released with the paper [LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention](https://arxiv.org/abs/2010.01057) by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
1. **[LXMERT](model_doc/lxmert)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
1. **[M-CTC-T](model_doc/mctct)** (from Facebook) released with the paper [Pseudo-Labeling For Massively Multilingual Speech Recognition](https://arxiv.org/abs/2111.00161) by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
1. **[M2M100](model_doc/m2m_100)** (from Facebook) released with the paper [Beyond English-Centric Multilingual Machine Translation](https://arxiv.org/abs/2010.11125) by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
1. **[MarianMT](model_doc/marian)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MarkupLM](model_doc/markuplm)** (from Microsoft Research Asia) released with the paper [MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding](https://arxiv.org/abs/2110.08518) by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
1. **[MaskFormer](model_doc/maskformer)** (from Meta and UIUC) released with the paper [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://arxiv.org/abs/2107.06278) by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
1. **[mBART](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[mBART-50](model_doc/mbart)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](model_doc/megatron-bert)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](model_doc/megatron_gpt2)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[mLUKE](model_doc/mluke)** (from Studio Ousia) released with the paper [mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models](https://arxiv.org/abs/2110.08151) by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
1. **[MobileBERT](model_doc/mobilebert)** (from CMU/Google Brain) released with the paper [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
1. **[MobileViT](model_doc/mobilevit)** (from Apple) released with the paper [MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer](https://arxiv.org/abs/2110.02178) by Sachin Mehta and Mohammad Rastegari.
1. **[MPNet](model_doc/mpnet)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](model_doc/mt5)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[MVP](model_doc/mvp)** (from RUC AI Box) released with the paper [MVP: Multi-task Supervised Pre-training for Natural Language Generation](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
1. **[Nezha](model_doc/nezha)** (from Huawei Noahs Ark Lab) released with the paper [NEZHA: Neural Contextualized Representation for Chinese Language Understanding](https://arxiv.org/abs/1909.00204) by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
1. **[NLLB](model_doc/nllb)** (from Meta) released with the paper [No Language Left Behind: Scaling Human-Centered Machine Translation](https://arxiv.org/abs/2207.04672) by the NLLB team.
1. **[Nyströmformer](model_doc/nystromformer)** (from the University of Wisconsin - Madison) released with the paper [Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention](https://arxiv.org/abs/2102.03902) by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
1. **[OPT](master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[Pegasus](model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[PLBart](model_doc/plbart)** (from UCLA NLP) released with the paper [Unified Pre-training for Program Understanding and Generation](https://arxiv.org/abs/2103.06333) by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
1. **[PoolFormer](model_doc/poolformer)** (from Sea AI Labs) released with the paper [MetaFormer is Actually What You Need for Vision](https://arxiv.org/abs/2111.11418) by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[RAG](model_doc/rag)** (from Facebook) released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
1. **[REALM](model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RegNet](model_doc/regnet)** (from META Platforms) released with the paper [Designing Network Design Space](https://arxiv.org/abs/2003.13678) by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/abs/2010.12821) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[ResNet](model_doc/resnet)** (from Microsoft Research) released with the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
1. **[RoFormer](model_doc/roformer)** (from ZhuiyiTechnology), released together with the paper [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
1. **[SegFormer](model_doc/segformer)** (from NVIDIA) released with the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
1. **[SEW](model_doc/sew)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SEW-D](model_doc/sew_d)** (from ASAPP) released with the paper [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
1. **[SpeechToTextTransformer](model_doc/speech_to_text)** (from Facebook), released together with the paper [fairseq S2T: Fast Speech-to-Text Modeling with fairseq](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
1. **[SpeechToTextTransformer2](model_doc/speech_to_text_2)** (from Facebook), released together with the paper [Large-Scale Self- and Semi-Supervised Learning for Speech Translation](https://arxiv.org/abs/2104.06678) by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
1. **[Splinter](model_doc/splinter)** (from Tel Aviv University), released together with the paper [Few-Shot Question Answering by Pretraining Span Selection](https://arxiv.org/abs/2101.00438) by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
1. **[SqueezeBERT](model_doc/squeezebert)** (from Berkeley) released with the paper [SqueezeBERT: What can computer vision teach NLP about efficient neural networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
1. **[Swin Transformer](model_doc/swin)** (from Microsoft) released with the paper [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
1. **[Swin Transformer V2](model_doc/swinv2)** (from Microsoft) released with the paper [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
1. **[T5](model_doc/t5)** (from Google AI) released with the paper [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[T5v1.1](model_doc/t5v1.1)** (from Google AI) released in the repository [google-research/text-to-text-transfer-transformer](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
1. **[TAPAS](model_doc/tapas)** (from Google AI) released with the paper [TAPAS: Weakly Supervised Table Parsing via Pre-training](https://arxiv.org/abs/2004.02349) by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
1. **[TAPEX](model_doc/tapex)** (from Microsoft Research) released with the paper [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
1. **[Time Series Transformer](model_doc/time_series_transformer)** (from HuggingFace).
1. **[Trajectory Transformer](model_doc/trajectory_transformers)** (from the University of California at Berkeley) released with the paper [Offline Reinforcement Learning as One Big Sequence Modeling Problem](https://arxiv.org/abs/2106.02039) by Michael Janner, Qiyang Li, Sergey Levine
1. **[Transformer-XL](model_doc/transfo-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
1. **[TrOCR](model_doc/trocr)** (from Microsoft), released together with the paper [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
1. **[UL2](model_doc/ul2)** (from Google Research) released with the paper [Unifying Language Learning Paradigms](https://arxiv.org/abs/2205.05131v1) by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
1. **[UniSpeech](model_doc/unispeech)** (from Microsoft Research) released with the paper [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
1. **[UniSpeechSat](model_doc/unispeech-sat)** (from Microsoft Research) released with the paper [UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
1. **[VAN](model_doc/van)** (from Tsinghua University and Nankai University) released with the paper [Visual Attention Network](https://arxiv.org/abs/2202.09741) by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
1. **[VideoMAE](model_doc/videomae)** (from Multimedia Computing Group, Nanjing University) released with the paper [VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training](https://arxiv.org/abs/2203.12602) by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
1. **[ViLT](model_doc/vilt)** (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Wonjae Kim, Bokyung Son, Ildoo Kim.
1. **[Vision Transformer (ViT)](model_doc/vit)** (from Google AI) released with the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
1. **[VisualBERT](model_doc/visual_bert)** (from UCLA NLP) released with the paper [VisualBERT: A Simple and Performant Baseline for Vision and Language](https://arxiv.org/pdf/1908.03557) by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
1. **[ViTMAE](model_doc/vit_mae)** (from Meta AI) released with the paper [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377) by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
1. **[ViTMSN](model_doc/vit_msn)** (from Meta AI) released with the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
1. **[Wav2Vec2](model_doc/wav2vec2)** (from Facebook AI) released with the paper [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
1. **[Wav2Vec2-Conformer](model_doc/wav2vec2-conformer)** (from Facebook AI) released with the paper [FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ](https://arxiv.org/abs/2010.05171) by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
1. **[Wav2Vec2Phoneme](model_doc/wav2vec2_phoneme)** (from Facebook AI) released with the paper [Simple and Effective Zero-shot Cross-lingual Phoneme Recognition](https://arxiv.org/abs/2109.11680) by Qiantong Xu, Alexei Baevski, Michael Auli.
1. **[WavLM](model_doc/wavlm)** (from Microsoft Research) released with the paper [WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
1. **[Whisper](model_doc/whisper)** (from OpenAI) released with the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
1. **[X-CLIP](model_doc/xclip)** (from Microsoft Research) released with the paper [Expanding Language-Image Pretrained Models for General Video Recognition](https://arxiv.org/abs/2208.02816) by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
1. **[XGLM](model_doc/xglm)** (From Facebook AI) released with the paper [Few-shot Learning with Multilingual Language Models](https://arxiv.org/abs/2112.10668) by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
1. **[XLM](model_doc/xlm)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
1. **[XLM-ProphetNet](model_doc/xlm-prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[XLM-RoBERTa](model_doc/xlm-roberta)** (from Facebook AI), released together with the paper [Unsupervised Cross-lingual Representation Learning at Scale](https://arxiv.org/abs/1911.02116) by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
1. **[XLM-RoBERTa-XL](model_doc/xlm-roberta-xl)** (from Facebook AI), released together with the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
1. **[XLNet](model_doc/xlnet)** (from Google/CMU) released with the paper [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
1. **[XLS-R](model_doc/xls_r)** (from Facebook AI) released with the paper [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
1. **[XLSR-Wav2Vec2](model_doc/xlsr_wav2vec2)** (from Facebook AI) released with the paper [Unsupervised Cross-Lingual Representation Learning For Speech Recognition](https://arxiv.org/abs/2006.13979) by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
1. **[YOLOS](model_doc/yolos)** (from Huazhong University of Science & Technology) released with the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
1. **[YOSO](model_doc/yoso)** (from the University of Wisconsin - Madison) released with the paper [You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling](https://arxiv.org/abs/2111.09714) by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
### Supported frameworks
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
<!--This table is updated automatically from the auto modules with _make fix-copies_. Do not update manually!-->
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
|:---------------------------:|:--------------:|:--------------:|:---------------:|:------------------:|:------------:|
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
| BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
| BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
| CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
| CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
| Conditional DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
| CvT | ❌ | ❌ | ✅ | ✅ | ❌ |
| Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ |
| Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ |
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
| DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
| Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Deformable DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DeiT | ❌ | ❌ | ✅ | ✅ | ❌ |
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
| DonutSwin | ❌ | ❌ | ✅ | ❌ | ❌ |
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
| DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
| Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ESM | ✅ | ❌ | ✅ | ✅ | ❌ |
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
| FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
| GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
| GPT NeoX Japanese | ✅ | ❌ | ✅ | ❌ | ❌ |
| GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
| GroupViT | ❌ | ❌ | ✅ | ✅ | ❌ |
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
| LayoutLMv3 | ✅ | ✅ | ✅ | ✅ | ❌ |
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
| LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| LiLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
| LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
| MarkupLM | ✅ | ✅ | ✅ | ❌ | ❌ |
| MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
| Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| MobileViT | ❌ | ❌ | ✅ | ✅ | ❌ |
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
| Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
| Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
| OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
| OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
| PEGASUS-X | ❌ | ❌ | ✅ | ❌ | ❌ |
| Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
| PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
| PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
| REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
| RegNet | ❌ | ❌ | ✅ | ✅ | ❌ |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| ResNet | ❌ | ❌ | ✅ | ✅ | ❌ |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
| SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
| SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
| SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ |
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
| Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
| Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
| TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
| Time Series Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
| TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
| UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
| VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
| VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
| Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
| VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ |
| VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
| ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
| ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
| ViTMSN | ❌ | ❌ | ✅ | ❌ | ❌ |
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
| Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
| WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
| Whisper | ✅ | ❌ | ✅ | ✅ | ❌ |
| X-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
| XGLM | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
| XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
| XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ |
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
| YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
| YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |
<!-- End table-->

View File

@ -0,0 +1,240 @@
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Installation
Install 🤗 Transformers for whichever deep learning library you're working with, setup your cache, and optionally configure 🤗 Transformers to run offline.
🤗 Transformers is tested on Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, and Flax. Follow the installation instructions below for the deep learning library you are using:
* [PyTorch](https://pytorch.org/get-started/locally/) installation instructions.
* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) installation instructions.
* [Flax](https://flax.readthedocs.io/en/latest/) installation instructions.
## Install with pip
You should install 🤗 Transformers in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, take a look at this [guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). A virtual environment makes it easier to manage different projects, and avoid compatibility issues between dependencies.
Start by creating a virtual environment in your project directory:
```bash
python -m venv .env
```
Activate the virtual environment. On Linux and MacOs:
```bash
source .env/bin/activate
```
Activate Virtual environment on Windows
```bash
.env/Scripts/activate
```
Now you're ready to install 🤗 Transformers with the following command:
```bash
pip install transformers
```
For CPU-support only, you can conveniently install 🤗 Transformers and a deep learning library in one line. For example, install 🤗 Transformers and PyTorch with:
```bash
pip install transformers[torch]
```
🤗 Transformers and TensorFlow 2.0:
```bash
pip install transformers[tf-cpu]
```
🤗 Transformers and Flax:
```bash
pip install transformers[flax]
```
Finally, check if 🤗 Transformers has been properly installed by running the following command. It will download a pretrained model:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
```
Then print out the label and score:
```bash
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
```
## Install from source
Install 🤗 Transformers from source with the following command:
```bash
pip install git+https://github.com/huggingface/transformers
```
This command installs the bleeding edge `main` version rather than the latest `stable` version. The `main` version is useful for staying up-to-date with the latest developments. For instance, if a bug has been fixed since the last official release but a new release hasn't been rolled out yet. However, this means the `main` version may not always be stable. We strive to keep the `main` version operational, and most issues are usually resolved within a few hours or a day. If you run into a problem, please open an [Issue](https://github.com/huggingface/transformers/issues) so we can fix it even sooner!
Check if 🤗 Transformers has been properly installed by running the following command:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
## Editable install
You will need an editable install if you'd like to:
* Use the `main` version of the source code.
* Contribute to 🤗 Transformers and need to test changes in the code.
Clone the repository and install 🤗 Transformers with the following commands:
```bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
```
These commands will link the folder you cloned the repository to and your Python library paths. Python will now look inside the folder you cloned to in addition to the normal library paths. For example, if your Python packages are typically installed in `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python will also search the folder you cloned to: `~/transformers/`.
<Tip warning={true}>
You must keep the `transformers` folder if you want to keep using the library.
</Tip>
Now you can easily update your clone to the latest version of 🤗 Transformers with the following command:
```bash
cd ~/transformers/
git pull
```
Your Python environment will find the `main` version of 🤗 Transformers on the next run.
## Install with conda
Install from the conda channel `huggingface`:
```bash
conda install -c huggingface transformers
```
## Cache setup
Pretrained models are downloaded and locally cached at: `~/.cache/huggingface/hub`. This is the default directory given by the shell environment variable `TRANSFORMERS_CACHE`. On Windows, the default directory is given by `C:\Users\username\.cache\huggingface\hub`. You can change the shell environment variables shown below - in order of priority - to specify a different cache directory:
1. Shell environment variable (default): `HUGGINGFACE_HUB_CACHE` or `TRANSFORMERS_CACHE`.
2. Shell environment variable: `HF_HOME`.
3. Shell environment variable: `XDG_CACHE_HOME` + `/huggingface`.
<Tip>
🤗 Transformers will use the shell environment variables `PYTORCH_TRANSFORMERS_CACHE` or `PYTORCH_PRETRAINED_BERT_CACHE` if you are coming from an earlier iteration of this library and have set those environment variables, unless you specify the shell environment variable `TRANSFORMERS_CACHE`.
</Tip>
## Offline mode
🤗 Transformers is able to run in a firewalled or offline environment by only using local files. Set the environment variable `TRANSFORMERS_OFFLINE=1` to enable this behavior.
<Tip>
Add [🤗 Datasets](https://huggingface.co/docs/datasets/) to your offline training workflow by setting the environment variable `HF_DATASETS_OFFLINE=1`.
</Tip>
For example, you would typically run a program on a normal network firewalled to external instances with the following command:
```bash
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Run this same program in an offline instance with:
```bash
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
The script should now run without hanging or waiting to timeout because it knows it should only look for local files.
### Fetch models and tokenizers to use offline
Another option for using 🤗 Transformers offline is to download the files ahead of time, and then point to their local path when you need to use them offline. There are three ways to do this:
* Download a file through the user interface on the [Model Hub](https://huggingface.co/models) by clicking on the ↓ icon.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png)
* Use the [`PreTrainedModel.from_pretrained`] and [`PreTrainedModel.save_pretrained`] workflow:
1. Download your files ahead of time with [`PreTrainedModel.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
```
2. Save your files to a specified directory with [`PreTrainedModel.save_pretrained`]:
```py
>>> tokenizer.save_pretrained("./your/path/bigscience_t0")
>>> model.save_pretrained("./your/path/bigscience_t0")
```
3. Now when you're offline, reload your files with [`PreTrainedModel.from_pretrained`] from the specified directory:
```py
>>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0")
>>> model = AutoModel.from_pretrained("./your/path/bigscience_t0")
```
* Programmatically download files with the [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub) library:
1. Install the `huggingface_hub` library in your virtual environment:
```bash
python -m pip install huggingface_hub
```
2. Use the [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) function to download a file to a specific path. For example, the following command downloads the `config.json` file from the [T0](https://huggingface.co/bigscience/T0_3B) model to your desired path:
```py
>>> from huggingface_hub import hf_hub_download
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0")
```
Once your file is downloaded and locally cached, specify it's local path to load and use it:
```py
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json")
```
<Tip>
See the [How to download files from the Hub](https://huggingface.co/docs/hub/how-to-downstream) section for more details on downloading files stored on the Hub.
</Tip>

View File

@ -12,35 +12,35 @@ specific language governing permissions and limitations under the License.
# General Utilities
This page lists all of Transformers general utility functions that are found in the file `file_utils.py`.
This page lists all of Transformers general utility functions that are found in the file `utils.py`.
Most of those are only useful if you are studying the general code in the library.
## Enums and namedtuples
[[autodoc]] file_utils.ExplicitEnum
[[autodoc]] utils.ExplicitEnum
[[autodoc]] file_utils.PaddingStrategy
[[autodoc]] utils.PaddingStrategy
[[autodoc]] file_utils.TensorType
[[autodoc]] utils.TensorType
## Special Decorators
[[autodoc]] file_utils.add_start_docstrings
[[autodoc]] utils.add_start_docstrings
[[autodoc]] file_utils.add_start_docstrings_to_model_forward
[[autodoc]] utils.add_start_docstrings_to_model_forward
[[autodoc]] file_utils.add_end_docstrings
[[autodoc]] utils.add_end_docstrings
[[autodoc]] file_utils.add_code_sample_docstrings
[[autodoc]] utils.add_code_sample_docstrings
[[autodoc]] file_utils.replace_return_docstrings
[[autodoc]] utils.replace_return_docstrings
## Special Properties
[[autodoc]] file_utils.cached_property
[[autodoc]] utils.cached_property
## Other Utilities
[[autodoc]] file_utils._LazyModule
[[autodoc]] utils._LazyModule

View File

@ -16,15 +16,16 @@ This page lists all the utility functions used by [`~generation_utils.Generation
[`~generation_utils.GenerationMixin.greedy_search`],
[`~generation_utils.GenerationMixin.sample`],
[`~generation_utils.GenerationMixin.beam_search`],
[`~generation_utils.GenerationMixin.beam_sample`], and
[`~generation_utils.GenerationMixin.group_beam_search`].
[`~generation_utils.GenerationMixin.beam_sample`],
[`~generation_utils.GenerationMixin.group_beam_search`], and
[`~generation_utils.GenerationMixin.constrained_beam_search`].
Most of those are only useful if you are studying the code of the generate methods in the library.
## Generate Outputs
The output of [`~generation_utils.GenerationMixin.generate`] is an instance of a subclass of
[`~file_utils.ModelOutput`]. This output is a data structure containing all the information returned
[`~utils.ModelOutput`]. This output is a data structure containing all the information returned
by [`~generation_utils.GenerationMixin.generate`], but that can also be used as tuple or dictionary.
Here's an example:
@ -126,6 +127,9 @@ generation.
[[autodoc]] TopKLogitsWarper
- __call__
[[autodoc]] TypicalLogitsWarper
- __call__
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
@ -147,6 +151,42 @@ generation.
[[autodoc]] InfNanRemoveLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessorList
- __call__
[[autodoc]] TFLogitsWarper
- __call__
[[autodoc]] TFTemperatureLogitsWarper
- __call__
[[autodoc]] TFTopPLogitsWarper
- __call__
[[autodoc]] TFTopKLogitsWarper
- __call__
[[autodoc]] TFMinLengthLogitsProcessor
- __call__
[[autodoc]] TFNoBadWordsLogitsProcessor
- __call__
[[autodoc]] TFNoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] TFRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TFForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] TFForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessor
- __call__
@ -190,6 +230,18 @@ A [`StoppingCriteria`] can be used to change when to stop generation (other than
[[autodoc]] MaxTimeCriteria
- __call__
## Constraints
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output.
[[autodoc]] Constraint
[[autodoc]] PhrasalConstraint
[[autodoc]] DisjunctiveConstraint
[[autodoc]] ConstraintListState
## BeamSearch
[[autodoc]] BeamScorer
@ -200,6 +252,10 @@ A [`StoppingCriteria`] can be used to change when to stop generation (other than
- process
- finalize
[[autodoc]] ConstrainedBeamSearchScorer
- process
- finalize
## Utilities
[[autodoc]] top_k_top_p_filtering

View File

@ -0,0 +1,32 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Utilities for Image Processors
This page lists all the utility functions used by the image processors, mainly the functional
transformations used to process the images.
Most of those are only useful if you are studying the code of the image processors in the library.
## Image Transformations
[[autodoc]] image_transforms.normalize
[[autodoc]] image_transforms.rescale
[[autodoc]] image_transforms.resize
[[autodoc]] image_transforms.to_pil_image
## ImageProcessorMixin
[[autodoc]] image_processing_utils.ImageProcessorMixin

View File

@ -19,7 +19,7 @@ Most of those are only useful if you are studying the code of the models in the
## Pytorch custom modules
[[autodoc]] modeling_utils.Conv1D
[[autodoc]] pytorch_utils.Conv1D
[[autodoc]] modeling_utils.PoolerStartLogits
- forward
@ -40,15 +40,15 @@ Most of those are only useful if you are studying the code of the models in the
## PyTorch Helper Functions
[[autodoc]] apply_chunking_to_forward
[[autodoc]] pytorch_utils.apply_chunking_to_forward
[[autodoc]] modeling_utils.find_pruneable_heads_and_indices
[[autodoc]] pytorch_utils.find_pruneable_heads_and_indices
[[autodoc]] modeling_utils.prune_layer
[[autodoc]] pytorch_utils.prune_layer
[[autodoc]] modeling_utils.prune_conv1d_layer
[[autodoc]] pytorch_utils.prune_conv1d_layer
[[autodoc]] modeling_utils.prune_linear_layer
[[autodoc]] pytorch_utils.prune_linear_layer
## TensorFlow custom layers

Some files were not shown because too many files have changed in this diff Show More